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Math 501 - Differential Geometry                                          

Herman Gluck 

Tuesday February 21, 2012 

 

4. INTRINSIC GEOMETRY OF SURFACES 
 

Let  S  and  S'  be regular surfaces in 3-space. 

 

Definition.  A diffeomorphism  : S    S'  is an isometry 

if for all points  p  S  and tangent vectors  W1 , W2  TpS  

we have 

 

< W1 , W2 >p  =  < d p(W1) , d p(W2) > (p) . 

 

The surfaces  S  and  S'  are then said to be isometric. 
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Problem 1.  Show that an isometry between surfaces 

preserves lengths of tangent vectors, angles between tangent 

vectors, the first fundamental form, lengths of curves, angles 

between curves and areas of domains. 

 

 

Problem 2.  Show that a diffeomorphism between regular 

surfaces which preserves the first fundamental form is 

an isometry. 
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Definition.  Two regular surfaces  S  and  S'  are said to be 

locally isometric if each point on each surface has an open 

neighborhood isometric to an open set on the other surface. 

 

Example.  A cylinder is locally isometric to a plane. 

But the two surfaces are not isometric. 
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Problem 3.  Show that a catenoid and helicoid are locally 

isometric.  See do Carmo, Problem 14 on page 213, and also 

Example 2 on pages 221-222. 
 

                 

                                                                                                                  



 5 

 

Definition.  A diffeomorphism  : S    S'  between 

regular surfaces is called a conformal map if for all points   

p  S  and tangent vectors  W1 , W2  TpS  we have 

 

< d p(W1) , d p(W2) > (p)  =  
2
(p) < W1 , W2 >p , 

 

where  
2
  is a strictly positive smooth function on  S . 

The surfaces  S  and  S'  are then said to be 

conformally equivalent. 

 

Problem 4.  Show that a conformal map preserves angles 

between tangent vectors, but not necessarily the lengths 

of tangent vectors, and that likewise it preserves angles 

between curves, but not necessarily lengths of curves. 
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Definition.  Two regular surfaces  S  and  S'  are said to be 

locally conformal  if each point on each surface has an open 

neighborhood conformally equivalent to an open set on the 

other surface. 

 

DEEP THEOREM.  Any two regular surfaces are 

locally conformal. 

 

Remark of do Carmo.  The proof is based on the possibility 

of parametrizing a neighborhood of any point of a regular 

surface in such a way that the coefficients of the first 

fundamental form are 

 

E  =  
2
(u, v)  >  0 ,   F  =  0 ,   G  =  

2
(u, v) . 
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Problem 5.  Let  : R
3
    R

3
  be a map such that 

 

| (p)  —  (q)|  =  |p  —  q| . 

 

Show there is a linear isometry  L: R
3
    R

3
  such that 

 

(p)  =  L(p)  +  (0) . 

 

 

Problem 6.  Suppose that the diffeomorphism  : S    S' 

between two regular surfaces is conformal and preserves 

areas of regions.  Show that    is an isometry. 
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Set-up. 

 

Let  S  be a regular, oriented surface in  R
3
 ,  let  U  be 

an open set in  R
2
  and  X:  U    V    S  a smooth 

parametrization of the open set  V  in  S .   

 

For each point  p  =  X(u, v)  of  V ,  the tangent vectors   

Xu  and  Xv  form a basis for the tangent space TpS .   

 

Let  N(u, v)  denote the unit normal vector to  S  at the  

point  p  =  X(u, v) .  Then the vectors  Xu ,  Xv ,  N   

form a basis for  R
3
 . 
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Plan. 

 

When we studied curves in 3-space, the Frenet frame   

T ,  N ,  B  was defined as long as the curvature of the curve 

was nonzero.   

 

The rates of change of  T ,  N  and  B  along the curve gave 

rise to the Frenet equations, involving both the curvature and 

torsion, and these were fundamental in studying the geometry 

of the curve. 

 

Now we want to do the analogous thing for the surface  S , 

that is, we want to study the rates of change of the frame 

Xu ,  Xv ,  N  along the surface. 
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The Christoffel symbols. 

 

Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

                          

Xvu  =  
1

21 Xu  +  
2

21 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N 

 

         Nu  =  a11 Xu  +  a21 Xv 

         Nv  =  a12 Xu  +  a22 Xv 

 

The coefficients  
k

ij  are called the Christoffel symbols 

of the surface  S  in the parametrization  X: U    S . 

 

They are smooth functions of  (u, v)  which are symmetric 

relative to the two lower indices  i, j . 
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Recall that the coefficients  e ,  f ,  g  of the second 

fundamental form of  S  were defined by 

 

e  =  —<Nu , Xu> = <N , Xuu> 

f  =  —<Nu ,Xv > = <N , Xuv> = <N , Xvu> = —<Nv , Xu>   

g  =  —<Nv , Xv> = <N , Xvv> 

 

and were introduced and discussed in the previous chapter.  

 

Likewise, the functions  a11 ,  a12 ,  a21 ,  a22  are the entries in 

the 2  2 matrix expressing the differential  dNp :  TpS    TpS  

of the Gauss map  N:  S    S
2
  with respect to the basis   

Xu  and  Xv  of  TpS . 
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Example 1.  Define    X: R
2
    R

2
    R

3
    by   

X(u, v)  =  (u, v, 0) ,  the simplest parametrization  

of the xy-plane in  R
3
 .  Then 

 

Xu    (1, 0, 0) ,   Xv    (0, 1, 0) ,  N  =  (0, 0, 1) . 

 

Hence all Christoffel symbols  
k

ij    0 . 

 

Likewise for the coefficients of the second fundamental form:    

 

e  =  f  =  g   0 . 

 

Likewise for the coefficients  aij  of the matrix representing 

the differential  dNp  of the Gauss map  N: S    S
2
 . 
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Example 2.  Define    X: R
2
    R

2
    R

3
    by   

 

X(u, v)  =  (au + bv , cu + dv , 0) ,   with  ad — bc    0 , 

 

a linear parametrization of the xy-plane in  R
3
 . 

 

Then  Xu  =  (a , c , 0)  and  Xv  =  (b , d , 0) . 

 

Hence  Xuu  =  Xuv  =  Xvv    0 ,   

so again all Christoffel symbols  
k

ij    0 . 
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LEMMA.  The Christoffel symbols  
k

ij  can be computed 

in terms of the coefficients  E ,  F  and  G  of the first 

fundamental form, and of their derivatives with respect 

to  u  and  v .  Thus all concepts and properties expressed 

in terms of the Christoffel symbols are invariant under 

isometries of the surface.   

 

Proof.  Consider the equations that define the Christoffel 

symbols. 

Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N 

 

We omit the equation for  Xvu  since it duplicates the one  

for  Xuv . 
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Problem 7.  Show that 

 

< Xuu , Xu >  =   Eu ,            < Xuu , Xv >  =  Fu  —   Ev 

< Xuv ,  Xu >  =   Ev ,         < Xuv , Xv >  =   Gu 

< Xvv , Xu >  =  Fv  —   Gu ,      < Xvv , Xv >   =   Gv . 

 

Now take the inner product of each of the following 

equations, first with  Xu  and then  Xv . 

 

Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N 

 

Using the result of the preceding problem, we get 

six equations, grouped into three pairs: 
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                     Eu  =  
1

11 E  +  
2

11 F 

          Fu  —   Ev  =  
1

11 F  +  
2

11 G 

 

                     Ev  =  
1

12 E  +  
2

12 F 

                     Gu  =  
1

12 F  +  
2

12 G 

 

          Fv  —   Gu  =  
1

22 E  +  
2

22 F 

                     Gv  =  
1

22 F  +  
2

22 G 

 

Each pair of equations has  EG — F
2
    0  as the determinant 

of its coefficient matrix, and is hence solvable for the 

unknown Christoffel symbols in terms of  E ,  F  and  G   

and their first partials w.r.t.  u  and  v. 

 

This completes the proof of the Lemma. 
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Example 3.  We will compute the Christoffel symbols  
k

ij 

for a surface of revolution parametrized by 

 

X(u, v)  =  ( f(v) cos u ,  f(v) sin u ,  g(v)) 

 

with  f(v)    0 .                        
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  X(u, v)  =  ( f(v) cos u ,  f(v) sin u ,  g(v) ) 

 

   Xu  =  (— f sin u ,  f cos u ,  0) 

 

   Xv  =  (f ' cos u ,  f ' sin u ,  g') 

 

   E  =  < Xu , Xu >  =  f
 2 

 

   F  =  < Xu , Xv >  =  0 

 

   G  =  < Xv , Xv >  =  f
 
'
 2
  +  g'

 2
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E   =  f
 2
   F   =  0   G   =  f

 
'
 2
  +  g'

 2 

Eu  =  0               Fu  =  0             Gu  =  0 

Ev  =  2 f f
 
'   Fv  =  0   Gv  =  2 f

 
' f

 
" + 2 g' g" 

 

 

                     Eu  =  
1

11 E  +  
2

11 F 

          Fu  —   Ev  =  
1

11 F  +  
2

11 G 

 

 

                        0   =   
1

11 E                           
1

11  =  0 

 

                   — f f
 
'  =  

2
11 (f

 
'
 2
  +  g'

 2
)   

                                               
2

11  =  — f f
 
' / (f

 
'
 2
  +  g'

 2
) 
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E   =  f
 2
   F   =  0   G   =  f

 
'
 2
  +  g'

 2 

Eu  =  0               Fu  =  0             Gu  =  0 

Ev  =  2 f f
 
'   Fv  =  0   Gv  =  2 f

 
' f

 
" + 2 g' g" 

 

 

                     Ev  =  
1

12 E  +  
2

12 F 

                     Gu  =  
1

12 F  +  
2

12 G 

 

 

                       f f
 
'  =  

1
12 f

 2                         1
12  =  f

 
' / f 

 

                         0   =  
2

12 G                         
2

12  =  0 
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E   =  f
 2
   F   =  0   G   =  f

 
'
 2
  +  g'

 2 

Eu  =  0               Fu  =  0             Gu  =  0 

Ev  =  2 f f
 
'   Fv  =  0   Gv  =  2 f

 
' f

 
" + 2 g' g" 

 

 

          Fv  —   Gu  =  
1

22 E  +  
2

22 F 

                     Gv  =  
1

22 F  +  
2

22 G 

 

 

                         0  =  
1

22 E                           
1

22  =  0 

 

        f
 
' f

 
" + g' g"  =  

2
22 (f

 
'
 2
  +  g'

 2
) 

                                   
2

22  =  (f
 
' f

 
" + g' g") / (f

 
'
 2
  +  g'

 2
) 
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Summary so far. 

 

Given a parametrization  X :  U    S    R
3
  of an open 

subset of a regular surface  S  in  R
3
 ,  we have the following 

associated functions of  u  and  v . 

 

  The coefficients  E ,  F  and  G  of the first fundamental 

form, which express the "intrinsic geometry" of the surface. 

 

  The Christoffel symbols  
k

ij ,  as defined on page 11. 

 

Earlier, we wrote six equations which show how the 

Christoffel symbols may be computed from knowledge 

of the coefficients  E ,  F  and  G  of the first fundamental 

form, and of their first partial derivatives w.r.t.  u  and  v . 
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  The coefficients  e ,  f  and  g  of the second fundamental 

form, which express how the surface  

is bent and curved in 3-space. 

 

  The entries  a11 ,  a12 ,  a21 ,  a22  of the matrix of the 

linear map  dNp: TpS    TpS  which is the differential 

of the Gauss map  N: S    S
2
 . 

 

The Weingarten equations from the previous chapter 

express the  aij  in terms of  E , F , G , e , f , g : 

 

a11  =  (f F  —  e G) / (EG  —  F
2
) 

a12  =  (g F  —  f G) / (EG  —  F
2
) 

a21  =  (e F  —  f E) / (EG  —  F
2
) 

a22  =  (f F  —  g E) / (EG  —  F
2
) . 
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Thus the coefficients  E , F , G , e , f , g  of the first and 

second fundamental forms seem to be the basic pieces 

of information, in terms of which we can compute the 

Christoffel symbols  
k

ij  and the entries  aij  in the matrix 

expressing the differential of the Gauss map. 

 

The coefficients  E , F , G  remind us of the speed along a 

curve,  while the coefficients  e , f , g   remind us of the 

curvature and torsion of a curve. 
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Question.  To what extent are the six functions 

 

   E(u, v) ,  F(u, v) ,  G(u,v) ,  e(u, v) ,  f(u, v) ,  g(u, v)  

 

independent, and to what extent are they constrained by 

some inter-relations? 

 

Recall the formulas 

 

(1)      Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N 

Nu   =    a11  Xu  +    a21 Xv 

Nv   =    a12 Xu  +    a22 Xv  . 
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To obtain relations among the above coefficients, consider 

the expressions 

 

(2)                         (Xuu)v  —  (Xuv)u  =  0 

                              (Xvv)u  —  (Xuv)v  =  0 

                                 (Nu)v  —  (Nv)u  =  0 . 

 

Using the equations (1) ,  the relations (2) can be written as 

 

(2a)          A1 Xu  +  B1 Xv  +  C1 N  =  0 

                 A2 Xu  +  B2 Xv  +  C2 N  =  0 

                 A3 Xu  +  B3 Xv  +  C3 N  =  0  . 
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The coefficients  Ai ,  Bi  and  Ci ,  i = 1, 2 , 3,  can be 

written initially in terms of the coefficients of the first 

and second fundamental forms, the Christoffel symbols 
k

ij  and the entries  aij  of  dNp ,  and their first derivatives  

with respect to  u  and  v .  But ultimately, they are just 

functions of  E ,  F ,  G ,  e ,  f ,  g  and their first derivatives 

with respect to  u  and  v . 

 

Since the vectors  Xu ,  Xv  and  N  are linearly independent, 

the three vector equations in (2a) give us nine scalar equations,  

 

    Ai  =  0 ,     Bi  =  0 ,     Ci  =  0              for  i  =  1, 2, 3. 
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As an important example, we will consider in detail the 

equation  B2  =  0 ,  which comes from the equation 

(Xuu)v  —  (Xuv)u  =  0  by setting the coefficient of  Xv 

equal to  0 . 

 

We start with the equation 

 

Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N , 

 

and differentiate it with respect to  v ,  getting 

 

           (Xuu)v  =  
1

11,v Xu  +  
1

11 Xuv   

                                          +  
2

11,v Xv  +  
2

11 Xvv 

                                                              +  ev N  +  e Nv . 
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We are using the notation  
1

11,v  for  ( 1
11)v . 

 

If we insert the values for  Xuv ,  Xvv  and  Nv  from equations 

(1) , we get 

 

  (Xuu)v  =     (
1

11,v  +  
1

11
1

12  +  
2

11
1

22  +  e a12) Xu 

                 +  (
1

11
2

12  +  
2

11,v  +  
2

11
2

22  +  e a22) Xv 

                                           +  (
1

11 f  +  
2

11 g  +  ev) N . 

 

Likewise we get 

 

  (Xuv)u  =      (
1

12,u  +  
1

12
1

11  +  
2

12
1

12  +  f a11) Xu 

                  +  (
1

12
2

11  +  
2

12,u  +  
2

12
2

12  +  f a21) Xv 

                  +  (
1

12 e  +  
2

12 f  +  fu) N . 
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Now equate the coefficients of  Xv  in these two expressions 

for  (Xuu)v  and  (Xuv)u ,  getting 

 

(3)    e a22  —  f a21  =  
1

12
2

11  +  
2

12,u  +  
2

12
2

12 

                 —  
1

11
2

12  —  
2

11,v  —  
2

11
2

22 . 

 

 

The right hand side of (3) depends only on the coefficients 

of the first fundamental form and their first partials with 

respect to  u  and  v .   
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Consider the left hand side: 

 

    e a22  —  f a21  =  e (f F  —  g E) / (EG  —  F
2
) 

              —  f (e F  —  f E) / (EG  —  F
2
) 

                          =  (— e g E  +  f
 2
 E) / (EG  —  F

2
) 

                          =  — E (e g  —  f
 2
) / (EG  —  F

2
) 

                          =  — E K , 

 

where  K  =  (e g  —  f
 2
) / (EG  —  F

2
)  is the Gaussian 

curvature.  Thus 

 

(4)  — E K  =  
1

12
2

11  +  
2

12,u  +  
2

12
2

12 

                  —  
1

11
2

12  —  
2

11,v  —  
2

11
2

22 . 

 

Dividing through by  — E  gives the Gauss formula for 

the Gaussian curvature  K . 
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THEOREMA EGREGIUM (Gauss) .  The Gaussian 

curvature  K  of a surface in 3-space depends only on 

the first fundamental form, and hence only on the 

intrinsic geometry of the surface. 

 

In other words, two surfaces which are locally isometric, 

such as the catenoid and helicoid, have the same Gaussian 

curvature at corresponding points. 
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Problem 8.  (a) Consider the equation  A1  =  0 ,  which comes 

from the equation  (Xuu)v  —  (Xuv)u  =  0  by setting the 

coefficient of  Xu  equal to  0 .  Show that this yields 

 
1

12,u  —  
1

11,v  +  
2

12
1

12  —  
2

11
1

22  =  F K . 

 

If  F    0 ,  this also shows that the Gaussian curvature 

depends only on the first fundamental form. 

 

(b) Consider the equation  C1  =  0 ,  which comes from 

the equation  (Xuu)v  —  (Xuv)u  =  0  by setting the coef- 

ficient of  N  equal to  0 .  Show that this yields 

 

(5)      ev  —  fu  =  e 
1

12  +  f (
2

12  —  
1

11)  —  g 
2

11 . 

 

This is one of the two Mainardi-Codazzi equations. 
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(c)  Consider the equations  A2  =  0  and  B2  =  0, which 

come from the equation  (Xvv)u  —  (Xuv)v  =  0  by setting 

the coefficients of  Xu  and  Xv ,  respectively, equal to  0 . 

Show that both of these equations again give the Gauss 

Formula for the Gaussian curvature  K . 

 

(d)  Consider the equation  C2  =  0 ,  which comes from 

the equation  (Xvv)u  —  (Xuv)v  =  0  by setting the coef-ficient 

of  N  equal to  0 .  Show that this yields 

 

(6)      fv  —  gu  =  e 
1

22  +  f (
2

22  —  
1

12)  —  g 
2

12 . 

 

This is the second of the two Mainardi-Codazzi equations. 
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(e)  Do the same for the coefficients  A3 ,  B3  and  C3  of 

the third equation  (Nu)v  =  (Nv)u .   Show that the equations 

A3  =  0  and  B3  =  0  yield again the two Mainardi-Codazzi 

equations, and that the equation  C3  =  0  is an identity. 

 

 

The Gauss equation and the two Mainardi-Codazzi equations 

are known as the compatibility equations of the theory of 

surfaces. 
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Problem 9.  Is there a regular surface  X: U    R
3
  with 

E    1 ,  F    0 ,  G    1 ,  e    1 ,  f    0 ,  g    —1 ? 

 

(a)  Show that such a surface would have Gaussian 

curvature    — 1 . 

 

(b)  Show that such a surface would have all Christoffel 

symbols  
k

ij    0 . 

 

(c)  Show that such a surface would violate the Gauss 

formula. 

 

Conclude that no such surface exists. 
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Problem 10.  Is there a regular surface  X: U    R
3
  with 

E  1 ,  F  0 ,  G = cos
2
u ,  e = cos

2
u ,  f  0 ,  g  1 ? 

 

(a)  Show that such a surface would have Gaussian 

curvature  K    1 . 

 

(b)  Compute the Christoffel symbols for such a surface. 

 

(c)  Show that such a surface would satisfy the Gauss 

formula. 

 

(d)  Show that such a surface would satisfy the first 

Mainard-Codazzi equation, but violate the second one. 

 

Conclude that no such surface exists. 
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Problem 11.  In this problem, we will see how the Mainardi-

Codazzi equations simplify when the coordinate neighborhood 

contains no umbilical points and the coordinate curves are lines 

of curvature (F  =  0  and  f  =  0) . 

 

(a)  Show that in such a case, the Mainardi-Codazzi equations 

may be written as 

   ev  =  e 
1

12  —  g 
2

11     and     gu  =  g 
2

12  —  e 
1

22 . 

 

(b)  Show also that 
2

11  =  — Ev / 2G         
1

12  =  Ev / 2E 
1

22  =  — Gu / 2E   
2

12  =  Gu / 2G . 

 

(c)  Conclude that the Mainardi-Codazzi equations take 

the following form: 

ev  =   Ev (e/E  +  g/G)    and    gu  =   Gu (e/E  +  g/G) . 
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The fundamental theorem of the theory of surfaces. 

 

It is natural to ask if there exist any further relations of  

compatibility between the first and second fundamental forms 

of a regular surface in 3-space, besides the Gauss formula (4) 

and the Mainardi-Codazzi equations (5, 6) . 
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THEOREM (Bonnet).  Let  E ,  F ,  G ,  e ,  f ,  g  be 

smooth functions defined on an open set  U    R
2
 , 

with  E  >  0 ,  F  >  0  and  EG  —  F
2
  >  0 .   

 
Suppose in addition that these functions satisfy the Gauss 

formula (4) and the Mainardi-Codazzi equations (5, 6) . 
 
Then each point of  U  has an open neighborhood  U0  U 

for which there is a regular surface  X: U0    R
3
  having 

the given functions  E ,  F ,  G ,  e ,  f ,  g  as coefficients 

of the first and second fundamental forms. 
 
Furthermore, if  U  is a connected open set in  R

2
  and 

X  and  Y: U    R
3
  are regular surfaces having the  

same first and second fundamental forms, then there is 

a rigid motion (translation plus rotation) of  R
3
  taking 

one surface to the other. 
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Proof of Bonnet's Theorem. 

 

Step 1.  We are given the six smooth real-valued functions 

 

E(u,v) ,  F(u,v) ,  G(u,v) ,  e(u,v) ,  f(u,v) ,  g(u,v) , 

 

defined on the open set  U    R
2
 ,  such that 

 

E  >  0 ,  G  >  0 ,  EG  —  F
2
  >  0 , 

 

and satisfying the one Gauss equation (4) and the two 

Mainardi-Codazzi equations (5, 6) . 
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Using the functions  E ,  F  and  G ,  we calculate the 

Christoffel symbols  
k

ij  from the six equations on p. 11, 

just as we did on a surface.  Usng  E , F , G , e , f , g , 

we calculate the functions  a11 ,  a12 ,  a21  and  a22  from the 

Weingarten formulas (see p. 58 of section 6): 

 

a11  =  (f F  —  e G) / (EG  —  F
2
) 

a12  =  (g F  —  f G) / (EG  —  F
2
) 

a21  =  (e F  —  f E) / (EG  —  F
2
) 

a22  =  (f F  —  g E) / (EG  —  F
2
) . 

 

In this step we will find the three vectors in  R
3
 , 

 

Xu(u, v) ,  Xv(u, v)  and  N(u, v) . 
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To do this, we regard the equations 

 

(7)            Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

                          

Xvu  =  
1

21 Xu  +  
2

21 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N 

 

         Nu  =  a11 Xu  +  a21 Xv 

         Nv  =  a12 Xu  +  a22 Xv 

 

as telling us the partial derivatives of the desired vectors  

Xu ,  Xv  and  N  with respect to  u  and  v  in terms of the 

preassigned functions 
k

ij , e , f , g  and  aij , and in terms  

of the vectors  Xu ,  Xv  and  N  themselves. 
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Standard PDE theory says that we can solve such a system 

locally, meaning in some unspecified open set about any point  

(u0, v0)  in  U, provided we have equality of mixed partials:  

 

(Xu)uv  =  (Xu)vu ,  (Xv)uv  =  (Xv)vu   and   Nuv  =  Nvu . 

 

And these equations, we saw earlier, are precisely the 

Gauss and Mainardi-Codazzi equations. 

 

So the conclusion of Step 1 is that, in some unspecified 

open set about any point (u0 , v0)  in  U ,  there are 

vector functions  Xu(u, v) ,  Xv(u, v)  and  N(u, v)  which 

satisfy the equations in (7) above. 
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It is important to emphasize at this point that the notation 

Xu ,  Xv  and  N  for these three vector functions can be a 

bit misleading: we don't yet know that  Xu  and  Xv  are 

partials w.r.t.  u  and  v  of some vector function  X ,  we 

don't yet know that  N  is a unit vector, and we don't yet 

know that  N  is orthogonal to  Xu  and  Xv . 

 

For this reason, it will be convenient to temporarily 

replace the names  Xu ,  Xv  and  N  by  A , B  and  C . 
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So at this point, we have three vector functions 

 

A(u, v) ,  B(u, v)  and  C(u, v) , 

 

defined in an open set about a chosen point  (u0, v0)  U , 

such that 

 

(7')           Au  =  
1

11 A  +  
2

11 B  +  e C 

Av  =  
1

12 A  +  
2

12 B  +  f  C 

Bu  =  
1

21 A  +  
2

21 B  +  f  C 

Bv  =  
1

22 A  +  
2

22 B  +  g C 

      Cu  =  a11  A   +   a21  B 

      Cv  =  a12  A   +   a22  B 

 

This concludes Step 1. 
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Step 2.  Here we settle on the initial values 

 

A(u0, v0) ,  B(u0, v0)  and  C(u0, v0)  

 

of the vectors  A ,  B  and  C .  We choose these so that 

 

< A(u0, v0) , A(u0, v0) >  =  E(u0, v0) , 

< A(u0, v0) , B(u0, v0) >  =  F(u0, v0) , 

< B(u0, v0) , B(u0, v0) >  =  G(u0, v0) .  

 

The possibility of doing this is guaranteed by the conditions 

 

E  >  0 ,  G  >  0   and   EG  —  F
2
  >  0 . 
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Then we choose the vector  C(u0, v0)  so that 

 

  < C(u0, v0) , C(u0, v0) >  =  1 , 

 

  < C(u0, v0) , A(u0, v0) >  =  0 , 

 

  < C(u0, v0) , B(u0, v0) >  =  0 . 
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Step 3.  Next we find the surface  X: U0    R
3
 ,   

where  U0  is some open set about  (u0, v0)  in  U . 

 

Consider the system of PDEs, 

 

Xu  =  A     and     Xv  =  B . 

 

Note that   

 

(Xu)v  =  Av  =  Bu  =  (Xv)u , 

 

by the form of equations (7') ,  since  
k

12  =  
k

21 . 
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So again by the basic theory of first order PDEs, there is a 

solution of this system in some open set  U0  about  (u0, v0) .   

 

The initial value  X(u0, v0)  is irrelevant, and we can choose  

it to be, for example, the origin in  R
3
 . 

 

Now we have our proposed surface  X:  U0    R
3
 . 
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Step 4.  There's a lot that we still do not know. 

 

  We do not yet know that  E ,  F  and  G  are the 

coefficients of the first fundamental form of our surface. 

 

  We do not yet know that  N  is the unit normal vector field  

to our surface. 

 

  We do not yet know that  e ,  f  and  g  are the coefficients  

of the second fundamental form of our surface. 
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For the first two items above, we already know that 

 

     < A, A >  =  E ,     < A , B >  =  F ,     < B, B >  =  G 

 

     < C, C >  =  1 ,       < C, A >  =  0 ,     < C, B >  =  0 

 

at the single point  (u0, v0) ,  and must show that these 

six equations hold throughout the domain  U0  of our 

surface. 

 

We will show this is true by invoking a uniqueness 

theorem for solutions of PDEs, as follows. 
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We already have the vector functions  A , B  and  C  

defined throughout our open set  U0 ,  and therefore 

also the six real-valued functions 

 

<A, A> , <A, B> , <B, B> , <C, C> , <C, A> , <C, B> . 

 

Let us find the twelve first order PDEs satisfied by these  

six functions.  For example, 

 

 < A, A >u  =  2 < A, Au > 

             =  2 < A , 
1

11 A  +  
2

11 B  +  e C > 

             =  2 
1

11 <A , A>  +  2 
2

11 <A, B>  +  2 e <A, C> , 

 

and eleven more first order PDEs like this. 
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But we already know that 

 

Eu  =  2 
1

11 E  +  2 
2

11 F  +  2 e 0 , 

 

because this was one of the equations used to define the 

Christoffel symbols in terms of the coefficients of the first 

fundamental form and their partials w.r.t.  u  and  v . 

 

Continuing in this way, we see that the twelve first order 

PDEs satisfied by the six functions 

 

<A, A> , <A, B> , <B, B> , <C, C> , <C, A> , <C, B> 

 

are also satisfied by the six functions 

 

E , F , G , 1 , 0 , 0 . 
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Since the first six functions agree with the second six 

functions at the point  (u0, v0)  and satisfy the same 

PDEs, they must be equal throughout the open set  U0 . 

 

Thus our surface  X: U0    R
3
  has the given functions 

E ,  F  and  G  as coefficients of its first fundamental form,  

and the vector field  C  as its unit normal  N  throughout  

the parameter domain  U0  
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Then the equations 

 

           Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N 

 

tell us that  e ,  f  and  g  are the coefficients of the 

second fundamental form of our surface throughout  U0 . 

 

This completes the proof of the local existence of a 

surface in 3-space with prescribed first and second 

fundamental forms, subject to the compatibility 

conditions of Gauss and Mainardi-Codazzi. 
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Step 5.  To complete the proof of Bonnet's Theorem, we need  

to show that if the domain  U  of our surface is connected,  

then, up to translations and rotations in  R
3
 ,  there is only one 

surface with prescribed first and second fundamental forms. 

 

By translation and rotation, we can move either surface so  

that at a given point  (u0, v0)   U  we have the same location  

X(u0, v0)  and the same first partials  Xu(u0, v0) and  Xv(u0, v0)  

and the same unit normal  N(u0, v0) . 
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Then by the uniqueness theorems already quoted, the frames   

Xu , Xv  and  N  will agree for both surfaces in a neighborhood 

of  (u0, v0) .  Then by integration, the positions  X  for both 

surfaces will also agree throughout this neighborhood, since 

they agreed at  (u0, v0) . 

 

By this argument, it follows that the set of points at which  

the two surfaces agree is an open subset of  U . 

 

It is, by continuity, also a closed subset of  U . 

 

Since  U  is connected, it is all of  U , and hence the two 

surfaces coincide, as claimed, completing the proof of  

Bonnet's Theorem. 


