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24.2 Rouché’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

25 October 23 62
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1 August 26

Today basically serves as review of material that should be familiar to everyone.

1.1 An Introduction to the Complex Numbers

We first begin with a definition.

Definition 1.1. Let R denote the set of real numbers.

1. We denote the set of complex numbers C as

C := {x+ iy : x, y ∈ R},
where here i2 = −1.

2. Given a complex number z = x + yi, x is its real part, denoted x = <(z), while y is its
imaginary part, denoted y = =(z).

Observe that we can add two complex numbers via

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).

We can also multiply two complex numbers via the string of manipulations

(x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + ixy1x2 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1).

We now give a few simple definitions pertaining to complex numbers.

Definition 1.2. Let z = x+ iy be a complex number.

1. We define the conjugate of z, as z̄ := x− iy.

2. We define the absolute value of z as

|z| :=
√
x2 + y2 =

√
zz̄.

One important property of the absolute value is the triangle inequality, which states that for any
complex numbers z1 and z2 we have

|z1 + z2| ≤ |z1|+ |z2| .
The proof is left as an exercise.

With these definitions, one can check that C is a field! This is basically an exercise, but let’s
check inverses: indeed, if z 6= 0, we have

z · z̄

|z|2
=
|z|2

|z|2
= 1.

1.2 Polar Coordinates

It is useful to identify C with R2 by associating each complex number z = x+ yi with the ordered
pair (x, y) ∈ R2. Then we can add and multiply two vectors by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

In this way, complex number addition becomes vector addition. However, complex number multi-
plication is somewhat less natural to describe.

In this regard, it is useful to think about complex num-
bers in polar form. In the diagram to the right, it is
easy to see that x = r cos θ and y = r sin θ, where
r = |z| and θ is the angle the vector (x, y) makes with
the x-axis. Thus, we can rewrite z as

z = r cos θ + ir sin θ = r(cos θ + i sin θ) =: reiθ.

This representation is unique assuming r 6= 0 and mod-
ulo 2π in θ.

z = (x, y) = x+ iy

θ

r = |z|

r cos θ

r sin θ

x = <(z)

y = =(z)

5
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While we have an appropriate definition for r, we do not have such a definition for θ. This leads
into the next definition.

Definition 1.3. We set θ in the above diagram to be the argument of z. In particular, given a
complex number z, we set Arg(z) = θ ∈ (−π, π]. This is the principal branch of the argument
function.

This approach to exploring complex numbers is quite versatile. For example, one can check (using
the addition formulas for sine and cosine) that eiθ1 · eiθ2 = ei(θ1+θ2) for any real numbers θ1 and θ2.
Therefore any two complex numbers z1 and z2 satisfy

z1z2 = |z1| · |z2| ei(Arg(z1)+Arg(z2)).

This tells us that |z1z2| = |z1| · |z2|. More generally, though, multiplication by z consists of two
parts: a dilation by |z| and a rotation by Arg(z).

One thing worth pointing out is that we can think of multiplication by z as a map acting on C.
In this way, the map w 7→ zw preserves shapes of sets via dilation and rotation.

1.3 Matrix Definition of Complex Numbers

There is a third definition of complex numbers that is worth mentioning. We can identify C as

C =

{(
x −y
y x

)
: x, y ∈ R

}
.

The crucial aspect to this definition is that addition and multiplication in C naturally turns into
matrix addition and multiplication. Furthermore, taking the magnitude of a complex number cor-
responds to taking the determinant of the associated matrix, while complex conjugation amounts
to transposition of the original matrix. In turn, we can write

(
x −y
y x

)
=
√
x2 + y2

 x√
x2+y2

−y√
x2+y2

y√
x2+y2

x√
x2+y2

 ,

which decomposes the matrix into its dilation and rotation components.

Before we move on, here is a quick remark.

Remark. Although multiplication of complex numbers corresponds to addition of the arguments, it
is not true that Arg(z1z2) = Arg(z1) + Arg(z2) - this is because the right hand side of the previous
equality is not necessarily a number in the interval (−π, π]. It is true, however, that the two sides
are congruent modulo 2π.

1.4 nth Roots of Complex Numbers

Recall that we define
zn := z · z · . . . · z︸ ︷︷ ︸

n times

= |z|n eniArg(z).

It is natural to ask the following question: given w 6= 0 and n ∈ N, can we find some (all) z such
that zn = w?

Here is how we can do it. Write w = reiθ. Then r = |z|n and nArg(z) ≡ θ (mod 2π). This
means that

{nth roots of w} =
{
r1/neiφ : nφ ≡ θ (mod 2π)

}
=
{
r1/nei(θ+2πk)/n : 0 ≤ k ≤ n− 1

}
.

These n roots plot to a regular n-gon on the complex plane.
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1.5 C as a metric space

Because of the Triangle Inequality, the function d(·, ·) defined by d(z1, z2) = |z1 − z2| turns C into a
metric space. This metric agrees with the usual Euclidean notion of distance, i.e. C is isometric to
R2 in the obvious way. This allows us to port over lots of concepts from real analysis into complex
analysis, which will be very useful.

First up is the notion of a ball.

Definition 1.4. Let z0 be a complex number and r > 0.

1. The open ball centered at z0 with radius r is defined as

B(z0, r) := {z ∈ C : |z − z0| < r}.

2. The closed ball centered at z0 with radius r is defined as

B(z0, r) := {z ∈ C : |z − z0| ≤ r}.

3. The punctured open ball centered at z0 with radius r is defined as

B∗(z0, r) := {z ∈ C : 0 < |z − z0| < r}.

With the notion of open and closed balls comes open and closed sets.

Definition 1.5. As usual let C denote the complex numbers.

1. A set O ⊂ C is open if for all z0 ∈ O there exists some r > 0 such that B(z0, r) ⊂ O.

2. A set F ⊂ C is closed if its complement F c is open.

We also have some definitions relating to convergent sequences.

Definition 1.6. Let z̄ = {zn}∞n=1 be a sequence of complex numbers.

1. We say that z̄ is convergent, converging to some z0 ∈ C (written zn → z0 or limn→∞ zn = z0)
if limn→∞ |zn − z0| = 0. Equivalently, for all ε > 0 there exists N > 0 such that

|zn − z0| < ε for every n ≥ N.

2. We say z̄ is Cauchy if for all ε > 0 there exists N > 0 such that

|zm − zn| < ε for all n,m > N.

Recall that since R2 is so-called complete, C is complete as well. This means that Cauchyness
and convergence are the exact same thing.

We also have the notion of compact sets.

Definition 1.7. A set K ⊂ C is compact if every open cover has a finite subcover.

Equivalently (in the case of C, that is), every sequence {zn}∞n=1 ⊆ K has a subsequence which
converges to some z ∈ K.

Equivalently yet again (in the case of C that is), K is closed and bounded.

Finally, we can extend these notions of sequences to functions.

Definition 1.8. Fix some set A ⊂ C, and let f : A → C be a function. Further let z0 be a limit
point of A.

1. We say that limz→z0 f(z) = L if for all ε > 0, there exists δ > 0 such that

f(z) ∈ B(L, ε) whenever z ∈ B∗(z0, δ) ∩A.
Equivalently, whenever {zn}∞n=1 ⊆ A \ {z0} is a sequence of complex numbers converging to
z0, the sequence {f(zn)}∞n=1 converges to L.

2. We say that f is continuous at z0 ∈ A if limz→z0 f(z) = f(z0). (Intuitively, f agrees with its
limit at z0.)

Remark. It is often useful to write f(z) = u(x, y)+iv(x, y) as the “sum” of two real-valued functions
u and v defined on the real and imaginary parts of z; we write u = <(f) and v = =(f) to denote
this. Then a theorem from Real Analysis says that f is continuous at z0 if and only if u and v are
continuous at z0.
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2 August 28

We continue review of previous analysis material before transitioning to results in complex analysis.

2.1 Connected Sets

The notion of connectivity also carries over to C.

Definition 2.1. Let A ⊂ C.

1. We say that A is connected if the following holds: whenever U and V are disjoint open sets
such that A ⊂ U ∪ V , either A ⊂ U or A ⊂ V .

2. We say that A is path-connected if for all w and z in A there exists some continuous function
γ : [0, 1]→ A such that γ(0) = w and γ(1) = z.

In R, both connectedness and path-connectedness are equivalent to A being an interval. In C, this
is not generally true, and connectedness is not necessarily equal to path-connectedness. However,
in complex analysis we’ll often be working with domains, and in this case we have a different story.

Definition 2.2. A set A ⊂ C is a domain if it is nonempty, open, and connected.

It turns out that connected always implies path-connected. While path-connected does not always
imply connected, it does in the case that A is a domain.

Theorem 2.3. If A is a domain in C, then A is path-connected.

Proof. For a domain A ⊂ C, define an equivalence relation as follows: we say two points w, z ∈ A
are equivalent if they can be connected by a path. It’s not hard to check that this is actually an
equivalence relation.

Observe that equivalence classes are clearly disjoint. Also, each equivalence class is open. Indeed,
for each z ∈ A, there exists r > 0 such that B(z, r) ⊂ A, and then every w ∈ B(z, r) is equivalent
to z. So there’s only one equivalence class since A is connected.

2.2 Extended Complex Plane and Stereographic Projection

For a sequence {zn}∞n=1 ⊂ C, we can define zn → ∞ if |zn| → ∞ as a real-valued sequence. With
this, every sequence in C has a convergent subsequence, either to ∞ or to some z0 ∈ C.

Thus we can let Ĉ := C ∪ {∞} be the extended complex plane (also called the 1-point compact-
ification of C), and in this case the topology consisting of all open sets of C and those sets of the

form {|z| > r} ∪∞ turns Ĉ into a compact topological space.

We can define arithmetic on Ĉ, and it carries over for the most part. If z 6=∞, then

∞± z = z ±∞ =∞ and
z

∞ = 0;

analogously, if z 6= 0 then

z · ∞ =∞ · z =∞ and
z

0
=∞.

We now seek to turn Ĉ into a metric space; to do this, we will need the concept of stereographic
projection. Identify C = {(x, y, 0) : x, y ∈ R} ⊂ R3. For z ∈ C, consider the line starting at the
point N = (0, 0, 1) and passing through z. Then we define z∗ to be the second intersection point of
the unit sphere with this ray.

8
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N

z

z∗

The upside of this transformation is that ∞∗ = N . This means that Ĉ is identified with S2.

Actually, we can say something stronger: for z = (x, y, 0) ∈ R3, we have

z∗ =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
=

(2<(z), 2=(z), |z|2 − 1)

|z|2 + 1
.

Hence we may define a metric on Ĉ via e.g. coordinate distance in S2. This metric may seem
contrived, but it actually has good properties.

Proposition 2.4. Circles and lines in Ĉ correspond to circles in S2.

Proof. What follows is a sketch. Let P ⊂ R3 be a plane, so that

P = {x ∈ R3 : Ax1 +Bx2 + Cx3 = D}

for some constants A, B, C, and D. So z∗ ∈ P if and only if

2xA+ 2yB + C(x2 + y2 − 1) = D(x2 + y2 + 1),

or
(C −D)(x2 + y2) + 2Ax+ 2By = D + C.

This is a line if C = D and a circle otherwise.

Corollary 2.5. The topology in Ĉ is induced by the topology in S2.

2.3 Analytic Functions

We now turn to the topic of differentiability in C. We begin with a definition.

Definition 2.6. Let f be a complex function defined in the neighborhood of some z0 ∈ C. We say
that f is differentiable at z0 if the limit

L := lim
z→z0

f(z)− f(z0)

z − z0
= lim
h→0

f(z0 + h)− f(z0)

h

exists and is finite. This limit is called the derivative of f at z0 and is denoted by f ′(z0).

Equivalently, f is differentiable at z0 if there exists some complex number f ′(z0) ∈ C such that

f(z) = f(z0) + (z − z0)f ′(z0) + Ez0(z),

where Ez0(z) is an “error term” satisfying limz→z0
Ez0 (z)

z−z0 = 0. It’s convenient here to use the
notation Ez0(z) = o(|z − z0|), and in some cases we will use this.

What does the above definition mean? Well, assuming that f ′(z0) 6= 0, it means that the map

z 7→ L(z) := f(z0) + (z − z0)f ′(z0)

9
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“approximates” f(z) near z0. As a map, L rotates around z0 by Arg(f ′(z0)), dilates around z0 by
|f ′(z0)|, and translates by f(z0). (If f ′(z0) = 0, however, the error term Ez0(z) becomes the leading
term, so stranger things can happen.)

There are several standard theorems and rules regarding differentiation, but we will not learn
them and instead refer to the textbook.

Remark. Contrast the content of the previous discussion with that of the R2 case. Differentiation in
R2 can be any matrix, and so derivatives can stretch balls in R2. In contrast, under the assumption
f ′(z0) 6= 0, L takes open balls to open balls and not other convex shapes.

2.4 Cauchy-Riemann Equations

Recall that we may write f(x, y) = u(x, y) + iv(x, y), where u = <(f) and v = =(f). Suppose f ′

exists. Then this limit exists regardless of which direction we take the limit in, which means we can
restrict ourselves to any direction we like.

For instance, if h is restricted to be a real number, then

f ′(z) = lim
ε→0

u(x+ ε, y)− u(x, y)

ε
+ i

v(x+ ε, y)− v(x, y)

ε
= ux(x, y) + ivx(x, y).

However, if h is restricted to be purely imaginary, then we get

f ′(z) = lim
δ→0

u(x, y + δ)− u(x, y)

iδ
+ i

v(x, y + δ)− v(x, y)

iδ

=
uy(x, y)

i
+
ivy(x, y)

i
= vy(x, y)− iuy(x, y).

But recall that the derivative must be unique! This means we may equate the real and imaginary
parts of f ′(z) to get the following theorem.

Theorem 2.7 (Cauchy-Riemann Conditions). Suppose f = u+ iv is differentiable on some domain
D. Then within D the partials of u and v exist and satisfy the two equations

ux = vy and vx = −uy. (2.1)

10
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3 August 30

3.1 Differentiability and Partial Derivatives

We first seek to prove the following result.

Theorem 3.1. Let f be a complex-valued function. Then f = u + iv is differentiable at the point
z = x + iy iff both u and v and differentiable at (x, y) in the R2 sense and the Cauchy-Riemann
conditions (2.1) hold at (x, y). In this case we have e.g. f ′(z) = ux(x, y) + ivx(x, y).

As a reminder, “differentiable in the R2 sense” means that

u((x, y) + (h1, h2)) = u(x, y) + (∇u) · (h1, h2) + o(|h|), (3.1)

for instance.

Proof. Last time, we showed that the Cauchy-Riemann conditions hold under the assumption that
f is differentiable at z, i.e. that

f(z + h) = f(z) + f ′(z)h+ o(|h|).

Taking the real part of both sides of this equation1 yields

u((x, y) + (h1, h2)) = u(x, y) + <((u+ iv)(h1 + ih2)) + o(|(h1, h2)|)
= u(x, y) + uxh1 − vxh2 + o(|h|)
= u(x, y) + uxh1 + uyh2 + o(|h|).

Hence u satisfies (3.1), so u is differentiable. Similar computations show that v is also differentiable.

On the other hand, suppose u and v are differentiable and satisfy the Cauchy-Riemann equations.
Taking the equalities (3.1) for u and v and adding them together yields

f(z + h) = u(z + h) + iv(z + h) = (u+ iv)(z) + (∇u) · (h1, h2) + i(∇v) · (h1, h2) + o(|h|)
= u+ iv + (uxh1 + uyh2) + i(vxh1 + vyh2) + o(|h|)
= u+ iv + (uxh1 − vxh2) + i(vxh1 + uxh2) + o(|h|)
= u+ iv + ux(h1 + ih2) + ivx(h1 + ih2) + o(|h|).

So f is differentiable as a complex-valued function.

3.2 Analytic functions

We are now ready to present an important definition in complex analysis.

Definition 3.2. Let U ⊂ C be open and f : U → C.

1. We say that f is analytic on U if f is differentiable everywhere on U .2

2. We say that f is analytic at a point z ∈ C if it is analytic in some open ball around z.

3. We say that f is entire if it is analytic on all of C.

Part of the allure of complex analysis lies in the fact that analytic functions possess some surprising
properties. Here is one (classical!) example.

Proposition 3.3. Let U ⊂ C be a domain, and let f : U → C be analytic. If |f | is constant on U ,
then so is f .

Proof. Assume |f | = c 6= 0, or else there’s nothing to prove. Then |f |2 = u2 + v2 is constant, so

0 = (|f |2)x = 2uux + 2vvx

1note that (u+ iv)(h1 + ih2) is shorthand for u(h1 + ih2) + iv(h1 + ih2) and is not multiplication of two complex
numbers

2Some people may recognize this as the definition of a holomorphic function, but the textbook calls these analytic,
and in the end both definitions are identical anyway.

11
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and

0 = (|f |2)y = 2uuy + 2vvy
(∗)
= 2vux − 2uvx,

where in (∗) we use the fact that f is analytic and thus satisfies (2.1). Solving this system of
equations yields ux = vx = 0, so uy = vy = 0 as well. Hence ∇u = ∇v = 0 on some connected open
set, meaning that u and v are constant.

Remark. We highlight here one more example with fewer details fleshed out. Suppose f is analytic
at z0 and f ′(z0) 6= 0. This condition implies (for example) that ux(x0, y0) 6= 0, and by (2.1) we
see vy(x0, y0) 6= 0 as well. Thus, by the implicit function theorem (which in the R2 → R case only
requires individual entries of the gradients ∇u and ∇v to be nonzero), the level curves

Cu = {(x, y) : u(x, y) = u(x0, y0)} and Cv = {(x, y) : v(x, y) = v(x0, y0)}

exist in a neighborhood around z0.

Now recall that the gradient vector ∇u is orthogonal to Cu at (x0, y0); for a proof of this, see here.
Thus, since

(∇u)(x0, y0) · (∇v)(x0, y0) = uxvx + uyvy = uxvx + (−vx)(ux) = 0,

the curves Cu and Cv are perpendicular at (x0, y0) as well.

3.3 Examples of Elementary Analytic and Multivalued Functions

Much of our previous discussion about analytic functions has been theoretical. Let’s switch gears
and discuss a few examples.

3.3.1 Polynomials

Recall that we can define the function

f(z) = zn := z · z · . . . · z︸ ︷︷ ︸
n times

,

where n ≥ 1 is an integer. Standard differentiation rules imply f ′(z) = nzn−1, so f is entire. In
turn, polynomials are entire.

3.3.2 Exponential Function

For a complex number z = x+ iy, define

ez := exeiy = ex(cos y + i sin y).

A simple computation reveals that ux = vy = ex cos y and vy = −uy = ex sin y. Hence by Theorem
3.1 we deduce that ez is entire.

This function ez satisfies a few interesting properties.

• First (and arguably foremost), its derivative by Theorem 3.1 is

(ez)′ = ux + ivx = ex cos y + iex sin y = ez.

• For any complex numbers z1 and z2, we have

ez1ez2 = ex1eiy1ex2eiy2 = ex1+x2ei(y1+y2) = ez1+z2 .

• We have |ez| =
∣∣exeiy∣∣ = |ex| = ex and Arg(ez) = y mod 2π.

• ez is 2πi-periodic, meaning that ez+2πi = ez for any z ∈ C.

With these properties in tow, we may now answer the following question: what does the image
of ez look like? Well, observe the following.

• Suppose x is fixed but y varies. Then |z| is fixed while Arg z is periodic modulo 2π. Hence
vertical lines are taken to circles under the map z 7→ ez.

12
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• Suppose y is fixed but x varies. Then Arg z is fixed while |z| varies. Hence horizontal lines
are taken to radial lines (i.e. lines that pass through the origin) under the map z 7→ ez.

Hence we deduce that, for example, rectangles are taken to annulus-shaped regions under the
map z 7→ ez.

2π

h

x0 x1 ex0 ex1

h

3.3.3 Trig Functions

With the exponential function in tow, we may now define the complex-valued functions sin : C→ C
and cos : C→ C via

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
.

Since ez is entire, we deduce that sin and cos are entire as well.

3.4 Multivalued Functions and Branches

In order to discuss our last function, we need to discuss what it means for a function to be multi-
valued.

Definition 3.4. Fix a set A ⊂ C. Then any function f : A→ 2C is called a multivalued function.

As an example, recall that we restricted the argument of a complex number to be in the interval
(−π, π]. If we don’t want to deal with this restriction, we may define

arg(z) := {Arg(z) + 2πk : k ∈ Z}
on the set C \ {0}.

Of course, sometimes we want to go the other way around: given a multivalued function, can we
transform it into a single-valued function by picking appropriate outputs for each input? This leads
into a definition.

Definition 3.5. Let f : A→ 2C be a multivalued function. Then a function g : A→ C is a branch
of f on A if

1. for all z ∈ A, g(z) ∈ f(z);

2. g is continuous on A.

In the context of the definition above, Arg(z) is a branch of arg(z) on the set C \ {x ≤ 0}.
The reason we need to exclude the negative x-axis is because otherwise Arg fails to be continuous:
it approaches π as x approaches said axis from the second quadrant but it approaches −π as x
approaches the axis from the third quadrant.

In fact, we can say something stronger.

Proposition 3.6. The multivalued function arg has no branch on C \ {0}.

Proof. Suppose g were such a branch. On the unit circle S1, we have

g(eiθ) = θ mod 2π = θ + 2πkθ

where kθ is some integer that depends on θ. Since g is a branch, it is continuous on S1, so 2πkθ
must be continuous as well. Hence in fact 2πkθ is constant on S1, but then continuity at θ = 2π
breaks.

13
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We are now ready to touch on our last function.

3.4.1 Complex Logarithm

Fix z ∈ C \ {0}. Is it possible to solve the equation ew = z in complex numbers w? Well, write
z = |z| eiArg(z). Then e|w| = |z| and Arg(w) ≡ Arg(z) (mod 2π). Hence

w = ln(|z|) + iArg(z) + 2πik for some k ∈ Z.

Hence the answer is “yes”.

This means we can define
log(z) := ln(|z|) + i arg(z)

as a multivalued function, and furthermore we can set

Log(z) := ln(|z|) + iArg(z)

as the so-called principal branch of log(z) on C\{0}. Observe that from ew1ew2 = ew1+w2 we obtain
log(z1z2) = log(z1) + log(z2); here the operation on the right hand side is set addition. (But that
distinction doesn’t matter that much here.)

Next time we’ll show that Log(z) is analytic and that (Log(z))′ = 1
z .

14
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4 September 4

It’s easy to see that Log(z) is analytic since it can be written as the sum ln |z| + iArg(z) of two
analytic functions. To prove that its derivative is 1

z , we will actually show something more general.

Theorem 4.1. Suppose f : U → C is analytic. Observe that we can write f−1 as a multivalued
function. Let g be some branch of f−1 on a domain D, assuming such a branch exists. Given
z0 ∈ D, if f ′(g(z0)) 6= 0, then g is differentiable at z0 and

g′(z0) =
1

f ′(g(z0))
.

Proof. Since g is continuous and bijective on D, we may write

g(z)− g(z0)

z − z0
=

g(z)− g(z0)

f(g(z))− f(g(z0))
=

(
f(g(z))− f(g(z0))

g(z)− g(z0)

)−1

,

and sending z → z0 yields the desired.

As a corollary, we obtain the equality

(Log(z))′ =
1

(ew)′ |w=Log(z)
=

1

eLog(z)
=

1

z
.

4.1 General Power Functions

Given α ∈ C and z ∈ C\{0}, we may define zα := eα log(z) as a multivalued functions. The branches
of log give the branches of ·α, and so the branches of ·α are analytic. Also, we have the (multivalued)
function equalities zα1zα2 = zα1+α2 and z1αz

α
2 = (z1z2)α. We now compute (on some branch of zα)

that

(zα)′ = (eα log(z))′ = α · 1

z
eα log z = αzα−1.

For n ∈ N this agrees with the usual sense of differentiability, and in this case it’s entire. For
α = p

q ∈ Q, we may write

zp/q = ep/q·log(z) = ep/q·ln|z|+ip/q·arg(z) = |z|p/q eip/q·arg(z).

These are the qth roots of p.

For another classical example, we may write

ii = ei log i =
{
ei(ln|i|+iπ/2+2πki) : k ∈ Z

}
=
{
e−π/2−2πk : k ∈ Z

}
.

So this tells us that ii is real and multivalued! Strange.

Remark. What does the map z 7→ zα do to C on a principal branch? Let’s assume that α > 0 for
simplicity. Then the ray with angle ϕ centered at the origin gets sent to the ray with angle αϕ
centered at the origin, so “sectors” are mapped to “sectors”, as shown below.

<(z) <(z)

=(z) =(z)

θ αθ

15



David Altizio Math 542 Lecture Notes

4.2 Complex Integration

We begin with a definition.

Definition 4.2. Let a < b be real numbers.

1. A path in C is a continuous function γ : [a, b]→ C.

2. A path is said to be simple if it has no self-intersections other than endpoints.

3. A path γ is piecewise smooth (also called a contour) if there exists some partition

t0 = a < t1 < · · · < tn = b

such that γ is continuously differentiable on each interval [ti, ti+1] for i = 0, . . . , n− 1. (At the
endpoints, we must take one-sided limits.)

A few remarks are in order.

Remark. It’s a quirk of terminology that both the function and its image are referred to as “paths”.
Fortunately, we do have notation for the image of a function γ: it’s denoted |γ|.
Remark. Observe that we may write γ(t) = x(t) + iy(t), and in this case we have

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h
= x′(t) + iy′(t).

One theorem we’ll be using a lot is the following.

Theorem 4.3 (Jordan Curve Theorem). Any simple closed path γ divides C into two open disjoint
and connected sets, namely inside(γ) and outside(γ).

This is a classical example of something that’s really easy to state but really hard to prove.

Now let γ : [a, b] → C be a contour, and let f : U → C be a continuous function, where U is a
domain satisfying U ⊇ |γ|. Then we define∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

We attempt to make sense of this integral. Write f = u+ iv and γ = x+ iy. Then γ′ = x′ + iy′ by
the previous remark, and so a bit of expansion yields

f(γ(t))γ′(t) = u(γ(t))x′(t)− v(γ(t))y′(t) + i [u(γ(t))y′(t) + v(γ(t))x′(t)] .

Hence the integral equals∫ b

a

u(γ(t))x′(t)− v(γ(t))y′(t) dt+ i

∫ b

a

u(γ(t))y′(t) + v(γ(t))x′(t) dt,

which simplifies to ∫
γ

f dz =

∫
γ

u dx− v dy + i

∫
γ

v dx+ u dy.

These last integrals are essentially line integrals.

Example 4.4. Let γ(t) = z0 + reit for t ∈ [0, 2π], and set f(z) = (z − z0)k for some k ∈ Z. Then

f(γ(t)) = (reit)k = rkeitk and γ′(t) = ireit.

So ∫
γ

f(z) dz = i

∫ 2π

0

rk+1eit(k+1) dt

= irk+1

∫ 2π

0

eit(k+1) dt =

{
0 if k 6= −1,

2πi if k = −1.

This forms the basis for Cauchy’s integral formula, as we shall see later.

16
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Remark. Suppose f is analytic; then the Cauchy-Riemann conditions read vy = ux and vx = −uy,
so the vector fields (u,−v) and (v, u) are conservative. Thus assuming f ′ is continuous3 on an open
set containing |γ| and the interior of γ, where γ is a simple closed counterclockwise contour, then
Green’s Theorem tells us∮

γ

u dx− v dy =

∫∫
inside(γ)

(
∂(−v)

∂x
− ∂u

∂y

)
dx dy =

∫∫
inside(γ)

0 = 0.

Similarly
∮
γ
v dx+ u dy = 0. Hence we deduce that

∫
γ
f = 0 for all such contours! Surprising.4

So in the case of f(z) = (z − z0)k, where k ≥ 1, we have f ′(z) = k(z − z0)k, which is continuous
on C. So

∫
γ
f(z) dz = 0.

3which always happens to be the case, but we haven’t proven that yet
4In fact we can generalize this to all contours by splitting each contour into simple closed parts, but we will not

prove this here.
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5 September 6

5.1 Integration Properties

The complex integral we discussed last time has some nice properties, many of which carry over
from real-valued integration.

• The integral is linear :
∫
γ
(af + bg) = a

∫
γ
f + b

∫
γ
g.

• If γ can be written as the concatenation of two paths γ1 ∪ γ2, then
∫
γ
f =

∫
γ1
f +

∫
γ2
f .

• Given a path γ : [a, b] → C, define −γ : [a, b] → C via (−γ)(t) = γ(a + b − t). Then∫
γ
f = −

∫
−γ f .

• The integral satisfies the change of parameter property: let γ : [a, b]→ C be a contour, and let
α : [c, d] → [a, b] be a piecewise smooth, increasing, and onto bijection. Then

∫
γ
f =

∫
γ◦α f .

This says that it doesn’t really matter what γ is, and so we may (without loss of generality)
write

∫
γ
f =

∫
|γ| f .

• Observe that ∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(γ(t))| · |γ′(t)| dt

≤ sup
z∈|γ|

|f(z)|
∫ b

a

|γ′(t)| dt = sup
z∈|γ|

|f(z)| · length(γ).

This will be very useful.

• If fn → f uniformly on |γ|, then
∫
γ
fn(z) dz →

∫
γ
f(z) dz. Indeed,∣∣∣∣∫

γ

fn(z) dz −
∫
γ

f(z) dz

∣∣∣∣ ≤ sup
z∈|γ|

|fn(z)− f(z)| length(γ)→ 0

as n→∞.

5.2 Primitives

We begin with a definition.

Definition 5.1. Let U ⊂ C be open and f : U → C be continuous. A function F : U → C is called
a primitive of f if F is analytic on U and its derivative is f .

As one might expect, there is a form of the Fundamental Theorem of Calculus that holds in the
complex case.

Theorem 5.2. Define U , f , and F as above, and let γ : [a, b]→ U . Then∫
γ

f(z) dz = F (γ(b))− F (γ(a)).

Proof. Assume first that γ is smooth. Then∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

d

dt
[F (γ(t))] dt = F (γ(b))− F (γ(a)).

In the case where γ is piecewise smooth, apply the previous argument to each smooth component
of γ and telescope.

This theorem nas a very important corollary.

Corollary 5.3. Define U , γ, f , and F as above, and assume γ is closed. Then
∫
γ
f = 0.

Example 5.4. Recall that (z − z0)k = d
dz

[
(z−z0)k+1

k+1

]
whenever k 6= −1. This primitive is analytic

on C \ {z0}, (and in fact is analytic on C when k ≥ 0), so
∫
γ
(z − z0)k dz = 0 for any |γ| ⊂ C \ {z0}

and k ∈ Z \ {−1}.
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Now observe the k = −1 case. Then (z−z0)−1 = d
dz g(z), where g(z) is any branch of the function

z 7→ log(z − z0). This means that
∫
γ
(z − z0)−1 changes depending on y!

There are two cases: either z0 ∈ inside(γ) or z0 ∈ outside(γ). In the former case, we may construct
a (possibly curved) infinite ray ` with vertex at z0; then a branch of log(z − z0) exists on C \ `, and
we conclude that

∫
γ
(z − z0)−1 dz = 0.

If instead we have e.g. 0 ∈ inside(γ), then we can still use the same techniques but more work is
needed. Consider the case in which γ intersects the negative real axis exactly once, namely at w.
We may re-parametrize |γ| so that γ(0) = γ(1) = w and γ is oriented counterclockwise. Then∫

γ

1

z
dz = lim

ε→0

∫ 1−ε

ε

f(γ(t))γ′(t) dt

= lim
ε→0

[Log(γ(1− ε))− Log(γ(ε))]

= (ln |w|+ πi)− (ln |w| − πi) = 2πi.

This agrees with our earlier work when we computed this integral for γ a circle.

5.3 The Local Cauchy Theorem

We will now prove the following theorem.

Theorem 5.5 (Cauchy for Triangles). Let U ⊂ C be open, and let f : U → C be continuous on U
and analytic on U except possibly at some point p ∈ U . Then for any triangle ∆ ⊂ U , we have∫

∂∆

f(z) dz = 0.

The key observation is as follows: suppose ∆ is a triangle with diameter ε. If ε is sufficiently
small, then we may approximate f by its linear approximation at z0 ∈ ∆ fairly well. That is,∫

∂∆

f(z) dz =

∫
∂Γ

[f(z0) + f ′(z0)(z − z0) + o(|z − z0|)] dz

= f(z0)

∫
∂∆

1 dz + f ′(z0)

∫
∂∆

(z − z0) +

∫
∂∆

o(|z − z0|) dz

= f(z0) · 0 + f ′(z0) · 0 + o(ε2) = o(ε2).

We proceed with the proof.

Proof. Let’s first assume that p /∈ ∆ and that ∂∆ is a counterclockwise contour. Divide ∆ into four
congruent triangles as shown. Observe that integrating f along ∆1, ∆2, and ∆3 gives us an integral

∆1

∆4

∆2

∆3

along the original triangle ∆ plus the negative of the integral along ∆4. In particular, this means∮
∂∆

f(z) dz =

∫
∂∆1

f +

∫
∂∆2

f +

∫
∂∆3

f +

∫
∂∆4

f =: I.

Then there must exist some 1 ≤ i ≤ 4 such that
∣∣∮
∂∆i f(z) dz

∣∣ ≥ I
4 . Fix such a ∆i and call it ∆1.
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By relating this process we obtain a nested sequence of triangles

∆ ⊃ ∆1 ⊃ ∆2 ⊃ · · · ⊃ ∆n ⊃ · · ·

satisfying
∣∣∫
∂∆n f(z) dz

∣∣ ≥ |I|
4n . Since diam(∂∆n) = 1

2n diam(∂∆) → 0 as n → ∞, the nested
compact sets theorem tells us that

∞⋂
n=1

∆n = {z0} ∈ ∆

for some z0.

As a result, we may write∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
∂∆n

f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|) dz
∣∣∣∣

=

∣∣∣∣∫
∂∆

o(|z − z0|) dz
∣∣∣∣ ≤ max

z∈∂∆n

o(|z − z0|) length(∂∆n)

= o(2−n) · o(2−n) = o(4−n).

But we already established that
∣∣∣∫∂∆n

f(z) dz
∣∣∣ ≥ |I|4n ; thus |I| ≤ o(4−n)4n → 0 as n→∞.

Now we deal with the case where p ∈ ∆. In this case, it suffices to show the result when p is
a corner of ∆; this is because we may subdivide ∆ into triangles and reduce to the corner case as
shown below in the left two pictures.

p

p

p

∆1

∆3

∆2

Now assuming p is a corner, divide ∆ into three triangles ∆1, ∆2, and ∆3 as shown in the
rightmost diagram above. Then∣∣∣∣∫

∂∆

f

∣∣∣∣ =

∣∣∣∣∫
∂∆3

f

∣∣∣∣ ≤ sup
∂∆3

|f | · length(∂∆3),

which goes to zero as we make ∆3 smaller and smaller.
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We proceed with a generalization of Theorem 5.5.

Theorem 6.1 (Cauchy’s Theorem for Convex Sets). Let U ⊆ C be open, and suppose f : U → C is
continuous on U and analytic on U \ {p}. Then f has a primitive F on U . In particular,

∫
γ
f = 0

for any closed contour γ in U .

Remark. The assumption that f is analytic can be replaced with the assumption that
∫
∂∆

f = 0 for
any triangle ∆ ⊂ U ; in particular, this is the only consequence of f being analytic we need.

Proof. Fix a point a ∈ U . Let [a, z] be the straight line from a to z, and overload notation by setting

[a, z](t) := a+ (z − a)t for t ∈ [0, 1].

Define F (t) =
∫

[a,z]
f(ξ) dξ; our goal is to show F ′ = f . Indeed, write

F (z)− F (z0)

z − z0
=

∫
[a,z]

f(ξ) dξ −
∫

[a,z0]
f(ξ) dξ

z − z0

=

∫
[a,z]

f(ξ) dξ +
∫

[z0,a]
f(ξ) dξ

z − z0
=

∫
[z0,z]

f(ξ) dξ

z − z0
.

Observe that in the last step we use the fact that
∫
∂∆

f = 0 for the triangle with vertices z, z0, and
a (which we know is completely contained in U by convexity). Thus

F (z)− F (z0)

z − z0
− f(z0) =

∫
[z0,z]

f(ξ) dξ

z − z0
−
∫

[z0,z]
f(z0) dξ

z − z0
=

∫ z
z0

(f(ξ)− f(z0)) dξ

z − z0

and hence∣∣∣∣F (z)− F (z0)

z − z0
− f(z0)

∣∣∣∣ ≤ |z − z0|maxξ∈[z0,z] |f(ξ)− f(z0)|
|z − z0|

= max
ξ∈[z0,z]

|f(ξ)− f(z0)| .

This last quantity tends to zero as z → z0, and so we obtain the desired conclusion.

While the constraint that U is convex is somewhat restrictive, in reality this result is farther
reaching than expected.

Remark. Thee previous result still is useful when U is not necessarily convex. In particular, we can
break γ into pieces that are contained in convex subdomains of U .

6.1 Differentiation under the Integral Sign

We now take a quick tangent that will become immediately useful.

Theorem 6.2 (Differentiation under the Integral Sign). Let U ⊂ C and let γ be a contour in C.
Assume that F : |γ| × U → C is a function satisfying the following properties:

• F is continuous on |γ| × U ;

• for any ξ ∈ |γ|, F (ξ, ·) is analytic in U ;

• ∂
∂zF (ξ, z) is continuous on |γ| × U .

Then G(z) :=
∫
γ
F (ξ, z) dξ is analytic in U , and

G′(z) =

∫
γ

∂

∂z
F (ξ, z) dξ.

Proof. Fix z > 0 and δ > 0 such that B(z, δ) ⊂ U . For |h| < δ we may compute∣∣∣∣G(z + h)−G(z)

h
−
∫
γ

∂

∂z
F (ξ, z) dξ

∣∣∣∣ =

∣∣∣∣∫
γ

(
F (ξ, z + h)− F (ξ, z)

h
− ∂

∂z
F (ξ, z)

)
dξ

∣∣∣∣
=

∣∣∣∣∣
∫
γ

∫
[z,z+h]

∂zF (ξ, η) dη −
∫

[z,z+h]
∂zF (ξ, z) dη

h
dξ

∣∣∣∣∣
≤ length(γ) · |h||h| · max

η∈[z,z+h]
ξ∈|η|

|∂zF (ξ, η)− ∂zF (ξ, z)| .

21



David Altizio Math 542 Lecture Notes

Now recall that |γ| ×B(z, δ) is compact, and so uniform continuity implies that the right hand side
goes to zero as h→ 0. This completes the proof.

6.2 Winding Numbers

In a previous class, we showed that
∫
B(z0,r)

1
z−z0 dz = 2πi for any r > 0. Our goal now is to

generalize this.

For any closed contour γ, recall that C \ |γ| has one unbounded connected component and mul-
tiple bounded connected components. This contour γ can “wind” around points in these bounded
components multiple times. For example, in the diagram below observe that γ rotates −1 times
around z1, 1 time around z2, 2 times around z3, and so on.

It turns out we can make this notion of “turning” completely rigorous.

Definition 6.3. Given a contour γ, define the function n(γ, ·) : C \ |γ| → C via

n(γ, z) =
1

2πi

∫
γ

1

ξ − z dξ.

It’s not obvious at all that this function relates to “turning”, but it does.

Lemma 6.4. Let γ be a closed contour and U = C \ |γ|. The following hold.

• n(γ, z) is constant on each connected component of C \ |γ|.
• n(γ, z) ∈ Z for all z ∈ U .

• n(γ, z) = 0 for all z in the unboundent component of U .

• If γ is simple, closed, and counterclockwise, then n(γ, z) = 1 for all z ∈ inside(γ).

Proof. We will prove the first part now and leave parts 2 and 3 for tomorrow. The proof of 4 is
surprisingly technical and we leave it to Palka.

By Theorem 6.2, we can write

∂

∂z
n(γ, z) =

1

2πi

∫
γ

∂

∂z

1

ξ − z dξ =
1

2πi

∫
γ

1

(ξ − z)2
dξ =

1

2πi

∫
γ

∂

∂ξ

[
1

ξ − z

]
dξ.

Now observe that ∂
∂ξ

[
1
ξ−z

]
is a continuous function on U with primitive 1

ξ−z ; thus by Corollary 5.3

this integral is zero! This means that n(γ, z) is constant on each connected component of U , and
we’re done.
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As suggested, we will prove parts 2 and 3 of the previous lemma.

Proof. Assume γ : [a, b]→ U is smooth; the piecewise smooth case follows by applying the smooth
case to each part.

For part 2, recall that

n(γ, z) =
1

2πi

∫
γ

1

ξ − z dξ =
1

2πi
∫ b
a
γ′(s)
γ (s)− z

ds.

Thus we may define g : [a, b]→ C via

g(t) := exp

(∫ t

a

γ′(s)
γ(s)− z ds

)
.

Observe that g(a) = 1 and g(b) = e2πin(γ,z). Our goal now is to show that g(a) = g(b); thus
e2πin(γ,z) = 1, and this can only happen when n(γ, z) ∈ Z.

It is tempting to show that g′(t) = 0 for all t ∈ (a, b), but this isn’t actually the case. Instead, if

you stare at this for a while, you will see that from g′(t) = γ′(t)
γ(t)−z · g(t) we have

d

dt

[
g(t)

γ(t)− z

]
=

g′(t)
γ(t)− z −

γ′(t)g(t)

(γ(t)− z)2
= 0.

Thus g(a)
γ(a)−z = g(b)

γ(b)−z , and from γ(a) = γ(b) 6= z we obtain the desired conclusion.

Finally, we proceed with part 3. Suppose z lies in the unbounded component. Fix some disk D
containing |γ|, and note that by part 1 we may write n(γ, z) = n(γ, z0), where z0 is some point lying
outside of D. But in this case, the function ξ 7→ 1

ξ−z0 is analytic inside D, and hence the integral is
zero.

7.1 Cauchy’s Integral Formula

We now prove (a special case of) one of the most important theorems in complex analysis.

Theorem 7.1 (Cauchy’s Integral Formula in a convex set). Let U ⊂ C be convex and open, γ be a
closed contour in U , and f : U → C be analytic. Then for any z ∈ U \ |γ|,

f(z)n(γ, z) =
1

2πi

∫
γ

f(ξ)

ξ − z dξ.

Proof. Fix z ∈ U \ |γ|, and let

g(ξ) =

{
f(ξ)−f(z)

ξ−z if ξ 6= z,

f ′(z) if ξ = z.

Note that g is defined and actually continuous on U . Furthermore, it is differentiable on U \ {z}.
So Cauchy’s Theorem applies, and hence

0 =

∫
γ

g(ξ) dξ =

∫
γ

f(ξ)− f(z)

ξ − z dξ =

∫
γ

f(ξ)

ξ − z dξ −
∫
γ

f(z)

ξ − z dξ

=

∫
γ

f(ξ)

ξ − z dξ − f(z) · 2πi · n(γ, z).

This gives the desired equality.

We illustrate the power of Cauchy’s Integral Formula with an example.

Example 7.2. Our goal is to compute the value of the Fresnel integral∫ ∞
0

cos(t2) dt = lim
R→∞

∫ R

0

cos(t2) dt.
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π
4

Rγ1

γ2−γ3

Write this last expression as limR→∞<(IR), where IR :=
∫ R

0
eit

2

dt.

Now consider the contour shown below, which consists of three segments γ1, γ2, and γ3 oriented
counterclockwise.

Let us analyze the integral of eiz
2

on each component separately.

• The contour γ1 is parametrized by the function ϕ1 : [0, R]→ C given by ϕ1(t) = t. Thus,∫
γ1

eiz
2

dz =

∫ R

0

eit
2

dt = IR.

• The integral along −γ3 is also easy to wrangle with, since −γ3 is parametrized by the function
ϕ3 : [0, R]→ C given by ϕ3(t) = teiπ/4. Thus∫

−γ3
eiz

2

dz =

∫ R

0

ei(te
iπ/4)2 · eiπ/4 dt = eiπ/4

∫ R

0

e−t
2

dt.

While this integral does not have a closed form, its limit as R→∞ does and equals eiπ/4
√
π

2 .

• The hardest part of this question involves the integral along γ2. This contour is parametrized
by the function ϕ2 : [0, π/4]→ C given by ϕ2(t) = Reit. Thus∫

γ2

eiz
2

dz =

∫ π/4

0

eiR
2e2itReit dt.

We now claim this integral goes to zero as R→∞. To prove this, write∣∣∣∣∣
∫ π/4

0

eiR
2e2it dt

∣∣∣∣∣ ≤ π

4

∫ π/4

0

∣∣∣eiR2e2it
∣∣∣ dt = R

∫ π/4

0

e−R
2 sin(2t) dt.

Now recall the bound 2
πx ≤ sinx ≤ x for all x ∈ [0, π2 ]. Thus

R

∫ π/4

0

e−R
2 sin(2t) dt ≤ R

∫ π/4

0

e−2tR2

dt ≤ R · c
R2

,

which goes to zero as R→∞.

As a result, we may write

0 =

∫
γ=γ1∪γ2∪γ3

eiz
2

dz = IR +

∫
γ2

eiz
2

dz − eiπ/4
∫ R

0

e−t
2

dt

and send R→∞ to obtain

lim
R→∞

IR = lim
R→∞

eiπ/4
∫ R

0

e−t
2

dt− lim
R→∞

∫
γ2

eiz
2

dz = eiπ/4
√
π

2
.

Taking the real part of this last limit gives us our answer of
√

2π
4 .
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Let’s see some applications of the Cauchy Integral Formula. Our first application is, in some sense,
an extension.

Theorem 8.1. Suppose f and U are defined as in Theorem 7.1. Then f is infinitely differentiable
on the set {z : n(γ, z) 6= 0} and

n(γ, z)f (k)(z) =
k!

2πi

∫
γ

f(ξ) dξ

(ξ − z)k+1
.

Proof. The key idea is to differentiate under the integral sign, observing that n(γ, z) is constant on
each connected component of U \ |γ|. This yields

f (k)(z)n(γ, z) =
1

2πi

∫
γ

(
∂k

∂zk
f(ξ)

ξ − z

)
dξ =

k!

2πi

∫
γ

f(ξ) dξ

(ξ − z)k+1
.

This theorem admits a very useful corollary.

Corollary 8.2. Let U ⊂ C be open and f : U → C be analytic. Then f is infinitely differentiable
and every derivative is analytic.

Proof. Let z ∈ U ; then there exists r > 0 such that B(z, r) ⊂ U . Now apply Theorem 8.1 to
γ = ∂B(z, r); this tells us that f is infinitely differentiable at z, and since z was arbitrary we deduce
differentiability everywhere in U .

Example 8.3. Consider the contour γ shown below, which is counterclockwise and contains the
points i and −1. We will compute ∫

γ

dw

(w + 1)3(w − i)2
.

At the moment we are unable to apply Theorem 8.1: such an application requires us to write
1

(w+1)3(w−i)2 in the form f(w)
ξ−r for some analytic function f and some r ∈ inside(γ), but this is not

possible because of the existence of multiple singularities.

−1

i

γ

γ1

γ2

Instead, the idea is to split the contour. Divide the contour into two pieces γ1 and γ2 as shown
above in gray. Then we may use Theorem 8.1 twice to obtain∫

γ

dw

(w + 1)3(w − i)2
=

∫
γ1

1/(w + 1)3

(w − i)2
dw +

∫
γ2

1/(w − i)2

(w + 1)3

=
2πi

1!

(
1

(w + 1)3

)′ ∣∣∣∣∣
w=i

+
2πi

2!

(
1

(w − i)2

)′′ ∣∣∣∣∣
w=−1

= 2πi · 3

4
+ πi · −3

2
= 0.

Our next examples combine multiple results we have done previously.
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Corollary 8.4 (Morera’s Theorem). Let f be continuous on some open set U ⊂ C such that∫
∆
f(z) dz = 0 for every triangle ∆ ⊂ U . Then f is analytic on U .

Proof. Use Theorem 6.1 and the remark following it. In particular, the triangle condition tells us
that f has a primitive F on U . So F is infinitely differentiable on U , and hence f is (infinitely)
differentiable.

Corollary 8.5. Suppose U ⊂ C is open and p ∈ U . Assume f is analytic on U \{p} and continuous
on U . Then f is analytic on U .

Proof. Use Morera’s Theorem. Alternatively, use the fact that f has a primitive on B(p, r), where
r is chosen so that B(p, r) ⊂ U .

Our next proposition discusses taking logarithms of analytic functions.

Proposition 8.6. Let U be open and convex, and let f : U → C be analytic and nonvanishing.
Then log(f) has a branch in U and is hence analytic.

Proof. Recall that (log f)′ = f ′

f . The goal is to find a primitive for f ′

f and prove that it is a branch
of f .

The existence of a primitive F follows from the fact that f is nonvanishing, since 1
f and f ′ are

both analytic.

Now observe that

(fe−F )′ = f ′e−F − F ′e−F f = f ′e−F − f ′

f e
−F f = 0.

Since U is connected we deduce that fe−F = c for some constant c.

Finally, observe that c is nonzero, which means we can write fe−F = ec0 for some constant c0.
Then eF+c0 = f on U , and so F + c0 is the desired branch.

As a corollary, we see that for any α ∈ C, fα = eα log f has a branch in U .

Example 8.7. Let

f(z) =

{
sin z
z if z 6= 0,

1 if z = 0.

Note that z 7→ sin z
z is analytic on C \ {0}.

We now claim that limz→0
sin z
z = 1; this matches what occurs in the real case, but the proof when

z is complex is a bit harder. To prove this, recall the equality

sin z =

∫
[0,z]

cos ξ dξ for all z ∈ C.

Thus ∣∣∣∣1− sin z

z

∣∣∣∣ =

∣∣∣∣∣
∫

[0,z]

1− cos ξ

z
dξ

∣∣∣∣∣ ≤ |z| ·max
[0,z]

∣∣∣∣1− cos ξ

z

∣∣∣∣ = max
[0,z]
|1− cos ξ| .

Now observe that 1 − cos ξ is continuous and hence uniformly continuous on B(0, r) for some r.
Hence as z → 0, the quantity max[0,z] |1− cos ξ| tends to zero, which is what we wanted.

Thus f is continuous on C, and so sin z
z is analytic on C.

We end today with one final theorem.

Theorem 8.8 (Derivative Estimates). Assume f is analytic on B(z0, r) and that there exists some
constant m > 0 such that |f(z)| ≤ m for z ∈ B(z0, r). Then for every k ∈ N and for all z ∈ B(z0, r)
we have ∣∣∣f (k)(z)

∣∣∣ ≤ k!m

(r − |z − z0|)k
.

In particular, f (k)(z0) ≤ k!mr−k.
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Proof. It suffices to prove the result when z = z0; then to obtain the general result we can apply
this specific case, noting that

B(z, r − |z − z0|) ⊆ B(z0, r).

Now for each 0 < s < r let γs : [0, 2π]→ C be defined via γs(t) = z0 + seit. Since n(γ, z0) = 1,∣∣∣f (k)(z0)
∣∣∣ =

k!

2π

∣∣∣∣∫
γ

f(ξ) dξ

(z − z0)k+1

∣∣∣∣ ≤ k!

2π
· 2πs · m

sk+1
=
k!m

sk
.

This holds for any such s, so letting s→ r yields the desired inequality.
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Our estimates from Theorem 8.8 allow us to derive a very useful corollary.

Corollary 9.1 (Liouville). Let f be a bounded, entire function. Then f is constant.

Proof. Suppose |f(z)| ≤ M for all z ∈ C. Then Theorem 8.8 tells us that |f ′(z)| ≤ M
r . Sending

r → ∞ yields |f ′(z)| ≤ 0. So f ′(z) = 0, and since C is connected we deduce that f is constant on
C.

In turn, Liouville gives us a result that forms the basis of high school algebra.

Corollary 9.2 (Fundamental Theorem of Arithmetic). Any polynomial in z of degree at least 1 has
a root in C. As a result, polynomials of degree n have exactly n roots up to multiplicity.

Proof. Suppose for the sake of contradiction that P ∈ C[z] has no real roots. Then the function
f = P−1 is entire. Furthermore, since P is continuous and nonzero, f is bounded on any compact
subset of C.

Now write
P (z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0.

Then for all sufficiently large values of |z| (say when |z| > R for some R > 0),

|P (z)| ≥ |zn| · |z|n − |an−1| · |z|n−1 − · · · − |a0|

= |z|n
(
|an| −

|an−1|
|z| − · · · −

|a0|
|z|n

)
≥ |z|n · |an|

2
.

Hence f is bounded on both {z : |z| ≤ R} and {z : |z| > R}, so f is bounded on all of C. Hence
Liouville tells us that f is constant, which is a contradiction.

Another application of complex integration lies in something called the Maximum Modulus Prin-
ciple.

Theorem 9.3 (Maximum Modulus Principle). Let D be a domain, and let f : D → C be analytic.
Suppose f attains its maximum somewhere in D, so that there exists z0 ∈ D such that |f(z)| ≤ |f(z0)|
for all z ∈ D. Then f is constant.

Remark. This can be generalized somewhat. Suppose a function f : D → R is called subharmonic
if f is continuous and, for all z0 ∈ C, the integral

f(z0) ≤ 1

2π

∫ 2π

0

f(z0 + reit)

holds for sufficiently small r. It turns out that the Maximum Modulus Principle also holds for
subharmonic functions. This will be clear from the proof.

Proof. Let z0 ∈ D be a maximum. Take r0 > 0 such that B(z0, r0) ⊂ D. Then for 0 < r < r0 we
may write

f(z0) =
1

2πi

∮
∂B(z0,r)

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + reit)

reit
· riert dt =

1

2π

∫ 2π

0

f(z0 + reit) dt.

(Intuitively, f(z0) is the average of the values f takes on any circle centered at z0.) Now taking the
absolute value of both sides yields

|f(z0)| =
∣∣∣∣ 1

2π

∫ 2π

0

f(z0 + reit)

∣∣∣∣ dt ≤ 1

2π

∫ 2π

0

∣∣f(z0 + reit)
∣∣ dt,

and so ∫ 2π

0

∣∣f(z0 + reit)
∣∣− |f(z0)| dt ≥ 0.

However, observe that f(z0) is a maximum for f in D, meaning that
∣∣f(z0 + reit)

∣∣ ≤ |f(z0)| for all

t. The only way these contradicting facts can hold simultaneously is if |f(z0)| =
∣∣f(z0 + reit)

∣∣. By
varying r we deduce that |f(t)| is constant on B(z0, r0).
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Now set
U = {z ∈ D : |f(z)| = |f(z0)|} and V = {z ∈ D : |f(z)| < |f(z0)|}.

We just proved that U is open in D, and furthermore V is open in D by continuity of |f |. Thus,
since D is connected and z0 ∈ U we deduce that V = ∅. Hence |f | is constant on D, and by
Proposition 3.3 f is constant on D as well.

The previous theorem admits an easy corollary.

Corollary 9.4. Let D be a bounded domain, and let f : D̄ → C be continuous. Assume f is analytic
in D. Then f attains its maximum on ∂D. Moreover, if f is nonvanishing, it attains its minimum
in ∂D as well.

Proof. Since D̄ is compact and f is continuous, f obtains its maximum at some point z0 ∈ D̄. If
z0 ∈ ∂D, we’re done. Otherwise, z0 ∈ D, and so the Maximum Modulus Principle implies f is
constant in D. By continuity, f is constant on D̄ as well, and we’re done.

For the second part, apply the previous result to 1
f .

We finish with a final named result.

Theorem 9.5 (Schwarz’s Lemma). Let f : B(0, 1) → C be analytic. Assume that f(0) = 0 and
|f(z)| ≤ 1 for all z ∈ B(0, 1). Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z ∈ B(0, 1). Moreover, these
inequalities are strict unless f(z) = zeiθ for some θ ∈ R.

Proof. Define g : B(0, 1)→ C via

g(z) =

{
f(z)/z if z 6= 0,

f ′(0) if z = 0.

Observe that f is analytic on B∗(0, 1), and the f(0) = 0 condition ensures continuity at 0 as well.
So 0 is a removable singularity of g and g is analytic on B(0, 1).

Fix 0 < r < 1. On ∂B(0, r), |g(z)| = |f(z)|
|z| ≤ 1

r . Thus the Maximum Modulus Principle implies

|g(z)| ≤ 1
r on B(0, r). Sending r → 1 yields |g(z)| ≤ 1 on B(0, 1), so |g(0)| = |f ′(0)| ≤ 1 and

|f(z)| ≤ |z| for all z ∈ B(0, 1).

Furthermore, if either equality holds at some z0 ∈ B(0, 1), |g| attains its maximum at z0. Hence
g is constant with |g| = 1. This proves the claim.

29



David Altizio Math 542 Lecture Notes
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10.1 Phragmén–Lindelöf

Let D ⊂ C be unbounded, and let f : D̄ → C be a function that is analytic on D and continuous
on D̄. If |f(z)| ≤ M on ∂D, it does not imply |f(z)| ≤ M on D. However, this estimate can hold
if we assume f doesn’t grow too fast as |z| → ∞.

Theorem 10.1. Fix some α ∈ [0, 2π], and let

D := {z : |Arg(z)| < 1
2α}.

Let f : D̄ → C be analytic on D and continuous on D̄. Also assume that |f(z)| ≤M for z ∈ ∂D ad
that

|f(z)| ≤ Ce|z|ρ for all z ∈ D,
where ρ is a real number in the interval [0, πα ). Then |f(z)| ≤M for all z ∈ D.

Remark. The strict inequality in the definition of D is necessary. Suppose

D = {z : |Arg(z)| ≤ π} = {z : <(z) ≥ 0},

and take f(z) = ez. Then f is bounded in ∂D (the imaginary axis), but f as a whole is not bounded
in D.

Proof. Choose arbitrary ρ1 with ρ < ρ1 <
π
α . Given ε > 0, let fε(z) = f(z)e−εz

ρ1
, where recall that

zρ1 = eρ1 Log(z) = |z|ρ1 eiρ1 Arg(z).

Observe that fε is analytic on D and continuous on D̄ as well. Now note the bound

|fε| (z) = |f(z)| e−ε<(zρ1 ) = |f(z)| e−ε|z|ρ1 cos(ρ1 Arg(z)).

But |Arg(z)| ≤ π
α , so |ρ1 Arg(z)| ≤ α

2 ρ1 < c < π
2 for some constant c. Hence

cos(ρ1 Arg(z)) ≥ C > 0

for some constant C, implying

|fε(z)| ≤ |f(z)| e−Cε|z|ρ1 ≤Me−Cε|z|
ρ1 ≤M

for all z ∈ ∂D.

Furthermore, for z ∈ D, we may write

|fε(z)| ≤ Ce|z|
ρ−c|z|ρ1ε = Ce−|z|

ρ(εc|z|ρ1−ρ−1),

which is less than or equal to M if |z| ≥ R for some large R depending on ε, c, ρ1, and ρ.

Now fix z0 ∈ D, and consider the region Dz0 shown below, which consists of a circular sector of
radius R. Observe that |f(z)| ≤ M for all z ∈ ∂Dz0 , so the Maximum Modulus Principle implies

z0

R

α
2

α
2

that |fε(z0)| ≤M . Since z0 was arbitrary, we deduce that |fε(z)| ≤M for all z ∈ D.

To obtain the desired result, send ε→ 0.
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Before moving on, we briefly touch on one other result that is worth mentioning. The proof can
be found in Palka.

Theorem 10.2 (Hadamard’s Three Lines Lemma). Let D = (0, 1)×D be a domain and f : D → C
be analytic on D and continuous on D̄. Further assume that f is bounded on D, with

|f(iy)| ≤M0 and |f(1 + iy)| ≤M1 for all y ∈ R.

Then
|f(x+ iy)| ≤M1−x

0 Mx
1 for all x, y ∈ R.

10.2 Sequences and Series and Functions

We now turn our attention to the analysis of multiple functions - that is, of series of functions.

Definition 10.3. Let D be a domain, and let f, fn : D → C be functions.

1. We say that fn → f pointwise if

lim
n→∞

|fn(z)− f(z)| = 0 for all z ∈ D.

2. We say that fn → f uniformly if

lim
n→∞

sup
z∈D
|fn(z)− f(z)| = 0.

3. We say that fn → f normally if fn → f uniformly on every compact set K ⊂ D.

Observe that uniform convergence implies normal convergence implies pointwise convergence, but
the other implications may fail.

Example 10.4. Let D = B(0, 1), and define fn : D → C via fn(z) = zn. Then fn → 0 both
pointwise and normally but not uniformly.

We know from real analysis that the uniform limit of continuous functions is continuous. It turns
out that normal limits of continuous functions are also continuous; this is not hard to show.

We also have a useful criterion for uniform convergence. It is analogous to the equivalence of
Cauchy sequences and convergent sequences in R.

Theorem 10.5 (Cauchy Criterion for Uniform Convergence). Let (fn)n≥1 be a sequence of functions
defined in a domain D. Then fn converges uniformly on D if and only if for all ε > 0 there exists
N ≥ 0 such that

sup
z∈D
|fn(z)− fm(z)| < ε for all m,n ≥ N.

Note that Cauchy’s criterion also holds for series, since we define
∑∞
n=1 fn(z) = limN→∞

∑N
n=1 fn(z).

Cauchy’s Criterion then says that the series converges uniformly on D if and only if for all ε > 0
there exists N ≥ 0 such that

sup
z∈D

∣∣∣∣∣
n∑

k=m

fk(z)

∣∣∣∣∣ < ε. (10.1)

Before moving on to the main result, we state the Weierstrass M -test : if (fn)n≥1 is a sequence of
functions satisfying |fn(z)| ≤Mn, where

∑∞
n=1Mn <∞, then the sequence fn converges uniformly.

Theorem 10.6 (Weierstrass). Let (fn)n≥1 be a sequence of analytic functions on an open set D.

Assume that fn → f normally on D. Then f is analytic, and furthermore f
(n)
k → f (n) normally on

D for all n ≥ 0.

Proof. We know that f is continuous since fn → f normally. Now let ∆ ⊂ D be ab arbitrary
triangle, and observe that ∫

∂∆

f =

∫
∂∆

lim
n→∞

fn dz
(∗)
= lim

n→∞

∫
∂∆

fn = 0.
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Here, the step (∗) holds since ∂∆ is compact; hence fn → f uniformly on D and we can swap the
limit with the integral. Thus, by Morera’s Theorem (Corollary 8.4), f is analytic. In particular, all
its derivatives exist.

To prove the second part, recall by our derivative estimates (Theorem 8.8) that∣∣∣f (k)
n (z0)− f (k)(z0)

∣∣∣ ≤ sup|z−z0|<r |fn(z)− f(z)|
rk

· k!. (10.2)

Now let K ⊂ D be compact. Since Dc is closed, the distance dist(K,Dc) is nonzero. Thus we may
take r0 > 0 such that Fr0 , defined as the closure of an r0-neighborhood of K, is contained in D.
Then applying (10.2) to each z in D yields

sup
z∈K

∣∣∣f (k)
n (z)− f (k)(z)

∣∣∣ ≤ k!

rk
sup
z∈Kr0

|fn(z)− f(z)| → 0,

as n→∞. Since K was arbitrary, we deduce that f
(k)
n → f (k) normally in D.
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We start with some remarks about Theorem 10.6.

Remark. The theorem can be applied to series as well, since series are nothing more than sequences
of partial sums. In this case, let (fn)n≥1 be a sequence of functions. Then if (10.1) holds on every
compact subset K ⊂ D, then the series

∑∞
n=1 fn converges to an analytic function f , and

f ′(z) =
d

dz

[
lim
n→∞

n∑
k=1

fk(z)

]
= lim
n→∞

n∑
k=1

f ′k(z) =

∞∑
k=1

f ′k(z).

More succinctly, normally convergent series can be differentiated termwise.

Remark. We should compare this with the Weierstrass Approximation Theorem in real analysis,
which says that polynomials are dense in C([a, b];R). In particular, any continuous function f can
be uniformly approximated by polynomials. Such a result is false in C, since the limit of a sequence
of polynomials must be analytic.

Example 11.1. Let D be a bounded domain, and let (fn)n≥1 be a sequence of analytic functions
on D which are continuous on D̄. Assume that fn → f on ∂D. We will show that fn converges
uniformly to an analytic function on D.

Recall that since ∂D is compact, (fn)n≥1 is uniformly convergent and hence uniformly Cauchy.
As a result, for all ε > 0 there exists N such that

sup
z∈∂D

|fn(z)− fm(z)| < ε for all m,n ≥ N.

Now the Maximum Modulus Principle implies this bound carries over to the interior of D, i.e. for
all ε > 0 there exists N such that

sup
z∈D
|fn(z)− fm(z)| < ε for all m,n ≥ N.

Hence fn converges uniformly on D, and by Theorem 10.6 the limit is analytic.

11.1 Power Series

We focus now on series of functions. A few definitions are in order.

Definition 11.2. In what follows, let (ai)i≥1 ⊂ C.

1. A power series centered at z0 ∈ C is a series of the form∑
n≥0

an(z − z0)n.

The sum is analytic on the open sets where the series converges normally.

2. Given such a series, we define

R :=

(
lim sup
n→∞

|an|1/n
)−1

∈ [0,∞]

to be the radius of convergence of the series, with the understanding that 1
0 =∞ and 1

∞ = 0.

3. The disc B(z0, R) is defined to be the disc of convergence.

These definitions have such names on purpose, as the next theorem shows.

Theorem 11.3. A power series converges normally and absolutely in its disc of convergence B(z0, R)
and diverges at each point outside B(z0, R). In particular, the sum is analytic in B(z0, R), and[ ∞∑

n=0

an(z − z0)n

]
=

∞∑
n=m

an
dm

dzm
[(z − z0)n] .
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Proof. Assume R > 0, or else there’s nothing to prove. It suffices to show that for any ρ < R, the

series converges uniformly on B(z0, ρ). Pick R1 ∈ (ρ,R)¿ Observe that 1
R = lim supn→∞ |an|1/n

implies there exists N such that |an|1/n ≤ R−1
1 for all n ≥ N . Then for any m,n ≥ N ,

m∑
k=n

∣∣ak(z − z0)k
∣∣ ≤ m∑

k=n

1

Rk
ρk ≤

∞∑
k=n

( ρ
R

)k
=

(ρ/R)n

1− ρ/R.

This vanishes as n→∞, so the series is uniformly Cauchy and hence uniformly convergent.

For the second part, we may assume R > ∞ or else there’s nothing to prove. Fix z satisfying
|z − z0| > R. Observe that since

1

R
= lim sup

n→∞
|an|1/n >

1

|z − z0|
,

there eist infinitely many k satisfying |ak|1/k ≥ |z − z0|−1
. In turn, |ak|1/k |z − z0| ≥ 1 for infinitely

many k, and so the series diverges.

The last part follows from Weierstrass and, in particular, the remark that follows it.

We finish today with an instructive example.

Example 11.4. The radius of convergence of the series
∑
k≥1

zk

k is

1

lim supk→∞( 1
k )1/k

= lim inf
k→∞

k1/k = 1.

Hence the series converges to an analytic function in B(0, 1).

On the boundary ∂B(0, 1), |z| = 1, so we may write z = eiθ. If θ ≡ 0 (mod 2π), then this series
is the Harmonic series, which does not converge. However, miraculously the series converges for all
other θ! This is a consequence of the following test.

Theorem 11.5 (Dirichlet Test). Suppose (an)n≥1 ⊆ R and (bn)n≥1 ⊆ C are sequences of real and
complex numbers, respectively, such that

anconverges monotonically to 0 and sup
N≥1

∣∣∣∣∣
N∑
k=0

bk

∣∣∣∣∣ <∞.
Then the series

∑
n≥1 anbn converges.

The proof of this relies on Summation by Parts; for more information, see here.

In the |z| < 1 case, we may differentiate term by term to get

d

dz

∑
k≥1

zk

k
=
∑
k≥1

d

dz

[
zk

k

]
=
∑
k≥1

zk−1 =
1

1− z .

Thus the series
∑
k≥1

zk

k and −Log(1− z) are both primitives on C\{z : 1− z ≤ 0}, which contains
the unit ball B(0, 1), meaning they are equal to each other modulo a constant. Plugging in z = 0
tells us this constant is actually zero, and so we obtain the equality

∑
k≥1

zk

k
= −Log(1− z) on B(0, 1).

Notice that the series in the previous example happens to represent −Log(1 − z) on the largest
disc centered at 0 for which −Log(1 − z) is analytic. This is no coincidence, and we will prove an
analogous result for general power series next time.
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12 September 23

No class.

13 September 25

We start with one more example.

Example 13.1. Consider the power series
∑∞
k=0 2k(z − 5)2k. Computing the coefficients of this

power series is a bit tricky; it turns out they are

ak =

{
0 if k is odd,

2k/2 if k is even.

Thus |ak|1/k ∈ {0,
√

2}, so the radius of convergence is R = 1/
√

2 and the disc of convergence is
B(5, 1/

√
2). Now observe that on the boundary of this disc, we may write z = 5 + eiθ/

√
2 for some

θ, so
∞∑
k=0

2k(z − 5)k =

∞∑
k=0

2k
(
eiθ√

2

)2k

=

∞∑
k=0

e2θik.

This series diverges regardless of what θ is.

Furthermore, on B(5, 1/
√

2), this sum equals (1− 2(z − 5)2)−1; again, the disci s the largest one
in which the function (1− 2(z − 5)2)−1 is analytic.

13.1 Taylor Series

We are now ready to generalize the above examples.

Theorem 13.2 (Taylor Series). Let f be analytic on B(z0, R). Then f has a unique power series
representation on B(z0, R), i.e. there exist complex numbers c0, c1, . . . such that

f(z) =

∞∑
k=0

ck(z − z0)k.

Here it turns out that ck = f(k)(z0)
k! .

Proof. Fix R1 < R and consider z ∈ B(z0, R1). Then Cauchy’s Integral Formula yields

f(z) =
1

2πi

∮
∂B(z0,R1)

f(ξ)

ξ − z dξ.

Now write

1

ξ − z =
1

(ξ − z0)− (z − z0)
=

1

ξ − z0
· 1

1− z−z0
ξ−z0

=
1

ξ − z0
·
∞∑
k=0

(z − z0)k

(ξ − z0)k
.

This series converges uniformly on the contour ∂B(z0, R1), and so

f(z) =
1

2πi

∫
∂B(z0,R1)

∞∑
k=0

f(ξ)(z − z0)k

(ξ − z0)k+1
dξ

=
1

2πi

∞∑
k=0

(z − z0)k
∫
∂B(z0,R1)

f(ξ)

(ξ − z0)k+1
dξ =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k+1.

This proves the series converges.

To show uniqueness of this power series expansion, write f(z) =
∑
k dk(z−z0)k for some sequence

of complex numbers (dk)k≥0. Now differentiating m times and evaluating at z0 yields dm = f(m)(z0)
m! .
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Some examples of Taylor Series in action are in order.

Example 13.3. Since (ez)(k) = ez, we get ez =
∑
k≥0

1
k!z

k. This converges on all of C since ez is
entire.

Example 13.4. Recall Example 11.4, i.e. f(z) = Log(1 − z). Then we can compute f (k)(0) =
−(k − 1)!, and so ck = − 1

k .

We now state a useful corollary.

Corollary 13.5 (Cauchy’s Inequality for Coefficients). Let f be analytic on B(z0, R), so that f has
a power series expansion

f(z) =

∞∑
k=0

ck(z − z0)k

within that ball. Denote
Mz0(r) := sup

|z−z0|=r
|f(z)|

for all r ∈ (0, R). Then

|ck| ≤
Mz0(r)

rk
for all r ∈ (0, R).

Proof. Recall that ck = f(k)(z0)
k! . Now use the derivative estimates (Theorem 8.8).

Example 13.6. Let us suppose f : C → C is an entire function with |f(z)| ≤ |z|2 for all z ∈ C.
What possible functions f are there?

To solve this question, write f(z) =
∑∞
k=0 ckz

k as a power series centered at 0. Now recall by
Corollary 13.5 that

|ck| ≤
M0(r)

rk
=

max|z|=r |f(z)|
rk

≤ r2

rk
= r2−k

for every r ∈ (0,∞). Sending r → 0 yields c0 = c1 = 0, while sending r → ∞ yields ck = 0 for
all k ≥ 3. Finally, observe that the k = 2 case yields |c2| ≤ 1. Thus f(z) = cz2 for some complex
number c with |c| ≤ 1.

13.2 Zeroes of Analytic Functions

We now explore yet another instance in which complex functions behave more nicely than real-valued
ones. Consider the function f : R→ R defined by

f(x) =

{
e1/x if x > 0,

0 if x ≤ 0.

Observe that f is a C∞ function. However, f (k)(0) = 0 for every k ≥ 0. This means that there
cannot possibly exist a Taylor series for f centered at x = 0.

Fortunately, this phenomenon does not occur in the complex case.

Theorem 13.7. Let f be analytic in a domain D ⊂ C. Suppose there exists z0 ∈ D such that
f (k)(z0) = 0 for all k ≥ 0. Then f is identically zero in D.

Proof. Define the set
A := {z ∈ D : f (k)(z) = 0for all k ≥ 0}.

We claim that A is open in D. To prove this, fix w ∈ A. Since D is open there exists R > 0 such
that B(w,R) ⊂ D. On this ball, f has a power series expansion

f(z) =

∞∑
k=0

f (k)(w)

k!
(z − w)k =

∞∑
k=0

0

k!
(z − w)k = 0.

Hence B(w,R) ⊂ A as well, and so A is open.

We also claim that D \ A is open in D. This proof is much simpler: if f (j)(w) 6= 0 for some j,
then by continuity of f (j) we may find an open ball B containing w such that f (j)(z) 6= 0 for all
z ∈ B.

Hence connectivity of D implies that one of A or D \ A must be empty. But A is nonempty by
assumption, so A = D.
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We end today with a similar-looking statement. We will not prove it today; rather, we will state
the result and a definition that follows.

Theorem 13.8. Suppose f is analytic on a domain D and not identically zero on D. Assume there
exists z0 ∈ D such that f(z0) = 0. Then there exists a unique m ∈ N and a unique g : D → C
analytic such that

f(z) = (z − z0)mg(z) and g(z0) 6= 0.

Definition 13.9. The value of m is called the multiplicity of zero at z0.
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Did not attend class due to a sore throat. What follows is a transcription of the class lecture notes.

14.1 Multiplicity of Zeroes

We prove the result mentioned on Wednesday.

Proof. Uniqueness is easy and left to the reader.

Now we prove existence. Since f is not identically zero, by Theorem 13.7 there exists some n ∈ N
for which f (n)(z0) 6= 0. Let m be the smallest such n, and set

g(z) =
f(z)

(z − z0)m
for all z ∈ D \ {z0}.

Obviously g is analytic on D \ {0}. Hence there exists some R > 0 such that for all z ∈ B(z0, R) we
have the power series expansion

f(z) =

∞∑
k=0

ck(z − z0)k =

∞∑
k=m

ck(z − z0)k = (z − z0)m
∞∑
k=0

ck+m(z − z0)k.

Hence

lim
z→z0

g(z) = cm =
f (m)(z0)

m!
6= 0.

Now we may define g(z0) = f(m)(z0)
m! so that g is continuous on D. Thus g is analytic on D.

Corollary 14.1. The zero set of an analytic function f (which is not identically zero) on a domain
D is an isolated (or discrete) set; that is, the set {z : f(z) = 0} can not have any accumulation
points in D.

Proof. If f(z0) = 0, then f(z) = (z − z0)mg(z) for some analytic function g with g(z0) 6= 0. By
continuity of g, we may find a small neighborhood U 3 z0 with g(z) 6= 0 on U . Hence f is nonzero
in some neighborhood of z0, and it follows that the zero-set is discrete.

This leads into a very important idea in complex analysis.

Corollary 14.2 (Principle of Analytic Continuation). If f and g are analytic on a domain D and
f(z) = g(z) on some set E which has an accumulation point in D, then f ≡ g on D.

Proof. The function h := f − g is equal to zero on a set E having an accumulation point in D, and
hence f − g ≡ 0 on D.

Here are a few examples.

Example 14.3. Suppose f is an entire function with f( 1
k ) = 1

k for all k ∈ N. What is f?

Well, f(z) = z on the set E = { 1
k : k ∈ N}, and this set has an accumulation point - namely

z0 = 0 ∈ C. Hence f(z) = z on C.

Example 14.4. Suppose f is an entire function with f( 1
k ) = (−1)k

k for all k ∈ N. What is f?

It turns out that such an f cannot exist. Indeed, we see that f( 1
k ) = 1

k when k is even and
f( 1

k ) = − 1
k when k is odd. The sets

E1 = { 1
k : k ∈ N even} and E2 = { 1

k : k ∈ N odd}

both have accumulation points in C. But then f(z) = z and f(z) = −z simultaneously, which is
not possible.

However, there are many cases of such functions f which are analytic on C \ {0}; one example is
f(z) = z sin(π2 + π

z ).

Corollary 14.2 naturally leads into a definition.
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Definition 14.5. Let S ⊂ C be a set and let D be a domain containing S. Let f : S → C be a
function. We say g : D → C is an analytic continuation of f to D if g is analytic on D and g|S = f .
By Corollary 14.2, g is unique if S has an accumulation point in D.

We may now phrase the previous two examples in the language of analytic continuations. The
first example yields a unique analytic continuation to C - namely the function g(z) = z. In the
second example, there is no analytic continuation from f to C, but there are many to C \ {0}.

Here is a much stranger example.

Example 14.6. Consider the series

f(z) =

∞∑
k=0

zk!.

Note that the radius of convergence of this series is 1, and so f is analytic on B(0, 1). This raises
a natural question: is there an analytic continuation of f to any domain D ) B(0, 1)? (Note that
this is different from saying the radius of convergence is greater than 1.)

The answer is ‘no’. Notice that D would contain a boundary point z0, and hence it would
containing B(z0, ρ) for some z0 ∈ ∂B(0, 1) and ρ > 0.

Now take z = re2πip/q, where p and q are relatively prime and 1−ρ < r < 1 (so that z ∈ B(z0, ρ)).
Note that

f(z) =

q−1∑
k=0

rke2πipk/q +

∞∑
k=q

rk,

and hence |f(z)| → ∞ as r → 1−. Therefore f cannot be continued analytically to any larger
domain D.

A few more examples are in order.

Example 14.7. Let S = [0, 1], and let f : S → R be defined via f(x) = 1
1+x2 . Let g be an analytic

continuation to a domain D ⊃ S ∪ {−1}. What is g(−1)?

In this case, the answer is easy: note that h(z) = 1
1+z2 is an analytic continuation to C \ {±i}

since h = g on S. Therefore g(−1) is forced to equal h(−1) = 1
2 .

Observe that since |h| → ∞ as z → ±i, g cannot be analytic at ±i, i.e. D cannot contain those
points.

Example 14.8. Let S = (0, 1), and let f : S → R+ be given by f(x) =
√
x. Let g be an analytic

continuation to a domain D ⊃ S ∪ {2}. What is g(2)?

Here the answer is not so clear; we consider two possible domains.

• First consider the domain D1 = C \ (−∞, 0]. Then g1(z) =
√
z = eLog(z)/2 is an analytic

continuation of f onto D1, and so g1(2) =
√

2.

• Now consider the domain D2 given pictorially below. In this case, the function

g2(z) = exp
(

1
2 (ln |z|+ iΘ(z))

)
is an analytic continuation of f onto D2, where Θ is any branch of arg on D2 with Θ( 1

2 ) = 0.

Then Θ(2) = 2π, and hence g2(2) = −
√

2.

Note that in the first example, g is unique, while in the second case g depends on D.
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15.1 Regular and Singular Points on the Boundary of the D.O.C

Let f(z) =
∑∞
k=0 ck(z − z0)k, where 0 < R < ∞ is the radius of convergence of the power series.

Recall that f is analytic on B(z0, R), but behavior on ∂B(z0, R) is unknown. This warrants a few
definitions.

Definition 15.1. We say ξ ∈ ∂B(z0, R) is a regular point of the boundary if there exists δ > 0 such
that f has an analytic continuation to B(z0, R) ∪B(ξ, δ). If no such δ exists, we say ξ is a singular
point.

We follow with a few examples.

Example 15.2. Consider the power series
∑∞
k=0 z

k, where z ∈ B(0, 1). We know that this series
converges to 1

1−z , so we have found an analytic continuation of the series to C \ {1}. However, no
extension containing {1} exists since the series tends to ∞ as z → 1. So 1 is a singular point on the
boundary while all other points are regular.

Example 15.3. As per Example 14.6, all boundary points of the series
∑∞
k=0 z

k! are singular.

Remark. It is important to note that the idea of regularity has nothing to do with whether the series
converges or diverges at that point. For instance, in the first example the series diverges everywhere
on the boundary, and yet an analytic continuation still exists!5

In all the examples we have done thus far, we have found the existence of at least one singular
point. It turns out this is always the case, as was hinted a few lectures ago.

Theorem 15.4. Any power series with a finite radius of convergence has at least one singular point
on the boundary of its disc of convergence.

As an example,
∑∞
k=1

zk

k2 has radius of convergence 1 and even converges absolutely on ∂B(0, 1),
and yet some singular point must exist! (It so happens that z = 1 works, as we shall see.)

Proof. Let f(z) =
∑∞
k=0 ck(z − z0)k be a power series with radius of convergence R. Suppose for

the sake of contradiction that f has no singular points. Around each point z ∈ ∂B(z0, R) we may
find an open ball Bz centered at z such that f has an analytic continuation to B(z0, R) ∪Bz. Now
the set of balls (Bz)z∈∂B(z0,R) is an open cover of the boundary, and so by compactness there exists
a finite subcollection B1, B2, . . . , BN of these balls which also covers B(z0, R).

Now let

U := B(z0, R) ∪
( N⋃
j=1

Bj

)
.

Observe that ∂B(z0, R) is compact and U c is closed, so their distance is some nonzero δ. Hence
there exists δ > 0 such that B(z0, R+ δ) ⊃ U .

Finally, let

g(z) :=

{
f(z) if z ∈ B(z0, R),

fj(z) if z ∈ Bj (j = 1, . . . , N).

Observe that g is well-defined and analytic by uniqueness of analytic continuation. So we have
extended f to be analytic on B(z0, R + δ), and so the radius of convergence of the power series is
strictly larger than R. This is a contradiction, and so a singular point must exist.

We now state without proof a few tests to determine where singular points are located.

Proposition 15.5 (Test for Singular Points). A point ξ is a regular point if and only if the following
holds: for some b ∈ (z0, ξ) (the open line segment connecting z0 and ξ), the power series of f(z)
centered at b has radius of convergence strictly greater than |ξ − b|.
Proposition 15.6 (Pringsheim’s Theorem). Let f(z) =

∑∞
k=0 ckz

k be a power series with radius
of convergence R ∈ (0,∞). Assume that every coefficient ck is positive. Then z = R is a singular
point of the boundary.6

5More technically, this is because while the series still converge as one approaches the boundary, this convergence is
not uniform.

6As a hint to this exercise, show that if R is regular, then every boundary point is regular.
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15.2 Isolated Singularities of Analytic Functions

Unfortunately, singularities are less tame than zeroes. In order to get these ideas across, a few
definitions are needed.

Definition 15.7. Let U ⊂ C be open and z0 ∈ U . Suppose f : U \ {z0} → C is analytic. Then z0

is said to be an isolated singularity of f .

As an example, note that z 7→ z−1 has an isolated singularity at zero, while z 7→ Log(z) has
non-isolated singularities on (−∞, 0].

Definition 15.8. Let z0 be an isolated singularity of a complex-valued function f .

• We say that z0 is a removable singularity if f can be assigned a value at z0 such that the
resulting function is analytic at z0. (By previous discussions, it suffices to make f continuous
at z0.)

• We say that z0 is a pole if limz→z0 |f(z)| =∞.

• We say that z0 is an essential singularity if it is neither removable nor a pole.

It turns out that we have a complete characterization of isolated singularities; these requirements
are summarized in the theorem below.

Theorem 15.9. Let z0 be an isolated singularity of f : U \ {z0} → C. Then the following hold.

• The singularity z0 is removable if and only if f is bounded in a punctured neighborhood of z0,
which in turn holds if and only if limz→z0 f(z)(z − z0) = 0.

• The singularity z0 is a pole if and only if there exists some n ∈ N and some h : U → C analytic
with h(z0) 6= 0 and

f(z) =
h(z)

(z − z0)n
for all z ∈ U \ {z0}.

This value of n is called the order of the pole.

• [Casorati-Weierstrass] The singularity z0 is essential if and only if the following holds: for all
ε > 0, the set

f(B∗(z0, ε) ∩ U)

is dense in C.

We start proving the theorem now and leave the rest to Wednesday.

Proof. The only nontrivial implication is the last one: limz→z0 f(z)(z− z0) = 0 implies z0 is remov-
able.

In this case, define g : U → C via

g(z) :=

{
f(z)(z − z0) if z 6= z0,

0 if z = z0.

Then g is analytic on U \ {z0} and continuous on U , so g itself is analytic on U . This means there
exists some m ∈ N such that g(z) = (z− z0)mh(z) in a neighborhood around z0. But m− 1 ≥ 0, so
(z − z0)m−1h(z) (which equals f(z) everywhere except z0) is analytic. Hence z0 is removable.
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16.1 Isolated Singularities of Analytic Functions (cont.)

We continue with the proof of our theorem.

Proof. Next we prove the second part. The “⇐” direction is obvious. For the “⇒” direction,
consider the function g defined by g(z) = 1

f(z) . Observe that g is analytic on B∗(z0, δ) for some

δ > 0. Furthermore, g(z) → 0 as z → ∞, so defining g(0) = 0 yields that g has a removable
singularity at zero. Furthermore, it’s actually an isolated zero. So there exists a unique n ∈ N and
some function g̃ such that g̃(z0) 6= 0 and g(z) = (z − z0)ng(z0).

Now let h(z) = f(z)(z − z0)n. Then h is analytic on U , and h(z) = 1
g̃(z) on B∗(z0, δ). Since

g̃(z0) 6= 0, h has a removable singularity at z0, and so h is analytic on U . This completes the proof
of the second part.

Finally, we tackle the third part. Assume that z0 is not a pole and that the condition in Casorati-
Weierstrass does not hold; that is, there exists δ > 0 and w ∈ C such that f(B∗(z0, ε)∩U)∩B(w, δ) =
∅. We will show that z0 is actually a removable singularity, which proves the result.

With this in mind, let

g(z) =
1

f(z)− w,

noting that |g(z)| ≤ 1
δ on B∗(z0, ε)∩U . So g is bounded on a neighborhood containing z0, implying

that g has a removable singularity at z0.

Can g(z0) = 0? No, because limz→z0 |f(z)| 6=∞. Thus g(z0) 6= 0, which implies that

f(z) =
1

g(z)
+ w is analytic at z0.

So our singularity z0 is actually removable, which is what we were after.

We now go through some examples. Before doing so, however, we note the following connection
between zeroes and poles.

Remark. Suppose g is analytic in a neighborhood containing z0, and that

g(z0) = g′(z0) = g′′(z0) = · · · = g(m−1)(z0) = 0 but g(m)(z0) 6= 0.

This means the order of zero is equal to m. As a consequence, 1
g(z) has a pole at m.

This gives us a good way to test the orders of poles of certain complex-valued functions.

Example 16.1. Let f(z) = 1
z−z4 . Note that f is analytic on C\{0, 1, ω, ω2}, where ω is a (primitive)

third root of unity. Furthermore, we have the factorization

f(z) =
1

z(1− z3)
=

1

z(1− z)(ω − z)(ω2 − z) .

Hence f has poles of order one (so-called simple poles) at each of these four points.

Example 16.2. Let g(z) = 1
z2(ez+1) . Note that g is analytic on C \ ({0} ∪ log(−1)), where log(−1)

is a set since log is a multi-valued function. Within B∗(0, δ) for sufficiently small δ, we may write

f(z) =
1/(ez + 1)

z2
;

as 1/(ez + 1) is analytic in this punctured disc, z = 0 is a pole of order 2. Furthermore,

(ez + 1)′ = ez 6= 0 for all z ∈ C,

so all poles in log 1 are simple.

Example 16.3. Let h(z) = cos(z − 1
z ). Note that h is analytic on C \ {0}, which means z = 0 is

an isolated singularity. However, this time this singularity is essential ; indeed, since

lim
x→∞

cos(x− 1
x ) 6=∞ while lim

y→0
cos(iy − 1

iy ) =∞,

this singularity is neither removable nor a pole.
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16.2 Singularities at Infinity

We now turn our attention to a different type of singularity.

Definition 16.4. Let f be a complex-valued function.

1. We say f has an isolated singularity at∞ if f is analytic on some set of the form {z : |z| > R},
where R > 0.

2. Let g(z) = f(1/z). We say the singularity at ∞ is (removable/a pole of order m/essential) if
and only if g has a (removable/pole of order m/essential) singularity at z = 0.

As usual, a few examples are in order.

Example 16.5. The function f(z) = ez has an isolated singularity at ∞ (but observe that its
inverse function z 7→ Log(z) does not). Since g(z) = e1/z has an essential singularity at 0, we see
that f has an essential singularity at ∞.

Example 16.6. The function f(z) = z5 + 2z + 5 has an isolated singularity at ∞. Since

g(z) =
1

z5
+

2

z
+ 5 =

1 + 2z4 + 5z5

z5

has a pole of order 5 at z = 0, we see that f has a pole of order 5 at ∞.

Finally, before moving on, we state some simple results regarding poles at ∞.

Proposition 16.7. Suppose f : C→ C is entire and has a removable singularity at ∞. Then f is
constant.

Proof. Since f has a removable singularity at∞, there exists some R > 0 such that f is bounded on
{z : |z| > R}. Furthermore, continuity of f implies that f is also bounded on the set {z : |z| ≤ R}.
Therefore f is bounded on all of C, and we are done by Liouville.

Proposition 16.8. Suppose f : C → C is entire and has a pole of degree m at ∞. Then f is a
polynomial of degree m.

Proof. Since f is entire, we may express it as a power series

f(z) =

∞∑
k=0

ckz
k

centered at zero. By the definition of isolated singularity at ∞, there exists some R > 0 such that
f is analytic on the set {z : |z| > R}. In turn, g(z) := f( 1

z ) is analytic on B∗(0, 1
R ). Now g has a

pole of order m at 0, which means we may write g(z) = h(z)/zm for some analytic function h with
h(0) 6= 0. Therefore f(z) = zmh( 1

z ).

Now let r > R, and fix k > m. Since h has a removable singularity at 0, there exists some
constant M such that

∣∣h( 1
z )
∣∣ ≤ M for all z with magnitude greater than R. Now observe by the

Cauchy estimates that

|ck| ≤
max|z|=r |f(z)|

rk
≤ Mrm

rk
=

M

rk−m
.

Sending r →∞ yields |ck| = 0. Therefore all coefficients of the power series expansion past k = m
are equal to zero, proving the claim.

16.3 Meromorphic Functions

The above discussion about isolated singularities makes it convenient for us to discuss functions
which are not necessarily analytic everywhere in a given domain. This warrants a definition.

Definition 16.9. We say f is meromorphic on a domain D if f is analytic on D modulo isolated
poles.

This definition is somewhat abstract, but in practice many functions are meromorphic.

43



David Altizio Math 542 Lecture Notes

Proposition 16.10. Suppose f is meromorphic on C and has an isolated singularity at ∞ which

is not essential (i.e. f is “meromorphic on Ĉ”). Then f(z) = P (z)
Q(z) for some polynomials P and Q.

Proof. Since f has an non-essential isolated singularity at∞, f grows at most polynomially on some
set of the form {z : |z| > R}. Hence all poles of f are contained within the ball B(0, R). But each
pole of f is isolated, and so there can only exist finitely many poles z1, . . . , zn of f .

Denote by m1, . . . ,mn the orders of these poles. By applying part two of Theorem 15.9 repeatedly,
we may write

f(z) =
h1(z)

(z − z1)m1
= · · · = h(z)∏n

j=1(z − zj)mj
,

where h is an entire function. Now observe that the singularity of h at ∞ is either a pole or
removable, and so by the previous proposition we deduce that h is a polynomial.
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17.1 Global Cauchy Theorem

We now seek to generalize Cauchy’s Theorem to non-convex sets. To accomplish this, we need a
few definitions.

Definition 17.1. Let U ⊂ C be a domain.

1. A cycle (in U) is a finite collection of closed contours. We write σ = (γ1, . . . , γp), where γ1

through γp are closed contours in U .

2. We define ∫
σ

f(z) dz :=

p∑
k=1

∫
γk

f(z) dz.

3. Given z /∈ |σ| := ⋃pj=1 |γj |, we may define/write

n(σ, z) :=

∫
σ

2πi

ξ − z dξ =

k∑
j=1

∫
γk

2πi

ξ − z dξ = n(γ1, z) + · · ·+ n(γp, z).

4. We say a cycle σ is 0-homologous in U if n(σ, z) = 0 for every z /∈ U .

Here is an example.

Example 17.2. Fix z0 ∈ C. Let U = C\{z0}, and consider the cycle
σ = (γ1, γ2, γ3) shown to the right. Then

n(σ, z0) = n(γ1, z0) + n(γ2, z0) + n(γ3, z0)

= 1 + (−1) + 0 = 0,

and so σ is 0-homologous in U . We can run through the same logic
to deduce that (γ3) and (γ1, γ2) are also 0-homologous in U , but (γ1),
(γ2), (γ1, γ3), and (γ2, γ3) are not.

z0
γ1

γ2

γ3

With this, we are ready to state the Global version of the Cauchy Integral Formula.

Theorem 17.3 (Global CIF). Let U ⊂ C be open. Suppose f : U → C is analytic and that σ is a
cycle that is 0-homologous in U . Then for every z ∈ U \ |σ| we have

n(σ, z)f(z) =
1

2πi

∫
σ

f(ξ)

ξ − z dξ.

Proof. Define the function G : U × U → C via

G(z, ξ) =

{
f(z)−f(ξ)

z−ξ if ξ 6= z,

f ′(ξ) if ξ = z.

Observe that G is analytic in z for fixed ξ and vice versa. Further, G is continuous on U × U : for
ξ 6= z continuity at (ξ, z) is obvious, while for ξ = z we may use the equality

f(z)− f(ξ) =

∫
[ξ,z]

f ′(η) dη.

Now le U ′ := {z ∈ C \ |σ| : n(σ, z) = 0}. Note that U ′ ⊂ U c by assumption, which implies
U ′ ∪ U = C. Furthermore, U ′ is open, since it is a union of open components of C \ |σ|.

Now define g : C→ C via

g(z) :=

{∫
σ
G(z, ξ) dξ if z ∈ U,∫

σ
f(ξ)
z−ξ dξ if x /∈ U.

(Most of) the rest of this proof consists of a series of claims about g.
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Claim 1: g is well-defined. To prove this, note that z ∈ U ∩U ′ implies n(σ, z) = 0 and that z ∈ U .
Thus ∫

σ

G(z, ξ) dξ =

∫
σ

f(z)− f(ξ)

z − ξ dξ =

∫
σ

f(z)

z − ξ dξ +

∫
σ

f(ξ)

ξ − z dξ =

∫
σ

f(ξ)

ξ − z dξ.

In the last step, we use the fact that the former integral is zero since n(σ, z) = 0.

Claim 2: g is entire. To prove this, we split into cases. If z ∈ U ′ - that is, g(z) =
∫
σ
f(ξ)
z−ξ dξ - then

we obtain continuity of g via integration by parts. If instead z ∈ U - that is, g(z) =
∫
σ
G(z, ξ) dξ -

then we need a different approach. Instead, observe that, for any triangle ∆ ⊂ U , Fubini’s Theorem
for Riemann integrals yields∫

∂∆

∫
σ

G(z, ξ) dξ dz =

∫
σ

∫
∂∆

G(z, ξ) dz dξ =

∫
σ

0 dξ = 0.

Hence the integral of g over any triangle ∆ ⊂ U is zero, and so Morera’s Theorem yields the desired
conclusion.

Claim 3: lim|z|→∞ g(z) = 0. To prove this, take R sufficiently large so that B(0, r) ⊃ |σ|. If
z /∈ B(0, R), then z lies in the unbounded component of C \ |σ|. This means n(σ, z) = 0, so z ∈ U ′.
Now

|g(z)| =
∣∣∣∣∫
σ

f(ξ)

ξ − z dξ
∣∣∣∣ ≤ maxξ∈|σ| |f(ξ)| · length(σ)

dist(z, |σ|) ,

which tends to zero as z → 0.

Thus g is a bounded entire function, which implies by Liouville that g(z) is constant; since
g(z)→ 0 as |z| → ∞, this constant must be zero. Thus

0 =

∫
σ

G(z, ξ) dξ = −2πi · n(σ, z)f(z) +

∫
σ

f(ξ)

ξ − z dξ

for every z ∈ U , and we may conclude.

The previous theorem admits a corollary in much the same way the Local Cauchy Integral Formula
did.

Corollary 17.4. Define f , U , and σ as above. Then
∫
σ
f(ξ) dξ = 0.

Proof. Fix z0 ∈ U \ |σ|, and apply the previous theorem to the function ξ 7→ f(ξ)(ξ − z0) at
ξ = z0.

17.2 Simply Connected Domains

It turns out there is another way to extend the Local Cauchy Integral Formula, namely to so-called
simply connected domains (rather than just convex domains).

Definition 17.5. Let U ⊂ C be a domain. We say that U is simply connected if every cycle in U
has zero modulus.

We summarize the main results of simply-connected domains (as they pertain to complex analysis)
in the propositions below.

Proposition 17.6. Suppose U is a simply connected domain. Then the following hold.

1. The Cauchy Integral Formula and Cauchy’s Theorem both hold for any analytic function f :
U → C and any cycle in U .

2. If f is analytic in U , then f has a primitive in U and log f has a branch in U .

Proposition 17.7. Let U ⊂ C be a domain. Then the following are equivalent.

1. The domain U is simply connected.

2. Every closed contour in U is contractible.

3. The set Ĉ \ U is a connected set in Ĉ.
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The second half of the Proposition 17.7 warrants further discussion. More specifically, what does
it mean to be “contractible”?

Definition 17.8. Suppose γ0 : [0, 1]→ C and γ1 : [0, 1]→ C are closed contours in a domain U .

1. We say that γ0 and γ1 are homotopic if there exists some continuous map H : [0, 1]× [0, 1]→ U
such that H(0, t) = γ0(t), H(1, t) = γ1(t), and H(s, 0) = H(s, 1) for all 0 ≤ s ≤ 1. (That is,
for each 0 ≤ s ≤ 1, the curve H(s, t) is a closed contour in U .)

2. We say that a closed contour γ is contractible if it is homotopic to a constant path.

The punchline is that if γ0 and γ1 are homotopic, then n(γ0, z) = n(γ1, z) for z /∈ U , which (after a
bit of work) implies nice results about integration over γ0 and γ1. The details are technical, though,
and so we refer to Palka for them.
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18.1 Laurent Series

We now extend our notion of power series to meromorphic functions.

Definition 18.1. Let z0 ∈ C.

1. A Laurent series centered at z0 ∈ C is a series of the form
∞∑

k=−∞
ak(z − z0)k =

∞∑
k=0

ak(z − z0)k +

∞∑
k=1

a−k(z − z0)−k.

2. Define

RO :=
1

lim supk≥0 |ak|1/k
and RI := lim sup

k→∞
|ak|1/k

to be the outer and inner radii of convergence of the Laurent series, respectively.

3. The annulus {z : RI < |z − z0| < RO} is the annulus of convergence of the Laurent series.

These terms are so-named for the obvious reasons.

Theorem 18.2. Consider the Laurent series f(z) :=
∑∞
k=−∞ ak(z − z0)k along with its inner and

outer radii of convergence RI and RO. Then the following hold.

1. The sum
∑∞
k=0 ak(z − z0)k converges absolutely and normally on B(z0, RO), while it diverges

on B(z0, RO)
c
.

2. The sum
∑∞
k=0 a−k(z−z0)−k converges absolutely and normally on B(z0, RI)

c
, while it diverges

on B(z0, RI).

3. The series for f converges absolutely and normally on its annulus of convergence, while it
diverges outside of said annulus. Furthermore, the sum is analytic inside the annulus.

4. For each k ∈ Z, we have the equality

ak =
1

2πi

∮
∂B(z0,r)

f(z)

(z − z0)k+1
for all RI < r < RO.

Proof. The proofs of the first three parts follow those from the power series unit. For the fourth
part, use normal convergence to swap the sum with the limit.

We now prove that Laurent series are unique.

Theorem 18.3. Let f be analytic on the annulus D = {z : a < |z − z0| < b}. Then f has a unique
Lorent series representation f(z) =

∑
k∈Z ak(z − z0)k on D, where the sequence (ak)k∈Z is defined

as above.

Proof. Fix z ∈ D. Choose R1 and R2 so that

a < R1 < |z − z0| < R2 < b.

Then the cycle σ = (∂B(z0, R2),−∂B(z0, R1)) is zero-homologous, and furthermore n(σ, z) = 1¿ As
a result,

f(z) =
1

2πi

∮
∂B(z0,R2)

f(ξ)

ξ − z dξ −
1

2πi

∮
∂B(z0,R1)

f(ξ)

ξ − z dξ.

Now we proceed as in the power series case. For the first integral, we may write

1

ξ − z =
1

1− z−z0
ξ−z0

· 1

ξ − z0
=

1

ξ − z0

∑
k≥0

(
z − z0

ξ − z0

)k
,

while for the second, we may write

1

ξ − z = − 1

1− ξ−z0
z−z0

· 1

z − z0
=

1

z − z0

∑
k≥0

(
ξ − z0

z − z0

)k
.

Now swap the summation with the integral to obtain the desired Laurent series expansion.

For uniqueness, fix j ∈ Z. Multiply the sum by (z−z0)−j−1 and integrate over ∂B(z0, r) for some
r ∈ (a, b).
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This technique of building geometric series in multiple ways is very useful in determining Laurent
series in different annuli. We observe this with an example.

Example 18.4. Let f(z) = 1
(z−1)(z+2i) ; we wish to determine representatives for f centered at

z0 = 0.

Notice that z is entire on the set

D = {z : |z| < 1} ∪ {z : 1 < |z| < 2} ∪ {z : 2 < |z|}.

Thus there are three possible annuli to consider.

Notice that we may write

1

(z − 1)(z + 2i)
=

(1 + 2i)−1

z − 1
− (1 + 2i)−1

z + 2i

as the partial fraction decomposition of f . Now observe that

1

z − 1
=

{
−∑k≥0 z

k if |z| < 1,
1
z

∑
k≥0( 1

z )k if |z| > 1
and

1

z + 2i
=

{
1
2i

∑
k≥0(−z2i )k if |z| < 2,

1
z

∑
k≥0(−2i

z )k if |z| > 2.

Thus we may generate representatives in each annulus by picking the correct power series represen-
tation. For example, on the annulus {1 < |z| < 2} we have

f(z) =
1

(1 + 2i)z

∑
k≥0

(
1

z

)k
− 1

2i(1 + 2i)

∑
k≥0

(−z
2i

)k
.

Notice that, when the inner radius of the annulus is zero, we obtain a useful corollary.

Corollary 18.5. Let f be analytic on the punctured disc B∗(z0, R). Then there exists a Laurent
series representation

f(z) =

∞∑
k=−∞

ak(z − z0)k.

Moreover, we can classify the singularity at z0 based on the coefficients of this series expansion:

• The singularity z0 is removable if and only if ak = 0 for all k ≤ 0;

• The singularity z0 is a pole of order m if and only if ak = 0 for all k < −m while a−m 6= 0;

• The singularity z0 is essential if and only if ak 6= 0 for infinitely many k < 0.

Proof. The first part is a direct consequence of Theorem 18.3. For the second part, use the fact that

ak =
1

2πi

∮
∂B(z0,r/2)

f(z)

(z − z0)k+1
dz.

18.2 Residues

We now give, arguably, the most important definitions in Complex Analysis.

Definition 18.6. Fix z0 ∈ C.

1. Suppose f has an isolated singularity at z0, so that there exists a Laurent series expansion

f(z) =
∑
k∈Z

ak(z − z0)k

converging normally and absolutely in a punctured neighborhood D 3 z0. The quantity

a−1 =
1

2πi

∮
∂B(z0,r)

f(z) dz,

where B(z0, r) ⊂ D, is called the residue of f at z0, and is denoted by Res(f ; z0).
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2. Suppose f has an isolated singularity at ∞, so that there exists a Laurent series expansion

f(z) =
∑
k∈Z

akz
k

converging normally and absolutely on some unbounded annulus D := {z : |z| > R}. The
quantity

a−1 =
1

2πi

∮
∂B(0,r)

f(z) dz,

where r > R, is denoted by −Res(f ;∞).

Remark. The negative sign makes more sense when viewed through the lens of the one-point com-
pactification of C. On the Riemann sphere, the points 0 and ∞ are opposite each other, so from
the perspective of ∞, the orientation of the contour ∂B(0, R) is reversed.

Some examples of residues are in order. We will explore more involved applications of residues in
the coming days.

Example 18.7. Consider the function f(z) = e(1+z)/z. Then f has a Laurent series expansion

e(1+z)/z = e · e1/z = e
∑
k≥1

1

zkk!
.

around z0 = 0. Hence Res(f ; 0) = e.

Example 18.8. Consider the function f(z) = 1
z4−1 . Observe that f has singularities precisely at

the fourth roots of unity. Notice further that these singularities are simple poles, i.e. poles of order
1.

In general, suppose f(z) = h(z)
g(z) , where g(z0) = 0 is a simple zero and h(z0) 6= 0. Write g(z) =

(z − z0)g̃(z0). Then
h(z)

g(z)
=

h(z)

(z − z0)g̃(z0)
=
h(z)/g̃(z0)

z − z0

is a Laurent series expansion of f at z = z0, so

Res(f ; z0) =
h(z0)

g̃(z0)
=
h(z0)

g′(z0)
.
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19 October 9

19.1 Higher-order Poles

We start today with a simple warmup.

Example 19.1. Let f(z) = 1
(1−z)2 ; what is a (Laurent) series representation for f at 0?

There are two such representations: one valid in B(0, 1) and one valid in A(1,∞). To obtain the
former representation, differentiate the equality 1

1−z =
∑
k≥0 z

k to get

1

(1− z)2
=
∑
k≥1

kzk−1.

To obtain the second representation, instaed differentiate the equality

1

1− z = −1

z
· 1

1− 1/z
= −1

z

∑
k≥0

1

zk

to get
1

(1− z)2
=
∑
k≥0

(k + 1)z−k−2.

The previous example showed how to obtain series representations for a series that has a pole of
order 2 at some isolated singularity. We can crank this up a notch and generalize.

Example 19.2. Let f be meromorphic with a pole of order n at z0. What is a formula for Res(f ; z0)?

In this case, we may write

f(z) =
∑
k≥−n

ak(z − z0)k =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0
+
∑
k≥0

ak(z − z0)k

within some neighborhood around zero. Multiplying this by (z − z0)n yields

f(z)(z − z0)n = a−n + · · ·+ a−1(z − z0)n−1 + (z − z0)ng(z).

Now differentiate this equality n− 1 times, so that(
d

dz

)n−1

[f(z)(z − z0)n] = (n− 1)!a−1 +

(
d

dz

)n−1

[(z − z0)ng(z)].

But now observe that at least one factor of z − z0 will remain on the right hand factor after
differentiation, meaning that said derivative tends to zero as z → z0. It follows that

Res(f ; z0) = a−1 =
1

(n− 1)!
lim
z→z0

(
d

dz

)n−1

[f(z)(z − z0)n].

19.2 The Residue Theorem

Now we arrive at, arguably, the second most important theorem in Complex Analysis.

Theorem 19.3 (Residue Theorem). Let U be an open set; assume that f is analytic in U except
at finitely many distinct isolated singularities z1, . . . , zj. Further assume that σ is a 0-homologous
cycle in U which avoids the singularities z1, . . . , zj. Then∫

σ

f(z) dz = 2πi

j∑
k=1

n(σ, z) Res(f ; zk).

Proof. Since σ is compact, we may choose ε > 0 small enough that

B(zk, ε) ⊂ U \ {z1, . . . , zk−1, zk+1, . . . , zj

for every k between 1 and j, inclusive.
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Now for each such k, let σk be the cycle consisting of −n(σ, z0) copies of ∂B(zk, ε). The crucial
claim is that

σ̃ = (σ, σ1, . . . , σj)

is 0-homologous in U \ {z1, . . . , zj}. Indeed, first note that if z /∈ U , then

n(σ̃, z) = n(σ, z)︸ ︷︷ ︸
=0

+n(σ1, z)︸ ︷︷ ︸
=0

+ · · ·+ n(σ, z)︸ ︷︷ ︸
=0

= 0.

Then remark that for z = zk, we have n(σ̃, zk) = n(σ, zk) + n(σk, zk) = 0 by construction.

Thus, the Global Cauchy Theorem (or, more specifically, Corollary 17.4) implies
∫
σ
f(z) dz = 0,

or

0 =

∫
σ

f(z) dz −
j∑

k=1

n(σ, zk)

∫
∂B(zk,ε)

f(z) dz

=

∫
σ

f(z) dz −
j∑

k=1

2πin(σ, zk) Res(f ; zk).

This completes the proof.

This result is useful. As an example, consider the contour σ to the
right. Then σ is clearly 0-homologous in any open set U containing
it, and so the Residue Theorem tells us that

1

2πi

∫
σ

f(z) dz = 2 Res(f ; z1) + Res(f ; z2).

In some sense, this is a generalization of Cauchy’s Integral Formula.

z1

σ

z2

19.3 Calculating Integrals using Residues

Somewhat surprisingly, the residue theorem can be used to compute many seemingly-impossible
integrals of real-valued functions. In some sense, this should not be surprising: we have seen the
applicability of complex integration techniques to real-valued integrals already when we computed
the Fresnel integral (Example 7.2). However, it turns out that the variety of examples that are now
open to us is vast. The following discussion will take us several days.

19.3.1 Application 1: Rational Functions in Sine and Cosine

Suppose we wish to compute an integral of the form∫ 2π

0

R(cos θ, sin θ) dθ,

where R(u, v) is a rational function in u and v. The idea here is to let z = eiθ; then as long as we
can find an analytic function f such that∫ 2π

0

f(eiθ)ieiθ dθ =

∫ 2π

0

R(cos θ, sin θ) dθ,

we can then exhibit the change of variables z = eiθ to transform the integral into
∫
∂B(0,1)

f(z) dz.

Fortunately, such an integral exists: since

cos θ =
z + z−1

2
and sin θ =

z − z−1

2i

whenever z = eiθ, we see that

f(z) = R

(
z + z−1

2
,
z − z−1

2i

)
1

iz
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works.

As an example, suppose we wish to compute∫ 2π

0

dθ

2 + cos θ
=

∫
∂B(0,1)

dz/iz

2 + z+z−1

2

=
2

i

∫
∂B(0,1)

dz

z2 + 4z + 1
.

The function z 7→ 1
z2+4z+1 is meromorphic, with singularities at z = −2 ±

√
3. Observe that only

z = −2 +
√

3 lies inside B(0, 1). As a result,∫
∂B(0,1)

dz

z2 + 4z + 1
= 2πi · Res

(
1

z2 + 4z + 1
;−2 +

√
3

)
,

which, in light of the remark at the end of Example 18.8, equals

2πi · 1

(z2 + 4z + 1)′|z=−2+
√

3

=
2πi

(2z + 4)z=−2+
√

3

=
πi√

3
.

Thus the original integral equals 2
i · πi√3

= 2π√
3

.

19.3.2 Application 2: Rational Functions without Real Poles

Now suppose we wish to compute an integral of the form
∫∞
−∞O(x) dx, where O(x) = p(x)

q(x) is a

rational function with no poles on R and deg q ≥ 2 + deg p. The key idea here is to recall that∫ ∞
−∞
O(x) dx = lim

r→∞

∫ r

−r
O(x) dx.

With this in mind, consider the contour γR := [−R,R]∪CR, where CR is the semicircle centered at
zero with radius R positioned in the upper half plane. Then the Residue Theorem tells us that

2πi
∑

zj poles in γR

Res(γR; zj) =

∫
γR

O(z) dz =

∫ R

−R
O(x) dx+

∫
CR

O(z) dz.

Now the degree restriction on p and q ensures that
∫
CR
O(z) dz tends to zero as R → ∞, and so

only the real part will be left once we take a limit.

As an example, let us compute
∫∞
−∞

1
x4+1 dx. Let R > 0 be large, and define γR and CR as before.

On one hand, ∫
γR

1

z4 + 1
dz =

∫ R

−R

1

x4 + 1
dx+

∫
CR

1

z4 + 1
dz.

On the other hand, if R > 1, then the inside of γR contains exactly two of the four isolated
singularities of 1

z4+1 , namely eπi/4 and e3πi/4. Therefore∫
γR

1

z4 + 1
dz = 2πiRes

(
1

z4 + 1
; eπi/4

)
+ 2πiRes

(
1

z4 + 1
; e3πi/4

)
=

2πi

4z3|z=eπi/4
+

2πi

4z3|z=e3πi/4
=

π√
2
.

Finally, send R→∞. Observe that∣∣∣∣∫
CR

1

z4 + 1
dz

∣∣∣∣ ≤ length(CR) · max
z∈CR

∣∣∣∣ 1

z4 + 1

∣∣∣∣ =
πR

R4 − 1
,

which tends to zero as R→∞. Hence∫ ∞
−∞

1

x4 + 1
dx = lim

R→∞

∫ R

−R

1

x4 + 1
dx = lim

R→∞

∫
γR

1

z4 + 1
dz =

π√
2
.
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20.1 Calculating Integrals using Residues (cont.)

The jouney continues.

20.1.1 Application 3: Trigonometric Times a Rational Function

Now suppose we wish to compute an integral of the form
∫∞
−∞O(x)Φ(x) dx, where

• the function Φ(x) is either cos(ax) or sin(ax) for some a > 0; and

• the function O(x) is a rational function of the form p(x)
q(x) with deg q ≥ deg p+ 2 and no poles

in R.

The idea here is to combine the approaches from the first and second applications: compute∫
γR
O(z)eiaz (where γR is the contour from the second example), send R → ∞, and take either

a real or an imaginary part.

For example, let us compute I :=
∫∞
−∞

sin x
x2+x+1 dx. In this case, we may write

I = =
(∫ ∞
−∞

eix

x2 + x+ 1
dx

)
= =

(
lim
R→∞

∫ R

−R

eix

x2 + x+ 1
dx

)

= =
[

lim
R→∞

(∫
γR

eiz

z2 + z + 1
dz −

∫
CR

eiz

z2 + z + 1
dz

)]
.

To compute the former integral, remark that the function z 7→ eiz

z2+z+1 has two simple poles, namely

at z = 1
2 (1 ± i

√
3). However, only z = 1

2 (1 + i
√

3) appears in inside(γR), and in particular only if

R > 1
2

√
10. Thus∫

γR

eiz

z2 + z + 1
dz = 2πiRes

(
eiz

z2 + z + 1
;
−1 + i

√
3

2

)

=
eiz

2z + 1

∣∣∣∣∣
z=−1+i

√
3

2

=
2π√

3
e−
√

3/2e−i/2.

Now the second integral can be bounded in the standard way; in particular,∣∣∣∣∫
CR

eiz

z2 + z + 1
dz

∣∣∣∣ ≤ πR · max
z∈CR

∣∣∣∣ eiz

z2 + z + 1

∣∣∣∣ ≤ πR

R2 −R− 1
,

which tends to zero as R→∞. Thus

I = =
(

2π√
3
e−
√

3/2e−i/2
)

=
2π√

3
e−
√

3/2 sin

(
1

2

)
.

20.1.2 Application 4: Trigonometric Times a Rational Function (cont.)

In the previous application, we made the assumption that O has no poles on R. What if it does?

Instead of briefly explaining the theory, we dive straight into an example and compute I :=∫∞
−∞

sin x
x(x2+x+1) dx. Here, we will compute

lim
R→∞
ε→0

∫
{ε<|x|<R}

sinx

x(x2 + x+ 1)
=: P.V.

∫
sinx

x(x2 + x+ 1)
,

otherwise known as the principal value of the integral in question. Taking the imaginary part of
this will yield the value of I.

In this vein, consider the contour

γR,ε := [−R,−ε] ∪ (−Cε) ∪ [ε,R] ∪ CR,
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where Cε and CR are defined as in the previous examples. (See the diagram below.) Then∫
γR,ε

eiz

z2 + z + 1
dz =

∫
{ε<|x|<R}

eiz

z2 + z + 1
dz +

∫
−Cε

eiz

z2 + z + 1
dz +

∫
CR

eiz

z2 + z + 1
dz.

The integral on the left hand side equals

−ε ε R−R

2πiRes

(
eiz

z2 + z + 1
;
−1 + i

√
3

2

)
=

4π√
3 + i

√
3
e−
√

3/2e−i/2.

Furthermore, the first integral equals
∫∞
−∞

eiz

z2+z+1 in the limit, while the third we can bound in the
same way as before. But how do we deal with the second integral?

The answer lies in the following lemma.

Lemma 20.1. Suppose f has a simple pole at z0. Then

lim
ε→0

∫
γε

f(z) dz = (b− a)i · Res(f(z); z0),

where γε : [a, b]→ C is given by
γε(θ) = z0 + εeiθ.

Notice that the integral depends on the values of a and b.

Using the lemma, we see that

lim
ε→0

∫
Cε

eiz

z2 + z + 1
= (0− π)iRes

(
eiz

z(z2 + z + 1)
; 0

)
= −πi.

Putting everything together yields

I = =
(

lim
R→∞
ε→0

∫
{ε<|x|<R}

eiz

z(z2 + z + 1)
dz

)
= =

(
4π√

3 + i
√

3
e−
√

3/2e−i/2 + πi

)

= π − 2πe−
√

3/2

√
3

[
sin

(
1

2

)
− cos

(
1

2

)]
.

We now present a proof of the lemma.

Proof. Write f(z) = a−1

z−z0 +
∑∞
k=0 ak(z − z0)k, and denote the latter sum by g(z). Note that∫
γε

|g(z)| dz ≤ length(γε) · max
B(z0,ε)

|g(z)| ,

which tends to zero as ε→ 0. Therefore

lim
ε→0

∫
γε

f(z) dz = lim
ε→0

∫
γε

a−1

z − z0
dz = a−1

∫ b

a

1

εeiθ
· εieiθ dθ

= ia−1

∫ b

a

dθ = (b− a)ia−1 = (b− a)iRes(f(z); z0),

which is what we wanted.
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We highlight one more example that requires a similar technique to compute.

Example 20.2 (Hilbert Transform). Let f ∈ C∞(R) with “some” amount of decay at ∞. Define
the Hilbert Transform of f to be the function Hf : R→ R given by

Hf(x) =
1

π
P.V.

∫ ∞
−∞

f(x− t)
t

dt.

The Hilbert Transform has nice connections to harmonic functions that we will talk about later in
the course.

We can compute simple examples now. For example, what is H(cosx)?7

To compute this, we can write

H(cosx) =
1

π
lim
R→∞
ε→0

∫
{ε<|t|<R}

cos(x− t)
t

dt

=
1

π
· <
(

lim
R→∞
ε→0

∫
{ε<|t|<R}

ei(x−t)

t
dt

)

=
1

π
· <
(
eix lim

R→∞
ε→0

∫
{ε<|t|<R}

e−it

t
dt

)
.

Now consider the contour γR,ε defined below; notice that this is similar to the definition of γR,ε
from the previous example, except that now the semicircles lie in the negative halfplane. Then

−ε ε R−R

0 =

∫
γR,ε

e−iz

z
dz =

∫
{ε<|t|<R}

e−it

t
dt+

∫
CR

e−iz

z
dz +

∫
Cε

e−iz

z
dz.

By Lemma 20.1, the third integral approaches πiRes( e
−iz

z ; 0) = πi as ε→ 0. To bound the second
integral, parametrize to yield∣∣∣∣∫

CR

e−iz

z
dz

∣∣∣∣ =

∣∣∣∣∣
∫ 0

−π

e−iRe
iθ

Reiθ
· iReiθ dθ

∣∣∣∣∣ ≤
∫ 0

−π

∣∣∣e−iReiθ ∣∣∣ dθ =

∫ 0

−π

∣∣eR sin θ
∣∣ dθ

=

∫ π

0

e−R sin θ dθ = 2

∫ π/2

0

e−R sin θ dθ ≤ 2

∫ π/2

0

e−R·2θ/π =
π

R
(1− e−R).

This tends to zero as R→∞.

Finally, putting everything together yields

H(cosx) =
1

π
<(eix(−πi)) = sinx.

7Technically, this is H(cos(·))(x), but this notation is cumbersome.
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21.1 Calculating Integrals using Residues (even more cont.)

This adventure continues.

21.1.1 Application 5: Power Times a Rational

Now consider an integral of the form
∫∞

0
xρO(x) dx, where ρ /∈ Z and where O(x) is a rational

function with no poles on [0,∞). In this case, consider a branch cut of the function f(z) = zρO(z)
on [0,∞). This may seem strange at first, but the idea is to exploit the jump discontinuity.

Consider the contour to the right, where the angle made by the sector
is 2θ and the radii of the circles are ε and R. Then the idea is to take
θ → 0, and then send ε→ 0 and R→∞. It may seem as if the limit
equals zero because of cancellation, but this is not the case because of
the existence of the jump discontinuity. Then, hopefully, the integrals
on the circular parts will vanish, and the desired integral is left.

As an example, let’s compute
∫∞

0
xρ

1+x2 dx, where −1 < ρ < 1 and ρ 6= 0. First consider∫
CR,ε,θ

zρ

1 + z2
dz,

where CR,ε,θ is the contour shown above, and recall that zρ = exp(ρ(ln |z|+ i arg z)), where arg z is
the argument function with image in (0, 2π). Then∮

CR,ε,θ

zρ

1 + z2
dz = 2πi

[
Res

(
zρ

1 + z2
; i

)
+ Res

(
zρ

1 + z2
;−i
)]

= 2πi

[
iρ

2i
+

(−i)ρ
2(−i)

]
= π

(
eiπρ/2 − e−iπρ/2

)
.

Now we examine the different components of the above integral. First, observe that∫
[εeiθ,Reiθ]

f(z) dz =

∫ R

ε

f(teiθ)eiθ dt, where f(teiθ) =
tρeiθρ

1 + t2e2iθ
;

in particular, f(teiθ) converges uniformly to tρ

1+t2 on [ε,R].8 Hence the integral converges to
∫ R
ε

tρ

1+t2

as θ tends to zero. In a similar manner, by writing eiθ = ei(2π−θ), we see that∫
[Re−iθ,εe−iθ]

f(z) dz converges to −
∫ R

ε

tρe2πiρ

1 + t2
dt

as θ approaches zero.

Therefore

π(eiπρ/2 − e−iπρ/2) = lim
θ→0+

∫
CR,ε,θ

f(z) dz

= (1− e2πρ)

∫ R

ε

tρ

1 + t2
dt+

∫
CR

f(z) dz +

∫
Cε

f(z) dz.

Finally, observe that ∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ ∫
CR

|f(z)| dz ≤ 2πR · Rρ

R2 − 1

and ∣∣∣∣∫
Cε

f(z) dz

∣∣∣∣ ≤ ∫
Cε

|f(z)| dz ≤ 2πε · ερ

1− ε2
.

8This is precisely why we first send θ to zero and then adjust ε and R, and not the other way around.
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Since −1 < ρ < 1, both of these limits vanish as ε→ 0 and as R→∞, and so we obtain∫ ∞
0

tρ

1 + t2
dt =

π(eiπρ/2 − e−iπρ/2)

1− e2πiρ
=

π

2 cos(π2 ρ)
.

Before moving on, we note one more example.

Example 21.1. What is the value of the integral
∫∞

0
xρ log x
1+x2 dx? Well, this does not fall imme-

diately to the techniques we discussed previously, but observe that we can differentiate under the
integral sign (with respect to ρ) to get exactly the previous exercise. (Unfortunately, the hypotheses
presented in Theorem 6.2 do not exactly apply here, but it is still possible to turn the crank and
perform the analysis by hand.)

21.2 Argument Principle

We now turn to a more theoretical application of the Residue Theorem.

Theorem 21.2 (Argument Principle). Let f be a meromorphic function on a simply connected
domain D. Let γ be a simple, closed, counterclockwise contour in D avoiding both the singularities
and the zeroes of f . Then

n(f ◦ γ, 0) =
1

2πi

∫
γ

f ′(z)
f(z)

dz = Zf − Pf ,

where Zf and Pf are the number of zeroes and poles, respectively, of f inside γ.

Proof. To prove the first equality, write

n(f ◦ γ, 0) =
1

2πi

∫
f◦γ

dz

z − 0
=

1

2πi

∫ b

0

(f ◦ γ)′(t) dt
f ◦ γ(t)

=
1

2πi

∫ b

0

f ′(γ(t))γ′(t) dt
f(γ(t))

=
1

2πi

∫
γ

f ′(z)
f(z)

dz.

Now, for the second equality, suppose f has a zero of order m or a pole of order −m at z0¿ Then
we may write f(z) = (z − z0)mg(z)¡ and so

Res

(
f ′

f
; z0

)
= Res

(
m(z − z0)m−1g(z) + (z − z0)mg′(z)

(z − z0)mg(z)
; z0

)
= Res

(
m

z − z0
+
g′(z)
g(z)

; z0

)
= m.

Summing over all singularities and poles of f yields the desired conclusion.

Remark. In the special case where f has no poles, we may apply the Argument Principle to g(z) :=
f(z)− w to get that the number of solutions to the equation f(z) = w – counting multiplicity – is

Zf−w = Zf−w − Pf−w = n((f − w) ◦ γ; 0).
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No class.

24 October 21

Overslept :(

24.1 The Branched Covering Principle and its Corollaries

The Argument Principle (Theorem 21.2) allows us to explain how analytic functions behave near
their zeros.

Corollary 24.1 (Branched Covering Principle). Let f be analytic and nonconstant on a domain
D. Fix z0 ∈ D, and let w0 = f(z0). Denote by m the multiplicity of the function z 7→ f(z) − w0

at z = z0. Then there is an open set U containing z0 and an open set V containing w0 such that
f : U → V is onto and f : U \ {z0} → V \ {z0} is m to 1; that is, f(z)− w has m simple zeros for
each w ∈ V \ {w0}.

Proof. Without loss of generality suppose z0 = w0 = 0; in general, apply this special case to the
function f̃(z) := f(z + z0)− w0.

Since f is nonconstant, f and f ′ can only have isolated zeros. This means we may choose
r > 0 such that f(z) 6= 0 and f ′(z) 6= 0 whenever z ∈ B∗(0, 2r). Now set γ = ∂B(0, r), oriented
counterclockwise. By the Argument Principle, n(f ◦ γ; 0) = m. Further, denote by V the connected
component of C \ |f ◦ γ| containing zero; Lemma 6.4 tells us that n(f ◦ γ;w) = m whenever w ∈ V .

Now set
U := f−1(V ) ∩B(0, r),

which is open since f is continuous. The (remark after the) Argument Principle tells us f : U → V
is onto and m to 1, counting multiplicites. However, for w ∈ V \{0}, f(z)−w has only simple zeros
in U , since f ′(z) 6= 0 on U \ {0}. This means that z 7→ f(z)−w has m distinct solutions in U \ {0},
implying the result.

A remark is in order.

Remark. A canonical basic example occurs with the function f(z) = zm: note that z = 0 is a zero
of mulplicity of order m and that the equation zm = w has exactly m solutions whenever w 6= 0.

In fact, we can use this example to examine the previous theorem in another way. If f has a zero
of multiplicity m at 0, we may write f(z) = zmg(z) where g(0) 6= 0; in turn, g does not have zeros
on B(0, r) for some r > 0, implying that log g has a branch on B(0, r) (Proposition 8.6).

Now set
ϕ(z) = e

1
m log(g(z)) as a branch of g1/m on B(0, r).

Then f(z) = [zϕ(z)]m, which means that f can be written as a composition of functions
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U B(0, s) B(0, sm).
zϕ(z) zm

The former function is bijective since zϕ(z) has a simple zero at z = 0, while the second function is
m to 1. Hence their composition, namely f , must be m to 1 as well.

The previous result is actually quite strong. By stripping away the “m to 1” aspects, we still get
a useful result.

Corollary 24.2 (Open Mapping Theorem). If f is analytic and nonconstant on a domain D, then
f(D) is an open set, and hence a domain.

We can now say something about the existence of inverses of analytic functions.

Corollary 24.3. Let D be a domain, and suppose f is analytic and one-to-one on D. Then the
following hold.

1. The derivative f ′ of f is nonvanishing on D.

2. The set D′ := f(D) is a domain.

3. The function f−1 : D′ → D exists and is analytic.

Proof. First suppose that f ′(z) = 0 at some point z ∈ D. Then Theorem 24.1 implies that f is
either constant or is m to 1 for some m ≥ 2; either way, we contradict the assumption that f is
injective. Hence f ′(z) 6= 0 on D and the first claim is proven.

The second claim follows from the previous corollary, which states that f(D) is, indeed, a domain.

To prove the third claim, first observe that f : D → D′ is bijective, so its inverse f−1 : D′ → D
exists. By the Open Mapping Theorem, f takes open sets to open sets, so in fact f−1 is continuous.
In turn, Theorem 4.1 implies that f−1 is differentiable.

24.2 Rouché’s Theorem

Perhaps the most useful application of the Branched Covering Principle is the following result, which
allows us to compare the roots of two functions if a certain inequality is satisfied.

Theorem 24.4 (Rouché). Let f and g be analytic in a simply connected domain D, and let γ be a
simple, closed contour in D in the clockwise direction. Suppose that

|f(z)− g(z)| < |f(z)|+ |g(z)| for all z ∈ |γ| . (24.1)

Then f and g have the same number of zeros inside γ, counting multiplicites.

Proof. The given inequality (or more specifically, the fact that the inequality is strict) implies that

f and g cannot have zeros on |γ|. Let h(z) := f(z)
g(z) ; then

Zh − Ph = Zf − Zg. (24.2)

Furthermore, (24.1) rewrites as |h(z)− 1| < 1 + |h(z)|, which implies h(z) /∈ (−∞, 0] for all z ∈ |γ|.
This means that the image of h cannot wrap around the origin, and so the Argument Principle
implies

n(h ◦ γ; 0) = 0 = Zh − Ph.
Plugging this into (24.2) proves the desired result.

We end with two examples highlighting uses of Rouché’s Theorem.

Example 24.5. Let f(z) = anz
n + · · ·+ a1z + a0 be a polynomial, and set g(z) = anz

n. Observe
that, whenever |z| = R, we have

|f(z)| =
∣∣an−1z

n−1 + · · ·+ a1z + a0

∣∣
≤ |an−1| |z|n−1

+ · · · |a1| |z|+ a0

= |an−1|Rn−1 + · · ·+ |an|R+ a0.
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Thus we may choose R so large that |f(z)| < anr
n = |g(z)| for all r ≥ R. In turn, setting

γ = ∂B(0, r) (oriented counterclockwise) and applying Rouché’s Theorem implies that f(z) and
anz

n have the same number of roots on ∂B(0, r). Sending r → ∞ yields that f and anz
n have

the same number of roots on C, namely n. We have thus found another proof of the Fundamental
Theorem of Algebra.

Example 24.6. We will prove that the function

f(z) = sin(z2) + 100z5 + 6

has five zeros (counting multiplicity) in the annulus {z : 1
2 < |z| < 2}.

On ∂B(0, 1
2 ), we have the estimates

∣∣sin(z2)
∣∣ =

∣∣eiz2 − e−iz2 ∣∣
|2i| < e1/4 and

∣∣100z5
∣∣ =

100

25
=

25

8
.

Let g(z) = 6, and note that

|f(z)− g(z)| ≤ 25

8
+ e1/4 < 6

on ∂B(0, 1
2 ). Therefore f has no zeros on ∂B(0, 1

2 ).

Likewise, on ∂B(0, 2) we have
∣∣100z5

∣∣ = 25 · 100. Now setting g(z) = 100z5, observe that

|f(z)− g(z)| ≤ e5 + 6� 25 · 100 = |g(z)|

for z ∈ ∂B(0, 2), implying Zf = Zg = 5 in B(0, 2). Combining the previous two results proves the
claim.
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25.1 More Rouché

We start with a more involved application of Rouché.

Example 25.1. We will show that all solutions of the equation cot z = z are real.

Fix n ∈ N. Note that on the interval [−π(n + 1
2 ), π(n + 1

2 )], the
equation cotx = x has exactly 2n + 2 real solutions; one way
to see this is to look at the graphs of both functions (shown to
the right). We will be done if we can show that the equation
cot z = z has (at most) 2n+ 2 solutions in the set

Qn := {x+ iy : |x| , |y| ≤ π(n+ 1
2 )}.

To approach this, observe that cot z = z presupposes sin z 6= 0,
so we may multiply both sides by sin z to obtain the equivalent
form cos z = z sin z.

It’s easy to check that z sin z = 0 for precisely 2n+ 2 values of z ∈ Qn. Thus, if we can prove

|cos z| < |z sin z| for all z ∈ ∂Qn, (25.1)

Rouché’s Theorem tells us that z sin z and z sin z − cos z have the same number of roots inside Qn.
This, when combined with the first paragraph, implies that all the roots in Qn are real, and so
sending n→∞ yields the desired result.

First, let z = ±π(n + 1
2 ) + iy, where |y| ≤ π(n + 1

2 ); that is, z lies on the left and right sides of
Qn. Then

|z sin z| = |z| · |sin z| ≥ π
(
n+

1

2

)
·
∣∣∣∣∣e±iπ(n+ 1

2 )−y − e∓iπ(n+ 1
2 )+y

2i

∣∣∣∣∣
= π

(
n+

1

2

)
· |(−1)n(±i)e−y − (−1)n(∓i)ey|

2
= π

(
n+

1

2

)
· e
−y + ey

2
.

Furthermore,

|cos z| =
∣∣∣∣eiz + e−iz

2

∣∣∣∣ ≤ e=(z) + e−=(z)

2
=
ey + e−y

2
.

This establishes (25.1) in this case.

Now let z = x ± iπ(n + 1
2 ), where |x| ≤ π(n + 1

2 ); that is, z lies on the top and bottom sides of
Qn. Then

|z sin z| ≥ π
(
n+

1

2

)
· 1

2

∣∣∣eix±π(n+ 1
2 ) − e−ix∓π(n+ 1

2 )
∣∣∣

≥ π
(
n+

1

2

)
· 1

2

(
eπ(n+ 1

2 ) − e−π(n+ 1
2 )
)
>

1

2

(
eπ(n+ 1

2 ) − e−π(n+ 1
2 )
)
≥ |cos z| ,

so (25.1) is true in this case as well. We are done.

We conclude our discussion of Rouché’s Theorem by discussing a surprising result and its corollary.

Theorem 25.2 (Hurwitz). Let (fn)n≥1 be a sequence of analytic and nonvanishing functions con-
verging to f normally on some domain D. Then either f ≡ 0 or f is nonvanishing.

Proof. Assume f 6≡ 0 on D; it suffices to prove that f is nonvanishing.

Observe that, since f is analytic, the zero set of f must be isolated. Now take any simple, closed,
and counterclockwise contour γ avoiding all the zeros of f . On the set |γ|, f is nonvanishing, so
there exists ε > 0 such that |f(z)| ≥ ε on |γ|.

Now recall that |γ| is compact, so fn converges uniformly to f on |γ|. Thus, we may choose n > 0
such that

|fn(z)− f(z)| < ε

2
< |f(z)| for all z ∈ |γ| .

Thus, Rouché’s Theorem implies that fn and f have the same number of roots inside γ, namely
zero. Since γ was arbitrary, we deduce that f is nonvanishing on all of D.
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As a corollary, we obtain a theorem that segues naturally into the next topic of the course.

Theorem 25.3. Suppose (fn)n≥1 is a sequence of one-to-one functions converging normally to f
on some domain D. Then either f is constant or f is itself one-to-one.

Proof. Assume that f is nonconstant. Given z0 ∈ D, apply Hurwitz to the set of functions

gn(z) := fn(z)− fn(z0) and g(z) := f(z)− f(z0)

on D. Since f is nonconstant, f(z) − f(z0) is not identically zero, so f(z) − f(z0) is nonvanishing
on D. In particular, f(z) 6= f(z0) for all z ∈ D. Applying this argument to all z0 ∈ D establishes
injectivity.

25.2 Angle-Preserving Functions

We now delve into the world of conformal mappings. We start with a definition.

Definition 25.4. Let D be a domain, and suppose f : D → C2 is differentiable in the R2 sense;
that is, there exist complex numbers c and d with the property that

f(z) = f(z0) + c(z − z0) + d(z̄ − z̄0) + E(z),

where E(z)
z → 0 as |z| → 0. Fix z0 ∈ D, and assume there exists ε > 0 uch that f(z) 6= f(z0) on

B∗(z0, ε). We say that f preserves angles at z0 if, for any angle θ ∈ [0, 2π), the limit

A(z0, θ) := lim
r→0+

(
e−iθ · f(reiθ + z0)− f(z0)

|f(reiθ + z0)− f(z0)|

)
exists and is independent of θ.

This definition is a bit strange, but it makes more sense in light of the following lemma.

Lemma 25.5. Let f be one-to-one on D.

1. If f ′ exists at z0 ∈ D and f ′(z0) 6= 0, then f preserves angles at z0.

2. Conversely, if f is differentiable in the R2 sense at z0 with derivative nonzero and f preserves
angles at z0, then f ′ exists at z0 and f ′(z0) 6= 0.

Proof. Assume without loss of generality that z0 = f(z0) = 0.

We begin with the proof of the first part. Since

f ′(0) = lim
z→0

f(z)− f(0)

z − 0
= lim
z→0

f(z)

z
,

we obtain

lim
r→0+

f(reiθ)

reiθ
= f ′(0) and lim

r→0+

∣∣f(reiθ)
∣∣

r
= |f ′(0)| .

Thus, the limit

lim
r→0+

e−iθ · f(reiθ)

|f(reiθ)| =
f ′(0)

|f ′(0)| ,

which exists and is independent of θ. This proves the first item.

For the second item, suppose f is differentiable in the R2 sense at 0, and f(0) = 0. This means
there exist constants c and d such that

f(z) = cz + dz̄ + E(z) for all z ∈ D.

Since f preserves the angles, the limit

lim
r→0+

(
eiθ

creiθ + dre−iθ + E(reiθ)

|creiθ + dre−iθ + E(reiθ)|

)
=

c+ de−2iθ

|c+ de−2iθ|

exists and is independent of θ. (Note that (α, β) 6= (0, 0), so the limit actually does exist.) This
holds if and only if β = 0, in which case α = fz(0) 6= 0.
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26.1 Conformal Maps

We begin with a definition.

Definition 26.1. Let f : D → C analytic.

1. We say that f is conformal if f is one-to-one on D. In this case, f ′ 6≡ 0 on E, D′ := f(D)
is a domain, and f−1 : D′ → D is also conformal. Furthermore, both f and f−1 are angle
preserving (Lemma 25.5).

2. Domains D1 and D2 are conformally equivalent if there exists a conformal, onto map f : D1 →
D2; f is said to be a conformal equivalence from D1 to D2.

3. In the case D1 = D2 = D, any conformal map f : D → D is called an automorphism of D.

A few examples are in order. These will be phrased in terms of propositions, because they are
important results in their own right.

Proposition 26.2. Suppose f is entire and conformal. Then f(z) = az + b for some a, b ∈ C.

Proof. Since f is entire, it has a singularity at infinity. Observe that this singularity cannot be
removable, since then f is a constant. Suppose now that this singularity is essential. Then, for
example,

f(B(0, 10)c) ∩ f(B(0, 1)) 6= ∅,

so f is not injective.

Thus the singularity at ∞ is a pole of some order, implying f is a polynomial. But f is injective,
so the degree of f equals 1.

Proposition 26.3. All automorphisms of B(0, 1) are of the form

ϕ(z) = e−iθ
z − c
1− zc̄ ,

where c ∈ B(0, 1) and θ ∈ R.

Proof. Fix an automorphism f : B(0, 1)→ B(0, 1), and consider the function

ϕf(0)(z) =
z − f(0)

1− zf(0)
.

Then ϕf(0) ◦ f : B(0, 1)→ B(0, 1) is an automorphism sending 0 7→ 0.9 Thus, the Schwarz Lemma
(Lemma 9.5) implies that ∣∣(ϕf(0) ◦ f)(z)

∣∣ ≤ |z|
for all z ∈ B(0, 1).

Similarly, (ϕf(0) ◦ f)−1 : B(0, 1) → B(0, 1) is an automorphism sending 0 → 0, so the Schwarz
Lemma again implies ∣∣(ϕf(0) ◦ f)−1(z)

∣∣ ≤ |z| , or |z| ≤
∣∣(ϕf(0) ◦ f)(z)

∣∣ ,
where the last step is obtained by taking inverses. Thus, we have equality, implying (ϕf(0) ◦f)(z) =

eiθz for all z ∈ B(0, 1).

To obtain the desired result, compose with ϕ−f(0) = (ϕf(0))
−1.

9This is tricky, but not impossible, to check by hand. It is stated without proof because it has appeared several
times in parts of the course not recorded in these notes.
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26.2 Möbius Transformations

Let a, b, c, and d be complex numbers with ad − bc 6= 0. WE may consider the function f :
C \ {−dc} → C \ {ac } given by

f(z) =
az + b

cz + d
for all z ∈ C.

Note that, by setting f(∞) = a
c and f(−dc ) =∞, we may extend f to be defined from Ĉ to Ĉ.

The importance of these functions – called Möbius transformations – is highlighted in the following
result.

Proposition 26.4. A function f : Ĉ → Ĉ is an automorphism of Ĉ if and only if it is a Möbius
transformation.

Proof. We have already established the (⇐) direction, so it remains to prove the (⇒) one. Let

f be an automorphism on Ĉ. Since f is meromorphic on C, it must be a rational function, i.e.

f(z) = p(z)
q(z) for polynomials p and q. If deg q ≥ 2, then f has more than one root at ∞, which is

a contradiction; thus, deg q = 1. Finally, injectivity of f implies deg p = 1 as well, and so we are
done.

Example 26.5. Suppose g is meromorphic on a domain D, and let f be a Möbius transformation.
Then f ◦ g is also meromorphic, with poles at the set g−1({−dc}) ⊂ C.

26.3 Complex Projective Space

We now give another characterization/perspective of Möbius transforms. As usual, we start with a
definition.

Definition 26.6. The complex projective space P1(C) is defined to be the set of all complex lines

through the origin ( 0
0 ) in Ĉ.

Note that these lines have nice characterizations: they are of the form {λ( zw ) : λ ∈ C}, where
( zw ) is a nonzero element of C2.

Elements in P2(C) may seem to depend on two parameters, but in fact they only require one.
Indeed, for w1, w2 nonzero, ( z1w1

) = ( z2w2
) if and only if z1

w1
= z2

w2
; this means we can, without loss of

generality, assume w = 1. Furthermore, all lines of the form ( z0 ) are equivalent, and ( z1w1
) = ( z20 )

rquires w1 = 0. This means we may write

P1(C) = {( z1 ) : z ∈ C} ∪ {( 1
0 )},

which bears striking similarities to the definition

Ĉ = C ∪ {∞}.

In fact, this identification tells us Ĉ ∼= P1(C).

This change in perspective is not just aesthetic. Any Möbius transformation f : Ĉ → Ĉ, where
f(z) = az+b

cz+d , can be identified with the linear transformation f = TA, where A =
(
a b
c d

)
; in this way,

TAz =

(
a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
=

{(
(az+b)/(cz+d)

1

)
= az+b

cz+d z 6= −dc ,
( 1

0 ) =∞ z = −dc .

Additionally, TA(∞) = A( 1
0 ) = ( ac ), which equals a

c if c 6= 0 and ∞ if c = 0.

This identifies Möbius transforms with matrix products, so that

TA ◦ TB = TA◦B and (TA)−1 = TA−1 (26.1)

for all matrices A and B with nonzero determinant. Furthermore, TA = TB if and only if A = λB
for some λ ∈ C \ {0}. This means that the set of Möbius transforms can be identified with the set

PSL(z;C) := {
(
a b
c d

)
: ad− bc = 1, A and −A identified},

which is a projective analogue of the special linear group over C.

We close with some remarks.
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Remark. Every Möbius transform is a composition of translation, rotation, dilation, and inversion
(i.e. z 7→ 1

z ). More specifically,

az + b

cz + d
=
bc− ad
c2

· 1

z + d
c

+
a

c
.

Notice how this collapses to a
c if ad− bc = 0.

Remark. Any Möbius transformation f sends circles in Ĉ to circles in Ĉ. Circles or lines through
−dc will be sent to lines in C, while all other circles or lines will be sent to circles in Ĉ. These images
will not pass through the point a

c .
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27.1 Möbius Transforms and Circles

Last time, we briefly remarked that circles in Ĉ are sent to circles in Ĉ. Let’s make that more
concrete.

Example 27.1. Suppose ω1 and ω2 are two circles in Ĉ. Can we find a Möbius transform sending
ω1 to ω2?

To tackle this problem, we make the following observation: given distinct points z1, z2, z3 ∈ Ĉ and
w1, w2, w3 ∈ Ĉ, there is a (unique!) Möbius transformation T with T (zk) = wk for all 1 ≤ k ≤ 3.
To construct this transform, first define f : C→ C via

f(z) =
z1 − z3

z1 − z2
· z2 − z
z3 − z

, (27.1)

with appropriate modifications whenever zj is infinite for some j (for example, by taking limits).
This is an explicit transformation sending z1 to 1, z2 to 0, and z3 to ∞. Similarly, we may find
a Möbius transformation g sending w1 to 1, ω2 to 0, and ω3 to ∞. The desired transform is
TA := g−1 ◦ f .

We now claim this transformation is unique. Suppose TA and TB both send zk to wk for k ∈
{1, 2, 3}. Then the transformation TA ◦ TB−1 = TA◦B−1 sends ωj to ωj for all j. Hence the matrix
A ◦ B−1 has three distinct eigenvectors, implying A ◦ B−1 = λI2 for some λ ∈ C. This implies
A = λB, so the Möbius transforms TA and TB are identical.

The result follows by taking z1, z2, z3 ∈ ω1 and w1, w2, w3 ∈ ω2.

The expression in (27.1) is special enough to warrant its own name.

Definition 27.2. The cross-ratio of distinct z1, z2, z3, z4 ∈ Ĉ is

[z1, z2, z3, z4] :=
z1 − z3

z1 − z2
· z2 − z4

z3 − z4
.

As we have seen, cross-ratios and Möbius transforms play nicely with each other.

• If TA is a Möbius transformation sending z1, z2, and z3 to 1, 0, and ∞, respectively, then

[z1, z2, z3, z4] = TA(z4).

• For all z ∈ C, [1, 0,∞, z] = z.

• For any z1, z2, z3, z4 ∈ C,
[z1, z2, z3, z4] = [z1, z2, z3, z4].

These properties alone may not be useful enough to justify studying the cross-ratio, but the next
property surely will be.

Proposition 27.3. Let TB be a Möbius transformation. Then

[z1, z2, z3, z4] = [TB(z1), TB(z2), TB(z3), TB(z4)] (27.2)

for all z1, z2, z3, z4 ∈ Ĉ.

Proof. Suppose TA is the Möbius transformation sending z1, z2, and z3 to 1, 0, and∞, respectively.
Then TA(z4) is equal to the cross-ratio [z1, z2, z3, z4]. But then the transform TA◦B−1 sends TB(z1)
to 1, TB(z2) to 0, and TB(z3) to ∞, and so

[TB(z1), TB(z2), TB(z3), TB(z4)] = TA◦B−1(TB(z4)) = TA(z4).

Thus both sides of (27.2) are equal.
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27.2 Symmetry with Respect to Circles

We can use the cross-ratio to define a useful analogue of reflection for circles.

Definition 27.4. Let Γ be a circle in Ĉ, and let z1, z2, z3 ∈ Γ. We say that the points z and z∗

(also denoted ρΓ(z)) are symmetric if

[z1, z2, z3, z] = [z1, z2, z3, z
∗].

It may not be obvious that z∗ exists or whether it depends on z1, z2, and z3. The following
examples will hopefully answer those questions. Before continuing, we note that (z∗)∗ = z for all

z ∈ Ĉ.

Example 27.5. If Γ = R ∪ {∞}, then z∗ = z̄. Indeed, let z1, z2, z3 ∈ Γ be arbitrary; then

[z1, z2, z3, z] = [z1, z2, z3, z] = [z1, z2, z3, z],

so z∗ = z̄. Notice how the choice of z1, z2, and z3 is arbitrary.

Example 27.6. Now let Γ be an arbitrary line in Ĉ. We claim that z∗ is the reflection of z about Γ,
implying that circle symmetry really is a generalization of line symmetry. To prove this, let TB be
the translation and rotation taking Γ to R, noting that TB is thus a Möbius transformation. Then

[z1, z2, z3, z] = [TB(z1), TB(z2), TB(z3), TB(z)]

= [TB(z1), TB(z2), TB(z3), TB(z)]

= [z1, z2, z3, TB−1TB(z)].

Therefore z∗ = TB−1TB(z).

Example 27.7. Finally, suppose Γ = {z : |z − z0| = r} is a circle. Then we claim

z∗ =
r2

z − z0
+ z0. (27.3)

Indeed, by repeatedly using cross-ratio invariance under Möbius transformation, we see that

[z1, z2, z3, z] = [z1, z2, z3, z4] =

[
z1 − z0

r
,
z2 − z0

r
,
z3 − z0

r
,
z − z0

r

]
(∗)
=

[
z1 − z0

r
,
z2 − z0

r
,
z3 − z0

r
,

r

z − z0

]
=

[
z1, z2, z3,

r2

z − z0
+ z0

]
.

(In particular, (∗) involves the Möbius transformation z 7→ 1
z , where the expressions in the first

three slots arise from the fact that | zj−z0r | = 1.) Recalling the definition of z∗ gives (27.3).

Before continuing, we mention one more important relationship between symmetric points and
Möbius transforms.

Proposition 27.8. Suppose TA is a Möbius transformation sending Γ1 ⊂ Ĉ to Γ2 ⊂ Ĉ, and let z
and z∗ be symmetric with respect to Γ1. Then TA(z) and TA(z∗) are symmetric with respect to Γ2.

Proof. Applying TA to both sides of the equality [z1, z2, z3, z] = [z1, z2, z3, z
∗] yields

[TA(z1), TA(z2), TA(z3), TA(z)] = [TA(z1), TA(z2), TA(z3), TA(z∗)],

whence TA(z) and TA(z∗) are symmetric with respect to Γ2.

27.3 Conformal Mappings Between Sets

Looking at symmetries can help remove some of the tedium in finding conformal mappings between
conformally equivalent sets. Two examples are shown below.
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Example 27.9. What is a Möbius transform sending the upper half plane {z : =(z) > 0} to the
unit disc B(0, 1)?

Fix z0 in the upper half plane. The function f(z) = z−z0
z−z0 is a Möbius transformation sending

z0 to 0 and z0 to ∞. Since z0 and z0 are symmetric about R, the image f(R) must be a circle for
which 0 and ∞ are symmetric. By examining (27.3) with z∗ =∞ and z = 0, we see that this circle
must, in fact, be centered at the origin with radius r > 0. But f(0) = z0

z0
has magnitude 1, so in

fact r = 1. This means that R is sent to B(0, 1), and since z0 was sent to the interior of B(0, 1), we
deduce the conclusion.

Example 27.10. Let Γ1 and Γ2 be two not-necessarily-concentric circles, as shown below. Is there
a conformal mapping from the shaded non-concentric annulus below to a concentric annulus?

Γ1

Γ2

a b

Consider the ray originating at the center of Γ1 and passing through the center of Γ2. We claim
there exist points a and b on this ray satisfying

b = ρΓ1(a) = ρΓ2(a).

This is due to a continuity argument. Notice that, as a slides away from the center of Γ2, ρΓ2
(a)

slides from ∞ to inside Γ1, while ρΓ1(a) always remains outside Γ1. Therefore, by the Intermediate
Value Theorem, the two points must concide for some a.

Now let f(z) = z−a
z−b , which sends a to 0 and b to ∞. Then Proposition 27.8 tells us that

∞ = ρf(Γ1)(0) = ρf(Γ2)(0),

so ∞ and 0 are symmetric about both f(Γ1) and f(Γ2). Thus both circles are centered at zero,
implying the annulus is now concentric.
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28 October 30

28.1 Power and Exponential Functions as Conformal Maps

We first discuss two different types of conformal maps that will greatly expand the types of sets we
can show are conformally equivalent.

Example 28.1. Let β > 0, and for each 0 < r < 2π define

Dr := {z ∈ C : 0 < arg(z) < r},
where arg is a branch of the argument function defined on (0, 2π). Observe that the function z 7→ zβ

has a branch in Dα, namely zβ = exp(β(ln |z|+ i arg z)).

Furthermore, if 0 < β ≤ 2π
α , then zβ is one-to-one on Dα, and its image is Dαβ . So Dα and

Dαβ are conformally equivalent. In particular, by taking β = π
α we deduce that Dα is conformally

equivalent to the upper half plane.

Example 28.2. The function z 7→ ez is one-to-one on the set {z : 0 < =z < 2π}, which means it
is also one-to-one on the set

Sh := {z : 0 < =z < h}
whenever 0 < h < 2π. Furthermore,

eSh = {ex+yi : x ∈ R, 0 < y < h} = {exeiy : x ∈ R, 0 < h < h} = Dh,

where Dh is defined as in the previous example. Thus, ez is a conformal equivalence between Sh
and Dh.

We now look at some examples of this.

Example 28.3. Let D = {z : |z| < 1, |z − 1| < 1}, which is the set shown below. We wish to find
a conformal equivalence between D and the upper half plane.

To do this, first remark that the two circles intersect at the two points
e±iπ/3 ∈ C; this can be seen by noticing the equilateral triangle in
blue. With this, define the Möbius transform f1 via

f1(z) =
z − eπi/3
z − e−πi/3 ;

then eπi/3 is sent to 0 while e−πi/3 is sent to ∞. Since both circles
pass through a point sent to ∞, both circles are sent to lines passing
through the origin. Furthermore, we may compute f1(0) = e2πi/3 and
f(1) = e4πi/3, so the shaded region is sent to the angular region below.

eπi/3

e−πi/3

e2πi/3

e4πi/3

From here, the path is more clear. First, note that the map f2(z) =
e−2πi/3z rotates the given region 2π

3 radians clockwise, transforming it

to D2π/3. From there, the transformation f3(z) = z3/2 sends D2π/3 to
the upper half plane. All in all, the transformation

f3 ◦ f2 ◦ f1(z) =

(
e−2πi/3 z − eπi/3

z − e−πi/3
)3/2

is a conformal mapping sending D to the upper half plane.

Example 28.4. Let D = {z : |z − 1| > 1, |z − 2| < 2}, which is the region shown below. We wish
to find a conformal equivalence between D and B(0, 1).

Consider some Möbius transform f1 which maps 0 to ∞, so that both
circles are transformed to lines; as an example, take f1(z) = 1

z . Ob-
serve that R is sent to R under f1, with the points (2, 0) and (4, 0)
sent to ( 1

2 , 0) and ( 1
4 , 0), respectively. Furthermore, the bold circles

are orthogonal to the real axis at these points, implying that the im-
ages of these circles are orthogonal to the real axis as well. It follows
that the circle {z : |z − 1| = 1} is taken to the line { 1

2 + xi : x ∈ R},
while the circle {z : |z − 2| = 2} is taken to the line { 1

4 + xi : x ∈ R}.
In turn, the shaded region is taken to the strip bounded by these lines.
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Now composing with f2(z) = (z− 1
4 )i·4π transforms this strip into Sπ. In turn, the transformation

f3(z) = ez sends Sπ into the upper half plane, and the transformation f4(z) = z−i
z+i sends the upper

half plane to B(0, 1). All in all, the function

(f4 ◦ f3 ◦ f2 ◦ f1)(z) =
e4πi(1/z−1/4) − i
e4πi(1/z−1/4) + i

is the desired conformal mapping.

28.2 Joukowsky and Inverse Joukowsky Transforms

We now define a surprisingly useful mapping.

Definition 28.5. The Joukowsky Transform is the function J : C \ {0} → C defined by

J(z) =
1

2

(
z +

1

z

)
for all z ∈ C \ {0}.

This new function J has several nice properties.

• The function J is analytic on C \ {0}.
• For every z 6= 0, J(z) = J( 1

z ).

• For every w in the range of J , the solutions to the equation J(z) = w are reciprocals; that is,
the solution set is {z, 1

z} for some z ∈ C.

These three properties imply that J is conformal on any domain in
C \ {0} not containing reciprocal points. There are several natural
examples of such domains; three of them are the upper and lower
half planes, B(0, 1)∗, and C \ B(0, 1). These four regions together
subdivide C into four regions, dubbed D1 through D4 in the diagram
to the right. These allow us to simplify the analysis of J a bit, since
J(D1) = J(D3) and J(D2) = J(D4).

D1

D2

D3

D4

What, exactly, are these images? We may find them by parametrizing a circle; indeed, write

J(reiθ) =
1

2
(reiθ + re−iθ) =

1

2

(
r +

1

r

)
cos θ +

1

2

(
r − 1

r

)
sin θ

and by varying θ we see that the resulting shape is an ellipse whenever r 6= 1. (If r = 1, then the
image is just the line segment [−1, 1].) In turn,

J(B∗(0, 1)) =
⋃

0<r<1

J(B(0, r)) = C \ [−1, 1].

By our previous work, J(B(0, 1)) = C \ [−1, 1] as well.

Notice further we may restrict our attention to half-circles to paint a more precise picture about
what J does. Indeed, if we now let r > 1 and apply the same reasoning, we see that the region
J(D1) (and hence J(D3)) is the upper half plane, while the region J(D4) (and hence J(D2)) is the
lower half plane. In turn, by writing

U.H.P = D1 ∪D2 ∪ {eiθ : θ ∈ (0, π)},

we see that

J(U.H.P) = J(D1) ∪ J(D2) ∪ J({eiθ : θ ∈ (0, π)}) = C \ {x ∈ R : |x| > 1} =: S1.

Similarly, we may find that J(B∗(0, 1)) = C \ [−1, 1] =: S2.

Given our transform J , it is natural to ask what the inverse transform J−1 is. This is a simple
algebra exercise: we have

z =
1

2

(
w +

1

w

)
implies w = z ±

√
z2 − 1,
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so J−1(z) = z ±
√
z2 − 1, where either choice of sign is appropriate.

On a previous homework assignment, we showed that
√
z2 − 1 has branches on S1 and S2, which

is quite convenient. Indeed, on S1 we may take the branch of the square root function with
√
−1 = i,

while on S2 we may take the branch satisfying
√
z2 − 1 > 0 whenever z > 1. Synthesizing all our

previous results, we see that

J−1(z) = z +
√
z2 − 1 maps S1 to U.H.P,

J−1(z) = z +
√
z2 − 1 maps S2 to B∗(0, 1)

c
,

J−1(z) = z −
√
z2 − 1 maps S1 to L.H.P, and

J−1(z) = z −
√
z2 − 1 maps S2 to B∗(0, 1).
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29 November 1

29.1 Schwarz Reflection Principle

The idea of using reflections to extend functions is pervasive in analysis. We explore this idea now.

Example 29.1 (Schwarz Reflection Principle). Let D be a domain as shown in the upper half plane
H with part of ∂D lying on an interval I ⊂ R. Define D1 := D ∪ I ∪D∗. Suppose f is analytic on
D and continuous on D ∪ I, and furthermore f(I) ⊂ R. Then the function g : D1 → C given by

g(z) =

{
f(z) z ∈ D ∪ I,
f(z̄) z ∈ D∗

is analytic on D1.

I

D

D∗ = ρR(D)

R

To prove this, note that it is not hard to check that the function z 7→ f(z̄) is analytic; this was
an old homework problem. Furthermore, f(I) ⊂ R implies that g is continuous on D1. Finally, we
may use Morera (Corollary 8.4) to show that g is analytic at each point in I.

Since lines are just circles in Ĉ, we might suspect that the previous example generalizes to inversion
about a circle. This is, indeed, true.

Example 29.2 (Generalized Schwarz Reflection Principle). Let Γ1 and Γ2 be two circles in Ĉ, and
let G be a domain symmetric with respect to Γ. Write G = D ∪ I ∪ ρΓ1(D), where I ⊂ Γ1. Assume
that f is analytic on D and continuous on D ∪ I, and furthermore f(I) ⊂ Γ2. Then the function
g : G→ C defined by

g(z) =

{
f(z) z ∈ D ∪ I,
ρΓ2(f(ρΓ1(z)) z ∈ ρΓ1(D)

is analytic in G, except possibly at the points z where f(ρΓ1
(z)) is the center of Γ2. (This is not a

problem if Γ2 is a line in C.)

Γ1

D ρΓ1
(D)

The proof is simple: find a conformal mapping sending Γ1 to R and appeal to the normal Schwarz
reflection principle.

We may use the Schwarz reflection principle to prove some interesting facts about entire functions.
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Proposition 29.3. Suppose f is entire, I ⊂ R is a nonempty interval, and f(I) ⊂ R. Then
f(R) ⊂ R.

Proof. By the Schwarz reflection principle, the function g(z) = f(z̄) is entire. Now f and g agree
on the set C \R, which (among other things) contains a limit point. Hence f(z) = g(z) everywhere,
implying that f(x) = f(x) for all x ∈ R. In turn, f(x) ∈ R for all x ∈ R.

A few remarks are in order.

Remark. The use of Schwarz was not strictly necessary – one alternate approach is to Taylor expand
f about some point z0 ∈ I and note that all derivatives at z0 are real-valued.

Remark. One might ask whether the following generalization is true: if D is a domain in C, f is
analytic on D, and f(I) ⊂ R for some interval I ⊂ D ∩ R, is f(D ∩ R) ⊂ R? Unfortunately, the
answer is no. As a specific example, note that the function z 7→ √z has a branch on C \ {iy : y ≤ 0}
with

√
1 = 1. Then f((0,∞)) ⊂ R, but f(R) 6⊂ R.

That being said, there are specific cases where this does work. As an example, consider the
Joukowsky transformation from last lecture. The region D1 from that lecture (the set of complex
numbers in the upper half plane H with magnitude greater than 1) is mapped to H. The three
boundary parts of H – (−∞,−1), ∂B(0, 1)∩H, and (1,∞) – are mapped to (−∞,−1), [−1, 1], and
(1,∞), respectively.

We may now use the Schwarz Reflection Principle to generate analytic continuations of J |D1
. For

example, reflecting across the boundary of the disc yields a mapping J from H to C \ (−∞,−1] ∪
[1,∞). Similarly, reflecting across the boundary belonging to the real axis yields a mapping J from

B(0, 1)
c

to C \ [−1, 1]. This checks with our work from last time.

We now move on to the most sophisticated example yet. It shows how the Schwarz Reflection
Principle can be used to construct conformal mappings between strange sets.

Example 29.4. In this example, we will find a conformal equivalence between

D := B(0, 1)
c \

8⋃
j=1

{reiπ4 j : 1 ≤ r ≤ 2}

and B(0, 1)
c
. (Informally, our task is to get rid of the spokes protruding into the complement of the

closed unit ball.)

To do this, we will first let

D̃ := {z : |z| > 1,Arg(z) ∈ (0, π4 )},

so that the boundary of D̃ can be written as a partition

∂D̃ = (2,∞) ∪ {reiπ/4 : r ∈ (2,∞) ∪
(

[1, 2] ∪ [eiπ/4, 2eiπ/4] ∪ {eiθ : 0 < θ < π
4 }
)
.

Label these regions Γ1, Γ2, and Γ3, as shown in the diagram to the right. We will find a conformal
equivalence f : D̃ → D̃ which is continuous on ∂D̃ and maps Γ1 to (1,∞) and Γ2 to {reiπ/4 : r ∈
(1,∞). Then by the general version of the Schwarz Reflection Principle (applied a few times), we

obtain the conformal equivalence between D and B(0, 1)
c
.

We proceed in steps.
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• First unfold D̃ via the mapping f1(z) = z4; this sends D̃ to D1 and the regions Γ1 and Γ2 to
f(Γ1) and f(Γ2), shown below.

• Now consider the Joukowsky transformation f2(z) = 1
2 (z + 1

z ); then f2(f1(D̃)) = H, and the
parts Γ1 and Γ2 are mapped to (A,∞) and (−∞,−A) respectively, where A = 1

2 (24 + 2−4) =
257
32 .

• Rescale via f3(z) = z/A; then f3(f2(f1(D̃))) is still H, but the images of Γ1 and Γ2 are now
just (1,∞) and (−∞,−1).

• Finally, reverse the steps via f4(z) = (J−1(z))1/4; then f = f4 ◦f3 ◦f2 ◦f1 is an automorphism
of D̃ which maps Γ1 to (1,∞) and Γ2 to {eiπ/4r : r ∈ (1,∞)}, as desired.

Remark. In essence, we have taken the circular part Γ̃3 of Γ3 and mapped it to a small segment
on ∂B(0, 1). This means that, via the Schwarz Reflection Principle, we may extend our conformal
equivalence f further to the domain C \ S, where S is a set of eight slits equally spaced about the
boundary of the unit ball.

29.2 Normal families, introduced

In the last few minutes of class, we will lay the foundations for the material we will discuss for the
next few days.

Let K ⊂ C be compact. Our goal is to understand the set

C(K) = {f : K → C | f is continuous}.

We know already that C(K) is a metric space with the supremum norm as its distance metric. This
means we may ask the following question: what are the compact subsets of C(K)?

Unfortunately, C(K) is an infinite dimensional metric space, and so the compact sets are not just
the closed and bounded sets (like they are in finite dimensions). As an example, the sequence of
functions (fn)n≥1 given by fn(x) = xn is bounded on C([0, 1]), but it does not have any conveergent
subsequence.

This leads into the concept of a normal family of functions in C(K), which we will discuss next
time.
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30 November 4

30.1 Precompact Subsets of C(K)

We start with a definition.

Definition 30.1. We say a set S ⊂ C(K) is precompact (or relatively compact) if S̄ is compact.

Remark. This definition of S also works in arbitrary measure spaces. It is equivalent to the as-
sumption that every sequence in S has a convergent subsequence (whose limit is not necessarily in
S).

As an example, recall that in R and C all bounded subsets are precompact. However, this is
not true for C(K); see the fn(x) = xn example from yesterday. The following theorem gives an
equivalent definition of precompactness in C(K).

Theorem 30.2 (Arzela-Ascoli). Let K ⊂ C be compact. Then S ⊂ C(K) is precompact if and only
if S is bounded and equicontinuous. Here equicontinuous means that for all ε > 0, there exists δ > 0
such that

|f(z)− f(w)| < ε for all f ∈ S and all z, w ∈ K with |z − w| < δ. (30.1)

Proof. The main content of this proof is the (⇐) direction, which we do now. Suppose S ⊂ C(K)
is bounded and equicontinuous, and let {fn}n≥1 ⊂ S. Our goal is to show that this sequence has a
uniformly convergent subsequence converging in K.

Step 1. We will show there exists a subsequence converging pointwise on some countable dense
subset {zj}∞j=1 of K. First consider the sequence {fn(z1)}n≥1 ⊂ C. This sequence is bounded, so it
has a convergent subsequence {fn1

k
(z1)}k≥1. Now consider the sequence {fn1

k
(z2)}k≥1; once again,

we may extract a convergent subsequence {fn2
k
(z2)}k≥1. Proceeding inductively, for each m ≥ 1 w

may find a subsequence {fnmk (zm)}k≥1, where fnmk converges pointwise on each of z1, . . . , zm.

Finally, examine the “diagonal” sequence {fnmm}m≥1; this converges pointwise at each zj , since

(fnmm(zj))m≥1 is a subsequence of (fnjk
(zj)) whenever m ≥ j.

Step 2. Let {fn}n≥1 be the sequence of pointwise convergent functions found in the previous step.
We claim that (fn)n≥1 is uniformly convergent on K, which proves the first direction.

To prove this, let ε > 0. Choose the δ > 0 given by the equicontinuity criterion (30.1) for ε
3 . Note

that, since {zj}j≥1 is dense in K, the collection of balls (B(zj , δ))
∞
j=1 is an open covering of K; this

means there exists a finite subset (w1, . . . , wJ) of the zj ’s such that

K ⊂
J⋃
j=1

B(wj , δ). (30.2)

Now, for each 1 ≤ j ≤ J , the sequence {fn(wj)}n≥1 converges, so in particular these sequences are
all Cauchy. This means there exists Nj such that

|fn(wj)− fm(wj)| <
ε

3
for all m,n > Nj .

Now let N = max1≤j≤J Nj , and let m,n > N and z ∈ K be arbitrary. Equation (30.2) implies
there exists j such that z ∈ B(wj , δ). Thus,

|fn(z)− fm(z)| ≤ |fn(z)− fn(wj)|+ |fn(wj)− fm(wj)|+ |fm(wj)− fm(z)|
≤ ε

3
+
ε

3
+
ε

3
= ε.

Since ε was arbitrary, we deduce that the sequence {fn}n≥1 is uniformly Cauchy, and so it is
uniformly convergent as desired.

The other direction is not important for our use, but we shall go over it for the sake of completeness.
Fix some precompact set S ⊂ C(K). We already know S is bounded, so let us assume for the sake
of contradiction that S is precompact but not equicontinuous. This means there exists ε > 0 such
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that for all δ > 0, there exist z, w ∈ K and f ∈ S such that |z − w| < δ but |f(z)− f(w)| ≥ ε.
Apply this with δ = 1

n to get sequences {fn}, {zn}, and {wn} such that

|zn − wn| <
1

n
while |fn(zn)− fn(wn)| ≥ ε.

Now observe that the sequence z1, . . . has a subsequence {zn1
j
}j≥1 converging to z ∈ K. From here,

the sequence {wn1
j
}j≥1 has a subsequence {wn2

j
}j≥1 converging to w ∈ K, and passing yet again to

the sequence {fn2
k
}j≥1 yields a further subsequence {fnk}k≥1 converging to some f ∈ C(K).

But now

|fnk(znk)− fnk(wnk)| ≤ |fnk(znk)− f(znk)|+ |f(znk)− f(wnk)|+ |f(wnk)− fnk(wnk)| ,

which tends to zero as k →∞. In particular, for some k ≥ 0, the difference is less than ε, which is
a contradiction.

30.2 Normal Families

We now have the tools to discuss normal families of continuous functions.

Definition 30.3. Let F be a family of functions defined on a domain D ⊂ C. We say that D is a
normal family if every sequence of elements of F has a subsequence converging normally in D.

With Arzela-Ascoli, we may prove an important sufficient condition for F to be a normal family.

Theorem 30.4. Let D be a domain. If F is a family of continuous functions on D that is both
bounded and equicontinuous on D, then F is a normal family.

Proof. Consider an exhaustion of D by compacta, that is, a sequence of compact sets {Kj}j≥1 ⊆ D
such that Kj ⊂ K◦j+1 ⊂ D for each j and

⋃
j≥1Kj = D.10 By Arzela-Ascoli, we know that F is

precompact on each Kn.

Now let {fj}j≥1 be a sequence of functions in F . We repeat the diagonal argument from before.
Take a subsequence {fn1

k
}k≥1 of this sequence which converges uniformly on K1. From this, we

may construct a subsequence {fn2
k
}k≥1 converging on K2, and, proceeding inductively, we may

construct nested subsequences {fnmk }k≥1 converging uniformly onKm for each m. Then the sequence
{fnmm}m≥1 converges uniformly on each compact set Kn.

Finally, let K ⊂ D be compact. Since
⋃∞
n=1K

◦
n is an open cover for K, there exists some n ∈ N

for which K ⊂ Kn. Thus {fnmm}m≥1 converges uniformly on K, and since K was compact, we
deduce the desired result.

Next, we give a different criterion for F to be a normal family that builds off the previous one.

Theorem 30.5 (Mantel). Let D be a domain, and let F be a family of analytic functions on D.
Suppose that, on each compact subset K of D, there exists M = M(K) such that |f(z)| ≤M for all
z ∈ K and f ∈ F . Then f is a normal family.

Proof. By the previous result, it suffices to check that F is equicontinuous on each compact set
K ⊂ D.

Fix such a compact set K, and let

r :=
1

2
min(dist(K, ∂D), 1) > 0.

For each s ∈ R, let Ks := {z ∈ C : dist(z,D) ≤ s} be the closure of the s-neighborhood of K.
Notice that F is bounded on Kr by some constant M , since Kr is a compact subset of D. Now let
z ∈ Kr/2 be arbitrary. Then there exists w ∈ K with B(w, r2 ) ⊂ Kr, and so the derivative estimates
(Theorem 8.8) imply

|f ′(z)| ≤ M

r − |w − z| ≤
2M

r
for all f ∈ F .

10For a explicit construction, set
Kn = {z ∈ D : |z| ≤ n, dist(z, ∂D) ≥ 1

n
}.
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In other words, the family {f ′ : f ∈ F} is uniformly bounded by some constant C in C(Kr/2).

Finally, fix z and w in K. If |z − w| > r
2 , then

|f(z)− f(w)| =
∣∣∣∣∣
∫

[z,w]

f ′(ξ) dξ

∣∣∣∣∣ ≤ C |z − w| .
So F is uniformly Lipschitz, which implies it is uniformly convergent as well.

Finally, we state a massive generalization of Montel’s Theorem that Erdogan finds pretty cool.

Theorem 30.6 (Big Montel). Suppose F is a family of analytic functions on D satisfying the
following properties:

• there exist distinct complex numbers a and b with f(z) /∈ {a, b} for every z ∈ D and f ∈ F ;

• there exists some z0 ∈ D such that F is bounded at z0.

Then F is a normal family.
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31 November 6

31.1 Riemann Mapping Theorem

Our goal for today is to prove the following theorem. Its proof will synthesize many previous results,
from both the past few days and from the rest of the course.

Theorem 31.1 (Riemann Mapping Theorem). Any simply connected domain D 6= C is conformally
equivalent to B(0, 1). Moreover, given z0 ∈ D, we can find an equivalence with f(z0) = 0 and
f ′(z0) > 0. These additional conditions determine f uniquely.

Proof. The proof proceeds in steps.

Step 1. We will first prove there exists a conformal map f into (but not necessarily onto) B(0, 1)
with 0 ∈ Range(f).

Since D 6= C, there exists some a ∈ C \D. Then z − a 6= 0 on D, and D is simply connected, so

the function z 7→ log(z− a) has a branch on D (Proposition 8.6). In turn, z 7→ √z − a = e
1
2 log(z−a)

has a branch on D; let g(z) be this branch. Note that g is conformal and one-to-one on its image.

Now let w ∈ Range(g). By the Open Mapping Theorem (Corollary 24.2), there exists some
r > 0 such that B(w, r) ⊂ Range(g). Observe that no complex number ξ and its negative can
simultaneously be in the range of g (why?). Thus B(−w, r) 6⊂ Range(g), i.e. |z − w| ≥ r for all
z ∈ Range(g).

In turn, we may consider the conformal map h : C \ {w} → C given by h(z) = r/2
z+w ; then

h ◦ g(z) ∈ B(0, 1) for all z ∈ D.

Finally, to guarantee that 0 is an element of the range, we may fix α ∈ Range(g) and compose
h ◦ g with the disc automorphism ϕα(z) = z−α

1−ᾱz .

Step 2. By the previous step, we may assume without loss that D is a simply connected domain
in B(0, 1) with 0 ∈ D. We will show that, under these conditions, D is conformally equivalent to
B(0, 1).

Consider the family of functions

F := {f : D → B(0, 1) | f is conformal and f(0) = 0.

Clearly F is nonempty since the identity function lies in F . We further note that, since the range of
any f ∈ F is contained in the unit disc, the family F is uniformly bounded by 1. Hence, by Mantel
(Theorem 30.5), F is a normal family.

Now consider the set S := {|f ′(0)| : f ∈ F}. Observe that, by either derivative estimates or the
Schwarz lemma, the set S is bounded, so it has a supremum s. By the definition of supremum we
can find a sequence {fn}n≥1 ⊂ F such that |f ′n(0)| → s as n → ∞. This sequence has a normally
convergent subsequence, so we can assume (by e.g. relabeling) that fn converges normally to some
function F .

We now collect several facts about F .

• By Weierstrass (Theorem 10.6), we know that F is analytic on D and |f ′(0)| = s.

• Note that F is nonconstant, and recall that each fn is conformal and therefore one-to-one.
Hence Theorem 25.3 implies that F is also one-to-one.

• Since |fn| < 1 for each n ∈ N, sending n → ∞ tells us that |F | ≤ 1. However, we can say
more: the Open Mapping Theorem implies the range of F is open, so actually |F | < 1.

Combining these three bullets yields F ∈ F .

We now make the surprising claim that F : D → B(0, 1) is surjective, which will complete
Step 2 of the proof. To show this, assume for contradiction that F is not onto, so there exists
α ∈ B(0, 1) \Range(F ). Composing F with the function ϕα = z−α

1−ᾱz yields a function ϕα ◦F : D →
B(0, 1) with 0 /∈ Range(F ). In turn,

√
z has a branch h on the range of ϕα ◦ F .

Now set
G := ϕh(−α) ◦ h ◦ ϕα ◦ F.
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Observe that F is one-to-one on D, and hence G ∈ F . Furthermore, we can “invert” both sides of
the above equality to get

F = ϕ−α ◦ h−1 ◦ ϕ−h(α)︸ ︷︷ ︸
=:H

◦G,

where h−1 : C→ C is given by h(z) = z2. In particular, H is not one-to-one and sends 0 to 0. Hence
the Schwarz Lemma (Lemma 9.5) implies that |H ′(0)| is strictly less than 1 (or else H(z) = zeiθ for
some θ, which is one-to-one). Thus

|F ′(0)| = |H ′(G(0))| · |G′(0)| = |H ′(0)| · |G′(0)| < |G′(0)| ,

which contradicts the fact that F is the maximizer of S in F . This concludes the proof of the first
part of Theorem 31.1.

Step 3. Now fix some z0 ∈ D. Since F : D → B(0, 1) is a conformal equivalence, ϕF (z0) ◦ F is a
conformal equivalence with z0 mapped to zero. Furthermore,

(ϕF (z0) ◦ F )′(0) 6= 0,

since otherwise it would fail to be one-to-one at zero. In particular, translate ϕF(z0) ◦ F so that it
equals 0 at z = 0; then the multiplicity of zero is at least two, allowing us to invoke the Branched
Covering Principle (Corollary 24.1). Hence there exists θ ∈ R with (eiθϕF (z0) ◦ F )′(0) > 0, and so

eiθϕF (z0) ◦ F is the desired conformal equivalence.

Step 4. Finally, assume f1 and f2 are conformal equivalences from D to B(0, 1) with f1(z0) =
f2(z0) = 0 and with both f ′1(z0) and f ′2(z0) positive. Observe that the function ϕ := f1 ◦ f−1

2 is a
disc automorphism with ϕ(0) = 0. Furthermore, we may compute

ϕ′(0) = (f1 ◦ f−1
2 )′(0)

(∗)
=

f ′1(f−1
2 (0))

f ′2(f−1
2 (0))

=
f ′1(z0)

f ′2(z0)
> 0.

Now observe that, since ϕ is a disc automorphism, we know that ϕ(z) = eiθ z−α1−ᾱz for some α ∈ C
and some θ ∈ R. From ϕ(0) = 0 we obtain α = 0, and so actually ϕ(z) = eiθz. But also we know
ϕ′(0) > 0, so eiθ = 1, implying ϕ(z) = z. In turn, f1 = f2, which is what we were after.
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32 November 8

32.1 Modulus of Conformal Maps

Our goal for today is to discuss an invariant associated with conformal maps. We begin with two
preliminary definitions.

Definition 32.1. Let D be a domain, and ρ : D → [0,∞) be a continuous function (sometimes
called a density).

1. Given a piecewise-smooth contour γ, the length with respect to ρ of the path γ is defined to be

`ρ(γ) :=

∫ b

a

|γ′(t)| ρ(γ(t)) dt.

2. Given a set G ⊂ D with ~x 7→ χG(~x) Riemann-integrable in R2, the area of G with respect to
ρ is defined to be

Aρ(G) :=

∫∫
G

ρ(x, y)2 dx dy.

We now define the conformal modulus of a conformal map.

Definition 32.2. Let E, F , and G be subsets of a domain D.

1. The “triplet” [E,F : G] is called a configuration of D if E and F are pairwise disjoint subsets
of G.

2. The set Γ[E,F : G] is the set of contours γ ⊂ G with γ(0) ∈ E and γ(1) ∈ F .

3. A density ρ is admissible if `ρ(γ) ≥ 1 for every contour γ ∈ [E,F : G]. Write Adm[E,F : G]
as the set of admissible densities.

4. The conformal modulus of the configuration [E,F : G] is

M [E,F : G] := inf{Aρ(G) : ρ ∈ Adm[E,F : G]}.

By convention, this infimum is ∞ if Adm[E,F : G] is empty.

This definition, at first, seems extremely unwieldy. While it feels arbitrary, the next theorem
shows that it is useful.

Theorem 32.3. Let f : D → C be a conformal map, and suppose [E,F : G] is a configuration in
D. Then [f(E), f(F ) : f(G)] is a configuration in f(D) and

M [E,F : G] = M [f(E), f(F ) : f(G)].

Proof. It suffices to prove that the left hand side is at most the right hand side; the other inequality
can be obtained by looking at f−1.

Let ρ̃ ∈ Adm[f(E), f(F ) : f(G)] be arbitrary. Define ρ : D → [0,∞) via

ρ(z) := |ρ̃(f(z))| · |f ′(z)| .

We claim that ρ ∈ Adm[E,F : G]. To prove this, consider any contour connecting E to F in G.
Then f ◦ γ connects f(E) to f(F ) in f(G), so

1 ≤ `ρ̃(f ◦ γ) =

∫ b

a

|(f ◦ γ)′(t)| ρ̃(f ◦ γ(t))

=

∫ b

a

f ′(γ(t))ρ̃(f ◦ γ(t)) |γ′(t)| = `ρ(γ).

Since γ was arbitrary, we deduce that ρ is admissible.

Now
M [E,F : G] = inf{Aρ(G) : ρ admissible} ≤ Aρ(G) for any fixed ρ.

So

Aρ(G) =

∫∫
G

(ρ(z))2 dx dy =

∫∫
G

(ρ̃(f(z)))2 |f ′(z)| dx dy. (32.1)
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Now recall the multivariable chain rule: if f : A→ B is a diffeomorphism, and h : B → R, then∫
B

h(y) dy =

∫
A

h ◦ f(x) |det(Df(x))| dx,

where Df(x) is the Jacobian matrix. In our case, the diffeomorphism is f(x, y) =
(
u(x,y)
v(x,y)

)
, so

|det(Df(x))| =
∣∣∣∣det

(
ux uy
vx vy

)∣∣∣∣ = |uxvy − vxuy|
(∗)
= u2

x + v2
x = |f ′(x)|2 .

(Here (∗) is a result of the Cauchy-Riemann equations (2.1).) Hence the integral in (32.1) is equal
to
∫
f(G)

ρ̃(x+ iy)2 dx dy = Aρ̃(f(G)).

Hence, given ρ̃ ∈ Adm[f(E), f(F ) : f(G)], we have shown M [E,F : G] ≤ Aρ̃(f(G)). Taking the
infimum over all admissible ρ̃ yields the desired inequality.

Until now, all our work concerning the modulus of a conformal map has been theoretical. Let’s
do an example.

Example 32.4. Let E = B(0, r0) and F = B(0, r1)c, where 0 < r0 < r1 <∞. We claim that

M [E,F : C] =
2π

log(r1/r0)
.

First, let γ(r) = reiθ, for r ∈ [r0, r1]. If ρ is any admissible density,

1 ≤ `ρ(γ) =

∫ r1

r0

ρ(reiθ)
∣∣eiθ∣∣ dr =

∫ r1

r0

ρ(reiθ) dr. (32.2)

By Cauchy-Schwarz, we may bound

Aρ(C) =

∫∫
C
ρ2(z) dx dy =

∫ 2π

0

∫ ∞
0

ρ2(reiθ)r dr dθ

to obtain ∫ r1

r0

ρ(reiθ) dr =

∫ r1

r0

ρ(reiθ)
√
r√

r
≤
√∫ r1

r0

ρ2(reiθ) r dr ·
√∫ r1

r0

1

r
dr

=

√∫ r1

r0

ρ2(reiθ) r dr ·
√

1

log(r1/r0)
.

Combining this inequality with (32.2) yields
∫ r1
r0
ρ2(reiθ)r dr ≥ 1

log(r1/r0) , and so

Aρ(C) ≥ Aρ(B(0, r1) \B(0, r0)) =

∫ 2π

0

∫ r1

r0

ρ2(reiθ)r dr ≥ 2π

log(r1/r0)
.

Hence M [E,F : G] ≥ 2π/ log(r1/r0).

Now, given ε > 0, let

ρ(z) =


(|z| log(r1/r0))

−1
r0 ≤ |z| ≤ r1,

0 |z| > r1 + ε or |z| < r0 − ε,
g(z) otherwise,

where g(z) is some continuous function that makes ρ continuous. We claim that ρ is admissible. To
prove this, given γ connecting E to F , take real numbers a and b such that |γ(t)| ∈ (r0, r1) whenever
r ∈ (a, b). Then

`ρ(γ) ≥
(

log

(
r1

r0

))−1 ∫ b

a

1

|γ(t)| · |γ
′(t)| dt

(∗)
≥
(

log

(
r1

r0

))−1 ∫ b

a

(log |γ(t)|)′ dt = 1.
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In particular, to obtain the inequality (∗) we may write

(log |γ(t)|)′ =

(
1

2
log |γ(t)|2

)′
=

(γ(t)γ(t))′

2 |γ(t)|2

=
2<(γ′(t)γ(t))

|γ(t)|2
≤ |γ

′(t)| |γ(t)|
|γ(t)|2

=
|γ′(t)|
|γ(t)| .

Finally, write

Aρ(C) =

∫∫
r0−ε<|z|<r1+ε

ρ2(z) dz ≤
∫∫

r0−ε<|z|<r1+ε

dx dy

|z|2 log(r1/r0)2

=

∫ 2π

0

∫ r1+ε

r0−ε

1

r
· dr dθ

(log(r1/r0))2
= 2π

log r1+ε
r0−ε

(log(r1/r0))2
.

Now send ε→ 0.

In the last minute or two, we record two small propositions regarding the modulus of conformity.
We will use these on Monday.

Proposition 32.5. Suppose [E1, F1 : G1] and [E2, F2 : G2] are configurations for which E1 ⊂ E2,
F1 ⊂ F2, and G1 ⊂ G2. Then M [E1, F1 : G1] ≤M [E2, F2 : G2].

Proposition 32.6. Suppose B(z1, r1) and B(z2, r2) are two disjoint closed balls in C. Then

M [B(z1, r1), B(z2, r2) : C] <∞.
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33 November 11

33.1 Caratheodory-Osgood

We start today with an application of the conformal modulus.

Theorem 33.1. Let f : B(0, 1) → D be a conformal equivalence, where D is a domain whose
boundary ∂D is a simple closed contour. Then f can be extended to f̃ : B(0, 1) → D, where f̃ is
one-to-one, onto, and continuous, and furthermore f̃−1 : D → B(0, 1) is continuous.

Remark. If D is unbounded, replace D with D̂, the closure of D in Ĉ. Also, note we may replace
B(0, 1) with H by composing with the Möbius transformation z 7→ z−i

z+i ; this will be useful later.

Proof. We will only provide a proof of the main claim: for z0 ∈ ∂B(0, 1), the limit limz→z0 f(z)
exists. Then, we may set

f̃(z) :=

{
f(z) if z ∈ B(0, 1),

limξ→z f(ξ) if z ∈ ∂B(0, 1);

this turns out to work.

Assume for the sake of contradiction that the limit does not exist. This means there exist w1 6= w2

in ∂D and sequences {z1
n}n≥1 and {z2

n}n≥1 such that zjn → z0 as n → ∞, but f(zjn) → wj , where
j ∈ {1, 2}.

z0
z1
n

z2
nB(0, 1)

f

w1

w2

f
(
z1
n

)

f
(
z2
n

)
D

Since ∂D is piecewise smooth, we may choose 0 < r < 1
2 |w1 − w2| such that D ∩ B(w1, r) and

D ∩B(w2, r) are connected.11 Now choose N such that f(zjn) ⊂ B(wj , r) for all n ≥ N . Let γ1 and
γ2 be continuous curves passing through the points f(z1

n) and f(z2
n) respectively (for n ≥ N), and

consider E := f−1(γ1) and F := f−1(γ2). (So γ1 and γ2 are the curves corresponding to the dotted
lines in the diagram to the right, while E and F are the curves corresponding to the dotted lines in
the diagram to the left.) Then Propositions (32.5) and (32.6) imply

M [γ1, γ2 : D] ≤M [B(w1, r), B(w2, r) : C] <∞.

We will be done if we can show that M [E,F : B(0, 1)] =∞, which is a contradiction since modulus
is invariant under conformal mapping.

Choose ε small enough so that ∂B(wj , ε) intersects both E and F . For 0 < s < ε, choose θ1(s)
and θ2(s) in [0, 2π] so that

z0 + seiθ1(s) ∈ E and z0 + seiθ2(s) ∈ F.

Now recall that
M [E,F : B(0, 1)] = inf{Aρ(B(0, 1)) : ρ is admissible}.

11This follows from the fact that, near z0, the boundary of D looks “flat”; I believe this can be made rigorous by
viewing D as a smooth manifold with boundary.
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Given an admissible ρ, define γs(θ) = z0 + seiθ for θ ∈ [θ1(s), θ2(s)]. We know that, since ρ is
admissible,

1 ≤ `ρ(γs(θ)) =

∫ θ2(s)

θ1(s)

ρ(z0 + seiθ)s dθ

≤ s
√∫ θ2(s)

θ1(s)

1 dθ ·
√∫ θ2(s)

θ1(s)

ρ2(z0 + seiθ) dθ ≤ s
√

2π ·
√∫ θ2(s)

θ1(s)

ρ2(z0 + seiθ) dθ.

Since this holds for all s ∈ (0, ε), we deduce that

Aρ(B(0, 1)) ≥
∫ ε

0

∫ θ2(s)

θ1(s)

ρ2(z + seiθ) dθ ds ≥
∫ ε

0

s · 1

2πs2
ds =∞.

We are done.

33.2 Schwarz-Cristoffel Maps

Many of the theoretical results concerning conformal maps are non-constructive – they tell us when
conformal equivalences exist, but they give no indication as to what those maps are. In general,
this question is difficult. There is an important special case, though, that allows us to construct a
conformal equivalence between the upper half plane H and a particular kind of domain D.

Let D be a polygonal domain whose boundary is simple. By the Riemann Mapping Theorem,
there exists a conformal equivalence f : H → D. Caratheodory-Osgood tells us this extends to
f̃ : Ĥ → D̄. Denote by z1, . . . , zn the corners of the domain D, and for each 1 ≤ j ≤ n set
aj = f−1(zj); without loss of generality we may let a1 < a2 < · · · < an. Further, let αjπ be the
inner angle at the corner zj for each j.

z1

z2

zn

αjπ

DH
f̃

a1 a2 an

The crucial claim is that

f ′(z) = A(z − a1)α1−1 . . . (z − an)αn−1,

where A is some constant and the branches on the functions z 7→ zαj−1 are principal; after this, we
may deduce

f(z) = A

∫ z

1

(ξ − a1)α1−1 . . . (ξ − an)αn−1 dξ +B,

where A and B are constants. (If an =∞, we drop the last term.)

To prove this, without loss let an <∞, and proceed in steps.

Step 1. Define g := f ′′

f ′ . We claim g can be extended to an analytic function on C \ {a1, . . . , an}.
To see this, note by the Schwarz Reflection Principle (Example 29.1), for each 0 ≤ i ≤ n we can
extend f to Fj defined on H ∪H∗∪ (aj , aj+1), where by convention we set a0 = −∞ and an+1 =∞.
In particular, Fj(z) = ρj(f(z̄)), where ρj denotes reflection across the line passing through zj and
zj+1.

In general, these Fj functions are not necessarily identical; this is where g comes in. More
specifically, note that for every j 6= k we have

Fj ◦ F−1
k = (ρj ◦ f ◦ ρ) ◦ (ρk ◦ f ◦ ρ)−1 = ρj ◦ ρ−1

k = ρj ◦ ρk.
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Since the composition of reflections ρj ◦ρk is an affine transformation on C, we deduce Fj ◦F−1
k (z) =

az + b for some constants a and b. Hence Fj = aFk + b, and so

F ′′j
F ′j

=
aF ′′k
aF ′k

=
F ′′k
F ′k

.

Thus the extensions of g along each side and interval agree.

Step 2. We claim that g has simple poles at each aj with residues αj − 1. To prove this, fix j, and
let a = aj and α = αj for ease of typesetting.

H

a

απ
θ

f

Define
ψ(z) :=

[
eiθ(f(z)− f(a))

]1/α
,

where θ is the argument of the ray which bisects the interior angle of the corner f(a) (see above).
Then the image of ψ is the right half plane, so we may extend ψ to B(a, ε) by reflection; such a
reflection is both one-to-one and analytic. Note further that ψ(a) = 0, and since ψ is one-to-one
it must be a simple zero. Thus ψ(z) = (z − a)h(z), where h(z) is a nonzero analytic function on
B(a, ε).

Setting these expressions equal to each other yields

ψα(z) = (z − a)αhα(z) = e−iθ(f(z)− f(a)),

and hence
f(z) = (z − a)αhα(z)eiθ + f(a).

Finally, we may compute f ′(z) and f ′′(z) whenever z ∈ H ∩B(a, ε); doing so yields

f ′′

f ′
=

1

z − α

[
α(α− 1)hα + 2α(hα)′(z − a) + (z − a)2(hα)′′

αhα + (z − a)(hα)′

]
.

Miraculously, this expression is analytic and equals α − 1 at z = a. Thus the pole is simple with
residue α− 1, as desired.

We will finish this example next time.
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34 November 13

We continue with our investigation into Schwarz-Cristoffel maps.

Step 3. We further claim that g(z) → 0 as z → ∞. To prove this, define f1(z) := f(− 1
z ); then

f1 : H → D. Steps 1 and 2 imply that the function g1(z) :=
f ′′1 (z)
f ′1(z) is analytic on C except at some

simple poles. Now a bit of computation reveals that

g1(z) =
f(− 1

z )′′

f(− 1
z )′

=
1
z4 f
′′(− 1

z )− 2
z3 f
′(− 1

z )
1
z2 f
′(− 1

z )
= −2

z
+

1

z2
g

(
−1

z

)
.

Since g1 has at most a simple pole at zero,
∣∣g1(− 1

z )
∣∣ ≤ C |z| for some constant C. Thus g(z) → 0

as z →∞.

Step 4. Now consider the function

h(z) := g(z)−
n∑
j=1

αj − 1

z − aj
.

Step 2 tells us that h is entire, while Step 3 implies it vanishes at ∞; thus, h(z) is identically zero
and

g(z) =

n∑
j=1

αj − 1

z − aj
for all z ∈ H.

Finally, observe that log f ′ is a primitive for g while
∑n
j=1(αj − 1) Log(z− aj) is a primitive for the

right hand side. Since H is convex, we deduce that

log f ′(z) =

n∑
j=1

(αj − 1) Log(z − aj) + C for some constant C,

and hence

f ′(z) = eC
n∏
j=1

(z − aj)αj−1.

We are done.

We now show how to use these maps in practice.

Example 34.1. Let ∆ be the triangle in the complex plane with vertices at z0, z1, and z2; further
let the angles of ∆ at z0 and z1 be α0π and α1π, respectively. Recall by the Riemann Mapping
Theorem there exists some conformal map f sending H to TA. Denote by aj ∈ ∂H the preimage of

zj under the extension f̂ : H → ∆ for each j; we may assume without loss that a0 < a1 < a2.

Now consider the Möbius transform TA sending 0 to a0, 1 to a1, and ∞ to
a2. Observe that TA is an order-preserving Möbius transform fixing the real
axis, and thus it must also fix H. In turn, g := f ◦ TA is also a conformal
map from H to ∆, and its extension ĝ : H → ∆ sends 0 to z0, 1 to z1, and
∞ to z2. From this, we may use Schwarz-Cristoffel to deduce that

g′(z) = Azα0−1(z − 1)α1−1. (34.1) z0 z1

z2

α0π α1π

∆

We finish by describing the explicit structure of g. First remark that g(0) = z0, so integrating
(34.1) yields

g(z) =

∫
[0,z]

g′(ξ) dξ + z0 = A

∫
[0,z]

ξα0−1(ξ − 1)α1−1 dξ + z0.

Furthermore, we have g(1) = z1, so

z1 = g(1) = A

∫
[0,1]

ξα0−1(ξ − 1)α1−1 dξ + z0,

whence

A =
z1 − z0∫

[0,1]
ξα0−1(ξ − 1)α1−1 dξ

.
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All in all,

g(z) = (z1 − z0)

∫
[0,z]

ξα0−1(ξ − 1)α1−1 dξ∫
[0,1]

ξα0−1(ξ − 1)α1−1 dξ
+ z0 .

Example 34.2. Let S be a square with vertices z0, z1, z2, and z3 in clockwise order. Note that,
by the Riemann Mapping Theorem, there exists some conformal mapping f : H → S.

As in the previous example, we may assume (via composition by a suitable Möbius transform)
that the preimages of z0, z1, and z2 are 0, 1, and∞, respectively. The previous example details how
to find f ; it remains to extend this definition to include z3 as well. It seems natural to construct
z3 by reflecting the map f across the diagonal [z0, z2]. However, näıvely this does not work, since
doing so leads to a map with an incorrect domain.

Instead, let D = {x+yi : x > 0, y > 0} be the positive quadrant of the complex plane, so that the
conformal mapping s(z) = z2 sends D to H. Now we may use Schwarz Reflection Principle on the
composition f ◦ s : D → S to obtain a conformal mapping from H to S as desired. In particular,
the preimage of z3 is the reflection of 1 across the imaginary axis, i.e. −1.

34.1 Construction of Entire Functions with Prescribed Poles

We now go in a different direction and talk about other ways to construct functions with various
properties.

The first idea we will discuss is that of the Mittag-Leffler construction. Recall that f has a pole
at z0 of order m if and only if there exists r > 0 such that, on B∗(z0, r), we may write

f(z) =

−1∑
k=−m

ak(z − z0)k +

∞∑
k=0

ak(z − z0)k

as a Laurent series expansion of f about z0. We call the former sum the singular or principal part
and the latter sum the analytic part. Note that the principal part can be written as a polynomial
in 1

1−z0 with zero constant term.

We now ask whether it is possible to construct functions with given principal parts. The answer
is “yes”.

Theorem 34.3 (Mittag-Leffler). Let E = {zj} ⊂ C be a discrete subset of C. For each zj ∈ E,
let qj(z) = pj(

1
1−zj ), where pj is a polynomial with pj(0) = 0, be a given principal part of zj. Then

there exists a meromorphic function f on C with poles exactly on E and principal part qj at zj.

Proof. If E is finite the proof is easy: simply take f(z) to be the sum of all qj(z) terms. If E is
infinite, however, we have to be a bit more careful, because a priori the sum may not converge
normally.

Since E is a discrete subset of C, we may assume

|z1| ≤ |z2| ≤ · · · ≤ |zn| ≤ · · ·

with zn →∞ as n→∞. The idea will be to write

f(z) =

∞∑
j=1

(qj(z)− Tj(z)),

where Tj(z) is an entire “correction” term chosen so that the sum converges normally on C \ E.

For each j with zj 6= 0, observe that the Taylor series of qj centered at z = 0 converges normally
on B(0, |zj |) (why?), so it converges uniformly on B(0, 1

2 |zj |). Hence e.g. there exists Nj > 0 such
that, if Tj consists of the first Nj terms of the Taylor series, then

|qj(z)− Tj(z)| ≤
1

j2
for all z ∈ B(0, 1

2 |zj |). (34.2)

With this, we claim that the series

f(z) := q1(z) +

∞∑
j=2

(qj − Tj)(z)
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converges normally on C. (We ignore the q1 term because it is possible that z1 = 0, in which case
the Taylor series is not well-defined.)

Fix a compact set K, and choose R > 0 such that K ⊂ B(0, R). By assumption, there exist only
finitely many j with |zj | < 2R. In turn, we may write

f(z) = q1(z) +
∑
|zj |<2R

(qj − Tj)(z) +
∑
|zj |≥2R

(qj − Tj)(z).

Since ∣∣∣∣∣∣
∑
|zj |≥2R

(qj − Tj)(z)

∣∣∣∣∣∣ ≤
∑
|zj |≥2R

|(qj − Tj)(z)| ≤
∑
|zj |≥2R

1

j2
<∞,

the tail converges uniformly on B(0, R). The former sum is analytic on B(0, R) \ E with the
prescribed poles and singular parts; sending R→∞ gives us the desired.

34.2 Cotangent Series Representation

Mittag-Leffler is not extremely useful as a black box; instead, we may use its key ideas to construct
series representations of various analytic functions. We illustrate these ideas in the next example,
which is very important in analytic number theory.

Example 34.4. Let f(z) = π cot(πz). Recall/observe that the poles of f occur exactly on Z, and

each pole is simple with residue 1. (The latter can be seen by writing f(z) = π cos(πz)
sin(πz) and appealing

to Example 18.8.) Thus, in the context of Mittag-Leffler, f(z) is meromorphic, E = Z, and qj = 1
z−j

for each j ∈ Z.

When j 6= 0, observe that

qj(z) =
1

z − j =
−1/j

1− z/j = −1

j
+O

(
1

j2

)
;

i.e. the first term of the Taylor expansion of qj about z = 0 is − 1
j . Furthermore, whenever

0 < R < 1
2 |j|, we have ∣∣∣∣ 1

z − j +
1

j

∣∣∣∣ =

∣∣∣∣ z

(z − j)j

∣∣∣∣ ≤ R
1
2 |j| · |j|

=
2R

j2
.

Thus, as in the proof of Mittag-Leffler, we may write

g(z) =
1

z
+
∑
j 6=0

(
1

z − j +
1

j

)
(34.3)

and observe that the sum converges on C \ Z and has the same poles and principal parts as f .

Now observe that (34.3) can be rewritten as

g(z) =
1

z
+

∞∑
j=1

(
1

z − j +
1

z + j

)
=

1

z
+

∞∑
j=1

2z

z2 − j2
,

which again converges normally on C \ Z. In turn, the function

h(z) = π cot(πz)− 1

z
−
∞∑
j=1

2z

z2 − j2

is entire. Next time, we will see that it is bounded and tends to zero as z → 0; this implies that
h(z) ≡ 0, whence

π cot(πz) =
1

z
+

∞∑
j=1

2z

z2 − j2
. (34.4)

Furthermore, we may differentiate both sides of this equality to obtain

π2

sin2(πz)
=
∑
n∈Z

1

(z − n)2
. (34.5)

Both of these formulas are pretty important.
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35 November 15

35.1 Cotangent Series Representation (cont.)

We continue with the example from last time.

Example 35.1. We substantiate the claims from last time, namely that h(z) is bounded and tends
to zero as z → 0. To prove the first claim, first observe that h is one-periodic – that is, h(z+1) = h(z)
for all z – since both π cot(πz) and the sum are. This means that |h| ≤ C for some constant C on
some horizontal strip, say {|y| ≤ 10}.

Now assume |x| ≤ 1
2 and |y| > 10; note that the first assumption is possible due to one-periodicity.

First remark that

|π cot(πz)| = π

∣∣eiπz + e−iπz
∣∣

|eiπz − e−iπz| ≤ π ·
eπ|y| + e−π|y|

eπ|y| − e−π|y| ,

which is bounded since it tends to 1 as |y| → ∞. Furthermore, we may compute∣∣z2 − j2
∣∣ =

∣∣x2 − y2 − j2 + 2ixy
∣∣ ≥ ∣∣x2 − y2 − j2

∣∣
= |y|2 + j2 − |x|2 ≥ |y|2 + j2 − 1

4 ≥ |y|
2

+
(
j − 1

2

)2
.

Therefore, when combined with the bound 2 |z| ≤ 3 |y| (which holds since |x| is small and |y| is
large), we get∣∣∣∣∣∣1z +

∞∑
j=1

2z

z2 − j2

∣∣∣∣∣∣ ≤ 1

10
+

∞∑
j=1

3 |y|
|y|2 + (j − 1

2 )2

≤ 1

10
+ 3

(
|y|

|y|2 + 1
4

+

∫ ∞
1/2

|y|
|y|2 + s2

)

=
1

10
+ 3

(
|y|

|y|2 + 1
4

+ tan−1(2 |y|)
)
≤ 31

10
+

3π

2
<∞.

In turn, the sum is bounded on C, so h is bounded on C; Liouville then implies h is constant.

To determine exactly which constant, we determine the behavior of h as z → 0. Observe that

π cot(πz) =
π cos(πz)

sin(πz)
=
π(1 +O(z2))

πz +O(z3)
=

1

z
+O(z)

and

−1

z
−
∞∑
j=1

2z

z2 − j2
= −1

z
− 2

∞∑
j=1

2

z2 − j2
= −1

z
+O(z),

where the last equality comes from the fact that the inner sum approaches π2

3 as z → 0. Therefore

h(z) =

(
1

z
+O(z)

)
+

(
−1

z
+O(z)

)
= O(z),

and hence h(z)→ 0 as z → 0. In particular, h(0) = 0, so h(z) ≡ 0 identically, and we may conclude
(34.4).

Remark. The equalities (34.4) and (34.5) give rise to some quirky identities. For example, setting
z = 1

2 in (34.5) yields

π2 =
∑
n∈Z

1

( 1
2 − n)2

=
∑
n∈Z

4

(1− 2n)2
=

∞∑
n=0

8

(2n+ 1)2
,

whence
∑∞
n=0

1
(2n+1)2 = π2

8 .
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35.2 Convergent Products

The next construction we will discuss is the so-called Weierstrass construction. Instead of making
sure functions have prescribed poles, we want to make sure these functions have prescribed zeros.
This means that we must multiply entire functions instead of add them, and so a discussion on
convergence of products is in order.

Theorem 35.2. Let {an}∞n=1 ⊂ C be a sequence of complex numbers with
∑∞
n=1 |an| < ∞. Then

the sequence

αN :=

N∏
n=1

(1 + an)

converges to some α ∈ C, denoted
∏∞
n=1(1 + an). Furthermore, α = 0 if and only if an = −1 for

some n.

Proof. We first note that the inequality 1 + x ≤ ex yields∣∣∣∣∣
N∏
n=1

(1 + an)

∣∣∣∣∣ ≤
N∏
n=1

(1 + |an|) ≤
N∏
n=1

e|an| = e
∑N
n=1|an| < e

∑∞
n=1|an| <∞ (35.1)

for all N ≥ 1; this bound will be useful later.

Now let M > N ≥ 1 be arbitrary. Write

|αM − αN | =
∣∣∣∣∣
M∏
n=1

(1 + an)−
N∏
n=1

(1 + an)

∣∣∣∣∣ = |αN |
∣∣∣∣∣

M∏
n=N+1

(1 + an)− 1

∣∣∣∣∣ . (35.2)

But further remark that for any sequence of complex numbers b1, . . . , bk,∣∣∣∣∣
k∏

n=1

(1 + bn)− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

∅ 6=S⊆[k]

∏
j∈S

bj

∣∣∣∣∣∣ ≤
∑

∅6=S⊆[k]

∏
j∈S
|bj | =

k∏
n=1

(1 + |bn|)− 1.

This means that(
M∏

n=N+1

(1 + |an|)− 1

)
≤ e

∑M
n=N+1 an − 1 ≤

(
M∑

n=N+1

|an|
)
e
∑∞
n=1|an|,

where the last inequality is due to the bound |ew − 1| ≤ |w| |ew|, which is a direct consequence of
the Mean Value Theorem. Therefore (35.2) can be upper bounded by

|αN |
(

M∑
n=N+1

|an|
)
e
∑∞
n=1|an|

(35.1)

≤ e2
∑∞
n=1|an|

M∑
n=N+1

|an| ,

which implies that {αn}n≥1 is Cauchy and thus convergent. This completes the first part of the
theorem.

We now move to the second part. If aN = −1 for some N , then the product is clearly zero,
since αn = 0 for all n ≥ N . Now assume an 6= −1 for any n ∈ N. This means we may define
βN :=

∏N
n=1(1 + an)−1 for each N ∈ N.

We claim that the sum
∑∞
n=1

|an|
|1+an| converges. Indeed, note that absolute convergence implies

an → 0, so there exists M ≥ 1 such that |am| ≤ 1
2 for all m ≥ M . Therefore |1 + am| ≥ 1

2 for all
m ≥M , which implies

∞∑
n=1

|an|
|1 + an|

≤
M−1∑
n=1

|an|
|1 + an|

+
1

2

∞∑
n=M

|an| <∞,

as requested.

Therefore the sequence

βN =

N∏
n=1

(
1− an

1 + an

)
converges to some β ∈ C.

But 1 = αNβN for all N , so sending N →∞ yields 1 = αβ. In particular, α 6= 0.
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We remark that if the an terms are actually functions of x, and the convergence of the series∑∞
n=1 |an(x)| is normal/uniform, then the convergence of the product

∏∞
n=1(1 + an(x)) is also

normal/uniform. This yields the following corollary.

Corollary 35.3. Suppose {fn} is a sequence of analytic functions on some domain D. If the sum∑∞
n=1 |fn(z)− 1| converges normally on D, then the product

∏∞
n=1 |fn(z)| converges normally to an

analytic function f on D. Moreover, f(z0) = 0 if and only if fn(z0) = 0 for some n.

35.3 Construction of Entire Functions with Prescribed Zeroes

We now lead into the inquiry posed at the beginning of this section. Before diving into the general
case, we present an important example in which the näıve construction works.

Example 35.4. Consider the function f(z) = sin(πz); recall that f has simple zeros on Z. With
this in mind, we may define

g(z) := z

∞∏
n=1

(
1− z2

n2

)
.

Observe that, on any compact set K ⊂ C, we may choose CK > 0 such that |z| ≤ CK for all z ∈ K,
which then implies

∞∑
n=1

∣∣∣∣ z2

n2

∣∣∣∣ ≤ C2
K

∞∑
n=1

1

n2
<∞.

Thus the product g(z) is entire and has simple zeros on Z.

Since both g(z) and sin(πz) have simple zeros on Z, the quotient sin(πz)
g(z) is entire and nonvanishing.

Thus, log( sin(πz)
g(z) ) has a branch on C, which means there exists some entire function h(z) with

sin(πz) = eh(z)z

∞∏
n=1

(
1− z2

n2

)
.

What, exactly, is h(z)? To resolve this, we exploit (34.4) in a clever way. Write

π cot(πz) =
[sin(πz)]′

sin(πz)
=

[
eh(z)z

∏∞
n=1(1− z2

n2 )
]′

eh(z)z
∏∞
n=1(1− z2

n2 )
= h(z) +

1

z
+

[∏∞
n=1(1− z2

n2 )
]′

∏∞
n=1(1− z2

n2 )
,

where in the last step we use the fact that e.g. (fg)′

fg = f ′

f + g′

g . Now, since the product
∏∞
n=1(1− z2

n2 )
converges normally, we may write[∏∞

n=1(1− z2

n2 )
]′

∏∞
n=1(1− z2

n2 )
= lim
N→∞

[∏N
n=1(1− z2

n2 )
]′

∏N
n=1(1− z2

n2 )

= lim
N→∞

N∑
n=1

−2z/n2

1− z2/n2
=

∞∑
n=1

2z

z2 − n2
.

Therefore

π cot(πz) = h′(z) +
1

z
+

∞∑
n=1

2z

z2 − n2

(34.4)
= h′(z) + π cot(πz),

so h′(z) ≡ 0 and h is a constant.

Finally, note that taking the equality sin(πz) = ehz
∏∞
n=1(1− z2

n2 ), dividing both sides by z, and
sending z → 0 yields π = eh. Thus, we obtain the product representation

sin(πz) = π

∞∏
n=1

(
1− z2

n2

)
,

which is Euler’s Formula.

It is finally time to unveil the Weierstrass construction.
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Theorem 35.5 (Weierstrass). Let E = {zj}∞j=1 ⊂ C be a discrete set. Assume that for all zj ∈ E,
a multiplicity mj is given. Then there exists an entire function F with zero set E and multiplicities
mj at zj. Furthermore, if F and G are two such functions, then there exists some entire h with
F = ehG.

Proof. Write the elements of the set E as |z1| ≤ |z2| ≤ · · · , where we repeat each zj exactly mj

times. Let ν be the integer such that z1 = · · · = zν = 0 but zν+1 6= 0. We would like the product

F (z) = zν
∞∏

n=ν+1

(
1− z

zn

)
to work; unfortunately, as in the proof of Mittag-Leffler, this product does not necessarily con-
verge. Thus, we need to insert some correction terms, and we will do this via multiplication by an
exponential. This way, we will not add any extra zeros to our product.

Instead, let

F (z) = zν
∞∏

n=ν+1

fn(z), where fn(z) =

(
1− z

zn

)
exp

[
Tn∑
`=1

1

`

(
z

z`

)n]
,

where the series is the (beginning of the) Taylor expansion of −Log(1− z
zn

). Note that∣∣∣∣∣
(

1− z

zn

)
exp

[
Tn∑
`=1

1

`

(
z

zn

)`]
− 1

∣∣∣∣∣ =

∣∣∣∣∣exp

[
Log

(
1− z

zn

)
+

Tn∑
`=1

1

`

(
z

zn

)`]
− 1

∣∣∣∣∣
=

∣∣∣∣∣exp

[
−

∞∑
`=Tn+1

1

`

(
z

zn

)`]
− 1

∣∣∣∣∣ .
Now the inequality |ew − 1| ≤ |w| e|w| implies that, whenever |z| < 1

2 |zn| and Tn is sufficiently large,
the above expression can be upper bounded by∣∣∣∣∣

∞∑
`=Tn+1

1

`

(
z

zn

)`∣∣∣∣∣ exp

(∣∣∣∣∣
∞∑

`=Tn+1

1

`

(
z

zn

)`∣∣∣∣∣
)
≤ 1

n2
· e

∑∞
`=1

1

`2` =
C

n2

for some constant C. Therefore, as in the proof of Mittag-Leffler,
∑∞
n=1 |fn(z)− 1| converges nor-

mally on C, and hence the product converges normally on C as well. Citing Proposition 35.3 yields
the first part of the theorem.

For the second part of the theorem, use again the fact that F
G is entire and nonvanishing, which

implies that log F
G has a branch.
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36 November 18

36.1 Construction of Entire Functions with Prescribed Zeroes (cont.)

We start with an example showing how the correction terms in Weierstrass work; this example will
be important later.

Example 36.1. We will construct an entire function with simple zeros on −N = {−1,−2, . . .}.
Our first guess is that f(z) =

∏∞
n=1(1 + z

n ) is the desired function; however, this product does
not converge normally since

∑∞
n=1

1
n diverges. Instead, we add a correction term and set

f(z) :=

∞∏
n=1

(
1 +

z

n

)
e−z/n.

We claim that this is well-defined – that is, the product converges normally to a function with simple
zeroes on −N. To prove this, let fn(z) := (1 + z

n )e−z/n. In order to estimate fn(z)− 1, consider the
function h(w) := (1 + w)ew. Then

|fn(z)− 1| =
∣∣∣h( z

n

)
− h(0)

∣∣∣ =

∣∣∣∣∣
∫ z/n

0

h′(w) dw

∣∣∣∣∣ ≤
∫ z/n

0

|wew| dw

≤
∣∣∣ z
n

∣∣∣ · max
[0,z/n]

|w| e|w| dw =
|z|2
n2

e|z|/n ≤ |z|2 e|z| · 1

n2
.

The function z 7→ |z|2 e|z| is bounded on compact sets, and so the sum
∑∞
n=1 |fn(z)− 1| converges

normally. This proves the claim.

It turns out that Mittag-Leffler and Weierstrass are valid on any open set D. We present an
example here.

Example 36.2. Let {wj}∞j=2 be a sequence of complex numbers with norm 1. Find a meromorphic

function on B(0, 1) with simple poles on zj := (1− 1
j )wj having residue 1.

As before, the näıve construction f(z) :=
∑∞
j=2

1
z−zj does not work because the sum does not

converge uniformly. Thus, we will need to correct. To do this, write

1

z − zj
=

1

z − wj +
wj
j

=
1

z − wj
· 1

1 +
wj

j(z−wj)
.

Whenever, say,
∣∣∣ wj
j(z−wj)

∣∣∣ ≤ 1
2 , this may be expanded to yield

1

z − wj

(
1− wj

j(z − wj)
+O

(
1

j2(z − wj)2

))
.

Thus, whenever j ≥ 2 |z − wj |−1
, we have the asymptotic

fj(z) :=
1

z − zj
− 1

z − wj
+

wj
j2(z − wj)2

= O

(
1

j2(z − wj)2

)
.

It turns out this is sufficient for the sum
∑∞
j=2 fj(z) to converge normally on B(0, 1) \ {zj}∞j=2.

Indeed, if K ⊂ B(0, 1) is compact, there exists ε > 0 with |z| < 1− ε. Thus |z − wj | > ε, and so for
j ≥ 2

ε the terms in the tail bound like Cε
j2 and sum to something finite.

36.2 Gamma Function

Let G(z) :=
∏∞
n=1(1 + z

n )e−z/n be the function from Example 36.1. We know already that G is
entire with simple poles on −N. We will spend the rest of the day analyzing the properties of G
and some related functions.

First recall that

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
= πz

∞∏
n=1

(
1 +

z

n

)
e−z/n

(
1− z

n

)
ez/n = πzG(z)G(−z). (36.1)
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This will be useful later.

Now remark that G(z− 1) has simple zeroes on −N∪{0}. However, we know zG(z) does as well,
so there exists some entire function γ(z) with G(z − 1) = zG(z)eγ(z).

To compute γ, first remark that G(0) = 1, so G(1)eγ(1) = G(0) = 1 as well. Hence

γ(1) = ln

[
1

G(1)

]
= ln

[ ∞∏
n=1

1

1 + 1
n

e1/n

]
= lim
N→∞

ln

[
N∏
n=1

n

n+ 1
e1/n

]

= lim
N→∞

ln

[
exp

(
N∑
n=1

1

n

)
· 1

n+ 1

]
= lim
N→∞

N∑
n=1

1

n
− ln(N + 1).

This is a constant γ, known in the literature as the Euler-Mascheroni constant.

Lemma 36.3. For all z, γ(z) ≡ γ(1) = γ. That is, γ(z) is a constant.

Proof. Fix z /∈ Z. Observe that

G′(z)
G(z)

=

[∏∞
n=1(1 + z

n )e−z/n
]′∏∞

n=1(1 + z
n )e−z/n

=

∞∑
n=1

[
(1 + z

n )e−z/n
]′

(1 + z
n )e−z/n

=

∞∑
n=1

(
1
ne
−z/n

(1 + z
n )e−z/n

−
1
n (1 + z

n )e−z/n

(1 + z
n )e−z/n

)
=

∞∑
n=1

(
1

z + n
− 1

n

)
.

Thus G′(z−1)
G(z−1) =

∑∞
n=1( 1

z−1+n − 1
n ). But on the other hand, we may use the recursion G(z − 1) =

zG(z)eγ(z) to yield

G′(z − 1)

G(z − 1)
=

(zG(z)eγ(z))′

zG(z)eγ(z)
=

1

z
+ γ′(z) +

∞∑
n=1

(
1

z + n
− 1

n

)
.

Setting these equal to each other and combining terms yields γ′(z) = 0, so γ(z) is a constant.

This means that G(z − 1) = zG(z)eγ for all z, which leads into an important definition.

Definition 36.4. The Gamma function Γ : C \ {0,−1, . . .} → C is defined via

Γ(z) :=
1

zG(z)eγz
.

This definition is somewhat unnatural, but it has the benefit of being entirely self-contained. It
also allows us to deduce some properties of Γ quite easily.

• Γ(z) has simple poles on the set −N ∪ {0}.
• Γ(z) has no zeros, since zG(z)eγ(z) is never equal to infinity.

• Via the recursion for G, we can deduce

Γ(z + 1) =
1

(z + 1)G(z + 1)eγzeγ
=

1

G(z)eγ(z)
= zΓ(z).

Combining this with Γ(1) = 1 yields the relation Γ(n+1) = n! whenever n is a positive integer.
Thus, in some sense Γ is an analytic continuation of the factorial function to C \ {0,−1, . . .}.
• By turning (36.1) into a relationship concerning Γ, we get

sin(πz) =
−π

zΓ(z)Γ(−z) =
π

Γ(z)Γ(1− z) . (36.2)

To finish today, we prove an alternate characterization of Γ in certain situations.

Proposition 36.5. For every z ∈ C with <(z) > 0, we have

Γ(z) =

∫ ∞
0

tz−1e−t dt.
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Proof. First note that ∫ ∞
0

tz−1e−t dt = lim
n→∞

∫ n

0

tz−1

(
1− t

n

)n
dt.

One way to see this is to note that χ[0,n](t)(1− t
n )n ≤ e−t for all n, at which point we may appeal to

the Dominated Convergence Theorem. (For an alternate explanation not relying on measure theory,
see Palka.)

Now focus on the inner integral. By making the substitution t = ns, we see that∫ n

0

tz−1

(
1− t

n

)n
dt =

∫ 1

0

nzsz−1(1− s)n ds,

which, after n applications of Integration by Parts, equals

nz · n!

z(z + 1) . . . (z + n− 1)

∫ 1

0

sz+n−1 ds =
nz · n!

z(z + 1) . . . (z + n)
.

Now we unpack the product and write

nz · n!

z(z + 1) . . . (z + n)
=
nz

z

n∏
k=1

k

z + k
= ez lnnz

n∏
k=1

1

1 + z
k

=
ez lnn

z

(
n∏
k=1

1

(z + k
n )e−z/k

)(
n∏
k=1

e−z/k
)

=

n∏
k=1

1

(z + k
n )e−z/k

· exp

(
z

(
lnn−

n∑
k=1

1

k

))
.

Finally, we see the fruits of our labor: as n tends to infinity, the product converges to 1
zG(z) , whle

the sum inside the exponential converges to −γz. Thus,

lim
n→∞

∫ n

0

tz−1

(
1− t

n

)n
dt =

1

zG(z)eγz
= Γ(z),

and we are done.
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37 November 20

Did not attend lecture today for personal reasons.

37.1 Riemann Zeta Function

Today will revolve around the following function.

Definition 37.1. For <(z) > 1, the Riemann zeta function is defined as

ζ(z) :=

∞∑
n=1

1

nz
.

Observe that the <(z) > 1 condition is necessary since

|nz| =
∣∣ez lnn

∣∣ = e<(z lnn) = n<(z);

in turn, the series is summable precisely on the set {z : <(z) > 1}.
The zeta function has surprising connections to number theory, in part because it has a nice

representation in terms of primes.

Proposition 37.2. For every complex number z with <(z) > 1,

ζ(z) =
∏

p prime

(1− p−z)−1.

Proof. Fix a prime P . We claim that∏
p prime
p≤P

(1− p−z)−1 =
∏

p prime
p≤P

(1 + p−z + p−2z + · · · )

=

P∑
n=1

1

nz
+O

(∑
n>P

∣∣∣∣ 1

nz

∣∣∣∣
)
.

The first line is straightforward. To see the second line, observe that, by unique prime factorization,
each term 1

nz in the expansion of the first line appears at most once. Furthermore, since the product
runs over all primes at most P , every integer from 1 to P appears in this expansion. Combining
both observations proves the claim, and the proposition follows by sending P to ∞.

This factorization highlights two facts about the primes and the zeta function.

• For any z with <(z) > 1, ζ(z) 6= 0. This is because none of the terms (1 − p−z)−1 in the
product vanish.

• Conversely, plugging in z = 1 and inverting both sides yields
∏
p prime (1− 1

p ) = 0. Notice that

we have a product of nonzero numbers that equals zero; it follows that
∑
p prime

1
p diverges.

37.2 Analytic Continuation of Zeta

As the title suggests, we now attempt to extend ζ to (almost) all of C. Recall first that, through
the substitution t 7→ nt

Γ(z) =

∫ ∞
0

e−ttz−1 dt = nz
∫ ∞

0

e−nttz−1 dt.

Dividing both sides by nz yields n−z =
∫∞

0
e−nttz−1. Summing over all n and appealing to the

Dominated Convergence Theorem then gives

ζ(z)Γ(z) =

∞∑
n=1

∫ ∞
0

e−nttz−1 dt =

∫ ∞
0

1

et − 1
tz−1 dt. (37.1)

We will obtain an analytic continuation of ζ(z) by studying this integral.
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Remark that, since 1
ez−1 has a simple pole at z = 0 with residue 1, 1

et−1 − 1
t is bounded near zero.

This means we may write

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt+

∫ 1

0

1

t
tz−1 dt+

∫ ∞
1

tz−1

et − 1
dt =: I + II + III.

Note that I is analytic on <(z) > 0 since the integral converges normally there (this is due to the
previous remark). Furthermore, II equals 1

z−1 via a simple computation. Finally, note that the

integral III is entire since the integral converges normally on C. Thus, since 1
Γ(z) is entire, the

expansion

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt+

1

z − 1
+

∫ ∞
1

tz−1

et − 1
dt

yields an analytic continuation of ζ(z) to the set {z : <(z) > 0, z 6= 1}; the equality Γ(1) = 1 implies
that ζ(z) has a simple pole at 1 with residue 1. Furthermore, note that whenever 0 < <(z) < 1,

1
z−1 = −

∫∞
1
tz−2 dt. Hence

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt−

∫ ∞
1

1

t
tz−1 dt+

∫ ∞
1

tz−1

et − 1
dt

=

∫ ∞
0

(
1

et − 1
− 1

t

)
tz−1 dt

whenever 0 < <(z) < 1.

We can repeat this argument by pulling out one more term of the Laurent series of 1
et−1 about

t = 0. Indeed, remark that
1

et − 1
=

1

t
− 1

2
+O(t) as t→ 0, (37.2)

which means we may perform similar computations and write

ζ(z)Γ(z) =

∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt− 1

2

∫ 1

0

tz−1 dt+

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt

=

∫ 1

0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt− 1

2z
+

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1 dt.

This gives an analytic continuation of ζ(z) to −1 < <(z) < 1; in particular, the O(t) term in
(37.2) allows us to step down to −1 < <(z) in the first integral. (Notice that the singularity at
z = 0 is removable since Γ has a simple pole at z = 0.) Finally, on −1 < <(z) < 0, we may write
− 1

2z = 1
2

∫∞
1
tz−1 dt; substituting this into the above equality yields

ζ(z)Γ(z) =

∫ ∞
0

(
1

et − 1
− 1

t
+

1

2

)
tz−1 dt whenever − 1 < <(z) < 0. (37.3)

One might suspect that we can repeat this ad infinitum to get analytic continuations of ζ to
almost all of C, but it turns out we can do better. Note the surprising computation

1

et − 1
+

1

2
=

1

2
· e

t + 1

et − 1
=
i

2
cot

(
it

2

)
=

1

t
+ 2t

∞∑
n=1

1

t2 + 4π2n2
,

where the last line follows from (34.4) and some algebraic manipulation. Thus, whenever −1 <
<(z) < 0, (37.3) yields12

ζ(z)Γ(z) = 2

∫ ∞
0

∞∑
n=1

tz

t2 + 4π2n2
dt = 2

∞∑
n=1

∫ ∞
0

tz

t2 + 4π2n2
dt

= 2

∞∑
n=1

(2πn)z−1

∫ ∞
0

tz

t2 + 1
dt = 2(2π)z−1ζ(1− z)

∫ ∞
0

tz

t2 + 1
dt.

12The observant analyst may question why we may swap the order of the integral and sum here. This involves some
Dominated Convergence similar to that of (37.1); in fact, the steps that follow show one way to do the bounding.
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Now recall that way back in Section 21.1.1 we showed that∫ ∞
0

tx

t2 + 1
dt =

π

2 cos(π2x)
whenever − 1 < x < 0.

This equality extends to −1 < <(z) < 0 since both sides are analytic on that domain. Therefore
the previous equality rewrites as

ζ(z)Γ(z) = (2π)z−1ζ(1− z) π

cos(π2 z)
.

Finally, recall from (36.2) that

Γ(z) =
π

Γ(1− z) sin(πz)
=

π

Γ(1− z) · 2 sin(π2 z) cos(π2 z)
.

Thus, substituting and clearing denominators finally yields the equality

ζ(z) = 2(2π)z−1Γ(1− z)ζ(1− z) sin(π2 z)

whenever −1 < <(z) < 0, which is known as Riemann’s functional equation.

In particular, note that the right hand side is analytic on the set {z : <(z) < 0}, meaning that it
extends ζ(z) analytically to C \ {1}, with a simple pole of residue 1 at z = 1.

37.3 Zeros of the Zeta Function

We end today with a quick discussion on the zeros of ζ(z).

Since Γ(1− z) has simple poles at z = 1, 2, 3, . . ., ζ(1− z) sin(π2 z) has simple zeros at z = 2, 3, . . .,
stemming from the fact that ζ(z) is analytic and nonzero on {z : <(z) > 1}. But now observe that
sin(π2 z) = 0 whenever z is an integer integer, so the zeros of ζ(1− z) must be the zeros that remain,
i.e. z = 3, 5, 7, . . .. Thus ζ(z) has simple zeros at z = −2,−4,−6, . . .. The function ζ(z) has no
other zeros outside {z : 0 ≤ <(z) ≤ 1}.

It is natural to ask, then, what the zeros of ζ(z) are inside this strip. The answer is, surprisingly
(or unsurprisingly!) unknown. The Riemann Hypothesis asserts that the zeros of ζ(z) inside this
strip all lie on the line {z : <(z) = 1

2}. We know that there are infinitely many zeros lying on this
line, and that there are no zeros on the lines {z : <(z) = 0} and {z : <(z) = 1}. But not much is
known otherwise, which has led to one of the biggest unsolved problems in mathematics.
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38 November 22

38.1 Approximation by Polynomials

Let K ⊂ C be a compact set. Recall that we can rig the space of continuous functions C(K) on K
with the metric d(f, g) := supz∈K |f(z)− g(z)|; this allows us to possibly approximate functions in
C(K) with functions from some “nicer” class.

For example, let P (K) be the closure of the subspace of polynomials in C(K). Is P (K) = C(K)?
Unfortunately, if K◦ is nonempty, the answer is no: we know via the Weierstrass Approximation
Theorem (Theorem 10.6) that the uniform limit of analytic functions on the open set K◦ must also
be analytic.

We may then ask for something slightly weaker: is

P (K) = {f ∈ C(K) : f analytic on K◦}? (38.1)

Unfortunately, this is not always true either.

Example 38.1. Take K = ∂B(0, 1). Recal that for any polynomial p(z),
∫
K
p(z) dz = 0. Hence, if

{pn}∞n=1 is a sequence of polynomials converging to some function f , we must have
∫
K
f(z) dz = 0

as well. This means that the function f(z) = 1
z – which has integral 2πi – cannot be approximated

uniformly by polynomials.

It turns out that (38.1) is true whenever C \ K is connected; this was proven by Mergelyan in
1951. However, the proof is beyond the scope of this course. We instead opt to prove something
weaker.

Theorem 38.2 (Runge). Let K be a compact set with C \K connected. If f is analytic on an open
set containing K, then there exists a sequence {pn}∞n=1 of polynomials converging to f uniformly on
K.

Proof. The proof proceeds in steps.

Step 1: P (K) is an algebra. That is, if f and g are elements of P (K), then so are f + g, fg, and
αf , where α ∈ C. The first and last results are easy. For the second, fix sequences of polynomials
pn → f and qn → g. Observe that, by uniformity, d(pn, f) ≤ 1 for all n sufficiently large, implying
|pn| ≤ |f |+ 1 for all n sufficiently large. Now use the Triangle Inequality to write

|fg − pnqn| ≤ |f − pn| |g|+ |g − qn| |pn| ≤ |f − pn| |g|+ |g − qn| (|f |+ 1),

which tends to zero uniformly as n→∞.

Step 2: Special Rational Functions are in P (K). Define the set

S := {a /∈ K : 1
z−a ∈ P (K)}.

We claim that S = C \K; that is, every function of the form 1
z−a for a /∈ K can be approximated

by polynomials. This part itself can be divided into a few substeps.

Step 2.1. We first show that if |a| > M := supz∈K |z|, then a ∈ S. Indeed, note that

1

z − a =
1

−a ·
1

1− z
a

= −1

a

∑
n≥0

(z
a

)n
.

The sequence of partial sums is thus a sequence of polynomials which converges uniformly on K.

Step 2.2. We now claim that if a ∈ S and if

|b− a| < d(a,K), (38.2)

then b ∈ S. We start analogously to the previous step by writing

1

z − b =
1

(z − a)− (b− a)
=

1

z − a ·
1

1− b−a
z−a

=
1

z − a
∑
n≥0

(
b− a
z − a

)n
.
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The sequence of partial sums again converges uniformly on K. Thus, given ε > 0, there exists some
N such that ∣∣∣∣∣ 1

z − a −
N∑
n=0

(b− a)n

(z − a)n+1︸ ︷︷ ︸
(∗)

∣∣∣∣∣ < ε.

But recall that P (K) is an algebra, so by Step 2.1, 1
(z−a)n+1 is in P (K) for each n. Thus (∗) is also

in P (K), and the result follows by the Triangle Inequality and sending ε to zero.

Step 2.3. The previous step implies that S is open. Furthermore, the “uniform” bound (38.2)

yields that (C \K) \ S is open too; it tells us that, if b is not in C \K, then B(b, d(b,K)
2 ) is not a

subset of C\K. Thus, since C\K is connected and S is nonempty, (C\K)\K = ∅. This completes
Step 2.

Step 3: More Rational Functions are in P (K). We now claim that all rational functions with
poles outside K are in P (K). But this is easy: write any such function as the product of rational
functions from Step 2 and use the fact that P (K) is an algebra.

Step 4: Approximation by Rational Functions. We now show that any function f which is analytic
on an open set containing K may be approximated by rational functions with poles outside K. This
will complete the proof.

Let D be the open set on which f is analytic. We first claim that there exists a cycle σ ∈ D\K such
that σ is 0-homologous on D and n(σ, z) = 1 for any z ∈ K. To prove this, set 0 < δ < 1

1000d(K, ∂D),
and tile the plane with squares of side length δ. Now consider the squares which intersect K, and
define σ to be the counterclockwise boundary of these squares after canceling common edges. This
works.

D

K

σ

Now Cauchy’s Integral Formula yields

f(z) =
1

2πi

∫
σ

f(w)

z − w dw. (38.3)

As a function of w, f(w)
z−w is singular outside K. It suffices to prove that, for any smooth γ with

|γ| ∈ D \K,
∫
γ
f(w)
z−w dw can be approximated by rational functions with poles outside D. To prove

this, we need a lemma concerning Riemann integration.

Lemma 38.3. Suppose g : R → R satisfies |g′(t)| ≤ C on [a, b]. Then for all ε > 0, there exists
δ = δ(C, ε) > 0 so that, for any partition a = t1 < · · · < tn = b of [a, b] with mesh less than δ,∣∣∣∣∣

∫ b

a

g(t) dt−
n∑
k=1

g(tk)(tk − tk−1)

∣∣∣∣∣ < ε.

Since γ can be represented as a function from [a, b]→ D, (38.3) rewrites as

f(z) =

∫ b

a

f(γ(t))γ′(t)
γ(t)− z dt.
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Let g(t) be the integrand. Then g′(t) is bounded by a constant C depending only on d(|γ| ,K), γ,
and f ; in particular, it does not depend on z. Thus the lemma guarantees a partition a = t1 <
· · · < tn = b satisfying∣∣∣∣∣

∫ b

a

f(γ(t))γ′(t)
γ(t)− z dt−

n∑
k=1

f(γ(tk))γ′(tk)

γ(tk)− z (tk − tk−1)

∣∣∣∣∣ < ε.

Thus we have approximated the integral by some rational function with poles outside K, which
completes Step 4 and hence the proof.

To finish today, we present a nontrivial application of Runge.

Example 38.4. We will show there exists a sequence of polynomials {pn}∞n=1 such that

lim
n→∞

pn(z) =

{
1 if <(z) > 0,

0 if <(z) ≤ 0.

To do this, let

An := {x+ yi : −n ≤ x ≤ 1
n , |y| ≤ n} and Bn := {x+ yi : 2

n ≤ x ≤ n, |y| ≤ n},

and set Kn := An ∪Bn. Then Kn is a compact set with C \Kn connected.

Since An and Bn are disjoint closed sets, for each n there exists some analytic function fn which
equals 1 on a 1

100n -neighborhood of Bn and which equals 0 on a 1
100n -neighborhood of An. Then fn

is analytic on a 1
100n -neighborhood of Kn, so there exists some polynomial pn with |fn − pn| < 1

n
on Kn. Now send n to ∞.
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39 December 2

39.1 Harmonic Functions: the Basics

The remainder of the course will be devoted to so-called harmonic functions, which are, in some
sense, a real analogue of analytic functions.

Definition 39.1. Fix an open set D, and let h : D → C be a function with continuous second order
partial derivatives.13

1. The Laplacian of h is defined via
∆h := hxx + hyy. (39.1)

2. We say h is harmonic on D if ∆h = 0 on D.

Example 39.2. The function h(x, y) = log(x2 + y2) is harmonic on C. This is because

hx =
2x

x2 + y2
and hence hxx =

2(y2 − x2)

(x2 + y2)2
.

Similarly hyy = 2(x2−y2)
(x2+y2)2 , and so hxx + hyy = 0.

Example 39.3. The function h(x, y) = x is harmonic since both second partial derivatives are
zero. However, h(x, y)2 = x2 is not harmonic, since ∆h = 2. This tells us that the product of two
harmonic functions is not necessarily harmonic, which is different from what occurs in the analytic
case.

The connection between analytic and harmonic functions is displayed in the next theorem.

Theorem 39.4. Let D ⊂ C be a domain.

1. If f is analytic on D, then <(f) and =(f) are harmonic on D.

2. If h is harmonic on D, and if D is simply connected, then there exists some analytic function
f on D satisfying h = <(f). Moreover, f is unique up to an imaginary constant.

Proof. We begin with the proof of the first part. First suppose f = u + iv for some real functions
u and v. Since f is analytic, both u and v are C∞, which means that e.g. (vx)y = (vy)x. Therefore

uxx = (ux)x = (vy)x = (vx)y = (−uy)y = −uyy,

and hence ∆u = 0. Analogously we deduce ∆v = 0, which completes the proof of the first part.

Now we proceed with the second part. First we show uniqueness. Let h = <(f) for some analytic
function f . This means f = h+ik for some (harmonic) function k, so the Cauchy-Riemann equations
tell us that

f ′ = hx + ikx = hx − ihy.
This means that f ′ is uniquely determined by h, so f is as well, up to some constant. This constant
must be imaginary.

Conversely, fix h harmonic, and define g := hx − ihy. Then g has continuous partial derivatives,
and furthermore

(<(g))x = hxx = −hyy = (=(g))y.

Analogously, (<(g))y = −(=(g))x, and so g is analytic. Thus, since g is simply connected, Proposi-
tion 17.6 tells us g has a primitive on D, say F = u+ iv.

Finally, observe that

hx − ihy = g = F ′ = ux − iuy, so ∇(u− h) = 0.

This means that u = h+ c for some c ∈ R, whence h = <(F − c).

The next example shows that the assumption that D is simply connected is necessary.

13In what follows, this assumption is not necessary, but it turns out that there is no harm in assuming this beforehand.
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Example 39.5. Let f(z) = log |z| = 1
2 log(|z|2). Example 39.2 implies that f is a harmonic function

on C \ {0}. However, log |z| = <(Log z), and Log z is the only such function by uniqueness (which
does not require that D be simply connected!); this is a contradiction because Log is not harmonic
on C \ {0}.

Example 39.3 showed that the product of two harmonic functions need not be harmonic. The
next proposition (whose proof we omit as an exercise) establishes necessary and sufficient conditions
for this to hold.

Proposition 39.6. Suppose h and k are harmonic and nonconstant on a simply connected domain
D. Then hk is harmonic on D if and only if f := h+ ick is analytic for some c ∈ R.

Finally, before continuing on to some more involved properties of harmonic functions, we record
a few corollaries of Theorem 39.4.

Corollary 39.7. Let D1, and D2 be open sets, and suppose h : D2 → R is harmonic.

1. The function h is C∞ on D2.

2. If f : D1 → D2 is analytic, then the function h ◦ f : D1 → R is harmonic.

Proof. Since being analytic or harmonic is a strictly local property, it suffices to show the result
when D is an open ball.

For the first part, sinceD is simply connected, there exists some analytic function f with h = <(f).
But f is C∞, and hence by definition h is also C∞.

For the second part, once again write h = <(g) for some analytic function g. Then g◦f is analytic
and h ◦ f = <(g ◦ f), so h ◦ f is harmonic.

39.2 Extensions of Analytic Results to Harmonic Functions

Since harmonic functions are so closely related to analytic functions, we might expect that many of
the same results port over. It turns out this is mostly the case.

First recall that, if f and g are analytic functions on D with f = g on some nondiscrete set
E ⊂ D, then f = g on D. Unfortunately, this same result does not port over to harmonic functions.

Example 39.8. Let h(x, y) = ex sin y = =(ex+yi). Then h is harmonic on C. However, h is zero
on the real axis yet is not identically zero.

Despite this, a slightly weaker statement is fortunately true.

Corollary 39.9. Let h and k be harmonic functions on some simply connected domain D. Suppose
that h = k on some open ball in D. Then h = k in D.

Proof. Note that h = k if and only if h − k = 0, so we may assume without loss that k = 0. This
means that h = 0 on some open ball B contained in D. Since D is simply connected, there exists
some analytic function g on D with h = <(g). Hence

g′(z) = hx(z)− ihy(z) = 0− i · 0 = 0 for all z ∈ B,
so g′(z) = 0 in D. This implies that g is equal to some constant on D, and this constant must be
purely imaginary.

Our next result extends the Cauchy Integral Formula to harmonic functions.

Theorem 39.10 (Mean Value Property). If h is harmonic on an open set D and B(z0, r) ⊂ D,
then

h(z0) =
1

2π

∫ 2π

0

h(z0 + reiθ) dθ. (39.2)

Proof. Since B(z0, r) ⊂ D, there exists r0 > r with B(z0, r0) ⊂ D; in turn, we may write h = <(f)
for some f analytic on B(z0, r0). Now Cauchy’s Integral Formula applied to f yields

f(z0) =
1

2πi

∫
∂B(z0,r)

f(w)

w − z0
dw =

1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
· rieiθ dθ

=
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.
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Taking the real part of both sides yields (39.2).

Our third result shows that the Maximum Modulus Principle ports over to harmonic functions
as well. In fact, this result is stronger than the one for analytic functions, since we no longer have
to worry about taking a modulus.

Theorem 39.11 (Maximum Modulus for Harmonic Functions). Let h be harmonic on a domain
D.

1. If h has a local maximum or local minimum in D, then h is constant on D.

2. Suppose further that D is bounded and that h is continuous on D. Then h obtains its maximum
and minimum on ∂D.

Proof. The proof behaves exactly the same as the proof of the Maximum Modulus Principle (The-
orem 9.3); in particular, using the language of the remark which follows it, h and −h are both
(sub)harmonic.

The Maximum Modulus Principle allows us to strengthen the Mean Value Property somewhat.

Corollary 39.12. Suppose h and k are harmonic on a bounded domain D and continuous on D.
If h = k on ∂D, then h = k on all of D.

Proof. The function f := h − k is identically zero on ∂D, and so by Theorem 39.11, it must be
identically zero on D as well.

Finally, we port over Liouville to harmonic functions. Once again, we may strengthen the corre-
sponding result from analytic functions a bit.

Theorem 39.13 (Liouville for Harmonic Functions). Let h be harmonic on C and either bounded
above or bounded below. Then h is constant.

In particular, we allow h to be bounded above but not bounded below, for instance.

Proof. Suppose h is bounded above by some constant M ; the proof for bounded below is similar.
Since C is simply connected and h is harmonic, there exists some entire function k with g := h+ ik
entire. Now set f := eg. Then

|f | =
∣∣eh+ik

∣∣ =
∣∣eheik∣∣ = eh ≤ eM .

Thus, Liouville tells us that f is constant, so h is constant as well.
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40 December 4

40.1 The Dirichlet Problem on B(0, 1)

Today, we will focus on solving the following problem: given f : ∂B(0, 1) → R continuous, does
there exist h : B(0, 1) → R that is harmonic on B(0, 1) and continuous on B(0, 1) which satisfies
h|B(0,1) = f? It turns out h exists and is unique, and this extension – called the harmonic extension
of f – is unique. In fact, by combining this result with the Riemann Mapping and Caratheodory-
Osgood theorems, we deduce the result whenever B(0, 1) is replaced by a domain whose boundary
is a simple closed contour.

Fortunately for us, uniqueness is easy and follows by Corollary 39.12. Existence is where things
get interesting. Before continuing, note that, in polar coordinates, the conditions rewrite as

∆h = hrr + 1
rhr + 1

r2hθθ = 0 and h(1, θ) = eiθ.

We will look for “separable” solutions of the form h(r, θ) = ϕ(r)ψ(θ). Plugging this in to the first
equation yields

ϕ′′(r)ψ(θ) + 1
rϕ
′(r)ψ(θ) + 1

r2ϕ(r)ψ′′(θ) = 0,

which implies
r2ϕ′′(r) + rϕ′(r)

ϕ(r)
= −ψ

′′(θ)
ψ(θ)

.

Suppose both equalities are equal to a constant λ; then

r2ϕ′′(r) + rϕ′(r)− λϕ(r) = ψ′′(θ) + λψ(θ) = 0.

To analyze the θ equation, we split into three cases.

• First suppose λ = 0, so that ψ(θ) = aθ + b. The condition h(1, θ) = eiθ implies that ψ must
be 2π-periodic, and so a = 0. This means that ψ(θ) = 1 up to multiplication by a constant.

• Now suppose λ = m2 > 0. Then the solutions to the equation are ψ(θ) = e±imθ. The condition
that ψ is 2π-periodic implies m ∈ N.

• Finally, suppose λ = −m2 < 0. Then ψ(θ) = aemθ+be−mθ. There are no 2π-periodic solutions
other than the trivial solution.

Similarly, to analyze the r equation, we split into two cases.

• First suppose λ = 0. Then r2ϕ′′(r) + rϕ′(r) = 0. Observe that ϕ = 1 (and in particular any
constant function) is a solution. Otherwise, ϕ′ is nonconstant, so we may divide to yield

−1

r
=
ϕ′′(r)
ϕ′(r)

= (logϕ′(r))′,

which has solutions ϕ(r) = A log r+B. No such solution is periodic, and so the only possible
solution is r = 1.

• Now suppose r = m2 > 0. (Note that r is real, so this is the only other case we need to
consider.) We may consider solutions of the form ϕ(r) = rα; plugging this in and dividing
through by rα yields α2 = m2, so α = ±m. However, r−m is not bounded as r → 0, so the
only possible bounded solution is ϕ(r) = rm.

All in all,
h(r, θ) ∈

{
rmeimθ, rme−imθ, 1 : m ∈ N

}
.

This means that we may consider solutions for h of the form

h(r, θ) =

∞∑
m=−∞

r|m|eimθam. (40.1)

Note that all our computations are formal: we discover what a possible solution might be and prove
that our math is rigorous later.

Plugging r = 1 in (40.1) yields

f(eiθ) = h(1, θ) =

∞∑
m=−∞

ame
imθ;
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this means that am must be the mth Fourier coefficient of f . As a reminder, we may compute∫ π

−π
eimθe−inθ =

{
2π if m = n ∈ Z,
0 if m 6= n ∈ Z.

This means an = 1
2π

∫ π
−π f(eiθ)e−inθ, since multiplying by e−inθ and integrating forces all other

Fourier coefficients to vanish. All in all,

h(r, θ) =

∞∑
m=−∞

r|m|eimθ · 1

2π

∫ π

−π
f(eiη)e−imη dη

(∗)
=

1

2π

∫ π

−π
f(eiη)

∞∑
m=−∞

r|m|eim(θ−η) dη

=: f ∗ Pr(θ).
(The equality in (∗) is, again, formal.) Here Pr is the Poisson kernel, defined by

Pr(θ) :=
1

2π

∞∑
m=−∞

r|m|eimθ for 0 ≤ r < 1.

It turns out that all our manipulations have led to the correct answer.

Theorem 40.1. Let f : ∂B(0, 1)→ R be continuous. Define

h(z) = h(reiθ) = f ∗ Pr(θ) for 0 ≤ r < 1 and θ ∈ R,

and further set h(eiθ) = f(eiθ) (that is, force h and f to be equal on the boundary). Then h is a
harmonic solution to the Dirichlet problem.

40.2 The Poisson Kernel

In order to prove this theorem, we need to establish a few properties of the function Pr we have just
defined. These properties are listed below.

• Writing z = reiθ, we have

2πPr(θ) = 1 +

∞∑
m=1

zm +

∞∑
m=1

zm = 1 +

(
1

1− z − 1

)
+

(
1

1− z − 1

)

=
1− |z|2

1− z − z + z2
=

1− r2

1− 2r cos θ + r2
.

This form for Pr is good for computation. Furthermore, we may write

Pr(θ) = 2<
(

1

1− z

)
− 1 = <

(
1 + z

1− z

)
;

since 1+z
1−z is analytic, we deduce that Pr(θ) is harmonic.

• Since
1− 2r cos θ + r2 = (1− r cos θ)2 + (r sin θ)2 ≥ 0, (40.2)

we deduce that Pr(θ) > 0 for all θ and r with 0 ≤ r < 1.

• Observe that, for fixed r ∈ (0, 1), the sum
∑∞
m=−∞ r|m|eimθ converges uniformly in θ. This

means that ∫ π

−π
Pr(θ) dθ =

∞∑
m=−∞

1

2π

∫ π

−π
eimθ dθ = 1.

• Fix δ > 0. If δ ≤ |θ| ≤ π, then
−1 ≤ cos θ ≤ cos δ < 1.

This means we may write

Pr(θ) ≤
1

2π
· 1− r2

1− 2r cos θ + r2
=

1

2π
· 1− r2

(1− r)2 + 2r(1− cos δ)
,

implying that Pr(θ) tends to zero as r → 1− uniformly on [−π, π] \ [−δ, δ].
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The last three bullets imply that the sequence of functions {Pr}r→1− forms an approximate identity.
This yields the following result for free, but in the intersect of being self-contained we will prove it
from first principles.

Lemma 40.2. Let f : ∂B(0, 1)→ R be continuous. Then

f ∗ Pr(θ)→ f(eiθ) as r → 1−,

and furthermore this convergence is uniform in θ.

Proof. Write

∣∣f ∗ Pr(θ)− f(eiθ)
∣∣ =

∣∣∣∣∫ π

−π
f(ei(θ−η))Pr(η) dη − f(eiη)

∣∣∣∣
=

∣∣∣∣∫ π

−π
f(ei(θ−η))Pr(η) dη − f(eiη)

∫ π

−π
Pr(η) dη

∣∣∣∣
=

∣∣∣∣∫ π

−π
(f(ei(θ−η))− f(eiη))Pr(η) dη

∣∣∣∣
≤
∫ π

−π

∣∣∣(f(ei(θ−η))− f(eiη))Pr(η)
∣∣∣ dη

=

∫ δ

−δ

∣∣∣(f(ei(θ−η))− f(eiη))Pr(η)
∣∣∣ dη

+

∫
[−π,π]\[−δ,δ]

∣∣∣(f(ei(θ−η))− f(eiη))Pr(η)
∣∣∣ dη.

Label these integrals as I and II, respectively. To bound I, we use the fact that f is continuous on
the compact set ∂B(0, 1), which implies f is actually uniformly continuous. This means that

I ≤ 2π · sup
|η|<δ

∣∣∣f(ei(θ−η))− f(eiθ)
∣∣∣ ,

which goes to zero uniformly as δ tends to zero. To bound II, we instead note that

II ≤
∫

[−π,π]\[−δ,δ]

[∣∣f(ei(θ−η))
∣∣+
∣∣f(eiη)

∣∣]Pr(η) dη

≤ 2 sup
z∈∂B(0,1)

|f(z)| ·
∫

[−π,π]\[−δ,δ]
Pr(η) dη;

by the fourth bullet point, this also goes uniformly to zero regardless of δ. Combining both bounds
proves the claim.
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41 December 6

41.1 The Poisson Kernel (cont.)

Recall our previous discussion of the Poisson Kernel. We proved last time that f ∗ Pr converges
uniformly in θ to f as r → 1−, provided f is continuous. The only thing left to check is that h is
the desired extension.

Lemma 41.1. The function h is harmonic on B(0, 1) provided that f is continuous.

Proof. Write

h(z) =
1

2π

∫ π

−π
f(eiη)Pr(θ − η) dη =

1

2π

∫ π

−π
f(eiη)<

(
1 + rei(θ−η)

1− rei(θ−η)

)
dη

=
1

2π
<
(∫ π

−π
f(eiη)

1 + rei(θ−η)

1− rei(θ−η)
dη

)
=

1

2π
<
(∫ π

−π
f(eiη)

eiη + z

eiη − z dη
)
.

Consider the function g defined by g(z) =
∫ π
−π f(eiη) e

iη+z
eiη−z dη. Fix a triangle ∆ ⊂ B(0, 1). Note

that there exists C > 0 such that
∣∣eiη − z∣∣ < δ for all η, so the integrand is uniforly bounded above;

in turn, so is g. Thus, we may write∫
∆

g(z) dz =

∫
∆

∫ π

−π
f(eiη)

eiη + z

eiη − z dη dz =

∫ π

−π
f(eiη)

∫
∆

eiη + z

eiη − z dz dη.

As the function z 7→ eiη+z
eiη−z is analytic on B(0, 1), the inner integral is zero, and hence

∫
∆
g(z) dz = 0.

Since ∆ was arbitrary, we deduce by Morera’s Theorem (Corollary 8.4) that g is analytic on B(0, 1)¿
In turn, h is the real part of an analytic function, implying that h is harmonic.

Remark. We can generalize this and solve the Dirichlet problem on any ball B(z0, R) relatively
easily. Indeed, write z = z0 + reiθ for 0 ≤ r < R; then, if f is given on ∂B(z0, R), we may write

h(z) =
1

2π

∫ π

−π
f(z0 +Reiη)

R2 − r2

R2 − 2Rr cos(θ − η) + r2
dη =: f(z0 +R·) ∗ PR,r(θ), (41.1)

where

PR,r(θ) =
R2 − r2

R2 − 2Rr cos θ + r2
= <

(
R+ z

R− z

)
.

The proof is exactly the same.

41.2 Applications of Harmonic Extensions

The existence of a unique solution to the Dirichlet problem implies that harmonic functions, just like
analytic ones, are “one-dimensional”. In particular, while we have previously shown that harmonic
functions give us information along the boundary of a ball, we can also go the other way around and
use information along the boundary of a ball to deduce information about h. This philosophy lies
at the core of the next few examples, which further serve to port analytic results to the harmonic
setting.

Our first application is, in some sense, the converse of the Mean Value Property for harmonic
functions.

Corollary 41.2. Let h be real-valued and continuous on a domain D. If h has the Mean Value
Property – that is,

h(z0) =
1

2π

∫ π

−π
h(z0 + reiθ) dθ whenever B(z0, r) ⊂ D,

then h is harmonic.

Proof. It suffices to prove the result inside any ball B that is compactly contained in D. By compact
containment, we may harmonically extend h from ∂B into B. Let u be the resulting harmonic
extension. Then u − h is zero on ∂B, and furthermore u − h has the mean value property. Thus,
u− h is subharmonic, implying that u− h ≤ 0 on B. Similarly, h− u is subharmonic on B, and so
h = u in B. In particular, h is harmonic.
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Our second result shows that convergence of harmonic functions is just as nice as convergence of
analytic functions is.

Corollary 41.3. Normal limits of harmonic functions are harmonic.

Proof. Suppose {hn}n≥1 is a sequence of functions converging normally to h on a domain D. Note
that h is continuous on each compact subset (since the uniform limit of continuous functions is
continuous), and so h is continuous on D. Thus, whenever B(z0, R) ⊂ D,

h(z0) = lim
n→∞

hn(z0) = lim
n→∞

∫ π

−π
hn(z0 +Reiθ) dθ =

1

π

∫ π

−π
h(z0 +Reiθ) dθ.

Thus h satisfies the Mean Value Property, implying that h is harmonic.

Our next result places bounds on h in a manner similar to what the derivative estimates for
analytic functions yield.

Corollary 41.4 (Harnock’s Inequality). Let h : B(z0, R) → R be harmonic in the interior of the
ball, continuous, and nonnegative. Then for all z ∈ B(z0, R),

h(z0)
R− |z − z0|
R+ |z − z0|

≤ h(z) ≤ h(z0)
R+ |z − z0|
R− |z − z0|

.

Proof. Recall that (41.1) tells us

h(z) =
1

2π

∫ π

−π
f(z0 +Reiη)

R2 − r2

R2 − 2Rr cos(θ − η) + r2
dη.

Since both h and Pr,R are nonnegative, we may write

R2 − r2

R2 − 2Rr cos(θ − η) + r2
≤ R2 − r2

(R− r)2
=
R+ r

R− r ,

and by similar computations we also deduce that R−r
R+r is a lower bound for the quotient. Therefore

h(z) ≤ 1

2π

∫ π

−π
h(z0 + reiη)

R+ r

R− r dη = h(z0) · R+ r

R− r ,

which proves the upper bound. Similar computations occur for the lower bound.

Our fourth result derives an analogue of Mantel’s Theorem to harmonic functions.

Theorem 41.5. Let h1 ≤ h2 ≤ · · · be a series of pointwise increasing harmonic functions on a
domain D. Then either hn →∞ normally on D or hn converges to a harmonic function h normally
on D.

Proof. We may assume each hn is nonnegative by replacing hn with hn−h1. This means that hn(z)
converges to h(z) ∈ [0∞] for each z ∈ D. Now set

A := {z ∈ D : h(z) =∞} and B := {z ∈ D : h(z) <∞}.

We will show that A and B are both open, which implies that, since D is connected, one of these
two sets must be empty.

Fix z0 ∈ D and take R > 0 such that B(z0, R) ⊂ D. Recall that Harnack’s Inequality yields

R− |z − z0|
R+ |z − z0|

hn(z0) ≤ hn(z) ≤ R+ |z − z0|
R− |z − z0|

hn(z0)

for every z ∈ B(z0, R) and every n ≥ 1. If |z − z0| ≤ R
2 , then the above inequality can be weakened

to 1
3hn(z0) ≤ hn(z) ≤ 1

3hn(z0).

Thus,

• If hn(z0)→∞, then hn(z)→∞ uniformly on B(z0,
R
2 );

• if hn(z0)→ h(z0) <∞, then the sequence {hn} is bounded uniforly on B(z0,
R
2 ).
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This implies that both A and B are open as desired.

Finally, we case. If D = A, then the convergence to ∞ is uniform on all compact subsets of D,
and so hn → ∞ normally on D. If D = B, then we may instead note that Harnack’s Inequality
yields

hm(z)− hn(z) ≤ 3(hm(z0)− hn(z0)) whenever z ∈ B(z0,
R
2 ).

Thus {hm} is uniformly Cauchy on every compact subset, so the convergence is indeed normal and
h is harmonic.

Our last result is a different form of Cauchy’s Integral Formula that results from our work on
harmonic functions.

Theorem 41.6 (Schwarz Formula). Let f be analytic on a domain containing B(0, R). Then for
all z ∈ B(0, R),

f(z) = i=(f(0)) +
1

2π

∫ π

−π
<(f)(Reiη)

Reiη + z

Reiη − z dη. (41.2)

Proof. Observe that the equality holds if we take the real part of both sides since <(f) is harmonic.
It follows that the difference between the left-hand and right-hand sides is purely imaginary, hence
constant. By plugging in z = 0, we see that this constant equals i=(f(0)).
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42 December 9

42.1 More on Schwarz

Recall last time that we derived equation (41.2). We start today by deriving a corollary of this
equality.

Corollary 42.1 (Borel-Caratheodory). Let f be analytic on B(0, R), and suppose <(f) ≤ A on
∂B(0, R). Then

|f ′(z)| ≤ 2r

R− rA+
R+ r

R− r |f(0)| ,

where r = |z| < R.

Proof. Begin by writing

f(z)− f(0) =
1

2π

∫ 2π

0

<(f)(Reiη)
Reiη + z

Reiη − z dη −<(f(0))

=
1

2π

∫ 2π

0

<(f)(Reiη)
Reiη + z

Reiη − z dη −
1

2π

∫ 2π

0

<(f)(Reiη) dη

=
1

2π

∫ 2π

0

<(f)(Reiη)
2z

Reiη − z dη.

At this point, taking the absolute value of both sides is not optimal because we would still have
absolute value signs on the <(f)(Reiη) term that prevent us from applying the Mean Value Property
for harmonic functions. Instead, we use the fact that <(f) ≤ A inside B(0, R). Indeed, note that
whenever z/R ∈ B(0, 1),∫ 2π

0

1

eiη − z/R dη =

∫ 2π

0

ieiη

ieiη(eiη − z/R)
dη =

∫
B(0,1)

dξ

iξ(ξ − z/R)

=
R

iz

∫
B(0,1)

(
1

ξ − z/R −
1

ξ

)
dξ =

R

iz
(2πi− 2πi) = 0.

Thus
∫ 2π

0
A·2z

Reiη−z dη = 0, and so

f(z)− f(0) =
1

2π

∫ 2π

0

(<(f)(Reiη)−A)
2z

Reiη − z dη.

Now <(f)(Reiη)−A is nonpositive, and so taking the absolute value of both sides yields

|f(z)− f(0)| ≤ 1

2π

∫ 2π

0

(A−<(f)(Reiη))

∣∣∣∣ 2z

Reiη − z

∣∣∣∣ dη
≤ 1

2π

∫ 2π

0

(A−<(f)(Reiη))
2r

R− r dη

= A · 2r

R− r −
2r

R− r<(f(0)).

Therefore

|f(z)| ≤ |f(z)− f(0)|+ |f(0)| ≤ A · 2r

R− r +
2r

R− r |<(f(0))|+ |f(0)|

≤ A · 2r

R− r +
R+ r

R− r |f(0)| ,

and we’re done.

42.2 Zeros of Analytic Functions

In previous lectures, we have discussed properties of zeros of analytic functions; namely, that the
zero set is discrete whenever the function is nonconstant. Our final goal of the course is to prove
something stronger in the case when the domain D is B(0, 1). The crux of this argument is the
following result.
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Theorem 42.2 (Poisson-Jensen Formula). Say f(z) is analytic and not identically zero on a domain
containing B(0, R). Denote the zeros of this function by the sequence {aj}, where we repeat roots
in the sequence according to multiplicities. Then

ln |f(z)| = 1

2π

∫ 2π

0

ln
∣∣f(Reiη)

∣∣ R2 − r2

R2 − 2Rr cos(θ − η) + r2
dη +

∑
|aj |<R

ln

∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣ . (42.1)

Proof. We proceed in steps.

Step 1. First suppose f has no zeros on B(0, R), where R > 0. Then f is positive on B(0, R+ ε)
for some ε > 0, and hence log f is analytic on this larger ball. Then ln |f | = log f is harmonic, and
so the result we want to prove is just (41.1).

Step 2. Now suppose f has zeros on B(0, R) but not on ∂B(0, R). Fix k ∈ N, and suppose

|ak| < R. Then the function gk(z) = R(z−ak)
R2−akz is analytic on B(0, R), and furthermore |gk(z)| = 1

whenever |z| = R. Thus, gk is a Möbius transformation from B(0, R) to B(0, 1). Furthermore,
gk(ak) = 0.

Thus, we may define g via

g(z) =
f(z)∏

j:|aj |<R

R(z − aj)
R2 − ajz

.

This function g has no zeros on B(0, R), and furthermore |g(z)| = |f(z)| for all z ∈ ∂B(0, R) since
each term in the product has magnitude 1 for those z. Thus, we may apply Step 1 to g to obtain

1

2π

∫ 2π

0

ln
∣∣f(Reiη)

∣∣PR,r(θ − η) dη =
1

2π

∫ 2π

0

ln
∣∣g(Reiη)

∣∣PR,r(θ − η) dη

= ln |g(z)| = ln

∣∣∣∣∣∣ f(z)∏
j:|aj |<R

R(z−aj)
R2−ajz

∣∣∣∣∣∣
= ln |f(z)| −

∑
j:|aj |<R

ln

∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣ .
Moving the logarithm terms to the other side proves the theorem in this case.

Step 3. Finally, suppose f has some zeros on ∂B(0, R), say b1, . . . , bm. Consider the function

g(z) =
f(z)∏m

j=1(z − bj)
.

Then g has no zeros on ∂B(0, R) since all zeros on the boundary cancel out. In turn, we may apply
Step 2 to g to see t hat

ln |f(z)| −
m∑
j=1

ln |z − bj | = ln |g(z)| = 1

2π

∫ 2π

0

ln
∣∣g(Reiη)

∣∣PR,r(θ − η) dη +
∑
|aj |<R

ln

∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣
=

1

2π

∫ 2π

0

ln
∣∣f(Reiη)

∣∣PR,r(θ − η) dη +
∑
|aj |<R

ln

∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣
−

n∑
j=1

1

2π

∫ 2π

0

ln
∣∣Reiη − bj∣∣PR,r(θ − η) dη.

We will be done if we can show that

ln |z − bj | =
1

2π

∫ 2π

0

ln
∣∣Reiη − bj∣∣PR,r(θ − η) dη. (42.2)

To prove this, let ε > 0. Observe that the function z 7→ z − bj(1 + ε) has no zeros in B(0, R);
thus, by Step 1,

ln |z − bj(1 + ε)| = 1

2π

∫ 2π

0

ln
∣∣Reiη − bj(1 + ε)

∣∣PR,r(θ − η) dη.
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Now send ε→ 0. The left hand side converges to ln |z − bj | by continuity. For the right hand side,
write bj = Reiβ , so that∣∣∣∣∫ 2π

0

ln
∣∣Reiη − bj∣∣PR,r(θ − η) dη

∣∣∣∣ ≤ R+ r

2π(R− r)

∫ 2π

0

ln
∣∣R(eiη − eiβ)

∣∣ dη
≤ C +

∫ 2π

0

ln
∣∣∣ei(η−β)−1

∣∣∣ dη.
To upper bound this integral, note that

ln
∣∣eix − 1

∣∣ =
1

2
ln
∣∣eix − 1

∣∣2 =
1

2
ln(2− 2 cosx),

and observe that via two applications of L’Hopital we may deduce

lim
x→0

∣∣∣∣ ln(1− cosx)

lnx

∣∣∣∣ = 2.

Thus the integrability of the singularity at η = β is equivalent to the integrability of lnx near x = 0,
which is indeed true. Thus, we may appeal to the Dominated Convergence Theorem to show that
the limit of the right hand side as ε→ 0 is the right hand side of (42.2). We are done.

With this result, we may now answer the query presented at the beginning of this section.

Corollary 42.3. Suppose f 6≡ 0 is analytic and bounded on B(0, 1). Let {an}∞n=1 be a sequence of
zeros repeated according to multiplicities. Then

∞∑
n=1

(1− |zn|) <∞. (42.3)

Before we prove this corollary, we make a motivating remark.

Remark. Suppose f(0) 6= 0. Then plugging z = 0 into (42.1) yields

ln |f(0)| =
∑

j:|zj |<R
ln
∣∣∣aj
R

∣∣∣+

∫ 2π

0

1

2π
ln
∣∣f(Reiη)

∣∣ dη. (42.4)

Exponentiating both sides then gives

|f(0)|
∏

j:|aj |<R

R

|aj |
= exp

(
1

2π

∫ 2π

0

ln
∣∣f(Reiη)

∣∣ dη) . (42.5)

This gives us size information about |aj |, which will be the key to proving our corollary.14

Proof. Let M := sup |f | <∞. Assume the sequence of zeros is infinite, else the problem is trivial.

Without loss of generality suppose f(0) 6= 0, else replace f(z) with f(z)/zm, where m is the
multiplicity of 0 at f (cf. Theorem 13.8). Since the zero set of f is discrete, we may reorder the
zeros in order of magnitude. Let n(R) be the number of zeros less than a given radius R < 1. Then
(42.5), when combined with the fact that f is bounded, yields that

|f(0)|
n(R)∏
j=1

R

|aj |
≤ exp

(
1

2π

∫ 2π

0

ln(M) dη

)
= M.

Now fix N , and take R close to 1 so that n(R) ≥ N . Then

|f(0)|
N∏
j=1

R

|aj |
≤ |f(0)|

n(R)∏
j=1

R

|aj |
≤M,

14As an unrelated remark, note that (42.4) implies that, whenever f is analytic, log |f | is subharmonic.
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so
∏N
j=1 |aj | ≥

RN |f(0)|
M . Sending R → 1 yields 1 ≥ ∏N

j=1 |aj | ≥
|f(0)|
M . This means that the

sequence αN := RN |f(0)|
M is a monotonically decreasing and uniformly bounded sequence of positive

real numbers, implying that the product converges to some nonzero number.

We claim this implies
∑∞
n=1(1− |an|) is finite. To prove this, write

N∏
j=1

|aj | =
N∏
j=1

|1− (1− |aj |)| ≤
N∏
j=1

exp(−(1− |aj |)) = exp

− N∑
j=1

(1− |aj |)

 .

Sending N →∞ yields

exp

 ∞∑
j=1

(1− |aj |)

 ≤ 1∏∞
j=1 |aj |

<∞,

which gives the desired conclusion.

Remark. This is a pretty strong theorem – its converse is also true! Suppose
∑∞
j=1(1− |aj |) <∞,

where a1, . . . is a sequence of complex numbers with |aj | < 1 for all j. One can consider the Blaschke
product

g(z) = zm
∞∏
n=1

an
|an|
· an − z

1− anz

and show that g is bounded and analytic on B(0, 1) with zeros at precisely the right places.

In turn, suppose f is a given analytic function with zeros as above. Construct g as in the previous
equation. Then f/g has no zeros, so log(f/g) has a branch on B(0, 1). So f(z)/g(z) = eh(z) for
some entire function h, implying

f(z) = eh(z)zm
∞∏
n=1

an
|an|
· an − z

1− anz
.

This describes all bounded analytic functions on B(0, 1).

43 December 11

Final exam review.

115


	August 26
	An Introduction to the Complex Numbers
	Polar Coordinates
	Matrix Definition of Complex Numbers
	nth Roots of Complex Numbers
	C as a metric space

	August 28
	Connected Sets
	Extended Complex Plane and Stereographic Projection
	Analytic Functions
	Cauchy-Riemann Equations

	August 30
	Differentiability and Partial Derivatives
	Analytic functions
	Examples of Elementary Analytic and Multivalued Functions
	Polynomials
	Exponential Function
	Trig Functions

	Multivalued Functions and Branches
	Complex Logarithm


	September 4
	General Power Functions
	Complex Integration

	September 6
	Integration Properties
	Primitives
	The Local Cauchy Theorem

	September 9
	Differentiation under the Integral Sign
	Winding Numbers

	September 11
	Cauchy's Integral Formula

	September 13
	September 16
	September 18
	Phragmén–Lindelöf
	Sequences and Series and Functions

	September 20
	Power Series

	September 23
	September 25
	Taylor Series
	Zeroes of Analytic Functions

	September 27
	Multiplicity of Zeroes

	September 30
	Regular and Singular Points on the Boundary of the D.O.C
	Isolated Singularities of Analytic Functions

	October 2
	Isolated Singularities of Analytic Functions (cont.)
	Singularities at Infinity
	Meromorphic Functions

	October 4
	Global Cauchy Theorem
	Simply Connected Domains

	October 7
	Laurent Series
	Residues

	October 9
	Higher-order Poles
	The Residue Theorem
	Calculating Integrals using Residues
	Application 1: Rational Functions in Sine and Cosine
	Application 2: Rational Functions without Real Poles


	October 11
	Calculating Integrals using Residues (cont.)
	Application 3: Trigonometric Times a Rational Function
	Application 4: Trigonometric Times a Rational Function (cont.)


	October 14
	Calculating Integrals using Residues (even more cont.)
	Application 5: Power Times a Rational

	Argument Principle

	October 16
	October 18
	October 21
	The Branched Covering Principle and its Corollaries
	Rouché's Theorem

	October 23
	More Rouché
	Angle-Preserving Functions

	October 25
	Conformal Maps
	Möbius Transformations
	Complex Projective Space

	October 28
	Möbius Transforms and Circles
	Symmetry with Respect to Circles
	Conformal Mappings Between Sets

	October 30
	Power and Exponential Functions as Conformal Maps
	Joukowsky and Inverse Joukowsky Transforms

	November 1
	Schwarz Reflection Principle
	Normal families, introduced

	November 4
	Precompact Subsets of C(K)
	Normal Families

	November 6
	Riemann Mapping Theorem

	November 8
	Modulus of Conformal Maps

	November 11
	Caratheodory-Osgood
	Schwarz-Cristoffel Maps

	November 13
	Construction of Entire Functions with Prescribed Poles
	Cotangent Series Representation

	November 15
	Cotangent Series Representation (cont.)
	Convergent Products
	Construction of Entire Functions with Prescribed Zeroes

	November 18
	Construction of Entire Functions with Prescribed Zeroes (cont.)
	Gamma Function

	November 20
	Riemann Zeta Function
	Analytic Continuation of Zeta
	Zeros of the Zeta Function

	November 22
	Approximation by Polynomials

	December 2
	Harmonic Functions: the Basics
	Extensions of Analytic Results to Harmonic Functions

	December 4
	The Dirichlet Problem on B(0,1)
	The Poisson Kernel

	December 6
	The Poisson Kernel (cont.)
	Applications of Harmonic Extensions

	December 9
	More on Schwarz
	Zeros of Analytic Functions

	December 11

