
Math 5440 Aaron Fogelson
Fall, 2013

Math 5440 Problem Set 5 – Solutions

1: (Logan, 2.2 # 3) Solve the outgoing signal problem

utt − c2uxx = 0 x > 0, − ∞ < t < ∞,

and
ux(0, t) = s(t), −∞ < t < ∞,

where s(t) is a known signal.

The general solution to the wave equation is u(x, t) = F(x − ct) + G(x + ct). We seek a
wave outgoing from x = 0 to x > 0, so we set G ≡ 0, and have u(x, t) = F(x − ct). To
satisfy the BC, we compute ux(x, t) = F′(x − ct) and see that s(t) = ux(0, t) = F′(−ct).
Hence F′(z) = s(−z/c), and

F(z) =
∫ z

0
s

(−z′

c

)

dz′ + A

=
∫ −z/c

0
s(y)(−cdy) + A

= −c
∫ −z/c

0
s(y)dy + A.

It follows that u(x, t) = F(x − ct) = −c
∫

ct−x
c

0 s(y)dy + A = A − c
∫ t−x/c

0 s(y)dy. It is
easy to check that the BC is satisfied. ux(x, t) = −cs(t − x/c)(−1/c) = s(t − x/c), so
ux(0, t) = s(t) as required. �
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2: (Logan, 2.3 # 1) Show that the Cauchy problem for the backward diffusion equation

ut + uxx = 0, −∞ < x < ∞, t > 0,

u(x, 0) = f (x)

is unstable by considering the solutions

u(x, t) = 1 +
1

n
en2t sin(nx)

for large n.

The solution to the Cauchy problem with u(x, 0) = 1 for all x is u(x, t) = 1 for all x and

t > 0. The function u(x, t) = 1 + 1
n en2t sin(nx) is the solution to the Cauchy problem for

the initial condition u(x, 0) = 1 + 1
n sin(nx). The maximum difference between the initial

functions is 1/n which gets smaller and smaller as n grows. The maximum difference

at time t > 0 between the solutions to the two Cauchy problems is 1
n en2t which grows

unboundedly as n grows. Thus at any time t > 0 the ratio of the maximum change in the

solution to the maximum difference in the initial data, namely, en2t can be made arbitrarily
large by choosing n sufficiently large. The Cauchy problem is not stable for the backward
diffusion problem. �
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3: (Logan, 2.3 # 2) Let u = u(x, y). Is the problem uxy = 0 for 0 < x, y < 1, on the unit
square Ω = [0, 1]× [0, 1], where the value of u is prescribed on the boundary ∂Ω of the
square, a well-posed problem? Discuss.

Integrate the PDE once to get ux(x, y) = f ′(x) for some arbitrary function f (x). Integrate
again to get u(x, y) = f (x) + g(y) for arbitrary functions f (x) and g(y). Let uL(y), uR(y),
uB(x), and uT(x), denote the specified values of u on the left, right, bottom, top sides of
∂Ω, respectively. Since u(x, y) is supposed to satisfy the boundary conditions, we have

uL(y) = u(0, y) = f (0) + g(y), 0 < y < 1,

and
uR(y) = u(1, y) = f (1) + g(y), 0 < y < 1.

So we need that both g(y) = uL(y)− f (0) and g(y) = uR(y)− f (1) which cannot happen
unless uL(y) = uR(y)− f (1) + f (0), that is, unless uL(y) differs from uR(y) by a constant
independent of y. Since this is not true in general, there would not exist a solution to the
problem in general so it is not well-posed. �
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4: (Logan, 2.3 # 3) Consider the two Cauchy problems for the wave equation with
different initial data:

u
(i)
tt = c2u

(i)
xx , 0 < t < T,

with
u(i)(x, 0) = f (i)(x), u

(i)
t (x, 0) = g(i)(x), −∞ < x < ∞,

for i = 1, 2 where f (1)(x), f (2)(x), g(1)(x), g(2)(x) are given functions. If for all x, we have

| f (1)(x)− f (2)(x)| ≤ δ1, |g(1)(x)− g(2)(x)| ≤ δ2,

show that |u(1)(x, t)− u(2)(x, t)| < δ1 + δ2T for all x and for 0 < t < T. What does this
mean in regard to stability?

The solutions to the respective Cauchy problems are

u(1)(x, t) =
1

2

{

f (1)(x − ct) + f (1)(x + ct)
}

+
1

2c

∫ x+ct

x−ct
g(1)(s)ds,

and

u(2)(x, t) =
1

2

{

f (2)(x − ct) + f (2)(x + ct)
}

+
1

2c

∫ x+ct

x−ct
g(2)(s)ds.

Subtracting the first of these equations from the second we get

u(2)(x, t)− u(1)(x, t) =
1

2

(

f (2)(x − ct)− f (1)(x − ct)
)

+
1

2

(

f (2)(x + ct)− f (1)(x + ct)
)

+
1

2c

∫ x+ct

x−ct
(g(2)(s)− g(1)(s))ds.

For any x and 0 ≤ t ≤ T,

|u(2)(x, t)− u(1)(x, t)| ≤ 1

2
| f (2)(x − ct)− f (1)(x − ct)|

+
1

2
| f (2)(x + ct)− f (1)(x + ct)|

+
1

2c

∫ x+ct

x−ct
|g(2)(s)− g(1)(s)|ds

≤ 1

2
δ1 +

1

2
δ1 +

1

2c
2ctδ2

≤ δ1 + δ2T.

The difference in the solutions is less than a prescribed tolerance ǫ > 0 whenever the
differences in the initial data are small enough, e.g., δ1 <

ǫ
2 and δ2 <

ǫ
2T . This problem is

stable. �
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5: (Logan, 2.4 # 1) Solve the problem

ut = kuxx, x > 0, t > 0,

ux(0, t) = 0, t > 0,

u(x, 0) = φ(x), x > 0,

with an insulated boundary condition by extending φ to all of the real axis as an even
function. The solution is

u(x, t) =
∫

∞

0
[G(x − y, t) + G(x + y, t)]φ(y)dy.

First note that the solution to the IVP ut = kuxx, −∞ < x < ∞, t > 0, u(x, 0) = f (x),
−∞ < x < ∞ is an even function of x if f (x) is even. To see this consider

u(−x, t) =
∫

∞

−∞

G(−x − y, t) f (y)dy

=
∫ −∞

∞

G(−x + y′, t) f (y′)(−dy′)

=
∫

∞

−∞

G(−x + y′, t) f (y′)dy′

=
∫

∞

−∞

G(x − y′, t) f (y′)dy′ = u(x, t).

In the last line, we used that G is an even function of its first arguement. Smooth even
functions have zero slope at x = 0, i.e., ux(0, t) = 0. So we solve our semi-infinite domain
problem by extending the initial data to −∞ < x < ∞ as an even function. Let

F(x) =

{

φ(x) x > 0

φ(−x) x < 0.

The solution to this IVP is

u(x, t) =
∫

∞

−∞

G(x − y, t)F(y)dy

=
∫

∞

0
G(x − y, t)φ(y)dy +

∫ 0

−∞

G(x − y, t)φ(−y)dy

=
∫

∞

0
G(x − y, t)φ(y)dy −

∫ 0

∞

G(x + y′, t)φ(y′)dy′

=
∫

∞

0
{G(x − y, t) + G(x + y, t)} φ(y)dy. �
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6: (Logan, 2.4 # 2) Find a formula for the solution to the problem

ut = kuxx, x > 0, t > 0,

u(0, t) = 0, t > 0, u(x, 0) = 1, x > 0.

Sketch the graph of several solution profiles with k = 0.5.

u(x, t) =
∫

∞

0
{G(x − y, t)− G(x + y, t)} 1dy

=
1√

4πkt

∫

∞

0
e−(x−y)2/4ktdy − 1√

4πkt

∫

∞

0
e−(x+y)2/4ktdy.

Letting s = (y − x)/
√

4kt in the first integral and r = (y + x)/
√

4kt in the second integral
we obtain

u(x, t) =
1

2

2√
π

∫

∞

−x/
√

4kt
e−s2

ds − 1

2

2√
π

∫

∞

x/
√

4kt
e−r2

dr

=
1

2

{

2√
π

∫

∞

0
e−s2

ds +
2√
π

∫ 0

−x/
√

4kt
e−s2

ds

− 1 +
2√
π

∫ x/
√

4kt

0
e−r2

dr

}

=
1

2

{

2√
π

∫

∞

−x/
√

4kt
e−s2

ds + erf

(

x√
4kt

)}

=
1

2

{

2√
π

∫

∞

x/
√

4kt
e−s′2(−ds′) + erf

(

x√
4kt

)}

=
1

2

{

2erf

(

x√
4kt

)}

= erf

(

x√
4kt

)

.

To check this solution, note that u(0, t) = erf(0) = 0 for t > 0, and

u(x, 0) = lim
t→0+

2√
π

∫ x/
√

4kt

0
e−r2

dr =
2√
π

∫

∞

0
e−r2

dr = 1.
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Figure 0.1: Plot of solution profiles at times 0,0.5,1.0,1.5,2.0, and 2.5 with k=0.5.
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7: (Logan, 2.4 # 3) Find the solution to the problem

utt = c2uxx, x > 0, t > 0,

u(0, t) = 0, t > 0, u(x, 0) = xe−x, ut(x, 0) = 0, x > 0.

Pick c = 0.5 and sketch several time snapshots of the solution surface to observe the
reflection of the wave from the boundary.

In order to satisfy the boundary condition automatically we extend the problem to the
entire real line by extending the initial functions as odd functions. The solution for the
pure IVP for the wave equation with odd initial data is an odd function of x, so it vanishes
at x = 0. Using the D’Alembert solution for the extended problem and then rewriting it
completely in terms of the values of the initial displacement f (x) and initial velocity g(x)
for x > 0, we find (as in the book and in class) that

u(x, t) =

{

1
2 { f (x − ct) + f (x + ct)}+ 1

2c

∫ x+ct
x−ct g(s)ds, x − ct > 0

1
2 { f (ct + x)− f (ct − x)}+ 1

2c

∫ ct+x
ct−x g(s)ds, x − ct < 0.

For the current problem f (x) = xe−x and g(x) = 0, so

u(x, t) =







1
2

{

(x − ct)e−(x−ct) + (x + ct)e−(x+ct)
}

, x − ct > 0

1
2

{

(ct + x)e−(ct+x) − (ct − x)e−(ct−x)
}

, x − ct < 0.
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Figure 0.2: Plot of solution surface for 0 ≤ x ≤ 10 and 0 ≤ t ≤ 10.
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8: (Logan, 2.5 #1) Write a formula for the solution to the problem

utt − c2uxx = sin(x), −∞ < x < ∞, t > 0

u(x, 0) = ut(x, 0) = 0, −∞ < x < ∞.

Graph the solution surface when c = 1.

u(x, t) =
∫ t

0

1

2c

∫ x+c(t−τ)

x−c(t−τ)
sin(s)dsdτ

=
1

2c

∫ t

0
{cos(x − c(t − τ))− cos(x + c(t + τ)} dτ

=
sin(x − c(t − τ))

c

∣

∣

t

0
+

sin(x + c(t − τ))

c

∣

∣

t

0

=
1

2c2
{sin(x)− sin(x − ct) + sin(x)− sin(x + ct)} .

�
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Figure 0.3: Plot of solution surface for 0 ≤ x ≤ 10 and 0 ≤ t ≤ 10.
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9: (Logan, 2.5 # 3) Using Duhamel’s principle, find a formula for the solution to the
initial value problem for the convection problem

ut + cux = f (x, t), −∞ < x < ∞, t > 0; u(x, 0) = 0 − ∞ < x < ∞.

Hint: Look at the problem

wt(x, t; τ)+ cwx(x, t; τ) = 0, −∞ < x < ∞, t > 0; w(x, 0; τ) = f (x, τ) −∞ < x < ∞.

Solve the problem

ut + 2ux = xe−t, −∞ < x < ∞, t > 0; u(x, 0) = 0 − ∞ < x < ∞.

The solution to the IVP for w(x, t; τ) is

w(x, t; τ) = f (x − ct, τ).

The Duhamel principle formula for the solution to the nonhomogeneous problem is there-
fore

u(x, t) =
∫ t

0
f (x − c(t − τ), τ)dτ.

It is easy to check that this solves the PDE:

ut =
∫ t

0
f ′(x − c(t − τ), τ)(−c)dτ + f (x − c(0), t),

and

ux =
∫ t

0
f ′(x − c(t − τ), τ)dτ.

So,
ut + cux = f (x, t)

as desired. The solution to ut + 2ux = xe−t with u(x, 0) = 0 is

u(x, t) =
∫ t

0
(x − 2(t − τ))e−τdτ

= (x − 2t)(1 − e−t) + 2(1 − e−t − te−t). �
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