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1. Algebraic sets, affine varieties, and the Zariski topology

List of topics:

(1) Algebraic sets
(2) Hilbert basis theorem
(3) Zariski topology

1.1. Algebraic sets. Fix a field k. Consider kN , the set of N -tuples in k.

Definition 1.1. An affine algebraic subset of kN is the common zero locus of a collection of
polynomials in k[x1, . . . , xN ].

That is: Fix S ⊆ k[x1, . . . , xN ] any subset. Then

V(S) =
{
p = (λ1, . . . , λN ) ∈ kN

∣∣ f(p) = 0 ∀f ∈ S
}
.

Example 1.2. (1) Lines in R2: V(y −mx− b) ⊆ R2.
(2) Rational points on a cone (arithmetic geometry): V(x2 + y2 − z2) ⊆ Q3

(3) All linear subspaces of kN are affine algebraic sets.

(4) V(det(xij)− 1) = SLn(C) = {n× n matrices /C of det 1} ⊆ Cn2

(5) sl2(R) =

{(
x y
z w

) ∣∣∣∣ trace = 0

}
⊆ R2×2

(6) Point in kN : {(a1, . . . , aN )} = V(x1 − a1, . . . , xN − aN ).

(7) V(x, y) = (0, 0) = V
({
xn + y, yn+17

}
n∈N≥30

)
⊆ R2

Remark 1.3. S ⊆ T ⊆ k[x1, . . . , xN ] =⇒ V(S) ⊇ V(T ).

1.2. Hilbert basis theorem.

Theorem 1.4 (Hilbert basis theorem). Every affine algebraic set in kN can be defined by finitely
many polynomials.

Proof requires a lemma:

Lemma 1.5. Let {fλ}λ∈Λ ⊆ k[x1, . . . , xN ] and let I ⊆ k[x1, . . . , xN ] be the ideal generated by the
{fλ}λ∈Λ. Then V(S) = V(I).

Proof. We know V(S) ⊇ V(I). Take p ∈ V(S). We want to show that given any g ∈ I, we have
g(p) = 0.

Take g ∈ I, so g = r1f1 + · · ·+ rtft, where fi ∈ S and ri ∈ k[x1, . . . , xN ]. So

g(p) = r1(p)f1(p) + · · ·+ rt(p)ft(p) = 0

since fi(p) = 0 for i = 1, . . . , t. Hence p ∈ V(I). �

Proof of Theorem 1.4. Take any S ⊆ k[x1, . . . , xN ], I = 〈S〉 ideal generated by S. We have V(S) =
V(I) by Lemma 1.5. But every ideal in a polynomial ring in finitely many variables is finitely
generated. Hence

V(S) = V(I) = V(g1, . . . , gt),

where g1, . . . , gt generate I. �

Remark 1.6 (Algebra black box). • R is Noetherian if every ideal is f.g.
• Thm: R Noetherian =⇒ R[x] Noetherian.
• k[x1, . . . , xN−1][xN ] ∼= k[x1, . . . , xN ], use induction.
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1.3. Zariski topology.

Definition 1.7 (topology). A topology on a set X is a collection of distinguished subsets, called
closed sets, satisfying:

(1) ∅ and X are closed.
(2) An arbitrary intersection of closed sets is closed.
(3) A finite union of closed sets is closed.

Example 1.8. (1) On R, the Euclidean topology.
(2) On R, cofinite: closed sets are finite sets, and R,∅.

Definition 1.9 (Zariski topology). The Zariski topology on kN is defined as the topology whose
closed sets are affine algebraic sets.

1.3.1. Proof that affine algebraic sets form closed sets on a topology on kN .

(1) ∅ = V(1), kN = V(0).
(2) WTS: {Vλ} closed sets =⇒

⋂
λ∈Λ Vλ closed. Write Vλ = V(Iλ). Then⋂

λ∈Λ

Vλ =
⋂
λ∈Λ

V(Iλ) = V
(⋃
λ∈Λ

Iλ

)
= V

(∑
λ∈Λ

Iλ

)
.

(3) WTS: Finite union of closed sets are closed. By induction, suffices to show V(f1, . . . , ft) ∪
V(g1, . . . , gs) is an algebraic set.

Note:
V(f1, . . . , ft) ∪ V(g1, . . . , gs) = V

(
{figj} i∈{1,...,t}

j∈{1,...,s}

)
.

Proof on quiz.

Example 1.10. Zariski topology on k1 is the cofinite topology. Since k[x] is a PID,

V = V(〈f1, . . . , ft〉) = V(f) = {roots of f} ,
which is finite if f 6= 0.

2. Ideals, Nullstellensatz, and the coordinate ring

Today:

(1) ideal of V
(2) Hilbert’s Nullstellensatz
(3) Regular functions
(4) coordinate ring

2.1. Ideal of an affine algebraic set. Affine algebraic subset of kN :

V = V ((f1, . . . , ft)) ⊆ kN .
Consider the map

{ideals in k[x1, . . . , xN ]} −→
{

(affine) algebraic subsets of kN
}

I 7−→ V(I).

Note 2.1. • This map is order reversing: I ⊆ J =⇒ V(J) ⊆ V(I).
• Surjective.
• Not injective: e.g., (x, y),

(
x2, y2

)
.

Remark 2.2 (algebra). R commutative ring, I ⊆ R any ideal.

Definition 2.3. The radical of I is the ideal

Rad I =
{
f ∈ R

∣∣ fN ∈ I for some N
}
.
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• Sanity check: show this is an ideal.
• I is radical if Rad I = I.

Lemma 2.4. Let I ⊆ k[x1, . . . , xN ]. Then

V(I) = V(Rad I).

Proof. I ⊆ Rad I =⇒ V(Rad I) ⊆ V(I).
So take p ∈ V(I) ⊆ kN . Need to show ∀f ∈ Rad I that f(p) = 0. We have f ∈ Rad I =⇒ fN ∈

Rad I, so (
f(p)

)N
= fN (p) = 0 =⇒ f(p) = 0. �

Now is the map I 7−→ V(I) injective?

Example 2.5.
(
x2 + y2

)
∈ R[x, y].

V(x, y) = (0, 0) = V(x2 + y2) ⊆ R2.

We have 2 radical ideals defining the same algebraic set.

Definition 2.6. Let V ⊆ kN be an affine algebraic set. The ideal of V is

I(V ) =
{
f ∈ k[x1, . . . , xN ]

∣∣ f(p) = 0 ∀p ∈ V
}
.

Note 2.7. I(V ) is a radical ideal, and is the largest ideal defining V .

Proposition 2.8. V = V(I(V )).

Proof. Say V = V(I). Since I ⊆ I(V ), we have V(I(V )) ⊆ V(I) = V .
Take p ∈ V . Need to show ∀g ∈ I(V ) that g(p) = 0, which is true by definition of I(V ). �

This shows that I is a right inverse of V.

Example 2.9. Going back to our previous example, we should really view V
(
x2 + y2

)
in C2 rather

than R2:

V
(
x2 + y2

)
= V

(
(x+ iy)(x− iy)

)
= V(x+ iy) ∪ V(x− iy).

2.2. Hilbert’s Nullstellensatz.

Theorem 2.10 (Hilbert’s Nullstellensatz). Let k = k (i.e., assume k is algebraically closed). There
is an order-reversing bijection

{radical ideals in k[x1, . . . , xN ]} ←→
{

affine algebraic subsets of kN
}

I 7−→ V(I)

I(V ) 7−→V.

Remark 2.11. Points in affine space kN correspond to maximal ideals in the polynomial ring
k[x1, . . . , xN ].

2.3. Irreducible spaces.

Definition 2.12. A topological space X is irreducible if X is not the union of two nonempty proper
closed sets.

Example 2.13. The cofinite topology on R is irreducible.
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2.4. Sept. 10 warmup.

• Draw V(xy, xz) ⊆ R3.
• Prove Lemma: For I, J ⊆ k[x1, . . . , xN ],

V(I ∩ J) = V(I) ∪ V(J).

Proof 1. I ∩ J ⊆ I, J =⇒ V(I) ∪ V(J) ⊆ V(I ∩ J).
Take p ∈ V(I ∩ J). Need p ∈ V(I) or V(J). If p /∈ V(I), then ∃f ∈ I such that f(p) 6= 0.
Now: ∀g ∈ J , look at fg ∈ IJ . Because p ∈ V(I ∩ J),

f(p)g(p) = (fg)(p) = 0,

hence g(p) = 0 and p ∈ V(J). �

Proof 2. V(I ∩ J) = V
(√

I ∩ J
)

= V
(√

IJ
)

= V(IJ) = V(I) ∪ V(J). �

2.5. Some commutative algebra. R commutative ring.

• I, J radical =⇒ I ∩ J radical.
• p ⊆ R is prime ⇐⇒ R/p is a domain ⇐⇒ if fg ∈ p, then f ∈ p or g ∈ p.
• If R is Noetherian, I radical, then

I = p1 ∩ · · · ∩ pt

uniquely, where the pi are prime (irredundant).

2.6. Review of Hilbert’s Nullstellensatz. The mappings I and V are mutually inverse, giving
us an order-reversing bijection

{
affine algebraic subsets of kN

} I // {radical ideals of k[x1, . . . , xN ]} .
V
oo

kN ←→ 0

∅←→ (1) = k[x1, . . . , xN ]

{points} ←→ {maximal ideals}
(a1, . . . , aN )←→ (x1 − a1, . . . , xN − aN )

{irreducible algebraic sets} ←→ Spec k[x1, . . . , xN ] = {prime ideals}

2.7. Irreducible algebraic sets.

Definition 2.14. An algebraic set V ⊆ kN is irreducible if it cannot be written as the union of
two proper algebraic sets contained in V . [If V = V1 ∪ V2, then V = V1 or V = V2.]

Exercise 2.15. V(I) is irreducible ⇐⇒ I is prime, where I is radical.

Observation 2.16. I ⊆ k[x1, . . . , xN ] radical (k not necessarily algebraically closed), write I =
p1 ∩ · · · ∩ pt, where pi are prime (unique!).

V(I) = V(p1) ∪ · · · ∪ V(pt)

are the (unique) irreducible components of V(I).

The point is:

Proposition 2.17. Every algebraic set in kN is a union of its irreducible components.
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2.8. Aside on non-radical ideals. We also have V(I) ∩V(J) = V(I ∪ J). However, I ∪ J is not
usually an ideal, and I + J is not necessarily radical.

Non-radical ideals lead into scheme theory:

V(y − x2) ∩ V(y) = V(y − x2, y) = V(y, x2).

We should somehow keep track of the multiplicity.

3. Regular functions, regular maps, and categories

3.1. Regular functions. Fix V ⊆ kN algebraic set, k = k.

Definition 3.1. A function V −→ k is regular if it agrees with the restriction to V of some
polynomial function on the ambient kN .

Proposition–Definition 3.2. The set of all regular functions on V has a natural ring structure
(where addition and multiplication are the functional notions). This is the coordinate ring of V ,
denoted k[V ].

Example 3.3. On kN , k[kN ] = k[x1, . . . , xN ].

Remark 3.4. (1) k = k =⇒ k is infinite.
(2) If k is infinite, then there is no ambiguity in the word “polynomial”.

Example 3.5. Consider V(y − x2) ⊆ R2. This is the set of all points (t, t2). The function “y”
outputs the y-coordinate (projection to y-axis), and “x2” is the same function in V .

Example 3.6. Consider V(xy − 1) ⊆ Q2. Is 1
y regular?

Yes: 1
y = x on V(xy − 1).

Observation 3.7. The restriction map gives a natural ring surjection

k[x1, . . . , xN ] −→ k[V ]

ϕ 7−→ ϕ
∣∣
V

whose kernel is I(V ). In particular,

k[V ] ∼=
k[x1, . . . , xN ]

I(V )
.

3.2. Properties of the coordinate ring. The coordinate ring k[V ] has the following properties:

(1) k[V ] is a f.g. k-algebra generated by the images of x1, . . . , xN .
(2) reduced (the only nilpotent element is 0)
(3) domain ⇐⇒ V is irreducible.
(4) The maximal ideals of k[V ] correspond to points of V (need k = k).

Note 3.8 (commutative algebra). Maximal ideals in k[V ] ∼= k[x1, . . . , xN ]/I(V ) correspond to max-
imal ideals in k[x1, . . . , xN ] containing I(V ). By the Nullstellensatz, these correspond to points on
V .

3.3. Regular mappings.

Definition 3.9. Let V ⊆ kn and W ⊆ km be affine algebraic sets. A regular mapping of affine
algebraic sets

ϕ : V −→W

is any mapping ϕ which agrees with a polynomial map Ψ on the ambient kn −→ km:

x = (x1, . . . , xn)
Ψ7−→
(
Ψ1(x), . . . ,Ψm(x)

)
,

where Ψi are polynomials.
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Note 3.10. If W = k, then a regular map is a regular function.

Note 3.11. We can describe a regular map V
ϕ−→W ⊆ km by giving regular functions ϕ1, . . . , ϕm ∈

k[V ]:

p 7−→
(
ϕ1(p), . . . , ϕm(p)

)
∈W ⊆ km.

Example 3.12.

k −→ V(y − x2) ⊆ k2

t 7−→ (t, t2)

is a regular map from k to V(y − x2).
The projection

V(y − x2) ⊆ k2 −→ k

(x, y) 7−→ x

is the inverse to the map t 7−→ (t, t2).

Definition 3.13. An isomorphism of affine algebraic sets is a regular map V
ϕ−→ W which has a

regular map W
ψ−−→ V inverse: ψ ◦ ϕ = idV and ϕ ◦ ψ = idW .

Example 3.14. Let V1, V2 ⊆ kn be linear subspaces (defined by some collection of linear polynomi-
als). Then V1

∼= V2 as algebraic sets ⇐⇒ dimV1 = dimV2.

Example 3.15 (diagonal map). Give kn × kn coordinates x1, . . . , xn, y1, . . . , yn.

kn
∆−−→ kn × kn

p 7−→ (p, p)

Image is the “diagonal”

D = V(x1 − y1, . . . , xn − yn) ⊆ kn × kn.

The map kn
∆−−→ D ⊆ kn × kn is an isomorphism of affine algebraic sets.

Example 3.16. X,Y ⊆ kn algebraic sets. View X ⊆ kn with coordinates x1, . . . , xn and Y ⊆ kn

with coordinates y1, . . . , yn.

kn
∆ // kn × kn

X ∩ Y

⊆

∼=
p 7−→(p,p)

// (X × Y ) ∩D

⊆

3.4. Category of affine algebraic sets. Key idea: The category of affine algebraic sets over
k = k is “the same” (anti-equivalence, duality) as the category of f.g. reduced k-algebras.

Point: Given a regular map V
ϕ−→ W of affine algebraic sets, there is a naturally induced k-

algebraic homomorphism k[W ]
ϕ∗−−→ k[V ] given for g ∈ k[W ], W

g−→ k by

V
ϕ
//

g◦ϕ

77W
g
// k

x = (x1, . . . , xn) 7−→
(
ϕ1(x), . . . , ϕm(x)

)
7−→ g

(
ϕ1(x), . . . , ϕm(x)

)
∈ k[V ],

where ϕ1, . . . , ϕm are polynomials in x1, . . . , xn.
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Theorem 3.17. For k = k, there is an anti-equivalence1 of categories{
affine algebraic sets over k

with regular maps

}
←→

{
f.g. reduced k-algebras with
k-algebra homomorphisms

}
V 7−→ k[V ]

(V
ϕ−→W ) 7−→

(
k[W ]

ϕ∗−−→ k[V ]

g 7−→ g ◦ ϕ

)

kn ⊇ V(I) 7−→R ∼=
k[x1, . . . , xn]

I
.

Proof.

Note 3.18. The assignment V 7−→ k[V ] is functorial: Given

V
f
//

h

66W
g
// X,

there is f∗, g∗, h∗ and a commutative diagram

k[V ] k[W ]
f∗
oo k[X],

h∗

jj

g∗
oo

i.e., (g ◦ f)∗ = f∗ ◦ g∗. (Make sure this is obvious to you.)
Problem: Given a reduced, f.g. k-algebra R, how to cook up V ?
Fix a k-algebra presentation for R:

R =
k[x1, . . . , xn]

I
.

Because R is reduced, I is radical. Let

V = V(I) ⊆ kn.

By the Nullstellensatz, I(V(I)) = I, so

k[V ] ∼=
k[x1, . . . , xn]

I(V )
=
k[x1, . . . , xn]

I
= R.

What about homomorphisms of k-algebras?

R
ϕ

// S

k[y1, . . . , ym]/I
ϕ
// k[x1, . . . , xn]/J

Let ϕi = ϕ(yi) ∈ k[V ] for i = 1, . . . ,m. This uniquely defines ϕ.
Need to construct

kn ⊇ V(J)
Ψ−−→ V(I) ⊆ km

x = (x1, . . . , xn) 7−→
(
ϕ1(x), . . . , ϕm(x)

)
.

We have that Ψ is a map V −→ km. Need to check that

(1) the image is in W ,
(2) Ψ∗ = ϕ.

1An anti-equivalence of categories C,D is an equivalence of C and the opposite category Dop.
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To check (
ϕ1(x), . . . , ϕm(x)

)
∈ V(I) = W,

take any g ∈ I. For any x ∈ V ,

g
(
ϕ1(x), . . . , ϕm(x)

)
= ϕ(g)(x) = 0.

We have that ϕ is represented by a map

k[y1, . . . , ym] −→ k[x1, . . . , xn]

yi 7−→ ϕi, i = 1, . . . ,m.

Because ϕ induces a map of the quotient ring

k[y1, . . . , ym]

I

ϕ−→ k[x1, . . . , xn]

J
,

ϕ̃(g) ∈ J for any g ∈ I. In other words, ϕ̃(I) ⊆ J .
Finally, it’s easy to check that this functor is the inverse functor to V 7−→ k[V ]. �

3.5. Sep. 14 quiz question. Consider k
ϕ−→ V(y2 − x3) ⊆ k2 given by

t 7−→
(
t2, t3

)
.

Is this a regular map? Bijective? Isomorphism? Describe explicitly the induced ϕ∗.
Inverse:

(x, y) 7−→ y

x
if x 6= 0,

(0, 0) 7−→ 0.

ϕ is an isomorphism ⇐⇒ ϕ∗ is an isomorphism.

ϕ∗ :
k[x, y]

(y2 − x3)
−→ k[t]

x 7−→ t2

y 7−→ t3

is not an isomorphism of k-algebras.

3.6. Convention on algebraic sets. From now on, affine algebraic sets V ⊆ kn = An will be
considered as topological spaces with the induced (subspace) Zariski topology.

The closed sets of V are W̃ ∩ V , where W̃ ⊆ kn (affine algebraic set contained in V ) is closed in
kn.

3.7. Hilbert’s Nullstellensatz and the Zariski topology. Assume k = k. Fix V ⊆ An affine
algebraic set.

{closed sets in V } ←→ {radical ideals in k[V ]}
W 7−→ I(W ) =

{
f ∈ k[V ]

∣∣ f(p) = 0 ∀p ∈W
}

V ⊇
{
p ∈ V

∣∣ f(p) = 0 ∀f ∈ I
}

= V(I) 7−→I

Proof. Follows immediately from the Nullstellensatz in An:

{affine algebraic sets in V } ←→ {radical ideals in k[x1, . . . , xn] containing I(V )}

←→
{

radical ideals in
k[x1, . . . , xn]

I(V )

}
= {radical ideals in k[V ]} .

�
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4. Rational functions

[Caution: Despite the name, not functions!]

4.1. Function fields and rational functions. Fix affine algebraic set V . Assume V is irreducible,
equivalently, k[V ] is a domain.

Definition 4.1. The function field of V is the fraction field of k[V ], denoted k(V ).

Example 4.2. Let V = An, k[V ] = k[x1, . . . , xn]. Then

k(V ) = k(x1, . . . , xn),

i.e., rational functions.

Definition 4.3. A rational function on V is an element ϕ ∈ k(V ). I.e., ϕ is an equivalence class
f/g, where f, g ∈ k[V ], g 6= 0. Here,

f

g
∼ f ′

g′
⇐⇒ fg′ = gf ′

as elements of k[V ].

Example 4.4. In V(xy − z2) ⊆ A3, x/z is a rational function. Moreover, z/y is the same rational
function:

x

z
∼ z

y

because xy = z2 on V .

Example 4.5. k[V ] ⊆ k(V ) always, by the map f 7−→ f/1.

4.2. Regular points.

Definition 4.6. A rational function ϕ ∈ k(V ) is regular at p ∈ V if it admits a representation
ϕ = f/g where g(p) 6= 0.

Definition 4.7. The domain of definition of ϕ ∈ k(V ) is the locus of all points p ∈ V where ϕ is
regular.

Example 4.8. In V(xy − z2) ⊆ A3 again, (0, 1, 0) is in the domain of definition of x
z = z

y .

Remark 4.9. We can evaluate a rational function at any point of its domain of definition.

Proposition 4.10. The domain of definition of fixed ϕ ∈ k(V ) is a nonempty open subset of V .

Proof. Fix ϕ ∈ k(V ). Write ϕ = f
g , where g 6= 0, f, g ∈ k[V ].

Since g 6= 0 on V , ∃p ∈ V such that g(p) 6= 0. So p is in U = the domain of definition of ϕ, so
U 6= ∅.

Take any q ∈ U . So I can write ϕ = h1
h2

, where h2(q) 6= 0. Now U ′ := V − V(h2) ⊆ V is an open

subset of V , and q ∈ U ′ ⊆ U . �

4.3. Sheaf of regular functions on V . Let V be an irreducible affine algebraic set. Assign to
any open set U ⊆ V the ring OV (U) of all rational functions on V regular at every p ∈ U .

Exercise 4.11. OV (U) is a k-algebra (because the constant functions are regular on every open set)
and a domain.

Whenever U1 ⊆ U2 is an inclusion of open sets, there is an induced ring-map

OV (U2) −→ OV (U1)

ϕ 7−→ ϕ
∣∣
U1
.
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Note 4.12. If U = V , we have two definitions of “ring of regular functions on V ”.

k(V ) ⊇ OV (V ) ⊇ k[V ]

f

1
7−→f

Theorem 4.13. For V irreducible affine algebraic set, k[V ] = OV (V ).

Proof. Take ϕ ∈ OV (V ). For any p ∈ V , there is a representation ϕ =
fp
gp

such that gp(p) 6= 0.

Consider the ideal a ⊆ k[V ] generated by the {gp}p∈V .

Note 4.14. V(a) ⊆ V is empty, so by the Nullstellensatz, 1 ∈ Rad(a) =⇒ 1 ∈ a.

So we can write

1 = r1g1 + · · ·+ rtgt

for some gi = gpi in k[V ] ⊆ k(V ), ri ∈ k[V ]. Hence

ϕ = r1ϕg1 + · · ·+ rtϕgt.

But ϕgi = fi, so

ϕ = r1f1 + · · ·+ rtft ∈ k[V ]. �

5. Projective space, the Grassmannian, and projective varieties

5.1. Projective space. Fix k. Let V be a vector space over k.

Definition 5.1. The projective space of V , denoted P(V ), is the set of 1-dimensional subspaces of
V .

We denote Pnk = P(kn+1).

Example 5.2. P1
k = P(k2) =

{
1-dimensional subspaces of k2

}
=
{

lines through (0, 0) in k2
}

.

We can use stereographic projection onto a fixed reference line to view P1 = k ∪ {∞} as a line
with a point at infinity.

Specifically, P1
R is homeomorphic to a circle, and P1

C is the Riemann sphere.

Example 5.3. P2
k = P(k3) = k2 t P1

k.

5.2. Homogeneous coordinates. In Pnk , represent each point p = [a0 : a1 : · · · : an] by choosing
a basis for it (i.e., choose any non-zero point in the corresponding line through origin in kn+1). At
least some ai 6= 0, and [b0 : · · · : bn] represents the same point in Pn iff ∃k 6= 0 such that

(kb0, . . . , kbn) = (a0, . . . , an). (5.1)

Another way to think of Pnk is as (kn+1 \ {0})/∼, where two points in kn+1 are equivalent iff
(5.1) holds.

Note 5.4. If k = R, this gives PnR a natural (quotient) topology, and similarly if k = C.

Exercise 5.5. Pn is compact in that Euclidean topology.

In these coordinates, we have an open cover

Pnk =
n⋃
j=0

Uj ,

where Uj =
{

[x0 : · · · : xn]
∣∣ xj 6= 0

} ∼= kn are the standard charts.

Think of fixing one chart: U0 ⊂ Pnk . Consider U0 to be the “finite part”, and Pn \U0 = Pn−1 the
“part at infinity”.
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Exercise 5.6. (1) If k = R, then PnR is a smooth manifold.
(2) If k = C, then PnC is a complex manifold.
(3) For any k, the transition functions induced by the standard cover are regular functions.

5.3. More about projective space.

Exercise 5.7. In kn ↪→ Pn, consider a line with “slope” (a1, a2, . . . , an), i.e., parametrize as
a1t

...
ant

+

b1...
bn

 ∣∣∣∣ t ∈ k
 .

Show that there is a unique point in Pn “at infinity” on this line, with coordinates [0 : a1 : · · · : an].

Example 5.8. In Rn ↪→ P2
R, consider two parallel lines, with one passing through the origin and

(a, b). These two parallel lines both approach the point [0 : a : b] in P2.

Example 5.9. Look at V(xy − 1) ⊆ R2 ⊆ P2. In P2, we can “add in” two points at ∞ on the
hyperbola, [0 : 1 : 0] and [0 : 0 : 1]. We get a closed connected curve!

5.4. Projective algebraic sets. Pn = one-dimensional subspaces in kn+1. We have homogeneous
coordinates [x0 : · · · : xn].

Look at F ∈ k[x0, . . . , xn].

Caution 5.10. F is not a function on Pn unless it is constant!

However, if F is homogeneous, then it makes sense to ask whether or not F (p) = 0 for a point
p ∈ Pn.

Lemma 5.11. If F ∈ k[x0, . . . , xn] is homogeneous of degree d, then

F (tx0, . . . , txn) = tdF (x0, . . . , xn).

Proof. Write

F =
∑
|I|=d

aIx
i0
0 . . . x

in
n , aI ∈ k.

Check for each monomial. �

Definition 5.12 (projective algebraic set). A projective algebraic subset of Pnk is the common zero
set of a collection of homogeneous polynomials in k[x0, . . . , xn].

Example 5.13. V = V(x2 + y2 − z2) ⊆ P2 is a cone; it consists of a set of lines through the origin.
In the chart Ux = {[1 : y : z]}, the equation for V ∩ Ux = V(1 + y2 − z2) ⊆ k2 is a hyperbola. In

the chart Uz, V ∩ Uz = V(x2 + y2 − 1) ⊆ k2 is a circle.

5.5. Projective algebraic sets, continued. Let {Fλ}λ∈Λ ⊆ k[x0, . . . , xn] be a collection of ho-
mogeneous polynomials.

Note 5.14. The affine algebraic set V = V
(
{Fλ}λ∈Λ

)
⊆ An+1 is cone-shaped, i.e., ∀p ∈ V , the line

through p and the origin is in V .

Example 5.15 (Linear subspaces). Say W ⊆ kn+1 is a sub-vector space. Then

P(W ) = one-dimensional subspaces of W = P(kn+1) = Pn.

Note 5.16. P(W ) = V(L1, . . . , Lt) ⊆ Pn, where Li =
∑n

j=0 aijxj are a set of linear functionals in
V ∗ which define W .
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Example 5.17 (Some special cases). W is one-dimensional =⇒ P(W ) is a point.
W is 2-dimensional =⇒ P(W ) is a line in Pn.
In general, if W is (d+ 1)-dimensional, then P(W ) is a d-hyperplane in Pn.
If W has codimension 1 in V , then V(L) = P(W ) ⊆ P(V ) = Pn is called a hyperplane in Pn.

Fact 5.18. Every projective algebraic set in Pn is defined by finitely many homogeneous equations.

Note 5.19. As in the affine case,

V
(
{Fλ}λ∈Λ

)
= V

(
〈Fλ〉λ∈Λ

)
= V(any set of (homogeneous) generators for 〈Fλ〉λ∈Λ)

= V
(
Rad 〈Fλ〉λ∈Λ

)
.

Definition 5.20 (homogeneous ideal). An ideal I ⊆ k[x0, . . . , xn] is homogeneous if it admits a
set of generators consisting of homogeneous polynomials.

Example 5.21. I =
(
x3 − y2, y2 − z, z

)
is homogeneous because I =

(
x3, y2, z

)
.

Fact 5.22. The projective algebraic sets form the closed sets of a topology on Pn, the Zariski
topology .

5.6. The projective Nullstellensatz.

Definition 5.23. The homogeneous ideal of a projective algebraic set V ⊆ Pn is the ideal I(V ) ⊆
k[x0, . . . , xn] generated by all homogeneous polynomials which vanish at every point of V .

Note 5.24. Given a homogeneous ideal I ⊆ k[x0, . . . , xn], we can define both an affine algebraic
set V(I) ⊆ kn+1 and a projective algebraic set V(I) ⊆ Pn. These have the same radical ideal in
k[x0, . . . , xn].

Fact 5.25. For any projective algebraic set V ⊆ Pn,

V(I(V )) = V.

Theorem 5.26 (Projective Nullstellensatz). Only when k = k:

{projective algebraic sets in Pn} ←→

{radical homogeneous ideals
in k[x0, . . . , xn] except for

(x0, . . . , xn)

}
.

We call (x0, . . . , xn) the irrelevant ideal .
In general, the Zariski topology in Pn restricts to the Zariski topology in each affine chart:

Pn ⊇ V = V
(
F1(x0, . . . , xn), . . . , Ft(x0, . . . , xn)

)
⊇ V ∩ Ui = V

(
F0(t0, . . . , 1, . . . , tn), . . . , Ft(t0, . . . , 1, . . . , tn)

)
,

where the coordinates are given by

Ui −→ kn

[x0 : · · · : xi : · · · : xn] 7−→
(
x0

xi
, . . . , î, . . . ,

xn
xi

)
.

5.7. Projective closure.

Definition 5.27. The projective closure of an affine algebraic set V ⊆ An is the closure of V in
Pn, under the standard chart embedding An = U0 ↪→ Pn.

Example 5.28. Consider V = V(xy − 1) ⊆ A2:

V = V(xy − 1) = V(xy − z2) ⊆ P2.

Look at V ∩ Uz = V .
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Look at V ∩ {“line at infinity”}:
V ∩ V(z) = V(xy − z2, z) = Z(xy, z) = {[1 : 0 : 0], [0 : 1 : 0]} ⊆ P2.

Definition 5.29. Given a polynomial f ∈ k[x1, . . . , xn], its homogenization is the polynomial
F ∈ k[X0, . . . , Xn] obtained as follows: If f has degree d, write

f =
∑

aIx
i1
1 . . . x

in
n = fd + fd−1 + fd−2 + · · ·+ f0,

where fi is the homogeneous component of degree i. Then

F = fd +X0fd−1 + · · ·+X2
0fd−2 + · · ·+Xd

0f0.

Caution 5.30. Given V = V(f1, . . . , ft) ⊆ kn, the projective closure V in Pn is not necessarily
defined by the homogenization of the fi.

For example: {(
t, t2, t3

) ∣∣ t ∈ k} ⊆ k3 ↪→ P3(
t, t2, t3

)
7−→ [1 : t : t2 : t3] =

[
1

t3
:

1

t2
:

1

t
: 1

]
,

so it has exactly one point at infinity, [0 : 0 : 0 : 1].
Consider I = (z − xy, y − x2).

Exercise 5.31. Show V(zw − xy, yw − x2) ⊆ P3 is not the projective closure of the twisted cubic.

6. Mappings of projective space

6.1. Example: Second Veronese embedding.

P1 ν2−−→ P2

[x : y] 7−→
[
x2, xy, y2

]
Check: [x : y] and [tx : ty] for any t ∈ k have the same image:

[tx : ty] 7−→
[
(tx)2 : (tx)(ty) : (ty)2

]
=
[
t2x2 : t2xy : t2y2

]
=
[
x2 : xy : y2

]
.

Also, if x 6= 0, then ν2([x : y]) ∈ U0, and if y 6= 0, then ν2([x : y]) ∈ U2.
This is called the “2nd Veronese embedding of P1 in P2.” In general, the d-th Veronese map

νd : P1 −→ Pd

[x : y] 7−→
[
xd : xd−1y : yxd−1 : yd

]
Look at ν2 in charts of P1 = Ux ∪ Uy:

A1 −→ Uy =
{

[x : y]
∣∣ y 6= 0

}
⊂ P1

t 7−→ [t : 1]
x

y
−→[x : y]

We have

Uy
ν2−−→ U2 = A2

[x : 1] 7−→
[
x2 : x : 1

]
A2 −→ A2

t 7−→
(
t2, t

)
.

This is a regular mapping of A1 −→ A2.
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6.2. Geometric definition. Thinking geometrically of P1 as covered by two copies of A1, this
map ν2 is a regular mapping on each chart.

This is the idea in general of a “regular mapping of varieties”.

6.3. Example: The twisted cubic. This is the third Veronese mapping:

ν3 : P1 −→ P3

[x : y] 7−→
[
x3 : x2y : xy2 : y3

]
A1 = Ux −→ U0 = {[1 : x : y : z]} = A3

t =
y

x
7−→

[
1 : t : t2 : t3

]
=
(
t, t2, t3

)
6.4. Example: A conic in P2.

P2 ⊇ V = V(xz − y2)
ϕ−→ P1

[x : y : z] 7−→

{
[x : y] if x 6= 0,

[y : z] if z 6= 0.

Note that if x = z = 0, then y = 0, so this case cannot occur.
What if x 6= 0 and z 6= 0? Then y 6= 0, so

[x : y] =
[
xy : y2

]
= [xy : xz] = [y : z].

So ϕ is a well-defined map of sets.
Cover V by open sets, each identified with an affine algebraic set: V ∩ Ux and V ∩ Uz.

A2 ⊇ V
(
z

x
−
(y
x

)2
)

= V ∩ Ux
ϕ−→ P1

[x : y : z] 7−→ [x : y][
1 :

y

x
:
z

x

]
7−→

[
1 :

y

x

]
[1 : t : s] 7−→ [1 : t]

(t, s) 7−→ t

So ϕ is projection onto the t-axis in Ux: regular in local charts. (Similar in every chart.)

6.5. Projection from a point in Pn onto a hyperplane. Fix any p ∈ Pn and any hyperplane
H ⊆ Pn not containing p.

Example 6.1 (special case). Fix a point p ∈ P2 and a line L ⊆ P2 such that p /∈ L.

Choosing coordinates, let H = V(x0) = Pn−1 ⊆ Pn and p = [1 : 0 : · · · : 0] /∈ H.

Definition 6.2. The projection from p to H is the map

Πp : Pn − {p} −→ Pn−1H ⊆ Pn

x 7−→
←→
`p ∩H,

where
←→
`p is the unique line through p and x.

Question: How does this look in local charts on Pn?

Pn − {[1 : 0 : · · · : 0]} Πp−−→ Pn−1 = V(x0) ⊆ Pn

U0 3 [1 : λ1 : · · · : λn] 7−→ [λ1 : · · · : λn]
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We have

` =
{

[1 : tλ1 : · · · : tλn]
∣∣ t ∈ k} =

{[
1
t , λ1 . . . λn

] ∣∣ t ∈ k} 3 [0, λ1, . . . , λn].

If we had a chart where p was at infinity, it would look like “projection”

An −→ An−1

(x1, . . . , xn) 7−→ (x1, . . . , xn−1)

in the usual sense.

6.6. Homogenization of affine algebraic sets.

Exercise 6.3. If V ⊆ An is an affine algebraic set with projective closure V ⊆ Pn, and if I(V ) ⊆
k[x1, . . . , xn] is the ideal of V , then I(V ) ⊆ k[x0, . . . , xn] is generated by the homogenizations of all
the elements of I(V ).

Exercise 6.4 (purely topological). Let V ⊆ Pn be a projective algebraic set. Then V is irreducible
if and only if V ∩ Ui is irreducible ∀i = 0, . . . , n, the “standard affine cover” of V .

7. Abstract and quasi-projective varieties

7.1. Basic definition and examples.

Definition 7.1. A quasi-projective variety is any irreducible, locally closed (topological) subspace
of Pn.

I.e., W ⊆ Pn is a quasi-projective variety by definition if W = U ∩ V , where U ⊆ Pn is open and
V ⊆ Pn is an irreducible projective set.

Example 7.2 (Some quasi-projective varieties). (1) Irreducible affine algebraic sets are quasi-
projective varieties:

V = V ∩ U0 ⊆ An = U0 ⊆ Pn.
(2) Irreducible projective algebraic sets.
(3) Open subsets of affine or projective varieties.

Example 7.3 (An abstract variety).

Mg = {moduli space of compact Riemann surfaces}
= {moduli space of smooth projective varieties/C of dimension 1}

This is an abstract algebraic variety.

Theorem 7.4 (Fields medal, Deligne and Mumford). Mg is quasi-projective.

Example 7.5 (Another moduli space). Lines in P2 = P(k3) can be viewed as P
(
(k3)∗

)
.

7.2. Quasi-projective varieties are locally affine.

Proposition 7.6. A quasi-projective variety W has a basis of open sets which are (homeomorphic
to) affine algebraic sets.

Proof. First W = V ∩ U , where U ⊆ Pn is open and V ⊆ Pn is closed and irreducible. Then

W ∩ Ui = (V ∩ U ∩ Ui) = (V ∩ Ui) ∩ (U ∩ Ui) ⊆ Vi = V ∩ Ui ⊆ Ui = An,
and (V ∩ Ui) ∩ (U ∩ Ui) is an open subset in the affine variety Vi.

But an open subset of an affine variety has an open cover by affine charts:

V − V(g1, . . . , gr) = U ⊆ V ⊆ An

for gi ∈ k[V ], then

U =

r⋃
i=1

(
V − V(gi)

)
. �
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7.3. The sheaf of regular functions. Fix a quasi-projective variety W . What is OW ?

Definition 7.7. Let U ⊆ W be any open set. A regular function on U is a function ϕ : U −→ k
with the property that ∀p ∈ U , there exists an open affine set p ∈ U ′ ⊆ U such that ϕ

∣∣
U

is regular
on U .

Equivalently, ϕ : U −→ k is regular ⇐⇒ ϕ
∣∣
U∩Ui

is regular on U ∩ Ui ∀i = 0, . . . , n.2

Example 7.8. X0, X1 in k[X0, X1, X2] are not functions on P2.

But the ratio X1
X0

is a well-defined function on P2 − V(X0) = U0.

Example 7.9. ϕ =
Xj
Xi

= tj (the “j-th coordinate function”) is a regular function on Pn \ V(Xi) =

Ui ←→ kn in coordinates X0
Xi
, . . . , XnXi .

How does this look in Uκ? Uκ has coordinates X0
Xκ
, . . . , XnXκ , denoted t0, . . . , t̂κ, . . . , tn. Then

ϕ =
Xj

Xi
=
Xj/Xκ

Xi/Xκ
=
tj
ti

is a rational function of the coordinates, regular on Uκ \ V(ti) = Ui ∩ Uκ.

Remark 7.10. We get a sheaf OW of regular functions on the quasi-projective variety W . To each
U ⊆W , assign OW (U) = ring of regular functions on U .

Example 7.11. OPn(Pn) = k. So if n ≥ 1, then Pn is not affine!

7.4. Main example of regular functions in projective space. Let F,G ∈ k[x0, . . . , xn] be
homogeneous of the same degree. Then ϕ = F

G is a well-defined functions on Pn \ V(G):

F (tx0, . . . , txn)

G(tx0, . . . , txn)
=
tdF (x0, . . . , xn)

tdG(x0, . . . , xn)
=
F (x0, . . . , xn)

G(x0, . . . , xn)
.

Moreover, ϕ is regular on U := [Pn \ V(G)].

We now check this. It suffices to check that ϕ
∣∣
U∩Ui

(for i = 0, . . . , 1) is regular on Ui ∩ U
open
⊆

Ui = An.

Lemma 7.12. If F ∈ k[X0, . . . , Xn] is homogeneous of degree d, then

F

Xd
i

= F

(
X0

Xi
,
X1

Xi
, . . . , 1,

Xi+1

Xi
, . . . ,

Xn

Xi

)
.

Proof. Comes down to checking for Xα0
0 . . . Xαn

n (with
∑
αi = d):

Xα0
0 . . . Xαn

n

Xd
i

=

n∏
j=0

(
Xj

Xi

)α0

. �

Now we have

ϕ
∣∣
Ui

=
F

G
=
F/xdi
G/xdi

=
F
(
x0
xi
, . . . , 1, . . . , xnxi

)
G
(
x0
xi
, . . . , 1, . . . , xnxi

) =
f(t0, . . . , t̂i, . . . , tn)

g(t0, . . . , t̂i, tn)

is a rational function on An = Ui, regular on [An \ V(g)] = Ui ∩ (Pn \ V(G)). So ϕ is regular on
U . �

2W = Ũ ∩ V =⇒ U ⊆W is
˜̃
U ∩ Ũ ∩ V = U , and (

˜̃
U ∩ Ũ ∩ V ) ∩ Ui is open in V ∩ Ui, which is affine.
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7.5. Morphisms of quasi-projective varieties.

Definition 7.13. A regular map (or morphism in the category) of quasi-projective varieties X
ϕ−→

Y ⊆ Pn is a well-defined map of sets such that ∀x ∈ X, writing ϕ(x) ∈ Y ∩ Ui ⊆ Ui = kn for some
i, there exists an open affine neighborhood U of x ∈ U ⊆ X such that ϕ(U) ⊆ Ui and ϕ restricts
to a map

U −→ Y ∩ Ui ⊆ Ui
z 7−→

(
ϕ1(z), . . . , ϕn(z)

)
,

where ϕi ∈ OX(U).

Definition 7.14. An isomorphism of varieties is a regular map X
ϕ−→ Y which has a regular

inverse Y
ψ−−→ X.

Example 7.15 (The d-th Veronese map). Let m =
(
n+d
n

)
−1. Then the d-th Veronese map is defined

by

Pn νd−−→ Pm

[x0 : · · · : xn] 7−→
[
xd0 : xd−1

0 x1 : · · · : xdn
]
,

where the coordinates are all degree d monomials in x0, . . . , xn.

Example 7.16 (Projection). p /∈ H = hyperplane in Pn:

Pn \ {p} −→ Pn−1 = H

[x0 : · · · : xn] 7−→ [x1 : · · · : xn].

8. Classical constructions

8.1. Twisted cubic and generalization.

Definition 8.1. The twisted d-ic in Pd is the image of P1 under the d-Veronese map

P1 νd−−→ Cd ⊆ Pd

[s : t] 7−→
[
sd : sd−1t : · · · : std−1 : td

]
= [x0 : · · · : xd].

Fact 8.2. νd is an isomorphism P1 ∼= Cd. The inverse map is

Cd −→ P1

[x0 : · · · : xd] 7−→

{
[x0 : x1] if x1 6= 0,

[xd−1 : xd] if x1 = 0.

8.2. Hypersurfaces.

Definition 8.3. A hypersurface in Pn of degree d is the zero set of one homogeneous polynomial
of degree d.

Let V = V(Fd) ⊆ Pn, with Fd irreducible. Pick p /∈ V .

Pn \ {p}
Πp
// Pn−1

V

⊆

Πp
// // Pn−1

finite map, “generically” d-to-1.
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Lemma 8.4. Every line in Pn must intersect V at ≤ d points. (“Generically” exactly d points;
strict inequality is possible due to multiplicity.)

Proof.

V(Fd) ∩ V(x2, . . . , xn) = V(Fd, x2, . . . , xn) = V(Fd) ⊆ L = V(x2, . . . , xn) ⊆ Pn

�

8.3. Segre embedding. Category of quasi-projective varieties:

Objects: (irreducible) locally closed subspaces of Pn (all n) over fixed k = k.

Morphisms: Map of sets Pn ⊇ X
ϕ−→ Y ⊆ Pm such that on sufficiently small open subsets

of Xi = X ∩ Ui ⊆ An, ϕ
∣∣
U

is a regular mapping into some chart of Pm.

Is there a notion of product in this category?
Recall: For X ⊆ Am, Y ⊆ An affine algebraic sets,

X × Y ⊆ Am × An = Am+n

is an affine algebraic set. But Pm × Pn 6= Pm+n, so we can’t do a similar thing for projective
algebraic sets.

Indeed, P2 \ A2 is one line at infinity, but(
P1 × P1

)
\ A2 =

{
∞× P1

}
∪
{
P1 ×∞

}
consists of two lines at infinity.

Goal 8.5. Put the structure of a quasi-projective variety (projective) on Pn × Pm.
Want:

(1) σ : Pn × Pm ↪→ Σ ⊆ P?, where Σ is a (closed) projective algebraic set, and σ is compatible

with the identification An × Am = Am+n σ−→ σ(Am+n) on each affine chart Ui × Uj =
An × Am.

(2) There should be regular maps Σ
π1−−→ Pn, Σ

π2−−→ Pm.
(3) (Linear space)× p ⊆ Pn × Pm maps under σ to a linear space of the same dimension in P?.

Example 8.6.

P1 × P1 σ11−−−→ P3

([x : y], [z : w]) 7−→ [xz : xw : yz : yw]

The image of σ11 is V(X0X3 −X1X2).
On Ux × Uz = A1 × A1 = A2:

A2 = A1 × A1 '−−→ V(xy − z) ⊆ A3(
(1, t), (1, s)

)
7−→ [1 : t : s : ts]

Also,

P1 × [a : b] 7−→
{

[xa : xb : ya : yb]
∣∣ [x : y] ∈ P1

}
⊆ P3 ⊆ P(k4)

is a line in P3 corresponding to the 2-dimensional subspace

span {(a, b, 0, 0), (0, 0, a, b)} ⊂ k4.

This is the “definition” of P1 × P1 as a quasi-projective variety.
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Definition 8.7. The Segre map is

Pn × Pm σnm−−−→ Σnm ⊆ P(n+1)(m+1)−1

(
[x0 : · · · : xn], [y0 : · · · : ym]

)
7−→

x0
...
xn

 [y0 . . . ym
]

︸ ︷︷ ︸
(n+1)×(m+1) matrix

= P
(
Matk(n+ 1,m+ 1)

)
.

Remark 8.8 (Linear algebra review). TFAE for any matrix A of size d× e:
(1) The rows are all multiples of each other by a scalar.
(2) The columns are all multiples of each other by a scalar.
(3) A factors as (d× 1)× (1× e).
(4) The rank of A is ≤ 1.
(5) All 2× 2 subdeterminants of A are zero.

Writing the matrix coordinates as

z00 . . . z0m
...

...
zn0 . . . znm

,

Σnm = V

determinant of 2× 2 minors of

z00 . . . z0m
...

...
zn0 . . . znm


 .

The projections Σ
π1−−→ Pn, Σ

π2−−→ Pm are given by

p =
[
zij
] π17−−→ any column of p,

and likewise, π2 takes any row. (This is well-defined because the matrix has rank 1.)

8.4. Products of quasi-projective varieties.

Definition 8.9. If X ⊆ Pn and Y ⊆ Pm are quasi-projective varieties, then we define a quasi-
projective variety structure on the set X × Y by identifying X × Y with its image under the
appropriate Segre map σnm:

σnm(X × Y ) ⊆ Σnm ⊆ P(n+1)(m+1)−1

This gives X × Y a Zariski topology!

How do the closed sets look?

Definition 8.10. A polynomial F ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous if F is homogeneous
separately in x0, . . . , xn (treating the yi as scalars) and y0, . . . , ym (treating the xi as scalars).

Example 8.11. The polynomial x5
0y1y2 − x0x1x

3
2y

2
3 is bihomogeneous of degree (5, 2).

However, x7
0 − y7

0 is not bihomogeneous.

Note 8.12. If F ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous, then V(F ) ⊆ Pn×Pm is well-defined.

Exercise 8.13. The closed sets of Pn × Pm are precisely the sets defined as the common zero set of
a collection of bihomogeneous polynomials in k[x0, . . . , xn, y0, . . . , ym].

Example 8.14. The Zariski topology on Pn×An with coordinates k[x0, . . . , xn, y1, . . . , ym] has closed
sets exactly of the form

V
(
{Fλ(x0, . . . , xn, y1, . . . , ym)}λ∈Λ

)
,

where Fλ is homogeneous in x0, . . . , xn.
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8.5. Conics.

Definition 8.15. A conic in P2 is a hypersurface (curve) given by a single degree 2 homogeneous
polynomial.

Three kinds:

Nondegenerate: V(F ) ⊆ P2 such that F does not factor into 2 linear factors. (Showed in
homework: changing coordinates, these are all the same.)

Degenerate, two lines: F = L1L2, where λL1 6= L2. Then V(F ) = V(L1) ∪ V(L2).
Think of this as the limit as t→ 0 of a family of nondegenerate conics

{V(xy − t)}t∈k ⊆ A2.

Degenerate, double line: F = L2
1. Then V(F ) = V(L2

1).
Think of this as the limit as t→ 0 of a family of degenerate conics

V(y(y − tx)) = V(y) ∪ V(y − tx) ⊆ A2.

This line V(y2) is one line “counted twice”. This is a scheme, but not a variety.

Every conic is uniquely described by its equation F ∈ [k[x, y, z]]2.3

Let C ⊆ P(k3) be a conic. We have a correspondence

C = V
(
Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2

)
←→ [A : B : C : D : E : F ]{

conics in P(k3)
}
←→ P

(
Sym2

(
(k3)∗

))
= P5.

Moreover, we have proper inclusions of closed subvarieties

D2 = {double lines} $ D1 = {pairs of lines} $
{

all conics in P(k3)
}

= P
(
Sym2

(
(k3)∗

))
.

As we will show on the homework, D2
∼= image of P2 under the Veronese map ν2 : P2 −→ P5.

This is the beginning of the study of moduli spaces.

8.6. Conics through a point. Fix p ∈ P2. Consider the set

Cp =
{
C ⊆ P2 conic in P2 passing through p

}
$ P

(
Sym2

(
(k3)∗

))
= P5.

This is a hyperplane. Indeed, write p = [u : v : t]. A conic

C = V(Ax2 +Bxy + · · ·+ Fz2︸ ︷︷ ︸
G

)

passing through p ⇐⇒ G(p) = 0 ⇐⇒ Au2 +Buv+Cv2 +Dut+Evt+Ft2 = 0, which is a linear
equation L in the homogeneous coordinates A,B,C,D,E, F for P5 = P

(
Sym2

(
(k3)∗

))
. Thus,

Cp = V(L) ⊆ P5.

Theorem 8.16 (“5 points determine a conic”). Given p1, p2, p3, p4, p5 ∈ P2 distinct points, there
is a conic through all 5 points, unique if the points are in general position.

If no three points are on the same line, then there is a unique nondegenerate conic through them.

3[k[x, y, z]]2 = Sym2
(
(k3)∗

)
denotes the vector space of degree 2 homogeneous polynomials, i.e., the 2nd component

of the graded ring k[x, y, z].
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9. Parameter spaces

9.1. Example: Hypersurfaces of fixed degree. Recall:{
conics in P2

}
←→ {their homogeneous equations up to scalar multiple}
←→ P

(
Sym2

(
(k3)∗

))
= {deg 2 homogeneous polynomials in 3 variables} /scalars

= [k[x, y, z]]2 /scalars = Sym2
(
(k3)∗

)
/scalars

Similarly:

{hypersurface of degree d in Pn} oo // {their equations up to scalar multiple}

V(Axd0 +Bxd−1
0 x1 + · · ·+︸ ︷︷ ︸

“homog. degree d in x0,...,xn”

)
P
(
Symd

(
(kn+1)∗

))
= P(n+dn )−1

Note that these are not really varieties, since we remember the homogeneous equation.

9.2. Philosophy of parameter spaces. Philosophy: the set of hypersurfaces of degree d “is” in
a natural way a variety. The subsets (“algebraically natural” subsets) are subvarieties.

The “good” properties will hold on open subsets of P(n+dn )−1 (hopefully non-empty), and “bad”

properties will hold on closed subsets of P(n+dn )−1 (hopefully proper).

9.3. Conics that factor. Look in P
(
Sym2

(
(k3)∗

))
= set of conics in P2. Does “V(F )” ←→ [A :

B : C : D : E : F ] factor or not?

F = Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2

factors ⇐⇒

det

 A 1
2B

1
2D

1
2B C 1

2E
1
2D

1
2E F = 0.


The subset where the conic degenerates into 2 lines is

V

det

 A 1
2B

1
2D

1
2B C 1

2E
1
2D

1
2E F

 .

Now we have

{hypersurface of degree d in Pn} oo // {their equations up to scalar multiple}

P
(
Symd

(
(kn+1)∗

))
= P(n+dn )−1

{hypersurfaces whose equations factor}

⊆

oo // X

⊆ closed

where F = FiFd−i factors and

X =

d−1
2⋃
i=1

Xi,

with Xi = the subset of hypersurfaces of degree d where equation factors as (deg i)(deg d− i).
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Theorem 9.1. The set of degree d hypersurfaces in Pn = P(V ) which are not irreducible (meaning:
whose equations factor non-trivially) is a proper closed subset of P

(
Symd(V ∗)

)
.

Proof. It suffices to show each Xi = {F = FiFd−i} is closed and proper. Consider

P
(
Symi(V ∗)

)
× P

(
Symd−i(V ∗)

)
ϕ−→ P

(
Symd(V ∗)

)
(F,G) 7−→ FG,

where F,G are homogeneous of degrees i, d− i, respectively, in x0, . . . , xn.
Easy to check: ϕ is regular and image is Xi. Need to check closed (proper). �

This follows from the following big theorem:

Theorem 9.2. If V is projective and V
ϕ−→ Y is any regular map of quasi-projective varieties,

then ϕ sends closed sets of V to closed sets of Y .

Caution 9.3. Really need the hypothesis that the source variety is projective. E.g.:

Uf = An − V(f)
i
↪→ An

regular map, image is open. Also, the hyperbola:

A2 π−→ A1

(x, y) 7−→ x

π(V(xy − 1)) = A1 − {0} ,
which is not closed.

10. Regular maps of projective varieties

10.1. Big theorem on closed maps.

Theorem 10.1. If V is projective and V
ϕ−→ X is a regular map to X (any quasi-projective

variety), then ϕ is closed (i.e., if W ⊆ V is a closed subset of V , then ϕ(W ) is closed).

Note 10.2. To prove the theorem, it suffices to show that ϕ(V ) is closed.
[If W ⊆ V is closed (irreducible), then W is also projective. So ϕ

∣∣
W

: W −→ X has the property

that ϕ
∣∣
W

(W ) is closed, thus ϕ(W ) = ϕ
∣∣
W

(W ) is closed.]

Corollary 10.3. If V is projective, then OV (V ) = k.

Proof. Let V
ϕ−→ k ⊆ P1 be a regular function. We can interpret ϕ : V −→ P1 as a regular map.

So the image is closed in P1 by Theorem 10.1.
Thus ϕ(V ) is either a finite set of points (or ∅) or ϕ(V ) = P1. Since ϕ is an actual map into

k $ P1, ϕ(V ) must be a finite set of points. But V is irreducible, so ϕ(V ) is a single point. �

10.2. Preliminary: Graphs. Fix any regular map of quasi-projective varieties X
ϕ−→ Y .

Definition 10.4. The graph Γϕ of ϕ : X −→ Y is the set{
(x, y)

∣∣ ϕ(x) = y
}
⊆ X × Y.

Proposition 10.5. Γϕ is always closed in X × Y .

Proof. Step 1: Without loss of generality, Y = Pm, since X
ϕ−→ Y ⊆ Pm, and we interpret ϕ as a

regular map X −→ Pm. We have

Γϕ ⊆ X × Y ⊆ X × Pm,
and to show Γϕ is closed in X × Y , it suffices to show Γϕ ⊆ X × Pm is closed.
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Step 2: Consider the regular map

ψ : X × Pm (ϕ,id)−−−−→ Pm × Pm

(x, y) 7−→ (ϕ(x), y) .

Note 10.6. Γϕ = ψ−1(∆), where ∆ =
{

(z, z)
∣∣ z ∈ Pm

}
is the diagonal subset of Pm × Pm,

which is closed.

Because ∆ is closed, so is Γϕ. �

10.3. Proof of Theorem 10.1. Fix V
ϕ−→ X regular map, V projective. Need to show ϕ(V ) is

closed.
Let Γϕ ⊆ V ×X be the graph. Consider the projection

Γϕ ⊆ V ×X
π−→ X ⊇ π(Γϕ) = ϕ(V ),

which is a regular map. It suffices to prove that π(Γϕ) is closed.

Theorem 10.7. If V is projective and X is quasi-projective, then the projection V ×X π−→ X is
closed.

Proof of Theorem 10.7. First, using point-set topology arguments, reduces as follows:

(1) WLOG, V = Pn.
(2) WLOG, X is affine.
(3) WLOG, X = Am.

Now:

Pn × Am ϕ−→ Am.

Put coordinates x0, . . . , xn on Pn and y1, . . . , ym on An.
Want to show: Given closed Z ⊆ Pn × Am, that ϕ(Z) is closed in Am. Write

Z = V
(
g1(x0, . . . , xn, y1, . . . , ym), . . . , gt(x0, . . . , xn, y1, . . . , ym)

)
,

where gi are homogeneous in x0, . . . , xn (but not in the yi). What is the image of Z?

Note 10.8. (λ1, . . . , λm) ∈ Am is in π(Z) iff

∅ 6= V
(
g1(x0, . . . , xn, λ1, . . . , λm), . . . , gt(x0, . . . , xn, λ1, . . . , λm)

)
⊆ Pn

iff (by the projective Nullstellensatz)

Rad
(
g1(x, λ), . . . , gt(x, λ)

)
+ (x0, . . . , xn)

iff (
g1(x, λ), . . . , gt(x, λ)

)
+ (x0, . . . , xn)T ∀T.

So we need to show: The set LT of all λ = (λ1, . . . , λm) ∈ Am such that

(x0, . . . , xn)T *
(
g1(x, λ), . . . , gt(x, λ)

)
is closed. The image of π(Z) ⊆ Am is

∞⋂
T=1

LT ,

so it suffices to show that each LT ⊆ Am is closed.
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Aside 10.9 (Converse). Let’s consider the converse:

(x0, . . . , xn)T ⊆
(
g1(x, λ), . . . , gt(x, λ)

)
in k[x0, . . . , xn]

Look in degree T part of k[x0, . . . , xn]:

[k[x0, . . . , xn]]T ⊆ [(g1, . . . , gn)]T

Basis here is
{
xi00 · · ·xinn

}∑
ik=T

.

Spanning set for the σ-dimensional [(g1, . . . , gn)] = subvector space of degree T elements in
(g1(x, λ), . . . , gt(x, λ)):

{gJ} =
{
gi(x, λ) · xj00 · · ·x

jn
n

∣∣ deg(gi) = di,
∑

j` = T − di, i = 1, . . . , t
}
.

Write a matrix with the coefficient xI in gJ in the (IJ)-th spot. The coefficients are polynomials
in λ1, . . . , λm. This is a basis iff the matrix is nondegenerate.

�

11. Function fields, dimension, and finite extensions

11.1. Commutative algebra: transcendence degree and Krull dimension. Fix k ↪→ L
extension of fields.

• The transcendence degree of L/k is the maximum number of algebraically independent
elements of L/k.
• Every maximal set of algebraically independent elements of L/k has the same cardinality.
• If {x1, . . . , xd} are a maximal set of algebraically independent elements, we call them a

transcendence basis for L/k.
• If R is a finitely generated domain over k, with fraction field L, then the transcendence

degree of L/k is equal to the Krull dimension of R.

11.2. Function field. Fix V affine variety.

Definition 11.1 (function field of an affine variety). The function field of V , denoted k(V ), is the
fraction field of k[V ].

Say V − V(g) = Ug = U
open
⊂ V for some g ∈ k[V ]. Then

OV (V ) � � rest. // OV (U) � � rest. // OV (Ug)

k[V ] �
�

// k[V ]
[

1
g

]
Note 11.2. Function fields of Ug and V are the same field.

Fix V ⊆ Pn projective variety.

Definition 11.3 (function field of a projective variety). The function field of V , denoted k(V ),
the function field of any V ∩ Ui (standard affine chart) such that V ∩ Ui 6= ∅.

Question: Why is this independent of the choice of Ui?
Vi = V ∩ Ui =

{
[x0 : · · · : xn]

∣∣ xi 6= 0
}

is an affine variety in Ui = An. Then k[Vi] is generated
by (the restrictions of) the actual functions on Ui

x0

xi
,
x1

xi
, . . . ,

xn
xi
,
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and likewise for k[Vj ]. If xi
xj

= 0 on Ui ∩Uj ∩V , then xi vanishes on Ui ∩Uj ∩V , which implies that

xi vanishes on V and hence V ∩ Ui is empty. So we can write

xk
xi

=
xk/xj
xi/xj

,

thus k[Vi] ⊆ k(Vj), hence k(Vi) ⊆ k(Vj). By symmetry, k(Vj) = k(Vi).

Definition 11.4 (function field of a quasi-projective variety). The function field of a quasi-
projective variety V is k(V ), where V is the closure of V ⊆ Pm.

Equivalently, it is the function field of any V ∩Ui (such that V ∩Ui 6= ∅) or indeed of any open
affine subset of V .

11.3. Dimension of a variety.

Definition 11.5. The dimension of a (quasi-projective) variety V/k is the transcendence degree
of k(V ) over k.

By convention, the dimension of an algebraic set is the maximal dimension of any of its (finitely
many) components.

Example 11.6. • dimAn = n
• dimPn = n
• dim(X × Y ) = dimX + dimY
• All components of a hypersurface V(F ) ⊆ Pn have dimension n− 1.

Definition 11.7. A regular map X
ϕ−→ Y is finite if (in the affine case) the corresponding map of

coordinate rings is an integral extension, or (in general) if the preimage of an affine cover of Y is
affine and ϕ is finite on each affine chart.

Theorem 11.8. If X
ϕ−→ Y is a regular map, finite, then dimX = dimY .

Proof. Reduce to the affine case: X
ϕ−→ Y finite ⇐⇒ k[Y ]

ϕ∗−−→ k[X] is an integral extension. �

11.4. Noether normalization. Take some p /∈ V . Then

Pn
πp
//___ Pn−1

πp2 //___ Pn−2 //___ . . . //___ Pd

V

finite map

66

⊆

// // V1

⊆

// // V2

⊆

// // . . . // // Pd

Theorem 11.9. If V ⊆ Pn is a projective variety, dim d, then there exists a projection V � Pd
(finite).

Intersect with U0 = An:

V ∩ An � V1 ∩A1 � . . .� Vn−d ∩ An = Ad.
This induces the pullback

k[x1, . . . , xn]

I(V )
k[y1, . . . , yd],? _finite int.oo

where the yi are linear in the xi.

Theorem 11.10 (Noether normalization). Given a domain R, finitely generated over k (k infinite),
there exists a transcendence basis y1, . . . , yd consisting of linear combinations of the generators for
R.
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11.5. Dimension example. Recall: dimV = transcendence degree of k(V ) over k.
The dimension of a point is 0, since k({p}) = k.
The dimension of the variety V(xy − zw) ⊆ A2×2 of 2× 2 matrices over k of determinant 0:

k[V ] =
k[x, y, z, w]

(xy − zw)

Observe that x, y, z is not a transcendence basis, because w is not integral over k[x, y, z]; indeed,
it’s not a finite map, because the preimage of the zero matrix under the projections w 7−→ 0 is
infinite.

Claim 11.11. Let t = x−y. Then k[z, w, t]
i
↪→ k[x, y, w, z]/(xy−zw), and z, w, t is a transcendence

basis for k(V ) over k.

Need: z, w, t are algebraically independent. [Means: If z, w, t satisfy some polynomial p with
coefficients in k, then p = 0.]

Need: Check i is integral: Suffices to check x is integral over k[z, w, t].
Note: x2 − tx− zw = 0 in k[x, y, z, w]/(xy − zw).

11.6. Facts about dimension. Fix V irreducible quasi-projective variety.

Fact 11.12. If U ⊆ V is open and nonempty, then dimU = dimV .

Fact 11.13. If Y $ V is a proper closed subset, then dimY < dimV .

Fact 11.14. Every component of a hypersurface V(F ) in An (or Pn) has dimension n−1 (codimension
1).

Sketch of Fact 11.14. Pick p /∈ V(F ) ⊆ An, with F irreducible. Choose coordinates such that
p = (0, . . . , 0, 1). So

f = xdn + a1x
d−1
n + · · ·+ ad,

where ai ∈ k[x1, . . . , xn−1]. Easy to see: x1, . . . , xn−1 are a transcendence basis over k for

k(x1, . . . , xn)

(f)
. �

Fact 11.15. Every codimension 1 subvariety of An (or Pn) is a hypersurface.

Proof. Let X $ An have codimension 1. Let I(X) $ k[x1, . . . , xn], which is prime by irreducibility.
We need to show I(X) is principal.

Take any F ∈ I(X). Without loss of generality, F is irreducible. Then (F ) ⊆ I(x), and if we
have equality, then we are done. Otherwise,

V(F ) % V(I(X)) = X,

and since dimV(F ) = n− 1, we have dimV(I(x)) < n− 1. �

Fact 11.16. If X −→ Y is finite, then dimX = dimY .

Fact 11.17. If V ⊆ Pn is projective, then V has dim d ⇐⇒ V
π−→ Pd is a finite map to Pd.

Fact 11.18. If we have a projection Pn π−→ Pm from a linear space V(L0, . . . , Lm), then

[x0 : · · · : xn] 7−→ [L0 : · · · : Lm]

gives a finite map when restricted to any projective variety V ⊆ Pn, whose disjoint union forms a
linear space V(L0, . . . , Lm).
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11.7. Dimension of hyperplane sections.

Definition 11.19. A hyperplane section of X is X ∩H, where H = V(a0x0 + · · ·+ anxn) ⊆ Pn is
a hyperplane.

Theorem 11.20. dim(X∩H) = dimX−1, unless (of course) X ⊆ H (in which case X∩H = X).

Proof. First: For any closed set X = X1 ∪ · · · ∪Xt (irreducible components of X) in Pn, I can find
a hyperplane H such that dim(X ∩H) < dimX, or more specifically,

X ∩H = (X1 ∩H) ∪ · · · ∪ (Xt ∩H),

and each Xi ∩H $ Xi.

Claim 11.21. Most hyperplanes H have this property!

Lemma 11.22. Fix any finite set of points p1, . . . , pt in Pn. Then there exists a hyperplane H
which does not contain any pi.

Proof of 11.22.

{hyperplanes on Pn = P(V )} oo // P(V ∗)

{hyperplanes through pi}

⊆

oo // Hpi

$
V(Li)

So

{hyperplanes not containing p1, . . . , pt} = P(V ∗) \ {V(L1) ∪ · · · ∪ V(Lt)} . �

Back to Theorem 11.20, we have

Pn ⊇ V(L1) = H1 ⊇ V(L1, L2) = H1 ∩H2 ⊇ . . . ⊇ V(L1, . . . , Ld)

X

$

% X ∩H1

$

% X ∩H1 ∩H2

$

% . . . % X ∩H1 ∩ · · · ∩Hd

$

X0 X1 X2 . . . ∅

d = dimX0 > dimX1 > dimX2 > . . . > 0

Want to show the dimension drops by 1 each time. If not, after d steps, get ∅.
So the linear space P(W ) = V(L1, . . . , Ld) ∩X = ∅. Project from P(W ):

Pn π−→ Pd−1

[x0 : · · · : xn] 7−→ [L1(x) : · · · : Ld(x)]

X
π−→

finite!
X ′

=⇒ dimX = dimX ′ ≤ (d− 1), a contradiction. Hence dimX = d.
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11.8. Equivalent formulations of dimension. V ⊆ Pn projective variety.
The dimension of V is any one of the following, which are equivalent:

(1) transcendence degree of k(V ) over k.
(2) the unique d such that ∃ finite map V � Pd.
(3) the unique d such that V ∩ H1 ∩ H2 ∩ · · · ∩ Hd is a finite set of points, where the Hi are

generic linear subvarieties of codimension d.
(4) the length of the longest chain of proper irreducible closed subsets of V :

V = Vd % Vd−1 % Vd−2 % · · · % V1 % V0 = {point} .

12. Families of varieties

12.1. Family of varieties (schemes). (Not necessarily irreducible.)

Definition 12.1. A family is a surjective morphism (regular map) X
f−→ Y of variety.

The base (or parameter space) of the family is Y . The members are the fibers
{
f−1(y)

}
y∈Y .

Example 12.2. X = V(xy − z) ⊆ A3,

V(xy − z) F−−→ A1

(x, y, z) 7−→ z.

Then
f−1(λ) = V(xy − λ) ⊆ A2 × {λ} .

Example 12.3. Hyperplanes in Pn ←→ P
(
(kn+1)∗

)
by the correspondence

H = V(A0X0 + · · ·+AnXn)←→ {A0X0 +A1X1 + · · ·+AnXn} /scalar values.

12.2. Incidence correspondences. Consider the “incidence correspondence”

X =
{

(p,H)
∣∣ p ∈ H} ⊆ Pn × Pn = P(V )× P(V ∗).

Putting coordinates [X0, . . . , Xn] on P(V ) and [A0, . . . , An] on P(V ∗), we have

X = V(A0X0 + · · ·+AnXn)
π // // (Pn)∗

π−1([A0 : · · · : An]) = V(A0X0 + · · ·+AnXn) 7−→ [A0, . . . , An]

Theorem 12.4. Let X
f
� Y be a surjective regular map of varieties, dimX = n, dimY = m.

Then:

(1) n ≥ m.
(2) dimF ≥ n−m, where F is any component of any fiber f−1(y) ⊆ X (with y ∈ Y ).
(3) There is a dense open set U ⊆ Y such that ∀y ∈ U , f−1(y) has dimension n−m.

Corollary 12.5. Let X
f−→ Y be a surjective regular map of projective algebraic sets. Assume Y

is irreducible and all fibers are irreducible of the same dimension. Then X is also irreducible!

Example 12.6 (Blowup). B =
{

(p, `)
∣∣ p ∈ `} ⊆ A2 × P1.

B =
{

(p, `)
∣∣ p ∈ `} π−→ P1

A2 × ` ⊇ V(ax− by) = π−1(`) 7−→ ` = [a : b].

Note that each of the fibers is 1-dimensional.
Now: B is dimension 2, and

B
π−→ A2

(q, [a : b]) 7−→ q = (a, b) ∈ A2 − {(0, 0)}
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is a “generic” fiber and has dimension 0 = 2−2. But the fiber over (0, 0) is P1, which has dimension
1. The dimension jumps!

12.3. Lines contained in a hypersurface. Q: Fix an (irreducible) hypersurface of degree d in
P3. Does it have any lines on it?

A: For d = 1: X = V(L) ∼= P2 ⊆ P3 is covered by lines.
For d = 2: X = V(xy − wz) ∼= P1 × P1 ⊆ P3 is covered by lines. Degenerate cone: X =

V(x2 + y2 + z2) ⊆ P3 is also covered by lines, as is V(xy), the union of two planes.
Consider the incidence correspondence

X =
{

(V(F ), `)
∣∣ ` ⊆ V(F )

}
⊆ P

(
Symd(k4)∗

)
×Gr(2, 4),

where P
(
Symd(k4)∗

)
= parameter space of hypersurfaces of degree d in P3, and Gr(2, 4) = lines in

P3 = 2-dimensional subspaces of k4.
Take the projections

X
π−→ P

(
Symd(k4)∗

)
,

X
ν−→ Gr(2, 4).

Consider ν: Compute the fiber over `. Without loss of generality, ` = V(X0, X1) ⊆ P3. Then
ν−1(`) = V(Fd) such that

V(X0, X1) ⊆ V(Fd) ⇐⇒ (X0, X1) ⊇ (Fd) = X0Gd−1 +X1Hd−1.

The equation Fd has coefficients 0 on the terms Xd
2 , X

d−1
2 X3, . . . , X

d
3 . So

ν−1(`) ⊆ P
(

Symd(k4)∗
)

is a linear subspace of codimension d+ 1. The dimension of the fiber is(
d+ 3

3

)
− 1− (d+ 1).

Hence, the fibers are all irreducible of the same dimension.
Thus, by Corollary 12.5, X is irreducible of dimension 4 + (fiber dimension).

12.4. Dimension of fibers.

Theorem (12.4). Given a surjective regular map X
ϕ−→ Y of varieties, we have

(1) dimX ≥ dimY
(2) dimF ≥ dimX − dimY for F any component of any fiber ϕ−1(y)
(3) There is a nonempty open subset U ⊆ Y where dimF = dimX − dimY .

We studied the incidence correspondence

X =
{

(X, `)
∣∣ ` ⊆ X} ⊆ P

(
Symd(k4)∗

)
×Gr(2, 4)

and its projections

X
π1−−→ P

(
Symd(k4)∗

)
,

X
π2−−→ Gr(2, 4).

We saw that π2 is surjective.
The fiber of ` ∈ Gr(2, 4) is

π−1
2 (`) =

{
(X, `)

∣∣ X ⊇ `} = {surfaces of degree 2 containing `} × `
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and is ∼= a linear space in P(Symd) of dimension M − (d+ 1), where

M =

(
d+ 3

3

)
− 1 = dim

[
P
(

Symd(k4)∗
)]
.

Study the other projection:

X
π1−−→ P

(
Symd(k4)∗

)
=
{

degree d hypersurfaces in P3
} ∼= PM .

The fiber of X ∈ P
(
Symd(k4)∗

)
is

π−1
1 (X) =

{
(X, `)

∣∣ ` ⊆ X} = X × {lines on X} .
So X ∈ π1(X ) ⇐⇒ X contains some line.

Consequence: If d ≥ 4, then π1 can’t be surjective. “Most” surfaces of degree ≥ 4 contain no
line: “The generic surface of degree d ≥ 4 contains no line.”

12.5. Cubic surfaces. What about d = 3?

X
π1−−→ P

(
Sym3(k4)∗

)
= P19,

and dim X = 19. Two possibilities:

(1) π1 is surjective ⇐⇒ generic fiber is dim 0. “The generic cubic contains finitely many
lines.”

(2) π1 is not surjective ⇐⇒ there are cubic surfaces that don’t contain lines, and the fibers
are dim ≥ 1.

In fact, the former is what actually occurs; π1 is surjective.
It suffices to find one cubic surface that contains finitely many lines:

X = V(X1X2X3 −X3
0 ) ⊆ P3

Exercise 12.7. X contains exactly 3 lines, V(X0, Xi) for i = 1, 2, 3.

The non-generic fibers have dim ≥ 1, so these cubics contain infinitely many lines.
It turns out that the subset of cubic surfaces containing only finitely many lines

U ⊆ P19 = P
(
Sym3(k4)∗

)
consists exactly of the irreducible X = V(F ).

Fact 12.8. π1 : π−1
1 (X) −→ U is finite of degree 27 over U . On the subset of smooth cubic surfaces,

this map is exactly 27-to-1.

13. Tangent spaces

• Intersection multiplicity (V, `)p
• Tangent line
• Tangent space
• Smooth point

13.1. Big picture. To any point p on any variety V , we will define a vector space TpV , the tangent
space to V at p, such that

(1) Given any regular map

V
ϕ−→W

p 7−→ q,

we get an induced linear map of vector spaces

TpV
dpϕ−−−→ TqW.
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Goal: to define tangent space to a variety V at a point p ∈ V .
Since tangency is a local issue, assume p = (0, . . . , 0) ∈ V ⊆ An with V a closed affine algebraic

set.

13.2. Intersection multiplicity. We work out an example in detail.

Example 13.1. Let V = V(y − x2) ⊆ A2. We calculate the intersection multiplicity of V with
` =

{
(at, bt)

∣∣ t ∈ k}. The intersection V ∩ ` is given by

V
(
(bt)− (at)2

)
⊆ ` ⊆ A2.

Solving this:

bt− a2t2 = 0

t(b− a2t) = 0,

so t = 0 or t = b
a2

. Hence the intersection points are (0, 0) and
(
b
a ,
(
b
a

)2)
.

We get a “double intersection” point when b = 0. Get that ` is tangent to V at (0, 0) because
the intersection multiplicity is V and ` at (0, 0) is 2.

More precisely, we will see that ` has intersection multiplicity 1 for all ` except when ` is the
x-axis, in which case the intersection multiplicity is 2.

Now we are ready to give a formal definition.

Definition 13.2. Let p = 0 ∈ V ⊆ An, and let I(V ) = (F1, . . . , Fr). Say

` =
{

(a1t, . . . , ant)
∣∣ t ∈ k} ⊆ An

is a line through 0. The intersection multiplicity of V and ` at p, denoted (V, `)p, is the highest
power of t which divides all the polynomials

{Fi(a1t, . . . , ant)}i=1,...,r .

Equivalently, look at the ideal of k[t] generated by {F (a1t, . . . , ant)}, where F (x1, . . . , xn) ∈ I(V ).
That ideal is generated by some polynomial

tm(t− λ1)m1 · · · (t− λs)ms , λi 6= 0.

Then (V, `)0 = m.

13.3. Tangent lines and the tangent space.

Definition 13.3 (tangent line). A line ` is tangent to V at p if (`, V )p ≥ 2.

Definition 13.4 (tangent space). The tangent space to V ⊆ An at p, denoted TpV , is the set of
points (a1, . . . , an) ∈ An lying on lines ` ⊆ An which are tangent to V are p.

Example 13.5. Consider V = V(y2 − x2 − x3) ⊆ A2. Take a line through the origin

` =
{

(at, bt)
∣∣ t ∈ k} .

The intersects are given by

(bt)2 − (at)2 − (at)3 = t2
(
b2 − a2 − a3t

)
.

So the intersection multiplicity at the origin is 2. Note that all lines through (0, 0) are tangent:

T(0,0)V = A2 = k2.

In other words, tangent lines are not always a limit of secant lines.

Theorem 13.6. Let p ∈ V ⊆ An, where V is a (not necessarily irreducible) closed subset of An.
The tangent space TpV is a linear algebraic variety in An, and

dimTpV ≥ dimp V.
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13.4. Smooth points.

Definition 13.7. A point p ∈ V is smooth if dimTpV = dimp V .

Proposition 13.8. Say 0 ∈ V ⊆ An and I(V ) = (F1, . . . , Fr). Then

T0V = V(L1, . . . , Lr) ⊆ An,
where Li = ai1x1 + · · ·+ ainxn is the “degree 1 part” of Fi, i.e.,

Fi = Li + F
(2)
i + F

(3)
i + . . . ,

where F
(j)
i is homogeneous of degree j in x1, . . . , xn.

Proof. We have (a1, . . . , an) ∈ T0V ⇐⇒ (a1, . . . , an) ∈ ` which is tangent to V at 0 ⇐⇒{
(a1t, . . . , ant)

∣∣ t ∈ k} intersects V with multiplicity ≥ 2 at 0

⇐⇒ {F1(a1t, . . . , ant), . . . , Fr(a1t, . . . , ant)}
are divisible by t2. Observe that

Fi(a1t, . . . , ant) = Li(a1t, . . . , ant) +Gi(a1t, . . . , ant) = t · Li(a1, . . . , an) +Gi(a1t, . . . , ant),

and t2 divides Gi(a1t, . . . , ant). So

t2
∣∣Fi(at1, . . . , ant) ⇐⇒ Li(a1, . . . , an) = 0. �

Example 13.9. In V = V(y − x2) ⊂ A2,

T(0,0)V = V(y) ⊂ A2.

Example 13.10. In V = V(y2 − x2 − x3) ⊂ A2,

T(0,0)V = A2.

Remark 13.11 (Explicit computation of tangent spaces). To find TpV ⊆ An for any p, center
everything at p = (λ1, . . . , λn). Write all polynomials not in (x1, . . . , xn), but in (x1 − λ1, . . . , xn −
λn).

Use Taylor expansion at p = (λ1, . . . , λn):

F = F (p) +
∂F

∂x1

∣∣∣∣
p

(x1 − λ1) + · · ·+ ∂F

∂xn

∣∣∣∣
p

(xn − λn)︸ ︷︷ ︸
linear part around p

+
1

2

∂2F

∂x2

∣∣∣∣
p

(x1 − λ1)2 + . . .

+

(
1

i1!

∂i1

∂xi11

)
· · ·
(

1

in!

∂in

∂xinn

)
F

∣∣∣∣∣
p

(x1 − λ1)i1 · · · (xn − λn)in .

Theorem 13.12. TpV = V(dpF1, . . . , dpFr) ⊆ An, where I(V ) = (F1, . . . , Fr).

13.5. Differentials, derivations, and the tangent space.

Definition 13.13. Fix R = k[x1, . . . , xn], p ∈ An = kn. The “differential at p” is the map

k[x1, . . . , xn]
dp−−→ k[x1, . . . , xn]

g 7−→ dpg =
n∑
i=1

∂g

∂xi

∣∣∣∣
p

(xi − λi)︸ ︷︷ ︸
linear form in (xi−λi)

∈ [k[x1 − λ1, . . . , xn − λn]]1 .
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Caution: Not a ring map!

Fact 13.14. dp : R −→ R is a k-linear derivation, meaning:

(1) k-linear: dp(f + g) = dpf + dpg and dp(λf) = λdpf for all f, g ∈ R, λ ∈ k.
(2) dp(fg) = f(p)dpg + g(p)dpf .

Last time: If

p ∈ V = V(f1, . . . , fr) ⊆ An, (f1, . . . , fr) = I(V ),

then
TpV = V(dpf1, . . . , dpfr) = vector space in kn translated by p ⊆ (TpAn) = kn,

where dpfi are linear forms in (x1 − λ1, . . . , xn − λn).
Why is this independent of choice of generators?

(g1, . . . , gt) = (f1, . . . , fr) = I(V ) ⊆ k[x1, . . . , xn]

Write gi = h1f1 + · · ·+ hrfr for some hj ∈ R. Apply dp:

dpgi = f1(p)dph1 + h1(p)dpf1 + · · ·+ fr(p)dphr + hr(p)dpfr.

Since p ∈ V and fi ∈ I(V ), we have fi(p) = 0. So dpgi is a linear combination of dpf1, . . . , dpfr.
Hence dpgi ∈ (dpf1, . . . , dpfr), as was to be shown.

We have a surjective map

k[x1, . . . , xn]
dp−−→ (TpAn)∗

xi − λi 7−→ xi − λi.

Note 13.15. dp(f) = dp(f + λ). Replace f by f − f(p):

dpf = dp (f − f(p)) .

So we can restrict to the (still surjective) map on mp = (x1 − λ1, . . . , xn − λn) ⊆ k[x1, . . . , xn]:

mp
dp−−→ (TpAn)∗

xi − λi 7−→ xi − λi.
Say g ∈ mp is in the kernel of dp. Write g out as a polynomial in (x1 − λ1, . . . , xn − λn):

g = g(p) + dpg +G,

where each monomial of G is of degree ≥ 2 in (x1 − λ1, . . . , xn − λn).
Since g ∈ mp, we have g(p) = 0. Moreover,

dpg = 0 ⇐⇒ g = G ∈ (x1 − λ1, . . . , xn − λn)2.

So ker dp = m2
p.

This gives us a natural isomorphism:

mp

m2
p

dp−−→
'

(TpAn)∗ .

Theorem 13.16. For p = (λ1, . . . , λn) ∈ V = V(f1, . . . , fr) ⊆ An with (f1, . . . , fr) = I(V ), let

mp =
{
f : V −→ k

∣∣ f(p) = 0
}
⊆ k[V ].

There is a natural surjective vector space map

mp
dp−−→ (TpV )∗

g = G
∣∣
V
7−→

[
dpG

∣∣
TpV

: TpV −→ k
]
, G ∈ k[x1, . . . , xn],

whose kernel is m2
p.
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Proof. Why is this well-defined?
Say g = G

∣∣
V

= H
∣∣
V

for some G,H ∈ k[x1, . . . , xn]. Need to check that dpG, dpH ∈ (TpAn)∗

restrict to the same linear functional in TpV = V(dpf1, . . . , dpfr).
By considering G − H, say G ∈ I(V ). Need to show that dpG vanishes on TpV , i.e., that

dpG ∈ (dpf1, . . . , dpfr).
We already showed that G = H1f1 + · · · + Hrfr =⇒ dpG ∈ (dpf1, . . . , dpfr), provided p ∈ V .

So we are done. �

Conclusion:

(TpV )∗ ∼= mp/m
2
p

as a k-vector space for any p ∈ V
closed
⊆ An.

13.6. The Zariski tangent space.

Corollary 13.17. Consider an isomorphism of affine algebraic sets

V
ϕ−→W

p 7−→ q.

Then we have an isomorphism

k[W ]
ϕ∗−−→ k[V ]

mp
'−−→ mq

m2
p
'−−→ m2

q .

I.e., the tangent space is an invariant of the isomorphism class of the variety at p.

Definition 13.18. The Zariski tangent space at a point p of a quasi-projective variety V is(
mp/m

2
p

)∗
, where mp is the maximal ideal in the local ring of V at p.

Recall: p ∈ V variety.

Definition 13.19. The local ring of V at p is

Op,V =
{
ϕ ∈ k(V )

∣∣ ϕ is regular at p
}
.

It has unique maximal ideal

mp =
{
ϕ ∈ Op,V

∣∣ ϕ(p) = 0
}
.

To compute Op,V , choose any affine open neighborhood of p, say p ∈ U ⊆ V . We have

mp ⊆ k[U ] = OV (U).

Then

Op,V = k[U ]mp ⊇ mpk[U ]mp.

This doesn’t depend on the choice of U .

Note 13.20.
mp

m2
p

=
mpk[U ]mp(
mpk[U ]mp

)2 .
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13.7. Tangent spaces of local rings.

Definition 13.21. For any local ring (R,m) (e.g., Zp,Z(p)[[x]] , Ẑp, convergent power series in

z1, . . . , zr over C, etc.), define the Zariski tangent space as
(
m/m2

)∗
. This is a vector space over

the residue field R/m = k.

Theorem 13.22. For any local ring, dimk(m/m
2) ≥ dimR.

Definition 13.23. A local ring (R,m) is regular if dimk(m/m
2) = dimR.

Example 13.24. If R = Op,V , where p is a point on a variety V , then(
m/m2

)∗
= (TpV ),

the tangent space to V at p, dimp TpV ≥ dimp V . (Proof in Shafarevich!)
Op,V is regular ⇐⇒ p is a smooth point of V .

Definition 13.25. (1) p ∈ V is smooth ⇐⇒ dimTpV = dimp V . (In general, ∀p ∈ V , we
have dimTpV ≥ dimp V .)

(2) The singular locus of V is the set

Sing V =
{
p ∈ V

∣∣ p is not smooth
}

=
{
p ∈ V

∣∣ dim(TpV ) > dimp V
}
.

Example 13.26. Since dimZ(p) = 1 and dim(p)/(p2) = 1, Z “is” the coordinate ring of something
like a variety which is smooth of dimension 1.

Example 13.27. Let p ∈ (λ1, . . . , λn) ∈ An. Then

dim(TpAn) = dim(kn) = n,

dim

[
(x1 − λ1, . . . , xn − λn)

(x1 − λ1, . . . , xn − λn)2

]
= n.

I.e., An is smooth at all points.

Theorem 13.28. The singular set of V (a variety) is a proper closed subset of V .

Proof. We have Sing V ⊆ V . To check that this is a proper closed set, it reduces immediately to
the case where V is affine.

Assume V = V(f1, . . . , fr) ⊆ An with (f1, . . . , fr) = I(V ). For p ∈ V ,

TpV = V(dpf1, . . . , dpfr), each dpfi =
n∑
j=1

(
∂fi
∂xj

∣∣∣∣
p

(
xj − xj(p)

))
.

Equations dpf1, . . . , dpfr can be written as a matrix:

TpV = V



∂f1
∂x1

. . . ∂f1
∂xn

∂f2
∂x1

. . . ∂f2
∂xn

...
...

∂fr
∂x1

. . . ∂fr
∂xn


p


x1 − x1(p)
x2 − x2(p)

...
xn − xn(p)


 = ker

((
∂fi
∂xj

)∣∣∣∣
p

)
⊆ An.

So

dimTpV = dim
(

ker(Jp|p)
)

= n− rank(Jp).
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We have p ∈ Sing V ⇐⇒ dimTpV > d ⇐⇒ rank
(
∂fi
∂xj

)∣∣∣
p
< n − d ⇐⇒ (n − d) × (n − d)

subdeterminants of
(
∂fi
∂xj

)
all vanish at p. Thus

Sing V =

{
p ∈ V

∣∣ (n− d)× (n− d) minors of

(
∂fi
∂xj

)
vanish at p

}

= V

codimension-sized minors of


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fr
∂x1

. . . ∂fr
∂xn


 ∩ V.

It remains to show that it is proper ! �

Example 13.29. Consider V = V(x2 + y2 − z2) ⊆ C3:

TpV = V (2x|p(x− x(p)) + 2y|p(y − y(p))− 2z|p(z − z(p))) ⊆ C3.

This defining equation is a linear function in (x − λ1, y − λ2, z − λ3), nonzero ⇐⇒ some ∂f
∂xi

is
nonzero.

Hence, the dimension is 2 if λ1, λ2, λ3 are not all zero, and dimension 3 otherwise:

Sing V = V ∩ V (1× 1(2x, 2y, 2z)) = V ∩ V(x, y, z) = {(0, 0, 0)} .

14. Regular parameters

Read Shafarevich, II, §2, 2.1, 2.2, 2.3.

14.1. Local parameters at a point. Fix V variety, p ∈ V . Consider

Op,V =
{
ϕ ∈ k(V )

∣∣ ϕ is regular at p
}
,

the local ring of V at p. The maximal ideal is m ⊂ Op,V , the regular functions vanishing at p.
Recall:

Definition 14.1. p is a smooth (or non-singular) point of V iff

dimk m/m
2 = dimp V

(≥ always holds).

Fix V variety of dimension d, p ∈ V smooth point.

Definition 14.2. Say regular functions u1, . . . , ud ∈ mp in a neighborhood of p ∈ V are regular
parameters (or local parameters) at p if their images in m/m2 are a basis for this vector space.

Example 14.3. If p = (λ1, . . . , λd) ∈ Ad, then {x1 − λ1, . . . , xd − λd} are local parameters at p.

Example 14.4. p = (1, 0) ∈ V = V(x2 + y2 − 1) ⊆ A2. The dimension is 1. Note that V is smooth
(for char(k) 6= 2):

Sing V = V ∩ V(2x, 2y) = V(x2 + y2 − 1, 2x, 2y) = ∅.
We have

Op,V =
k[x, y]

(x2 + y2 − 1)
· (x− 1, y) ⊇ m,

m/m2 (dim 1) obviously spanned by {x− 1, y}. In Op,V ,

(x− 1)(x+ 1) = −y2 =⇒ x− 1 = − 1

x+ 1
y2 ∈ m2.

Thus y is a local parameter for V at p = (1, 0), since y in m/m2 is a basis for m/m2.
In other words, y generates m as an Op,V -module.
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14.2. Nakayama’s lemma.

Lemma 14.5 (Nakayama). Let (R,m) be a local Noetherian commutative ring, and let M be a
finitely generated R-module. Every vector space basis for M/mM over R/m lifts to a (minimal)
generating set for M as an R-module.

We apply this to R = Op,V ⊇ m and M = m: Every vector space basis u1, . . . , ud for m/m2 lifts
to a (minimal) generating set u1, . . . , ud for m.

14.3. Embedding dimension.

Definition 14.6. The embedding dimension of a point p on a variety V (not necessarily smooth)
is the dimension of mp/m

2
p.

Fact 14.7. The embedding dimension at p is ≥ the dimension at p, with equality ⇐⇒ p is a
smooth point of V .

Theorem 14.8 (Transverse intersection). Let u1, . . . , ud be local parameters at a smooth point
p ∈ V . The subvariety V(ui) ⊆ V is also smooth at pj of codimension 1, and furthermore,
V(ui1 , . . . , uit) ⊆ V is smooth at p of codimension t.

Proof. We have p ∈ Vi = V(ui) $ V and a ring map given by modding out by Rad(ui),

Op,Vi Op,V
restriction
oooo

mp,Vi

⊆

mp,V ,oo

⊆

and we have mp,Vi = (u1, u2, . . . , ud) and mp,V = (u1, . . . , ud). Since ui = 0, we have

d− 1 ≤ dimp Vi ≤ dimTpVi = dim
mp

mp
2 ≤ d− 1.

Hence d− 1 = dimTpVi = dimp Vi, so p is a smooth point of Vi.
Similarly, take p ∈ VI = V(u1, . . . , ut) ⊆ V. Then

m = (u1, . . . , ud) = (ut+1, . . . , ud) ⊆ Op,VI .
So

dimp Vi ≤ dim
m

m2 ≤ d− t ≤ dimp VI ,

hence equality holds and we are done. �

Example 14.9. Let p = (0, 0) ∈ A2. Then
{
y − x2, x

}
are local parameters at (0, 0), and are said

to intersect transversely.
However,

{
y − x2, y

}
are not local parameters at (0, 0) ∈ A2, and do not intersect transversely.

14.4. Transversal intersection at arbitrary points. For a point p (not necessarily smooth) on
a variety V , and elements u1, . . . , un ∈ m ⊆ Op,V , the following are equivalent:

(1) u1, . . . , un minimally generate m (as an ideal of Op,V ).
(2) The images u1, . . . , un are a basis for m/m2.
(3) Their differentials dpu1, . . . , dpun are a basis for (TpV )∗.
(4) The subspace of TpV defined by the zero set of the (n = dimTpV ) linear functionals

dpu1, . . . , dpun is 0.

Fact 14.10. If p is smooth, then n = dimV , and any set {u1, . . . , un} satisfying these equivalent
conditions is called a system of “local parameters at p”.

In this case where p is smooth, these are equivalent to:
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(5) The inclusion k[u1, . . . , un](u1,...,un) ⊆ Op,V becomes an equality when we complete with
respect to the maximal ideals (u1, . . . , un) ⊂ k[u1, . . . , un](u1,...,un) and m ⊂ Op,V , and we
get

k[[u1, . . . , un]] ∼= Ôp,V .

14.5. Philosophy of power series rings. Philosophy: Fix p ∈ V , and let U be an affine patch
containing p. Then

OV (U) ⊆ Op,V ↪→ Ôp,V ,
where

• OV (U) is the coordinate ring of an affine patch U containing p, “functions regular on U”;
• Op,V is “functions regular on some Zariski-open subset of V containing p”;

• Ôp,V is “functions on an even smaller (analytic, not Zariski) neighborhood of p”.

For example, if p = 0 ∈ An, we have

R = k[x1, . . . , xn] ↪→ k[x1, . . . , xn]

[
1

x1 − 1

]
↪→ Rm = k[x1, . . . , xn](x1,...,xn) ↪→ k[[x1, . . . , xn]] .

The ring k[[x1, . . . , xn]] includes “functions” on an “even smaller” open neighborhood, including
things like

1

x1 − 1
7−→ −1− x1 − x2

1 − x3
1 − . . .

and

“ex1” = 1 + x1 +
x2

1

2!
+
x3

1

3!
+
x4

1

4!
+ . . .

These inclusions induce maps of the spectrums in the opposite direction:

“An” = Spec k[x1, . . . , xn] −→SpecR

[
1

x1 − 1

]
= Ux1−1 −→SpecRm −→Spec k[[x1, . . . , xn]] .

14.6. Divisors and ideal sheaves.

Theorem 14.11. Let Y ⊆ X be a codimension 1 subvariety of a smooth variety X. Then Y is
locally defined by a vanishing of a single regular function on X at each point p ∈ X.

More precisely: If Y is a codimension 1 subvariety of a smooth variety X, then ∀p ∈ Y , there
exists an open (affine) neighborhood p ∈ U ⊆ X such that (p ∈ Y ∩ U ⊆ U affine) the ideal

IY (Y ∩ U) ⊆ k[U ] = OX(U)

of Y ∩ U in U is principal.

Caution 14.12. Even if X is affine already, we can only expect Y to be locally defined by one
equation.

There is an alternative (equivalent) formulation in terms of sheaves:

Definition 14.13. Fix a closed set W in a variety V . The ideal sheaf of W , denoted IW , assigns
to each open U ⊆ V the ideal

IW (U) =
{
f ∈ OV (U)

∣∣ f(p) = 0 ∀p ∈W
}
⊆ OV (U).

Theorem 14.14. If Y is a codimension 1 subvariety of a smooth variety X, then the ideal sheaf
IY is locally principal in OX .

This means: ∀p ∈ X, ∃ open affine neighborhood U 3 p such that IY (U) ⊆ OX(U) is principal.

Remark 14.15. If p /∈ Y , then ∃U 3 p such that Y ∩U = ∅, so IY (U) = OX(U) = (1) is principal.
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Equivalently, the condition that IY be locally principal means: ∀p ∈ X, the ideal Ip,Y ⊆ Op,X
defined by

Ip,Y =

{
ϕ ∈ Op,X

∣∣∣∣ ϕ has a representative f
g where f, g ∈ OX(U),

p ∈ U, g(p) 6= 0, f(q) = 0 ∀q ∈ Y ∩ U

}
=
{
ϕ ∈ Op,X

∣∣ ϕ vanishes at all points of Y in some neighborhood of p
}

is principal. This is called “the stalk at p” of the sheaf IY . (Recall that Op,X = the localization
of OX(U) at the maximal ideal mp ⊆ OX(U), where u is any open affine neighborhood of p.)

We have an inclusion of sheaves IY ⊆ OX , which induces an inclusion of an ideal in a ring

IY (U) ⊆ OX(U).

By localization at mp, this induces

IY (U)e = Ip,Y ⊆ Op,X .

Now we prove the theorem.

Proof of Theorem 14.14. Need to show: ∀p ∈ X, the ideal Ip,Y ⊆ OX,p is principal.

Step 1: OX,p is a UFD. [More general theorem: Every regular local ring is a UFD.]

Sketch: OX,p is a UFD ⇐⇒ 4 ÔX,p is a UFD ⇐⇒ k[[u1, . . . , ud]] is a UFD. Math 593
exercise: A is a UFD =⇒ A[[u]] is a UFD.

Step 2: Fix p ∈ Y ⊆ X, Y codimension 1 in X. Without loss of generality, X is affine. We have

IY ⊆ mp ⊆ k[X] = OX(X).

Take any nonzero h ∈ IY ⊆ mp. Look at the image of h in the UFD OX,p, and factor h
into irreducibles

h = ga11 · · · g
ar
r ∈ IY,p,

where gi ∈ OX,p. Thus some gi ∈ IY,p.
[Alternatively, pass to smaller open affine neighborhood U of p where each gi is regular.

Then

h = ga11 · · · g
ar
r ∈ Y (U),

which is a prime ideal in OX(U), so g1 ∈ IY (U).]
Because gi = g1 is irreducible in a UFD, it follows that (g1) is a prime ideal of OX,p.
Consider: in U ,

Y ∩ U ⊆ V(g1) ⊆ U ⊆ X.
We have dimU = dimX = d and dimV(g1) = d−1. If Y ∩U ⊂ V(g1) is a proper inclusion,
then Y ∩ U has dim ≤ d − 2, since a proper subset of an irreducible variety has smaller
dimension. Hence Y ∩ U = V(g1). �

Caution 14.16. The theorem can fail for non-smooth X. For example, consider

p = 0 ∈ Y = V(x, z) $ X = V(xy − zw) ⊆ A4.

We have dimY = 2 and dimX = 3. See that

IY = (x, z) ⊆ k[X](x,y,z,w) =
k[x, y, z, w](x,y,z,w)

xy − zw
cannot be generated by 1 polynomial. Note: k[X](x,y,z,w) is not a UFD.

4Shafarevich, Appendix §7
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15. Rational maps

15.1. Provisional definition. Fix a variety V . A rational map V
ϕ An is given by rational

functions coordinate-wise:

V An

x 7−→ (ϕ1(x), . . . , ϕn(x)) where ϕi ∈ k(V ).

Note 15.1. Each ϕi is regular on some open (dense) subset Ui. So

V
ϕ
//___ An

U

⊆ ϕ

>>||||||||

is a regular map on U = U1 ∩ · · · ∩ Un.

For

V
ϕ Pn

x 7−→ [ϕ0(x) : · · · : ϕn(x)] ,

take ϕi ∈ k(V ) and say ϕi has domain of definition Ui. This is regular on the dense open subset of
V

U0 ∩ · · · ∩ Un︸ ︷︷ ︸
U

∩
[
(V ∩ U) \ V(ϕ0

∣∣
U
, . . . , ϕn

∣∣
U

)
]
.

Example 15.2.

A2 ϕ P1

(x, y) 7−→ [x : y] =

[
x

y
: 1

]
=
[
1 :

y

x

]
.

Defined on A2 \ {(0, 0)}.
We can represent ϕ by ϕUx : Ux = A2 \ V(x) −→ P1, and also by

ϕA2\{(0,0)} : A2 \ {(0, 0)} −→ P1

(x, y) 7−→ [x : y].

15.2. Definition of rational map.

Definition 15.3. A rational map X
ϕ
Y between varieties is an equivalence class of regular maps{

U
ϕU−−→ Y

}
(with U ⊆ X dense open subset), where

[U
ϕU−−→ Y ] ∼ [U ′

ϕU′−−−→ Y ]

means ϕU and ϕU ′ agree on U ∩ U ′ (or equivalently,

ϕU
∣∣
Ũ

= ϕU ′
∣∣
Ũ

for any dense open subset of U ∩ U ′).

Note 15.4. If two regular maps agree on some dense open set, then they agree everywhere they are
both defined.

Proof sketch. Since regular maps are locally given by regular functions in coordinates, it suffices to

check that if ϕ,ϕ′ are regular functions X
ϕ−→ k, X

ϕ′−−→ k and ϕ
∣∣
Ũ

= ϕ′
∣∣
Ũ

, where Ũ ⊆ X is an
open dense set, then

(ϕ− ϕ′) : X −→ k
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is regular. Its zero set contains Ũ and is closed, hence the zero set contains Ũ = closure of Ũ in X,
so ϕ− ϕ′ is zero on X. Thus, ϕ = ϕ′ everywhere on X. �

In practice: A rational map is given by

X
ϕ
Y ⊆ Pm

x 7−→ [ϕ0(x) : · · · : ϕm(x)],

where ϕi ∈ k(X).

Definition 15.5. A rational map ϕ : X Y is regular at p ∈ X if ϕ admits a representative

U
ϕU−−→ Y such that p ∈ U .

The domain of definition of ϕ is the open subset of X where ϕ is regular. The locus of indeter-
minacy is the complement of the domain of definition.

15.3. Examples of rational maps.

(1) A rational map X
ϕ A1

k is the same as ϕ ∈ k(X).
(2) Every regular map X −→ Y is a rational map. (The domain of definition is X, and the

locus of indeterminacy is ∅.)
For example:

P1 P3

[s : t] 7−→
[
s3 : s2t : st2 : t3

]
=

[
1 :

t

s
:

(
t

s

)2

:

(
t

s

)3
]
.

Note that k(P1) = k
(
t
s

)
.

(3) The map used in the blowup (to be studied in more detail later):

A2 P1

(x, y) 7−→ {the line through (x, y) and (0, 0)} = [x : y]

The locus of indeterminacy is {(0, 0)}.

15.4. Rational maps, composition, and categories.

Caution 15.6. A rational map is not a map!
In particular, we cannot always compose rational maps.

Example 15.7. Here’s an example that shows why we can’t compose rational maps:

P1 ϕ−→ P3 ψ P3

[s : t] 7−→
[
s3 : s2t : st2 : t3

]
[w : x : y : z] 7−→

[
wz − xy : x2 − wy : y2 − xz

]
Caution 15.8. “ψ ◦ ϕ” = [0 : 0 : 0 : 0], which is nonsense.

Note 15.9. There is no category of varieties over k with rational maps as morphisms.
However, there is a category whose objects are algebraic varieties over k and whose morphisms

are dominant rational maps.
Isomorphism in this category is birational equivalence.
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15.5. Types of equivalence.

Note 15.10. Birational equivalence is much weaker than isomorphism of varieties. For instance:

A2 ϕ P2 ϕ−1

A2

(x, y) 7−→ [x : y : 1]

[x : y : z] 7−→
(x
z
,
y

z

)
,

so A2 and P2 are birationally equivalent. Also,

P2 P1 × P1

[x : y : z] 7−→ ([x : z], [y : z])

Uz
'−−→ U1 × U1,

so P2 and P1 × P1 are birationally equivalent.

In order of increasing strength and difficulty:

• Classify varieties up to birational equivalence
• Classify varieties up to isomorphism
• Classify varieties up to projective equivalence

It turns out that birational equivalence and isomorphism are the same for smooth projective
curves, for which we have a complete classification.

15.6. Dimension of indeterminacy.

Theorem 15.11. If X is smooth and X
ϕ Pn is a rational map, then the locus of indeterminacy

has codimension ≥ 2 in X.

Example 15.12.

P2 ϕ P1 × P1 ↪→ P3

[x : y : z] 7−→ ([x : z], [y : z])

The locus of indeterminacy W ⊆ P2 is either empty or dimension 0 (i.e., finite).
In fact, W = {[0 : 1 : 0], [1 : 0 : 0]}.

Corollary 15.13. If X is a smooth curve and X
ϕ Pm is a rational map, then ϕ is regular

everywhere.

Corollary 15.14. If two smooth projective curves are birationally equivalent, then they are iso-
morphic.

Proof. Say X ∼ Y are birationally equivalent. Then the rational map X
ϕ

Y ⊆ Pm is a regular

map X −→ Y . Reversing roles of X and Y , Y
ϕ−1

X ⊆ Pn is also regular. So

X
ϕ
//

id

66Y
ϕ′
// X,

thus X ∼= Y . �
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15.7. Dimension of indeterminacy, continued.

Example 15.15. Let X = V
(
x2

0 + · · ·+ x2
n

)
⊆ Pn (char 6= 2).

Pick any p ∈ X, project from it. Then we have

Pn
πp
//___ Pn−1

X

⊆ πp

<<y
y

y
y

and X
πp Pn−1 is a rational map.

Case 1: dimX = 1 (n = 2): X
πp P1 must be regular everywhere by Theorem 15.11.

So we have a map

P2 ⊇ V(x2 + y2 − z2) = X
πp−−→ P1

which is regular everywhere, and fact is an isomorphism.
Case 2: dimX ≥ 2: The rational map is not regular everywhere. For dimX = 2, we have

P3

$$H
H

H
H

H

X

⊆

πp
//____ P2

X − {p}

⊆

regular

;;vvvvvvvvv

The locus of indeterminacy is {p}. Codimension is n− 1 = dimX.

Now we prove:

Theorem (15.11). If X is smooth, then the locus of indeterminacy of a rational map X
ϕ Pn

has codimension ≥ 2.

Proof. Let X be smooth, X
ϕ Pn a rational map, W = locus of indeterminacy ⊆ X.

Then W is (locally at p) a hypersurface. For all sufficiently small affine open neighborhoods U
of p, U ∩W = V(g) ⊆ U , where g ∈ OX(U). We have

X Pn

x 7−→ [ϕ0(x) : · · · : ϕn(x)] ,

where ϕi ∈ k(X) = fraction field of k[U ]. Without loss of generality, ϕi ∈ k[U ].
Because p ∈W = locus of indeterminacy, we know p ∈ V(ϕ0, . . . , ϕn) ⊆ U . Then

p ∈W ∩ U ⊆ V(ϕ0, . . . , ϕn) ⊆ U affine.

By the Nullstellensatz,

(g) = IW (U) ⊇ (ϕ0, . . . , ϕn),

so g divides each ϕi (in k[U ]).
Note: Op,X is a UFD, so we can factor ϕ0, . . . , ϕn into irreducibles and cancel out any common

factors. Thus, without loss of generality, the ϕi do not have a common factor! �
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15.8. Images and graphs of rational maps.

Definition 15.16. The image of a rational map X
ϕ−→ Y is the closure in Y of the image of any

representing regular map U
ϕU−−→ Y .

Check: This does not depend on the choice of ϕU . Indeed,

ϕU (U ∩ U ′) ⊆ ϕU (U) = ϕU ′(U ′).

Recall: The graph of a regular map X
ϕ−→ Y is the set

Γϕ = {(x, ϕ(x))} ⊆ X × Y.
This is a closed set isomorphic to X. (Check: vertical line test.)

Definition 15.17. The graph Γϕ of a rational map X
ϕ
Y is the closure in X × Y of the graph

of any representing regular map U
ϕU−−→ Y .

Check: This is independent of representative.

Note 15.18. Γϕ is birationally equivalent to X.

Example 15.19.

A2 ϕ P1

(x, y) 7−→ {line through (x, y) and (0, 0)} = [x : y].

Consider on A2 − V(x) = Ux ⊆ A2. Then

Ux = A2 − (y-axis) −→ U0 = A1 ↪→ P1

(x, y) 7−→ y

x
−→

[
1 :

y

x

]
= [x : y],

noting that y
x is the slope of the line through (0, 0) and (x, y).

16. Blowing up

16.1. Blowing up a point in An. Choose coordinates so the point is 0. Let

B =
{

(p, `)
∣∣ p ∈ `} ⊆ An × Pn−1.

In coordinates,

B =

{(
(x1, . . . , xn); [y1 : · · · : yn]

) ∣∣ rank

[
x1 . . . xn
y1 . . . yn

]
≤ 1

}
= V

(
2× 2 minors of

[
x1 . . . xn
y1 . . . yn

])
= V

({
xiyj − xjyi

∣∣ i ≤ 1, j ≤ n
})
.

Definition 16.1. The blowup of An at 0 is the variety

B =
{

(p, `)
∣∣ p ∈ `} ⊆ An × Pn−1

together with the projection B
π−→ An.

Note 16.2. (1) π is surjective, and one-to-one over An \ {0}.
Also, π is birational (i.e., a birational equivalence) with rational inverse

An π−1

B ⊆ An × Pn−1

(x1, . . . , xn) 7−→
(
(x1, . . . , xn); [x1 : · · · : xn]

)
.
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(2) B is the graph of the rational map

ϕ : An Pn−1

(x1, . . . , xn) 7−→ [x1 : · · · : xn],

and B
π−→ A is projection to the “source”.

Intuition again: B is “like An” except at 0; we’ve removed 0 from An and replaced it by the set
of all directions approaching the origin.

Proposition 16.3. B is a smooth (irreducible) variety of the dimension n.

Proof. We have B ⊆ An×Pn−1 ⊇ (An×Ui), where Ui = An−1 is a standard affine chart. It suffices
to check that each B ∩ (An × Ui) is smooth.

For simplicity, we do the case i = n.

Claim 16.4. B ∩ (An × An−1)
'−−→ An.

Observe that

B ∩ (An × An−1) =
{

(x1, . . . , xn); [y1 : · · · : yn]
∣∣ yn 6= 0, xiyj = xjyi

}
=

{
(x1, . . . , xn);

[
y1

yn
: · · · : yn−1

yn
: 1

] ∣∣ xj = xn

(
yj
yn

)}
We have an isomorphism

B ∩ U ϕ−→ An(
(x1, . . . , xn);

[
y1

yn
: · · · : yn−1

yn
: 1

])
7−→

(
y1

yn
, . . . ,

yn−1

yn
, xn

)
B ∩ U ϕ−1

−→An(
(tnt1, . . . , tntn−1, tn); [t1 : · · · : tn−1 : 1]

)
7−→(t1, . . . , tn−1, tn). �

16.2. Resolution of singularities.

Theorem 16.5 (Hironaka, 1964). If k has characteristic 0, then every affine variety V admits a

resolution of singularities, i.e., ∃ smooth variety Ṽ
closed
⊆ An × Pm such that the projection onto the

first factor An × Pm � An is a birational map π : Ṽ � V when restricted to Ṽ .
Furthermore, π is an isomorphism over V \ Sing(V ). The fibers are all projective (over C, all

compact), i.e., π is a proper map.5

16.3. More about blowups. Recall: The blowup of (0, 0) in A2 is the graph of the rational map

A2 ϕ P1 = lines through (0, 0) in A2

(x, y) 7−→ [x : y]

together with the projection onto the source{
(p, `)

∣∣ p ∈ `} = B = Γϕ
π−→ A2.

Note 16.6. (1) The map π is a projection, birational. In fact, π is an isomorphism over the
domain of definition of ϕ.

5The technical definition of “proper map” in algebraic geometry is more complicated, but agrees with the other
definition over C. In any case, π is a proper map in the algebraic geometry sense.



MATH 631 NOTES ALGEBRAIC GEOMETRY 49

(2) The fiber over the locus of indeterminacy {(0, 0)} is

{(0, 0)} × P1
closed
⊆ B

closed
⊆ A2 × P1

is a smooth, codimension 1 subset of B.

What happens if we graph a different rational map?

A3 ψ P1

(x, y, z) 7−→ [x : y] = normal line to L = the z-axis

This is an isomorphism on A3 \ L, and is birational on A3.
The fiber over the locus of indeterminacy L is L×P1 ⊆ Γϕ, which is a codimension 1 subvariety

of Γϕ.
This is called the blowup of A3 at the line L (or the blowup along the ideal (x, y)).

16.4. Blowing up in general.

Definition 16.7. Let V be an affine variety, and let f0, . . . , fr be nonzero regular functions on V .
The blowup of V along the ideal (f0, . . . , fr) is the graph of the rational map

V
ϕ Pr

x 7−→ [f0(x) : · · · : fr(x)]

together with the projection

V × Pr ⊇ Ṽ := Γϕ
π−→ V.

Definition 16.8 (projective map). A projective map X
f−→ Y is a composition

X
� �closed //

f

66Y × Pm
proj. onto
1st coord. // Y

Remark 16.9. (1) Since ϕ is rational on V −V(f0, . . . , fr), π : Ṽ −→ V is an isomorphism over
V − V(f0, . . . , fr), i.e., is birational.

(2) This depends only on the ideal generated by (f0, . . . , fr), not the choice of generators: Say
(f0, . . . , fr) = (g0, . . . , gm) ⊆ k[V ]. Then

V × Pr V × Pm

Γϕ

⊆

∃ isomorphism
//

π1
##F

FFFFFFFF
Γϕ′

⊆

π2
{{wwwwwwwww

V

(3) If (f0, . . . , fr) is radical, defines a subvariety W ⊆ V , then we also say “blowup of V along
W”.

If W ⊆ V is smooth, then the blowup Ṽ “looks like” V with surgery performed: remove
W , and replace it by all directions normal to W in V .

Example 16.10. Blowup of
(
x2, y2

)
in A2: The graph of

A2 ϕ P1

(x, y) 7−→ [x2 : y2]
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We have
A2

(x,y)
× P1

[u:v]
⊇ V(uy2 − vx2) = Γϕ −→ A2.

So blowing up can sometimes make things “worse”!

16.5. Hironaka’s theorem.

Theorem 16.11 (Hironaka’s theorem on resolution of singularities). Suppose char k = 0. For any
affine variety V , there exist f0, . . . , fr ∈ k[V ] such that the graph of the rational map

V
ϕ Pr

x 7−→ [f0(x) : · · · : fr(x)]

is smooth. The map Ṽ = Γϕ
π−→ V is projective, birational, and an isomorphism over V \ Sing V .

Furthermore, π−1(Sing V ) is a smooth, codimension 1 subvariety of Ṽ .

17. Divisors

17.1. Main definitions. Fix an irreducible variety X.

Definition 17.1. A prime divisor on X is a codimension 1 irreducible (closed) subvariety of X.
A divisor D on X is a formal Z-linear combination of prime divisors

D =

t∑
i=1

kiDi, ki ∈ Z.

Example 17.2. In P2, here are some prime divisors:

C = V(xy − z2) ⊆ P2, L1 = V(x), L2 = V(y).

Here are some divisors which are not prime: 2C, 2L1 − L2.

Definition 17.3. We say a divisor D =
∑t

i=1 kiDi is effective if each ki ≥ 0.
The support of D is the list of prime divisors occurring in D with non-zero coefficient.

The set of all divisors on X form a group Div(X), the free abelian group on the set of prime
divisors of X.

The zero element is the trivial divisor D =
∑

0Di, and

Supp(0) = ∅.
Example 17.4. Consider

ϕ =
f

g
=

(t− λ1)a1 · · · (t− λn)an

(t− µ1)b1 · · · (t− µm)bm
∈ k(A1) = k(t),

where f, g ∈ k[t] (assume lowest terms).
The “divisor of zeros and poles” of ϕ is

a1 {λ1}+ a2 {λ2}+ · · ·+ an {λn}︸ ︷︷ ︸
(divisor of zeros)

− b1 {µ1} − · · · − b1 {µm}︸ ︷︷ ︸
(divisor of poles)

.

Example 17.5. Let An = X. A prime divisor is D = V(h), where h ∈ k[x1, . . . , xn] is irreducible.
Write

ϕ =
f

g
=
fa11 · · · fann
gb11 · · · g

bm
m

∈ k(An) = k(x1, . . . , xn),

where f, g ∈ k[x1, . . . , xn] and fi, gi irreducible, ai ∈ N.
Denoting the divisor of zeros and poles of ϕ by div(ϕ), we have

div(ϕ) = a1V(f1) + a2V(f2) + · · ·+ anV(fn)− b1V(g1)− · · · − bmV(gm).

Note 17.6. Every divisor on An has the above form.



MATH 631 NOTES ALGEBRAIC GEOMETRY 51

17.2. The divisor of zeros and poles. In general, on almost any X, we will associate to each
ϕ ∈ k(X) \ {0} some divisor, div(ϕ), “the divisor of zeros and poles”, in such a way that the map

k(X)∗ = k(x) \ {0} −→ Div(X)

ϕ 7−→ divϕ =
∑
D⊆X
prime

νD(ϕ) ·D

preserves the group structure on k(X)∗, i.e.,

(ϕ1 ◦ ϕ2) 7−→ divϕ1 + divϕ2.

The image of this map will be the group of principal divisors:

P (X) ⊆ Div(X)

The quotient Div(X)/P (X) is the divisor class group of X.

Remark 17.7. If X is smooth, then the divisor class group is isomorphic to the Picard group.

Remark 17.8. The kernel of k(X)∗
div−−→ Div(X) consists of ϕ ∈ k(X) such that ϕ,ϕ−1 are both

regular on X.

Remark 17.9. We will write
divϕ =

∑
D⊆X
prime

νD(ϕ) ·D,

where νD(ϕ) = ordD(ϕ) = “order of vanishing of ϕ along D”.

Example 17.10.

ϕ =
x

y
∈ k(x, y) = k(A2)

div(ϕ) =
∑
D⊆A2

prime

νD

(
x

y

)
D,

where νD

(
x
y

)
is 0 for all divisors D except for L1 = V(x), where the order of vanishing is 1, and

L2 = V(y), where νL2(ϕ) = −1.

To define div(ϕ) for ϕ ∈ k(X)∗, we need to define νD(ϕ) for every every divisor D. We will do
this under the following assumption: X is non-singular in codimension 1.6 In this case, we have

X ⊇ Xsm = X − SingX

Div(X)
'−−→ Div(Xsm)∑

i

aiDi 7−→
∑
i

ai(Di ∩Xsm).

To get an idea of how this will work, assume X is smooth and affine, and let ϕ ∈ k[X]. Any
prime divisor D ⊆ X is locally principal, i.e., locally D = V(π).

“D is a zero of ϕ” means that D ⊆ V(ϕ), meaning (π) 3 ϕ. Look at the largest k such that
ϕ ∈ (πk), i.e., ϕ ∈ (πk) \ (πk+1). This is νD(ϕ) = k.

17.3. Order of vanishing. Goal: Define “order of vanishing” of ϕ ∈ k(X) \ {0} along a prime
divisor D, denoted νD(ϕ) ∈ Z.

This is done only under the assumption that X is non-singular in codimension 1 (i.e., SingX
has codimension ≥ 2).

6This means that Xsing ⊆ X has codimension ≥ 2.
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Case 1. Say X is affine, ϕ ∈ k[X], D = V(π) is a hypersurface defined by π ∈ k[X].
We say “ϕ vanishes along D” provided that D = V(π) ⊆ V(ϕ). So by the Nullstellensatz,

(ϕ) ⊆ (π). It could be that ϕ ∈ (π2) or (π3) or some higher power.

Definition 17.11. The order of vanishing of ϕ along D, denoted νD(ϕ), is the unique integer
k ≥ 0 such that ϕ ∈ (πk) \ (πk+1).

Note 17.12. νD(ϕ) = 0 =⇒ ϕ ∈ (π0) \ (π1) = k[X] \ (π), i.e., ϕ does not vanish on all of D.

Can it be that ϕ ∈ (πk) ∀k? If so, then ϕ ∈
⋂
k≥0(πk), which remains true after localizing at

any prime ideal of k[X] containing π (e.g., (π) itself).

Lemma 17.13. If (R,m) is a Noetherian local ring, then⋂
t≥0

mt = 0.

Thus, if ϕ ∈
⋂
k≥0(πk), then ϕ = 0.

Note 17.14. νD has the following properties:

(1) νD(ϕ · ψ) = νD(ϕ) + νD(ψ).
(2) If ϕ+ ψ 6= 0, then νD(ϕ+ ψ) ≥ min {νD(ϕ), νD(ψ)}.

Case 1b. If ϕ is rational and ϕ = f
g , where f, g ∈ k[X], define

νD(ϕ) = νD(f)− νD(g).

Case 2. General case: ϕ ∈ k(X) \ {0}, D ⊆ X arbitrary prime divisor.
Choose U ⊆ X open affine such that

(a) U is smooth;
(b) U ∩D 6= ∅;
(c) D is a hypersurface: D = V(π) for some π ∈ k[U ] = OX(U).7

We have ϕ ∈ k(X) = k(U). Define νUD(ϕ) as in case 1.

Claim 17.15. This doesn’t depend on the choice of U .

Proof. Say U1, U2 both satisfy conditions (a), (b), (c). To check νU1
D (ϕ) = νU2

D (ϕ), it suffices to

check νU1
D (ϕ) = νUD(ϕ) for any U ⊆ U1 ∩ U2 satisfying (a), (b), (c).

Fix U1 ⊇ U2. We have ϕ ∈ (πk) \ (πk+1) in k[U1] = OX(U1), and after restricting to k[U2] =
OX(U2), the condition ϕ ∈ (πk) \ (πk+1) still holds. �

So define νD(ϕ) to be νUD(ϕ) for any U .

17.4. Alternate definitions of order of vanishing.

17.4.1. Alternate definition 1. Let D ⊆ X be a prime divisor, ϕ ∈ K(X). Pick any smooth point
x ∈ X such that x ∈ D. The local ring

Ox,X =
{
ϕ ∈ k(X)

∣∣ ϕ is regular at x
}

is a UFD. The equation of D in Ox,X is = (π) ⊆ Ox,X , where π is an irreducible element in the
UFD.

Writing ϕ = f
g with f, g ∈ Ox,X , ϕ factors uniquely as

ϕ = πk
fa11 · · · farr
gb11 · · · g

bs
s

7We can do this by our earlier theorem that a codimension 1 subvariety is locally a hypersurface.
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with fi, gi irreducible. Then

νD(ϕ) = multiplicity of π in the unique factorization in Ox,X .

17.4.2. Alternate definition 2. Let D be a prime divisor on X (non-singular in codimension 1).
Look at the ring

OD,X =
{
ϕ ∈ k(X)

∣∣ ϕ is regular on some open U such that U ∩D 6= ∅
}

= k[U ]ID(U),

the local ring of X along D. We have U ⊇ D ∩ U 6= ∅ and k[U ] ⊇ ID(U).
Choose U satisfying (a), (b), (c). The maximal ideal of OD,X is (π), generated by the single

element π.
Observe that OD,X is a local domain whose maximal ideal is principal, i.e., a discrete valuation

ring.

Definition 17.16. A discrete valuation ring (DVR) is a Noetherian local domain with any of the
following equivalent properties:

(1) It is regular of dimension 1.
(2) The maximal ideal is principal, (π).
(3) It is a UFD with one irreducible element, π.
(4) Every nonzero ideal is (πt) for some t ∈ Z≥0.
(5) Normal of dimension 1.

Then we can define νD(ϕ) = t, where t is obtained as follows: We have

OD,X ⊆ k(X).

Write ϕ = f
g , where f, g ∈ OD,X . Then

f = (unit) · πn, g = (unit) · πm,
and

νD(ϕ) = n−m = t.

17.5. Divisors of zeros and poles, continued. Now we get a way to define a “divisor of zeros
and poles” associated to every ϕ ∈ k(X), namely,

div(ϕ) =
∑
D⊆X
prime

νD(ϕ)D.

To see that this is a finite sum: when X is affine, write ϕ = f
g , and observe that divϕ has

support contained in

V(f) ∪ V(g) = (D1 ∪ · · · ∪Dr) ∪ (D′1 ∪ · · · ∪D′s),
so finiteness of the sum follows from quasi-compactness of the Zariski topology.

17.6. Divisor class group, continued. Recall: For a variety X which is non-singular in codi-
mension 1, we defined the “order of vanishing νD(ϕ) of ϕ ∈ k(X)∗ along a prime divisor D”; νD is
the valuation of k(X) associated with the DVR OD,X .

This gives a group homomorphism

(k(X))∗
div−−→ Div(X)

ϕ 7−→ div(ϕ) =
∑
D⊆X
prime

νD(ϕ) ·D.

We defined the subgroup P (X) of principal divisors to be the image of div : k(X)∗ −→ Div(X).
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The cokernel of div : k(X)∗ −→ Div(X) is the divisor class group of X,

Cl(X) =
Div(X)

P (X)
.

Example 17.17. Cl(An) = 0.

Proposition 17.18. Cl(Pn) ∼= Z, generated by the class of a hyperplane H = V(a0x0 + · · ·+anxn).

Definition 17.19. If Di = V(Gi) ⊆ Pn is a prime divisor, where Gi is an irreducible homogeneous
polynomial in k[x0, . . . , xn], we define the degree of Di to be the degree of Gi.

Proof of Proposition 17.18. We have a surjective homomorphism

Div(Pn)
deg−−−→ Z

D =

t∑
i=1

kiDi 7−→
∑

ki degDi =
∑

ki degGi.

Say D =
∑t

i=1 kiV(Gi) ∈ Div(Pn) is in the kernel of deg : Div(Pn) −→ Z. Then

t∑
i=1

kiV(Gi) =

r∑
i=1

aiV(Fi)−
s∑
i=1

biV(Hi)
deg7−−→ 0.

This is the divisor of zeros and poles of

ϕ =
F a11 · · ·F arr
Hb1

1 · · ·H
bs
s

=

t∏
i=1

Gkii ∈ k(Pn).

Therefore,

Cl(Pn) =
Div(Pn)

P (Pn)
∼= Z

by the first isomorphism theorem. �

Caution 17.20. There is no inherent notion of degree of a divisor on arbitrary X (though okay for
Pn, An, curves).

17.7. Divisors and regularity.

Theorem 17.21. If X is smooth (or even just normal), then ϕ ∈ k(X)∗ is regular on X if and
only if divϕ is effective (denoted divϕ ≥ 0).

Remark 17.22. ϕ regular =⇒ divϕ ≥ 0 is clear.

17.8. Commutative algebra digression. Let R be any domain, and let K be the fraction field.

Definition 17.23. The normalization of R is the integral closure of R in K. (This is a subring of
K.)

We say R is normal if R is equal to its normalization R̃.

We have the inclusion
R ↪→ R̃ ⊆ K

into the integral closure.

Example 17.24. Consider the ring

R =
k[x, y]

y2 − x3
.

We have (y
x

)2
− x = 0,
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so y
x is integral over R in the fraction field Frac(R). Can check that

R ↪→ R̃ =
k[x, y, z]

(y2 − x3, xz − y)
∼= k

[y
x

]
= k[t] ⊆ Frac(R).

Note that normalizing gets rid of the singularity. The above inclusion induces a finite birational
map of varieties.

Fact 17.25. Normality is a local property: R is normal ⇐⇒ Rm is normal ∀m ∈ mSpecR ⇐⇒ Rp

is normal ∀p ∈ SpecR.

This lets us make the following definition:

Definition 17.26. Let X be a variety. We say X is normal if any of the following equivalent
conditions hold:

(1) For all points x ∈ X, the local ring Ox,X is normal.
(2) For all subvarieties W ⊆ X, OW,X is normal.
(3) There exists an open affine cover {Uλ} such that each OX(Uλ) = k[Uλ] is normal.
(4) For every open affine U ⊆ X, OX(U) is normal.

Fact 17.27. All smooth varieties are normal. If X is dimension 1, then X is smooth ⇐⇒ X is
normal.

Fact 17.28. If a ring R is normal and p is height8 1, then Rp is a DVR.

Theorem 17.29. Let R be a domain with fraction field K. Then

R̃ =
⋂

p∈SpecR
height 1

Rp ⊆ K.

Now we can prove the theorem from earlier:

Proof of Theorem 17.21. Say ϕ ∈ k(X) and divϕ ≥ 0. It suffices to check ϕ
∣∣
U

, where U is affine
open in X, is regular.

On U , we have ϕ ∈ k(U) = k(X) with divU ϕ ≥ 0. All νD(ϕ) ≥ 0, so ϕ ∈ OD,X ∀D. Thus

ϕ ∈
⋂

D prime in U

OD,X =
⋂

p ht. 1

Rp = R = OX(U). �

17.9. Divisors and regularity, continued. Recall:

Theorem (17.21). Let ϕ be a nonzero rational function on a normal variety X. Then ϕ is regular
on X ⇐⇒ divϕ is effective.

E.g., on Pn, there are no nonzero principal effective divisors (i.e., divϕ ≥ 0 =⇒ ϕ is regular on
Pn =⇒ ϕ ∈ k \ {0}).

More generally, for any U open in a normal variety X, the following are equivalent for ϕ ∈ k(X)∗:

(1) ϕ ∈ k(X) is regular on U .
(2) ϕ has no poles on U .
(3) divϕ on U is effective.
(4) νD(ϕ) ≥ 0 for all divisors D with D ∩ U 6= ∅.

Also, the following are equivalent:

(1) divU ϕ = 0
(2) ϕ regular in U , ϕ−1 regular on U .
(3) ϕ ∈ O∗X(U) = subgroup of invertible elements of the ring OX(U).

8The height of a prime p ∈ SpecR is the Krull dimension of Rp.
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Example 17.30. Let X = P2 and

ϕ =

(
x2 + y2 − z2

)2
x3y

∈ k(P2).

Then
Supp(divϕ) = C ∪ L1 ∪ L2 = V(x2 + y2 − z2) ∪ V(x) ∪ V(y),

and

divP2 ϕ = 2C − 3L1 − L2

divUz ϕ = 2C − 3L1 − L2

divUx ϕ = 2C − L1

divUx∩Uy ϕ = 2C.

Since 2C is effective, Theorem 17.21 implies that ϕ ∈ OP2(Ux ∩ Uy).
Also, denoting U := Ux ∩ Uy ∩ Ux2+y2−z2 , we have divU ϕ = 0, so ϕ ∈ O∗P2(U).

18. Locally principal divisors

18.1. Locally principal divisors. Important idea: If X is smooth, then every divisor on X is
locally principal.

Fix D =
∑t

i=1 kiDi divisor on X, with X smooth.
Take any x ∈ X, and choose a neighborhood U = Ux of x such that Di is the vanishing set of

some irreducible πi ∈ OX(U) (i.e., IDi(U) = (πi), or equivalently, Di ∩ U = divU πi).
On U , D is principal, and we have

D ∩ U = divU (πk11 · · ·π
kt
t ).

Example 18.1. In the setting of our previous example in P2, D = 2C −L1 has degree 3, so it is not
globally principal.

However, D is locally principal. Let

ϕ1 =

(
x2 + y2 − z2

)2
x4

, ϕ2 =

(
x2 + y2 − z2

)2
xy3

, ϕ3 =

(
x2 + y2 − z2

)2
xz3

.

Then

divUx ϕ1 = D ∩ Ux, divUy ϕ2 = D ∩ Uy, divUz ϕ3 = D ∩ Uz.

Remark 18.2. On Ux ∩ Uy, ϕ1 and ϕ2 have the same divisor C

⇐⇒ divUx∩Uy ϕ1 = divUx∩Uy ϕ2 ⇐⇒ divUx∩Uy(ϕ1/ϕ2) = 0 ⇐⇒ ϕ1

ϕ2
∈ O∗X(Ux ∩ Uy).

Now we give the formal definition.

Definition 18.3. A locally principal (or Cartier) divisor on a varietyX is described by the following
data:

• {Uλ}λ∈Λ open cover of X,
• ϕλ ∈ k(X) = k(Uλ) rational function on X

such that ϕλ · ϕ−1
µ ∈ O∗X(Uλ ∩ Uµ) for all λ, µ ∈ Λ.

The corresponding (Weil9) divisor is the unique D such that on Ux, D ∩ Uλ = divUλ ϕλ ∀λ.
The set of all locally principal divisors on X forms a group CDiv(X) ⊆ Div(X).

9A Weil divisor is a formal Z-linear combination of irreducible, codimension 1 subvarieties. This is the same kind
of divisor we defined earlier.
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Remark 18.4. If D1 = {Uλ, ϕλ} and D2 = {Uµ, ψµ} are two collections of data describing two
Cartier divisors, then their sum D1 +D2 is given by {Uλ ∩ Uµ, ϕλ · ψµ}.

Remark 18.5. The main advantage to locally principal divisors is that they can be pulled back
under dominant regular morphisms.

Say X
f−→ Y is a dominant regular morphism, so we can identify k(Y ) ⊆ k(X) by f∗. So for

D ∈ CDiv(Y ), define f∗D as the Cartier divisor X whose local defining equations are the pullbacks
of local defining equations for D.

In symbols, if D = {Uλ, ϕλ}, then

f∗D =
{
f−1(Uλ), f∗(ϕλ)

}
=
{
f−1(Uλ), ϕλ ◦ f

}
.

18.2. The Picard group. Let X be a normal variety. Then we have

P (X) ⊆ CDiv(X) ⊆ CDiv(X)
def
= Div(X).

Definition 18.6. The divisor class group of X is Cl(X) = Div(X)/P (X).
The Picard group of X is Pic(X) = CDiv(X)/P (X).

18.3. Summary of locally principal divisors. Let D be a locally principal divisor on X (nor-
mal).

Then D is given by data {Uλ, ϕλ}, where the Uλ are open sets covering X and ϕ ∈ k(X)∗, and
D is divϕλ on Uλ:

D ∩ Uλ = divUλ ϕλ.

Example 18.7. D = hyperplane V(x0) on X = P3. This is not principal.

However, it is locally principal, being given by
{(
Ui,

x0
xi

)}4

i=1
.

Note 18.8. (1) The ϕλ are uniquely determined only up to multiplication by some ϕ having no
zeros or poles on Uλ, or equivalently, any of the following:
• divϕ = 0
• ϕ ∈ O∗X(U)
• ϕ is a unit in OX(Uλ).

(2) There is a relationship between ϕλ and ϕµ given by any of the following:
• divϕλ = divϕµ on Uλ ∩ Uµ
• divϕλ − divϕµ = 0 on Uλ ∩ Uµ
• div(ϕλ/ϕµ) = 0 on Uλ ∩ Uµ.

(Or, if we don’t assume X is normal, ϕi/ϕj ∈ O∗X(Ui ∩ Uj).)

18.4. Pulling back locally principal divisors.

18.4.1. Case 1. Let Y
f−→ X be a dominant regular map.

Given D ∈ CDiv(X) = set of all locally principal divisors on X, think of D as given by {Uλ, ϕλ}.
Then f∗D is given by

{
f−1(Uλ), f∗(ϕλ)

}
. Then we think of f∗D as div(f∗ϕλ) on f−1(Uλ).

Note 18.9. Each f∗ϕλ is a nonzero rational function on Y .

Note 18.10. Supp(f∗D) = f−1(SuppD).

Example 18.11. Let V = V(y − x2) ⊆ A2, and consider V −→ A1, (x, y) 7−→ y. Consider the
divisor

D = 2p1 − 3p2 = div

(
(t− 1)2

(t− 2)3

)
∈ CDiv(A1),
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where p1 = 1 and p2 = 2 in A1. Then

f∗(D) = divV f
∗
(

(t− 1)2

(t− 2)3

)
= divV

f∗(t− 1)2

f∗(t− 2)3
= divV

(t ◦ f − 1)2

(t ◦ f − 2)3

= divV
(y − 1)2

(y − 2)3
= divV

(
x2 − 1

)2
(x2 − 2)3 = 2q1 + 2q′1 − 3q2 − 3q′2,

where

q1 = (1, 1), q′1 = (−1, 1),

q2 = (
√

2, 2), q′2 = (−
√

2, 2).

Note 18.12. Y
f−→ X is dominant ⇐⇒ on affine charts (say X,Y affine),

k[Y ] −→k[X]

g ◦ f 7−→g

is injective.

Think: Y
f−→ X yields a map (OX

f∗−−→ OY ) = f∗OY , and the kernel is an ideal sheaf If .

In the affine case, Y
f−→ X induces a map

k[X]
f∗−−→ k[Y ]

with kernel I, and we have

k[Y ] k[X]
f∗
oo

����

k[X]/I

ccHHHHHHHHH

⇐⇒ Y
f
//

  A
AA

AA
AA

A X

W
?�

OO

Example 18.13.

P1 ν−→ P3

[s : t] 7−→
[
s3 : s2t : st2 : t3

]
[s
t

: 1
]
7−→

[(s
t

)3
:
(s
t

)2
:
(s
t

)
: 1

]
.

Let H = V(x0), corresponding to {
(U0, 1),

(
Ui,

x0

xi

)}
.

Can we pull back H under ν?
The pullback ν∗H is given by{(

ν−1U0, 1
)
,

(
ν∗U3, ν

∗
(
x0

x3

)
=
(s
t

)3
)}

,

so

ν∗H = 3 · P,

where P = [0 : 1] ∈ P1.
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18.4.2. Case 2.

Proposition 18.14. If Y
f−→ X is a regular map, and D ∈ CDiv(X) such that f(Y ) * SuppD,

then f∗D is defined exactly as before: If D is given by {Uλ, ϕλ}, then f∗D is given by{
f−1(Uλ), f∗ϕλ

}
,

where the f∗ϕλ are nonzero rational functions.

Proof. We have f(Y ) * Supp(D) ⇐⇒ Y * f−1(SuppD). Since SuppD consists of the zeros and

poles of hλ
gλ

= ϕλ on Uλ, i.e., (zeros of hλ) ∪ (zeros of gλ). Then f−1(SuppD) is the set of zeros of

(hλ ◦ f) and (gλ ◦ f). �

Example 18.15. Let V = V(y − x2)
f
⊆ A2 and D = X − Y = V(x)− V(y) = div

(
x
y

)
on A2. Then

f∗D = div
f∗(x)

f∗(y)
= div

x

y
= div

x

x2
= div

1

x
.

We have f∗D = f∗X − f∗Y .

18.5. The Picard group functor.

Theorem 18.16. Let X
ϕ−→ Y be a regular map of varieties. There is a naturally induced (func-

torial) group homomorphism PicY
ϕ∗−−→ PicX.

In other words, there is a contravariant functor

{varieties over k} −→ Ab

X 7−→ PicX.

Example 18.17. The morphism

P1 ν−→ P3

[s : t] 7−→
[
s3 : s2t : st2 : t3

]
yields a commutative diagram

Pic(P1) Pic(P3)oo

Z · [p]
OO

'
��

Z · [H]
OO

'
��

Z Z
3 7−→1

oo

Example 18.18. The d-th Veronese map νd : Pm −→ PN induces

Z ∼= Pic(Pm) −→Pic(PN ) = Z
d 7−→1.

18.6. Moving lemma.

Lemma 18.19. Given any X, a Cartier divisor D on X, and a point x ∈ X, there exists a Cartier
divisor D′ such that D ∼ D′ and x /∈ SuppD.

Example 18.20. On P2, take x = [1 : 0 : 0] and D = H = V(y). Note that x ∈ SuppD.
By the moving lemma, there exists a divisor D′ ∼ H such that [1 : 0 : 0] /∈ D′. We can take

D′ = V(x). Here: D′ = D + div
(
x
y

)
.
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Proof of moving lemma. Say D is given by data {Ui, ϕi}. Say x ∈ U1.
Let D′ be the divisor corresponding to data

{
Ui, ϕ

−1
1 · ϕi

}
. [Note: D′ ∩ U1 = divU1(1) is empty,

so x /∈ SuppD′.] Hence

D′ = D + divx ϕ
−1.

�

Proof of Theorem 18.16. Let X
ϕ−→ Y be a morphism and D a locally principal divisor. We can

define ϕ∗D whenever SuppD + ϕ(X). Then we need to check also:

(1) D1 ∼ D2 =⇒ ϕ∗D1 ∼ ϕ∗D2

(2) ϕ∗(D1) + ϕ∗(D2) = ϕ∗(D1 +D2)

when we can define ϕ∗.
So: if we try to define ϕ∗[D] where SuppD ⊇ imϕ, simply use the moving lemma to replace D

by D′, where x /∈ SuppD′ (for any x we pick in ϕ). �

19. Riemann–Roch spaces and linear systems

19.1. Riemann–Roch spaces. Fix X normal, D any divisor. Consider the set

L (D) =
{
f ∈ k(X)∗

∣∣ divX f +D ≥ 0
}
∪ {0} ⊆ k(X).

Example 19.1. If X = A1 and D = 2 · p0 (where p0 = 0 is the origin), then

L (D) =
{
f ∈ k(t)∗

∣∣ div f + 2p0 ≥ 0
}
∪ {0} =

{
1

t2
g(t)

∣∣ g(t) ∈ k[t]

}
.

A function f ∈ L (D) can have zeros anywhere, but can’t have any poles except at p0, where a
pole can be order 2 or less.

Definition 19.2. L (D) is the Riemann–Roch space of (X,D).

Remark 19.3. (I) L (D) is a vector space over k.
(II) Even better, L (D) is a module over OX(X).
The proof follows from a basic fact about “order of vanishing” along prime divisors.

If Di is a prime divisor on normal X, then

νDi : k(X)∗ −→ Z

is a valuation, i.e.:

(I) νDi(f + g) ≥ min {νDi(f), νDi(g)}
(II) νDi(fg) = νDi(f) + νDi(g).

To prove L (D) is a vector subspace of k(X), observe that

f, g ∈ L (D) =⇒ f + g ∈ L (D),

and

div f +D ≥ 0

D +
∑
Di

νDi(g) ·Di = div g +D ≥ 0,

hence divX(f + g) ≥ −D, so if

D =
∑
Di⊆X
prime

kiDi,
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then for any Di prime divisor,

νDi(f) ≥ −ki
νDi(g) ≥ −ki.

Thus

νDi(f + g) ≥ min {νDi(f), νDi(g)} ≥ −ki ∀i,
whence

divX(f + g) ≥ −D,
so f + g ∈ L (D). �

Theorem 19.4. If X is projective, then L (D) is a finite-dimensional vector space over k.

Example 19.5. Say D = 0 and

L (D) =
{
f ∈ k(x)

∣∣ div f ≥ 0
}

= OX(X).

If X is projective, then L (0) has dimension 1.

Denote p0 = [0 : 1] and p∞ = [1 : 0]. Let X = P1 and D = p0 + p∞. We have k(P1) = k
(
x
y

)
,

and then

L (D) =

{
f

(
x

y

) ∣∣∣∣ div f + p0 + p∞ ≥ 0

}
=

{
F2(x, y)

xy

∣∣∣∣ F2 degree 2 homogeneous

}
.

A basis for this is {
x2

xy
,
xy

xy
,
y2

xy

}
=

{
x

y
, 1,

y

x

}
,

so dim L (D) = 3.

19.2. Riemann–Roch spaces, continued. Let X be a normal variety, D =
∑
kiDi a divisor.

The Riemann–Roch space

L (D) =
{
f ∈ k(X)∗

∣∣ div f +D ≥ 0
}
∪ {0} ⊆ k(X)

consists of rational functions f such that

(1) f has no poles except possibly along Di if ki > 0 (order of pole up to −ki), and
(2) f must have zeros along Di if ki < 0 (order of zero at least −ki).

Remark 19.6. • L (D) can be infinite-dimensional or finite-dimensional, though it is always
finite-dimensional if X is projective.
• L (D) is a module over OX(X).

Proposition 19.7. If D ∼ D′, then L (D) ∼= L (D′) (natural isomorphism, not equality).

Proof. We have D −D′ = div f for some f ∈ k(X)∗. Consider{
g
∣∣ div g +D ≥ 0

}
= L (D)

·f−−→ L (D′) =
{
h
∣∣ div h+D′ ≥ 0

}
g 7−→ gf.

Is gf ∈ L (D′)? Indeed, if g ∈ L (D), then div g +D ≥ 0, so

div(gf) +D′ = div g + div f +D′ = div g +D ≥ 0.

The inverse map is multiplication by 1
f . Thus, this is an isomorphism of k-vector spaces. (It is also

a OX(X)-module isomorphism.) �
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Note 19.8. Each nonempty open set U ⊆ X is a normal variety. Each divisor D =
∑
kiDi on X

induces a divisor

D
∣∣
U

=
∑
i

ki(Di ∩ U) = “Di ∩ U”.

Look at the Riemann–Roch space of
(
U,D

∣∣
U

)
.

Definition 19.9 (sheaf associated to D). The sheaf OX(D) associated to D is the sheaf assigning
to each nonempty open set U ⊆ X the Riemann–Roch space

OX(D)(U) = the Riemann–Roch space of
(
U,D

∣∣
U

)
,

which is an OX(U)-module.

• This is a subsheaf of the constant sheaf k(X).
• OX(D) is a sheaf of OX -modules.
• If D ∼ D′, then there is an isomorphism

OX(D)
·f−−→ OX(D′)

of OX -modules.

Example 19.10. If D = 0, then OX(D) = OX .

Example 19.11. Let X = P1 and D = 2p0 − p∞ (where p0 = [0 : 1] and p∞ = [1 : 0]). Then

OX(D)(P1) =
{
f ∈ k(P1)

∣∣ div f + 2p0 − p∞ ≥ 0
}

=

{
y(ax+ by)

x2

∣∣∣∣ a, b ∈ k} .
If we restrict to U∞ = P1 \ {[1 : 0]}, then using coordinates t = x

y ,

OX(D)(U∞) =
{
f ∈ k(P1)

∣∣ divU∞ f + 2p0 ≥ 0
}

=

{
g

t2

∣∣∣∣ g ∈ k[t]

}
.

Similarly, letting s = y
x = t−1,

OX(D)(U0) =
{
f ∈ k(P1)

∣∣ div f − p∞ ≥ 0
}

=
{
f ∈ k(s)

∣∣ f ∈ s · k[s]
}

=
{
t−1 · k[t−1]

} ∼= OX(U0),

and

OX(D)(U∞ ∩ U0) = OX(U∞ ∩ U0) = k[t, t−1].

Fact 19.12. If D is a Cartier divisor, then OX(D) is a locally free, rank 1 OX -module (a submodule
of k(X)).

Hint: If D is given by data {Ui, ϕi}, then

OX(D)(Ui) = ϕ−1
i · OX(Ui) ⊆ k(X).
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19.3. Complete linear systems. Let X be a normal variety, D =
∑
kiDi a divisor.

Definition 19.13. The complete linear system |D| is the set of all effective divisors D′ on X such
that D ∼ D′.

Example 19.14. On P2 (char k 6= 3), let

D = 3V(x3 + y3 + z3)− 7V(x).

Then |D| = the set of all conics on P2.

Proposition 19.15. There is a natural map

L (D)− {0} −→ |D|
f 7−→ div f +D

which induces a surjective map P(L (D)) � |D| which is bijective if X is projective.

Proof. Why surjective? If D′ ∈ |D|, then D′ ≥ 0 and D′ ∼ D, i.e., D′ = D + div f for some
f ∈ k(X)∗. So

f 7−→ div f +D = D′.

Why injective for projective X? Say D1, D2 ∈ |D| such that

f, g 7−→ div f +D.

Then div(f/g) = 0, so f
g is regular on X and hence is constant. �

19.4. Some examples.

Example 19.16 (Case where the map is not injective). Consider X = A1−{0} , D = p = [1]. Then

L (D) =
{
f ∈ k(t)

∣∣ div f + p ≥ 0
}

=
1

(t− 1)
· k[t, t−1],

and the natural map P(L (D)) −→ |D| is not injective.

Example 19.17. Let L ⊆ P2 be a line. Say L = V(x0) ⊆ P2. Then

|L| =
{

lines on P2
}

= P(L (L)) = P
{
f ∈ k(P2)

∣∣ div f + L ≥ 0
}

= P
{
a0x0 + a1x1 + a2x2

x0

∣∣∣∣ ai ∈ k} .
Note that |L| is geometric, independent of choices, while L (L) depends on choice of line; if we
choose a different line, we get a different (but isomorphic) subset of k(P2).

Example 19.18. Let C ⊆ P2 be the conic V(F ), where F = x2 + y2 − z2. Then

L (C) =
{
f ∈ k(P2)

∣∣ div f + C ≥ 0
}

=

{
G(x, y, z)

(x2 + y2 − z2)

∣∣∣∣ G ∈ [k[x, y, z]]2

}
.

This is a dimension 6 vector space. Basis:{
x2

F
,
xy

F
,
y2

F
,
xz

F
,
z2

F
,
yz

F

}
.

Map this to the linear system:

L (C) −→ |C| =
{

conics on P2
}

G

F
7−→ div

G

F
+ C = V(G) (as a scheme)
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The linear system |C| of conics on P2 corresponds to a map to projective space (up to choice of
coordinates on that target):

P2 P5

[x : y : z] 7−→
[
x2

F
:
xy

F
:
y2

F
:
xz

F
:
z2

F
:
yz

F

]
.

This is the Veronese 2-map.
Note that if we denote L = V(x), then |C| = |2L|, and the corresponding Riemann–Roch space

is

L (2L) =

{
G

x2

∣∣∣∣ G ∈ [k[x, y, z]]2

}
,

which has a basis {
1,
y

x
,
(y
x

)2
, . . . ,

y2

x2

}
,

which is also dimension 6.

Note 19.19. The elements of the linear system |C| = |2L| are the pullbacks of the hyperplanes in
P5.

Multiplying by F , we can also describe this map as

P2 ν2−−→ P5

[x : y : z] 7−→
[
x2 : xy : y2 : xz : z2 : yz

]
.

Look at the linear system |H| on P5 of hyperplanes. Say

H = V(a0x0 + · · ·+ a5x5).

Then

ν∗2H = V(a0x
2 + a1xy + · · ·+ a5yz).

19.5. Linear systems.

Definition 19.20. A linear system on X is a set of divisors (all effective, all linearly equivalent
to each other) which corresponds to some (projective) linear space in some complete linear system
|D|.

In other words: Fix D, and consider a subspace

V ⊆ L (D) � |D| .
Then we have a map V � P(V ) ⊆ |D|. The image of P(V ) is a linear system.

Example 19.21. In Pn, take the set of lines through a point p = [0 : · · · : 0 : 1] ∈ Pn. Fix H = V(xn).
Call this set

V = P(V ) =
{
f
∣∣ div f +H ≥ 0

}
.

Then

V =

〈
span of

x0

xn
, . . . ,

xn−1

xn

〉
⊆ L (H) =

〈
x0

xn
,
x1

xn
, . . . ,

xn−1

xn
, 1

〉
.

Definition 19.22. The base locus of a linear system V is the set

BsV =
{
x ∈ X

∣∣ x ∈ SuppD ∀D ∈ V
}
.

A linear system is base point free if BsV = ∅.
The fixed components of a linear system are prime divisors D such that D appears in the support

of every D ∈ V (i.e., divisors in the base locus).
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Example 19.23. Fix L1 = V(x) ⊆ P2. Take the linear system V of conics in P2 which contain
L1. This consists of the unions of L1 with another line, and the double line consisting of L1 with
multiplicity 2.

We have

|2L2| ⊇ V ←→ |L|
L1 + L2 ←→ L2.

A conic C ⊆ P2 contains L1 = V(x) iff

IC = (F ) = (ax+ by + cz)x ⊆ IL1 = (x).

A basis for F is given by

x2

F
,
xy

F
,
zx

F
.

Map to projective space by

P2 P2

[x : y : z] 7−→
[
x2

F
:
xy

F
:
xz

F

]
= [x : y : z],

i.e., the identity map.

19.6. Linear systems and rational maps.

Theorem 19.24. Let X be normal (in practice, projective). There is a one-to-one correspondence

{rational maps X Pn}
(projective change of coordinates)

←→
{
n-dimensional linear systems of divisors on

X with no fixed component

}
[
X

ϕ Pn
]
7−→ {pullback of hyperplane linear systems on Pn} .

Example 19.25. Consider the map

P1 ν−→ P3

[s : t] 7−→
[
s3 : s2t : st2 : t3

]
and the linear system

|H| =
{

hyperplanes on P3
}

=
{
V(ax+ by + cz + dw)

∣∣ [a : b : c : d] ∈ P3
}
.

Then

ν∗ |H| =
{
ν∗
(
V(ax+ by + cz + dw)

) ∣∣ [a : b : c : d] ∈ P3
}

=
{
V(as3 + bs2t+ cst2 + dt3)

}
=
{

complete linear system on P1 of degree 3 divisors
}

= |3P | .

Going back to the theorem, for any n-dimensional linear system V of divisors on X with no
fixed component, let |D| be a complete linear system such that V ⊆ |D|. Then V = P(V ), where
V ⊆ L (D) is (n+ 1)-dimensional. Send

V 7−→

[
X Pn

x 7−→ [ϕ0(x) : · · · : ϕn(x)]

]
,

where the ϕi are a basis for V .
Furthermore: the locus of indeterminacy of ϕ is the base locus of V.
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Example 19.26. In P2, fix a line L. Look at the linear system WL ⊆ |C3| (where |C3| is the
9-dimensional complete linear system of cubics in P2) of cubics that contain L. We have

L ⊆ C3 ⇐⇒ F3 = x · F2,

where F2(x, y, z) is degree 2. So

L (C3) =

〈
x3

F3
:
x2y

F3
: · · · : z

3

F3

〉
⊇
{
x · x2

F3
:
x · xy
F3

:
x · xz
F3

:
x · y2

F3
:
x · yz
F3

:
x · z2

F3

}
.

What is the map ϕWL
corresponding to WL? It is

P2 P5

[x : y : z] 7−→
[
x3

F3
:
x2y

F3
: · · · : xz

2

F3

]
=
[
x2 : xy : · · · : z2

]
.

Note that WL gives the same map as |C2|.

Note 19.27. Let X ϕPn and D ∈ Div(Pn). What is ϕ∗D? We have

X
ϕ
//___ Pn

U

⊆ ϕU

>>||||||||

and X \ U has codimension ≥ 2. Then

ϕ∗D
def
= ϕ∗UD,

the unique divisor D′ on X such that D′
∣∣
U

= (ϕ∗nD).

Example 19.28. In general, the Veronese map Pn νd−−→ P(n+dd )−1 corresponds to the complete linear
system |dH| on Pn.

Definition 19.29. A divisor D is very ample if the map ϕ|D| : X Pn corresponding to the
complete linear system |D| is an embedding.

A divisor D is ample if ∃m ∈ N such that mD is very ample.

Example 19.30. Consider the projection

P3 ϕ P2

[x : y : z : w] 7−→ [x : y : z]

from p = [0 : 0 : 0 : 1]. Let H = V(ax + by + cz) ∈ |H|. Then hyperplanes H correspond to
hyperplanes on P3 which contain p, i.e.,

|Hp| = linear system on P3 of hyperplanes through p.

This is fixed component free, since the base locus is {p}, the locus of indeterminacy of ϕ.

Example 19.31. Let P̃2 π−→ P2 be the blowup at a point p ∈ P2.
This corresponds to the linear system π∗ |L| (where |L| is the complete linear system of lines on

P2), which includes “lines” L which don’t meet the exceptional divisor E.
This is base point free, but not very ample.
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20. Differential forms

20.1. Sections. Recall from the homework: The tautological bundle is

T =
{

(x, `)
∣∣ x ∈ `} ⊆ kn+1 × Pn

with the projection map T
π−→ Pn. The fiber

π−1(`) =
{

(x, `)
∣∣ x ∈ `}

is the set of points in the line which is `.

A section is a morphism Pn s−→ T such that π ◦ s = id
∣∣
Pn . A section of the tautological bundle

is given by a choice of representative of each line, i.e., for all ` ∈ Pn, s(`) ∈ π−1(`).
We can add two sections s1, s2 : Pn −→ T by adding outputs:

s1 + s2 : Pn −→ T

` 7−→ s1(`) + s2(`).

We can also multiply a section s : Pn −→ T by any function f : Pn −→ k:

fs : Pn −→ T

fs(`) = f(`)s(`) ∈ π−1(`).

20.2. Differential forms.

Definition 20.1. A differential form ψ on X is an assignment associating to each x ∈ X some
ψ(x) ∈ (TxX)∗.

Put differently, a differential form is a section of the cotangent bundle of X.

Example 20.2. If f is a regular function on X, then df is a differential form:

df(x) = dxf =
n∑
i=1

∂fi
∂xi

∣∣∣∣
x

(
x− xi(x)

)∣∣
TxX⊆TxAn .

We can add two differential forms:

(ψ1 + ψ2)(x) = ψ1(x) + ψ2(x).

Can also multiply ψ by any k-valued function ϕ:

(ϕψ)(x) = ϕ(x) · ψ(x).

In other words, the set of all differential forms Ψ[x] on X forms a module over F(x), the ring of
all functions on X.

Example 20.3. Consider An with coordinates x1, . . . , xn. The cotangent space at x is spanned by
dxx1, . . . , dxxn.

Example 20.4. In R2, sinx dy + cosx dx ∈ Ψ[x] is a differential form.

20.3. Regular differential forms.

Definition 20.5. A differential form ψ on X is regular if ∀x ∈ X, there is an open neighborhood
U 3 x such that ψ

∣∣
U

agrees with
∑t

i=1 gidfi, where fi, gi ∈ OX(U).
In other words, viewing ψ as a section of the cotangent bundle of X, the section map is regular.

Example 20.6. The differential form

ψ = 2x d(xy) = 2x (x dy + y dx) = 2x2 dy + 2xy dx

is a regular differential form in A2.
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Notation 20.7. For U ⊆ X open, let ΩX(U) be the set of regular differential forms on the variety
U .

Note 20.8. ΩX(U) is a module over OX(U). In fact, ΩX is a sheaf of OX -modules.

Example 20.9. On An, ΩX is the free OX -module generated by dx1, . . . , dxn.

Theorem 20.10. If X is smooth, then ΩX is a locally free OX-module of rank dimX.

Proof sketch. Take x ∈ X, and take local parameters x1, . . . , xn at x. Show that dx1, . . . , dxn are
a free basis for ΩX in some neighborhood of x. (Use Nakayama’s lemma.) �

Proposition 20.11. Let V ⊆ An be an affine variety with ideal I(V ) = (g1, . . . , gt) ⊆ k[An]. Then
ΩV (V ) is the OV (V )-module

k[V ] dx1

∣∣
V

+ · · ·+ k[V ] dxn
∣∣
V

k[V ]-submodule generated by (dg1, . . . , dgt)
.

Note that if g vanishes on V , then dg = 0 on V .

Example 20.12. Let V = V(t− s2) ⊆ A2. Then

ΩV =
k[V ] dt+ k[V ] ds

(dt− 2s ds)
.

This is free, since dt = 2s ds in ΩV , so the generator dt is redundant, and ΩV = k[V ] ds.

Example 20.13. Consider P1 with homogeneous coordinates x, y, and with t = x
y , s = y

x . Say ψ is

a global regular differential form on P1. Then

ψ
∣∣
Uy
∈ ΩP1(Uy) = k[t] dt

ψ
∣∣
Ux
∈ ΩP1(Ux) = k[s] ds.

If we have p(t) dt ∈ k[t] dt and q(s) ds ∈ k[t] dt, then

p(t) dt = q(1/t) d(1/t)

on Ux ∩ Uy. Then

p(t) dt = −q(1/t)dt
t2
,

so

t2p(t) = −q(1/t)

in k[t, t−1]. Thus p = q = 0, i.e., there are no nontrivial global regular differential forms on P1.

However, on X = V(x3 + y3 + z3) ⊆ P2, there is a 1-dimensional k-vector space of global
differential forms. And, on X = V(x4 + y4 + z4) ⊆ P2, the space ΩX(X) is 3-dimensional over k.

Definition 20.14. If X is a smooth projective curve, then the genus of X is the dimension of
ΩX(X) as a k-vector space.
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20.4. Rational differential forms and canonical divisors. A rational differential form on X
is intuitively f1dg1 + · · ·+ frdgr, where fi and gi are rational functions on X. Formally:

Definition 20.15. A rational differential form on X is an equivalence class of pairs (U,ϕ) where
U ⊆ X is open and ϕ ∈ ΩX(U). [As with rational functions, (U,ϕ) ∼ (U ′, ϕ′) means ϕ

∣∣
U∩U ′ =

ϕ′
∣∣
U∩U ′ .]

We can define the divisor of a rational differential form.

Definition 20.16. If ω is a rational differential form on a smooth curve X, then div(ω) ∈ Div(X)
is called a canonical divisor .

The canonical divisors form a linear equivalence class on X, denoted KX . Also,

dim L (KX) = genus(X).

Example 20.17. On P1, the canonical divisor KP1 is the class of degree −2 divisors.

20.5. Canonical divisors, continued. Let X be smooth (or, X normal, and work on Xsm ⊆ X;
since codim(X \Xsm) ≥ 2, we won’t miss any divisors).

Consider the sheaf ΩX of regular differential forms on X. [In U , ΩX(U) is the set of differential
forms ϕ on U such that ∀x ∈ U , there exists an open neighborhood where ϕ agrees with

∑
fidgi,

where fi, gi are regular functions.]
The sheaf ΩX is a locally free OX -module of rank d = dimX.

Fact 20.18. The set of rational differential forms10 forms a vector space over k(X).

Definition 20.19. A separating transcendence basis for k(X) over k is a set of algebraically in-
dependent elements {ui} over which k(X) is separable algebraic [i.e., k(u1, . . . , un) ↪→ k(X) is
separable algebraic].

Example 20.20. Consider X = P2. Then

k

(
x

y
,
z

y

)
'−−→ k(P2),

so x
y ,

z
y is a separating transcendence basis. In characteristic 6= 2, 3,

k

((
x

y

)2

,

(
z

y

)3
)
↪→ k

(
x

y
,
z

y

)
is also a separating transcendence basis.

Theorem 20.21. If u1, . . . , un is a separating transcendence base for k(X), then du1, . . . , dun is a
basis for the space of rational differential forms on X over k(X).

Proof sketch. We have k(u1, . . . , un) ↪→ k(X). Given
∑
fidgi with fi, gi ∈ k(X), it suffices for each

g = gi ∈ k(X) that we can write

dg = r1du1 + · · ·+ rndun

for ri ∈ k(X).
Then g satisfies a minimal polynomial

gm + a1g
m−1 + · · ·+ am = 0

with ai ∈ k(u1, . . . , un). Apply “d”:

mgm−1dg + gmda1 + a1 · (m− 1)gm−2dg + · · ·+ dam = 0. (*)

10Shafarevich denotes this Θ(X).
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Solve for dgi:
(rational function) dg ∈ k(X)-span of du1, . . . , dun.

(Check the coefficient on dg is not zero if (*) is separable.) So dg ∈ k(X)-span of du1, . . . , dun. �

20.6. The canonical bundle on X. For each p ∈ N, look at the sheaf
∧p ΩX of p-differentiable

forms on X, which assigns to open U ⊆ X the set of all regular p-forms: ∀x ∈ U , ϕ(x) :
∧p TxX −→

k. Locally these look like
∑
fidgi1 ∧ · · · ∧ dgip .

Rational p-forms are defined analogously.

Corollary 20.22. The set of rational p-forms on X is a k(X)-vector space of dimension
(
n
p

)
.

Proof. If u1, . . . , un is a separating transcendence basis, then
{
dui1 ∧ · · · ∧ duip

}
is a basis for ra-

tional p-forms over k(X). �

Definition 20.23. The canonical sheaf (or dualizing sheaf ) of X (where X is smooth, dimX = n)
is

ωX =
n∧

ΩX .

Note 20.24. (1) ωX is locally free of rank 1.
(2) The set of rational canonical (n-)forms is a vector space of dimension 1 over k(X).

Example 20.25. On P2, let s = x
y and t = z

y , and consider

fd
(x
z

)
∧ d
(y
z

)
.

We have

d
(x
z

)
∧ d
(y
z

)
= d

(s
t

)
∧ d
(

1

t

)
=

(
t ds− s dt

t2

)
∧ (−dt)

t2

=
−t ds ∧ dt

t4
=
−ds ∧ dt

t3
.

On Uz, there are no zeros or poles. On Uy, we have a pole of order 3 along t = 0 (the divisor
V(z) ⊂ P2).

So:
div
(
d
(x
z

)
∧ d
(y
z

))
= −3L∞,

where L∞ = V(z) ⊂ P2.

Definition 20.26. The divisor of a rational canonical form ϕ on X is the divisor

div(ϕ) =
∑

D prime
divisor

νD(ϕ)D,

where νD(ϕ) is computed as follows: Pick any u1, . . . , un parameters for a point x ∈ D. Write

ϕ = f · du1 ∧ · · · ∧ dun,
where f ∈ k(X). Then νD(ϕ) = νD(f).

Note 20.27. The divisor div(ω) is not necessarily principal.

Proposition 20.28. For all f ∈ k(X), ω a rational canonical form,

div(fω) = div(f) + div(ω).

In particular, any two rational canonical forms define the same divisor class.
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Definition 20.29. The divisor div(ω) is called a canonical divisor . By Proposition 20.28, they
form a class, called the canonical class KX .

Example 20.30. On P2, KP2 is the class of divisors of degree −3.

We can use the canonical class (or multiples of it) to classify varieties.
If we embed

X
� � |dKX |// Pn

Y
. � |dKY |

>>||||||||

then X ∼= Y ⇐⇒ there is a projective change of coordinates taking X to Y .
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