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Answers

This page contains answers only. Detailed solutions are on the following pages.

1. (a) y =
1

x
, 0 < x < 1

(b) y = (x+ 1)2, x > −1

2. y = 2x+ 1 or x = t, y = 2t+ 1

3. L = e3 − e−8 + 11

4. r′(t) = 1√
1−t2 i− 2√

1−t2 j

5. v(t) =
√

2 i + et j− e−t k
a(t) = et j + e−tk
s = et + e−t

6. r(t) =
(
t2

2 + 1
)

i + et j + (tet − et + 2) k

7. T(0) = 1
3 〈1, 2, 2〉

8. (a) L = 2π
√

2

(b) r (t(s)) = cos
(
s√
2

)
i + sin

(
s√
2

)
j +

s√
2
k

(c) κ = 1
2

9. (a) r(t) = 〈1, 3, 2〉+ t〈−5, 0,−2〉
(b) r(t) = 〈1, 0, 6〉+ t〈1, 3, 1〉

10. (a) Parallel

(b) Skew

11. −2x+ y + 5z = 1

12. θ = cos−1
(

2√
42

)
13. (a) fx < 0, fy < 0, fxx = fxy = fyy = 0

(b) fx = fy = 0, fxx < 0, fyy < 0, fxy = 0

14. (a) DNE

(b) DNE

15. fxx = 6xy5 + 24x2y
fxy = 15x2y4 + 8x3

fyx = 15x2y4 + 8x3

fyy = 20x3y3

Yes, fxy = fyx

16. L(x, y) = 2
3 + 1

9 (x− 2)− 2
9 (y − 1)

17. ∆A ≈ 5.4cm2

18. (a) ∇f = 〈e2yz, 2xze2yz, 2xye2yz〉
(b) ∇f(3, 0, 2) = 〈1, 12, 0〉
(c) 26

3

19. ∇f(1, 1,−1) = 〈−1,−1,−2〉
||∇f(1, 1,−1)|| = sqrt6

20. (a) f(0, 0) = 2 saddle, f(±1,±1) = 0 lo-
cal min

(b) f(3, 3
√

3) = 83− 9 3
√

3 absolute max
f(1, 1) = 0 absolute min
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1. For the following parametrizations:

(i) Eliminate the parameter to find a Cartesian equation of the curve.

(ii) Sketch the curve and indicate with an arrow the direction in which the curve is traced
as the parameter increases.

(a) x = sin t, y = csc t, 0 < t < π/2

Solution. y can be rewritten as

y = csc t =
1

sin t
=

1

x
.

t = 0 corresponds with x = sin 0 = 0; so since t > 0 we must have x > 0. Similarly,
t = π

2 corresponds with x = sin π
2 = 1; so since t < π

2 we must have x < 1. Thus

y =
1

x
, 0 < x < 1.

The graph is not included here. The curve has vertical asymptote at x = 0. The curve
“moves” to the right with increasing time.

(b) x = et − 1, y = e2t

Solution. We can write et = x+ 1 and substitute into the equation for y:

y = e2t = (et)2 = (x+ 1)2.

Since et > 0 then x > −1. Thus y = (x+ 1)2 for x > −1.

The graph is not included here. The curve is a right half of a parabola with vertex
(−1, 0) (open at the vertex) and “moves” to the right with increasing time.

2. Find an equation of the tangent line to the curve x = 1 + ln t, y = t2 + 2 at the point (1, 3).

Solution. We need to find slope of the line, i.e. the derivative dy
dx at the point (1, 3). Recall

that

dy

dx
=

dy

dt
dx

dt

.

We have the derivatives
dx

dt
=

1

t
and

dy

dt
= 2t,

hence
dy

dx
=

2t
1

t

= 2t2.

The point (1, 3) occurs when t = 1. Plugging this in to the equation gives us the slope m = 2.
Thus

y − 3 = 2(x− 1) ⇒ y = 2x− 2 + 3 ⇒ y = 2x+ 1.

This can also be written in parametric form x = t, y = 2t+ 1.
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3. Find the exact length of the curve x = et − t, y = 4et/2,−8 ≤ t ≤ 3.

Solution. The derivatives of x and t are

dx

dt
= et − 1 and

dy

dt
= 2et/2.

Then √(
dx

dt

)2

+

(
dy

dt

)2

=
√

(et − 1)2 + (2et/2)2 =
√
e2t − 2et + 1 + 4et

=
√
e2t + 2et + 1 =

√
(et + 1)2 = et + 1

L =

∫ 3

−8

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ 3

−8
(et + 1)dt = (et + t)

∣∣∣3
−8

= e3 − e−8 + 11

4. Find the derivative of the vector function r(t) = sin−1 t i +
√

1− t2 j + k.

Solution. Take the derivative of each component:

r′(t) =
1√

1− t2
i− 2√

1− t2
j.

5. Find the velocity, acceleration, and speed of a particle where the position function is given by
r(t) =

√
2t i + et j + e−t k.

Solution. Take the first two derivatives to find velocity and acceleration:

v(t) = r′(t) =
√

2 i + et j− e−t k
a(t) = r′′(t) = et j + e−tk

Speed is the magnitude of velocity:

s = ||v(t)|| =
√

(
√

2)2 + (et)2 + (e−t)2 =
√
e2t + 2ete−t + e−2t =

√
(et + e−t)2 = et + e−t.

6. Find r(t) if r′(t) = t i + et j + tet k and r(0) = i + j + k.
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Solution. Integrate each term:

r(t) =

(
t2

2
+ c1

)
i +
(
et + c2

)
j +
(
tet − et + c3

)
k

Set r(0) = i + j + k to solve for c1, c2, c3:

c1 i + (1 + c2) j + (−1 + c3) k = i + j + k.

Therefore c1 = 1, c2 = 0, c3 = 2, and

r(t) =

(
t2

2
+ 1

)
i + et j +

(
tet − et + 2

)
k.

7. Find the unit tangent vector T(t) to the curve r(t) = 〈te−t, 2 arctan t, 2et〉 when t = 0.

Solution. We need to find

T(0) =
r(0)

||r(0)||
.

The derivative of r(t) is

r′(t) = 〈e−t − te−t, 2

1 + t2
, 2et〉 ⇒ r′(0) = 〈1, 2, 2〉,

and
||r′(0)|| =

√
12 + 22 + 22〉 = 3.

Hence

T(0) =
1

3
〈1, 2, 2〉.

8. Consider the circular helix with vector equation r(t) = cos t i + sin t j + t k.

(a) Find the arc length of the helix r(t) from the point (1, 0, 0) to the point (1, 0, 2π).

Solution. The point (1, 0, 0) occurs when t = 0, and (1, 0, 2π) occurs when t = 2π.
r′(t) = − sin t i + cos t j + k, hence

||r′(t)|| =
√

(− sin t)2 + (cos t)2 + 1 =
√

2.

Therefore

L =

∫ 2π

0

√
2dt = 2π

√
2.

(b) Reparametrize the helix r(t) with respect to arc length measured from (1, 0, 0) in the
direction of increasing t.
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Solution. We first need to find the arc length function s(t) given by

s(t) =

∫ t

0

||r′(u)||du =

∫ t

0

√
2du =

√
2t.

Solve for t in terms of s:
t =

s√
2
,

and substitute back into the equation for r(t):

r (t(s)) = cos

(
s√
2

)
i + sin

(
s√
2

)
j +

s√
2
k.

(c) Find the curvature κ of r(t).

Solution. From part (a) we know that

r′(t) = r′(t) = − sin t i + cos t j + k and ||r′(t)|| =
√

2,

thus T =
1√
2
〈− sin t, cos t, 1〉. Then

dT

dt
=

1√
2
〈− cos t,− sin t, 0〉

and ∣∣∣∣∣∣∣∣dTdt
∣∣∣∣∣∣∣∣ =

1√
2

√
cos2 t+ sin2 t =

1√
2
.

Therefore

κ =

dT

dt
||r′(t)||

=
1

2
.

You can also use the reparamatrization from part (b) to find T(s) and use the formula

κ =

∣∣∣∣∣∣∣∣dTds
∣∣∣∣∣∣∣∣.

9. Find an equation of the line that

(a) passes through the points (1, 3, 2), (−4, 3, 0).

Solution. Set r0 = 〈1, 3, 2〉. The direction of the line is the vector between the two
points:

v = 〈−4− 1, 3− 3, 0− 2〉 = 〈−5, 0,−2〉.

The line is therefore
r(t) = 〈1, 3, 2〉+ t〈−5, 0,−2〉.
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(b) passes through the point (1, 0, 6) and is perpendicular to the plane x+ 3y + z = 5.

Solution. To be perpendicular to the plane x+ 3y+ z = 5 is to be parallel to the normal
of that plane; that is, the direction of our line will be equal to the normal of the given
plane. The normal to the plane is n = 〈1, 3, 1〉. Set v = n and r0 = 〈1, 0, 6〉. Then

r(t) = 〈1, 0, 6〉+ t〈1, 3, 1〉.

10. Determine whether the lines L1 and L2 are parallel, skew, or intersecting. If they intersect,
find the point of intersection.

(a) L1 : x = −6t, , y = 1 + 9t, z = −3t
L2 : x = 1 + 2s, y = 4− 3s, z = s

Solution. Set the equations equal to each other to get the system
−6t = 1 + 2s

1 + 9t = 4− 3s

−3t = s

The third equation says s = −3t. Substituting this into the first equation yields

−6t = 1 + 2(−3t) ⇒ − 6t = 1− 6t ⇒ 0 = 1,

which is a contradiction. The system is inconsistent, so there is no intersection.

Now we must decide whether these lines are skew or parallel. The direction of L1 is
v1 = 〈−6, 9,−3〉 and the direction of L2 is v2 = 〈2,−3, 1〉. Notice that v1 = −3v2. The
lines are in the same direction, hence the lines are parallel.

(b) L1 : x = 1 + t, y = −2 + 3t, z = 4− t
L2 : x = 2s, y = 3 + s, z = −3 + 4s

Solution. Set the equations equal to each other to get the system
1 + t = 2s

−2 + 3t = 3 + s

4− t = −3 + 4s

This system is inconsistent, there is no intersection (you can check by using row re-
duction). The direction of L1 is 〈1, 3,−1〉 and the direction of L2 is 〈2, 1, 4〉. The two
directions are not multiples of each other, hence the lines are not parallel, they must be
skew.

11. Find an equation of the plane through the point (6, 3, 2) and perpendicular to the vector
〈−2, 1, 5〉.
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Solution. To be perpendicular to v = 〈−2, 1, 5〉 is for the normal of the plane to be parallel
to v. Thus n = v. Therefore the equation of the plane is

〈−2, 1, 5〉 · (x− 6, y − 3, z − 2) = 0 ⇒ − 2(x− 6) + y − 3 + 5(z − 2) = 0

−2x+ y + 5z = 1

12. Find the angle between the planes x+ y + z = 1 and x− 2y + 3z = 1. (Hint: find the angle
between the normal vectors of the planes.)

Solution. To find the angle between two planes, we need to find the angle between the normal
vectors of the planes. The first plane has normal vector n1 = 〈1, 1, 1〉 and the second plane
has normal vector n2 = 〈1,−2, 3〉. We then have

n1 · n2 = 〈1, 1, 1〉 · 〈1,−2, 3〉 = 1− 2 + 3 = 2

||n1|| =
√

12 + 12 + 12 =
√

3

||n2|| =
√

12 + (−2)2 + 32 =
√

14.

Therefore

cos θ =
n1 · n2

||n1||||n2||
=

2√
3
√

42
⇒ θ = cos−1

(
2√
42

)
.

13. For the following functions:

(i) Sketch the level curves f(x, y) = k for the given k values.

(ii) Use your contour map from (i) to estimate fx, fy, fxx, fxy, fyy at the point P (0, 0).

(a) f(x, y) = 6− 3x− 2y for k = −6, 0, 6, 12

Solution. The level curves f(x, y) = k are the lines

y = −3

2
x+ 6, k = −6

y = −3

2
x+ 3, k = −0

y = −3

2
x, k = 6

y = −3

2
x− 3, k = 12

As we move to the right of P the values of f(x, y) are decreasing, hence fx < 0. As we
move up from P the values of f(x, y) are decreasing, hence fy < 0.

fxx means to look at fx and the bunching or spreading of the lines as we move in the x
direction. As we move in the x direction, the lines remain a constant distance from each
other, hence there is no bunching or spreading. Thus fxx = 0.
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fyy means to look at fy and the bunching or spreading of the lines as we move in the y
direction. As we move in the y direction, the lines remain a constant distance from each
other, hence there is no bunching or spreading. Thus fyy = 0.

fxy means to look at fx and the bunching or spreading of the lines as we move in the y
direction. There was no bunching or spreading in this direction, thus fxy = 0.

(b) f(x, y) =
√

9− x2 − y2 for k = 0, 1, 2, 3

Solution. The level curves f(x, y) = k are the circles

x2 + y2 = 9, k = 0

x2 + y2 = 8, k = 1

x2 + y2 = 5, k = 2

x2 + y2 = 0, k = 3

As we move to the right of P , the values of f(x, y) are decreasing, hence fx < 0. But
if we start from the left of P and move right, the values of f(x, y) are increasing, hence
fx > 0. These together imply that fx = 0 at P .

As we move up from P , the values of f(x, y) are decreasing, hence fy < 0. But if we start
from the bottom of P and move up, the values of f(x, y) are increasing, hence fy < 0.
These together imply that fy = 0 at P .

fxx means to look at fx and the bunching or spreading of the contours as we move in
the x direction. Let’s start on the right of P : As we move to the right of P , the lines
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bunch together (increasing rate); fx < 0 on the right of P , hence f is decreasing at an
increasing rate, therefore fxx < 0. Now let’s look at the left of P : If we start on the left
of P and move to the right, the contours spread (decreasing rate); fx > 0 on the left of
P , hence f is increasing at a decreasing rate, therefore fxx < 0. In either case, we have
fxx < 0.

fyy means to look at fy and the bunching or spreading of the contours as we move in
the x direction. Let’s start above P : As we move up from P the lines bunch together
(increasing rate); fy < 0 above P , hence f is decreasing at an increasing rate, therefore
fyy < 0. Now let’s look below P : If we start below P and move up, the contours spread
(decreasing rate); fy > 0 below P , hence f is increasing at a decreasing rate, therefore
fyy < 0.

fxy means to look at fx and the bunching or spreading of the contours as we move in
the y direction. Let’s start above P : As we move up from P the lines bunch together
(increasing rate); but fx = 0 above P , hence fxy = 0. Same is true if we start below P .

14. Find the limit, if it exists, or show that the limit does not exist:

(a) lim
(x,y)→(0,0)

y4

x4 + 3y4

Solution. If we take the path y = 0:

lim
x→0

0

x4 + 0
= 0.
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But, if we take the path y = x:

limx→ 0
x4

4x4
=

1

4
.

These two limits do not equal each other, hence the limit does not exist.

(b) lim
(x,y)→(0,0)

xy cos y

3x2 + y2

Solution. If we take the path y = 0:

lim
x→0

0

3x2 + 0
= 0.

But, if we take the path y = x:

lim
x→0

x2 cosx

4x2
= lim
x→0

1

4
cosx =

1

4
.

These two limits do not equal each other, hence the limit does not exist.

15. Find all of the second partial derivatives of f(x, y) = x3y5 + 2x4y. Does Clairaut’s Theorem
hold?

Solution. We begin by finding the first partial derivatives:

fx = 3x2y5 + 8x3y

fy = 5x3y4 + 2x4

Now we find the second partials:

fxx = 6xy5 + 24x2y

fxy = 15x2y4 + 8x3

fyx = 15x2y4 + 8x3

fyy = 20x3y3

Yes, Clairaut’s Theorem holds since fxy = fyx.

16. Find the linearization L(x, y) of the function f(x, y) =
x

x+ y
at the point (2, 1).

Solution. The linearization L(x, y) of f at the point (2, 1) is given by the formula

L(x, y) = f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1).

Find fx and fy:

fx =
(x+ y)x′ − x(x+ y)′

(x+ y)2
=
x+ y − x
(x+ y)2

=
y

(x+ y)2

fy = − x

(x+ y)2
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Evaluate at (2, 1):

f(2, 1) =
2

2 + 1
=

2

3

fx(2, 1) =
1

(2 + 1)3
=

1

9

fy(2, 1) = − 2

(2 + 1)3
= −2

9

Therefore

L(x, y) =
2

3
+

1

9
(x− 2)− 2

9
(y − 1).

17. The length and width of a rectangle are measured as 30 cm and 24 cm respectively, with an
error in measurement of at most 0.1 cm each. Use differentials to estimate the maximum
error in the calculated area of the rectangle.

Solution. The area of a rectangle is given by A = LW . The differential dA is given by

dA =
∂A

∂L
dL+

∂A

∂W
dW ⇒ dA = WdL+ LdW

Since dA ≈ ∆A, dL ≈ ∆L, dW ≈ ∆W , and we are told that |∆L| ≤ 0.1 cm, |∆W | ≤ 0.1 cm,
then

∆A ≈W∆L+ L∆W = (24)(0.1) + 30(0.1)cm2 = 5.4cm2

18. Let f(x, y, z) = xe2yz, u = 〈 23 ,
−2
3 ,

1
3 〉.

(a) Find the gradient of f .

Solution.

∇f = 〈 ∂
∂x

(xe2yz),
∂

∂y
(xe2yz),

∂

∂z
(xe2yz)〉

= 〈e2yz, 2xze2yz, 2xye2yz〉

(b) Find the gradient at the point P (3, 0, 2).

Solution. ∇f(3, 0, 2) = 〈1, 12, 0〉

(c) Find the rate of change of f at P in the direction of the vector u. (In other words, find
the directional derivative.)
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Solution. The directional derivative is

∇f(3, 0, 2) · u = 〈1, 12, 0〉 · 〈2
3
,

2

3
,−1

3
〉 =

26

3

19. Find the maximum rate of change of f(x, y, z) =
x+ y

z
at the point (1, 1−1) and the direction

in which it occurs.

Solution. The maximum rate of change is ||∇f || and the direction in which it occurs is ∇f .

∇f = 〈1
z
,

1

z
,−x+ y

z2
〉 ⇒ ∇f(1, 1,−1) = 〈−1,−1,−2〉

||∇f(−1,−1,−2)|| =
√

(−1)2 + (−1)2 + (−2)2 =
√

6.

20. (a) Find the local maximum and minimum values and saddles points of f(x, y) = x4 + y4 −
4xy + 2

Solution. Find the critical points by setting fx, fy = 0:

fx = 4x3 − 4y = 0 andfy = 4y3 − 4x = 0

The first equation says y = x3, the second equation says x = y3. Substituting the first
equation into the second equation yields

x = (x3)3 ⇒ x = x9 ⇒ x− x9 = 0 ⇒ x(1− x8) = 0.

This gives us x = 0, x = 1, x = −1. Substituting this back into the first equation yields
y = 0, y = 1, y = −1. Thus the critical points are (0, 0), (1, 1), (−1,−1).

Calculate the second derivatives:

fxx = 12x2

fxy = −4

fyy = 12y2

We will now use the Second Derivative Test to determine whether the critical points are
a min, max, or saddle. I will do this using the determinant of the Hessian matrix:

D = fxxfyy − (fxy)2

You can also use the eigenvalues of the Hessian matrix to classify the critical points, but
that is not included here.

At (0, 0), D(0, 0) = 0− 16 < 0, thus (0, 0) is a saddle. The function value is f(0, 0) = 2.

At (1, 1), D = 144 − 16 > 0 and fxx(1, 1) = 12 > 0, thus (1, 1) is a local min. The
function value is f(1, 1) = 0.

At (−1,−1), D = 144− 16 > 0 and fxx(−1,−1) = 12 > 0, thus (−1,−1) is a local min.
The function value is f(−1,−1) = 0.
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(b) Find the absolute maximum and minimum values of f(x, y) = x4 + y4 − 4xy + 2 on the
set D = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.

Proof. D forms a rectangle. We need to find the critical points along the boundary of
D.

Along y = 0 (bottom of the rectangle), we have f(x, 0) = g1(x) = x4. Take the derivative
and set it equal to zero to get the critical point:

4x3 = 0 ⇒ x = 0.

The critical point here is (x, y) = (0, 0).

Along x = 3 (right side of the rectangle), we have f(3, y) = g2(y) = 34 +y4−4(3)y+2 =
y4 − 12y + 83. Take the derivative and set it equal to zero to get the critical point:

4y3 − 12 = 0 ⇒ y3 = 3 ⇒ y =
3
√

3.

The critical point here is (x, y) = (3, 3
√

3).

Along y = 2 (top of the rectangle), we have f(x, 2) = g3(y) = x4 + 24 − 4x(2) + 2 =
x4 − 8x+ 18. Take the derivative and set it equal to zero to get the critical point:

4x3 − 8 = 0 ⇒ x3 = 2 ⇒ x =
3
√

2.

The critical point here is (x, y) = ( 3
√

2, 2).

Along x = 0, (left side of the rectangle), we have f(0, y) = g4(y) = y4 + 2. Take the
derivative and set it equal to zero to get the critical point:

4y3 = 0 ⇒ y = 0.

The critical point here is (x, y) = (0, 0).

The critical points from the boundary are (0, 0), (3, 3
√

3), ( 3
√

2, 2). the critical points from
part (a) are (0, 0), (1, 1), (−1,−1), but (−1,−1) is not in the given rectangle so we only
need to test (0, 0) and (1, 1). We need to evaluate are function at each of these points.
The largest function value is the max, the lowest function value is the min.

f(0, 0) = 2

f(3,
3
√

3) = 34 + (
3
√

3)4 − 4(3)(
3
√

3) + 2 = 83− 9
3
√

3

f(
3
√

2, 2) = (
3
√

2)4 + 24 − 4(
3
√

2)(2) + 2 = 18− 6
√

2

f(1, 1) = 0

The absolute max and min on the set D therefore occur at f(3, 3
√

3) = 83 − 9 3
√

3 and
f(1, 1) = 0, respectively.
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