Math Definitions: Introduction to Numbers

Word	Definition	Examples	Not Examples
Natural Numbers	The numbers that we use when we are counting or ordering	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}	
Whole Numbers	The numbers that include natural numbers and zero. Not a fraction or decimal.	{0, 2, 3, 4, 5 6, 7, 8, 9, 10, 11}	
Integer	A counting number, zero, or the negative of a counting number. No fractions or decimals	{3, -2, -1, 0, 1, 2, 3}	2/3, 1.72, -8.33, 0.51
Decimal Number	Any number that contains a decimal point	0.256 or 1.2	
Rational Numbers	Can be expressed as a fraction. Include integers and fractions or decimals	1/2 , 2/3 , 4/7, 0.5, 6.7	
Irrational Numbers	Cannot be expressed as a fraction	$\Pi, \sqrt{2} \dots$	
Positive	Greater than 0. x is positive if $x > 0$.	1, 17, 13.44, π, 18/3	0, -15, -8.22, -19/4
Negative	Less than 0. x is negative if $x < 0$.	-17, -18.892, -1981, -π	0, 12, π, 17.63, 892471
Non-Negative	Greater than or equal to 0. x is non- negative if $x \ge 0$.	0, 1, π, 47812, 16/3, 189.53	-11, -82.7, -998.001
Non-Positive	Includes negative numbers and 0.		
Even	An integer that is divisible by 2.	0; 2; -16; -8; 99837222	1; -7; π; 16.4
Odd	An integer that is NOT divisible by 2.	1; 7; 19; -17	0; 8; -15.2

Place Value	It is the value of where the digit is in the number. Examples are units, tens, hundreds, thousands, ten thousands, hundred thousands, millions,		
Equivalent	Equal (=)	¹ / ₂ and 0.5 are equivalent	
Distinct	Not equal. x and y are distinct if $x \neq y$.	2 and 3 are distinct. 0 and 11 are distinct. π and 3 are distinct.	4 and 4 are not distinct. 11.4 and 11.4 are not distinct.
Constant	A number that does not change		
Consecutive (Evenly spaced)	In a row; without any missing; numbers or objects are consecutive if none of them are skipped.	 1, 2, 3, and 4 are consecutive integers. 4, 6, 8, and 10 are consecutive even integers. 	3, 4, and 6 are not consecutive integers, because 5 was skipped.
		2008, 2009, and 2010 are consecutive years.	

Math Definitions: Basic Operations

Word	Definition	Examples
Simplify	To make as short as possible	$\frac{5+3}{4}$ can be simplified to 2
Evaluate	To solve for a certain value	5x + 3 evaluated for $x = 2$ gives us 13
Plus (Add)	To increase a number by another number (+)	5 plus $2 = 5 + 2 = 7$
Sum	The result of adding (+) two numbers. Also \sum	5 is the sum of 2 and 3, since $2+3=5$
Minus (Subtract, Difference)	To decrease a number by another number (-)	6 minus $2 = 6 - 2 = 4$
Difference	The positive result of subtracting (-) two numbers.	The difference between 6 and $2 = 6 - 2 = 4$
Fewer than	To decrease by the original number (-)	5 fewer than $9 = 9 - 5 = 4$
Multiply (Times)	To add a number to itself a certain number of times $(x \text{ or } \bullet)$	3 times $4 = 3 \cdot 4 = 12$
Product	The result of multiplying (\times or •) two numbers.	18 is the product of 6 and 3, since $6 \cdot 3 = 18$.
Coefficient	A number in front of, or multiplying, a variable.	4 is the coefficient of 4x
Divide by	To cut up a number into a certain number of smaller parts (÷)	8 divided by $4 = 8 \div 4 = 8/4 = 2$
Divided into	To use a number to cut another number into smaller parts (\div)	3 divided into $12 = 12/3 = 4$
Divisor	The second number in a division; the number you are dividing by; the bottom number when division is written as a fraction.	In $8 \div 4$, the divisor is 4
Quotient	The result of dividing (÷ or /) two numbers.	6 is the quotient of 54 and 9, since $54/9 = 6$.

Numerator	The top number in a fraction.	The numerator of 6/7 is 6
Denominator	The bottom number in a fraction.	The denominator of 6/7 is 7
Reciprocal	Switch the numerator and denominator of a fraction. The reciprocal of an integer n is the fraction 1/n.	The reciprocal of 2/3 is 3/2. The reciprocal of 7 is 1/7.
		The reciprocal of 1/9 is 9/1, or just 9.
Factor	A number that can be added to itself to reach another number. x is a factor of y if y/x is an integer.	2 is a factor of 4 (since $4/2 = 2$, which is an integer)
Greatest	The largest factor that each number has.	The greatest common factor of 24 and 36
Common		is 12
Factor		
Multiple	The result when a number is added to itself. x is a multiple of y if x/y is an integer.	27 is a multiple of 3 (since $27/3 = 9$, which is an integer)
Least Common Multiple	The smallest number that is a multiple of each number.	The least common multiple of 25 and 10 is 50
Prime	A positive integer that is divisible by exactly two positive numbers, 1 and itself.	2, 3, 5, 7, 11, 13, 17, 19, 23
	1 is not a prime number, because it is divisible by only one positive number (itself).	
Prime Factorization	Reducing a number into only its prime factors.	The prime factorization of 72 is $2^3 \times 3^2$

Power	An exponent tells you to multiply something by itself a particular	$2^{5}=2^{5}=2*2*2*2=32$
(Exponent,	number of times, in the same way that multiplication tells you to add	
Base)	something to itself a particular number of times.	In this case, 5 is the exponent and 2 is the
		base.
	The number being multiplied by itself is called the base , and the	
	number of times you multiply it is called the exponent or the power .	We would say 2^5 out loud as "two to the
		fifth power" (or sometimes just "two to
	Sometimes written as 2^5	the fifth")
Squared	To square a number is to multiply it by itself. A number x squared is	$3 \text{ squared is } 9 \text{ since } 3 \cdot 3 - 9$
Squarea	written x^2	5 squared is 9, since 5 5–9.
		(-6) squared is 36 since $(-6) \cdot (-6) = 36$
	Squaring a number means to raise it to the second power	(-0) squared is 50, since $(-0)^{2}(-0) = 50$.
Cubed	To cube a number is to multiply it by itself three times. A number y	2 subad is 8 since $2 \cdot 2 \cdot 2 = 8$
Cubeu	To cube a number is to multiply it by itself three times. A number x	$2 \text{ cubed is } 6, \text{ since } 2 \cdot 2 \cdot 2 = 6.$
	cubed is written x .	
	Cubing a number means to raise it to the third nerver	
D (Cubing a number means to raise it to the third power.	
Root	The root of x is a number that when multiplied by itself a number of	The 3^{10} root of $8 = 8^{1/3} = \sqrt{8} = 2$
	times will result in x. The number of times is the degree of the root.	
	Another way to understand it is as an exponent that is a fraction. ∇	The 2^{nd} root of $25 = 25^{1/2} = \sqrt{25} = 5$ or -5
	When the degree of a root is even, there are two solutions: a positive	
	one and a pogetive one	The 2^{nd} root of $-4 = (-4)^{1/2} = \sqrt{-4} = no$
	one and a negative one.	roots
	If x is a negative number and the degree of the root is an even number	
	then there are no roots	
Perfect Square	Δ number whose square root is an integer	$\int d d a$ a perfect square because $\sqrt{\int d} = 0$
r enteet Square	A number whose square root is an integer	64 is a perfect square because $\sqrt{64} = 6$
Polynomial	An expression with more than one algebraic term	$4x^3 + 2x^2 + 6x + 3$
Quadratic	An equation with a variable to the second power	$3x^2 + 8x + 2 = 0$
Equation		
Absolute	The distance from 0. Always positive	3 = 3 7.34444 = 7.34444
Value		0 = 0 -7 = 7

Inequality	A relation between two values that are different instead of equal	> means greater than
		< means less than
		\geq means greater than or equal to
		\leq means less than or equal to
(A way to express a range, but the point is not included	1 < x < 3 is the same as (1, 3)
[A way to express a range, but the point is included	$1 \le x \le 3$ is the same as [1, 3]
Percent	Another way of writing a fraction. x% is equal to the fraction $\frac{x}{100}$.	50% is equal to 50/100, or 1/2.
		75% is equal to 75/100, or 3/4.
Average (Arithmetic Mean)	The result of adding all numbers and then dividing by the number of items.	The average of 10 and $12 = \frac{10+12}{2} = 11$
Median	The middle number of an ordered number of items. Make sure to put the list in order first.	The median of 1, 10, and $11 = 10$.
		The median of -1, 2, 0, 8, 4, 5, and 1 = the
	If there is no middle number, take the average of the two numbers in	median of -1, 0, 1, 2, 4, 5, and 8 (ordered)
	the middle.	= 2.
Mode	The most common occurrence. There can be more than one mode if	The mode of 1, 2, 2, 3, 5, 5, $5 = 5$
	each occurs an equal number of times.	
		The modes of 1, 1, 2, 2, $4 = 1$ and 2
Standard Deviation	This is a measure of the spread of the data (i.e. how far away it is from the mean)	
Ratio	A relationship between two amounts. This shows how many times	If there are 12 blue cars and 3 red cars, the
	bigger one is over the other. The ratio should be in the same order as the words. Expressed with :	ratio of blue to red cars is 12:3 or 4:1
	the words. Expressed with .	If the ratio of red to blue is 3.4 the actual
	A ratio can be simplified by dividing each side by the same number	numbers of red and blue cars could be 3
	Because of this, it doesn't always equal the actual number.	and 4 or it could be 6 and 8, and so on.
Proportion	When two ratios are equal	If the ratio of blue cars to red cars is 4:3.
· · · · · · · · ·		how many red cars are there if there are 8
		blue cars?
		4 8
		$\overline{3} = \overline{x}$

Math Definitions: Geometry

Word	Definition	Examples
Point	One single location. Usually a •	
Line	Connects two points and continues forever in both directions	\leftrightarrow
Ray	Starts from one point and continue forever in only one direction	\rightarrow
Line Segment	Connects two points but does not continue beyond those points	
Endpoint	The end of a line segment or ray	
Midpoint	The point on a line that is of exactly equal distance from both endpoints	
Angle	The space between two intersecting lines. Usually measured in degrees or radians	\checkmark
Degree of an Angle	The measurement of an angle. Usually between 0° and 360°	
Right Angle	An angle with a measure of 90°	
Acute	An angle with a measure of less than 90°	\checkmark
Obtuse	An angle with a measure of more than 90°	/
Complementary	Two angles whose sum is 90°	
Supplement	Two angles whose sum is 180°	
Bisect	To cut an angle or line exactly in half	\checkmark
Tangent	To touch at only one point	0
Parallel	Two lines that never touch	
Perpendicular	Two lines that touch and form four 90° angles	
To Scale	When a picture is drawn as it looks. If something is not drawn to scale, it might not correctly represent the actual picture.	

Polygon	An enclosed figure with 3 or more lines	
Vertex	Where two lines of a polygon touch	
Quadrilateral	A four-sided polygon. The sum of interior angles is 360°	
Parallelogram	A four-sided polygon such that opposite sides are parallel	
Rhombus	A four-sided polygon such that all sides are equal and such that opposite angles are equal	\diamond
Rectangle	A four-sided polygon such that opposite sides are equal, such that opposite sides are parallel, and such that all angles equal 90°	
Square	A four-sided figure such that all sides are equal, such that opposite sides are parallel, and such that all angles equal 90°	
Trapezoid	A quadrilateral with two sides that are parallel	
Triangle	A three-sided figure. The sum of interior angles is 180°	
Isosceles Triangle	A triangle with 2 equal sides. The angles opposite the equal sides are equal.	Δ
Equilateral Triangle	A triangle with 3 equal sides. Each angle is 60°	Δ
Right Triangle	A triangle with one 90° angle	
Hypotenuse	The longest side of a right triangle (opposite the right angle).	
Pythagorean Theorem	An equation for the relationship of the sides of a right triangle	$a^2 + b^2 = c^2$
Similar Triangles	Triangles that have equal angle measures. Usually the triangles are of different size, but the ratios of each side of one triangle to the matching side of the other triangle are the same.	
Congruent	Identical	$\Delta \Delta$

Perimeter	Distance around the edges. Add all of the sides	
		a + a + b + b
Area	Amount of space inside. Usually multiply two sides that form a right angle.	
		(a)(b)
Circle	Round figure – all of the outside is the same distance from the center	0
Radius	The distance from the center of a circle to the outside (plural: radii)	G
Diameter	The distance between two points on a circle that passes through the center	θ
Chord	A line that connects two points on the circle. It does not have to pass through the center.	\bigcirc
Circumference	The measure of the distance around the outside of a circle	
Arc	A part of the circumference	0
Sector	Part of the area of a circle enclosed by two radii. Looks like a piece of pizza.	٩
Central Angle	The angle at the center of a circle that is enclosed by two radii (angle of a sector)	
Cube	A 3-dimensional square – all sides are equal.	đ
Rectangular Solid	A 3-dimensional rectangle.	
Cylinder	A circle with height – like a can of soda	0
Sphere	A 3-dimensional circle – like a ball	
Volume	The space inside a 3-dimensional figure	
Surface Area	The area of the outside of a 3-dimensional figure	
Inscribed	When a figure is drawn inside another such that their boundaries touch	\bigcirc

Math Definitions: Coordinate Geometry

Word	Definition	Examples
Coordinate Plane	A graph in which each point can be represented by a set of	
	coordinates	
Axis	The lines that make up a coordinate plane. (plural: axes) There is	
	usually an x and a y axis	
Ordered Pair	A set of numbers that indicates location on a graph (x, y)	(1,2)
Intercept	The point at which a line goes through another line or axis	
Y-Intercept	The point at which a line crosses the y-axis. (0, y)	(0, 5)
X-Intercept	The point at which a line crosses the x-axis. (x, 0)	(2, 0)
Slope	The gradient or steepness of a line. It is how far the line moves up	$y_2 - y_1$
	whenever the line moves one to the right.	$x_2 - x_1$
Domain	The set of numbers that are allowed in a function or line on a graph	$(-\infty, \infty)$
Range	The potential output of a function or line on a graph	$[5,\infty)$
Parallel (graphing)	Two lines with the same slope	
Perpendicular (graphing)	Two lines with slopes that are negative reciprocals of each other	
Translation	Movement of a line or shape such that the result is the same but in a	
	different location	
Rotation	To turn an object in a circular motion around a fixed point	
Reflection	To flip a line or shape over a line (axis)	
Symmetry	When rotating or reflecting a shape results in the same shape	

Common Symbols

Symbol	Definition	Examples	How to Say it
\$	Dollars. U.S. money	\$5.00	Five dollars
+	Addition. Usually read as "plus"	2 + 7	Two plus seven
_	Subtraction. Usually read as "minus"	5-2	Five minus two
*	Multiplication. Usually read as "times"	3 * 4	Three times four
<u>÷</u>	Division. Usually read as "divided by"	8÷2	Eight divided by two
/	Division. Usually read as "divided by"	6/3	Six divided by three
=	Equals	1 + 1 = 2	One plus one equals two
*	Approximately (almost equals)	9.95 ≈ 10	
<	Less than	2 < 4	Two is less than four
>	Greater than	5 > 3	Five is greater than three
\leq	Less than or equal to	x ≤ 10	x is less than or equal to ten
\geq	Greater than or equal to	$x \ge 2$	x is greater than or equal to two
^	Exponents. Usually read as "to the power of"	$3^2 = 3^2 = 9$	x to the power of two
	Root	$\sqrt{4} = 2$	The square root of four is two
%	Percent	$50\% = \frac{50}{100}$	Fifty percent
∞	Infinity		
П	Pi	3.14159	
Σ	Summation	3 $\sum_{i=1}^{3} 2i = 2(1) + 2(2) + 2(3) = 11$	
{ }	Set	{ 2, 3, 5, 7, 11, 13, }	The set of numbers
[,]	Defines an inclusive range	$[5,\infty)$	x ≥ 5
(,)	Defines an exclusive range or a coordinate point on a graph	(-∞, 2)	x < 2