
MATH FOR DATA SCIENCE

Samuel S. Watson



Preface

In this book, we develop the mathematical ideas underlying the modern practice of data science. The goal is
to do so accessibly and with a minimum of prerequisites.*

* Experience
with basic cal-
culus is neces-
sary, and some
prior experi-
ence with lin-
ear algebra and
programming
will be helpful.

For example, we will start by reviewing sets and
functions from a data-oriented perspective. On the other hand, we will take a problem-solving approach to
the material and will not shy away from challenging concepts. To get the most out of the course, you should
prepare to invest a substantial amount of time on the exercises.

This text was originally written to accompany the master’s course DATA 1010 at Brown University. The
content of this PDF, along with hints and solutions for the exercises in this book, will be available on the
edX platform starting in the fall semester of 2019, thanks to the BrownX project and the Brown University
School of Professional Studies.

The author would like to acknowledge Isaac Solomon, Elvis Nunez, and Thabo Samakhoana for their contri-
butions during the development of the DATA 1010 curriculum. They wrote some of the exercises and many
of the solutions that appear in the BrownX course.



Contents

1 Sets and functions 6
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Set operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Programming in Julia 16
2.1 Environment and workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Variables and values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Basic data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Functions and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Packages and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Compound data and repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.6 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.7 File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Plotting and visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Program design and debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Julia tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Linear Algebra 31
3.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Linear independence, span, and basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



3.2 Matrix algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 The inverse of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Dot products and orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 The dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 The transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Matrices with orthonormal columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Eigenvalues and matrix diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Eigenpairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Positive definite matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Polar decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Multivariable Calculus 61
4.1 Sequences and series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Partial differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Matrix differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Multivariable integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 The Jacobian determinant of a transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Numerical Computation 71
5.1 Machine arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 64-bit integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 64-bit floating point numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 32-bit floating point numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.4 Arbitrary-precision numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.5 General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Sources of numerical error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Pseudorandom number generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4



5.5.1 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Probability 88
6.1 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Probability models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Discrete probability models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Marginal distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 Joint distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.1 Conditional probability measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.2 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Expectation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.2 Linearity of expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5.4 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.7 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.8 Common distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8.1 Bernoulli distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.8.2 The binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.8.3 Geometric distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.8.4 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.8.5 Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.8.6 Cauchy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.8.7 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.8.8 The multivariate normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.9 Law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.9.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.9.2 Convergence of random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.9.3 Weak law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.10 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5



1 Sets and functions

Sets and functions are foundational to the study of mathematics and ubiquitous in quantitative disciplines,
including statistics and data science. In this chapter we review the basics of sets, lists, and functions from a
data perspective.

1.1 Sets

A simple grocery list is a real-life example of a set: the main function afforded by the grocery list is to answer
the query “here’s an item in the store; is it on list?” Note that for purposes of answering this question, the
order of the listed items on the grocery list doesn’t matter, and repeating an entry is equivalent to having a
single instance of that entry. This leads us to the definition of a set.

Definition 1.1.1: Set

A set is an unordered collection of objects. The objects in a set are called elements.

The term object in this definition is deliberately vague. Sets may contain any kind of data: numbers, words,
symbols, circles, squares, other sets, and many others.

If a set S contains a finite number of elements s1, s2, . . . , sn, we can write

S = {s1, s2, . . . , sn}.

The fundamental operation provided by a set is checking membership: we write s ∈ S to indicate that s is
an element of the set S. If s is not an element of S, we write s /∈ S. If two sets have the same elements, then
they are considered equal. For example, {1, 1, 2} = {1, 2}. For this reason, we typically list the elements of
a set without duplication.

The set containing no elements is called the empty set and is denoted ∅ or {}.

Some sets with standard and specially typeset names include

• R, the set of real numbers,

• Q, the set of rational numbers,

• Z, the set of integers, and

• N, the set of natural numbers.

Definition 1.1.2: Subset

Suppose S and T are sets. If every element of T is also an element of S, then we say T is a subset of
S, denoted T ⊂ S.

6



The sets S and T are equal if S ⊂ T and T ⊂ S.

Exercise 1.1.1

Suppose that E is the set of even positive integers and that F is the set of positive integers which are
one more than an odd integer.

(a) E ⊂ F

(b) F ⊂ E

(c) E = F

(d) all of the above

Example 1.1.1

We have N ⊂ Z ⊂ Q ⊂ R, since every natural number is an integer, every integer is rational, and
every rational number is real.

Definition 1.1.3: Set builder notation

If S is a set and P is a property which each element of S either satisfies or does not satisfy, then

{s ∈ S : s satisfies P}

denotes the set of all elements in S which have the property P. This is called set builder notation. The
colon is read as ‘such that.’

Example 1.1.2

Suppose the set S denotes the set of all real numbers between 0 and 1. Then S can be expressed as

S = {s ∈ R : 0 < s < 1}.

Definition 1.1.4: Cardinality

Given a set S, the cardinality of S, denoted |S|, denotes the number of elements in S.

Exercise 1.1.2

Let S = {4, 3, 4, 1}. Find |S|.

Definition 1.1.5: Countably infinite

A set is countably infinite if its elements can be arranged in a sequence.

7



Example 1.1.3

The set {1, 2, 3, 4, . . .} is countably infinite. The set of integers is countably infinite, since they can be
arranged sequentially: {0, 1,−1, 2,−2, 3,−3, . . .}
The set of rational numbers between 0 and 1 is countably infinite, since they all appear in the sequence
1
2 , 1

3 , 2
3 , 1

4 , 3
4 , 1

5 , 2
5 , 3

5 , . . ..
The set of all real numbers between 0 and 1 is not countably infinite. Any infinite sequence of real
numbers will necessarily fail to include all real numbers. This may be demonstrated using an idea
called Cantor’s diagonalization argument, though we will omit the proof.

Exercise 1.1.3

Show that the set of all ordered pairs of positive integers is countably infinite.

1.1.1 Set operations

Given a set S describing a grocery list and a subset A ⊂ S describing the set of items we’ve already pur-
chased, the set we might be most interested in constructing from S and A is the set of items which are in S
but not in A. This is called the complement of A with respect to S.

Definition 1.1.6: Complement

If A and S are sets and A ⊂ S, then the complement of A with respect to S, denoted S \ A or Ac, is
the set of all elements in S that are not in A. That is

Ac = {s ∈ S : s /∈ A}.

Since S is not part of the notation Ac, we will usually only use that notation when the intended containing
set S is clear from context.

Exercise 1.1.4

Suppose S = {1, 2, 3, 4, 5} and A = {4, 2}. Find the complement Ac of A with respect to S.

Exercise 1.1.5

Suppose A ⊂ S, |S| = 55, and |A| = 13. Find |S \ A|.

If two members of your household supplied you with grocery lists as you were about to go to the store, then
the first thing you might want to do is produce a combined grocery list. This set operation is called taking
the union.

8



Definition 1.1.7: Union

The union of two sets S and T, denoted S ∪ T, is the set containing all the elements of S and all the
elements of T and no other elements. In other words, s ∈ S ∪ T if and only if either s ∈ S or s ∈ T.

Exercise 1.1.6

Let S = {1, 2, 4, 5} and T = {1, 5, 6, 7, 8}. Find S ∪ T.

When we’re choosing which loaf of bread to purchase, we’re interested in finding one which is in both of
two sets:

(i) the set of loaves whose price falls in our range of acceptable prices, and

(ii) the set of loaves whose taste we find satisfactory

The set of viable loaves is the intersection of these two sets.

Definition 1.1.8: Intersection

The intersection of two sets S and T, denoted S ∩ T, is the set consisting of elements that are in both
S and T. In other words, s ∈ S ∩ T if and only if s ∈ S and s ∈ T.

Example 1.1.4

Let S = {1, 2, 3, 4, 5} and T = {1, 5, 6, 7, 8}. Then

S ∩ T = {1, 5}.

The union and intersection operations may be applied to any number of sets. Suppose S1, S2, . . . , Sn are
sets—the union of these sets can be expressed as S1 ∪ S2 ∪ · · · ∪ Sn. More compactly,

n⋃
i=1

Si = S1 ∪ S2 · · · ∪ Sn = {s : s ∈ Si for some 1 ≤ i ≤ n}.

Similarly, we can take the intersection of an arbitrary number of sets:

n⋂
i=1

Si = S1 ∩ S2 ∩ · · · ∩ Sn = {s : s ∈ Si for all 1 ≤ i ≤ n}.

Often we will want to specify whether two sets have any elements in common.

Definition 1.1.9: Disjoint

Two sets S and T are disjoint if they do not have any elements in common.

9



In other words, S and T are disjoint if S ∩ T = ∅.

Definition 1.1.9 extends to an arbitrary number of sets. We say that the sets S1, S2, . . . , Sn are pairwise
disjoint if Si ∩ Sj = ∅ whenever i 6= j.

Exercise 1.1.7

Find three sets A, B, and C which have A ∩ B ∩ C = ∅, but for which all of the intersections A ∩ B,
B ∩ C, and A ∩ C are nonempty.

Suppose you’re part of a group of n shoppers working together to purchase the items on a single grocery
list. A good idea is to partition the set of items you want to purchase into n smaller sets so that each person
can purchase only the items on their own set.

Definition 1.1.10: Partition

A partition of a set S is a collection of non-empty sets S1, S2, . . . , Sn such that

S =
n⋃

i=1

Si

and S1, S2, . . . , Sn are disjoint.

Exercise 1.1.8

Find a partition of {1, 2, 3, 4, 5} into three sets. Is there a partition of {1, 2, 3, 4, 5} into six sets?

Exercise 1.1.9

Establish the first and third of the following four identities. Use the following strategy: show that the
left-hand side is a subset of the right-hand side and vice versa. To demonstrate that A ⊂ B, consider
an element s of A and–assuming only that s ∈ A—apply reasoning to conclude that it must be in B
as well.

S ∩ (R ∪ T) = (S ∩ R) ∪ (S ∩ T)
S ∪ (R ∩ T) = (S ∪ R) ∩ (S ∪ T)(

n⋃
i=1

Si

)c

=
n⋂

i=1

Sc
i(

n⋂
i=1

Si

)c

=
n⋃

i=1

Sc
i

Suppose we perform an experiment which consists of flipping a coin and rolling a standard six-sided die.
The outcome of the coin flip is an element of the set S1 = {H, T}, and the outcome of the die roll is an element
of the set S2 = {1, 2, 3, 4, 5, 6}. The set of all possible outcomes of the experiment is the set

S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),
(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}.

10



Definition 1.1.11: Cartesian Product

If S1 and S2 are sets, then the Cartesian product of S1 and S2 is defined by

S1 × S2 = {(s1, s2) : s1 ∈ S1 and s2 ∈ S2}.

Likewise, if S1, S2, . . . , Sn are sets, then

S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) : s1 ∈ S1 and s2 ∈ S2 and · · · and sn ∈ Sn}.

Exercise 1.1.10

Find |S × T| if |S| = 4 and |T| = 100.

1.2 Lists

Sets are data containers with very little structure: you can check membership (and perform membership-
checking-related operations like unions or complements), but that’s all. We will define various other types
of collections which provide additional structure.

For example, suppose you do care about the order in which the items appear on your grocery list; perhaps
because you want to be able pick the items up in a certain order as you move across the store. Also, you
might want to list an item multiple times as a way of reminding yourself that you should pick up more than
one. Lists can handle both of these extra requirements:

Definition 1.2.1: List

A list is an ordered collection of finitely many elements.

For example, if we regard {1, 2, 3} and {2, 1, 3} as lists, then they are unequal because the orders in which
the elements appear are different. Also, the list {1, 1, 2} has three elements, since repeated elements are not
considered redundant.

We don’t distinguish sets and lists notationally, so we will rely on context to make it clear whether order
matters and repetitions count.

Exercise 1.2.1

How many sets A have the property that A ⊂ {1, 2, 3}? How many lists of length 4 have all of their
elements in {1, 2, 3}?

11



1.3 Functions

The grocery lists you make for yourself probably don’t look quite like a set or a list, because the quickest way
to indicate how many of each item to purchase is to make a separate column:

item count
apple 3
bread 1

squash 3

We have two sets here: the set of grocery items and the set of positive integers. For each element in the
former set, we want to associate with it some element of the latter set.

Note that this construction is asymmetric in the two sets: every grocery item should have exactly one number
associated with it, while some positive integers may be omitted and others may be associated with multiple
grocery items.

The idea of attaching a piece of data to each element of a set arises very often, and it deserves its own
vocabulary:

Definition 1.3.1: Function, domain, and codomain

If A and B are sets, then a function f : A → B is an assignment to each element of A of some element
of B.
The set A is called the domain of f and B is called the codomain of f .

The domain and codomain of a function should be considered part of the data of the function: to fully specify
f , we must specify (i) the domain A, (ii) the codomain B, and (iii) the value of f (x) for each x ∈ A. Two
functions f and g are considered equal if (i) they have the same domain and codomain and (ii) f (x) = g(x)
for all x in the domain of f and g.

Given a subset A′ of A, we define the image of f —denoted f (A′)—to be the set of elements which are
mapped to from some element in A′:

f (A′) = {b ∈ B : there exists a ∈ A′ so that f (a) = b}. (1.3.1)

The range of f is defined to be the image of the domain of f . Thus the range may be obtained from the
codomain by removing all the elements that don’t get mapped to.

Example 1.3.1

Find the range of the function from {apple, bread, squash} to N represented by the following table.

item count
apple 3
bread 1

squash 3

12



Solution

The range is the set of quantity counts which get mapped to from some grocery item, so the range is
the two-element set {1, 3}.

Exercise 1.3.1

Consider the social-security-number function f from the set of US citizens and permanent residents to
the set of integers {000000000, 000000001, . . . , 999999999}. For each person x, f (x) is defined to be
the social security number of person x.

(i) What are the largest and smallest possible values of the ratio | f (A)|
|A| for any subset A of the

domain of f ?

(ii) Estimate the ratio of the cardinality of the range of f to the cardinality of the codomain of f .
(You can estimate the number of social security numbers issued to be about 40% more than the
current US population).

Definition 1.3.2

If B′ ⊂ B, then the preimage f−1(B′) of B′ is defined by

f−1(B′) = {a ∈ A : f (a) ∈ B′}.

This is the subset of A consisting of every element of A that maps to some element of B′.

Exercise 1.3.2

Consider the following purported equalities.

(i) f (A ∩ B) ?
= f (A) ∩ f (B)

(ii) f (A ∪ B) ?
= f (A) ∪ f (B)

(iii) f−1(C ∩ D)
?
= f−1(C) ∩ f−1(D)

(iv) f−1(C ∪ D)
?
= f−1(C) ∪ f−1(D)

Which of the are true for all functions f and all subsets A and B of the domain of F and subsets C
and D of the codomain of f ?

(a) all of them

(b) none of them

(c) (i) and (ii) only

(d) (iii) and (iv) only

(e) (i), (iii), and (iv) only

13



Definition 1.3.3

A function f is injective if no two elements in the domain map to the same element in the codomain;
in other words if f (a) = f (a′) implies a = a′.
A function f is surjective if the range of f is equal to the codomain of f ; in other words, if b ∈ B
implies that there exists a ∈ A with f (a) = b.
A function f is bijective if it is both injective and surjective. This means that for every b ∈ B, there is
exactly one a ∈ A such that f (a) ∈ b. If f is bijective, then the function from B to A that maps b ∈ B
to the element a ∈ A that satisfies f (a) = b is called the inverse of f .

Exercise 1.3.3

Identify each of the following functions as injective or not injective, surjective or not surjective, and
bijective or not bijective.

1. f : R → R, f (x) = x2

2. f : [0, ∞) → R, f (x) = x2

3. f : [0, ∞) → [0, ∞), f (x) = x2

4. f : R → [0, ∞), f (x) = x2

It is frequently useful to focus on a subset of the domain of a function without changing the codomain
elements that the function associates with those domain elements. For example, if we partition a grocery
list with quantity counts among several shoppers, then each shopper will be interested in the restriction of
the quantity count function to their own portion of the domain. In other words, they need to know how
many of each of their items to pick up, and they don’t need to know anything about the other shoppers’
items.

Definition 1.3.4: Restriction

If f : A → B and A′ ⊂ A, then the restriction of f to A′ is the function f |A′ : A′ → B defined by
f |A′ (x) = f (x) for all x ∈ A′.

Exercise 1.3.4

State a general relationship involving the terms restriction, image, and range.

Sometimes the elements output by a function f will themselves have associated data, and in this case we
often want to connect each element in the domain of f to these data.

For example, consider the album function from the set of songs*
* the ones that
have appeared
on an album to the set of albums. Evaluated on a song,

the album function returns the album on which the song appeared. Consider also the year function from
the set of albums to the set of years (which returns the year in which each album was released). We can
determine the year in which a song was released by composing the album function and the year function.

14



Definition 1.3.5: Composition

If f : A → B and g : B → C, then the function g ◦ f which maps x ∈ A to g( f (x)) ∈ C is called the
composition of g and f .

Exercise 1.3.5

Show that composition is associative: ( f ◦ g) ◦ h = f ◦ (g ◦ h) for all functions f , g, and h with the
property that the codomain of h is equal to the domain of g and the codomain of g is equal to the
domain of f .

If the rule defining a function is sufficiently simple, we can describe the function using anonymous function
notation. For example, x ∈ R 7→ x2 ∈ R, or x 7→ x2 for short, is the squaring function from R to R. Note
that bar on the left edge of the arrow, which distinguishes the arrow in anonymous function notation from
the arrow between the domain and codomain of a named function.

Exercise 1.3.6

Suppose that f is the function (x 7→
√

x) ◦ (y 7→ 3y). Find f
(

1
12

)
.

15



2 Programming in Julia

In this course, we will develop mathematical ideas in concert with corresponding computational skills. This
relationship is symbiotic: writing programs is an important ingredient for applying mathematical ideas to
real-world problems, but it also helps us explore and visualize math ideas in ways that go beyond what we
could achieve with pen, paper, and imagination.

We will use Julia. This is a relatively new entrant to the scientific computing scene, having been introduced
publicly in 2012 and reaching its first stable release in August of 2018. Julia is ideally suited to the purposes
of this course:

1. Julia is designed for scientific computing. The way that code is written in Julia is influenced heavily
by its primary intended application as a scientific computing environment. This means that our code
will be succinct and will often look very similar to the corresponding math notation.

2. Julia has benefits as an instructional language. Julia provides tools for inspecting how numbers and
other data structures are stored internally, and it also makes it easy to see how the built-in functions
work.

3. Julia is simple yet fast. Hand-coded algorithms are generally much faster in Julia than in other user-
friendly languages like Python or R. This is not always important in practice, because you can usually
use fast code written by other people for the most performance-sensitive parts of your program. But
when you’re learning fundamental ideas, it’s very helpful to be able to write out simple algorithms by
hand and examine their behavior on large or small inputs. <

4. Julia is integrated in the broader ecosystem. Julia has excellent tools for interfacing with other lan-
guages like C, C++, Python, and R, so can take advantage of the mountain of scientific computing
resources developed over the last several decades. (Conversely, if you’re working in a Python or R
environment in the future, you can write some Julia code and integrate it into your Python or R pro-
gram).

My current recommendation is that you download Julia 0.7 from julialang.org/downloads. Version 1.0 is
available, but 0.7 runs all of the same code as 1.0, and it is allows you to run legacy code from version 0.6 as
well.

2.1 Environment and workflow

There are four ways of interacting with Julia:

1. REPL. Launch a read-eval-print loop from the command line. Any code you enter will be executed
immediately, and any values returned by your code will be displayed.

2. Script. Save your code in a file called example.jl, and run julia example.jl the command line to
execute all the code in the file.

3. Notebook. Like a REPL, but allows inserting text and math expressions for explanation, grouping code
into blocks, multimedia output, and other features. The main notebook app is called Jupyter, and it
supports Julia, Python, R and many other languages.

16

julialang.org/downloads


4. IDE. An integrated development environment is a program for editing your scripts which provides
various code-aware conveniences (like autocompletion, highlighting, and many others). Juno is an
IDE for Julia.

Some important tips for getting help as you learn:

1. Julia’s official documentation is available at https://docs.julialang.org and is excellent. The learning
experience you will get in this chapter is intended to get you up and running with the ideas we will use
in this course, but if you do want to learn the language more extensively, I recommend investigating
the resources linked on the official Julia learning page: https://julialang.org/learning/

2. You can get help within a Julia session by typing a question mark before the name of a function whose
documentation you want to see.

3. Similarly, apropos("eigenvalue") returns a list of functions whose documentation mentions ”eigen-
value”

Exercise 2.1.1

Install Julia 1.0 on your system, start a command-line session by running julia from a terminal or
command prompt, What does the ASCII-art banner look like (the one that pops up when you start a
command line session)?

2.2 Fundamentals

We begin by developing some basic vocabulary for the elements of a program.

2.2.1 Variables and values

A value is a fundamental entity that may be manipulated by a program. Values have types; for example, 5
is an Int and "Hello world!" is a String. Types are important for the computer to keep track of, since values
are stored differently depending on their type. You can check the type of a value using the typeof function:
typeof("hello") returns String.

A variable is a name used to refer to a value. We can assign a value (say 41) to a variable (say age) as follows:

age = 41

A function performs a particular task. For example, print(x) writes a string representation of the value of
the variable x to the screen. Prompting a function to perform its task is referred to as calling the function.
Functions are called using parentheses following the function’s name, and values needed by the function
are supplied between these parentheses.

An operator is a special kind of function that can be called in a special way. For example, the multiplication
operator * is called using the mathematically familiar infix notation 3 * 5, or *(3,5).

17

https://docs.julialang.org
https://julialang.org/learning/


A statement is an instruction to be executed. For example, the assignment age = 41 is a statement. An
expression is a combination of values, variables, operators, and function calls that a language interprets
and evaluates to a value. For example, 1 + age + abs(3*-4) is an expression which evaluates*

abs is the ab-
solute value
function to 54.

A sequence of statements or expressions can be collected into a block, delimited by begin and end. The
statements and expressions in a block are executed sequentially. If the block concludes with an expression,
then the block returns the value of that expression. For example,

begin

y = x+1

y^2

end

is equivalent to the expression (x+1)^2.

The keywords of a language are the words that have special meaning and cannot be used for other purposes.
For example, begin and end are keywords in Julia.

Exercise 2.2.1

What value does the following expression evaluate to? What is the type of the resulting value? Ex-
plain.

begin

x = 14

x = x / 2

y = x + 1

y = y + x

2y + 1

end

2.2.2 Basic data types

Julia, like most programming environments, has built-in types for handling common data like numbers and
text.

1. Numbers.
(a) A numerical value can be either an integer or a float. The most commonly used integer and

floating point types are Int64 and Float64, so named because they are stored using 64 bits. We can
represent integers exactly, while storing a real number as a float often requires slightly rounding
it (see the Numerical Computation chapter for details). A number is stored as a float or integer
according to whether it contains a decimal point, so if you want the value 6 to be stored as a float,
you should write it as 6.0.

(b) Basic arithmetic follows order of operations: 1 + 3*5*(-1 + 2) evaluates to 16.
(c) The exponentiation operator is ^.
(d) Values can be compared using the operators*

* For the last
two symbols,
use \le«tab»

and \ge«tab»

==,>,<,≤,≥.

(e) Julia integers will overflow unless you make them big†
† Operations
with big-type
numbers are
much slower
than operations
with usual ints
and floats

, so big(2)^100 works, but 2^100 evaluates

18



to 0.

2. Strings
(a) Textual data is represented in a string. We can create a string value by enclosing the desired string

in quotation marks: a = "this is a string".
(b) We can find the number of characters in a string with the length function: length("hello") returns

5.
(c) We can combine two strings with the asterisk operator (*): "Hello " * "World"

(d) We can insert the value of a variable into a string using string interpolation:

x = 4.2

print("The value of x is $x")

3. Booleans
(a) A boolean is a special data type which is either true or false
(b) The basic operators that can be used to combine boolean values are

and &&

or ||

not !

Exercise 2.2.2

(i) Write a Julia expression which computes 1
a+ 2

3
where a is equal to the number of characters in

the string "The quick brown fox jumped over the lazy dog"

(ii) Does Julia convert types when doing equality comparison? In other words, does 1 == 1.0 re-
turn true or false?

2.2.3 Conditionals

We can specify different blocks to be executed depending on the value of a boolean expression. For example:

x = 1.2

if x > 0

"x is positive"

elseif x == 0

"x is zero"

else

"x is negative"

end

This block is an expression which evaluates to "x is positive". Simple conditional expressions can alterna-
tively be written using ternary conditional operator, which takes the form «condition» ? «expression_if_true»

: «expression_if_false». For example,

19



x = 1.2

x > 0 ? "x is positive" : "x is not positive"

Exercise 2.2.3

Write a block of code that assigns nonzero values to the variables x and y and returns the quadrant
number (1, 2, 3, or 4) in which the point (x, y) is located. Recall that the quadrants are numbered
counter-clockwise: the northeast quadrant is quadrant 1, the northwest quadrant is 2, and so on.
Try doing this by nesting if...else blocks inside of an if...else block.

2.2.4 Functions and scope

2.2.4.1 Functions

Using functions to organize code helps to achieve separation of concerns: once a function is written, it may
be relied upon to perform its designated task without having to think about how it accomplishes that task.
This conceptual aid is crucial for writing maintainable code to solve large, complex problems.*

* Civilization ad-
vances by extend-
ing the number
of important op-
erations which
we can perform
without thinking
about them. –
Alfred North
Whitehead

Functions must be supplied with zero or more values called arguments. For example, to define the function
f (x, y) = x2 +

√
yx2 + 1, we run the block

function f(x,y)

x2 = x^2

x2 + sqrt(y*x2+1)

end

The function is called using parentheses, as in f(-4.2,0.5).

We can choose for some of the arguments to be declared and called by name rather than by position in the
argument list. These are called keyword arguments, and we set them off from the other arguments with
a semicolon. Keyword arguments must be given a default value in case they are not supplied when the
function is called.

function threesum(x,y,z;shift=0)

x + y + z + shift

end

threesum(1,2,3) # returns 6

threesum(1,2,3;shift=2) # returns 8

In Julia, we can define multiple methods of a function, and Julia will dispatch a given function call to the
appropriate method. For example, the block

20



function f(x,y)

x + y

end

function f(x,y,z)

x + y*z

end

f(1,2) + f(1,2,3)

returns 10, because the first function all dispatches to the first method, while the second function call dis-
patches to the second method.

We may also distinguish methods based on the types of the arguments. For example, the block

function f(x::Int64,y::Float64)

x + y

end

function f(x::Float64,y::Int64)

x * y

end

f(1,2.0) + f(1.0,2)

returns 5.0.

If a function’s definition is immediately preceded by a string, that string will be interpreted as documentation
for the function. This docstring helps you and other users of your functions quickly ascertain how they are
meant to be used. The docstring can queried in a Julia session using ?functionname.

A function may be defined without assigning a name to it. Such a function is said to be anonymous. The Julia
syntax for an anonymous function is essentially the same as the mathematical notation: for example, the
function which computes the squared distance from the origin to (x, y) may be defined as (x,y)->x^2 + y^2.
The expression ((x,y)->x^2 + y^2)(3,4) evaluates to 25.

Exercise 2.2.4

Write two methods for a function f so that the following lines all evaluate to true.

f(11.0) == 121.0

f(11) == 22

f("my","string") == "my_string"

2.2.4.2 Scope

The scope of a variable is the region in the program where it is accessible. For example, if you define x to
be 47 on line 413 of your file and get an error because you tried to use x on line 35, the problem is that the
variable wasn’t in scope yet.

A variable defined in the main body of a file has global scope, meaning that it is visible throughout the

21



program from its point of definition.

A variable defined in the body of a function is in that function’s local scope. For example:

julia> function f(x)

y = 2

x + y

end

julia> y

"ERROR: UndefVarError: y not defined"

Exercise 2.2.5

Define a function myangle of x and y which returns the angle between the positive x-axis and the
segment from the origin to (x, y). The returned value should be in the interval [0, 2π).

2.3 Packages and modules

A package is a collection of code that provides functionality not available in the base language. Packages
are an example of separation of concerns at the community level: someone else solves a problem of general
interest, and then you can leverage their work and focus on applying it to the problem at hand.

Julia has a built-in package management system. Package management is important because dependencies
and versions can quickly become a mess if you are trying to copy code files from other people and put
them alongside the files in your project. The package manager is alert to these dependencies and does the
computational work to resolve them. It also stores the package code in a central location on your computer
so that it is visible to Julia regardless of where your scripts are located.

Call Pkg.add("PackageName") from a Julia session, and then using PackageName to load the package. Impor-
tant packages include

1. Plots There are many plotting packages in Julia, but this is the closest the ecosystem has to a standard.

2. DataFrames The standard package for storing tabular data.

3. CSV Reading data stored in comma-separated value files

4. PyCall Interfacing with Python.

Packages might use lots of variable names internally, and some of them might conflict with names you’re
using. For this reason, package code is wrapped in a module, which is a separate variable workspace.

You can load a module by running, for example, import Plots or using Plots. With the import keyword,
your name space and that of the module are kept separate, and you have to access variables within the
module using dot syntax: Plots.histogram. In the latter case, any names exported by the module become
available in the importing namespace (without the dot syntax).

22



2.4 Compound data and repetition

2.4.1 Arrays

Julia provides arrays for storing ordered groups of related items. Selecting an entry from an array is achieved
by indexing the array with square brackets. The special word end can be used in the context of an index to
refer to the length of the array. A range object a:b can be used to select all of the elements from index a to b

inclusive. Membership in an array can be checked using the operator in.

myArray = [1,2,"a",[10,8,9]]

myArray[3] # evaluates to "a"

myArray[4][2] # evaluates to 8

myArray[2:end] # evaluates to [2,"a",[10,8,9]]

2 in myArray # evaluates to true

fill(18,3) # returns [18,18,18]

We can find elements in an array satisfying some condition using the functions find, findfirst, findmin,
findmax, and others. For example,

findfirst(x -> x > 0, [-1,-2,0,11,6])

returns 4, since the first positive value in the given array is the fourth one.

Values can be appended to the end of an array using push!(myArray,-4), and arrays can be concatenated
using vcat, as in vcat([1,2,3],[4,5,6]).

Julia has built-in multidimensional arrays, meaning that data can be arranged in a rectangle or a cube, etc.
The syntax for inputting a rectangular array involves separating rows with semicolons and row elements
with spaces: A = [1 2 3; 4 5 6; 7 8 9]. We can find the dimensions of A using size(A,1) and size(A,2).

To index a multidimensional array, we use commas to separate selectors for each dimension. For example,
A[2:3,:] selects the second row through the third row and all of the columns (the lone colon is short for
1:end).

Array comprehension syntax is a very handy way to generate new arrays. An array comprehension consists
of an expression for producing each element of the desired array followed by the keyword for followed by
the index variable and a range for the index variable (all enclosed in brackets):

julia> [i^2 + j^2 for i=1:3, j=1:5]

3×5 Array{Int64,2}:

2 5 10 17 26

5 8 13 20 29

10 13 18 25 34

As you can see in the first line of the above output, the type of an array is written as Array{T,d} where T is
the type of the array’s entries and d is the number of dimensions.

23



Exercise 2.4.1

Succinctly generate the following two-dimensional array
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

 ,

store it to a variable, and write a line of code to select the submatrix[
3 4 0 1 2
4 0 1 2 3

]
Hint: you might want to use the function rem—look it up from a Julia session to check how it works.

2.4.2 Tuples

Tuples are very similar to arrays, except that a tuple value cannot be changed, and tuples are always one-
dimensional.

t = (-4,2.0,"green")

t[3] # returns "green"

You’ll find that quite a few functions that return multiple values do so by storing them in a tuple. You can
access individual elements of a tuple without having to index the tuple using tuple unpacking:

mycolor = (1.0,1.0,0.44)

r, g, b = mycolor

b # returns 0.44

You can use an underscore for any values you don’t want to store—that way you don’t have to think of names
for them.

Exercise 2.4.2

The fractional part of a positive real number x is the part after the decimal point: it’s defined to be
the positive difference between x and the greatest integer which is less than or equal to x. You can
calculate the fractional part of x in Julia using mod(x,1).
Find the fractional parts of the first 100 positive integer multiples of π. Use the function extrema on
the resulting array to find its least and greatest values. Find the ratio of the greatest value to the least.

A common pattern for generating new arrays combines array comprehensions, tuple unpacking, and the
function zip. This function takes two arrays and returns a single array of pairs of corresponding entries (or
three arrays, in which case it returns an array of triples, etc.). For example,

24



zip(["a","b","c"],[1,2,3])

returns an objection which is equivalent to [("a", 1), ("b", 2), ("c", 3)].

For example, if we have three vectors A, B, and C of equal length, then the sum A+ B+C can be alternatively
computed as A + B + C or [a + b + c for (a,b,c) in zip(A,B,C)].

Exercise 2.4.3

Suppose that H is an array which stores the heights of 100 cylinders and R is an array which stores
their radii (in the same order). Write an array comprehension which returns an array containing the
volumers of these cylinders.

2.4.3 Sets

Sets are unordered collections of unique values. The point of having a special type for sets is that you can
prioritize membership checking. Figuring out whether a given value is in an array requires traversing the
array, so the amount of time it takes increases with the length of the array. By contrast, checking membership
in a set can be done very fast even if the set is large.

A = [1,2,3]

S = Set(A)

2 in S # evaluates to true

pop!(S,2) # removes 2

push!(S,11) # puts 11 in the set

2 in S # evaluates to false

Exercise 2.4.4

Generate 100,000 random integers between one and a million, and store these values as an array A.
Convert A to a set S and run

@elapsed(4521 in A), @elapsed(4521 in S)

to see how many times faster it is to check membership in S than in A. (Note: you should actually
run the above block twice, because Julia is doing some extra stuff behind the scenes on the first run,
and you don’t want to be timing that part).
Hint: rand(1:10^6) generates a single random number between 1 and a million.

2.4.4 Dictionaries

Many discrete functions should be computed by storing all of their input-output pairs and performing a
lookup. For example, you expect your phone to map the names of your contacts to their phone numbers,
and clearly it does this by storing those associations and looking them up on request. The structure for

25



storing such an association is called a dictionary. Like a set, a dictionary returns values very fast even if it is
large. Here’s some code for mapping a few color names to their corresponding RGB tuples (that is, the red,
green, and blue components of the color). Bracket syntax is used for looking up a dictionary value.

D = Dict("MidnightBlue" => (0.1, 0.1, 0.44),

"LightSeaGreen" => (0.13, 0.7, 0.67),

"DarkRed" => (0.55, 0.0, 0.0))

D["LightSeaGreen"] # returns (0.13, 0.7, 0.67)

In this example, the color names are the keys of the dictionary and the tuples are its values.

Exercise 2.4.5

What happens if you try to look up a value which is not in the dictionary’s set of keys?

2.4.5 Iteration

The statements while and for can be used to execute a block of code repeatedly. A while loop takes a con-
ditional expression and a body and evaluates them alternatingly until the conditional expression returns
false. For example, the following block repeatedly divides x by 2 until a number less than 1 is reached (note
that x /= 2 is short for x = x/2).

x = 142.0

while x > 1

x /= 2

end

A for loop evaluates its body once for each entry in a given iterator (for example, a range, array, tuple or
dictionary). Each value in the iterator is assigned to a loop variable which can be referenced in the body of
the loop. For example, here’s a very simple method for determining whether a number is prime:

function isprime(n)

for j = 2:n-1

if rem(n,j) == 0

return false

end

end

true

end

2.4.6 Data structures

Composite types are used to collect several related values into a single object. For example, if we want to
make a tic-tac-toe game, we might represent the board as follows:

26



struct TicTacToeBoard

locationsX::Array{Bool,2}

locationsO::Array{Bool,2}

end

We will set entries of locationsX to true to indicate the presence of an X in a square, and similarly for O. We
call locationsX and locationsO fields of the type TicTacToeBoard. Indicating the types of the fields in the
declaration of the struct is optional.

To create a new instance of a composite type, supply the desired field values as arguments*:
* the
expression
fill(false,3,3)

creates a 3 × 3
with all entries
falsemyboard = TicTacToeBoard(fill(false,3,3),fill(false,3,3))

The fields of a composite type may be accessed using dot notation. For example, blankboard.locationsX
returns the array locationsX.

Once you define a new type, it is treated by Julia the same as its built-in types. For example, you can define
function methods which operate on values of your type:*

* Functions
which act on
their argu-
ments by al-
tering them are
conventionally
marked in Julia
by an exclama-
tion point at
the end of their
names

function playX!(T::TicTacToeBoard,row::Integer,column::Integer)

T.locationsX[row,column] = true

end

Exercise 2.4.6

Write a type Line for representing non-vertical lines in the plane. Write a two-argument method
intersect which finds the intersection point of two lines (you may return the intersection point as a
tuple of floats).

2.4.7 File I/O

Many programs need to interact with the file system to be useful, because they will need to act on data which
is stored in a local database or downloaded from the internet, and they will often need to store their results
on disk.

We can read the contents of a text file using read. If we save a file called ”macbeth.txt” in the current working
directory (which can be queried using pwd() and changed using cd()), then

macbeth_text = read("macbeth.txt",String)

reads the file, interprets its contents as a string, and stores the resulting string to the variable macbeth_text.

A string can be written to a file using write:

27



write("macbeth.txt",macbeth_text)

Scientific computing environments have special methods for importing and exporting tabular data. One
common way to do this is a comma-separated values file. Suppose that the following text is stored in a file
”data.csv”.

length,width,height,color

1.331,0.322,0.707,"yellow"

0.770,0.708,1.377,"blue"

0.725,0.827,0.405,"blue"

Tabular data is represented in Julia using DataFrames. To create a data frame from a local CSV file (and then
write it back to disk):

using CSV

myDataFrame = CSV.read("data.csv")

CSV.write(myDataFrame)

Exercise 2.4.7

How many times does the word ”Macbeth” appear in Shakespeare’s Macbeth?
(Hint: search for the full text of Macbeth on the internet, download it, and read the text into a Julia
session. Note that matchall(Regex("word"),S) can be used to find all instances of the string ”word”
in the string S.

2.5 Plotting and visualization

To plot a line graph in Julia, you can use the function plot in the package Plots. This function takes a pair
of vectors which contain the x-coordinates and the y-coordinates, respectively. The vector of x-coordinates
may be omitted. Multiple functions may be graphed by supplying a vector of y-vectors.

using Plots

P = plot([rand(0:10),rand(0:10)])

savefig(P,"myfigure.pdf") # save figure as a PDF file

Also particularly handy is the histogram function:

histogram([x^2 for x in rand(1000)],nbins=20)

28



Exercise 2.5.1

(i) Use Julia to plot the function x2e−|x| over the interval [−3, 3].

(ii) Calculate mean(rand(0:1,10^5))) 1000 times, and make a histogram of the resulting 1000 num-
bers.

2.6 Program design and debugging

A few thoughts to bear in mind when programming:

1. Design and testing
(a) Program design. A well-structured program is easier to read and maintain than a poorly struc-

tured one. It will also run more reliably and require less debugging.
(i) Don’t repeat yourself. Use abstractions (loops, functions, objects, etc.) to avoid repetition.

A given piece of information or functionality should live in one place only.
(ii) Separation of concerns. Distinct functionality should be supplied by distinct sections of

code.
(iii) Simplify. Don’t introduce unnecessary complexity.
(iv) Use informative names. Choose names for variables and functions which elucidate their

role in the program.
(v) Comment. To make your code as easy to read and understand, document any features of

your program which are not immediately apparent from the code.
(b) Test-first design is an approach to developing code which aims to improve productivity and

reliability. When writing a function:
(i) Begin by writing the signature, that is, the function name, parameters, and docstring.

(ii) Before writing the body of the function, write tests for the function. Think carefully about the
desired behavior, including degenerate and corner cases.

(iii) Write the body of the function.
(iv) Run the tests. If some of them fail, address the failures and run all of the tests again.

2. Debugging.
Some tips for when your code isn’t performing as intended:

(a) Read error messages. Error messages are only sometimes helpful, but it’s worth trying to deci-
pher them, because interpreting error messages is a skill to build. If the error message is suffi-
ciently specific, Googling it sometimes leads to relevant online discussions.

(b) Print statements. Insert print statements into problematic functions to determine which values
are not correct at various points in the body of the function.

(c) IDE debugging. Juno integrates with the debugging module Gallium, allowing you to specify
break points and step through your code’s execution one line or expression at a time.

Exercise 2.6.1

Figure out how to obtain a value for
√
−2 at the prompt. State at least two different ways you have

at your disposal to figure this sort of thing out.

29



2.7 Julia tricks

Here are some miscellaneous tips for learning and working in Julia.

1. apropos("sqrt") searches the documentation for sqrt.

2. @less sin(0.1) shows the definition of the method of the function sin which is called on 0.1.

3. @which sin(1.0) tells you which method of sin is used to evaluate sin(1.0)

4. @edit sin(1.0) finds the line in the Julia source code where the Float64 method of sin is called and
opens your editor to that location.

5. clipboard(A) copies a string version of A to the system clipboard, while clipboard() returns the con-
tents of the clipboard as a string.

6. @elapsed sum(i^2 for i=0:10^6-1) returns the number of seconds taken to sum the first million perfect
squares

30



3 Linear Algebra

Using and interpreting data requires storing and manipulating sets of numbers in conceptually and com-
putationally helpful ways. The language of linear algebra provides basic vocabulary, visualizations, and
mathematical results for understanding the structure of a dataset.

Exercise 3.0.1

Consider a spreadsheet of data whose rows correspond to individuals and whose three columns cor-
respond to weight in kilograms, height in centimeters, and height in inches. Are any of the columns
redundant?

In this chapter, we will develop a more general and mathematically rigorous version of the idea of redundancy
explored in Exercise 3.0.1.

3.1 Vector spaces

3.1.1 Vectors

A vector in Rn is a column*
* For typo-
graphical con-
venience, we
will sometimes
write−2

0
1


as [−2, 0, 1]

of n real numbers. These real numbers are called the components or entries of
the vector.

Example 3.1.1

v =

−2
0
1

 is a vector inR3. We say that the first component of v is equal to−2, the second component

is equal to 0, and the third component is equal to 1.

We draw a vector in R2 as an arrow from one point to another so that the horizontal separation between the
points is equal to the first component of the vector and the vertical separation between the points is equal to
the second component. We define the norm |v| of a vector v ∈ Rn to be the length of the associated arrow,
which may be calculated as the square root of the sum of the squares of v’s components. A vector whose
norm is 1 is called a unit vector.

The fundamental vector operations are

1. Vector addition (addition of two vectors), and

2. Scalar multiplication (multiplication of a real number and a vector).

These operations are defined componentwise, and they have natural geometric interpretations (see Fig-
ures 3.1 and 3.2)

31



1. Summing vectors concatenates them tail-to-head, and

2. Multiplying a vector by a positive*
* Multiplying
by −1 reverses
the direction of
the vector and
preserves its
norm

real number k preserves its direction and multiplies its norm by k.

Figure 3.1 Vector addition: [3, 1] + [1, 2] = [4, 3] Figure 3.2 Scalar multiplication: 2[2, 1] = [4, 2]

Scalar multiplication is denoted by placing the scalar adjacent to the vector, and vector addition is denoted
with “+” between two vectors.

Exercise 3.1.1

Simplify 3
[
−2

11

]
−
[

4
0

]
.

Exercise 3.1.2

Determine whether there exists a real number r satisfying the vector equation

r
[
−3

2

]
−
[

2
1

]
=

[
4
2

]
.

Exercise 3.1.3

Show that every nonzero vector v can be written as the product of a nonnegative real number c and
a unit vector u.

Exercise 3.1.4

Find a formula in terms of u and v which represents the vector from the head of v to the head of u
when u and v are situated so that their tails coincide.

Exercise 3.1.5

Solve for u in terms of c and v in the equation c u + v = 0, assuming that u and v are vectors in Rn

and c is a nonzero real number.

32



3.1.2 Linear independence, span, and basis

A linear combination of a list of vectors v1, . . . , vk is an expression of the form

c1v1 + c2v2 + · · ·+ ckvk,

where c1, . . . , ck are real numbers. The c’s are called the weights of the linear combination.

Exercise 3.1.6

Suppose that u = [2, 0] and v = [1, 2]. Draw the set of all points (a, b) in R2 for which the vector [a, b]
can be written as an integer linear combination*

* An integer
linear combina-
tion is a linear
combination
in which all
weights are in-
tegers

of u and v.

The span of a list of vectors is the set of all vectors which can be written as a linear combination of the vectors
in the list.

Exercise 3.1.7

Is w =

1
4
0

 in the span of u =

1
0
0

 and v =

1
1
0

? If so, find values α and β such that w = αu + βv.

We visualize a set S of vectors in Rn by associating the vector [v1, v2, . . . , vn] with the point (v1, . . . , vn)—in
other words, we associate each vector with the location of its head when its tail is drawn at the origin.

Exercise 3.1.8

The span of two vectors in R2

(a) can be any shape

(b) must be either a circle or a line

(c) can be all of R2

(d) must be either a line or a point

(e) must be either a line or a point or all of R2

The span of three vectors in R3

(a) can be any shape

(b) must be a sphere or a line

(c) must be a plane

(d) must be a point, a plane, a line, or all of R3

(e) must be a plane, a line, or a point

A list of vectors is linearly independent if none of the vectors in the list can be written as a linear combination
of the others.

33



Example 3.1.2

The list of vectors {u1, u2, u3} where u1 =

1
1
2

 , u2 =

0
1
0

 , u3 =

4
7
8

 is not linearly independent,

since u3 = 4u1 + 3u2.

The list of vectors {v1, v2, v3} where v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 is linearly independent, since

any linear combination of v1 and v2 is unequal to v3, and similarly for v1 and v2.

Theorem 3.1.1

A list of vectors is linearly independent if and only if there is no vector in the list which is in the span
of the preceding vectors.

For example, to check that {v1, v2, v3}, it suffices to check that v1 6= 0, that v2 is not a scalar multiple of v1
and that v3 is not in the span of {v1, v2}.

Proof

If a list is linearly independent, then no vector in the list can be represented as a linear combination
of others by defintion, so no vector can be in the span of the previous ones. Now suppose a list of
vectors v1, . . . , vn is such that no vector in the list is in the span of the preceding vectors. Note that
such a list necessarily does not contain 0. If this list were linearly dependent, then one of the vectors
could be written as linear combination of the others. Lets assume, without loss of generality, that v1
is such a vector, then

v1 = c2v2 + · · ·+ cnvn

for some c2, . . . , cn which are not all zero. If we define k so that ck is the last of the nonzero c’s, then
we can rearrange the above to get

vk =
v1 − (c2v2 + · · ·+ ck−1vk−1)

ck

which is a contradiction. Therefore the list must be linearly independent.

Exercise 3.1.9

Let’s say that a linear combination of a list of vectors is trivial if all of the weights are zero.
Show that a list of vectors is linearly independent if and only if every nontrivial linear combination
of the vectors is not equal to the zero vector.

Spans of lists of vectors are so important that we give them a special name: a vector space is a nonempty set
of vectors which is closed under the vector space operations. If V and W are vector spaces and V ⊂ W, then
V is called a subspace of W.

34



Example 3.1.3

Lines and planes through the origin are vector subspaces of R3. More generally, the span of any list
of vectors in Rn is a vector subspace of Rn.

A spanning list of a vector space V is a list of vectors in V whose span is equal to V.

Example 3.1.4

The list
{[

2
1

]
,
[

1
1

]
,
[

7
11

]}
is a spanning list for R2 because any vector v =

[
x
y

]
∈ R2 can be repre-

sented as
v = (x − y)

[
2
1

]
+ (2y − x)

[
1
1

]
+ 0

[
7
11

]

A linearly independent spanning list for a vector space V is called a basis for V.

Example 3.1.5

The list
{[

2
1

]
,
[

1
1

]}
is a basis for R2 and the list

{[
1
0

]
,
[

0
1

]}
is also a basis for R2.

Theorem 3.1.2

If V is a vector space, then any spanning list of V is at least as long*
* The length of
a list of vectors
is the number
of vectors in
the list

as any linearly independent list
of vectors in V.

In other words, Theorem 3.1.2 says that if L1 is a linearly independent list of vectors in V and L2 is a list of
vectors which spans V, then the length of L1 is less than or equal to the length of L2.

Exercise 3.1.10

Use Theorem 3.1.2 to show that all bases of a vector space V have the same length. In other words, if
B1 is a basis for V, and B2 is a basis for V, then the lengths of B1 and B2 are equal.

The dimension of a vector space V is the length of any basis of V.

Given a basis of V, we can represent each vector in V uniquely as a linear combination of the vectors in the
basis. In other words, if a vector space V has a basis B = {b1, . . . bn} and v ∈ V, then there exists a unique
n-tuple of real numbers (v1, . . . , vn) such that

v = v1b1 + · · ·+ vnbn.

We call (v1, . . . , vn) the coordinates of v with respect to B.

35



Example 3.1.6

For 1 ≤ i ≤ n, let ei ∈ Rn be a vector with 1 in the ith position and zeros elsewhere. Then {e1, . . . , en}
is called the standard basis for Rn. The components of a vector in Rn coincide with its coordinates
with respect to this basis.

Exercise 3.1.11

Show that any linearly independent list of vectors in a vector space V ⊂ Rn can be extended to form
a basis of V, and show that any spanning list of V can be trimmed to form a basis of V.

Exercise 3.1.12

Suppose that U and V are vector spaces in Rn. Suppose that {u1, . . . , uj} is a basis for U ∩ V, that
{u1, . . . , uk} is a basis for U, and that {u1, . . . , uj, v1, . . . , v`} is a basis for V. Show that

{u1, . . . , uk, v1, . . . , v`}

is a linearly independent list.

Exercise 3.1.13

Suppose that V and W are subspaces of R10 and that V has dimension 4 and W has dimension 8.
Which of the following could possibly be equal to the dimension of V ∩ W? Select all that apply.

1. 0

2. 1

3. 2

4. 3

5. 4

6. 5

7. 8

8. 9
Hint: consider two two-dimensional spaces in R3: what are the possible dimensions for the intersec-
tion of two planes through the origin in R3?

36



Exercise 3.1.14

In Julia, a set of 5 column vectors in R7 with entries selected uniformly at random from [0, 1] may
be generated using rand(7,5). The dimension of the span of the columns of a matrix may then by
computed using the function rank.

(a) Calculate the dimension of many such spans of random lists of five vectors in R7. What sorts
of values do you get?

(i) All fives
(ii) Mostly fives, some numbers fewer than five

(iii) Mostly threes, some twos and fours, occasional ones and fives

(b) Repeat with random vectors whose entries are 0 or 1 with probability 1
2 .

(i) All fives
(ii) Mostly fives, some numbers fewer than five

(iii) Mostly threes, some twos and fours, occasional zeros, ones and fives
Hint: for part (b), [rand(0:1) for i=1:7,j=1:5] generates the desired random vectors.

3.1.3 Linear transformations

A linear transformation L is a function from one vector space to another which satisfies L(αv + βw) =
αL(v) + βL(w). Geometrically, these are “flat maps”: a function is linear if and only if it maps equally
spaced lines to equally spaced lines or points.

Example 3.1.7

In R2, reflection along the line y = x, defined by L
([

x
y

])
=

[
y
x

]
, is linear because

L
(
α

[
x1
y1

]
+ β

[
x2
y2

])
=

[
αy1 + βy2
αx1 + βx2

]
= α

[
y1
x1

]
+ β

[
y2
x2

]
= αL

([
x1
y1

])
+ βL

([
x2
y2

])
.

The rank of a linear transformation from one vector space to another is the dimension of its range.

Example 3.1.8

If L

x
y
z

 =

z + y
z − y

0

, then the rank of L is 2, since its range is the xy-plane in R3.

The null space of a linear transformation is the set of vectors which are mapped to the zero vector by the

37



linear transformation.

Example 3.1.9

If L

x
y
z

 =

z + y
z − y

0

, then the null space of L is span


1

0
0


, since L(v) = 0 implies that

v =

x
0
0

 for some x ∈ R.

Exercise 3.1.15

Suppose that V and W are vector spaces and that L1 and L2 are linear transformations from V to W.
Suppose that B is a basis of V and that L1(b) = L2(b) for all b ∈ B. Show that L1(v) = L2(v) for all
v ∈ V.

Exercise 3.1.16

What is the dimension of the null space of the linear transformation L([x, y, z]) = [y, z, 0]? What is
the rank of L?

Exercise 3.1.17

(a) For k ≤ n, let Pk : Rn → Rk be the linear transformation that projects a vector on to its first k
components, i.e.

Pk(a1, a2, · · · , ak, · · · , an) = (a1, a2, · · · , ak)

What is the rank of Pk? What is the nullity of Pk? What is the sum of the rank and the nullity
of Pk?

(b) In this part, we will show that for any transformation T from Rn to Rm, the sum of the rank of
T and the nullity of T is equal to the value you found above for Pk.

(i) Consider a basis {v1, . . . vk} of the null space of T, and extend it to a basis

{v1, . . . , vk, vk+1, . . . , vn}

of Rn.
(ii) Show that {T(vk+1), . . . , T(vn)} is linearly independent. Begin by assuming that a linear

combination of these vectors is equal to the zero vector and do some work to conclude that
all the weights must have been zero.

(iii) Show that {T(vk+1), . . . , T(vn)} spans the range of T. To do this, consider an arbitrary
vector w in the range of T and show how it can be written as a linear combination of
vectors in this list.

38



Exercise 3.1.18

Suppose you’re designing an app that recommends cars. For every person in your database, you have
collected twenty variables of data: age, height, gender, income, credit score, etc. In your warehouse
are ten types of cars. You envision your recommendation system as a linear transformation T : R20 →
R10 that takes in a person’s data and then returns a number for each car, reflecting how well that car
fits their needs. The rank of T can be as high as ten, which we might summarize by saying that your
recommendation system can have ten degrees of complexity.
After some time, you find that storing all twenty variables takes up too much space in your database.
Instead, you decide to take those twenty variables and apply a linear aggregate score function S :
R20 → R3, with the three output components corresponding to health, personality, and finances.
You also compute a linear map R : R3 → R10 that takes in these three aggregate scores and returns
a vector of recommendation values. The total recommendation system is the composition R ◦ S :
R20 → R10. What is the maximum possible rank of R ◦ S? What does this mean for the complexity
of this recommendation system?

3.2 Matrix algebra

A matrix is a rectangular array of numbers. We report the size of a matrix as number of rows by number of
columns. In other words, a matrix with m rows and n columns is said to be an m × n matrix. We refer to the
entry in the ith row and jth column of a matrix A as A’s (i, j)th entry, and we denote it by Ai,j. In Julia or
Python, the (i, j)th entry may be referenced as A[i,j].

Matrices are versatile structures with a variety of problem-solving uses. For example,

1. A matrix can be thought of as a list of column vectors, so we can use a matrix to package many column
vectors into a single mathematical object.

2. An m × n matrix can be thought of as a linear transformation from Rn to Rm.

In this section, we will develop both of these perspectives and define some operations which facilitate com-
mon manipulations that arise when handling matrices.

3.2.1 Matrix operations

Definition 3.2.1: Matrix addition and scalar multiplication

We define matrix addition for two m × n matrices A and B entrywise: the sum A + B is m × n, and
each entry is defined to be the sum of the corresponding entries in A and B.
Likewise, the product of a number c and an m × n matrix A is defined to be the m × n matrix each of
whose entries is c times the corresponding entry of A.

39



Exercise 3.2.1

Find the value of c such that[
6 7 −1
1 3 5

]
+ (1 − c)

[
4 −4 2

−2 0 1

]
=

[
−2 15 −5

5 3 3

]

Definition 3.2.2: Matrix-vector multiplication

If A is an m× n matrix and x is a column vector in Rn, then Ax is defined to be the linear combination
of the columns of A with weights given by the entries of x.

Example 3.2.1

If A =

[
1 1
0 1

]
and x =

[
2
3

]
, then Ax = 2

[
1
0

]
+ 3

[
1
1

]
=

[
5
2

]
.

Exercise 3.2.2

Suppose that A is an m × n matrix. Show that x 7→ Ax is a linear transformation.

In fact, every linear transformation from Rn to Rm can be represented as x 7→ Ax for some matrix A. The
entries of the matrix A may be obtained from L by placing the components of L(e1) in the first column of A,
the components of L(e2) in the second column, and so on. Then L(x) = Ax for all x ∈ Rn, by Exercise 3.1.15.

Exercise 3.2.3

Find the matrix corresponding to the linear transformation T([x, y, z]) = [z, x, y].

Exercise 3.2.4

Suppose that A is an m× n matrix and b is a vector inRm with the property that the equation Ax = b
has at least one solution x ∈ Rn. Show that the solution is unique if and only the columns of A are
linearly independent.

We define matrix multiplication so that it corresponds to composition of the corresponding linear transfor-
mations.

Definition 3.2.3

If A is an m × n matrix and B is an n × p matrix, then AB is defined to be the matrix for which
(AB)(x) = A(Bx) for all x.

40



Exercise 3.2.5: (Matrix Product)

Suppose that A =

[
3 −1 2
4 2 0

]
and B =

 4 −5 0 1
2 8 0 0

−1 5 3 2

. Consider the matrix C defined so that,

for all 1 ≤ k ≤ 4, the kth column of C is defined to be the product of A and the kth column of B.
Show that C = AB according to Definition 3.2.3.

The principle you worked out in Exercise 3.2.5 is universal: the kth column of AB is the product of A and
the kth column of B, for each column index k.

3.2.2 The inverse of a matrix

The range or null space of a matrix A is defined to be the range or null space of the corresponding linear
transformation x 7→ Ax. The rank of A is defined to be the dimension of its range.

Example 3.2.2

The matrix A =

[
0 1 0
0 0 2

]
has rank 2, because the span of its columns is all of R2. The null space

has dimension 1, since the solution of Ax = 0 is the span of {[1, 0, 0]}.

If the range of an n × n matrix is Rn, then the corresponding linear transformation is an invertible function
from Rn to Rn:

Theorem 3.2.1: Invertible Matrix Theorem

Suppose that A is an n × n matrix. Then the following are equivalent (that is, for a given matrix they
are either all true or all false).

(i) The transformation x 7→ Ax from Rn to Rn is bijective.

(ii) The range of A is Rn.

(iii) The null space of A is {0}

In other words, for a linear transformation from Rn to Rn, bijectivity, surjectivity, and injectivity are equiv-
alent.

Proof

We begin by showing that (ii) and (iii) are equivalent. If the columns of A are linearly dependent,
then the range of A is spanned by fewer than n vectors. Therefore, if the rank of A is equal to n, then
the columns of A are linearly independent. This implies that a linear combination of the columns
is equal to the zero vector only if the weights are all zero. In other words, the only solution of the
equation Ax = 0 is the zero vector. In other words, the null space of A is {0}.
Conversely, if the null space of A is {0}, then the columns of A are linearly independent, and the
rank of A is therefore equal to n.

41



By definition of bijectivity, (ii) and (iii) together imply (i), and (i) implies (ii) and (iii). Therefore, the
three statements are equivalent.

If A is invertible, then the inverse function is also a linear transformation:

Exercise 3.2.6

Show that if T is a bijective linear transformation, then the inverse function T−1 is also linear.

Its matrix is called the inverse of A and is denoted A−1. The matrices A and A−1 satisfy the equations
AA−1 = A−1 A = I, where I denotes the n × n identity matrix, which has ones along the diagonal starting
at the top left entry and zeros elsewhere.

Example 3.2.3

If A =

[
2 1
1 1

]
and B =

[
1 −1

−1 2

]
, then

BA =

[
1 −1

−1 2

] [
2 1
1 1

]
=

[
1 0
0 1

]
.

Therefore B(Ax) = (BA)x = x for all x ∈ R2. So B = A−1.

Exercise 3.2.7

Let T : R2 → R2 be a linear transformation defined to be a reflection across the y-axis followed by a

15-degree clockwise rotation about the origin. Which of the following maps T
([

1
0

])
back to

[
1
0

]
?

(a) Reflection across the y-axis followed by a 15-degree counterclockwise rotation about the origin.

(b) A 15-degree counterclockwise rotation about the origin followed by a reflection across the y-
axis.

Use the above example to write (AB)−1 in terms of A and B when A and B are invertible matrices.

Exercise 3.2.8

Let A be a non-zero n × n matrix whose rank is k.
1. If k = n and b ∈ Rn, explain why there exists only one vector x such that Ax = b.

2. Suppose k < n and show that there are vectors in Rn for which the equation Ax = b has no
solution.

3. If x ∈ Rn and y ∈ Rn both satisfy Ax = b and Ay = b for some fixed vector b ∈ Rn, describe
geometrically the set of points (c1, c2) ∈ R2 such that A(c1x + c2y) = b.

Based on the above observations, can the equation Ax = b have exactly 10 solutions?

42



3.3 Dot products and orthogonality

3.3.1 The dot product

Consider a shop inventory which lists unit prices and quantities for each of the products they carry. For
example, if the store has 32 small storage boxes at $4.99 each, 18 medium-sized boxes at $7.99 each, and 14
large boxes at $9.99 each, then the inventory’s price vector p and quantity vector q are

p =

4.99
7.99
9.99

 , q =

32
18
14

 .

The total value of the boxes in stock is

(32)($4.99) + (18)($7.99) + (14)($9.99) = $443.36.

This operation—multiplying two vectors’ entries in pairs and summing—arises often in applications of lin-
ear algebra and is also foundational in basic linear algebra theory.

Definition 3.3.1

The dot product of two vectors in Rn is defined by

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Example 3.3.1

If x =


1
3
5
7

 and y =


2
4
6
8

 , then x · y = 1 · 2 + 3 · 4 + 5 · 6 + 7 · 8 = 100.

One of the most algebraically useful features of the dot product is its linearity: x · (cy + z) = cx · y + x · z.

Exercise 3.3.1

Show that (a + b) · (a + b) = |a|2 + 2a · b + |b|2 for all vectors a and b in Rn.

The dot product x · y has a geometric connection with the angle θ between two vectors x and y, via

x · y = |x||y| cos θ. (3.3.1)

x · y = 0 if and only if x and y are orthogonal.

43



Exercise 3.3.2

In natural language processing, one basic way to compare a finite number of text documents is to use
vectorized word counts. Suppose the documents have a combined total of n distinct words, which are
arranged in some order. Each document is then associated with a vector of length n whose ith entry
indicates the number of times the ith word occurs in the associated document.
One way to measure similarity between two documents is to take the dot product of the associated
unit vectors: If two documents A and B have associated vectors a and b respectively, their similarity
is defined by

S(A, B) =
a · b
|a||b| .

By (3.3.1), we have 0 ≤ S(A, B) ≤ 1 for any two documents A and B. Documents with no words in
common are associated with orthogonal vectors and thus have 0 similarity. If two documents have
similarity 1, their associated vectors are scalar multiples of each other, meaning that they have the
same words and that the words appear in the same proportions.
Find the vectorized word count similarity between the following sentences:

”The rain in Spain falls mainly in the plain”
”The plain lane in Spain is mainly a pain”

Exercise 3.3.3

Let v1, . . . , vn be a list of orthogonal non-zero vectors, that is, for all i, j ∈ {1, . . . , n}, suppose that
vi · vj = 0 whenever i 6= j. Show that this list is linearly independent.

3.3.2 The transpose

The dot product gives us a compact way to express the formula for an entry of a matrix product: to obtain
the (i, j)th entry of a matrix product AB, we dot the ith row of A and the jth column of B.

However, the matrix product by itself is not quite flexible enough to handle a common use case: suppose
we have two matrices A and B which contain tabular data stored in the same format. For example, suppose
that the columns of A store the vectorized word counts for a series of emails sent from Alice, while B stores
vectorized word counts for a series of emails sent from Bob. If we want to calculate the similarity of each of
Alice’s email to each of Bob’s emails, then we want to dot the columns of A—not its rows—with the columns
of B.

So we define the transpose A′ of a matrix A to be the matrix resulting from switching A’s rows and columns.

Definition 3.3.2

If A is an m × n matrix, then its transpose A′ is defined to be the matrix with n rows whose ith row
is equal to the ith column of A, for each i from 1 to n.

44



Example 3.3.2

If A =

[
1 2 3
4 5 6

]
, then A′ =

1 4
2 5
3 6

 .

With this definition in hand, we can write the matrix whose entries are the dot products of columns of A
and B as A′B.

Let’s develop a few properties of the transpose so that we can manipulte matrix expressions involving the
transpose. First, we note that the transpose is a linear operator, meaning that (cA+ B)′ = cA′ + B′ whenever
c is a constant and A and B are matrices.

Taking the transpose also interacts nicely with matrix multiplication:

Exercise 3.3.4

Suppose that A is an m × n matrix and that B is an n × p matrix. Exactly one of the following expres-
sions is equal to (AB)′ in general—identify the correct answer choice by checking the dimensions of
each matrix in each expression.

1. A′B′

2. B′A′

3. ABA′

Confirm your conjecture numerically in Julia and paste your code in the answer box. You can generate
a random m × n matrix using rand(m,n), the transpose of A is computed as A', and the product of A
and B is A * B.

In some applications, a matrix will have the property that its (i, j)th entry is necessarily equal to its (j, i)th
entry. For example, suppose we have an ordered list of 100 cell phone towers, and we define the 100 × 100
matrix whose (i, j)th entry is equal to the distance from tower i to tower j. Such a matrix is said to be
symmetric.

Definition 3.3.3

If A is an n × n matrix satisfying the equation A = A′, we say that A is symmetric.

Exercise 3.3.5

Suppose that A is a symmetric matrix, B is a matrix, and c ∈ R. Which of the following is necessarily
equal to (c2(A + B)′ + A)′?

1. c2 A′ + B

2. (c2 − 1)A′ + B′

3. (c2 + 1)A + c2B

4. (c2 − 1)A + B′

5. (c2 + 1)A + c2B′

45



In the case where A is a n × 1 matrix and B is an n × 1 for some n, then A′B is a 1 × 1 matrix, which we
may think of as just a number. This means that if x and y are vectors in Rn then the dot product x · y may
be written as x′y. This representation can be useful for manipulating expressions involving dot products.

Exercise 3.3.6

Show that
u · (Av) = (A′u) · v

for all m × n matrices A and all vectors u ∈ Rm and v ∈ Rn.

In other words, we may move a matrix which is pre-multiplying one of the vectors in a dot product to the
other vector, at the cost of taking its transpose. Let’s look at one important application of this property.

Exercise 3.3.7

Show that x · (A′Ax) ≥ 0 for all m × n matrices A and all x ∈ Rn.

The orthogonal complement V⊥ of a vector space V ⊂ Rn is the set of vectors in Rn which are orthogonal
to every vector in V. For example, the orthogonal complement a two-dimensional subspace V of R3 is the
line through the origin perpendicular to the plane of vectors in V.

Exercise 3.3.8

The orthogonal complement of the span of the columns of a matrix A is equal to which of the follow-
ing?

(a) The range of A

(b) The null space of A

(c) The range of A′

(d) the null space of A′

For any vectors u and v in Rn, it is always possible to write u as the sum of a multiple of v and a vector
which is perpendicular to v:

46



Exercise 3.3.9: Orthogonal decomposition

Suppose that u and v are nonzero vectors inRn. Solve the equation

kv · (u − kv) = 0

for k to find the multiple of v which is perpendicular to its differ-
ence with u.

kv

u
−

k
v

v

u

If u is written as kv + w where w is perpendicular to v, then we call kv the projection of u onto v.

Theorem 3.3.1: Gram-Schmidt

Every vector space V ⊂ Rn has an orthogonal basis.

Proof

Suppose that V = {v1, . . . , vk} is a basis ofRn. We will build our orthogonal basis by orthogonalizing
V one vector at a time.
Define b1 = v1, and then define b2 to be the part of v2 which is orthogonal to b1:

b2 = v2 −
b1 · v2

|b1|2
b1.

Similarly, we project v3 onto b1 and onto b2 and subtract off both of these projections:

b3 = v3 −
b2 · v3

|b2|2
b2 −

b1 · v3

|b1|2
b1.

Then {b1, b2, b3} has the same span as {v1, v2, v3} and is pairwise orthogonal. We may continue this
procedure (project each new vi onto each of the preceding b’s and subtract off all of these projections)
until we reach the end of the list, thereby obtaining an orthogonal basis of V.

Theorem 3.3.2

Suppose V ⊂ Rn is a vector space. Then every vector u ∈ Rn can be written as the sum of a vector in
V and a vector in V⊥.

47



Proof

Consider an orthogonal basis {v1, . . . , vk} of V, and define

v =
v1 · u
|v1|2

v1 + · · ·+ vk · u
|vk|2

vk

Then v is in V and u − v is perpendicular to all of the vi’s and therefore to every vector in V.

Exercise 3.3.10

Suppose that V is a d-dimensional vector space in Rn. Show that there is a basis of Rn whose first d
vectors form a basis for V and whose last n − d vectors form a basis for V⊥.

3.3.3 Matrices with orthonormal columns

Suppose we can write a given transformation T as a composition involving (i) a single transformation Λ
which scales space along the coordinate axes, and (ii) some other transformations which preserve distances
and angles—like rotations and reflections in R2 or R3. Such a decomposition of T would be useful because
it isolates the space-distorting behavior of T in the simple transformation Λ. In preparation for developing
such a decomposition, let’s study transformations which are distance-preserving and angle-preserving.

A transformation x 7→ Ux from Rn to Rn is distance-preserving if the norm of x is the same as the norm of
Ux for all x ∈ Rn. Using dot products, we can write the distance-preserving condition as

x · x = (Ux) · (Ux)

If the transformation preserves angles as well as distances, then (Ux) · (Uy) must also be equal to x · y for
all x and y in Rn. Rewriting this equation using transposes, we see that we want

x′y = x′U′Uy

for all x and y in Rn. This identity only holds if U′U is equal to the identity matrix. This leads us to the
following definition.

Definition 3.3.4: Orthogonal matrix

A square matrix U is orthogonal if U′U is equal to the identity matrix.

Equivalently, we can say that a square matrix is orthogonal if and only if its columns are orthonormal, which
means that they are orthogonal and have unit norm. If a non-square matrix U satisfies U′U = I, then we
refer to U as a matrix with orthonormal columns.

Exercise 3.3.11

(i) Explain why, for an m × n matrix U with orthonormal columns, we must have m ≥ n. (ii) Explain
why the rank of U is n.

If U is an m × n matrix with orthonormal columns and if n < m, then UU′ is an m × m matrix of rank n and
therefore cannot be the identity matrix. In fact, UU′ is a projection matrix:

48



Exercise 3.3.12

Show that if U is an m × n matrix with orthonormal columns, then UU′ is the matrix of the trans-
formation which projects each vector in Rm onto the n-dimensional subspace of Rm spanned by the
columns of U.

Exercise 3.3.13

Let v be a vector in Rn, and consider the linear transformation T : Rn → R defined as T(x) = v · x.
What is the rank of T? Geometrically describe the null space of T.

3.4 Eigenvalues and matrix diagonalization

3.4.1 Eigenpairs

In this section we will see how we can better understand a linear transformation by breaking it down into
simpler linear transformations.

Let T be a linear transformation from Rn to Rn. Suppose that B is a basis of Rn, that V is the span of some of
the vectors in B, and that W is the span of the remaining vectors in B. Then any vector in Rn can be written
as the sum of a vector v in V and a vector w in W. Since T(v+w) = T(v) + T(w), we can see how T behaves
on all of Rn if we know how it behaves on V and on W. This decomposition is particularly helpful if V and
W are chosen so that T behaves in a simple way on V and on W.

Given such a decomposition of Rn into the vector spaces V and W, we can apply the same idea to split V and
W into lower-dimensional vector spaces and repeat until no more splits are possible. The most optimistic
outcome of this procedure would be that we get all the way down to n one-dimensional subspaces and
that T acts on each of these subspaces by simply scaling each vector in that subspace by some factor. In
other words, we would like to find n vectors v for which T(v) is a scalar multiple of v. This leads us to the
following definition.

Definition 3.4.1

An eigenvector v of an n × n matrix A is a nonzero vector with the property that Av = λv for some
λ ∈ R (in other words, A maps v to a vector which is either zero or parallel to v). We call λ an
eigenvalue of A, and we call the eigenvector together with its eigenvalue an eigenpair.

Example 3.4.1

Every nonzero vector is an eigenvector (with eigenvalue 1) of the identity matrix.

49



Exercise 3.4.1

Find a matrix with eigenpairs ([1, 0], 2) and ([1, 1], 3). Sketch the images of some gridlines under
multiplication by this matrix to show how it scales space along the lines through its eigenvectors.

Exercise 3.4.2

In general, if v1, . . . , vn are eigenvectors of A with the same eigenvalue λ and v = c1v1 + · · ·+ cnvn
for some weights c1, . . . , cn such that ci 6= 0 for at least one i ∈ {1, . . . , n}, then v is also an eigenvector
of A with eigenvalue λ because

Av = A(c1v1 + · · ·+ cnvn)

= c1 Av1 + · · ·+ cn Avn

= c1λv1 + · · · cnλvn

= λ(c1v1 + · · · cnvn)

= λv.

Let A be a 4× 4 matrix, with eigenvectors


1
1
0
0

 and


0
0
2

−3

, both with eigenvalue 3. Find A




5
5
8

−12


.

Exercise 3.4.3

Let V ⊂ Rn be a subspace spanned by the eigenvectors of a matrix A. If v ∈ V, which of the following
are necessarily true?

1. Av ∈ V.

2. Av is orthogonal to every vector in V.

3. Av and v are always linearly dependent.

Exercise 3.4.4

Suppose A is a matrix with a 3-eigenvector v and a 2-eigenvector w. Let u = v + w. Explain why

lim
n→∞

|Anu|
|Anv| = 1

If an n × n matrix A has n linearly independent eigenvectors, then we can think of the one-dimensional
subspaces spanned by each of these vectors as (not necessarily orthogonal) axes along which A acts by
scaling.

In matrix terms, we can define V to be the matrix with the eigenvectors of A as columns. Then from the
definition of an eigenpair, we have

AV = VΛ,

where Λ is a matrix whose diagonal entries are the eigenvalues (in order corresponding to the columns of
V) and whose other entries are zero. We conclude that A = VΛV−1, where Λ is a diagonal matrix, and we
say that A is diagonalizable.

50



Exercise 3.4.5

Some matrices are not diagonalizable, because they correspond to geometric transformations that
cannot be viewed as scaling along any set of axes. Use this geometric intuition to come up with a
2 × 2 matrix which is not diagonalizable.

Exercise 3.4.6

Suppose that we have diagonalized A as A = VDV−1. Using matrix multiplication, determine which
of the following is equal to A3.

1. V3D3V−3.

2. VD3V−1.

3. V3DV−3.
Let B be another matrix, with 3-eigenvector v1 and (−2)-eigenvector v2. Let u = 2v1 + v2. Which of
the following is equal to Bn(u)?

1. 2(3)nv1 + (−2)nv2.

2. (2(3)− 1)nu.

3. (2(3)n − 1)u.

4. None of the above.

3.4.2 Positive definite matrices

A positive definite matrix A is a symmetric matrix whose eigenvalues are all positive. A positive semidef-
inite matrix A is a symmetric matrix whose eigenvalues are all nonnegative. Equivalently, a matrix A is
positive semidefinite if x′Ax ≥ 0 for all x.

Negative definite and negative semidefinite matrices are defined analogously.

Exercise 3.4.7

(i) Is the sum of two positive definite matrices necessarily positive definite?
(ii) Is the product of two positive definite matrices necessarily positive definite?

If A is an m × n matrix, then A′A is its Gram matrix. The Gram matrix of A is always positive semidefinite:

51



Exercise 3.4.8

Let X = A′A be a Gram matrix, and let v be a vector. Which of the following is equal to v′Xv?
1. |Av|2.

2. A2v.

3. v′A2v.
Using your answer above, explain why a Gram matrix is always positive semidefinite, but not neces-
sarily positive definite.

Exercise 3.4.9

Explain why the rank of A is equal to the rank of A′A. (Hint: consider the null spaces of A and A′A)

The eigenspace decomposition is even easier to understand if the eigenvectors happen to be orthogonal. It
turns out that this happens exactly when the matrix is symmetric:

!!!
Theorem 3.4.1: Spectral Theorem

If A is an n × n symmetric matrix, then A is orthogonally diagonalizable, meaning that A has n eigen-
vectors which are pairwise orthogonal.
Conversely, every orthogonally diagonalizable matrix is symmetric.

In other words, if A is symmetric, then the one-dimensional subspaces along which A is decomposed form
a set of axes for Rn which are orthogonal. In matrix terms, we have

A = VΛV′,

for some orthogonal matrix V.

Exercise 3.4.10

Given an invertible matrix A, we are often interested in solving a system of the form Ax = b. Our
knowledge of b is seldom perfect however, so it is important to consider what happens to the solution
if we replace b with a slightly different vector b̂.
It is possible that a small change in b leads to a substantial change in the vector x = A−1b.

(i) Find an invertible 2× 2 matrix A all of whose entries are between −2 and 2 and a vector b with
entries between −2 and 2 and another vector b̂ whose components are nearly equal to those of
b for which A−1b and A−1b̂ are not very close.
To be concrete, let’s say “nearly equal” means “having ratio between 0.99 and 1.01”, and let’s
say that “not very close” means “having a difference whose norm is greater than the norm of
either”.

(ii) Find the eigenvalues of your matrix A.

52



3.4.3 Polar decomposition

The Gram matrix of a square matrix A is a useful tool for understanding the behavior of A. Let’s define the
matrix

√
A′A to be VΛ1/2V′, where VΛV′ is the diagonalization of A′A and Λ1/2 is the matrix obtained by

taking the square root of the diagonal entries of Λ. Then
√

A′A is symmetric and satisfies
√

A′A
√

A′A = VΛ1/2V′VΛ1/2V′ = A′A.

The matrix
√

A′A is simpler to understand than A because it is symmetric and positive definite, yet it trans-
forms space in nearly the same way as A: if x ∈ Rn, then

|Ax|2 = x′A′Ax = x′
√

A′A
√

A′Ax = |
√

A′A x|2.

In other words, for all x, the images of x under A and under
√

A′A have equal norm. This means that for
each x ∈ Rn, there is an orthogonal transformation from the range of

√
A′A to the range of A which sends

Ax to
√

A′Ax. It turns out that this orthogonal transformation is the same for all x.

A
=

[

1
2

−1
1

]

√
A ′

A

Figure 3.3 The grid-line images under A and
√

A′A have the same shape; they are related by
an orthogonal transformation.

Even if the range of
√

A′A is not all of Rn, we can extend this orthogonal transformation to an orthogonal
transformation on Rn. Thus we arrive at the polar decomposition:

Theorem 3.4.2: Polar Decomposition

For any n × n matrix A, there exists an orthogonal matrix R such that

A = R
√

A′A.

53



This representation is useful because it represents an arbitrary square matrix as a product of matrices whose
properties are easier to understand (the orthogonal matrix because it is distance- and angle-preserving,
and the positive-definite matrix

√
A′A because it is orthogonally diagonalizable, by the Spectral Theorem

[Theorem 3.4.1]).

Exercise 3.4.11

Let’s explore a fast method of computing a polar decomposition A = R
√

A′A. This method actually
works by calculating R and then recovering

√
A′A as R−1 A (since this is computationally faster than

calculating the matrix square root). We call R the orthogonal part of A and
√

A′A the symmetric part
of A.
We set R0 = A and define the iteration

Rk+1 =
Rk + (R′

k)
−1

2

Let’s see why this converges to R.
1. Defining P =

√
A′A and using the equation A = RP, show that

R1 =
A + (A′)−1

2
= R

(
P + P−1

2

)
.

2. Use the prior step to explain why the Rk’s all have the same orthogonal parts and have sym-
metric parts converging to the identity matrix.
Hint: consider the eigendecompositions of the symmetric parts. You may assume that the
sequence defined by xk+1 = 1

2 (xk + 1/xk) converges to 1 regardless of the starting value x0 ∈ R.

3. Write some code to apply this algorithm to the matrix

A = [1 3 4; 7 -2 5; -3 4 11]

and confirm that the resulting matrices R and P satisfy R′R = I and P2 = A′A.

Exercise 3.4.12

Show that the product of two matrices with orthonormal columns has orthonormal columns.

3.5 Singular value decomposition

In this section we will combine the polar decomposition and the spectral theorem to obtain one of the most
powerful ideas in linear algebra: the singular value decomposition.

The polar decomposition tells us that any square matrix A is almost the same as some symmetric matrix,
and the spectral theorem tells us that a symmetric matrix is almost the same as a simple scaling along the
coordinate axes. (In both cases, the phrase “almost the same” disguises a composition with an orthogonal
transformation.) We should be able to combine these ideas to conclude that any square matrix is basically
the same as a simple scaling along the coordinate axes!

54



Let’s be more precise. Suppose that A is a square matrix. The polar decomposition tells us that

A = R
√

A′A

for some orthogonal matrix R. The spectral theorem tells us that
√

A′A = VΣV′ for some orthogonal matrix
V and a diagonal matrix Σ with nonnegative diagonal entries. Combining these equations, we get

A = RVΣV′.

Since a product of orthogonal matrices is orthogonal, we can define U = RV and obtain the singular value
decomposition (SVD) of A:

A = UΣV′ (3.5.1)

where U and V are orthogonal matrices.

We can visualize (3.5.1)
geometrically making
a figure like the one
shown here, which il-
lustrates the successive
effects of each map in
the composition UΣV′.
If we draw grid lines
on the second plot (just
before Σ is applied)
and propagate those
grid lines to the other
plots, then we endow
the domain and range
of A with orthogonal
sets of gridlines with
A mapping one to the
other.
We can extend the sin-
gular value decomposi-
tion to rectangular ma-
trices A (that is, matri-
ces which are not neces-
sarily square) by adding
rows or columns of ze-
ros to a rectangular ma-
trix to get a square ma-
trix, applying the SVD
to that square matrix,
and then

V′
= −73.2

◦
turn

Σ =

[

2.303 0

0 1.303

]

U= 16.8
◦

turn

A =

[

1 2

−1 1

]

Figure 3.4 The matrix A maps one set of orthogonal grid lines to another

We can trim the resulting Σ matrix as well as either U or V′ (depending on which dimension of A is smaller)
and get a decomposition of the form A = UΣV′ where U is an m × m orthogonal matrix, V′ is an n × n
orthogonal matrix, and Σ is a rectangular m × n diagonal matrix. This version of the SVD, called the full
SVD, can be reduced further to obtain the following thin SVD:

55



Theorem 3.5.1: Singular value decomposition (thin)

Suppose that A is an m × n matrix with m ≤ n. Then there exist matrices U and V with orthonormal
columns and a diagonal matrix Σ such that

A = U︸︷︷︸
m×m

Σ︸︷︷︸
m×m

V′︸︷︷︸
m×n

,

Similarly, if n ≤ m, there exist U, V, and Σ satisfying the above properties such that

A = U︸︷︷︸
m×n

Σ︸︷︷︸
n×n

V′︸︷︷︸
n×n

.

We call A = UΣV′ the a singular value decomposition (or SVD) of A.The diagonal entries of Σ are
called the singular values of A.

The diagonal entries of Σ, which are the square roots of the eigenvalues of A′A, are called the singular
values of A. The columns of U are called left singular vectors, and the columns of V are called right singular
vectors.

Looking at the bottom half of Figure 3.4, we see that the singular values of A are the lengths of the semi-axes
of the ellipsoid in Rm obtained as the image under A of the unit ball in Rn. Moreover, the directions of
these axes are the columns of U, since they are the images under U of the standard basis vectors. We will
see an important application of this feature of the SVD in the probability chapter when we discuss principal
component analysis.

As an example of how the singular value decomposition can be used to understand the structure of a linear
transformation, suppose that A is an m × n matrix. The Moore-Penrose pseudoinverse A+ of A is defined
to be VΣ+U′, where Σ+ is the matrix obtained by inverting each nonzero element of Σ. The pseudoinverse
is a swiss-army knife for solving the linear system Ax = b:

1. If A is square and invertible, then A+ = A−1

2. If Ax = b has no solution, then A+b is the value of x which minimizes |Ax − b|2.

3. If Ax = b has multiple solutions, then A+b is the solution with minimal norm.

Exercise 3.5.1

Show that
[
−160 −120
−12 −134

141 12

]
has SVD

[ − 4
5 0

− 9
25 − 4

5
12
25 − 3

5

] [
250 0
0 125

] [ 4
5

3
5

− 3
5

4
5

]
. Find its Moore-Penrose pseudoin-

verse.

We close this section with a computational exercise illustrating another widely applicable feature of the
singular value decomposition.

56



Exercise 3.5.2

(i) Show that if u1, . . . , un are the columns of U, v1, . . . vn are the columns of V, and σ1, . . . ,σn are
the diagonal entries of Σ, then

A = σ1u1v′
1 + σ2u2v′

2 + · · ·+ σnunv′
n. (3.5.2)

(ii) The equation (3.5.2) is useful for compression, because terms with sufficiently small singular
value factors can be dropped and the remaining vectors and singular values can be stored using
less space. Suppose that A is a 256 × 128 matrix—how many entries does A have, and how
many entries do u1, u2, u3, v1, v2, v3 have in total?

(iii) The Julia code below creates a matrix A with pixel values for the
image shown. How many nonzero singular values does A have?
Explain how you can tell just from looking at the picture.
Note: You can type \div«tab» to get a division symbol for integer
division and \Sigma«tab» to get Σ

using LinearAlgebra, Plots

m = 80

n = 100

a = m ÷ 8

b = m ÷ 4

A = ones(m,n)

function pixel(i,j)

if (a ≤ i ≤ b || m-b ≤ i ≤ m-a) && a ≤ j ≤ n - a

0

elseif (a ≤ j ≤ b || n-b ≤ j ≤ n-a) && a ≤ i ≤ m - a

0

else

1

end

end

A = [pixel(i,j) for i=1:m,j=1:n]

U, Σ, V = svd(A)

heatmap(A)

(iv) Now add some noise to the image: B = A + 0.05*randn(m,n).
Display this new matrix B, and also find the matrix obtained by keeping only the first three
terms of (3.5.2) for this matrix B. Which looks more like the original image A: (i) B or (ii) the
three-term approximation of B?
Hint: you can achieve this computationally either by setting some singular values to 0 or by
indexing the matrices U, Σ, and V′ appropriately. Also, you will need the function diagm to
generate a diagonal matrix from the vector of Σ values returned by svd.

57



3.6 Determinants

The determinant of a square matrix A is a single number which captures some important information about
how the transformation x 7→ Ax behaves. In this section, we will develop a geometrically-motivated defini-
tion of the determinant.

Exercise 3.6.1

Suppose that R is a region in Rn and that A is an n × n matrix. Consider the singular value decom-
position A = UΣV′.

1. Let L1(x) = V′x. By what factor does L1 transform volumes?

2. Let L2(x) = Σx. In terms of the entries of Σ, by what factor does L1 transform volumes?

3. Let L3(x) = Ux. By what factor does L3 transform volumes?

From Exercise 3.6.1, we see that a linear transformation T fromRn toRn scales the volume of any n-dimensional
region by the same factor: the volume scale factor of T.

Exercise 3.6.2

Find the volume scale factor of the matrix A =

1 0 0
0 0 1
0 k 0

 by describing how the matrix transforms

a region in R3.

Another geometrically relevant piece of information about T is whether it preserves or reverses orientations.
For example, rotations in R2 are orientation preserving, while reflections are orientation reversing. Let’s
define the orientation factor of T to be +1 if T is orientation preserving and −1 if T is orientation reversing.

Definition 3.6.1

We define the determinant of a transformation T to be the product of its orientation factor and its
volume scale factor.
We define the determinant of a matrix A to be the determinant of the corresponding linear transfor-
mation x 7→ Ax.

Exercise 3.6.3

Interpret A =

[
0 −1

−1 0

]
geometrically and use this interpretation to find det A, the determinant of

A.

There is relatively simple formula for det A in terms of the entries of A. For example,∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

is the determinant of a 2× 2 matrix. However this formula is terribly inefficient if A has many entries (it has

58



n! terms for an n × n matrix), and all scientific computing environments have a det function which uses
much faster methods.

Exercise 3.6.4

For various values of n, use the Julia expression det(rand(-9:9,n,n)) to find the determinant of an n×
n matrix filled with random single-digit numbers. How large does n have to be for the determinant
to be large enough to consistently overflow?

Exercise 3.6.5

Suppose that A and B are 3× 3 matrices, with determinant 5 and 1
2 respectively. Suppose that R ⊂ R3

is a 3D region modeling a fish whose volume is 14. What is the volume of the transformed fish BA(R)?
1. 19.5

2. 35

3. 12

4. 16.5

Exercise 3.6.6

Let R ⊂ R3 be 3D region modeling a fish, and suppose A an invertible 3 × 3 matrix. If R has volume
15 and A−1(R) has volume 5, what is the determinant of A?

1. 3

2. 5

3. 10

Determinants can be used to check whether a matrix is invertible, since A is noninvertible if and only if it
maps Rn to a lower-dimensional subspace of Rn, and in that case A squishes positive-volume regions down
to zero-volume regions.

Exercise 3.6.7

Let A =

[
2 −2

−4 0

]
. Find the values of λ ∈ R for which the equation Av = λv has nonzero solutions

for v.

Exercise 3.6.8

For an n × n square matrix, which of the following is the relationship between det A and det(3A)?
1. det(3A) = 3n + det(A).

2. det(3A) = 3n det(A).

3. det(3A) = n3 det(A).

4. det(3A) = 3n det(A).

59



Exercise 3.6.9

Is every matrix with positive determinant positive definite?

3.7 Matrix Norms

The operator norm ‖A‖ of an m × n matrix A is defined to be the largest value of |Av| for any unit vector
v ∈ Rn.

Example 3.7.1

The operator norm of A =
[

0 2
3 0
]

is the maximum value of |A
[ x

y
]
| =

√
(2y)2 + (3x)2 subject to the

constraint x2 + y2 = 1. This optimization problem may be solved by solving the second equation
for x2, substituting into the first equation, and differentiating (or with Lagrange multipliers, which is
introduced in the section on multivariable calculus) to find that the maximum occurs for

[ x
y
]
=
[ ±1

0

]
.

So ‖A‖ = 3 .

Exercise 3.7.1

Explain why ‖AB‖ ≤ ‖A‖‖B‖. Give an example when equality holds and when the left-hand side
is strictly smaller than the right-hand side.

Exercise 3.7.2

Explain why the operator norm of a matrix is equal to its largest singular value.
Confirm that the largest singular value of A =

[
0 2
3 0
]

is 3.

Exercise 3.7.3

If A has SVD A = UΣV′, find the SVD of the Gram matrix A′A, and use it to prove that ‖A′A‖ =
‖A‖2.

60



4 Multivariable Calculus

Calculus is the study of continuously varying functions. Specifically, we examine instantaneous rates of
change and learn how to average (or total) the values of a function over a region. In multivariable calculus,
we generalize differentiation and integration ideas developed for functions defined on R1 to the setting
where our functions are defined on Rd for some d > 1.

The ideas of multivariable calculus are useful for data science in at least a couple of ways: (i) the functions
we use to gauge the goodness of a model typically depend on many model variables. To optimize these
functions, we need to think about how they increase or decrease under small perturbations of the variables.
And (ii) we will mathematically represent the idea of probability using functions on Rd, and in that context
probabilities will be recovered by integrating these functions.

4.1 Sequences and series

A sequence of real numbers (xn)∞
n=1 = x1, x2, . . . converges to a number x ∈ R if the distance from xn to

x on the number line can be made as small as desired by choosing n sufficiently large. In that case, we say
that xn → x as n → ∞, or limn→∞ xn = x.

Example 4.1.1

The sequence (−1)n/n converges to 0 as n → ∞, since the distance on the number line from 0 to
(−1)n/n is 1/n, and that distance may be made as small as desired by choosing n large enough. For
example, if you want 1/n to be less than 0.001, all the values of n larger than 1000 will work.

n

an

1 2 3 4 5 6 7 8 9

Theorem 4.1.1: Squeeze theorem

If an ≤ bn ≤ cn for all n ≥ 1 and if limn→∞ an = limn→∞ cn, then the sequence (bn)∞
n=1 converges,

and its limiting value is equal to the common limiting value of (an)∞
n=1 and (cn)∞

n=1.

Exercise 4.1.1

Suppose that |xn| ≤ n−1/2 for all n ≥ 1. Show that xn → 0 as n → ∞.

61



A series ∑∞
n=1 xn = x1 + x2 + x3 + · · · converges if the sequence (Sn)∞

n=1 converges, where

Sn = x1 + x2 + · · ·+ xn

ster is the nth partial sum. Roughly speaking, a series converges if its terms converge to 0 fast enough. In
particular, the terms must converge to zero:

Theorem 4.1.2: Term test

If an does not converge to zero, then the series
∞

∑
n=1

an does not converge.

Another valid statement suggested by the “terms go to 0 fast enough” intuition is that convergence of one
series implies convergence of any other series whose terms go to 0 at least as fast:

Theorem 4.1.3: Comparison test

If ∑∞
n=1 bn converges and if |an| ≤ bn for all n, then ∑∞

n=1 an converges.
Conversely, if ∑∞

n=1 bn does not converge and 0 ≤ bn < an, then Σ∞
n=1an also does not converge.

The comparison test works well in conjunction with a list of basic series which are known to converge or
not.

Theorem 4.1.4

(i) The series ∑∞
n=1 np converges if and only if p < −1.

(ii) The series ∑∞
n=1 an converges if and only if −1 < a < 1.

Example 4.1.2

Show that the series ∑∞
n=1

1
n2+n converges.

Solution

We know that 1
n2+n < 1

n2 and that ∑∞
n=1

1
n2 converges. Therefore, the comparison test implies that

1
n2+n converges.

Exercise 4.1.2

Numerically examine the statement that ∑∞
n=1

1
n2 converges to π2

6 .

62



4.2 Taylor series

We can define a polynomial which approximates a smooth function in the vicinity of a point with the fol-
lowing idea: match as many derivatives as possible.

First, a bit of review on the exponential function x 7→ exp(x): we define exp to be the function which maps
0 to 1 and which is everywhere equal to its own derivative. It follows (nontrivially) from this definition that
exp(x) = exp(1)x, so may define e = exp(1) and write the exponential function as x 7→ ex. The value of e
is approximately 2.718.

Example 4.2.1

Find the quadratic polynomial P2 whose zeroth, first, and second derivatives at the origin match
those of the exponential function.

Solution

Since P2 is quadratic, we must have

P2(x) = a0 + a1x + a2x2

for some a0, a1, and a2. To match the zeroth derivative, we
check that P2(0) = a0 and f (0) = 1. So we must have a0 = 1.
Similarly, P′

2(0) = a1, so if we want P′
2(0) = f ′(0) = 1, have

to choose a1 = 1 as well.
For a2, we calculate P′′

2 (x) = (a1 + 2a2x)′ = 2a2, so to get
P′′

2 (0) = f ′′(0) = 1, we have to let a2 = 1
2 . So

P2(x) = 1 + x + 1
2 x2

is the best we can do. Looking at the figure, we set that P2
does indeed do a better job of ‘hugging’ the graph of f near
x = 0 than the best linear approximation (L(x) = 1 + x)
does.

P0

P1

P2exp

Figure 4.1 The best constant, linear,
and quadratic approximations of
exp(x) = ex near the origin

We can extend this idea to higher order polynomials, and we can even include terms for all powers of x,
thereby obtaining an infinite series:

Definition 4.2.1: Taylor Series

The Taylor series, centered at c, of an infinitely differentiable function f is defined to be

f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 +

f ′′′(c)
3!

(x − c)3 + · · ·

63



Example 4.2.2

Find the Taylor series centered at the origin for the exponential function.

If the Taylor series for a function converges, then it does so in an interval centered around c. Furthermore,
inside the interval of convergence, it is valid to perform term-by-term operations with the Taylor series as
though it were a polynomial:

1. We can multiply or add Taylor series term-by-term.

2. We can integrate or differentiate a Taylor series term-by-term.

3. We can substitute one Taylor series into another to obtain a Taylor series for the composition.

Theorem 4.2.1

All the operations described above may be applied wherever all the series in question are convergent.
In other words, f and g have Taylor series P and Q converging to f and g in some open interval, then
the Taylor series for f g, f + g, f ′, and

∫
f converge in that interval and are given by PQ, P + Q, P′,

and
∫

P, respectively. If P has an infinite radius of convergence, then the Taylor series for f ◦ g is
given by P ◦ Q.

Example 4.2.3

Find the Taylor series for f (x) = cos x + xex2 centered at c = 0.

Solution

Taking many derivatives is going to be no fun, especially with that second term. What we can do,
however, is just substitute x2 into the Taylor series for the exponential function, multiply that by x,
and add the Taylor series for cosine:(

1 − x2

2!
+

x4

4!
− · · ·

)
+ x

(
1 + x2 +

(x2)2

2!
+

(x2)3

3!
+ · · ·

)
= 1 + x − x2

2!
+ x3 +

x4

4!
+

x5

2!
+ · · · .

In summation notation, we could write this series as ∑∞
n=0 anxn where an is equal to (−1)n/2/n! if n

is even and 1/((n − 1)/2)! if n is odd.

Exercise 4.2.1

Find the Taylor series for 1/(1 − x) centered at the origin, and show that it converges to 1/(1 − x)
for all −1 < x < 1.
Use your result to find x + 2x2 + 3x3 + 4x4 + · · · . Hint: think about differentiation.

Exercise 4.2.2

Show that limn→∞(1 + x/n)n is equal to ex by showing that limn→∞ log(1 + x/n)n = x.

64



4.3 Partial differentiation

Differentiating a single-variable function involves answering the question near a given point, how much does
the value of the function change per unit change in the input? In the higher-dimensional setting, the question
must be made more specific, since the change in output depends not only on the change in input but also
the direction in which the input is changed.

Consider, for example, the function f (x, y) which returns the altitude of the point on earth with latitude x
and longitude y. If the point (x, y) identifies a point on a sloping hillside, then there are some directions in
which f increases, others in which f decreases, and two directions in which f neither increases nor decreases
(these are the directions along the hill’s contour lines).

The simplest directions for inquiring about the instantaneous rate of change of f are those along the axes:
The partial derivative ∂ f

∂x (x0, y0) of a function f (x, y) at a point (x0, y0) is the slo ∂ f
∂x (x0, y0) of a function

f (x, y) at a point (x0, y0) is the slope of the graph of f in the x-direction at the point (x0, y0) pe of the graph
of f in the x-direction at the point (x0, y0). In other words, it’s the slope of the intersection of the graph of f
with the plane y = y0. The partial derivative ∂ f

∂x (x0, y0) may also be denoted fx(x0, y0).

Exercise 4.3.1

Consider the function f whose graph is shown. De-
termine the sign of fx(1, 1) and the sign of fy(1, 1).

A single-variable function is differentiable at a point if and only
if its graph looks increasingly like that of a particular non-vertical
line when zoomed increasingly far in. In other words, f is differ-
entiable if and only if there’s a linear function L such that f (x)−L(x)

x−a
goes to 0 as x → a.
Likewise, a function of two variables is differentiable at a point if
its graph looks like a plane when you zoom in sufficiently around
the point; that is, f is differentiable at (a, b) if

lim
(x,y)→(a,b)

f (x, y)− c0 − c1(x − a)− c2(y − b)
|[x, y]− [a, b]| = 0

for some real numbers c0, c1, and c2. If such a linear function c0 + c1(x − a) + c2(y − b) exists, then its
coefficients are necessarily c0 = f (a, b), c1 = fx(a, b), and c2 = fy(a, b).

So, the equation of the plane tangent to the graph of a differentiable function f at the point (a, b, f (a, b)) is
given by

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) (4.3.1)

This equation says how f behaves for values of (x, y) very close to (a, b): the output changes by the x-change

65



x − a times f ’s sensitivity to changes in x (namely fx(a, b)) plus the y-change times f ’s sensitivity to changes
in y (namely fy(a, b)).

Once we know how a differentiable function f : Rd → R changes in the coordinate-axis directions, we can
use (4.3.1) to succinctly express how it changes in any direction: we form the gradient ∇ f of f by putting
all of the partial derivatives of a function f together into a vector. Then, for any unit vector u, the rate of
change of f in the u direction is equal to ∇ f · u.

Since ∇ f · u = |∇ f | cos θ, the direction of the gradient is the direction in which f increases most rapidly.
The direction opposite to the gradient is the direction of maximum decrease, and the directions orthogonal
to these are the ones in which f is constant.

Exercise 4.3.2

Suppose that f : R2 → R is a differentiable function at the point (a, b) ∈ R2 and that its instantaneous
rates of change in the directions u and v are known. Show that if u and v are not parallel, then it is
always possible to infer f ’s rates of change in the coordinate-axis directions.

We can take the notion of a gradient, which measures the linear change of a function, up a degree. The
Hessian of a function f : Rn → R is defined to be the matrix

H(x) =



∂2 f
∂x2

1

∂2 f
∂x1 ∂x2

· · · ∂2 f
∂x1 ∂xn

∂2 f
∂x2 ∂x1

∂2 f
∂x2

2
· · · ∂2 f

∂x2 ∂xn

...
...

. . .
...

∂2 f
∂xn ∂x1

∂2 f
∂xn ∂x2

· · · ∂2 f
∂x2

n



The best quadratic approximation to the graph of a twice-
differentiable function f : Rn → R at the origin is

Q(x) = f (0) + (∇ f (0))′x +
1
2

x′H(0)x.

The same is true at points a other than the origin if we evaluate
the gradient and Hessian at a instead of 0 and if we replace x
with x − a.

Exercise 4.3.3

Suppose that a, b, c, d, e and f are real numbers and that f (x, y) = a + bx + cy + dx2 + exy + f y2.
Show that the quadratic approximation of f at the origin is equal to f .

66



4.4 Optimization

To find the largest or smallest value of a differentiable function defined on a subset D of Rd, we may make
an observation regarding the instantaneous rates of change of f : if ∇ f is nonzero at a point away from the
boundary of D, then there are directions in which f decreases away from that point and other directions
where it increases. Therefore, any minima or maxima of f away from the boundary must occur at points
where the gradient of f is zero. We term such points—where the gradient is zero or where the function is
non-differentiable—critical points. If a function has a minimum or a maximum at a point, then either that
point is a critical point, or it is on the boundary of the domain of the function.

It’s sometimes possible to check using derivatives whether a function has a minimum or maximum in the
immediate vicinity of a critical point a: f has

1. a local maximum if the Hessian at a is negative definite
2. a local minimum if the Hessian at a is positive definite
3. neither a local min nor max if the Hessian at a has at least one positive and one negative eigenvalue

Since a function’s maximum or minimum may also occur on its boundary, we must also identify candidate
points on the boundary where maxima or minima may occur. This may be done in a couple ways: we
parametrize the boundary and solve an optimization problem in a lower dimension. For example, if we
want to optimize a function on the unit disk, we can identify boundary critical points by finding critical
points of the single-variable function θ 7→ f (cos θ, sin θ).

Parametrizing the boundary is only possible in simple cases, so we rely more commonly on the method
of Lagrange multipliers. The idea is that the function does not have a maximum at a boundary point if it’s
possible to move along the boundary in a direction whose angle with∇ f is less than a right angle. Therefore,
∇ f must perpendicular to the boundary of D at a point if f is to have an extremum there. If the boundary
of D is specified as a level set of a function g, we arrive at the equation

∇ f = λ∇g,

for some λ ∈ R.

Theorem 4.4.1: Extreme value theorem and Lagrange multipliers

Suppose that f is a continuous function defined on a closed and bounded subset D of Rn. Then
1. f realizes an absolute maximum and absolute minimum on D (the extreme value theorem)

2. any point where f realizes an extremum is either a critical point—meaning that ∇ f = 0 or f is
non-differentiable at that point—or at a point on the boundary.

3. if f realizes an extremum at a point on a portion of the boundary which is the level set of a
differentiable function g with non-vanishing gradient ∇g, then either f is non-differentiable at
that point or the equation

∇ f = λ∇g

is satisfied at that point, for some λ ∈ R.

Exercise 4.4.1

Find the point closest to the origin in the region 3x + 2y + z ≥ 6.

67



4.5 Matrix differentiation

Just as elementary differentiation rules are helpful for optimizing single-variable functions, matrix differen-
tiation rules are helpful for optimizing expressions written in matrix form. This technique is used often in
statistics.

Suppose f is a function from Rn to Rm. Writing f(x) = f(x1, . . . , xn), we define the Jacobian matrix to be*
* This is called
the numerator
layout conven-
tion. Some-
times you’ll see
the transpose
of this matrix
instead. See
the Wikipedia
article on ma-
trix calculus for
details.

∂f
∂x

=



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
. . .

...
∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn



Note that if m = 1, then differentiating f with respect to x is the same as taking the gradient of f . With this
definition, we obtain the following analogues to some basic single-variable differentiation results: if A is a
constant matrix, then

∂

∂x
(Ax) = A

∂

∂x
(x′A) = A′

∂

∂x
(u′v) = u′ ∂v

∂x
+ v′ ∂u

∂x

The Hessian of a function f : Rn → R may be written in terms of the matrix differentiation operator as
follows:

H(x) =
∂

∂x

(
∂ f
∂x

)′
.

Some authors define ∂ f
∂x′ to be

(
∂ f
∂x

)′
, in which case the Hessian operator can be written as ∂2

∂x∂x′ .

Exercise 4.5.1

Let f : Rn → R be defined by f (x) = x′Ax where A is a symmetric matrix. Find ∂ f
∂x .

Exercise 4.5.2

Suppose A is an m × n matrix and b ∈ Rm. Use matrix differentiation to find the vector x which
minimizes |Ax − b|2. Hint: begin by writing |Ax − b|2 as (Ax − b)′(Ax − b). You may assume that
the rank of A is n.

68



4.6 Multivariable integration

Integrating a function is a way of totaling up its values. For example, if f is a function from a region D in
Rn to R which represents the mass density of a solid occupying the region D, we can find the total mass of
the solid as follows: (i) split the region D into many tiny pieces, (ii) multiply the volume of each piece by
the value of the function at some point on that piece, (iii) and add up the results. If we take the number of
pieces to ∞ and the piece size to zero, then this sum converges to the total mass of the solid.

We may apply this procedure to any function f defined on D, and we call the result the integral of f over D,
denoted

∫
D f .

To find the integral of a function f defined on a 2D region D, we set up a double iterated integral over D: the
bounds for the outer integral are the smallest and largest possible values of y for point in D, and the bounds
for the inner integral are the smallest and largest values of x for any point in a given each “y = constant” slice
of the region (assuming that each slice intersects the region in a line segment).

Exercise 4.6.1

Find the integral over the triangle T with vertices (0, 0), (2, 0), and (0, 3) of the function f (x, y) = x2y.

To set up an integral of a function over a 3D region (for the order dx dy dz): the bounds for the outer integral
are the smallest and largest values of z for any point in the region of integration, then the bounds for the
middle integral are the smallest and largest values of y for any point in the region in each “z = constant”
plane, and the inner bounds are the smallest and largest values of x for any point in the region in each “(y, z)
= constant” line.

Exercise 4.6.2

Integrate the function f (x, y, z) = 1 over the tetrahedron with vertices (0, 0, 0), (2, 0, 0), (0, 3, 0), and
(0, 0, 4).

4.7 The chain rule

If we compose a differentiable function r : R1 → R2 with a differentiable function f : R2 → R1, we get a
function whose derivative is

( f ◦ r)′(t) = (∇ f )(r(t)) · r′(t).

This follows from linearizing f : the change that results from making a small move from r(t) to r(t) + r′(t)∆t
is the dot product of the gradient of f and the small step r′(t)∆t.

Exercise 4.7.1

Suppose that fx(3, 2) = 4, that fy(3, 2) = −2, and that x(t) = 1 + 2t and y(t) = 4 − 2t2. Find the
derivative of the function f (x(t), y(t)) at the point t = 1.

69



4.8 The Jacobian determinant of a transformation

If we want to integrate over a region which doesn’t split nicely along lines parallel to the coordinate axes,
we can split the region up along other lines.

For example, consider the region bounded by the hyperbolas xy = 1 and xy = 3 and the lines y = 1
2 x and

y = 2x. This region naturally splits along hyperbols of the form xy = v where v ranges from 1 to 3 and
lines of the form y/x = u where u ranges from 1

2 to 2. We can therefore write the region as the image of the
rectangle [ 1

2 , 2]× [1, 3] under the inverse T of the transformation (x, y) 7→ (y/x, xy).

T

R

1

2
2

1

3

u

v

xy = 1

xy = 3

y = 2x

y =
1

2
x

D

x

y

To find the area of each small piece of D in this subdivision, we may multiply the area of the corresponding
piece of the rectangle by the area distortion factor of the transformation T. This local area distortion factor,
or Jacobian determinant is the absolute value of the determinant of the Jacobian matrix ∂T(x)

∂x . Thus we arrive
at the formula ∫∫

D
f (x, y)dx dy =

∫∫
R

f (T(u, v))
∣∣∣∣∂T(u, v)

∂(u, v)

∣∣∣∣ du dv.

Exercise 4.8.1

Show that the map (u, v) 7→ (u cos v, u sin v) maps the rectangle [0, 1]× [0, 2π] onto the unit disk, and
calculate the Jacobian for this transformation. Use your result to integrate 1 over the unit disk and
confirm that the result is equal to the area of the unit disk.

70



5 Numerical Computation

5.1 Machine arithmetic

Computers store all information, including numerical values, as sequences of bits. The type of a numeric
value specifies how to interpret the underlying sequence of bits as a number.

You can access the bit representation of a numerical value in Julia using the function bitstring. In this
section we will introduce several of the most important numeric types:*

* These repre-
sentations are
not specific to
Julia; they are
universal com-
puting stan-
dards. See the
Wikipedia ar-
ticle on IEEE
754

Exercise 5.1.1

We interpret a string of digits as an integer using place value: the units digit is worth 100, the next
digit to the left is worth 101, and so on. Then 709 = 7 · 102 + 0 · 101 + 9 · 100, for example. This is
called the decimal representation of a number.
We can do the same thing with 2 in place of 10: the rightmost digit is worth 20, the next digit is
worth 21, and so on. Instead of 10 digits we only have two bits: 0 and 1. This is called the binary
representation of a number. The binary representation of 13, for example, is 1101, since 13 = 1 · 23 +
1 · 22 + 0 · 21 + 1 · 20.
Find the binary representations of each of the following numbers: 2, 16, 20, and 100.

5.1.1 64-bit integers

There are 264 length-64 strings of zeros and ones, so with 64 bits we can represent 264 integers. For example,
we can represent the integers from 0 to 264 − 1 by interpreting each string of 0’s and 1’s as a binary number.
In order to make room for negative numbers, however, we will only use half these bitstrings to represent
positive numbers (from 0 to 263 − 1), and we will allocate the other half to negative integers (from −263 to
−1).

More precisely, for 0 ≤ n ≤ 263 − 1, we represent n using its binary representation, with leading zeros as
necessary to get 64 total bits. For 1 ≤ n ≤ 263, we represent −n using the binary representation of 264 − n.

Example 5.1.1

The expression bitstring(+34) evaluates to

0000000000000000000000000000000000000000000000000000000000100010 ;

This checks out: 34 = 1 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20.
The expression bitstring(-34) evaluates to

1111111111111111111111111111111111111111111111111111111111011110 .

71



We could check that this is the binary representation of 264 − 34, but in the following exercise we will
learn a trick for doing that without having to deal with all those 1’s.

Exercise 5.1.2

Show that if 1 ≤ n ≤ 263 − 1, then you can find bitstring(-n) from bitstring(n) by (i) flipping every
bit, and (ii) adding 1 to the resulting number (interpreted as an integer represented in binary).

5.1.2 64-bit floating point numbers

Integer types are appropriate for calculations which only involve integer operations (multiplication, addi-
tion, and negation), but most integers do not have integer reciprocals. So performing calculations involving
division requires a new number type.

Let’s visualize our number system by placing a tick mark on the number line for each number we’re repre-
senting. If we want to represent very large numbers and very small numbers accurately (relative to the size
of the number), we need the tick marks to be much denser around 0.

One way to achieve this is to put equally spaced tick marks between 1 and 2, and then scale that interval up
repeatedly into [2, 4), then [4, 8), then [8, 16), and so on, and also scale it down to [1/2, 1), [1/4, 1/2), and
so on. Here’s an example of such a scheme: we place 8 tick marks between 1 and 2, and then we scale that
interval’s worth of tick marks four times by a factor of 2, and also 3 times by a factor of 1

2 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

We can see on the left edge of the picture that we didn’t cover zero! There is also quite a large gap between 0
and the smallest representable number in this system. So we replace the leftmost interval between successive
powers of 2 with ticks twice as far apart so that they reach down to 0. The locations of these new ticks are
called subnormal numbers.

If we have 64 bits, we can do the same thing but on a grander scale. We define σ to be the first bit of the
sequence, e to be the next 11 bits interpreted as a binary integer, and f to be the remaining 52 bits interpreted
as a binary integer. If 0 < e < 2047, then the sequence represents the number

(−1)σ
(

1 +
(

1
2

)52
f

)
· 2e−1023.

Note that the exponent e − 1023 ranges from −1022 up to 1023 as e ranges from 1 to 2046. If e = 0, then the
sequence represents

(−1)σ
(

0 +
(

1
2

)52
f

)
· 2−1022,

72



These are the subnormal numbers.

We also appropriate the last value of e for a special meaning: if e = 2047, then the sequence represents one
of the special values Inf or NaN, depending on the value of f .

Example 5.1.2

bitstring(-0.75) returns 1011111111101000000000000000000000000000000000000000000000000000 The
leading 1 indicates that the number is negative, the next eleven digits 01111111110 give e = 1022,
and interpreting the remaining 52 digits as a base-2 fraction (0.1000 . . .)2 gives f = 1

2 . So the value
represented is

(−1)
(

1 +
1
2

)
21022−1023 = −3

4
.

Thus −0.75 can be represented exactly as a Float64.

The nonnegative representable numbers are laid out as shown (figure not drawn to scale!):

252 values

2−1022

252 values

2−1021

252 values

2−1020

252 values

2−10190 21024

representable value
largest finite

Figure 5.1 The tick marks indicate the positive values which are representable as 64-bit float-
ing point numbers. There are 252 of them between any two successive powers of 2 from 2−1022

up to 21024, and the interval from 0 to 2−1022 also contains 252 representable values (these are
the subnormal numbers, indicated in blue).

Exercise 5.1.3

Show that 0.1 cannot be represented exactly as a Float64.

Exercise 5.1.4

Show that there are 252 representable numbers in each interval of the form [2k, 2k+1), where −1022 ≤
k < 1024.

5.1.3 32-bit floating point numbers

Each 32-bit sequence represents the value

(−1)σ
(

1 +
(

1
2

)23
f

)
· 2e−127,

where σ is the first bit of the sequence, e is the next 8 bits interpreted as a binary integer, and f is the
remaining 23 bits are interpreted as a binary integer.

73



Example 5.1.3

bitstring(Float32(-0.75)) returns 10111111010000000000000000000000

Exercise 5.1.5

Find the positive difference between 1 and the first number greater than 1 which is representable as
a Float32.

5.1.4 Arbitrary-precision numbers

The number of bits in the representation of an arbitrary precision number is not fixed. BigInt values are
useful for when dealing with very large integers, and BigFloat values are useful when very high precision
is required.

Exercise 5.1.6

(i) Arbitrary-precision arithmetic is helpful for inspecting the behavior of lower precision formats.
Find the exact value of the difference between 1.1 the Float64 value nearest 1.1. (Hint: big(1.1)

interprets 1.1 as a Float64 value—look at that value and mentally subtract 1.1).
(ii) Confirm that calculating the decimal representation of 2100,000 is no problem with big number
arithmetic. Convert the resulting sequence of decimal digits to a string and find its length.

5.1.5 General comments

Choice of numerical representation depends on the application at hand, since each has its advantages and
disadvantages.

Int64 arithmetic is actually modular arithmetic*
* An expres-
sion evaluates
to the integer
in [−263, 263)
which leaves
the same re-
mainder when
divided by 264

as the mathe-
matical value
of the expres-
sion

with a modulus of 264. This means that Int64 arithmetic is
exact unless our calculation takes us outside the window of representable values. Basic Float64 operations
return the same number as computing the mathematical result of the operation and rounding to the nearest
Float64-representable value (or one of the two nearest ones if it’s halfway between)

Exercise 5.1.7

Without using a computer, perform the operations in the expression (1.0 + 0.4/252) + 0.4/252 using
Float64 arithmetic. Repeat with the expression 1.0 + (0.4/252 + 0.4/252). Then check your findings
by evaluating these expressions in Julia.

A numeric literal is a sequence of characters to be parsed and interpreted as a numerical value.

1. Numeric literals with a decimal point are real literals.

2. Numeric literals without a decimal point are integer literals.

74



Example 5.1.4

In the expression 2.718^50+1 , 2.718 is a real literal, and 50 and 1 are both integer literals.

Integer literals are interpreted as Int64 values, and real literals are interpreted as Float64 values.

Example 5.1.5

2^100 returns 0 , since 2 and 100 are interpreted as Int64 values, and 2100 is equivalent to 0 modulo
264.

To obtain numerical values of other types in Julia, use parse or big.

julia> parse(BigInt,"1267650600228229401496703205376")^(big(1)/100)

2.000000000000000000000000000000000000000000000000000000000000000000000000000000

Float64 and Int64 operations are performed in hardware, meaning that they use instructions programmed
directly into the computer’s microprocessor. They are much faster and more memory efficient than arbitrary
precision arithmetic, which has to be done in software*:

* @elapsed re-
turns the num-
ber of seconds
an expression
takes to evalu-
atejulia> A = [i^2 for i=1:1_000_000]

julia> B = [BigInt(a) for a in A]

julia> @elapsed(sum(B))/@elapsed(sum(A))

25.681853565096898

Exercise 5.1.8

Explain why it is never necessary to use a BigInt for a loop counter (that is, a variable which starts at
0 or 1 and is incremented by 1 each time the body of the loop runs).

5.2 Error

Error is the discrepancy between a quantity and the value used to represent it in the program. A result is
accurate if its error is small. If Â is an approximation for A, then

• the absolute error is Â − A, and

• the relative error is Â−A
A .

We are usually more interested in relative error, since the relevance of an error is usually in proportion to
the quantity being represented. For example, misreporting the weight of an animal by one kilogram would
be much more significant if the animal were a squirrel than if it were a blue whale.

75



Example 5.2.1

The expression sqrt(200.0), which returns the Float64-square root of Float64, yields

14.14213562373095101065700873732566833496093750.

The actual decimal representation of
√

200 is

14.1421356237309504880168872420969807856967187 . . .

The difference between these values, 5.23 × 10−16, is the absolute error, and 5.23×10−16
√

200
= 3.7 × 10−17

is the relative error.

5.2.1 Sources of numerical error

There are a few categories of numerical error.

Roundoff error comes from rounding numbers to fit them into a floating point representation.

Example 5.2.2

0.2 + 0.1 is equal to 3.0000000000000004440892098500626161694526672363281250 in
Float64 arithmetic. The discrepancy between 3 and this value is roundoff error.

Truncation error comes from using approximate mathematical formulas or algorithms.

Example 5.2.3

The Maclaurin series of sin x is x − x3

3! +
x5

5! −
x7

7! + · · · , so approximating sin(0.1) as 0.1 − 0.13

6 yields
a truncation error equal to 0.15

5! − 0.17

7! + · · · .

Example 5.2.4

Newton’s method approximates a zero of a function f by starting with a value x0 near the desired
zero and defining xn+1 = xn − f (xn)

f ′(xn)
for all n ≥ 0.

Under certain conditions, xn converges to a zero of f as n → ∞. The discrepancy between xn and
limn→∞ xn is the truncation error associated with stopping Newton’s method at the nth iteration.

Example 5.2.5

We may approximate
∫ 1

0 sin(x2)dx using the sum
100

∑
k=1

sin

((
k

100

)2
)

1
100

. The error associated this

approximation is a type of truncation error.

76



Statistical error arises from using randomness in an approximation.

Example 5.2.6

We can approximate the average height of a population of 100,000 people by selecting 100 people
uniformly at random and averaging their measured heights. The error associated with this approxi-
mation is an example of statistical error.

Exercise 5.2.1

Discuss the error in each of the following scenarios using the terms roundoff error, truncation error, or
statistical error.

(i) We use the trapezoid rule with 1000 trapezoids to approximate
∫ 10

0
1

4+x4 dx.

(ii) We are trying to approximate f ′(5) for some function f that we can compute, and we attempt
to do so by running (f(5 + 0.5^100) - f(5))/0.5^100. We fail to get a reasonable answer.

(iii) To approximate the minimum of a function f : [0, 1] → R, we evaluate f at 100 randomly
selected points in [0, 1] and return the smallest value obtained.

5.2.2 Condition number

The derivative of a function measures how it stretches or compresses absolute error. The condition number
of a function measures how it stretches or compresses relative error. Just as the derivative helps us under-
stand how small changes in input transform to small changes in output, the condition number tells us how
a small relative error in the initial data of a problem affects the relative error of the solution. We will use the
variable a to denote a problem’s initial data and S(a) to denote the solution of the problem with initial data
a.

The condition number of a function is defined to be the absolute value of the ratio of the relative change in
output of the function to a very small*

* “very small”
means that we
define the con-
dition number
to be the limit
of the stated
ratio as the rel-
ative change in
input goes to 0

relative change in the input. The condition number of a problem is the
condition number of the function which maps the problem’s initial data to its solution.

Definition 5.2.1

If S is the map from the initial data a ∈ R of a problem to its solution S(a) ∈ Rn, then the condition
number κ of the problem is

κ(a) =
|a|| d

da S(a)|
|S(a)| . (5.2.1)

Example 5.2.7

Show that the condition number of a 7→ an is constant, for any n ∈ R.

77



Solution

We have
κ(a) =

anan−1

an = n,

for all a ∈ R.

Example 5.2.8

Show that the condition number of the function a 7→ a − 1 is very large for values of a near 1.

Solution

We substitute into (6.4.1) and get
κ(a) =

a
|a − 1|

for values of a near 1. This expression goes to infinity as a → 1, so the condition number is very large.
Subtracting 1 from two numbers near 1 preserves their difference, but the relative size of this differ-
ence is increased because the numbers themselves are much smaller.

Example 5.2.9

If a 6= 0, then the solution of the equation ax + 1 = 0 is x = −1/a. If we change the initial data a to
a(1 + r), then the solution changes to − 1

a(1+r) , which represents a relative change of

− 1
a(1+r) −

(
− 1

a

)
−1/a

= − r
1 + r

in the solution. The relative change in input is (a(1 + r)− a)/a) = r, so taking the absolute value of
the ratio of − 1

1+r to r and sending r → 0, we see that condition number of this problem is 1 .

Exercise 5.2.2

Consider a function S : R → R. If the input changes from a to a + ∆a for some small value ∆a, then
the output changes to approximately S(a) + d

da S(a)∆a. Calculate the ratio of the relative change in the
output to the relative change in the input, and show that you get

a d
da S(a)
S(a)

.

More generally, if the initial data is in Rn and the solution is in Rm, then the condition number is defined to
be

κ(a) =
|a|‖J(a)‖
|S(a)| , (5.2.2)

where J(a) is the Jacobian matrix of S and ‖J(a)‖ is its operator norm. The operator norm of the Jacobian
is the appropriate generalization of the norm of the derivative of S since it measures how S stretches space
near a.

78



If the condition number of a problem is very large, then small errors in the problem data lead to large
changes in the result. A problem with large condition number is said to be ill-conditioned.*

* A problem a
small condition
number is well-
conditioned

Unless the
initial data can be specified with correspondingly high precision, it will not be possible to solve the problem
meaningfully.*

* This would
be true even
if we could
compute with
infinite pre-
cision arith-
metic. Condi-
tion number is
a property of
a problem, not
of the method
used to solve it.

Example 5.2.10

Consider the following matrix equation for x and y.[
a 3
6 9

] [
x
y

]
=

[
4
5

]
Find the values of a for which this matrix is ill-conditioned.

Solution

If a 6= 2, then the solution of this equation isx

y

 =

 7
3(a−2)
5a−24
9(a−2)


Using (6.4.1), we can work out that

κ(a) =
7|a|

√
13

|a − 2|
√
(5a − 24)2 + 441

.

If a is very close to 2, then κ(a) is very large, and the matrix is ill-conditioned:*
* The expres-
sion A\b com-
putes A−1b

julia> [2.01 3; 6 9] \ [4; 5]

2-element Array{Float64,1}:

233.333

-155.0

julia> [2.02 3; 6 9] \ [4; 5]

2-element Array{Float64,1}:

116.667

-77.2222

Machine epsilon, denoted εmach, is the maximum relative error associated with rounding a real number to
the nearest value representable as a given floating point type. For Float64, this value is εmach = 2−53 ≈
1.11 × 10−16. A competing convention—more widely used outside academia—defines εmach to be the dif-
ference between 1 and the next representable number, which for Float64 is 2−52. This is the value returned
by eps() in Julia.

Since we typically introduce a relative error on the order of εmach to encode the initial data of a problem, the
relative error of the computed solution should be expected to be no smaller than κεmach, regardless of the
algorithm used.

An algorithm used to solve a problem is stable if it is approximately as accurate as the condition number of
the problem allows. In other words, an algorithm is unstable if the answers it produces have relative error

79



many times larger than κεmach.*
* To recap, a
problem is well-
conditioned or
ill-conditioned,
and a particu-
lar algorithm for
solving a prob-
lem is stable or
unstable

Example 5.2.11

Consider the problem of evaluating f (x) =
√

1 + x − 1 near for values of x near 0. Show that the
problem is well-conditioned, but algorithm of substituting directly into the function is unstable.
Comment on whether there are stable algorithms for evaluating f (x) near x = 0.

Solution

Substituting this function into the condition number formula, we find that

κ(x) =
√

1 + x + 1
2
√

1 + x
.

Therefore, κ(0) = 1, which means that this problem is well-conditioned at 0. However, the algorithm
of substituting directly includes an ill-conditioned step: subtracting 1.
What’s happening is that a roundoff error of approximately εmach is introduced when 1+ x is rounded
to the nearest Float64. When 1 is subtracted, we still have an error of around εmach. Since

√
1 + x ≈

1+ x/2, we will have f (x) ≈ x/2, and that means that the relative error in the value we find for f (x)
will be approximately 2εmach/x. If x is small, this will be many times larger than εmach.
There are stable algorithms for approximating f (x) near x = 0. For example, we could use the Taylor
series

√
1 + x = 1 +

x
2
− x2

8
+

x3

16
− 5x4

128
+ O

(
x5
)

and approximate f (x) as a sum of the first several terms on the right-hand side. Since power func-
tions are well-conditioned (and performing the subtractions is also well-conditioned as long as x
is small enough that each term is much smaller than the preceding one), this algorithm is stable.
Alternatively, we can use the identity

√
1 + x − 1 =

1√
1 + x + 1

,

which can be obtained by multiplying by
√

1+x+1√
1+x+1

and simplifying the numerator. Substituting into
this expression is stable, because adding 1, square rooting, and reciprocating are well-conditioned.

The condition number of an m × n matrix A is defined to be the maximum condition number of the func-
tion x 7→ Ax as x ranges over Rn. The condition number of A can be computed using its singular value
decomposition:

80



Exercise 5.2.3

Show that the condition number of a matrix A is equal to the ratio of its largest and smallest singular
values.
Interpret your resulting by explaining how to choose two vectors with small relative difference which
are mapped to two vectors with large relative difference by A, assuming that A has a singular value
which is many times larger than another. Use the figure below to help with the intuition.

V′
= −42.14◦ turn

Σ =

[

2.105 0
0 0.095

]

U= 47.9◦ turn

and reflect

A =

[

1 1.2
1 1

]

5.2.3 Hazards

Integer or floating point arithmetic can overflow, and may do so without warning.

julia> 2^63

-9223372036854775808

julia> 10.0^309

Inf

Example 5.2.12

In September 2013, NASA lost touch with the Deep Impact space probe because*
*(it is believed)

systems on board
tracked time as a 32-bit-signed-integer number of tenth-second increments from January 1, 2000. The
number of such increments reached the maximum size of a 32-bit signed integer in August of 2013.

Errors resulting from performing ill-conditioned subtractions are called catastrophic cancellation.

Example 5.2.13

Approximating
√

106 + 1 −
√

106 with the result of sqrt(10^6 + 1) - sqrt(10^6), we get a relative
error of approximately 10−13, while using 1/(sqrt(10^6 + 1) + sqrt(10^6)) gives a relative error of
5 × 10−17 (more than a thousand times smaller).

81



If you rely on exact comparisons for floating point numbers, be alert to the differences between Float64

arithmetic and real number arithmetic:

julia> function increment(n)

a = 1.0

for i = 1:n

a = a + 0.01

end

a

end

julia> increment(100) > 2

true

julia> (increment(100) - 2) / eps(2.0)

2.0

Each time we add 0.01, we have to round off the result to represent it as a Float64. These roundoff errors
accumulate and lead to a result which is two ticks to the right of 2.0.

It is often more appropriate to compare real numbers using ≈ (\approx «tab»), which checks that two num-
bers x and y differ by at most √εmachmax(x, y).

Exercise 5.2.4

Guess what value the following code block returns. Run it and see what happens. Discuss why your
initial guess was correct or incorrect, and suggest a value near 0.1 that you could use in place of 0.1
to get the expected behavior.

function increment_till(t,step=0.1)

x = 0.0

while x < t

x += step

end

x

end

increment_till(1.0)

5.3 Pseudorandom number generation

When random numbers are needed in a scientific computing application, we generally use deterministic
processes which mimic the behavior of random processes. These are called pseudo-random number gen-
erators (PRNG).

A PRNG takes an initial value, called the seed, and uses it to produce a sequence of numbers which are
supposed to “look random”. The seed determines the sequence, so you can make the random number
generation in a program reproducible by providing an explicit seed. If no seed is provided, a different one
will be used each time the program runs.

A simple PRNG is the linear congruential generator: fix positive integers M, a, and c, and consider a seed

82



X0 ∈ {0, 1, . . . , M − 1}. We return the sequence X0, X1, X2, . . ., where Xn = mod(aXn−1 + c, M) for n ≥ 1. *
* where
mod(n, d) de-
notes the re-
mainder when
n is divided by
d.Exercise 5.3.1

A sequence of numbers X0, X1, . . . is periodic with period p > 0 if p is the smallest number such that
Xk = Xk+p for all k ≥ 0. We say that a linear congruential generator (LCG) with c = 0 is full-cyle if
the generated sequence has a period p = M − 1. For what values of a is the LCG with c = 0, M = 5,
and X0 = a full-cycle?

Since the sequence of numbers produced by a PRNG is determined by the initial seed, we cannot say that the
sequence of numbers is random. The pseudo part of the term pseudorandom is meant to emphasize this dis-
tinction. However, we can subject the sequence of numbers to a battery of statistical tests to check whether
it can be readily distinguished from a random sequence.

For example, we can check that each number appears with approximately equal frequency. For example, a
sequence purporting to sample uniformly from {1, 2, 3, 4, 5} which begins

1, 1, 5, 5, 5, 1, 1, 5, 1, 1, 5, 5, 5, 1, 1, 1, 2, 1, 5, 5, 1, 2, 1, 5, 1, 1, 1, . . .

is probably not a good pseudorandom number generator. However, some clearly non-random sequences
pass the basic frequency test:

{an}∞
n=1 = {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, . . .}

To detect such failures, we can split up the sequence into pairs of consecutive terms and ensure that these
pairs are also approximately equally represented. Since {1, 2} appears often and {2, 1} never appears in
{an}∞

n=1, the pair frequency test is sufficient to distinguish this sequence from a random one. We can apply
the same idea with blocks of length 3 or 4 or more.

Exercise 5.3.2

Consider the sequence {mod(3 · 2n, 11)}100
n=1. Use Julia to show that each number from 1 to 10 appears

exactly 10 times in this sequence. Also, use Julia to show that a2k is smaller than a2k−1 for far more
than half the values of k from 1 to 50. Hint: countmap(a) tells you how many times each element in
the collection a appears. To use this function, do using StatsBase first.
Repeat these tests on the sequence whose kth term is the kth digit in the decimal representation of π:
reverse(digits(floor(BigInt,big(10)^99*π))).

A PRNG is cryptographically secure if an agent who knows the algorithm used to generate the numbers (but
who does not know the value of the seed) cannot feasibly infer the kth number generated based on obser-
vation of the first k − 1 numbers generated.

Most PRNGs are not cryptographically secure. In other words, they hold up well under the scrutiny of
general statistical tests, but not to tests which exploit knowledge of the specific algorithm used.

As a simple example of a PRNG that is not cryptographically secure, consider the digits of π starting from
some unknown position. This sequence does behave statistically as though it were random (as far as we
know), but an adversary who knew you were using successive digits of π would be able to use several
values output by your PRNG to find your position and start anticipating subsequent values.

83



5.4 Automatic differentiation

Suppose that f : R → R is a function whose definition is too complicated for us to feasibly differentiate
symbolically.*

* Symbolic dif-
ferentiation
means apply-
ing differen-
tiation rules
to a symbolic
representa-
tion of f , like(

d
dx
√

x = 1
2
√

x

)

Perhaps the most straightforward way to approximate the derivative of f is to calculate the
difference quotient

f (x + ε)− f (x)
ε

a small value of ε. However, this approach is very inaccurate because the subtraction step is ill-conditioned.

Exercise 5.4.1

Use difference quotients to approximate the derivative of f (x) = x2 at x = 2
3 , with ε = 2k as k ranges

from −60 to −20. What is the least error over these values of k? How does that error compare to
machine epsilon?

The problem with difference quotients is that the accuracy of f (x + ε) − f (x) degrades as ε → 0 (due to
catastrophic cancellation—see Example 5.2.13). Even at the optimal value of ε, the precision is still very
poor.

On the other hand, the problem of calculating the derivative of f is well-conditioned as long as the condition
number |x f ′′(x)/ f ′(x)| of f ′(x) isn’t too large. So the difference quotient algorithm is unstable, and we may
hope for a stable alternative.

Indeed, there is an approach to derivative computation which is precise, fast, and scalable: automatic dif-
ferentiation. The idea is to substitute the matrix [

x 1
0 x

]
in place of x in the program that computes f (x). This requires that any internal calculations performed by
f are able to handle 2 × 2 matrices as well as plain numbers. The matrix resulting from this calculation will
be equal to [

f (x) f ′(x)
0 f (x)

]
,

allowing us to read off the derivative as the top-right entry.

Exercise 5.4.2

In this exercise, we will explain why

f
([

x 1
0 x

])
=

[
f (x) f ′(x)

0 f (x)

]
, (5.4.1)

for any polynomial f .
(i) Check that (5.4.1) holds for the identity function (the function which returns its input) and for

the function which returns the multiplicative identity.

(ii) Check that if (5.4.1) holds for two differentiable functions f and g, then it holds for the sum
f + g and the product f g.

(iii) Explain why (5.4.1) holds for any polynomial function f (x).

84



Exercise 5.4.3

Use automatic differentiation to find the derivative of f (x) = (x4 − 2x3 − x2 + 3x − 1)e−x4/4 at the
point x = 2. Compare your answer to the true value of f ′(2).
Hint: You’ll want to define f using

using LinearAlgebra

f(t) = exp(-t^2/4)*(t^4 - 2t^3 - t^2 + 3t - I)

where I is an object which is defined to behave like multiplicative identity (note that subtracting the
identity matrix is the appropriate matrix analogue of subtracting 1 from a real number).
Also, to help check your answer, here’s the symbolic derivative of f :

df(t) = (-t^5 + 2*t^4 + 9*t^3 - 15*t^2 - 3*t + 6)*exp(-t^2/4)/2

In practice, you will usually want to use a library to perform automatic differentiation, because ensuring
suitable matrix-awareness of all of the functions called by f can be a daunting task. Julia has the package
ForwardDiff for this purpose, and in Python you can use autograd (which works for all of the NumPy
functions).

5.5 Optimization

5.5.1 Gradient descent

Gradient descent is an approach to finding the
minimum of a function f from Rn to R. The basic
idea is to repeatedly step in the direction of −∇ f ,
since that is f ’s direction of maximum decrease
from a given point, beginning with some initial
guess x0 ∈ Rn.
We can choose how large each step should be and
when to stop. A common way to determine step
size is to fix a learning rate ε and set xn+1 =
xn − ε∇ f (xn−1). Note that the size of the step nat-
urally gets smaller as we get closer to a local min-
imum, since the norm of the gradient decreases.
One way to choose when to terminate the algo-
rithm is to set a threshold for the norm of the gra-
dient of f .
Gradient descent is fundamentally local: it is not
guaranteed to find the global minimum since the
search can get stuck in a local minimum.

Figure 5.2 To find a local minimum of a function,
we repeatedly take steps in the direction of max-
imum decrease. Results are shown for several
starting points x0.

85



Exercise 5.5.1

Consider the function f (x) = (x4 − 2x3 −
x2 + 3x − 1)e−x2/4. Implement the gradient
descent algorithm for finding the minimum of
this function.

(i) If the learning rate is ε = 0.1, which val-
ues of x0 have the property that f (xn) is
close to the global minimum of f when n
is large?

(ii) Is there a starting value x0 between −2
and −1 and a learning rate ε such that
the gradient descent algorithm does not
reach the global minimum of f ? Use the
graph for intuition.

x

f (x)

(x4
− 2x3

− x2 + 3x − 1)e−x2 /4

A subset of Rn is convex if it contains every line segment connecting any two points in the set (sets like
and are convex, while isn’t convex).

A function from Rn to R is convex if a line segment connecting any two points on its graph lies on or above
the graph. For example, a function like f (x, y) = x2 + y2 with a bowl-shaped graph ( ) is convex, while a
function like g(x, y) = x2 − y2 with a saddle-shaped graph ( ) is not convex. A convex function is strictly
convex if a line segment connecting any two points on its graph touches the graph only at the endpoints.
You can check whether a smooth function is convex by checking whether its Hessian is positive semidefinite
everywhere. If the Hessian is positive definite everywhere, then the function is also strictly convex.

A convex optimization problem is a problem of the form find the minimum value of f : A → R, where f
is convex and A ⊂ Rn is convex. Compared to general optimization, convex optimization is particularly
well-behaved:

Theorem 5.5.1

If f : A → R is convex and A ⊂ Rn is convex, then any local minimum of f is also a global minimum
of f . Furthermore, if f is strictly convex, the f has at most one local minimum.

Convex optimization problems play an important role in applied math and data science, because (1) many
optimization problems of interest can be expressed in the form of a convex optimization problem, and (2)
specialized, fast numerical methods are available for such problems.

Example 5.5.1

Use the Julia*
* The Python
package cvxopt

and the R
package cvxr

have a similar
interface.

package JuMP with the Ipopt solver to find the minimum of the function f (x, y) =

x2 + 2y2 on the half-plane x + y ≥ 1.

86



Exercise 5.5.2

Use JuMP to find the line of best fit for the points (1, 2), (2, 5), (4, 4). In other words, find the values
m and b such that the sum of squared vertical distances from these three points to the line y = mx + b
is minimized.

5.6 Parallel Computing

Parallel computing involves decomposing a computational task into subtasks which may be performed con-
currently.

Example 5.6.1

The problem of adding the numbers in an array is readily parallelizable, since we can subdivide the
array, sum the values in each smaller array, and add up the resulting sums at the end.

You can start a Julia session with n worker processes via julia -p n and loading the distributed computing
tools with using Distributed.

1. pmap(f,A) applies the function f to each element of the collection A, taking advantage of the available
worker processes. For example, to parallelly check the primality of the positive integers up to 100,000:

using Primes

pmap(isprime,2:100_000)

2. If (op) is an operator, then @parallel (op) for ... end assigns a subrange of the given for loop to
each worker. The values returned by the body of the loop are combined using the operator op. For
example, to sum a million random Gaussians in parallel fashion:

@parallel (+) for i=1:1_000_000

randn()

end

87



6 Probability

When we do data science, we begin with a data set and work to gain insights about the process that generated
the data. Crucial to this endeavor is a robust vocabulary for discussing the behavior of data-generating
processes.

It is helpful to initially consider data-generating processes whose randomness properties are specified com-
pletely and precisely. The study of such processes is called probability. For example, “What’s the proba-
bility that I get at least 7 heads in 10 independent flips of a fair coin?” is a probability question, because the
setup is fully specified: the coins have exactly 50% probability of heads, and the different flips do not affect
one another.

The question of whether the coins are really fair or whether the flips are really independent will be deferred
to our study of statistics. In statistics, we will have the outcome of a random experiment in hand and will be
looking to draw inferences about the unknown setup. Once we are able to answer questions in the “setup →
outcome” direction, we will be well positioned to approach the “outcome → setup” direction.

Exercise 6.0.1

Label each of the following questions as a probability question or a statistics question.

(i) On days when the weather forecast says that the chance of rain is 10%, it actually rains only
about 5% of the time. What is the probability of rain on a day when the weather forecast says
“10% chance of rain”?

(ii) If it will rain today with probability 40%, what is the probability that it will not rain today?

(iii) If you roll two fair dice, what is the average total number of pips showing on the top faces?

(iv) Your friend rolled 12 on each of the first three rolls of the board game they’re playing with you.
What is the probability that the dice they’re using are weighted in favor of the 6’s?

6.1 Counting

We begin our study of probability with a closely related skill: counting.

Theorem 6.1.1: Fundamental principle of counting

If one experiment has m possible outcomes, and if a second experiment has n possible outcomes for
each of the outcomes in the first experiment, then there are mn possible outcomes for the pair of
experiments.

Example 6.1.1

If you flip a coin and roll a die, there are 2 × 6 = 12 possible flip-roll pairs.

88



One simple way to prove the fundamental theorem of counting is to observe that the possible outcomes for
the pair of experiments can be arranged to form an m × n rectangle:

1 2 3 4 5 6

H (H, 1) (H, 2) (H, 3) (H, 4) (H, 5) (H, 6)

T (T, 1) (T, 2) (T, 3) (T, 4) (T, 5) (T, 6)

The fundamental principle of counting may be used to determine the number of ordered r-tuples of distinct
elements of {1, 2, . . . n}: we begin forming an r-tuple by selecting any one of the n possibilities for the first
entry. Given any of the choices for the first entry, there are n − 1 choices for the second entry. By the
fundamental principle of counting, there are n(n − 1) choices for the first two entries. Continuing in this
way, we find that there are

n(n − 1)(n − 2) · · · (n − r + 1)

choices for filling in all r entries.

Example 6.1.2

How many three-digit positive integers have distinct digits?
Note: a positive integer must be between 100 and 999 (inclusive) to count as a three-digit integer.

The number of r-element subsets of an n-element set is denoted (n
r). Expressions of the form (n

r) are called
binomial coefficients*.

*for reasons
that we will
explore in Ex-
ercise 6.1.4

Example 6.1.3

We have (4
3) = 4, since there are four ways to choose a 3-element subset of a 4-element set. The sets

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

are all of the 3-element subsets of {1, 2, 3, 4}.

To work out a general procedure for evaluating (n
r), we may first count the number of r-tuples and then

account for all of the repeats. For example, if r = 3, then the tuples

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

should collectively contribute 1, rather than 6, to the total count. Since every set of r elements corresponds
to r(r − 1)(r − 2) · · · (2)(1) r-tuples of distinct elements, we divide the number of r-tuples by this number
to obtain an expression for (n

r): (
n
r

)
=

n(n − 1)(n − 2) · · · (n − r + 1)
r(r − 1)(r − 2) · · · (2)(1) .

We often abbreviate the product r(r − 1)(r − 2) · · · (2)(1) as r!.

Exercise 6.1.1

Of the 1024 total length-10 strings composed of the symbols H and T, how many of them have exactly
6 T’s and 4 H’s? (HHTHTTTHTT is such a string).

89



Exercise 6.1.2: Principle of Inclusion-Exclusion

Let Ω = {0, 1, 2, · · · , 100} be the set of natural numbers up to and including 100. Let A ⊂ Ω the
subset of integers divisible by 3, and B ⊂ Ω the subset of integers divisible by 5.

• Compute |A|.

• Compute |B|.

• Compute |A ∩ B|.

• Explain why |A ∪ B| = |A|+ |B| − |A ∩ B|.

• Use the prior steps to find |A ∪ B|.

Exercise 6.1.3

How many subsets does the English alphabet have? For example, {a, r, w} and {d, g, m, x, y, z} are
two such subsets.

Exercise 6.1.4

Expand the algebraic expression (x + y)3. Show that the coefficients of this expansion are given by
the binomial coefficients of the form (3

r) where r ranges from 0 to 3:

(x + y)3 =

(
3
0

)
x3y0 +

(
3
1

)
x2y1 +

(
3
2

)
x1y2 +

(
3
3

)
x0y3

Write a corresponding expansion for (x + y)4.

6.2 Probability models

In this section we will learn how to mathematically represent and reason about randomness. The benefit of
having an explicit mathematical model is that the intuitive approach to probability has serious limitations
when analyzing tricky or sophisticated phenomena. Consider the following example.

Example 6.2.1: Exchange paradox

Two envelopes are placed on the table in front of you, containing X and 2X dollars for some unknown
positive number X (you don’t know which envelope is which). You choose one of the envelopes and
discover $10 inside. You have a choice to switch envelopes; should you?
On one hand, your chance of getting the better envelope was 50% to begin with, and opening the
envelope did not provide any information on whether you succeeded. From this perspective, you
should be indifferent to switching.
On the other hand, you might reason that the unopened envelope contains either $20 or $5, with a
50% chance of each. So on average the other envelope contains $12.50. from this perspective, you
should switch.

90



How can we adjudicate between these contradictory analyses? We need a model for the situation—that
is, a mathematical object together with a way to translate questions about the situation to unambiguous
questions about the object.

6.2.1 Discrete probability models

Let’s develop a model for the following simple experiment: two flips of a fair coin. The first thing to observe
about this experiment is that we can write down all of the possible outcomes:

{(H, H), (H, T), (T, H), (T, T)}.

This set clearly bears an important relationship to the experiment; let’s call it the sample space and denote
it as Ω.

Furthermore, we need a way to specify how likely each outcome is to occur. It seems reasonable in this sce-
nario to believe that each of the four outcomes is equally likely, in which case we should assign a probability
value of 1

4 to each outcome. The mathematical object which assigns a particular value to each element in
a set is a function, so we will call this assignment of probability values the probability mass function*

* Mass here is
a metaphor for
probability: we
think of out-
comes that are
more likely as
more massive

and
denote it as m. So all together, we have

• the sample space Ω, which contains the possible outcomes of the experiment, and

• the probability mass function m from Ω to [0, 1] which indicates the probability of each outcome in Ω.

The pair (Ω, m) is already enough to specify the experiment, but we need a few more translations for the
model to be useful: in the context of the experiment, an event is a predicate whose occurrence can be deter-
mined based on the outcome. For example, “the first flip turns up heads” is an event.

Exercise 6.2.1

Identify a mathematical object in our model (Ω, m) which can be said to correspond to the phrase
“the first flip turns up heads”. Which of the following is true of this object?

(i) It is one of the values of the function m

(ii) It is the set Ω

(iii) It is a subset of Ω

(iv) It is one of the elements of Ω

Exercise 6.2.2

Explain how to obtain the probability of an event from the probability mass function.
For concreteness, considerΩ = {(H, H), (H, T), (T, H), (T, T)}, a probability mass function which assigns
mass 1

4 to each outcome, and the event {(H, H), (H, T)}.

Some common terms for combining and modifying predicates include and, or, and not. For example, we
might be interested in the event “the first flip comes up heads and the second does not come up heads, or
the first flip comes tails”. Each of these corresponds to one of the set-theoretic operations we have learned:

91



Exercise 6.2.3

Match each term to its corresponding set-theoretic operation. Assume that E and F are events.
For concreteness, you can think about the events “first flip comes up heads” and “second flip comes
up heads” for the two-flip probability space we’ve been considering.

(a) the event that E and F both occur (i) the intersection E ∩ F
(b) the event that E does not occur (ii) the union E ∪ F
(c) the event that either E occurs or F occurs (iii) the complement Ec

Exercise 6.2.4

Suppose a group of n friends enter the lottery. For i ∈ {1, . . . , n} let Ei be the event that the ith friend
wins. Express the following events using set notation.

1. At least one friend loses.

2. All friends win.

3. At least one friend wins.

Since events play a more prominent role than individual outcomes in discussions of probability, we will
demote the probability mass function to auxiliary status and instead focus on the function P from the set of
events to [0, 1] which assigns to each event the total probability mass therein. For example, for our two-flip
experiment, the function P satisfies

P({(H, T)}) = 1
4

P({}) = 0

P({(H, H), (H, T), (T, T)}) = 3
4

P(Ω) = 1,

and so on.

Exercise 6.2.5

What is the cardinality of the domain of the function P if

Ω = {(H, H), (H, T), (T, H), (T, T)}?

We call*
This notation
means that we
sum the func-
tion m over all
outcomes ω in
the event E.

P(E) = ∑ω∈E m(ω) the probability measure associated with the probability mass function m. The
pair (Ω,P) is called a probability space. Probability measures satisfy the following properties.

Theorem 6.2.1: Properties of a probability measure

If (Ω,P) is a probability space, then
1. P(Ω) = 1 — “something has to happen”

2. P(E) ≥ 0 for all E ⊂ Ω — “probabilities are non-negative”

3. P(E ∪ F) = P(E) + P(F) if E and F are mutually exclusive events — “probability is additive”

These are the fundamental properties of a probability measure on a finite sample space Ω, in the sense that

92



functions from the set of events to [0, 1] satisfying the above properties are in one-to-one correspondence
with probability mass functions.

One further important property is a consequence of the properties in Theorem 6.2.1. It says that if B’s
occurrence implies A’s occurrence, then P(B) ≤ P(A).

Exercise 6.2.6: Monotonicity

Use the additivity property and the fact that A = (A ∩ B) ∪ (A ∩ Bc) to show that if B ⊂ A ⊂ Ω,
then P(B) ≤ P(A).

Exercise 6.2.7: Subadditivity

Show that P(A ∪ B) ≤ P(A) + P(B) for all events A and B.
Use this property to show that if A occurs with probability zero and B occurs with probability zero,
then the probability that A or B occurs is also zero.

IfΩ is countably infinite, then the additivity property extends to countable additivity: If E1, E2, . . . is a pairwise
disjoint sequence of events, then P(E1 ∪ E2 ∪ · · · ) = P(E1) + P(E2) + · · · .

Example 6.2.2: Countable additivity

Suppose thatΩ is the set of ordered pairs of positive integers, with probability mass m((i, j)) = 2−i−j

at each pair (i, j). Show that the probability of the event {(i, j) ∈ Ω : i > 2} is equal to the sum of
the probabilities of the events {(i, j) ∈ Ω : i = t} as t ranges over {3, 4, 5, . . .}

Exercise 6.2.8

Show that the function m((i, j)) = 2−i−j sums to 1 as (i, j) ranges over the set of ordered pairs of
positive integers.

6.3 Random variables

An event is a binary function of the outcome of an experiment: based on the outcome, we can say that the
event occurred or didn’t occur. Sometimes, however, we are interested in specifying real-valued information
based on the outcome of the experiment.

For example, suppose that you will receive a dollar for each head flipped in our two-fair-flips experiment.
Then your payout X might be 0 dollars, 1 dollar, or 2 dollars. Because X is a variable whose value is random
(that is, dependent on the outcome of a random experiment), it is called a random variable. A random
variable which takes values in some finite or countably infinite set (such as {0, 1, 2}, in this case) is called a
discrete random variable.

Since a random variable associates a real number to each outcome of the experiment, in mathematical terms

93



a random variable is a function from the sample space to R. Using function notation, the dollar-per-head
payout random variable X satisfies

X((T, T)) = 0,
X((H, T)) = 1,
X((T, H)) = 1, and
X((H, H)) = 2.

We can combine random variables using any operations or functions we can use to combine numbers. For
example, suppose X1 is defined to be the number of heads in the first flip—that is,

X1((T, T)) = 0
X1((H, T)) = 1
X1((T, H)) = 0
X1((H, H)) = 1,

and X2 is defined to be the number of heads in the second flip. Then the random variable X1 + X2 maps
each ω ∈ Ω to X1(ω) + X2(ω). Note that this random variable is equal to X, since X(ω) = X1(ω) + X2(ω)
for every ω ∈ Ω.

Exercise 6.3.1

Suppose that the random variable X represents a fair die roll and Y is defined to be the remainder
when X is divided by 4.
Define a six-element probability space Ω on which X and Y may be defined, and find*

* This notation
is shorthand
for P({ω :
X(ω)− Y(ω) =
k})

P(X −Y = k)
for every integer value of k.

Exercise 6.3.2

Consider a sample space Ω and an event E ⊂ Ω. We define the random variable 1E : Ω→ {0, 1} by

1E(ω) =

{
1 ifω ∈ E
0 otherwise.

The random variable 1E is called the indicator random variable for E. If F is another event, which of
the following random variables are necessarily equal?

(i) 1E∩F and 1E · 1F

(ii) 1E∪F and 1E + 1F

(iii) 1E and 1 − 1Ec

6.3.1 Marginal distributions

Given a probability space (Ω,P) and a random variable X, the distribution of X tells us how X distributes
probability mass on the real number line. Loosely speaking, the distribution tells us where we can expect
to find X and with what probabilities.

94



Definition 6.3.1: Distribution of a random variable

The distribution (or law) of a random variable X is the probability measure on R which maps a set
A ⊂ R to P(X ∈ A).

We can think of X as pushing forward the probability mass from Ω to R by sending the probability mass at
ω to X(ω) for each ω ∈ Ω. As you can see in Figure 6.1, the probability masses at multiple ω’s can stack up
at the same point on the real line if X maps the ω’s to the same value.

Figure 6.1 The distribution of a discrete random variable is the measure on R obtained by
pushing forward the probability masses at elements of the sample space to their locations on
the real line.

Exercise 6.3.3

A problem on a test requires students to match molecule diagrams to their appropriate labels. Sup-
pose there are three labels and three diagrams and that a student guesses a matching uniformly*

* A uniform
probabil-
ity measure
spreads the
probabil-
ity mass out
evenly over Ω

at
random. Let X denote the number of diagrams the student correctly labels. What is the probability
mass function of the distribution of X?

6.3.2 Cumulative distribution function

The distribution of a random variable X may be specified by its probability mass function or by its cumula-
tive distribution function*

* CDF, for
shortFX :

Definition 6.3.2: Cumulative distribution function

If X is a random variable, then its cumulative distribution function FX is the function from R to [0, 1]
defined by

FX(x) = P(X ≤ x).

95



mX(x)
1

−2 −1 1 2

FX(x)
1

−2 −1 1 2

Figure 6.2 A probability mass function mX and its corresponding CDF FX

Exercise 6.3.4

Consider a random variable X whose distribution is as shown in Figure 6.2. Identify each of the
following statements as true or false.

(a) P(−1 < X < 1) is greater than 3
5

(b) P(X ≥ 2) = 0

(c) P
(
− 1

2 < X < 0
)

is greater than 1
100

(d) P(100X < 1) is greater than 1
2

Exercise 6.3.5

Suppose that X is a random variable with CDF FX and that Y = X2. Express P(Y > 9) in terms of
the function FX . For simplicity, assume that P(X = −3) = 0.

Exercise 6.3.6

Random variables with the same cumulative distribution function are not necessarily equal as ran-
dom variables, because the probability mass sitting at each point on the real line can come from
different ω’s.
For example, consider the two-fair-coin-flip experiment and let X be the number of heads. Find
another random variable Y which is not equal to X but which has the same distribution as X.

96



6.3.3 Joint distributions

The distribution of a random variable is sometimes its called its marginal distribution, with the term marginal
emphasizing that distribution includes information only about a single random variable. If we are interested
in two random variables X and Y, it is often important to consider their joint distribution, which captures
probabilistic information about where the pair (X, Y) falls in R2.

Definition 6.3.3

If X and Y are two random variables defined on the same probability space, then the joint distribu-
tion of X and Y is the measure on R2 which assigns to each set A ⊂ R2 the value P((X, Y) ∈ A).

We can find the probability mass function of (X, Y) by (i) finding all of the pairs (x, y) ∈ R2 with the property
that the event {X = x}∩ {Y = y} has positive probability, and (ii) finding the probability of each such event.

Example 6.3.1

Consider the two-fair-coin-flip experiment, and let X1 be the number of heads in the first flip and X2
the number of heads in the second flip. Let Y1 be the number of tails in the first flip.
Show that X1, X2, and Y1 all have the same marginal distributions and but that (X1, X2) and (X1, Y1)
have different joint distributions.

The marginal distributions of two random variables may be recovered from their joint distribution.

Exercise 6.3.7

Consider a computer program which rolls two virtual
dice and returns roll results with probabilities shown in
the table.
What is the probability that Die 1 shows 4?

1 2 3 4 5 6

1 1
36

2
36

1
36

1
36

3
36

1
36

2 1
72

1
36

1
72

1
36

1
36

1
36

3 1
36

1
72

1
72

1
72

1
36

2
36

4 1
72

1
72

1
72

1
36

1
36

1
36

5 2
36

1
36

1
36

1
36

1
36

1
36

6 1
36

1
36

1
72

1
36

1
36

1
72

D
ie

2

Die 1

97



6.4 Conditional probability

6.4.1 Conditional probability measures

One of the most important goals of modeling random phenomena is to account for partial information. We
often discover something about the outcome of an experiment before we know the outcome exactly. For
example, when we flip a fair coin twice, we see the result of the first flip before we see the result of the second
flip, and we would like to define a new probability measure which reflects this intermediate knowledge. We
call this a conditional probability measure.

Suppose we observe that the first of two flips is a tail. Then all of the ω’s which are incompatible with
this observation should receive a probability of zero under our conditional probability measure. Since we
have no new information about the remaining ω’s, it makes sense to keep their probabilities in the same
proportions as in the original probability measure.

Figure 6.3 Consider the event E that the first flip is a tail. The conditional probability mass
function m̃ given E assigns probability mass 1

2 to each of the ω’s in E.

These two observations are sufficient to determine the conditional probability measure. In other words, to
condition on an event E, we set the masses at elements of Ec to 0 and multiply the amount of mass at each
point in E by 1/P(E) to get the total mass up to 1 without changing the proportions:

98



Definition 6.4.1

Given a probability space (Ω,P) and an event E ⊂ Ω whose probability is positive, the conditional
probability mass function given E, written as ω 7→ m(ω | E) is defined by

m(ω | E) =

{
m(ω)
P(E) if ω ∈ E

0 otherwise.

The conditional probability measure given E is the measure associated toω 7→ m(ω | E): for all events
F, we have

P(F | E) =
P(F ∩ E)
P(E)

. (6.4.1)

Exercise 6.4.1

Two objects are submerged in a deep and murky body of water. The objects are chosen to be both
positively buoyant*

* An object
with positive
buoyancy floats
and an object
with negative
buoyancy sinks

with probability 1
4 , both are negatively buoyant with probability 1

4 , and with
probability 1

2 the objects have opposite buoyancy. The objects, if they float, rise in the water at differ-
ent rates, but they are visually indistinguishable.
After the objects are released, an observer sees one of them emerge at the water’s surface. What is
the conditional probability, given the observed information, that the second object will emerge?

One reason that conditional probabilities play such an important role in the study of probability is that in
many scenarios they are more fundamental than the probability measure on Ω.

Example 6.4.1

Consider the following experiment: we roll a die, and if it shows 2 or less we select Urn A, and
otherwise we select Urn B. Next, we draw a ball uniformly at random from the selected urn. Urn A
contains one red and one blue ball, while urn B contains 3 blue balls and one red ball.
Find a probability space Ω which models this experiment, find a pair of events E and F such that
P(E | F) = 3

4 .

Exercise 6.4.2

Consider three random variables X1, X2, and X3, each of which is equal to 1 with probability 0.6 and
to 0 with probability 0.4. These random variables are not necessarily independent.

(i) Find the greatest possible value of the event X1 + X2 + X3 = 0.

(ii) Find the least possible value of the event X1 + X2 + X3 = 0.

99



6.4.2 Bayes’ theorem

Bayes’ theorem tells us how to update beliefs in light of new evidence. It relates the conditional probabilities
P(A | E) and P(E | A):

P(A | E) =
P(E | A)P(A)

P(E)
=

P(E | A)P(A)

P(E | A)P(A) + P(E | Ac)P(Ac)
.

The last step follows from writing out P(E) as P(E ∩ A) + P(E ∩ Ac).

Bayes’ theorem has many applications to everyday life, some intuitive and others counterintuitive.

Example 6.4.2

Suppose you’re 90% sure that your package was delivered today and 75% sure that if it was delivered
it would be on your door step rather than tucked away in your mailbox. When you arrive at home
and do not see your package right away, what is the conditional probability—given the observed
information—that you’ll find it in your mailbox?

Exercise 6.4.3

Suppose a disease has 0.1% prevalence in the population and has a test with 90% reliability. A random
selected person is tested for the disease and tests positive. What is the conditional probability that
the person has the disease, given the positive test result?

6.4.3 Independence

In the context of a random experiment, two positive-probability events E and F are independent if knowl-
edge of the occurrence of one of the events gives no information about the occurrence of the other event. In
other words, E and F are independent if the probability of E is the same as the conditional probability of E
given F, and vice versa. In other words, E and F are independent if

P(E) =
P(E ∩ F)
P(F)

and P(F) =
P(F ∩ E)
P(E)

.

Both of these equations rearrange to
P(E ∩ F) = P(E)P(F).

This equation is clearly symmetric in E and F, and it does not require that E and F have positive probability,
so we take it as our fundamental independence equation for two events:

Definition 6.4.2: Independence

If (Ω,P) is a probability space, then two events E and F are said to be independent if

P(E ∩ F) = P(E)P(F).

100



If we want to check whether two positive-probability events are independent, we may check any one of the
equations P(E ∩ F) = P(E)P(F) or P(E) = P(E∩F)

P(F) or P(F) = P(F∩E)
P(E) , since they are all equivalent.

Exercise 6.4.4

Let X be the result of a six-sided die roll. Consider the following events.

A = {X is even}
B = {X is odd}
C = {X ≤ 4}

Are events A and B independent? Are events A and C independent?

We say that two random variables X and Y are independent if the every pair of events of the form {X ∈ A}
and {Y ∈ B} are independent, where A ⊂ R and B ⊂ R.

Exercise 6.4.5

Suppose that Ω = {(H, H), (H, T), (T, H), (T, T)} and P is the uniform probability measure on Ω. Let X1
be the number of heads in the first flip and let X2 be the number of heads in the second flip. Show
that X1 and X2 are independent.

Directly showing that random variables are independent can be tedious, because there are many events to
check. However, there is a general way to construct Ω to get independent random variables. The idea is to
build Ω as a rectangle:

Theorem 6.4.1: Product measure

Suppose that (Ω1,P1) and (Ω2,P2) are probability
spaces with associated probability mass functions m1
and m2. Define a probability space Ω by defining

Ω = Ω1 ×Ω2

and
m((ω1,ω2)) = m1(ω1)m2(ω2)

for every (ω1,ω2) ∈ Ω1 × Ω2. Let P be the probability measure with probability mass function m.
Then the random variables X1((ω1,ω2)) = ω1 and X2((ω1,ω2)) = ω2 are independent.
We call P a product measure and (Ω,P) a product space.

We say that a collection of random variables (X1, X2, . . . , Xn) is independent if

P({X1 ∈ A1} ∩ {X2 ∈ A2} ∩ · · · ∩ {Xn ∈ An}) = P(X1 ∈ A1)P(X2 ∈ A2) · · ·P(Xn ∈ An)

for any events A1, A2, . . . , An.

We may extend the product measure construction to achieve as many independent random variables as
desired: for three random variables we let Ω be cube-shaped (that is, Ω = Ω1 ×Ω2 ×Ω3), and so on.*

* These are not
possible to di-
rectly visualize
in dimensions
higher than 3,
but there is no
problem with
making longer
tuples

101



Exercise 6.4.6

Define a probability space Ω and 10 independent random variables which are uniformly distributed
on {1, 2, 3, 4, 5, 6}.

The product measure construction can be extended further still to give a supply of infinitely many indepen-
dent random variables. The idea is use a space of the form Ω = Ω1 × Ω2 × Ω3 · · · (whose elements are
infinite tuples ω = (ω1,ω2,ω3, . . .)) and define a measure which makes the random variables Xn(ω) = ωn
independent. We will not need the details of this construction, although we will use it indirectly when we
discuss infinite sequences of independent random variables.

We say that a collection of events is independent if the corresponding indicator random variables are inde-
pendent. Independence for three or more events is more subtle than independence for two events:

Exercise 6.4.7

Three events can be pairwise independent without being independent: Suppose that ω is selected
uniformly at random from the set

Ω = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

and define A to be the event that the first entry is 1, B to be the event that the second entry is 1, and
C to be the event that the third entry is 1. For example, if ω = (0, 1, 1), then B and C occurred but A
did not.
Show that A and B are independent, that A and C are independent, and that B and C are independent.
Show that the equation P(A ∩ B ∩ C) = P(A)P(B)P(C) does not hold and that the triple of events is
therefore not independent.

Independence satisfies many basic relationships suggested by the intuition that random variables are inde-
pendent if they are computed from separate streams of randomness. For example, if X1, X2, X3, X4, X5 are
independent random variables, then X1 + X2 + X3 and X2

4 + X2
5 are independent of each other.

Exercise 6.4.8

Consider as sequence of 8 independent coin flips. Show that the probability of getting at least one
pair of consecutive heads is at least 1 − (3/4)4.

6.5 Expectation and Variance

6.5.1 Expectation

Sometimes we want to distill a random variable’s distribution down to a single (non-random) number. For
example, consider the height of an individual selected uniformly at random from a given population. This is
a random variable, and communicating its distribution would involve communicating the heights of every
person in the population. However, we may summarize the distribution by reporting an average height: we

102



add up the heights of the people in the population and divide by the number of people.

If the random individual were selected according to some non-uniform probability distribution on the
population, then it would make sense to calculate a weighted average rather than a straight average. The
probability-weighted average of the values of a random variable is called its expectation.

Definition 6.5.1

The expectation E[X] (or mean µX) of a random variable X is the probability-weighted average of X:

E[X] = ∑
ω∈Ω

X(ω)m(ω)

For example, the expected number of heads in two fair coin flips is

E[X] = 1
4 · 2 + 1

4 · 1 + 1
4 · 1 + 1

4 · 0 = 1.

There are two common ways of interpreting expected value.

1. The expectation E[X] may be thought of as the value of a random game with payout X. According
to this interpretation, you should be willing to pay anything less than $1 to play the game where you
get a dollar for each head in two fair coin flips. For more than $1 you should be unwilling to play the
game, and at $1 you should be indifferent.

2. The second way of thinking about expected value is as a long-run average. If you play the dollar-per-
head two-coin-flip game a very large number of times, then your average payout per play is very likely
to be close to $1.

We can test this second interpretation out:

Exercise 6.5.1

Use the expression*
In Julia you
can drop the
brackets in an
array compre-
hension if you
are substitut-
ing the array
directly into a
function. This
saves time and
memory be-
cause it skips
generating the
array.

mean(rand(0:1) + rand(0:1) for k=1:10^6) to play the dollar-per-head two-
coin-flip game a million times and calculate the average payout in those milion runs.
How close to 1 is the result typically? Choose the best answer.

(a) Around 0.1

(b) Around 0.01

(c) Around 0.0001

(d) Around 0.0000001

We will see that this second interpretation is actually a theorem in probability, called the law of large num-
bers. In the meantime, however, this interpretation gives us a useful tool for investigation: if a random
variable is easy to simulate, then we can sample from it many times and calculate the average of the result-
ing samples. This will not give us the expected value exactly, but we can get as close as desired by using
sufficiently many samples. This is called the Monte Carlo method of approximating the expectation of a
random variable.

103



Exercise 6.5.2

Use a Monte Carlo simulation to estimate the expectation of X/Y, where X and Y are independent
die rolls.

Exercise 6.5.3

Explain why E[X] ≤ E[Y] if X(ω) ≤ Y(ω) for all ω ∈ Ω.

Although the definition E[X] = ∑ω∈Ω X(ω)m(ω) involves the probability space Ω, we can also write a
formula for expectation in terms of the probability mass function of the distribution of X:

Theorem 6.5.1

The expectation of a discrete random variable X is equal to

E[X] = ∑
x∈R

xP(X = x).

Proof

Let’s consider an example first. Suppose Ω = {1, 2, 3} with probability mass function m satisfying
m(1) = 1/6, m(2) = 2/6, and m(3) = 3/6. Suppose X(1) = 5, X(2) = 5 and X(3) = 7. Then

E[X] =
1
6
· 5 +

2
6
· 5 +

3
6
· 7.

We can group the first two terms together to get

E[X] =

(
1
6
+

2
6

)
· 5 +

3
6
· 7.

This expression is the one we would get if we wrote out

∑
x∈R

xP(X = x).

Therefore, we can see that the two sides are the same.
Let’s write this idea down in general form. We group terms on the right-hand side in the formula
E[X] = ∑ω∈Ω X(ω)m(ω) according to the value of X(ω):

E[X] = ∑
x∈R

∑
ω∈Ω : X(ω)=x

X(ω)m(ω).

Then we can replace X(ω) with x and pull it out of the inside sum to get

E[X] = ∑
x∈R

x ∑
ω∈Ω : X(ω)=x

m(ω).

Since ∑ω∈Ω : X(ω)=x m(ω) is equal to P(X = x), we get

E[X] = ∑
x∈R

xP(X = x),

as desired.

104



Exercise 6.5.4

The expectation of a random variable need not be finite or even well-defined. Show that the expec-
tation of the random variable which assigns a probability mass of 2−n to the point 2n (for all n ≥ 1)
is not finite.
Consider a random variable X whose distribution assigns a probability mass of 2−|n|−1 to each point
2n for n ≥ 1 and a probability mass of 2−|n|−1 to −2n for each n ≤ −1. Show that E[X] is not well-
defined. (Note: a sum ∑x∈R f (x) is not defined if ∑x∈R : f (x)>0 f (x) and ∑x∈R : f (x)<0 f (x) are equal
to ∞ and −∞, respectively.)

Theorem 6.5.2

If f : R2 → R, and X and Y are discrete random variables defined on the same probability space,
then

E[ f (X, Y)] = ∑
(x,y)∈R2

f (x, y)P(X = x and Y = y).

Proof

We use the same idea we used in the proof of Theorem 6.5.1: group terms in the definition of expec-
tation according the value of the pair (X(ω), Y(ω)). We get

E[ f (X, Y)] = ∑
ω∈Ω

f (X(ω), Y(ω))m(ω)

= ∑
(x,y)∈R2

∑
ω∈Ω :

X(ω)=x and Y(ω)=y

f (X(ω), Y(ω))m(ω)

= ∑
(x,y)∈R2

f (x, y)P(X = x and Y = y).

6.5.2 Linearity of expectation

In this section, we will develop a powerful tool for computing expected values and manipulating expressions
involving expectations.

Example 6.5.1

Each of your n coworkers left their new (one-size-fits-all) company t-shirt on a table in the break
room. Each person grabs a shirt at random on their way home. What is the expected number of
employees who grab the same shirt they left on the table?

(i) Solve this problem in the special cases n = 2 and n = 3.

(ii) Note that if we define Xk to be the indicator of the event that the kth person collects the same
shirt they left, then the total number of coworkers who collected the same shirt is X1 + X2 +
· · ·+ Xn. Show that the answer from (i) is the same as E[X1] +E[X2] + · · ·+E[Xn].

(iii) Assuming that the principle you discovered in (ii) holds in general, write down a formula in
terms of n for the answer to the general question.

105



The surprising aspect of Example 6.5.1 is that the distribution of X1 + X2 + · · ·+ Xn depends on the joint
distribution of the random variables X1, . . . , Xn, while the value ofE[X1] +E[X2] + · · ·+E[Xn]depends only
on the marginal distributions of these random variables. Nevertheless, it is indeed the case that expectation
distributes across addition.

Theorem 6.5.3: Linearity of expectation

Let c ∈ R. For all random variables X and Y, we have

E[X + Y] = E[X] +E[Y] and E[cX] = cE[X].

Example 6.5.2

Shuffle a standard 52-card deck, and let X be the number of consecutive pairs of cards in the deck
which are both red. Find E[X].
Write some code to simulate this experiment and confirm that your answer is correct. Hint: store the
deck of undrawn cards as a Set, and pop! cards from it as you draw. You can draw a random element
from a set S using rand(S).

Example 6.5.3

Show that if X and Y are independent discrete random variables, then E[XY] = E[X]E[Y]. Show
that this equation does not hold in general if X and Y are not assumed to be independent.

Solution

We have

E[XY] = ∑
ω∈Ω

X(ω)Y(ω)m(ω)

= ∑
(x,y)∈R2

∑
ω∈Ω :

X(ω)=x and Y(ω)=y

xym(ω)

=

(
∑

x∈R
xP(X = x)

)(
∑

y∈R
yP(Y = y)

)
= E[X]E[Y].

If X and Y are not independent, then E[XY] 6= E[X]E[Y] is the typical situation. For example, let
X be any mean-zero random variable (other than the random variable which is always zero) and let
Y = X. Then E[XY] = E[X2] > 0, and E[X]E[Y] = 0 · 0 = 0.

6.5.3 Variance

The expectation of a random variable gives us some coarse information about where on the number line the
random variable’s probability mass is located. The variance gives us some information about how widely the
probability mass is spread around its mean. A random variable whose distribution is highly concentrated

106



about its mean will have a small variance, and a random variable which is likely to be very far from its mean
will have a large variance. We define the variance of a random variable X to be the average squared*

* Why square?
To ensure, in
a smooth way,
that both neg-
ative and posi-
tive deviations
contribute posi-
tively.

distance
from X to its mean:

Definition 6.5.2: Variance

The variance of a random variable X is defined to be

Var X = E[(X −E[X])2].

The standard deviation σX of X is the square root of the variance:

σ(X) =
√

Var X.

Exercise 6.5.5

Consider a random variable which is obtained by making a
selection from the list 0 1

[0.245, 0.874, 0.998, 0.567, 0.482]

uniformly at random. Make a rough estimate of the mean and variance of this random variable just
from looking at the number line. Then use Julia to calculate the mean and variance exactly to see
how close your estimates were.
Note: don’t use Julia’s built-in var function; that will give you the correct answer to a different ques-
tion, as we will see when we study statistics.

Exercise 6.5.6

Consider the following game. We begin by picking a number in {0, 1
1000 , 2

1000 , . . . , 1000
1000} with uniform

probability. If that number is less than 1, we pick another number from the same distribution and add
it to the first. We repeat this procedure until the running sum exceeds 1. Let X be the random variable
whose value is the number of draws needed to end the game. Use a simulation to approximate the
expected value and variance of X. Include your code in your answer as well as some discussion of
your results.
Tips: rand(0:1000)/1000 returns a sample from the desired distribution. Also, it’s a good idea to
wrap a single run of the game into a zero-argument function.

We can use linearity of expectation to rewrite the formula for variance in a simpler form:

Var X = E[X2 − 2XE[X] +E[X]2]

= E[X2]− 2E[XE[X]] +E[X]2

= E[X2]− 2E[X]2 +E[X]2

= E[X2]−E[X]2.

We can use this formula to show how variance interacts with linear operations:

107



Exercise 6.5.7

Show that variance satisfies the properties{
Var(aX) = a2 Var X, for all random variables X and real numbers a

Var(X + Y) =Var(X) + Var(Y), if X and Y are independent random variables

Exercise 6.5.8

Consider the distribution which assigns a probability mass of c
n3 to each integer point n ≥ 1, where

c is equal to the reciprocal of ∑∞
n=1

1
n3 .

Show that this distribution has a finite mean but not a finite variance.

6.5.4 Covariance

Just as mean and variance are summary statistics for the distribution of a single random variable, covariance
is useful for summarizing how (X, Y) are jointly distributed.

The covariance of two random variables X and Y is defined to be the expected product of their deviations
from their respective means:

Cov(X, Y) = E[(X −E[X])(Y −E[Y])].

The covariance of two independent random variables is zero, because the expectation distributes across the
product on the right-hand side in that case. Roughly speaking, X and Y tend to deviate from their means
positively or negatively together, then their covariance is positive. If they tend to deviate oppositely (that is,
X is above its mean and Y is below, or vice versa), then their covariance is negative.

Exercise 6.5.9

Identify each of the following joint distributions as representing positive covariance, zero covariance,
or negative covariance. The size of a dot at (x, y) represents the probability that X = x and Y = y.

x

y

x

y

x

y

108



Exercise 6.5.10

Does Cov(X, Y) = 0 imply that X and Y are independent?
Hint: consider Exercise 6.5.9. Alternatively, consider a random variable X which is uniformly dis-
tributed on {1, 2, 3} and an independent*

* This phras-
ing should be
taken to mean
that the pair
(X, Z) is inde-
pendent

random variable Z which is uniformly distributed on
{−1, 1}. Set Y = ZX. Consider the pair (X, Y).

Exercise 6.5.11

The correlation of two random variables X and Y is defined to be their covariance normalized by the
product of their standard deviations:

Corr(X, Y) =
Cov(X, Y)
σ(X)σ(Y)

In this problem, we will show that the correlation of two random variables is always between −1 and
1. Let µX = E[X], and let µY = E[Y].

(i) Consider the following quadratic polynomial in t:

E[((X − µX) + (Y − µY)t)2] = E[(X − µX)
2] + 2tE[(X − µX)(Y − µY)] + t2E[(Y − µY)

2]

where t is a variable.

(ii) Explain why this polynomial is nonnegative for all t ∈ R.

(iii) Recall that a polynomial at2 + bt + c is nonnegative for all t if and only if the discriminant
b2 − 4ac is nonpositive (this follows from the quadratic formula). Use this fact to show that

E[(X − µX)(Y − µY)]
2 ≤ Var X Var Y.

(iv) Conclude that −1 ≤ Corr(X, Y) ≤ 1.

Exercise 6.5.12

Show that
Var(X1 + X2 + · · ·+ Xn) =

n

∑
k=1

Var Xk + 2 ∑
(i,j) : 1≤i<j≤n

Cov(Xi, Xj).

Exercise 6.5.13: Mean and variance of the sample mean

Suppose that X1, . . . , Xn are independent random variables with the same distribution. Find the
mean and variance of

X1 + · · ·+ Xn

n

109



Exercise 6.5.14

The covariance matrix of a vector X = [X1, . . . , Xn] of random variables defined on the same proba-
bility space is defined to be the matrix Σ whose (i, j)th entry is equal to Cov(Xi, Xj).
Show that Σ = E[XX′] if all of the random variables X1, . . . , Xn have mean zero. (Note: expectation
operations on a matrix or vector of random variables entry-by-entry.)

6.6 Continuous distributions

Not every random phenomenon is ideally modeled using a discrete probability space. For example, we will
see that the study of discrete distributions leads us to the Gaussian distribution, which smooths its probability
mass out across the whole real number line, with most of the mass near the origin and less as you move out
toward −∞ or +∞.

0−1 1−2 2

Figure 6.4 The Gaussian distribution spreads its probability mass out across the real number
line. There is no single point where a positive amount of probability mass is concentrated.

We won’t be able to work with
such distributions using probabil-
ity mass functions, since the func-
tion which maps each point to the
amount of probability mass at that
point is the zero function. How-
ever, calculus provides us with a
smooth way of specifying where
stuff is on the number line and
how to total it up: integration. We
can define a function f which is
larger where there’s more prob-
ability mass and smaller where
there’s less, and we can calculate
probabilities by integrating f .

xa b

f (x)

ν([a, b])

Figure 6.5 The probability measure ν associated with a density f as-
signs the measure

∫ b
a f (x)dx to each interval [a, b]

The simplest possible choice for f is the function which is 1 on [0, 1] and 0 elsewhere. In this case, the
probability mass associated with a set E ⊂ [0, 1] is the total length*

* All the sub-
sets of [0, 1]
that we will
ever care about
have a well-
defined no-
tion of length.
Some exotic
sets are ex-
cluded by this
caveat, but we
can safely ig-
nore them.

of E. In higher dimensions, Ω = [0, 1]2

with the probability measure P(E) = area(E) gives us a probability space, as does Ω = [0, 1]3 with the
probability measure P(E) = volume(E).

110



Exercise 6.6.1

Consider the probability space Ω = [0, 1]2 with the area probability measure. Show that if
X((ω1,ω2)) = ω1 and Y((ω1,ω2)) = ω2, then the events {X ∈ I} and {Y ∈ J} are independent
for any intervals I ⊂ [0, 1] and J ⊂ [0, 1].

Just as a function we integrate to find total mass is called a mass density function, the function we integrate
to find total probability is called a probability density function. We refer to f as a density because its value
at a point may be interpreted as limit as ε → 0 of the probability mass in the ball of radius ε around ω

divided by the volume (or area/length) of that ball.

Definition 6.6.1

Suppose that Ω ⊂ Rn for some n ≥ 1, and suppose that f : Ω → [0, ∞) has the property that* * We’ll denote
the volume
differential
in Rn by dV,
but note that if
n = 2 it would
be more stan-
dard to call it
the area dif-
ferential and
write it as dA
or dx dy, and if
n = 1 it would
just be dx, the
length differen-
tial.

∫
Ω

f dV = 1. We call f a probability density function, abbreviated PDF, and we define

P(E) =
∫

E
f dV

for events E ⊂ Ω. We call (Ω,P) a continuous probability space.

Example 6.6.1

Consider the probability space with Ω = [0, 1] and probability measure given by the density f (x) =
2x for x ∈ [0, 1]. Find P([ 1

2 , 1]).

If f is constant on Ω, then we call f the uniform measure on Ω. Note that this requires that Ω have finite
volume.

All of the tools we developed for discrete probability spaces have analogues for continuous probability
spaces. The main idea is to replace sums with integrals, and many of the definitions transfer over with no
change. Let’s briefly summarize and follow up with some exercises.

1. The distribution of a continuous random variable X is the measure A 7→ P(X ∈ A) on R.

2. The cumulative distribution function FX of a continuous random variable X is defined by FX(x) =
P(X ≤ x) for all x ∈ R.

3. The joint distribution of two continuous random variables X and Y is the measure A 7→ P((X, Y) ∈ A)
on R2.

4. If (X, Y) is a continuous pair of random variables with joint density fX,Y : R2 → R, then the conditional
distribution of X given the event {Y = y} has density fX |Y=y defined by

fX | {Y=y}(x) =
fX,Y(x, y)

fY(y)
,

where fY(y) =
∫ ∞

−∞
f (x, y)dx is the pdf of Y

5. Two continuous random variables X and Y are independent if P((X, Y) ∈ A × B) = P(X ∈ A)P(Y ∈
B) for all A ⊂ R and B ⊂ R. This is true if and only if (X, Y) has density (x, y) 7→ fX(x) fY(y), where
fX and fY are the densities of X and Y, respectively.

111



6. The expectation of a continuous random variable X defined on a probability space (Ω,P)

E[X] =
∫
Ω

X(ω) f (ω)dω,

where f is P’s density. The expectation is also given by

E[X] =
∫
R

x fX(x)dx,

where fX is the density of the distribution of X.

Example 6.6.2

Suppose that f is the function which returns 2 for any point in the triangle Ω with vertices (0, 0),
(1, 0), and (0, 1) and otherwise returns 0. Suppose that (X, Y) has density f . Find the conditional
density of X given {Y = y}, where y is a number between and 0 and 1.

Exercise 6.6.2

Find the expectation of a random variable whose density is f (x) = e−x1x∈[0,∞).

Exercise 6.6.3

Show that the cumulative distribution function of a continuous random variable is increasing and
continuous.
(Note: if f is a nonnegative-valued function on R satisfying

∫
R f = 1, then limε→0

∫ x+ε
x f (t)dt = 0

for all x ∈ R.)

Exercise 6.6.4

Suppose that f is a density function on R and that F is the cumulative distribution function of the
associated probability measure on R. Show that F is differentiable and that F′ = f wherever f is
continuous.
Use this result to show that if U is uniformly distributed on [0, 1], then U2 has density function
f (x) = 1

2
√

x on (0, 1].

112



Exercise 6.6.5

Given a cumulative distribution function F, let us define the generalized inverse F−1 : [0, 1] →
[−∞, ∞] so that F−1(u) is the left endpoint of the interval of points which are mapped by F to a value
which is greater than or equal to u.
The generalized inverse is like the inverse function of F, except that if the graph of F has a vertical
jump somewhere, then all of the y values spanned by the jump get mapped by F−1 to the x-value of
the jump, and if the graph of F is flat over a stretch of x-values, then the corresponding y-value gets
mapped by F−1 back to the left endpoint of the interval of x values.
The remarkably useful inverse CDF trick gives us a way of sampling from any distribution whose
CDF we can compute a generalized inverse for: it says that if U is uniformly distributed on [0, 1], then
the cumulative distribution of X = F−1(U) is F.

(i) Confirm that if the graph of F has a jump from (x, y1) to (x, y2), then the probability of the
event {X = x} is indeed y2 − y1.

(ii) Show that the event {X ≤ t} has the same probability as the event {U ≤ F(t)}. Conclude
that F is in fact the CDF of X. Hint: draw a figure showing the graph of F together with U
somewhere on the y-axis and X in the corresponding location on the x-axis.

(iii) Write a Julia function which samples from the distribution whose density function is 2x10≤x≤1.

So far we have discussed probability spaces which are spec-
ified with the help of either a probability mass function or
a probability density function. These are not the only possi-
bilities. For example, if we produce an infinite sequence of
independent bits B1, B2, . . ., then the distribution of B1/3 +
B2/32 + B3/33 + · · · has CDF as shown in Figure 6.6. This
function doesn’t have jumps, so it does not arise from cumu-
latively summing a mass function. But it does all of its in-
creasing on a set of total length zero (in other words, there is
a set of total length 1 on which the derivative of this function
is zero), so it also does not arise from cumulatively integrat-
ing a density function.
In general, a person may propose a probability space by
specifying any set Ω, a collection of subsets of Ω which sup-
ports taking countable unions, intersections, and comple-
ments, and a function P defined on that collection of subsets.
We require that certain properties are satisfied:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 6.6 The CDF of the uniform mea-
sure on the Cantor set.

Definition 6.6.2: Probability space: the general definition

Suppose that Ω is a set and P is a function defined on a collection of subsets of Ω (called events). If
1. P(Ω) = 1,

2. P(E) ≥ 0 for all events E, and

3. P(E1 ∪ E2 ∪ · · · ) = P(E1) + P(E2) + · · · for all sequences of pairwise disjoint events E1, E2, . . .,
then we say that P is a probability measure on Ω, and that Ω together with the given collection of
events and the measure P is a probability space.

113



6.7 Conditional expectation

The conditional expectation of X given {Y = y} is defined to be the expectation of X calculated with respect
to its conditional distribution given {Y = y}. For example, if X and Y are continuous random variables,
then

E[X |Y = y] =
∫ ∞

−∞
x fX | {Y=y}(x)dx.

Example 6.7.1

Suppose that f is the function which returns 2 for any point in the triangle with vertices (0, 0), (1, 0),
and (0, 1) and otherwise returns 0. If (X, Y) has joint pdf f , then the conditional density of X given
{Y = y} is the mean of the uniform distribution on the segment [y, 1], which is 1+y

2 .

The conditional variance of X given {Y = y} is defined to be the variance of X with respect to its conditional
distribution of X given {Y = y}.

Example 6.7.2

Continuing with Example 6.7.1, the conditional density of X given {Y = y} is the variance of the
uniform distribution on the segment [y, 1], which is (1−y)2

12 .

We can regard the conditional expectation of X given Y as a random variable, denoted E[X |Y] by coming
up with a formula for E[X | {Y = y}] and then substituting Y for y. And likewise for conditional variance.

Example 6.7.3

Continuing further with Example 6.7.1, we have E[X |Y] = 1+Y
2 and Var[X |Y] = (1−Y)2

12 .

Exercise 6.7.1

Find the conditional expectation of X given Y where the pair (X, Y) has density x + y on [0, 1]2.

Conditional expectation can be helpful for calculating expectations, because of the tower law.

Theorem 6.7.1: Tower law of conditional expectation

If X and Y are random variables defined on a probability space, then

E[E[X |Y]] = E[X].

114



Exercise 6.7.2

Consider a particle which splits into two particles with probability p ∈ (0, 1) at time t = 1. At time
t = 2, each extant particle splits into two particles independently with probability p.
Find the expected number of particles extant just after time t = 2. Hint: define Y to be 1 or 0 depend-
ing on whether the particle splits at time t = 1, and use the tower law with Y.

6.8 Common distributions

6.8.1 Bernoulli distribution

Suppose we conduct an experiment with exactly two outcomes, which we will encode as 0 and 1. For ex-
ample, consider the following scenarios

• You flip a coin and it comes up heads (1) or tails (0)

• Someone’s position on a political issue is either positive (1) or negative (0)

• Someone can either be healthy (1) or sick (0)

• In an online survey, a user answers either true (1) or false (0)

The distribution of the result of such an experiment is governed by a single parameter p ∈ [0, 1], which is the
probability of the outcome encoded as 1. The probability of the other outcome is 1 − p, since one of the two
outcomes must occur. It is customary to think of the outcomes 1 and 0 as success and failure, respectively,
in which case p may be referred to as the success probability. A sequence of independent Bernoulli random
variables with the same success probability p is referred to as a sequence of Bernoulli trials.

We write X ∼ Bernoulli(p) to mean that X is Bernoulli distributed with success probability p. The expected
value of a Bernoulli(p) random variable X is

E[X] = ∑
x∈{1,0}

xpX(x)

= (0)(1 − p) + (1)(p)
= p,

and its variance is

E[X2]−E[X]2 = p − p2 = p(1 − p).

Exercise 6.8.1

Consider a sum X of 10 independent Bernoulli random variables with success probability p = 0.36.

(i) Find the mean and variance of X.

(ii) Find the value of k ∈ Z which maximizes P(X = k).
Hint: write down an expression for P(X = k) and then use Julia to find its maximum value.

115



6.8.2 The binomial distribution

Example 6.8.1

What is the probability of rolling exactly 18 sixes in 100 independent rolls of a fair die?

Generally, n independent trials with success probability p will lead to k total successes with probability(
n
k

)
pk(1 − p)n−k.

This distribution is called the binomial distribution and is denoted Binomial(n, p).

Exercise 6.8.2

Stirling’s approximation allows us to more easily manipulate factorial expressions algebraically. It
says that

lim
n→∞

n!
(n/e)n

√
2πn

= 1.

Suppose that n is even and that p = 1
2 . Use Stirling’s approximation to show that

√
n times the prob-

ability mass assigned to 0 by the distribution Binomial(n, p) converges to a finite, positive constant
as n → ∞. Find the value of this constant.

6.8.3 Geometric distribution

The geometric distribution with parameter p ∈ (0, 1] is the distribution of the index of the first success in a
sequence of independent Bernoulli trials.

The probability that the first success occurs on trial k is equal to the probability that the first k − 1 trials
fail and the kth trial succeeds. The probability of this event is p(1 − p)k−1. Therefore, the probability mass
function of the geometric distribution is

m(k) = p(1 − p)k−1.

Exercise 6.8.3

Use Monte Carlo to find the mean and variance of the geometric distribution with parameter p = 1/3.
Hint: you can sample from the geometric distribution using the definition: count the number of times
you have to run rand() until you get a result less than 1

3 .

We can use Taylor series to work out exact expressions for the mean and variance. The mean is equal to

p + 2p(1 − p) + 3p(1 − p)2 + 4p(1 − p)3 + · · · ,

and we recognize all the terms except the first as −p times the derivative of

(1 − p)2 + (1 − p)3 + (1 − p)4 + · · ·

116



By the formula for the sum of a geometric series, this expression is equal to

(1 − p)2

1 − (1 − p)
,

and so the mean of the geometric distribution is

p − p
d

dp

(
(1 − p)2

p

)
=

1
p

.

The variance can be worked in a similar but more tedious way, and the result is

Var X =
1 − p

p2 .

These expressions do indeed evaluate to 3 and 6, respectively, when p = 1
3 is substituted.

Exercise 6.8.4

Suppose that X is geometric with success probability 1
2 , and consider the random variable Y = 2X .

What is the expected value of Y?

Exercise 6.8.5

Explain why ceil(log(rand())/log(1-p)) returns a random variable whose distribution is geometric
with success probability p.

Exercise 6.8.6

Every time you visit your favorite restaurant, you choose a meal uniformly at random from the 10
available meals. How many visits will it take on average before you’ve tried all 10 meals?
Hint: try letting Xk be the number of visits from the time you try the kth unique meal to the time
when you try the (k + 1)st unique meal.

6.8.4 Poisson distribution

The Poisson distribution arises as the number of 1’s observed in a large number of low-probability Bernoulli
random variables. This situation models a surprising variety of real-world scenarios:

1. The number of calls received at a call center in a given hour. Each potential caller has a low probability
of calling during that particular hour, and there are many potential callers who are acting indepen-
dently.

2. The number of meteorites which strike earth in a given year. There are many meteorites which might
hit earth, and each one does so with low probability.

3. The number of mutations on a strand of DNA. Each mutation occurs with low probability, but there
are many potential sites for a mutation.

4. The number of claims filed with an insurance company in a given month. There are many customers,
and they file claims independently and with low probability each month.

117



Exercise 6.8.7

(i) Find the expected value of S, where S is a sum of 1000 independent Bernoulli random variables
with success probability p = 3

1000 .

(ii) Find the probability mass function of S. Hint: find an expression representing the probabil-
ity mass at each k from 0 to 1000, and then use Julia to evaluate it. You will need to define
n = big(1000) and p = big(3)/1000 because arbitrary precision arithmetic is required to avoid
overflow issues.

(iii) Compare your results to the probability mass function m(k) = 3k

k! e−3 defined on {0, 1, 2, . . .}.

Inspired by Exercise 6.8.7, we make the following definition:

Definition 6.8.1: Poisson distribution

The Poisson distribution with mean λ is the distribution whose probability mass function is

m(k) =
λk

k!
e−λ.

mλ(k)

k
0 1 2 3 4 5 6 7 8 9 10 11

1

4

λ = 1

λ = 3

λ = 5

Figure 6.7 The probability mass function mλ for λ ∈ {1, 3, 5}

The expression λk

k! e−λ in the definition of the Poisson distribution arises as a limit of the expression(
n
k

)(
λ

n

)k (
1 − λ

n

)n−k
.

In other words, we use a success probability of λ
n so that the expected number of successes remains constant

as n → ∞.

The connection between the Poisson and Bernoulli random variables may be used to obtain the mean and
variance of the Poisson distribution. The average number of successes in n Bernoulli(λ/n) trials is (n)(λ/n) =
λ, by linearity of expectation. Therefore, we expect that the mean of a Poisson random variable with param-

118



eter λ is equal to λ. Similarly, the variance of the number of successes in n Bernoulli(λ/n) trials is equal to
nλ

n

(
1 − λ

n

)
= λ(1 − λ/n). Taking n → ∞, we predict that the variance of a Poisson random variable with

parameter λ is also equal to λ. Both of these predictions are accurate:*
* These can
be calculated
directly from
the probability
mass function
of the Poisson
random vari-
able, but we
will omit this
calculation.
To make the
derivation via
Bernoulli ran-
dom variables
rigorous, we
would need
to show that
mean and vari-
ance respect
the n → ∞
limit we are
taking

Theorem 6.8.1

The mean and variance of a Poisson random variable with parameter λ are λ and λ, respectively.

Exercise 6.8.8

Suppose that the number of typos on a page is a Poisson random variable with mean λ = 1
3 .

(i) Provide an explanation for why the Poisson distribution might be a good approximation for
the distribution of typos on a page.

(ii) Find the probability that a particular page is typo-free.

6.8.5 Exponential distribution

The exponential distribution also emerges as a limit involving Bernoulli random variables: imagine placing
a light bulbs activated by independent Bernoulli(λ/n) random variables at every multiple of 1/n on the
positive real number line. Consider the position X of the leftmost lit bulb. The probability that it occurs to
the right of a point t > 0 is equal to the probability that all of the bntc bulbs to the left remain unlit:

P(X > t) =
(

1 − λ

n

)nt

This probability converges to e−λt as n → ∞.

0 1 2 3 4 5

Definition 6.8.2: Exponential distribution

Let λ > 0. The exponential distribution with parameter λ is the probability measure on R which
assigns mass e−λt to the interval (t, ∞), for all t ≥ 0.
Equivalently, the exponential distribution with parameter λ is the probability measure whose density
is

f (x) = 1x≥0λe−λx

Exercise 6.8.9

Find the mean of the exponential distribution with parameter λ.

119



Exercise 6.8.10

Suppose that X is an exponentially distributed random variable with mean λ. Show that

P(X > s + t | X > t) = P(X > s).

6.8.6 Cauchy distribution

The Cauchy distribution spreads probability mass way out on the real number line.

Definition 6.8.3: Cauchy distribution

The Cauchy distribution is the proba-
bility measure onRwhose density func-
tion is

f (x) =
1
π

1
1 + x2 .

x

f (x) = 1

π(1+x2)

−2 −1 0 1 2

1

2

The amount of probability mass assigned by the Cauchy distribution to the interval (x, ∞) is∫ ∞

x

1
π

1
1 + t2 dt =

π

2
− arctan(x) ≈ 1

x
.

This mass goes to 0 so slowly that the Cauchy distribution doesn’t even have a well-defined mean, let alone
a variance. We say that the Cauchy distribution is heavy-tailed, and we will use it as an example when we
want to study the effects of heavy tails on results like the law of large numbers or the central limit theorem.

Exercise 6.8.11

Show that the mean of the Cauchy distribution is not well-defined.

Exercise 6.8.12

Choose θ uniformly at random from the interval [0,π] and fire a ray from the origin at angle θ with
respect to the positive x-axis. Let (X, 1) be the point where this ray intersects the line y = 1. Show
that X is Cauchy-distributed.

6.8.7 Normal distribution

Because of the central limit theorem, which we will discuss in Section 6.10, the normal distribution plays a
central role in probability and statistics.

120



Definition 6.8.4: Normal distribution

For µ ∈ R and σ ≥ 0, we define the normal distribu-
tion, denoted N (µ,σ), to be the probability measure
on R whose density function is

fµ,σ(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2).

The standard normal distribution is N (0, 1). x

f (x) = 1
√

2π
e−x2/2

−2 −1 0 1 2

1
2

Exercise 6.8.13

Show that if Z is a standard normal random variable and σ > 0, then the distribution of σZ + µ is
N (µ,σ).

Example 6.8.2

In terms of the cumulative distribution function Φ of the standard normal, express the probability
that a normally distributed random variable with mean 1 and variance 3 is between 2 and 4.

If we sum two independent random variables with means µ1 and µ2 and variances σ2
1 and σ2

2, respectively,
then the mean and variance of the resulting sum are µ1 + µ2 and σ2

1 + σ2
2. Remarkably, if the random vari-

ables being summed are normal, then the sum is also normal:

Theorem 6.8.2

If X1 and X2 are independent normal random variables with distributions N (µ1,σ2
1) and N (µ2,σ2

2),
respectively, then the sum X1 + X2 has distribution N (µ1 + µ2,σ2

1 + σ2
2).

Exercise 6.8.14

Suppose that n ≥ 1 and that X1, X2, . . . , Xn are independent standard normal random variables. Find
the distribution of X1+X2+···+Xn√

n .

121



6.8.8 The multivariate normal distribution

If Z = (Z1, Z2, . . . , Zn) is an independent sequence of
standard normal random variables, A is an m × n matrix
of constants, and µ is an m × 1 vector of constants, then
the vector

X = AZ + µ

is said to have multivariate normal distribution.
If Σ is invertible, then the pdf of X is given by

fX(x) =
1√

det(2πΣ)
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
.

Figure 6.8 shows a graph of this density as well as 1000
samples from the distribution of AZ + µ, where A =[

1 1
2

1
2 1

]
and µ =

[
3
3
]
. Figure 6.8 A graph of a multivariable normal

density

Exercise 6.8.15

Show that the covariance matrix of a multivariate normal random vector X = AZ + µ is Σ = AAT

and that its mean is µ.
Note: you may use the following properties: Cov(Y1, Y2 + c) = Cov(Y1, Y2) for any constant c and
any random variables Y1 and Y2, and if Y is an n × p random matrix and M is an m × n matrix of
constants, then E[MY] = ME[Y].

6.9 Law of large numbers

6.9.1 Inequalities

In this section we begin working towards an understanding of the principle that underlies Monte Carlo
methods: why is the mean of a random variable close to an average of many independent samples of the
random variable? Is this always true, and can we say more precisely how close we should expect the sample
average to be to the actual mean of the random variable?

We begin this investigation with a discussion of a two inequalities which relate probabilities and expecta-
tions. This can be helpful because sometimes expectations are much easier to calculate than probabilities,
and these inequalities will help us use those expectation values to draw conclusions about probabilities.

A nonnegative random variable which has a high probability of being very large necessarily has a high
expectation. Therefore, if a random variable’s expectation isn’t very large, we should be able to say that the
random variable is unlikely to be very large. Markov’s inequality is a concrete statement of this idea:

122



Theorem 6.9.1: Markov’s inequality

If X is a nonnegative random variable and a > 0 is a real number, then

P(X ≥ a) ≤ E[X]

a

Exercise 6.9.1

Let X denote the income of a person selected uniformly at random. With no information whatsoever
about the income distribution, give an upper bound on the probability that X will be more than 3
times larger than the average income.

A nonnegative random variable of particular interest in the context of Monte Carlo techniques is the devi-
ation of a random variable X from its mean: |X − E[X]|. If we apply Markov’s inequality to the square of
this random variable, we obtain Chebyshev’s inequality.

Theorem 6.9.2: Chebyshev’s inequality

Suppose X is a random variable with finite variance. Then for any b > 0,

P(|X −E[X]| > b) ≤ Var[X]

b2 .

Substituting b = kσ into Chebyshev’s inequality, we obtain the following more memorable version: a finite-
variance random variable is k standard deviations from its mean with probability at most 1/k2.

Example 6.9.1

The U.S. mint produces dimes with an average diameter of 0.5 inches and standard deviation 0.01.
Using Chebyshev’s inequality, give a lower bound for the number of coins in a lot of 400 coins that
are expected to have a diameter between 0.48 and 0.52.

Exercise 6.9.2

Consider Poisson distributed random variable with mean λ = 3, and find the exact value of the
probability that this random deviates by its mean by more than two standard deviations.
Compare this result to the bound obtained by using Chebyshev’s inequality.

6.9.2 Convergence of random variables

A sequence of real numbers x1, x2, x3, . . . converges to a real number x if the difference |xn − x| gets as small
as desired for sufficiently large n. However, convergence of a sequence of random variables X1, X2, . . . , to a
random variable X is more nuanced, since we have to explain how the probability space is involved. The
result of this subtlety is that there are several different notions of convergence.

123



6.9.2.1 The Borel-Cantelli lemma

We will begin with an useful theorem for handling convergence issues.

Theorem 6.9.3: The Borel-Cantelli lemma

Suppose that E1, E2, . . . is a sequence of events with the property that P(E1) +P(E2) +P(E3) + · · · <
∞. Then the probability that at most finitely many of the events occur is 1.
Furthermore, if P(E1) + P(E2) + P(E3) + · · · = ∞ and if the events {E1, E2, . . .} are independent,
then the probability that infinitely many of the events occur is 1.

Example 6.9.2

Consider an infinite sequence X1, X2, . . . of independent Bernoulli random variables of success prob-
ability p > 0. Show that the set of ω’s for which the sequence X1(ω), X2(ω), . . . converges has prob-
ability zero.

Exercise 6.9.3

Consider a sequence of independent events E1, E2, . . . for which P(En) = 1/n.
Consider also a sequence of independent events F1, F2, . . . for which P(Fn) = 1/n2.
The Borel-Cantelli lemma implies that infinitely many of the Ei’s occur, while only finitely many of
the Fi’s occur (both with probability 1).
Write some Julia code to simulate a run of the Ei’s and a run of the Fi’s (in each case, generate at least
the first 10,000 samples from each sequence). Comment on whether your results seem consistent
with the Borel-Cantelli lemma. Discuss some of the reasons why your simulation results are not
definitive.

Exercise 6.9.4

Show that a monkey typing random keys on a typewriter will eventually type the sentence “the quick
brown fox jumped over the lazy dog”, with probability 1.
For simplicity, assume that the keystrokes are independent and that each keystroke is uniformly
distributed among the keys on the keyboard.
Note: the given sentence is 44 characters long.

6.9.2.2 Almost sure convergence

Since the random variables X1, X2, . . . , are functions defined on the probability space Ω, we may consider
convergence of the numbers X1(ω), X2(ω), . . . , for each ω ∈ Ω individually.

124



Definition 6.9.1: Almost sure convergence

We say that X1, X2, . . . , converges almost surely to X if Xn(ω) → X(ω) for all ω ∈ Ω except on a set
of ω’s whose probability is zero.

Example 6.9.3

Consider Xn(ω) = ωn on the probability space [0, 1] with measure given by P(E) = length(E). Show
that Xn converges almost surely to the zero random variable.

6.9.2.3 Convergence in probability

A slightly weaker notion of convergence which is often easier to demonstrate than almost sure convergence
is convergence in probability: we fix ε > 0 and look at the probability that Xn deviates from X by more than ε.
If this probability goes to zero as n → ∞—no matter how small ε is—then we say that Xn converges to X in
probability.

Definition 6.9.2: Convergence in probability

A sequence of random variables X1, X2, · · · , Xn, · · · is said to converge in probability to a random
variable X if for all ε > 0,

lim
n→∞

P(|Xn − X| > ε) = 0

It is difficult to appreciate the distinction between convergence in probability and almost sure convergence
without seeing an example of a sequence which converges in probability but not almost surely.

Example 6.9.4

Consider the sequence of random variables defined on [0, 1] as follows:

X1

1

X2

1

X3

1

X4

1

X5

1

X6

1

X7

1

X8

1

In other words, the first two random variables are the indicator functions of the first half and the last
half of the unit interval. The next four are the indicators of the first quarter, the second quarter, the
third quarter, and the fourth quarter of the unit interval. The next eight are indicators of width-one-
eighth intervals sweeping across the interval, and so on. For concreteness, suppose that each random
variable is equal to 1 at any point ω where the random variable is discontinuous.
Show that this sequence of random variables converges in probability to the zero random variable,
but does not converge almost surely.

125



Example 6.9.4 is admittedly a bit contrived, but it captures the basic idea: we have convergence in probability
but not necessarily almost sure convergence if we can control the probability of misbehavior but cannot rule
out the possibility that the small misbehaving portion of the probability space migrates forever all around
the space.

This phenomenon can arise in more natural examples; for example, this one involving independent random
variables:

Example 6.9.5

Consider an independent sequence of Bernoulli random variables Xn, where P(Xn = 1) = 1
n . Show

that Xn converges to the zero random variable in probability.

There is a reason we have given examples of sequences of random variables which converge in probabil-
ity but not almost surely, rather than the other way around: almost sure convergence implies convergence in
probability.

Exercise 6.9.5

Consider a sequence of random variables X1, X2, . . . with the property that |Xn| ≤ 2−n for all n ≥ 1,
and define

Sn = X1 + X2 + . . . + Xn.

Show that Sn converges in probability.

Exercise 6.9.6

Suppose that X1, X2, . . . is a sequence of random variables with the property that E[|Xn|] ≤ n−1/2

for all n. Show that Xn converges to 0 in probability.

6.9.2.4 Convergence in distribution

A sequence of random variables X1, X2, . . . converges to a random variable X in distribution if the distribu-
tions of X1, X2, . . . converge to the distribution of X. So, we should decide what it means for a sequence of
probability measures to converge.

Roughly speaking, we will consider two probability
measures close if they put approximately the same
amount of probability mass in approximately the
same places on the number line. For example, a se-
quence of continuous probability measures with den-
sities f1, f2, . . . converges to a continuous probability
measure with density f if limn→∞ fn(x) = f (x) for all
x ∈ R (see Figure 6.9).

f (x)fn(x)

x

Figure 6.9 The sequence of densities fn converges
to the density f as n → ∞

126



If the limiting probability measure is not continuous, then the sit-
uation is slightly more complicated. For example, we would like to
say that the probability measure which puts a mass of 1

2 + 1
n at 1

n

and a mass of 1
2 −

1
n at 1 + 1

n converges to Bernoulli
(

1
2

)
as n → ∞.

This does not correspond to pointwise convergence of the probabil-
ity mass functions, since we don’t have convergence of probability
mass function values at 0 or at 1 in this example.
We can get around this problem by giving ourselves a little space
to the left and right of any point where the limiting measure has a
positive probability mass. In other words, suppose that ν is a prob-
ability measure on R with probability mass function m, and con-
sider an intervals I = (a, b). Let’s call such an interval a continuity
interval of ν if m(a) and m(b) are both zero.
We will say that a sequence of probability measures ν1, ν2, . . . con-
verges to ν if νn(I) converges to ν(I) for every continuity interval I
of ν.

x

m(x)
mn(x)

0 1

Figure 6.10 The probability mea-
sures which assign mass 1

2 + 1
n and

1
2 − 1

n to 1
n and 1 + 1

n , respectively,
(shown in sea green) converge to
the Bernoulli distribution with suc-
cess probability 1

2 (shown in red).

We can combine the discrete and continuous definitions into a single definition:

Definition 6.9.3: Convergence of probability measures on R

A sequence ν1, ν2, . . . of probability measures on R converges*
* In contexts
where more
than one no-
tion of proba-
bility measure
convergence
is being used,
this would be
called weak
convergence

to a probability measure ν on R if
νn(I) → ν(I) whenever I is an interval satisfying ν({a, b}) = 0, where a and b are the endpoints of
I.

Exercise 6.9.7

Define fn(x) = n10≤x≤1/n, and let νn be the probability measure with density fn. Show that νn
converges to the probability measure ν which puts of all its mass at the origin.

Exercise 6.9.8

Suppose that X1, X2, . . . are independent Exponential(1) random variables and that X is an
Exponential(1) random variable defined on the same probability space.
Show that Xn converges to X in distribution, but that Xn does not converge to X almost surely.

6.9.3 Weak law of large numbers

We are now ready to state and prove the weak*
* Weak here is
in contrast to
the strong law
of large num-
bers, which
upgrades the
mode of con-
vergence to
almost-sure

law of large numbers. Roughly speaking, it says that the
average of n independent, identically distributed finite-variance random variables is very likely to be very
close to the mean of the common distribution of the random variables, if n is suitably large.

127



Theorem 6.9.4: Weak law of large numbers

Let ν be a finite-variance distribution on R, and let X1, X2, . . . , be an independent sequence of ν-
distributed random variables. For n ≥ 1, define Mn = X1+X2+···+Xn

n . The weak law of large number
states that Mn converges weakly to the mean of ν (regarded as a constant random variable).
In other words, for any ε > 0, we have

P
(

X1 + · · ·+ Xn

n
/∈ [µ− ε,µ+ ε]

)
→ 0,

as n → ∞.

Proof

From Exercise 6.5.13, we know that the mean and variance of Mn are µ and σ2/n, where σ2 is the
variance of ν.
Therefore, Chebyshev’s inequality implies that

P(|Mn − µ| ≥ ε) ≤ ε−2σ2/n.

Since ε−2σ2/n. as n → ∞, we conclude that P(|Mn − µ| ≥ ε) converges to 0 as n → ∞.

Example 6.9.6

How many times do we need*
* We’ll inter-
pret this ques-
tion to mean
“find a num-
ber of flips
that works”
rather than
“find the min-
imum number
of flips that
would work”.

to flip a coin which has probability 60% of turning up heads in order
to ensure that the proportion of heads is between 59% and 61% with probability at least 99%?

Note that using Chebyshev’s inequality here does not give us a complete answer to our question. We know
that 5.76 × 1010 flips are enough, but in fact many fewer flips would work.

Example 6.9.7

Write some code to determine the minimum number of flips required in Example 6.9.6.
Hint: Use the special function lgamma to calculate the expression (n

k)pk(1 − p)n−k without having to
resort to arbitrary-precision arithmetic. This function returns the natural logarithm of the function
Γ(n) = (n + 1)!.

Thus we see that Chebyshev’s inequality can be quite pessimistic. In the next section, we will develop a much
sharper tool.

Exercise 6.9.9

The finite-variance assumption is necessary for the weak law of large numbers to hold. Repeat the
following experiment 100 times: sample from the Cauchy distribution 100,000 times and calculate
the sample mean of these samples. Make a histogram of the 100 resulting means. Are these means
tightly concentrated?
Note: you can sample from a Cauchy distribution using tan(π*(rand()-1/2)).

128



6.10 Central limit theorem

The law of large numbers tells us that the distribution ν of a mean of many independent, identically dis-
tributed finite-variance, mean-µ random variables is concentrated around µ. The central limit theorem
gives us precise information about how the probability mass of ν is concentrated.

Consider a sequence of independent fair coin flips X1, X2, . . ., and define the sums

Sn = X1 + · · ·+ Xn,

for n ≥ 1. The probability mass functions of the Sn’s can be calculated exactly, and they are graphed in
Figure 6.11 for several values of n. We see that the graph is becoming increasingly Gaussian-shaped as n
increases.

If we repeat this exercise with other distributions in place of Bernoulli(1/2), we obtain similar results. For
example, the probability mass functions for sums of the independent Poisson(3) random variables is shown
in Figure 6.12. Not only is the shape of the graph stabilizing as n increases, but we’re getting the same shape
as in the Bernoulli example.

k

P
(S

n
=

k
)

1
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n = 1
n = 4
n = 7
n = 10
n = 13
n = 16

PMFs for sums of n coin flips

Figure 6.11 Probability mass functions of sums of
Bernoulli(1/2) random variables.

k

P
(S

n
=

k
)

1

2

0 5 10 15 20 25

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

PMFs for sums of n Poisson(3)’s

Figure 6.12 Probability mass functions of sums of
Poisson(3) random variables.

To account for the shifting and spreading of the distribution of Sn, we normalize it: we subtract its mean
and then divide by its standard deviation to obtain a random variable with mean zero and variance 1 (see
Exercise 6.5.13:

Sn
shift−→ Sn − nµ scale−→ Sn − nµ

σ
√

n

Let’s define S∗
n = Sn−nµ

σ
√

n , which has mean 0 and variance 1. Based on Figures 6.11 and 6.12, we conjecture
that the distribution of S∗

n converges as n → ∞ to the distribution N (0, 1). Indeed, that is the case:

129



Theorem 6.10.1: Central Limit theorem

Suppose that X1, X2, . . . , are independent, identically distributed random variables with mean µ and
finite standard deviation σ, and defined the normalized sums S∗

n = (X1 + · · ·+ Xn − nµ)/(σ
√

n) for
n ≥ 1.
For all −∞ ≤ a < b ≤ ∞, we have

lim
n→∞

P(a < S∗
n < b) = P(a < Z < b),

where Z ∼ N (0, 1). In other words, the sequence S∗
1 , S∗

2 , . . . converges in distribution to Z.

The normal approximation is the technique of approximating the distribution of S∗
n as N (0, 1).

Example 6.10.1

Suppose we flip a coin which has probability 60% of turning up heads n times. Use the normal
approximation to estimate the value of n such that the proportion of heads is between 59% and 61%
with probability approximately 99%.

Example 6.10.2

Consider a sum of n independent Bernoulli random variables with p = 1/2, and let mn : R → [0, 1]
be the pmf of S∗

n. Show that limn→∞ mn(x) = 0 for all x ∈ R, and explain why this does not contradict
the central limit theorem.
For simplicity, you may assume that n is even.

Exercise 6.10.1

Suppose that the percentage of residents in favor of a particular policy is 64%. We sample n individ-
uals uniformly at random from the population.

(i) In terms of n, find a interval I centered at 0.64 such that the proportion of residents polled who
are in favor of the policy is in I with probability about 95%.

(ii) How many residents must be polled for the proportion of poll participants who are in favor of
the policy to be between 62% and 66% with probability at least 95%?

Exercise 6.10.2

Suppose that X1, X2, . . . is a sequence of independent, identically distributed random variables with
variance 2 and mean 7. Find the limits of each of the following probabilities n → ∞.

(i) P(X1 + · · ·+ Xn = 7n)

(ii) P(6.9n < X1 + · · ·+ Xn < 7.1n)

(iii) P(7n < X1 + · · ·+ Xn < 7n + 3
√

n)

(iv) P(6n < X1 + · · ·+ Xn < 7n + 3
√

n)

130


	Sets and functions
	Sets
	Set operations

	Lists
	Functions

	Programming in Julia
	Environment and workflow
	Fundamentals
	Variables and values
	Basic data types
	Conditionals
	Functions and scope

	Packages and modules
	Compound data and repetition
	Arrays
	Tuples
	Sets
	Dictionaries
	Iteration
	Data structures
	File I/O

	Plotting and visualization
	Program design and debugging
	Julia tricks

	Linear Algebra
	Vector spaces
	Vectors
	Linear independence, span, and basis
	Linear transformations

	Matrix algebra
	Matrix operations
	The inverse of a matrix

	Dot products and orthogonality
	The dot product
	The transpose
	Matrices with orthonormal columns

	Eigenvalues and matrix diagonalization
	Eigenpairs
	Positive definite matrices
	Polar decomposition

	Singular value decomposition
	Determinants
	Matrix Norms

	Multivariable Calculus
	Sequences and series
	Taylor series
	Partial differentiation
	Optimization
	Matrix differentiation
	Multivariable integration
	The chain rule
	The Jacobian determinant of a transformation

	Numerical Computation
	Machine arithmetic
	64-bit integers
	64-bit floating point numbers
	32-bit floating point numbers
	Arbitrary-precision numbers
	General comments

	Error
	Sources of numerical error
	Condition number
	Hazards

	Pseudorandom number generation
	Automatic differentiation
	Optimization
	Gradient descent

	Parallel Computing

	Probability
	Counting
	Probability models
	Discrete probability models

	Random variables
	Marginal distributions
	Cumulative distribution function
	Joint distributions

	Conditional probability
	Conditional probability measures
	Bayes' theorem
	Independence

	Expectation and Variance
	Expectation
	Linearity of expectation
	Variance
	Covariance

	Continuous distributions
	Conditional expectation
	Common distributions
	Bernoulli distribution
	The binomial distribution
	Geometric distribution
	Poisson distribution
	Exponential distribution
	Cauchy distribution
	Normal distribution
	The multivariate normal distribution

	Law of large numbers
	Inequalities
	Convergence of random variables
	Weak law of large numbers

	Central limit theorem


