MOj5

 MOVES Sitpping Up Ow ceme Mrill cradde cominon core Sopil dl Review In@luding: [Ddily Plscclice
Ideckivy
i: A8888smenni...

Math Moves: Stepping Up Our Game General Information

For years, I've been teaching using a daily math review.
I needed one that was aligned to the Common Core State Standards that included a weekly assessment. I also wanted it to truly be a spiraled review. Meaning, I wanted to have questions that related to all five domains each week.

Why Spiral?

One of the most effective ways to foster mastery and retention of mathematical skills is through a daily cumulative review. Using this spiral review, students are exposed to skills and concepts that touch all 5 mathematical domains each week. Why wait until the pacing guide (or textbook) tells you to teach geometry? Most textbooks don't introduce geometry until the end of the year. If you wait until the end of the year to introduce the concept, students will struggle to master the skill. If you have been discussing the concept all year through Math Moves, students will have a better opportunity to master the skill because they have already been exposed to the concept. By using Math Moves, you will also be able to scaffold instruction to meet the individual needs of each student based on each student's particular needs.

How should Math Moves be used?

The purpose of Math Moves is to supplement any classroom math curriculum. Students should receive the week's sheet on Monday. One row is completed each day Monday-Thursday. For example, on Monday, students should complete \#1-4. I usually give my students about 5 minutes to complete the work after coming into the classroom and unpacking. After 5 minutes, go over the correct answers with the students. Students should change answers that were incorrect so that they will be able to use this sheet to review on Thursday night. On Friday, administer the test. The test is a review of the concepts reviewed during the week. This assessment can also provide you with the data you need to scaffold instruction to meet the individual needs of each student.

How is Math Moves organized?

Included in this pack is a checklist of each standard. Weeks 1-9 covered 8 different CCSS. Therefore, each standard was covered twice.
Weeks 10-16 covered 10 different CCSS. Some questions were covered twice. The standards that were covered twice were standards that were newly introduced.
Weeks 19-27 covered 14 different CCSS.
Weeks 28-36 covered 16 different CCSS. Therefore, every question was a different standard.

The questions were tiered throughout the school year, too. For example, during week 5, 4.NBT. 5
(multiplication) the question was presented as 12×3, but by the end of the year, that same standard was presented as 56×43.

Math Moves At A Glance

Math Moves At A Glance

Can Math Moves be used another way?
Another option for using Math Moves is to give the daily work as a homework assignment. It could then be checked each day or at the end of the week.

You could also give the sheet on Monday and have students complete the work throughout the week during Math Workshop. On Thursday, review all of the questions.

If you have any questions about Math Moves, please email me!

Thank you,

Elizaboth supan

Funin4b.blogspot.com

funinroomb @gmail.com

O Thank you for downloading one of my digital products.

Please let me know if you see any errors or mistakes that need to be fixed.

Elizabeth Susan

http://www.funin4b.blogspot.com

© 2013, Elizabeth Susan from Fun in Room 4B.

Please adhere to the rules of the Digital Millennium Copyright Act. You may use this item for your classroom use only. If you are not the original purchaser of this item, please purchase the item from my store before making any copies.

Feel free to post this item on the internet, but always link to my blog. Thanks!

CCSS Checklist Item Numbers for Classwork

CC Standard	1	2	3	4	5	6	7	8	9
4.0A.1	6,12					8,14		4,14	
4.0A. 2					3, 7		2,13		6,16
4.0A. 3	4,14	2,13				6,16			
4.0A. 4								6,16	
4.0A. 5			1,12	1,7					4, 10
4.NBT. 1	2,16	3,10			1, 8				
4.NBT. 2	1,10	1,11	2,9			7,10			
4.NBT. 3	5,15	4,15	4,6	6,12			3,10	5,15	8,14
4.NBT. 4			3,15	4,13	4,11	3,9	1,15		2,12
4.NBT. 5					10, 13	1,11			
4.NBT. 6									5,15
4.NF. 1	7,9	7,12	5,14	3,10	12, 16				
4.NF. 2		5,14	10,16			2,12	7, 9	7,13	
4.NF.3a								3,9	
4.NF.3b									
4.NF.3c									
4.NF.3d									
4.NF.4a									
4.NF.4b									
4.NF.4c									
4.NF. 5									
4.NF. 6									
4.NF. 7									
4.MD. 1	8,13	6,9		2,5			4, 6	1,12	
4.MD. 2			8,13	9, 14	2, 6	4,13			
4.MD. 3							12, 16	2,11	1,11
4.MD. 4									
4.MD. 5									
4.MD. 6									
4.MD. 7									
4.G.1	3,11	8,16	11, 7	8,16	5,15		8,14		
4.6 .2				11, 15	9,14	5,15	5,11	8,10	
4.G.3									7,13

CCSS Checklist Item Numbers for Classwork

CC Standard	10	11	12	13	14	15	16	17	18
4.0A.1	1,11	15				7,16		6,15	
4.0A.2		6	7				6		
4.0A. 3			11, 13	6,15			3,12		
4.0A. 4	3,13	11, 16		1,7	2,9			7,16	3,12
4.0A. 5					5,14				4,13
4.NBT. 1	6,14				7,13	2,10			
4.NBT. 2		3,10				4	7		
4.NBT. 3				5,13		1	4, 9	1	
4.NBT. 4				2, 10			5,15	2,11	1,9
4.NBT. 5	2, 8		3,9					4, 10	7,14
4.NBT. 6	5	1,12	16						11, 16
4.NF. 1				9					
4.NF. 2	10, 16								
4.NF.3a	4,9	4, 8				5	10, 13	3,9	
4.NF.3b		2, 9	6,15					5	10
4.NF.3c			12, 14		3, 8			8	2
4.NF.3d				3,12	6,11	8,12	2,14		
4.NF.4a									
4.NF.4b									
4.NF.4c									
4.NF. 5				11	10, 15				
4.NF. 6					16	11, 14			
4.NF. 7						9,15	8,16		
4.MD. 1									
4.MD. 2								12, 13	6
4.MD. 3	7	14							
4.MD. 4		7,13	4,10						5,15
4.MD. 5			2,8	8,14					
4.MD. 6				4	1	6	11, 13		
4.MD. 7					12				
4.G.1	12		5					14	
4.6 .2	15			16		3,13	1		
4.G. 3		5	1		4				8

CCSS Checklist Item Numbers for Classwork

CC Standard	19	20	21	22	23	24	25	26	27
4.0A.1				6		2		5	11
4.0A. 2	4		2			8			
4.0A.3	5		11				5	2	
4.0A. 4				2	14		12		2
4.0A. 5	14	2, 9			4				
4.NBT.1	1, 12	16			9	6			
4.NBT. 2				3	6		1		
4.NBT. 3			4	10		12		3	
4.NBT. 4			1, 12	7		11, 13		4, 10	1,7
4.NBT. 5	8				1, 12		2,14		4, 9
4.NBT. 6	3	5					6,16		5
4.NF.1					2, 8		4	7	
4.NF. 2					13	9	7		
4.NF.3a	9	13		4					
4.NF.3b	16	10	8	11				1	
4.NF.3C		1	7			7		11	14
4.NF.3d			15			4	11		8
4.NF.4a	11	3	6					8	
4.NF.4b		11	10, 14	5, 9				9	3
4.NF.4C				12, 15		5	8		13
4.NF. 5	6				5		10		6
4.NF. 6	10	7, 14			7			14	
$4 . N F .7$	7	8			15	3		12	
4.MD.1			5			14			10
4.MD. 2			3	1				13	12
4.MD. 3		12		16					15
4.MD. 4	2	15			16				
4.MD. 5					10	15	9		
4.MD. 6			13			1,16	3,13		
4.MD. 7	13	6		14				6, 15	
4.G.1			16	8		10		16	
4.G.2				13	11		15		16
4.G.3	15	4	9		3				

CCSS Checklist Item Numbers for Classwork

$C C$ Standard	28	29	30	31	32	33	34	35	36
4.0A.1			1		16	5			
4.0A. 2	6		4				8	9	1
4.0A.3		7		10			1	11	
4.0A.4				12		2	11		
4.0A. 5	10	1	14		15			7	13
4.NBT.1	3	10				15		5	
4.NBT. 2	13		15	2			6		2
4.NBT. 3				13	1	7		1	
4.NBT. 4			5		12	1	5		3
4.NBT. 5	9	6	8					2	5
4.NBT. 6	1	13	3	1				12	15
4.NF.1					5		4	13	11
4.NF. 2					7		2	10	4
4.NF.3a			6			14	3	6	
4.NF.3b	4	15	16				9		X
4.NF.3C		16	9	3		11			
4.NF.3d	7	3		15		16			
4.NF.4a	8		7	5	10			3	8
4.NF.4b			12	4	2			16	10
4.NF.4C	X		11	7				4	6
4.NF. 5	X	X				12	7		
4.NF. 6	X	X					14		7
$4 . N F .7$					9	6		14	
4.MD.1				9	6	3			
4.MD. 2				6	3	8			
4.MD. 3				8			12	15	
4.MD. 4	5	8	2				10		9
4.MD. 5	2	5	10		13				
4.MD. 6				11	4	10	15		
4.MD. 7	11	4		14		13			16
4.G.1		12		16	11	4		8	
4.G.2		2	13		14	9	16		
4.G.3	12	11			8		13		14

1. Write the equation.	2.

Bria has piece of ribbon
3 feet long to tie a bow on a birthday present.
She needs twice as much ribbon. How much does she need?
.

3. Name three numbers that are multiples of 2 and 4.
6. How many times larger is 5,000 than 5?
7
p
r
7. What is the area and
8. rectangle?

Area: \qquad
Perimeter: \qquad
9. Add the fractions. $\frac{1}{6}+\frac{1}{6}$
*Bonus: Reduce the fraction.
13. Which of these numbers is a prime number?
$4,5,8,10$
10. Compare the two
fractions by showing
$>,=,<$. $>,=,<$.
(If the denominator is the same, compare the numerators. The larger the numerator, the larger the fraction.)

11. Write the equation.

Rachel bought a paperback book for \$6. She bought a hardback book for three times as much as the paperback book. How much was the hardback book?
14. How many times larger is 90,000 than 9?

Name two perpendicular lines.

\qquad
\qquad
\qquad
16. Compare the two fractions by showing $>,=,<$.

$$
\frac{2}{7} \bigcirc \frac{4}{7}
$$

4. Model how to add $\frac{1}{8}+\frac{3}{8}$

23 $\times 5$
$\times \quad$

1. $\begin{array}{r} 26 \\ \times \quad 2 \\ \hline \end{array}$	2. What is the area and perimeter of the rectangle? Area: \qquad Perimeter: \qquad
3. What number is 10,000 times greater than 7? \qquad How many times larger is 50,000 than 5 ? \qquad	4. Add the fractions. $\frac{2}{8}+\frac{4}{8}$ *Bonus: Reduce the fraction.
5. Use the diagram.	6. Name three numbers that are multiples of 5 and 10 .

7. Which of these numbers is a prime number?

$2,6,10,14$

Name two perpendicular lines.
and \qquad
\qquad
7. Which of these numbers is a prime number?
8. Complete the table.

polygon	vertices	sides
triangle		
square		
pentagon		
hexagon		

9. Compare the two fractions by showing $>,=,<$. 10. Write the equation.

Robert saved \$5 of his allowance each week to buy a new skateboard. If the skateboard costs $\$ 35$ how many weeks will he need to save \$5?

1.
5. Draw the lines) of symmetry in the

9. Decompose the fraction.
\qquad $+$ \qquad $+$ \qquad 12,380

12,280
13. Use the line plot below to answer the question.

How many students scored higher than 80\%? \qquad
2. Decompose the fraction.
\qquad
$+$ $+$ times as many erasers than pencils. How many erasers did he have? Write the equation.
10. Write <, > or = to make the statements true.

523,330

523,330

35,930

35,390

In --
6. Kevin bought a pack of 12 pencils for school. He had four -
,

14. What is the area and perimeter of the rectangle?

Area: \qquad
Perimeter: \qquad
*Bonus: What is the inverse operation?
two million, twentythree thousand, four hundred fifty-two
7. Use the line plot below to answer the question.
Spelling Test Scores
$3,6,9,12$
4. Add the fractions.

*Bonus: Reduce the fraction.
*Bonus: Reduce the fraction.
12. numbers is a prime number?
15. Write the equation.

What is 6 times larger than 12?
16. Name three numbers that are multiples of 3 and 6 .

1.

Area: \qquad
Perimeter: \qquad
5. Draw the line(s) of symmetry in the figure below:

2. Add the fractions.

$\frac{2}{9}+\frac{4}{9}$

*Bonus: Reduce the fraction.
4. Write $<,>$ or $=$ to make the statements true.

42,930

11,205

6. Use the line plot below to answer the question.

How many students scored less than 80\%?
8. Decompose the fraction.
$\frac{3}{5}$
$4,6,13,20$
7. Name three numbers that are multiples of 4 and 12 .

Which of these numbers is a prime number?
\qquad $+$ \qquad $+$ \qquad
9. Write the number in standard form.
three million, forty-five thousand, nine hundred nine.
10. Write the equation.

Frankie is 12 years old. His father is three times older. How old is Frankie's father?
*Bonus: What is the inverse operation?

1. Draw the line(s) of symmetry in the figure below:	2. What fraction of the circle does the shaded angle represent?	3.	4. Use the line plot below to answer the question.

How many families had 3 pets or more?
5. Use the diagram.

Name two intersecting lines.
\qquad
\square
9.

223 $\times 5$

13. Bryson bought 3 packages of baseball cards. Each package had 12 cards. If he already had 5 packages of 12 , how many baseball cards does he now own?
14. Add the fractions.

$$
1 \frac{1}{3}+1 \frac{1}{3}=
$$

7. Stacy brought 5 boxes of crayons to school. Each box held 16 crayons. How many crayons did Stacy bring to school? Write the equation.
\qquad $+$ \qquad $+$
\qquad
$+$ \qquad
8. Use the line plot below to answer the question.

What is the outlier?
\qquad
$\frac{4}{5}$
16.
*Bonus: Reduce the fraction.
$3 \longdiv { 1 8 6 }$

1. Decompose the fraction. 2.
$\frac{4}{6}$

+
+

3. Add the fractions.

146 $\begin{array}{r}\times 4 \\ \hline\end{array}$

$4 \longdiv { 1 2 4 }$
4. Emerson bought twelve 8-pack sodas to take to a friend's party. How many sodas did he take to the party? Write the equation.

$$
4 \frac{2}{6}+3 \frac{2}{6}=
$$

*Bonus: Reduce the fraction

5. What fraction of the circle does the shaded angle represent?

What fraction of the circle does the shaded angle represent?

represent?	represent?

7. Use the diagram.

Are lines $\overleftrightarrow{d d}$ and \leftrightarrows eh intersecting lines?
yes
no
9. When Maria visited the zoo, she saw 3 bird exhibits. Each bird exhibit held 200 species of birds. She saw 2 small reptile exhibits which each held 100 reptiles. How many more birds did Maria see than reptiles?
6. If a package of hotdogs holds 10 hotdogs and a package of hotdog buns holds 8 buns, how many hotdogs and hotdog buns did Joseph buy altogether if he bought 5 packages of each?
8. Use the line plot below to answer the question.

How many families were surveyed?
10. Draw the line(s) of symmetry in the figure below:

1. Which of these numbers is a composite number?
$3,5,9,11$

2. Round each number to the nearest hundred thousand.

149,738 \qquad 254,951 \qquad 89,489
ar aw
9. Draw two different shapes to represent the fraction
$\frac{1}{4}$
13. Round each number to the nearest hundred thousand. 179,426 \qquad
354,490 \qquad
945,002 \qquad
14. What fraction of the circle does the shaded angle represent?

2. $8,593-6,879=$
6. Makayla needed n
socks and bought 2 packages of socks.
There were 6 pairs in each package. She added this to the 10 pairs of socks she already owned. How many socks did Makayla now own?
10. $45,679+35,132=$
11.
7. Name three numbers that are multiples of 2 and 6 .
3. Zakira cut a brownie into 6 pieces. If she ate 2 pieces during snack time, and 1 piece during lunch, what fraction of the brownie did she eat?
4. Measure the angle.

8. What fraction of the circle does the shaded angle represent?

12. Gavin grew $\frac{1}{4}$ inch in August and $\frac{2}{4}$ inch in September. How many inches did he grow in the two months?
16. Identify and list the attributes of the polygon.

1. Identify and list the attributes of the polygon.

2.

5. Name three numbers that are multiples of 3 and 9 . numbers is a composite number?
2. What fraction of the circle does the shaded angle represent?

What fraction of the circle does the shaded angle represent?

4. Mariah's picture albums each hold 75 pictures. She has 3 completed albums. She added 43 pictures to her newest album. How many pictures does Mariah have in all?
$2,3,5,10$
6. Measure the angle. \uparrow

7. Round each number to the nearest hundred thousand.
349,906
638,031
97,542
9. Draw two different shapes to represent the fraction

$\frac{3}{6}$

10. Jared bought $\frac{1}{5}$ pound of gummy bears and $\frac{3}{5}$ pound of peppermints. How many pounds of candy did he buy?

Is this number prime or composite?
3. Add the fractions.
2. List the factors of 12.
5. Start at 4. Create a pattern that multiplies each number by 2. Stop when you have 4 numbers.

	do and the
9. List the factors of	10

Is this number prime or composite?
13. Solve the equations.

$$
\begin{aligned}
& 100 \div 1= \\
& 6 \underline{000} \div 6= \\
& 4 \underline{00} \div 4=
\end{aligned}
$$

14. Start at 100.

Create a pattern that subtracts 9 from each number. Stop when you have 5 numbers.
15.
11. The black horse
runs $\frac{3}{12}$ of a mile. The brown horse runs $\frac{6}{12}$ of a mile. How many miles do both horses run? Reduce the fraction.
$\frac{9}{10}=\frac{\square}{100}$
12. What is the value of angle X ?
16. If the fraction $\frac{6}{10}$
*Bonus: Reduce the fraction. of angle X?

equals 0.6 , then $\frac{2}{10}$ equals
4. Circle the triangle that shows a line of symmetry.

1. Measure the angle.

2. List the factors of 24.

Is this number prime or composite?

List the factors of 13.

Is this number prime or composite?
3. Circle the rectangle that shows a line of symmetry.
4. If it takes Bailey $\frac{2}{6}$ of an hour to clean her room and it takes Keira t of an hour clean her room, how much total time does it take Bailey and Keira to clean their rooms? Reduce the fraction.
5.
$\frac{2}{10}=\frac{\square}{100}$

$$
\frac{7}{10}=\frac{\square}{100}
$$

7.
8. What is the value of angle X ?

9. Start at 5. Create a pattern that multiplies each number by 2. Stop when you have 4 numbers.

$$
\begin{aligned}
& 700 \div 7= \\
& 500 \div 5= \\
& 200 \div 2=
\end{aligned}
$$

10. If the fraction $\frac{3}{10}$ equals 0.3 , then $\frac{5}{10}$ equals

1. Round each number	2. If $8 \div 8=1$, then
to the nearest ten.	$8,000 \div 8=1,000$.
	Solve the equations.

139,534
184,957
84,589
84,589
5. Add the fractions.
$\frac{3}{5}+\frac{1}{5}$
9. Compare the two decimals using $<,=,>$

0.7

0.80
0.5

0.4

13. Color the shapes that have only two sets of parallel lines.

10. $700,000 \div 70,000=10$ because $70 \div 7=10$ and $708880 \div 78000$

Solve the equations using the same rule.
$800,000 \div 80,000=$ \qquad
$900,000 \div 90,000=$ \qquad
Look closely:
$600,000 \div 600,000=$ \qquad
14. If the fraction $\frac{62}{100}$ equals 0.62 , then $\frac{35}{100}$
equals
3. Color the shapes that have congruent sides.

7. Write the equation.

Kiersten saved \$31. If Lacey saved 5 times as much money as Kiersten, how much money has Lacey saved?

11. If the fraction

 $\frac{8}{10}$ equals 0.8 , then $\frac{7}{10}$ equals15. Compare the two decimals using $<,=,>$
0.2

0.6
0.9

0.7
0.50

0.5
16. A recipe for Jared's birthday cake calls for $\frac{3}{4}$ of a cup of flour and $\frac{2}{4}$ of a cup of sugar. How many total cups of flour and sugar does the recipe call for. Show your answer as a mixed number.
17. Write the number in word form.

804,615
12. Issac runs $\frac{4}{10}$ of a mile, and Jesse runs $\frac{2}{10}$ of a mile. How many miles total do Issac and Jesse run?
*Bonus: Reduce the fraction.
16. Write the equation.

Alex spends 4 hours playing tennis each week. How much time does he spend playing tennis in a 6-week period?
*Bonus: What is the inverse operation?

3. Color the shapes that have congruent sides.

5. Round each number to the nearest ten.
398,439
795,974
73,320
7. Compare the two decimals using $\langle,=$,

0.9
0.30

0.3

2. Write the equation.

Amelia has 7 headbands. Her cousin has 8 times as many as Amelia. How many headbands does Amelia's cousin have?
*Bonus: What is the inverse operation?
4. Caden adds $\frac{5}{8}$ cup of milk to his cereal bowl. Then he measures and adds another $\frac{1}{8}$ cup of milk to his cereal bowl. How much milk has Caden added to his cereal bowl altogether?
*Bonus: Reduce the fraction.
6. Add the fractions.

$$
\frac{6}{10}+\frac{2}{10}
$$

*Bonus: Reduce the fraction.
8. Solve the equations.

$$
7,000 \div 7=
$$

\qquad
$50,000 \div 50,000=$ \qquad
$200,000 \div 20,000=$ \qquad
9. Write the decimal.
10. Write the number in word form.

$$
720,981
$$

1. Color the shapes that have obtuse angles.

2. The Underwood family ate $\frac{1}{3}$ of a cheese pizza and $\frac{2}{3}$ of a pepperoni pizza. How much total pizza did the Underwood family eat?
3. Round each number
to the nearest ten.

342,309
614,398 \qquad
25,943
\square
13. Measure the angle.
 of a mile around the track, and Andrea walked $\frac{3}{12}$ of a mile around the track. How many miles total do Paige and Andrea walk?
*Bonus: Reduce the fraction.

Camille picked 8 flowers. Julia picked 9 times more flowers than Camille. How may flowers did Julia pick?
*Bonus: Reduce the fraction.
14. Paige walked $\frac{5}{12}$
3. Khia bought 2 packages of chips. Each package had 12 small bags of chips. If she already had 3 packages of 12 , how many individual bags of chips does she now own?
4. Round each number to the nearest hundred.

483,529 \qquad
782,871 \qquad
123,981 \qquad
8. Compare the two decimals using $<,=,>$
0.25

0.2
eighty-nine thousand, nine hundred eightythree
*Bonus: What is the inverse operation?
10. Add the fractions. t+ $\frac{3}{6}$
0.91

0.70
0.23

0.23
12. Henry has a number of marbles in a bag represented by the letter n . He took n and shared them in 5 different groups having 6 in each group. Write an equation to solve for n.

路

0.72
0.81

0.87
0.50
0.5

1. Measure the angle.

2. Color the shapes that have obtuse angles.

3. On each display table, the science committee displayed 14 science fair displays. If there were 8 display tables in all, how many science fair displays were there altogether?
4. Anthony pours $\frac{6}{10}$ cup of juice to a glass. Then he measures and pours another $\frac{2}{10}$ cup of juice to a glass. How much juice has Anthony poured into the glass altogether?
*Bonus: Reduce the fraction.
5. Write the equation.

During lunch, some students eat 12 bags of pretzels. Let s represent the students. If each student eats 2 bags, write an equation to solve for s.
4. Compare the two decimals using $<,=,>$

$0.60 \backsim 0.6$
0.35

6. $45,310-33,549=$
$67,501-25,669=$
8. Round each number to the nearest ten.

498,989 \qquad

216,895 \qquad
32,322 \qquad
10. Write the word number in standard form.

sixty-three thousand, four hundred thirteen

*Bonus: Reduce the fraction.

$$
\frac{3}{10}+\frac{4}{10}
$$

1. $298,300-45,741=$	$99,871+32,889=$	2. Hannah and Emily collected 371 cans for the school can drive. They gave 95 cans to Emily's little brother for his class. How many cans does this leave for the girls' class?
3. Add the fractions.	4. Round each number to the nearest ten.	

*Bonus: Reduce the fraction.
56,725
759,995 \qquad
423,721 \qquad
6. Add the fractions.

$$
\frac{5}{14}+\frac{2}{14}
$$

*Bonus: Reduce the fraction.
8.

If $\frac{1}{10}+\frac{4}{100}=\frac{14}{100}$, then $\frac{1}{10}+\frac{3}{100}=\frac{\square}{100}$.
If $\frac{1}{10}+\frac{9}{100}=\frac{19}{100}$, then $\frac{1}{10}+\frac{6}{100}=\bar{\square}$.
If $\frac{1}{10}+\frac{8}{100}=\frac{18}{100}$, then $\frac{1}{10}+\frac{2}{100}=\bar{\square}$.
10. Use the diagram.

$\leftrightarrow \quad \longleftrightarrow$
How are lines $a b$ and $c d$ related?
$1.649,980-223,001=2$ 2. Add the fractions. \quad 3. List the factors of 23.
$5 \frac{3}{12}+8 \frac{1}{12}=$
5. Use the line plot below to answer the question.
Glasses of Water Per Student

How many students drank at least 4 glasses of water?
$\overline{9.825,671+125,532}=$

13. If this pattern continues in this way, what is the $9^{\text {th }}$ shape in the pattern?

14.

414 $\begin{array}{r}6 \\ \hline\end{array}$

4. Start at 5. Create a pattern that adds 5 and subtracts 2 from the number to create the next number.
Stop when you have 5 numbers.

Is this number prime or composite?

$$
16 .
$$

15. Use the line plot
below to answer the question.
Glasses of Water Per Student

How mamber of Glasese Each nay students drank 8 glasses of water?

	2. What is the area and perimeter of the rectangle? Area: 32 sq.ft Perimeter: \qquad 24 ft
3. What number is 10,000 times greater than $7 ?$ $70,000$ How many times larger is 50,000 than 5 ? $10,000$ 4.NBT. 1 (3.NBT.3)	4. Add the fractions. $\begin{gathered} \frac{2}{8}+\frac{4}{8} \\ \frac{6}{8} \end{gathered}$ *Bonus: Reduce the fraction. 4.NF.3a
5. Use the diagram. Sample answer Name two perpendicular lines. \qquad $\overleftrightarrow{d d}$ and \qquad 4.G.1	6. Name three numbers that are multiples of 5 and 10. Sample answers: $\begin{aligned} & 10,20,30 \\ & \text { 4.OA.4 (3.OA.9) } \end{aligned}$
7. Which of these numbers is a prime number? $\begin{aligned} & \text { (2.) } 6,10,14 \\ & \text { 4.OA. } 4(3.0 \text { A. } 9) \end{aligned}$	8. Complete the table.
9. Compare the two fractions by showing $>,=,<$. $\frac{1}{5}<\frac{4}{5}$ 4.NF. 2 (3.NF.3b)	10. Write the equation. Robert saved $\$ 5$ of his allowance each week to buy a new skateboard. If the skateboard costs $\$ 35$ how many weeks will he need to save \$5? $35 \div 5=7$ 4.OA.1 (3.0A.1)

$1 . \frac{19}{5}$ 5195

4.NBT. 6
5. Draw the line (s) of symmetry in the figure below:

4.G.3
9. Decompose the fraction.
$\frac{3}{4}$

4.NF.3b
13. Use the line plot below to answer the question.

How many students scored higher than 80% ? 9
4. MD. 4 (3.MD.4)
2. Decompose the fraction.

4.NF.3b
6. Kevin bought a pack of 12 pencils for school. He had four times as many erasers than pencils. How many erasers did he have? Write the equation.

$$
12 \times 4=48
$$

4.0A.2 (3.0A.2)
10. Write <, > or = to make the statements true.
523,330 $\bigodot 523,330$

35,930

12,380
(S) 12,280

4.NBT. 2

14. What is the area and perimeter of the
rectangle? 4.MD. 3

Perimeter: 30 sq. ft

3. Write the number in standard form.
two million, twentythree thousand, four hundred fifty-two
4. Add the fractions.

*Bonus: Reduce the fraction. $\frac{2}{5}$ 8. Add the fractions.

$$
\frac{1}{6}+\frac{1}{6}
$$

$$
\frac{2}{6}
$$

*Bonus: Reduce the fraction.
4.NF .Ba $\frac{1}{3}$
12.

$$
\begin{aligned}
& \text { 11. Which of these } \\
& \text { numbers is a prime }
\end{aligned}
$$ number?

$$
\text { 3, } 6,9,12
$$

4.NBT. 6

16. Name three numbers that are multiples of 3 and 6 .

Sample answers:

$$
6,12,18
$$

1. 4.NBT. 6	2. Add the fractions. $\begin{gathered} \frac{2}{9}+\frac{4}{9} \\ \frac{6}{9} \end{gathered}$ *Bonus: Reduce the fraction. 4.NF.3a
3. What is the area and perimeter of . The $\overline{3}$. 3 rectangle? (3.MD.7a) Area: \qquad 10 Perimeter: \qquad 14 cm	4. Write <, > or = to make the statements true. $\text { 4.NBT.2 } 11,205$
5. Draw the line(s) of symmetry in the figure below: 4.G.3	6. Use the line plot below to answer the question. 4.MD. 4 (3.MD.4) How many students scored less than 80\%? 3
7. Name three numbers that are multiples of 4 and 12. \quadWhich of these numbers is a prime number?	8. Decompose the fraction. $\begin{gathered} \frac{3}{5} \\ \text { 4.NF.3b } \quad \frac{1}{5}+\frac{\frac{1}{5}}{4}+\frac{1}{5} \end{gathered}$
9. Write the number in standard form. three million, forty-five thousand, nine hundred nine. $3,045,909$ 4.NBT. 2	10. Write the equation. Frankie is 12 years old. His father is three times older. How old is Frankie's father? $12 \times 3=36$ *Bonus: What is the inverse operation? $\text { 4.0A.1 (3.OA.1) } \quad 36 \div 12=3$

1. Decompose the fraction. $\begin{gathered} \frac{4}{6} \\ \frac{2}{6}+\frac{2}{6} \\ \hline \end{gathered}$	2. $\begin{array}{r}14 \\ \hline 584\end{array}$ 4.NBT. 5 $4 \longdiv { 3 1 }$ 4.NBT. 6
3. Add the fractions. $\begin{gathered} 4 \frac{2}{6}+3 \frac{2}{6}= \\ 7 \frac{4}{6} \end{gathered}$ *Bonus: Reduce the fraction 4.NF.3C	4. Emerson bought twelve 8 -pack sodas to take to a friend's party. How many sodas did he take to the party? Write the equation. $\begin{array}{r} 12 \\ \times \quad 8 \\ \hline 96 \end{array}$
5. What fraction of the circle does the shaded angle represent? What fraction of the circle does the shaded angle represent?	6. If a package of hotdogs holds 10 hotdogs and a package of hotdog buns holds 8 buns, how many hotdogs and hotdog buns did Joseph buy altogether if he bought 5 packages of each? $\begin{array}{r} 10 \quad 8 \quad 50 \\ \times \quad 5 \\ \hline 505+40 \\ \hline 90 \end{array}$ 4.OA.3 (3.0A.9)
7. Use the diagram. Are lines $\overleftrightarrow{d d}$ and $\overleftrightarrow{\text { eh }}$ intersecting lines? 4.G.1 yes no	8. Use the line plot below to answer the question. 4.MD. 4 (3.MD.4) How many families were surveyed?
9. When Maria visited the zoo, she saw 3 bird exhibits. Each bird exhibit held 200 species of birds. She saw 2 small reptile exhibits which each held 100 reptiles. How many more birds did Maria see than reptiles? $\begin{array}{r} 200100 \\ \times \quad 3 \times 2 \\ \hline 600 \\ \hline 200 \end{array}$	10. Draw the line(s) of symmetry in the figure below:

1. Which of these numbers is a composite number?

4.0A. 4 (3.0A.9)
2. Round each number to the nearest hundred thousand.

149,738	100,000
254,951	300,000
89,489	100,000
4.NBT. 3	(3.NBT.1)
9. Draw two	
different shapes to	
represent the	
fraction	

13. Round each number to the nearest hundred thousand.

179,426	200,000
354,490	400,000
945,002	900,000
4. NBT. 3	$(3 . N B T .1)$

2. $8,593-6,879=$

8,593
$-6,879$
1,714

3. Zakira cut a brownie into 6 pieces. If she ate 2 pieces during snack time, and 1 piece during lunch, what fraction of the brownie did she eat?
4.NBT.4 (3.NBT.2) 4 4.NF.3d
4. Makayla needed new socks and bought 2 packages of socks. There were 6 pairs in each package. She added this to the 10 pairs of socks she already owned. How many socks did Makayla now own?

6	12
$\times 2$	+10
12	22

7. Name three numbers that are multiples of 2 and 6.

Sample answers:
$6,12,18$
10. $45,679+35,132=$
$\begin{array}{r}45,679 \\ +35,132 \\ \hline 80,811\end{array}$
4.NBT. 4 (3.NBT.2)
14. What fraction of the circle does the shaded angle represent?

4.MD. 5
cul-
15. Drew found pebbles along the stream to add to his collection. He found 36 new rocks and added it to his collection of 47 pebbles. He shared 12 of the rocks with his brother. How many pebbles did Drew have left?

4.0A.3 (3.0A.9)
4. Measure the angle.

4.MD. 6
8. What fraction of the circle does the shaded angle represent?

4.MD. 5
12. Gavin grew $\frac{1}{4}$ inch in August and $\frac{2}{4}$ inch in September. How many inches did he grow in the two months?

Square:
sides: 4
Vertices: 4
4.G.2

1. Identify and list the attributes of the polygon.

Hexagon: sides: 6
Vertices: 6
4.G. 2
2. What fraction of the circle does the shaded angle represent?

4.MD. 5

4. Mariah's picture albums each hold 75 pictures. She has 3 completed albums. She added 43 pictures to her newest album. How many pictures does Mariah have in all?

4.OA.3 (3.OA.9)
5. Measure the angle. \uparrow

What fraction of the circle does the shaded angle represent?

4.NF. 5
5. Name three numbers that are multiples of 3 and 9 .

Sample answers:
9, 18, 27
4.0A. 4 (3.0A.9)
7. Round each number to the nearest hundred thousand.

349,906	300,000
638,031	600,000
4. NBT. 9. Draw two different shapes to represen fraction	

4.NF. 1 (3.NF.3a)

4.MD. 6
5. Start at 4. Create a pattern that multiplies each number by 2. Stop when you have 4 numbers.
$4,8,16,32$
4.0A.5 (3.0A.9)
9. List the factors of 10.
11.

Is this number prime or composite?
prime
4.0A. 4 (3.0A.9)
13. Solve the
equations.
$100 \div 1=100$
$6 \underline{00} \div 6=100$
$4 \underline{00} \div 4=100$
4.NBT.1 (3.NBT.3) 12.
10.

1,11
prime
$1 \underline{00} \div 1=100$
2. List the factors of
$1,2,3,4$, 6, 12
Is this number prime or composite?
composite
4.0A.4 (3.0A.9)
6. If it takes Destiny $\frac{1}{4}$ of an hour to do her homework and it takes Rebecca $\frac{3}{4}$ of an hour to do his homework, how much total time does it take Destiny and Rebecca to do their homework?
$\frac{4}{4}=1$ hour
4.NF.3d

$$
\frac{8}{10}=\frac{80}{100}
$$

3. Circle the rectangle that shows a line of symmetry.
2. List the factors of 24.

$$
\begin{gathered}
1,2,3,4,6 \\
8,12,24
\end{gathered}
$$

Is this number prime or composite? composite 4.0A. 4 (3.0A.9)

List the factors of 13.

1,13

Is this number prime or composite?
prime
4. If it takes Bailey $\frac{2}{6}$ of an hour to clean her room and it takes Keira $\frac{1}{b}$ of an hour clean her room, how much total time does it take Bailey and Keira to clean their rooms? Reduce the fraction.

$$
\frac{3}{6}=\frac{1}{2} \text { hour }
$$

4.G.3

4.NF.3d

5.	
	$\frac{2}{10}=\frac{20}{100}$
4.NF.5	$\frac{7}{10}=\frac{70}{100}$

7. What is the value of angle X ?
8. Solve the equations.

4.MD. 7

$$
\begin{aligned}
& 700 \div 7=100 \\
& 500 \div 5=100 \\
& 200 \div 2=100
\end{aligned}
$$

4.NBT. 1 (3.NBT.3)
9. Start at 5. Create a pattern that
10. If the fraction $\frac{3}{10}$ equals 0.3 , then $\frac{5}{10}$ equals you have 4 numbers.

$$
5,10,20,40
$$

4.NF. 6

3. Color the shapes that have congruent sides.

4.6.2
4. Write the equation.

Kiersten saved \$31. If Lacey saved 5 times as much money as Kiersten, how much money has Lacey saved?

31
$\times \quad 5$
155
4.OA.1 (3.OA.1)

$0.5>$

0.4
4.NF. 7
13. Color the shapes that have only two that have only two
sets of parallel lines.
10. $700,000 \div 70,000=10$ because $70 \div 7=10$ and $709880 \div 78080$

0.7

0.4
 decimals using $<,=,>$
0.4
0.7

Solve the equations using the same rule.
$800,000 \div 80,000=$ \qquad
$900,000 \div 90,000=$

$$
10
$$

Look closely:
$600,000 \div 600,000=1$ 4.NBT. 1 (3.NBT.3)
14. If the fraction $\frac{62}{100}$ equals 0.62, then $\frac{35}{100}$
equals
0.35

4.NF. 6

2. If $8 \div 8=1$, then $8,000 \div 8=1,000$. Solve the equations.

$$
4, \underline{000} \div 4=1,000
$$

6. Measure the angle.
4.MD. 6 10. $700,000 \div 70,000=10$
7. Write the number in word form.

804,615
eight hundred four thousand, six hundred fifteen

4.NBT. 2

8. A recipe for Jared's birthday cake calls for $\frac{3}{4}$ of a cup of flour and $\frac{2}{4}$ of a cup of sugar. How many total cups of flour and sugar does the recipe call for. Show your answer as a mixed number.
$1 \frac{1}{4}$
4.NF.3d
9. Issac runs $\frac{4}{10}$ of a mile, and Jesse runs $\frac{2}{10}$ of a mile. How many miles total do Issac and Jesse run?
$\frac{6}{10}$
*Bonus: Reduce the fraction.
4.NE.3d
10. Write the equation.

Alex spends 4 hours playing tennis each week. How much time does he spend playing tennis in a 6 -week period?

$$
4 \times 6=24
$$

*Bonus: What is the inverse operation?
$24 \div 4=6$
4.0A.1 (3.0A.1)

3. Color the shapes that have congruent sides.

Amelia has 7 headbands. Her cousin has 8 times as many as Amelia. How many headbands does Amelia's cousin have?

$$
7 \times 8=56
$$

*Bonus: What is the inverse operation?
4.OA.1 (3.OA.1)
4. Caden adds $\frac{5}{8}$ cup of milk to his cereal bowl. Then he measures and adds another $\frac{1}{8}$ cup of milk to his cereal bowl. How much milk has Laden added to his cereal bowl altogether?
$\frac{6}{8}$
4.G. 2

5. Round each number to the nearest ten.

398,439	398,440
795,974	795,970
73,320	73,320

4.NBT. 3 (3.NBT.1)
7. Compare the two decimals using $<,=,>$
$0.8>0.7$
$0.6<0.9$
$0.30 \backsim 0.3$
4. NF. 7
9. Write the decimal.

$$
\begin{aligned}
& \frac{35}{100}=0.35 \\
& \frac{7}{10}=0.7 \\
& \frac{47}{100}=0.47
\end{aligned}
$$

2. Write the equation.

\square
*Bonus: Reduce the fraction.

4.NF.3a

6. Add the fractions.

*Bonus: Reduce the fraction.
7. Solve the equations.
$7,000 \div 7=1,000$
$50,000 \div 50,000=1$
$200,000 \div 20,000=10$ 4.NBT.1 (3.NBT.3)
8. Write the number in word form.

720,981

seven hundred twenty thousand, nine hundred eighty-one
4.NBT. 2

1. Color the shapes
that have obtuse
angles.

\square
$5 . G .2$
$52,490-5$,
72,490
$-5,989$
66,501

342,309	342,310
614,398	614,400
25,943	25,940

*Bonus: Reduce the
fraction. $\frac{2}{3}$ 4.NF.3a of a mile around the track, and Andrea walked $\frac{3}{12}$ of a mile around the track. How many miles total do Paige and Andrea walk?
2. The Underwood family ate $\frac{1}{3}$ of a cheese pizza and $\frac{2}{3}$ of a pepperoni pizza. How much total pizza did the Underwood family eat?

$$
\frac{3}{3}=1
$$

$4 . G .2$
$5.72,490-5,989=$ $\begin{array}{r}72,490 \\ -\quad 5,989 \\ \hline 66,501\end{array}$

4.NBT. 4 (3.NBT.2)
9. Round each number

4.NBT. 3 (3.NBT.1)
13. Measure the angle.

[^0]
3. Color the shapes that have obtuse angles.
4. Compare the two decimals using $<,=,>$

During lunch, some students eat 12 bags of pretzels. Let s represent the students. If each student eats 2 bags, write an equation to solve for s.

$$
\begin{aligned}
& 12 \div s=2 \\
& 12 \div 2=6
\end{aligned}
$$

4.0A. 2 (3.0A.2)
$s=6$

0.7

0.35

0.47
5. On each display table, the science committee displayed 14 science fair displays. If there were 8 display tables in all, how many science fair displays were there altogether?

$$
\begin{array}{r}
14 \\
\times \quad 8 \\
\hline 112
\end{array}
$$

$$
\begin{array}{r}
45,310 \\
-33,549 \\
\hline 11,761
\end{array}
$$

| 6. $45,310-33,549=$ | $67,501-25,66$ |
| :--- | :--- | ---: |
| 45,310 | 67,501 |

14
$\times \quad 8$
112

4.NBT. 4 (3.NBT.2)

4.0A.3 (3.0A.9)

8. Round each number to the nearest ten.

Then he measures and pours another $\frac{2}{10}$ cup of juice to a glass. How much juice has Anthony poured into the glass altogether?
$\frac{8}{10}$
*Bonus: Reduce the fraction.

$$
\begin{array}{|l|}
\hline \text { 4.NF.3d } \\
\hline \text { 9. Add the fractions. } \\
\frac{5}{12}+\frac{5}{12} \\
\frac{10}{12} \\
\begin{array}{l}
\text { *Bonus: Reduce the } \\
\text { fraction. } \\
\text { 4.NF } 3 d
\end{array} \\
\hline
\end{array}
$$

$$
\frac{4}{5}
$$

498,989
498,990
216,895
216,900
32,322
32,320

$$
\text { 4.NBT. } 3 \text { (3.NBT.1) }
$$

10. Write the word number in standard form.

sixty-three thousand, four hundred thirteen

1. $298,300-45,741=$ $\begin{array}{r} 298,300 \\ -\quad 45,741 \\ \hline 252,559 \end{array}$ 4.NBT. 4 (3.NBT.2)	$\begin{gathered} 99,871+32,889= \\ 99,871 \\ +\quad 32,889 \\ \hline 132,760 \end{gathered}$	2. Hannah and Emily collected 371 cans for the school can drive. They gave 95 cans to Emily's little brother for his class. How many cans does this leave for the girls' class?
3. Add the fractions. $\begin{gathered} 6 \frac{4}{16}+ \\ 9 \end{gathered}$ *Bonus: Reduce the fractio 4.NF.3C	$\begin{aligned} & \frac{2}{6}= \\ & \text { Q } \frac{3}{8} \end{aligned}$	4. Round each number to the nearest ten. $\begin{array}{cc} 56,725 & 56,730 \\ \cline { 2 - 3 } 759,995 & 760,000 \\ & 423,720 \\ \hline \end{array}$ 4.NBT. 3 (3.NBT.1)
5. List the factors of 36 $1,2,3,4,6$ Is this number prime or compos 4.0A.4 (3.0A.9)	$2,18,36$ osite?	6. Add the fractions. $\frac{5}{14}+\frac{2}{14}$ $\frac{7}{14}$$\quad$ 4.NF.3a
7. $\begin{array}{r} 489 \\ \times \quad 4 \\ \hline 1,956 \end{array}$	$\begin{array}{r} 629 \\ \times 5 \\ \hline 3,145 \end{array}$	8. If $\frac{1}{10}+\frac{4}{100}=\frac{14}{100}$, then $\frac{1}{10}+\frac{3}{100}=\frac{}{100}$ 16 If $\frac{1}{10}+\frac{9}{100}=\frac{19}{100}$, then $\frac{1}{10}+\frac{6}{100}=\frac{16}{100}$ 12 If $\frac{1}{10}+\frac{8}{100}=\frac{18}{100}$, then $\frac{1}{10}+\frac{2}{100}=\frac{12}{100}$ 4.NF.3b
9. Richard rides his to go to the store. his bike 5 kilometer many meters would $\begin{gathered} 15 \times 1 \\ 15,000 \end{gathered}$ 4.MD. 2	0 kilometers there, he rides park. How e?	10. Use the diagram. How are lines $\overleftrightarrow{a b}$ and $\overleftrightarrow{c d}$ related? parallel lines

$\begin{gathered} \text { 1. } 325,401-247,092= \\ 325,401 \\ \frac{-247,092}{78,309} \end{gathered}$ 4.NBT. 4 (3.NBT.2)	$\begin{gathered} 237,975+149,620= \\ 237,975 \\ +149,620 \\ \hline 387,595 \end{gathered}$	2. Complete the table.		
				Number in a Gallon
			cups	16
			pints	8
		4.MD. 2	quarts	4
3. List the factors of 31.		4. Add the fractions.		
1,31		$6 \frac{3}{16}+9 \frac{3}{16}=$		
Is this number prime or prime 4.0A.4 (3.0A.9)	composite?	$15 \frac{6}{16}$		
5. Start at 4. Create a pattern that adds 3 and subtracts 1 from the number to create the next number. Stop when you have 5 numbers.		$6 .$		
$4,6,8,10,12$				
4.0A.5 (3.0A.9)		4.NBT.5	74	
7. $\begin{array}{r} 41 \\ 6 \longdiv { 2 4 6 } \end{array}$	$\begin{array}{r} 48 \\ 7 \longdiv { 3 3 6 } \end{array}$	$1,3,5,9,15,45$		
		Is this number prime or composite?		
		composite		
4.NBT. 6		4.0A.4 (3.0A.9)		
9. If $\frac{1}{10}+\frac{9}{100}=\frac{19}{100}$, then $\frac{1}{10}+\frac{6}{100}=\frac{16}{100}$				
		question. Glasses of Water Per Student 4 MD. 4 \square		
If $\frac{2}{10}+\frac{9}{100}=\frac{29}{100}$, then $\frac{3}{10}+\frac{6}{100}=\frac{36}{100}$				
If $\frac{4}{10}+\frac{8}{100}=\frac{48}{100}$, then	$\frac{5}{10}+\frac{2}{100}=\frac{52}{100}$	How many students drank less than 3 glasses of water each day?4		

[^0]: 4.MD. 6

