Math Review

Scientific Notation:

Scientific notation is a shorthand way of writing and multiplying large (and small) numbers.

$1,000,000,000,000$	10^{12}	tera (T)	(trillions)
$1,000,000,000$	10^{9}	giga (G)	(billions)
$1,000,000$	10^{6}	mega (M)	(millions)
1000	10^{3}	kilo (k)	(thousands)
1	10^{0}	unity	
0.01	10^{-2}	centi (c)	(hundredth)
0.001	10^{-3}	milli (m)	(thousandth)
0.000001	10^{-6}	micro (μ)	(millionth)
0.000000001	10^{-9}	nano (n)	(billionth)

Using Scientific Notation:

To do numbers that are not divisible by ten, we multiply by an exponential number.

$$
\begin{gathered}
4,275,000,000=4.275 \times 1,000,000,000=4.275 \times 10^{9} \\
0.000374=3.74 \times 0.0001=3.74 \times 10^{-4}
\end{gathered}
$$

Using Scientific Notation:

To multiply numbers using scientific notation, we add the exponents.

$$
\begin{aligned}
& 10^{3} \times 10^{-9}=10^{(3)+(-9)}=10^{-6} \\
& \left(4 \times 10^{2}\right) \times\left(2 \times 10^{5}\right)=(4 \times 2) \times 10^{(2)+(5)}=8 \times 10^{7}
\end{aligned}
$$

To divide numbers using scientific notation, we subtract the exponents.

$$
\begin{aligned}
& \frac{10^{3}}{1 \overline{0}^{-9}} 0^{(3)-(-9)} \\
& \frac{4 \times 10^{2}}{2 \times 10^{5}} 10^{(2)-(5)} 2 \\
& 2
\end{aligned}=2 \times 10^{12}
$$

Using Scientific Notation:

To raise a number to a power, we multiply the exponents

$$
\left(10^{3}\right)^{2}=10^{(3 * 2)}=10^{6}
$$

To changing from division to multiplication, we change the sign of the exponent

$$
\frac{5}{10^{2}}=5 \times 10^{-2}
$$

Using Scientific Notation:

To add or subtract numbers using scientific notation, we work in front of the exponents, but they must have the same exponent.

$$
\begin{aligned}
3.0 \times 10^{2}+ & 2.6 \times 10^{5}=0.003 \times 10^{5}+2.6 \times 10^{5} \\
& =2.603 \times 10^{5} \\
1.0 \times 10^{5}- & 7.0 \times 10^{2}=1.0 \times 10^{5}-0.007 \times 10^{5} \\
& =0.993 \times 10^{5}
\end{aligned}
$$

Scientific Notation/Units Example

Density of Water

Density is mass per volume

For water: 1 gram / centimeter ${ }^{3}\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)$
What is this in kilograms / meters ${ }^{3}$?

$$
\begin{aligned}
& 1000 \mathrm{~g} \text { in } 1 \mathrm{~kg} \text {, so } \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=1 \\
& 100 \mathrm{~cm} \text { in } 1 \mathrm{~m} \text {, so } \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=1
\end{aligned}
$$

Scientific Notation/Units Example

Density of Water

Density is mass per volume

For water: 1 gram / centimeter ${ }^{3}\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)$
What is this in kilograms / meters ${ }^{3}$?

$$
\left(\frac{1 \mathrm{~g}^{\prime}}{\mathrm{cm}^{8}}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)\left(\frac{10^{2} \mathrm{em}}{\mathrm{~m}}\right)
$$

WRONG UNITS!!!

Scientific Notation/Units Example

Density of Water

Density is mass per volume

For water: 1 gram / centimeter ${ }^{3}\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)$
What is this in kilograms / meters ${ }^{3}$?

$$
\left(\frac{1 g}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)\left(\frac{10^{2} \mathrm{~cm}}{\mathrm{~m}}\right)^{3}
$$

Scientific Notation/Units Example

Density of Water

Density is mass per volume

For water: 1 gram / centimeter ${ }^{3}\left(1 \mathrm{~g} / \mathrm{cm}^{3}\right)$
What is this in kilograms / meters ${ }^{3}$?

$$
\begin{aligned}
\left(\frac{1 g}{\mathrm{em}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} g}\right)\left(\frac{\left(10^{2}\right)^{3} \mathrm{~m}^{3}}{\mathrm{~m}^{3}}\right) & =10^{\left(0-3+2^{* 3}\right)} \frac{\mathrm{kg}}{\mathrm{~m}^{3}} \\
& =10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

How to ATTACK Word Problems

- Identify - Identify what the main question is
- Read the problem carefully.
- Underline the question. Sometimes there is not a question but a command of what to do (such as, "Find the product.")
- Organize - Organize the facts in the problem
- Reread the problem. Cross out extra information.
- Circle key numbers.
- If the number is in word form, write the number above the words
- Look for implied numbers

How to ATTACK Word Problems

- Choose - Choose which functions will serve you best in solving the problem
- Choose your units
- You may need multiple steps to solve the problem.
- Find key words that tell what operation to use. Double underline them.
- Work - Work the problem.
- Write out all the steps plus the answer
- Write the equation and solve.
- Label your answer.
- Check
- Check your answer to be sure it makes sense.
- Check your math.

Word Problem Example

You are in charge of a probe designed to measure the plasma density in the solar atmosphere. Your probe is using radio waves to send messages back to the Earth. The Earth is $150,000,000$ km from the Sun. Find the time required for message to reach the Earth.

Identify

You are in charge of a probe designed to measure the plasma density in the solar atmosphere. Your probe is using radio waves to send messages back to the Earth. The Earth is $150,000,000$ km from the Sun. Find the time required for message to reach the Earth.

Organize

You are in charge of a probe designed Speed $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ blasma density in the solar a mosphere. Your probe is using radio waves to send messages back to the Earth. The Eart is $150,000,000$ km from the Sun. Find the lime required for message to reach the Earth.

Organize

- Time = ?
- Speed $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- Distance $=150,000,000 \mathrm{~km}=1.5 \times 10^{8} \mathrm{~km}$
- Distance from the Earth to the Sun is also called 1 Astronomical Unit (AU)

Choose

- We will work with meters and seconds

There are $1000 \mathrm{~m}=10^{3} \mathrm{~m}=1 \mathrm{~km}$:

$$
1=\left(\frac{10^{3} m}{k m}\right)
$$

Hence, in meters:

$$
\begin{aligned}
D & =\left(\frac{1.5 \times 10^{8} \mathrm{~km}}{1}\right)\left(\frac{10^{3} \mathrm{~m}}{\mathrm{~km}}\right) \\
& =1.5 \times 10^{(8+3)} \mathrm{m} \\
& =1.5 \times 10^{11} \mathrm{~m}
\end{aligned}
$$

Choose

- Time $=$?
- Speed $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- Distance $=1.5 \times 10^{11} \mathrm{~m}$

speed $=\frac{\text { distance }}{\text { time }}$

OR
time $=\frac{\text { distance }}{\text { speed }}$

Work

$$
\begin{aligned}
\text { time } & =\frac{\text { distance }}{\text { speed }}=\frac{1.5 \times 10^{11} \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} \\
& =\frac{1.5}{3} \times 10^{(11-8)} \mathrm{m} \frac{s}{\mathrm{~m}}=0.5 \times 10^{3} \mathrm{~s} \\
& =5 \times 10^{2} s=500 \mathrm{~s} \\
& =500 s\left(\frac{1 \mathrm{~min}}{60 s}\right) \\
& =8.33 \mathrm{~min}
\end{aligned}
$$

Check

- 500 s or 8.33 min .
- Does this answer make sense?
- Do we have the correct units?

