Math/Stat 341: Probability Second Lecture

Steven J Miller Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/341

Bronfman 105 Williams College, September 14, 2015

Pre-Class	Items
0000	

Hoops Game

Homework

Pre-Class	Items
0000	

3

Clicker Qs

Hoops Game

Homework

The day... https://www.youtube.com/watch?v=uAsV5-Hv-7U

Buddy Holly:

- https://www.youtube.com/watch?v=YwHrx0r0t2s
- https://www.youtube.com/watch?v=GMezwtBloCU
- https://www.youtube.com/watch?v=ku5UeUT7yIQ Ritchie Valens
 - https://www.youtube.com/watch?v=Jp6j5HJ-Cok
 - https://www.youtube.com/watch?v=-ziSLGVQOSg
 - https://www.youtube.com/watch?v=HMcHbh6HBDk

The Big Bopper

- https://www.youtube.com/watch?v=4b-by5e4saI
- https://www.youtube.com/watch?v=3NMklxiE6xw

Pre-Class Items

Clicker Qs

Hoops Game

Who are they and why are they being shown?

Pre-Class Items

Clicker Qs

Hoops Game

Jefferson, Adams and Monroe: July 4

Pre-Class Items

Clicker Qs

Hoops Game

Who are they and why are they being shown?

Hoops Game

Truman and Ford, December 26

q

Clicker Problems

Birthday Problem I

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

Hoops Game

Birthday Problem I

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

- (A) 11 people
- (B) 22 people
- (C) 33 people
- (D) 44 people
- (E) 90 people
- (F) 180 people
- (G) 365 people
- (H) 500 people.

Birthday Problem I

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

Pre-Class Items oooo	Clicker Qs ○●○○○○○○○	Hoops Game
Birthday Problem II		

How large must N be for there to be at least a 50% probability that two of N Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

- (A) 110 people
- (B) 220 people
- (C) 330 people
- (D) 440 people
- (E) 1,000 people
- (F) 5,000 people
- (G) 10,000 people
- (H) 20,000 people
- (I) more than 30,000 people.

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

Pre-Class Items oooo	Clicker Qs ○○●○○○○○○	Hoops Game
Probability Quantities		

P_n : Probability at least two share birthday when *n* in room.

 Q_n : Probability that no shared birthday with *n* in room.

Pre-Class	Items

Probability Quantities

 P_n : Probability at least two share birthday when *n* in room.

 Q_n : Probability that no shared birthday with *n* in room.

Note $Q_n = 1 - P_n$; oftentimes one is easier to compute than other.

What is the correct model?

Pre-Class	Items

Hoops Game

Assumptions for Birthday Problem

Assume all days equally likely to be birthday, people independent, and the "no February 29th policy".

Assumptions for Birthday Problem

Assume all days equally likely to be birthday, people independent, and the "no February 29th policy".

Gladwell: Canadian Junior Hockey Championship: March 11 starts around one side of the Tigers' net, leaving the puck for his teammate January 4, who passes it to January 22, who flips it back to March 12, who shoots point-blank at the Tigers' goalie, April 27. April 27 blocks the shot, but it's rebounded by Vancouver's March 6. He shoots! Medicine Hat defensemen February 9 and February 14 dive to block the puck while January 10 looks on helplessly. March 6 scores!."

Pre-Class	Items

Hoops Game

Expansions: Q_n : no shared birthday *n* in room

 $Q_1 = 1$ (not too surprising!).

Pre-Class	Items

Hoops Game

Expansions: *Q_n*: no shared birthday *n* in room

$$Q_1 = 1$$
 (not too surprising!).

$$Q_1 = \frac{365}{365}$$

Pre-Class	Items

Hoops Game

Expansions: *Q_n*: no shared birthday *n* in room

$$Q_1 = 1$$
 (not too surprising!).

$$\mathsf{Q}_2 \;=\; \frac{365}{365} \;\cdot\; \frac{364}{365}$$

Pre-Class	Items

Hoops Game

Expansions: Q_n : no shared birthday *n* in room

 $Q_1 = 1$ (not too surprising!).

$$Q_n = \frac{365}{365} \cdot \frac{364}{365} \cdots \frac{365 - (n-1)}{365}.$$

Hoops Game

Expansions: Q_n: no shared birthday n in room

 $Q_1 = 1$ (not too surprising!).

$$Q_n = \frac{365}{365} \cdot \frac{364}{365} \cdots \frac{365 - (n-1)}{365}.$$

Rewrite:

$$Q_n = \prod_{k=0}^{n-1} \left(1 - \frac{k}{365}\right).$$

Pre-Class	Items

Hoops Game

Expansions: Q_n: no shared birthday n in room

 $Q_1 = 1$ (not too surprising!).

$$Q_n = \frac{365}{365} \cdot \frac{364}{365} \cdots \frac{365 - (n-1)}{365}.$$

Rewrite:

$$Q_n = \prod_{k=0}^{n-1} \left(1 - \frac{k}{365}\right).$$

Pavlovian Response: See product,

(

Pre-Class	Items

Hoops Game

Expansions: Q_n: no shared birthday n in room

$$Q_1 = 1$$
 (not too surprising!).

$$Q_n = \frac{365}{365} \cdot \frac{364}{365} \cdots \frac{365 - (n-1)}{365}.$$

Rewrite:

$$\mathsf{Q}_n = \prod_{k=0}^{n-1} \left(1 - \frac{k}{365}\right).$$

Pavlovian Response: See product, take logarithm!

$$\log Q_n = \log \left[\prod_{k=0}^{n-1} \left(1 - \frac{k}{365} \right) \right] = \sum_{k=0}^{n-1} \log \left(1 - \frac{k}{365} \right)$$

Pre-Class	Items

Hoops Game

Expansions: Q_n: no shared birthday n in room

$$Q_1 = 1$$
 (not too surprising!).

$$Q_n = \frac{365}{365} \cdot \frac{364}{365} \cdots \frac{365 - (n-1)}{365}.$$

Rewrite:

$$\mathsf{Q}_n = \prod_{k=0}^{n-1} \left(1 - \frac{k}{365}\right).$$

More generally if *D* days in a year:

$$\log Q_n(D) = \sum_{k=0}^{n-1} \log \left(1 - \frac{k}{D}\right).$$

Pre-Class Items	Clicker Qs ○○○○●○○○○	Hoops Game
Why Calculus?		

$$\log(1-u) = -u - \frac{u^2}{2} - \frac{u^3}{3} - \cdots \approx -u.$$

Pre-Class Items	Clicker Qs ○○○○○●○○○○	Hoops Game
Why Calculus?		

$$\log(1-u) = -u - \frac{u^2}{2} - \frac{u^3}{3} - \cdots \approx -u.$$

$$\log Q_n(D) = \sum_{k=0}^{n-1} \log \left(1 - \frac{k}{D}\right)$$

Pre-Class Items	Clicker Qs	Hoops Game
Why Calculus?		

$$\log(1-u) = -u - \frac{u^2}{2} - \frac{u^3}{3} - \cdots \approx -u.$$

$$\log Q_n(D) = \sum_{k=0}^{n-1} \log \left(1 - \frac{k}{D}\right)$$
$$\approx \sum_{k=0}^{n-1} -\frac{k}{D} = -\frac{1}{D} \sum_{k=0}^{n-1} k$$

Pre-Class Items	Clicker Qs	Hoops Game ooooo
Why Calculus?		

$$\log(1-u) = -u - \frac{u^2}{2} - \frac{u^3}{3} - \cdots \approx -u.$$

$$\log Q_n(D) = \sum_{k=0}^{n-1} \log \left(1 - \frac{k}{D}\right)$$

$$\approx \sum_{k=0}^{n-1} -\frac{k}{D} = -\frac{1}{D} \sum_{k=0}^{n-1} k$$

$$= -\frac{1}{D} \frac{(n-1)n}{2} \text{ or } \approx -\frac{1}{D} \frac{(n-1/2)^2}{2}$$

Let $n_{1/2;D}$ be value so that probability is 1/2. Then

$$\log Q_{n_{1/2;D}}(D) = \log \frac{1}{2} \approx -\frac{(n_{1/2;D}-1/2)^2}{2D},$$

Estimating Solution

Let $n_{1/2;D}$ be value so that probability is 1/2. Then

$$\log Q_{n_{1/2;D}}(D) = \log \frac{1}{2} \approx -\frac{(n_{1/2;D}-1/2)^2}{2D},$$

which implies

$$n_{1/2;D} \approx \sqrt{2D\log 2} + \frac{1}{2} = \sqrt{D\log 4} + \frac{1}{2}.$$

Estimating Solution

Let $n_{1/2;D}$ be value so that probability is 1/2. Then

$$\log Q_{n_{1/2;D}}(D) = \log \frac{1}{2} \approx -\frac{(n_{1/2;D}-1/2)^2}{2D},$$

which implies

$$n_{1/2;D} \approx \sqrt{2D\log 2} + \frac{1}{2} = \sqrt{D\log 4} + \frac{1}{2}.$$

When D = 365 predict 22.99, stupendously close to 23!

Mathematica Code

```
(* Mathematica code to compute birthday probabilities *)
(* initialize list of probabilities of sharing and not *)
noshare = \{\{1, 1\}\};
share = \{\{1, 0\}\};
currentnoshare = 1; (* current probability don't share *)
For [n = 2, n \le 50, n++, (* will calculate first 50 *)
   newfactor = (365 - (n-1))/365; (*next term in product*)
   (* update probability don't share *)
   currentnoshare = currentnoshare * newfactor;
   noshare = AppendTo[noshare, {n, 1.0 currentnoshare}];
   (* update probability share *)
   share = AppendTo[share, \{n, 1.0 - currentnoshare\}];
  }1;
(* print probability share *)
Print[ListPlot[share, AxesLabel -> {"n", "Probability"}]]
```

Pre-Class Items 0000	Clicker Qs oooooooooooooooooooooooooooooooooooo	Hoops Game
Voting: Democratic Primaries	;	

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this?

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this? (Note: they each received 6001 votes.)

- (A) 1 / 10
- (B) 1 / 100
- (C) 1 / 1,000
- (D) 1 / 10,000
- (E) 1 / 100,000
- (F) 1 / 1,000,000 (one in a million)
- (G) 1 / 1,000,000,000 (one in a billion).

Hoops Game

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Hoops Game

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than 1/137! What's going on?

Hoops Game

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than 1/137! What's going on?

Prof. Kim's calculation ... was based on the assumption that Syracuse voters were likely to vote in equal proportions to the state as a whole, which went for Ms. Clinton, its junior senator, 57%-40%. Prof. Kim said she had little time to make the calculation, so she made the questionable assumption ... for simplicity.

From Shooting Hoops to the Geometric Series Formula

Game of hoops: first basket wins, alternate shooting.

Pre-Class	Items

Hoops Game ○●○○○

Simpler Game: Hoops: Mathematical Formulation

Bird and **Magic** (I'm old!) alternate shooting; first basket wins.

- **Bird** always gets basket with probability *p*.
- Magic always gets basket with probability q.

Let *x* be the probability **Bird** wins – what is *x*?

Pre-Class Items	Clicker Qs 000000000	Hoops Game ○○●○○
Solving the Hoop Game		
Classic solution involv	ves the geometric series	3.

Break into cases:

Pre-Class Items	Clicker Qs 000000000	Hoops Game ○○●○○
Solving the Hoop Gam	ne l	
Classic solution in	volves the geometric series	3.

Break into cases:

• **Bird** wins on 1st shot: *p*.

Pre-Class Items	Clicker Qs	Hoops Game ○○●○○
Solving the Hoop (Game	
Classic solutio	n involves the geometric series	
Break into cas	es:	

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.

Pre-Class Items	Clicker Qs	Hoops Game ○○●○○
Solving the Hoop Ga	ame	
Classic solution	involves the geometric series	š.
Break into cases	S:	

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.

Pre-Class Items 0000	Clicker Qs 000000000	Hoops Game ○○●○○
Solving the Hoop Ga	ame	
Classic solution	involves the geometric series	š.
Break into cases	S:	

- Bird wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.
- **Bird** wins on nth shot:

$$(1-p)(1-q) \cdot (1-p)(1-q) \cdots (1-p)(1-q) \cdot p.$$

Pre-Class Items		Hoops Game ○○●○○
Solving the Hoop Gan	ne	
Classic solution in	nvolves the geometric series	3.
Break into cases: Bird wins on		

- Bird wins on 2^{nd} shot: $(1-p)(1-q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.
- **Bird** wins on nth shot:

$$(1-p)(1-q)\cdot(1-p)(1-q)\cdots(1-p)(1-q)\cdot p.$$

Let
$$r = (1 - p)(1 - q)$$
. Then
 $\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins})$
 $= p + rp + r^2p + r^3p + \cdots$
 $= p(1 + r + r^2 + r^3 + \cdots),$

the aeometric series.

48

0000	00000000	00000
Solving the Hoop Game	e: The Power of Perspective	

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Pre-Class Items	Clicker Qs	Hoops Game
		00000

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

 $\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + \mathbf{p}$

Pre-Class Items	Clicker Qs	Hoops Game
		00000

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \boldsymbol{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{\mathsf{Bird}} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)$$

Pre-Class Items	Clicker Qs	Hoops Game
		00000

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x}$$

Pre-Class Items	Clicker Qs	Hoops Game
		00000

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \boldsymbol{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{\mathsf{Bird}} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Pre-Class Items	Clicker Qs	Hoops Game
		00000

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \boldsymbol{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{\mathsf{Bird}} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)x = p$$
 or $x = \frac{p}{1-r}$

Pre-Class Items	Clicker Qs	Hoops Game
		00000

Showed

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p}(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{\mathsf{Bird}} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)\mathbf{x} = \mathbf{p}$$
 or $\mathbf{x} = \frac{\mathbf{p}}{1-r}$.

As $x = p(1 + r + r^2 + r^3 + \cdots)$, find

$$1 + r + r^2 + r^3 + \cdots = \frac{1}{1 - r}$$

.

Pre-Class Items	Clicker Qs	Hoops Game
0000	000000000	00000
Lessons from Hoop Pr	oblem	
	obiem	

Over of Perspective: Memoryless process.

 Can circumvent algebra with deeper understanding! (Hard)

Output of a problem not always what expect.

 Importance of knowing more than the minimum: connections.

♦ Math is fun!

