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MATH TRAILS

It was not quite a typical Sunday dinner. Robert’s sister Debbie who

was an engineer with a local chemical company had joined the

Johnson family—Jean, Robert, and their children Sally and Tom. The

conversation around the table came to the math course in school.

“As I see it,” said Tom, “there are three troubles with math: I don’t

like it, none of the rest of you ever liked it, AND it’s of absolutely no

use. Oh, I don’t mean you, Aunt Debbie,” he added when he saw the

frown on her face, “You like the stuff, I know, and you’ve told me

before how much it helps you with your work. But it does absolutely

nothing for any of the rest of us except waste our time and make 

us miserable.”

“You’ve mentioned this before, Tom,” said Debbie, “and some of the

other people at the factory have told me about similar sentiments in

their families. I’ve been thinking about it, and I want to try

something when we all take our stroll after dinner. Let’s see if

anything that reminds us of math shows up as we walk along.” Now

it was Tom’s turn to frown a little. “Don’t worry, Tom, this won’t spoil

our digestion—or our walk. Nothing to memorize, no right or wrong

answers, no tests, we’re just going to keep our eyes open.”

“I see you’ve planted your begonias along the edge of the driveway,

Bob,” said Debbie. “Why did you use this pattern?” 

“Well, the Garden Center sold them by the dozen, so I bought two

dozen,” Bob answered. “The strip is a little narrow, and six rows of

four each didn’t quite fit. Then I tried eight rows of three and that fit, 
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but it didn’t look right. Too regular, looked like a box! But by having

seven rows, alternating three and four plants, it looked a lot better.”

“I like that pattern too, Dad,” Sally chimed in, “but I’d have liked it

even better if you’d started with the 4 instead of the 3. You know,

like the stars on the flag.”

“Would that have worked?” asked Debbie. 

“Sure, why not,” said Sally. “4, 3, 4, 3, 4, 3, 4 instead of 3, 4, 3, 4, 3,

4, 3.” 

“But that takes 25 plants, not 24,” Debbie observed. “Would 

any ‘bigger, smaller…, bigger’ pattern have worked with two 

dozen plants?”

“Enough of this,” said Tom, “Let’s get moving!” 

“Where’s your car, Debbie?” wondered Jean. Debbie told her that

there wasn’t a parking space in front of the house, and she had left it

around the corner. “But there’s usually space for three cars in front of

our house. What happened?” 

“Well, you see the two cars parked here. There’s a lot of space

between them, but not enough for another car. Of course, if 

they had marked parking spaces like they do downtown, this

wouldn’t happen.” 

“But those downtown spaces are angle parking, which sure wouldn’t

look right here. And the parking in the public lot isn’t parallel either,

it’s at right angles to the curb.” 
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“I had hoped you would bring up all the different possibilities,” said

Debbie. “Why do you suppose there are so many different patterns 

of parking?”

As they walked by the Jorgensons, they noticed the spruce in front of

the house. It had been planted just two years ago. “It certainly has

grown since it was planted. I wonder how much?” They had fun

discussing that question. Bob recalled that it was Tom’s height when

they first saw it and even though Tom had grown since then, the tree

had grown a lot more. How tall was it now? Jean suggested that Tom

stand next to the tree, and that they measure the two shadows. If

Tom’s shadow were twice his height, then the tree’s shadow would be

twice the tree’s height! They hadn’t brought anything to measure

shadows, but they could estimate pretty well. Someone suggested

that you really needed only the ratio of the two shadows! After some

discussion everyone agreed with that. They paced the shadows and

seemed pretty pleased with themselves.

They had no trouble finding more good questions after that. A

motorcycle came roaring by—how fast do you suppose it was going,

and how fast was the dog going that was chasing it? That new front

door at the Brown’s: The glass above it looked like a semicircle but

was it really? How far apart were the dashed white lines in the

middle of the main road they crossed, and how might someone have

decided on the spacing? What’s the pattern of the spirals on those

pinecones overhanging the sidewalk? The street seemed to go uphill

for a stretch, and they wondered what the grade was. How would

you estimate that? Bob suggested letting a ball roll down, and seeing

how long it took to go 20 paces. They thought this should give them 
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an idea of the grade. The steeper it was the less time the ball should

take, but they weren’t exactly sure what to do next to figure it out.

Tom told Aunt Debbie that this had been an interesting walk—a lot

better than he thought it was going to be! He had been surprised by

all the mathematical ideas that had come up as they strolled through

the neighborhood. But he added that he wouldn’t have thought of

any of these by himself! It was Aunt Debbie’s knack and experience

in seeing math every place she looked that had made the difference.

He didn’t think they could ever do anything like this without her.

Debbie replied that what they had done was, in a sense, walk a math

trail with her acting as a trail guide. It was like a nature walk with a

ranger in the nearby state park, where the ranger kept telling them

what to look for and answered their questions. But did she really

have to be there in person? Sally said that she had been on a

different kind of nature walk, one where she picked up a printed

trail guide at the beginning. There were numbered stops on the trail,

and the trail guide pointed out special features at the stops, and trees

and plants to look for along the way. She said it was different from a

group walking with a ranger. On the one hand there was no one to

ask about some unexpected observation, but on the other hand she

could proceed at her own pace and follow up on some animal tracks

she hadn’t seen before. Couldn’t you have a math trail like that?

Debbie asked them to think about the various questions they had

considered. Suppose you wrote them down in a trail guide—would it

work? Bob said that he would not want to have everybody in a trail

walking group stop, dicuss, and trample all over his begonia bed; but 
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that you could come to the same question in the public garden

downtown! The steepness of a grade, the height of a tree or building

or statue that stands out, and the geometric shapes that are part of

many structures are permanent and public. You could make them

trail stops and prepare questions that would start discussions about

them. You could also be prepared to look for patterns of parking, or

a dog chasing a motorcycle, or somebody’s hat blowing off as you

walk between stops. The trail guide could ask you to keep these

things in mind. The main thing was that they had found a lot of

interesting questions to think about. They were using mathematical

thinking in a carefree non-threatening environment and they were

having fun. It seemed to them that you could do this either with

your own Aunt Debbie or with a trail guide that everybody’s Aunt

Debbie had prepared for them.

This book is meant to provide ideas for the Aunt Debbies of this

world and examples of the kinds of questions that they might find,

as well as thoughts about where and how to actually lay out a trail

and organize participation in it. There are three parts: An overall

discussion of the purposes and the organization of a math trail;

examples, with lots of pictures, of trails in various settings; and more

detailed discussion of some of the mathematics that is likely to arise.

Have fun!
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PART 1  PURPOSES AND ORGANIZATION OF A MATH TRAIL

INTRODUCTION

A mathematics trail is a walk to discover mathematics. A math trail can be

almost anywhere—a neighborhood, a business district or shopping mall, a

park, a zoo, a library, even a government building. The math trail map or

guide points to places where walkers formulate, discuss, and solve

interesting mathematical problems. Anyone can walk a math trail alone,

with the family, or with another group. Walkers cooperate along the trail as

they talk about the problems. There’s no competition or grading. At the end

of the math trail they have the pleasure of having walked the trail and of

having done some interesting mathematics. Everyone, no matter what age,

gets an “I Walked the Math Trail” button to wear.

This book is a guide to blazing a math trail. We’ll review the history of

math trails and discuss their attributes. We’ll also discuss practical issues of

organization and logistics in setting up and maintaining a math trail. We’ll

discuss mathematical issues in choosing and describing problems and tasks

along a trail. And we’ll also describe a variety of specific examples of trails

and of problems.

BACKGROUND AND HISTORY

Math trails fit very nicely into the ideas of popularization of mathematics

and of informal mathematics education that have been increasingly

recognized as valuable adjuncts to improving mathematics education in the

schools. The NCTM Principles and Standards for School Mathematics (2000)

and Curriculum Standards (1989) call for recognizing broad characteristics

of mathematics as Communication, Connections, Reasoning, and Problem

Solving. Math trails are a medium to experience mathematics in all of these
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dimensions. Math trails anticipated the NCTM Standards and Principles.

They exemplify a worldwide collection of projects that aim to popularize

mathematics through out-of-school activities. By providing opportunities

for doing mathematics out of school, these projects extend time spent

thinking about math and math problems. They also tend to connect back

into school. Many trailblazers are school people, and teachers often take

advantage of the existence of trails by including them in their instructional

programs. All of this makes for a stronger mathematics education program

in general (Blane, 1989).

The earliest math trails appeared in England and in Australia. In 1985,

Dudley Blane and his colleagues blazed a trail (Blane and Clarke, 1985;

Blane and Jaworski, 1989, 114–116) around the center of Melbourne as a

holiday-week activity for families. The trail’s mathematical ideas included

investigating a circular pattern of bricks in the pavement (to discover the

invariance of pi), studying the timetables in a train station, looking at the

reflection of a cathedral in a pond (to estimate its height), trying to

estimate the speed of water rushing down a spillway, counting the number

of windows in a wall of a skyscraper, and looking for patterns in the

numbers of post office boxes.

Australian mathematics educators constructed many more trails based on a

variety of themes and venues, including preparing for prospecting in a gold

rush town, acting as an apprentice keeper in a local zoo, and working on

the ship works and sailing boats in a historical nautical village. Each of the

Australian trails had a brochure that contained thought provoking,

mathematically oriented questions. In many cases, the questions had no

single correct answers as such. The tens of thousands of Australians who

walked these trails attested to their popularity. Many walkers returned for a

second round accompanied by their families. Because of the strong demand
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for Blane’s Melbourne trail, the organizers maintained it for several months

longer than the planned one week.

Like any good idea, the idea of a math trail has spread and people have

adapted it. Carole Greenes of Boston University (Massachusetts) created a

historical mathematics trail in Boston centered on the Common and the

Public Garden. Unlike Blane’s Melbourne trail, walkers on Greenes’ trail

followed a human guide who knew the historical and mathematical aspects

of the trail and who could give hints and suggestions to walkers who got

stuck on a task or idea. Kay Toliver, an award-winning New York City

schoolteacher, leads her students on walks while guiding them to discover

mathematics in their school neighborhood. Student walkers do not write

their ideas and solutions on paper, but informally discuss their discoveries

on the spot and then take the discussion back to the classroom. Florence

Fasanelli, Fred Rickey, and Richard Torrington developed an elaborate math

trail that takes advantage of The Mall in Washington. It provides an

opportunity for the thousands of people who visit The Mall every year to

include a mathematical dimension to their sightseeing. These successful

math trails show that the idea is robust and malleable enough to meet the

needs and imagination of trailblazers in many different situations.

CHARACTERISTICS OF MATH TRAILS

We’ll describe here a basic model for a math trail. Of course, we offer the

model for you to adapt to match the interests and needs of you, the

trailblazer, and your walkers.

■ Math trails are for everyone. Everyone studies (or studied) math in

school. Everyone uses math. Math trail problems should be interesting

and accessible to people at all levels of age and experience. We aim for

the widest possible participation. Trail walkers discuss how to approach
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a problem and they compare their thinking. Talking about the

mathematics helps to bring it to life and to build confidence in one’s

abilities. Math trails respond to the variety of the walkers with variety in

the math problems, both in level of difficulty and in type of

mathematics. Easier and harder problems blend together or alternate.

Arithmetic, geometry, measurement, estimation, and other mathematical

topics all appear. The aim is for everyone to feel the accomplishment of

contributing to the problem solving. A math trail is not just for math

lovers or A-students!

■ Math trails are cooperative, not competitive. In the spirit of the NCTM

Curriculum Standards the emphasis is on talking about and doing

mathematics. The purpose of the math trail problems is to bring

attention to the processes for formulating and solving problems, not 

to find single correct solutions. While an individual might walk a trail

with pleasure and profit, the orientation of trails is toward families and

other groups.

■ Math trails are self-directed. Such trails are ready when a walker is

ready. There is no time limit.

■ Math trails are voluntary. An important characteristic of our model is

that walking a math trail is entirely voluntary. This idea is in keeping

with the general principles of the popularization of mathematics in

general. You can turn off or tune out a television show. There are other

things besides mathematics to see in a museum. It’s not likely that

anyone can be forced to solve a puzzle. A popular presentation of

mathematics must first attract and keep its participants. If a particular

bit of mathematics or the setting is not attractive or interesting, it won’t

work for a math trail. In particular, a trailblazer has to remember that

the trail is meant primarily for people who don’t usually do math
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consciously, people whose memories of school math may not be all that

positive. Math trails are not made for specialists. What works for a

person who already likes math a lot, may not work for someone who

doesn’t like it or for someone who is not confident about doing it.

■ Math trails are opportunistic. We believe that “math is everywhere.”

Trailblazers can prove the assertion by taking advantage of their locale:

neighborhood street, business district, parking lot, college campus,

shopping mall, park, zoo, library, grocery store, clothing store, and more.

Any public place that allows safe walking is ripe with math problems for

an imaginative trailblazer.

■ Math trails are temporary. Places change. Permanent trails require

maintenance and continuing time and energy and, perhaps, miss new

opportunities. Rather than maintain this year’s trail, blaze a new trail

next summer as a way to bring back satisfied walkers and use the

novelty to attract new walkers.

BLAZING A TRAIL

Trailblazing is straightforward and lots of fun in itself. It can take as much

time and energy as you have available. Our model opts for less rather than

more on the part of the trailblazers. The project should be fun for you as

well as for the trail walkers.

■ Location. Where do you want to locate a trail: neighborhood street,

business district, parking lot, college campus, shopping mall, park, zoo,

grocery store, clothing store, or some other interesting place? Walk the

venue looking for math problems from which to choose. Collect many

more than you will use, so that you can pick and choose for good

balance among the final lot. Snapshots and sketches will be useful in
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your planning, although you will probably make several visits to the site.

Keep notes on your ideas so you can sort out the pictures when they

come back from the developer. Be alert for problems that involve

elements of local culture or history, as well as the physical attributes of

the site. Work with a scale map of the venue, noting the specific location

of each problem. Your stops on the final trail route will probably occur

in a different sequence or route than you used in collecting the ideas.

■ Length. Walking distance, walking time, and the number of problems all

affect the length of a math trail. One mile will do for many people,

although you might design a two-part trail to give a longer option. Two

hours is the limit of most people’s attention for problem solving, even in

the most attractive locale. Consider including a sit-down break midway

in distance and time. This is a chance for the group to talk about what

they’ve been doing, as well as to catch their collective breath. Spacing

consecutive trail stops more than 10 minutes apart risks losing a walker’s

attention. The time required at each trail stop depends on the walkers as

well as the problem.

■ Trail guide. Prepare a scale map of the trail including all appropriate

landmarks and features, as well as clear notations to the trail stops.

Describe the problems for each stop, leaving room for trail walkers to

write, sketch, and record their thinking and solutions. Make note of the

tools that a trail walker might need for each problem. Keep the overall

list simple. Paper, pencil, an eraser, a watch, and a hand calculator are

what you can expect most people to have readily available. Include an

address to encourage trail walkers to send comments to about the trail.

This will be helpful to you in thinking about the success of the trail.

We’ll provide samples of several trail guides below.

MATH TRAILS - PART 1 11



■ Mathematics. Sketch out the math problems that you discover. Organize

them on your site map. Including two or three problems at a trail stop

helps to hold a walker’s interest and increases the ratio of math time to

walking time. Posing the problems at different levels and with different

mathematical focuses will help to achieve a good variety in the overall

trail. Don’t overemphasize estimation or geometry or arithmetic or any

one topic, especially not arithmetic, which will come up in many of the

problems anyway. Include problems with ideas to follow up at home.

Make the problems independent of one another so that trail walkers will

be encouraged by a fresh problem at each stop, regardless of how well

they understand earlier problems. Aim for problems that are not like the

problems that students are currently solving in school. Novel

mathematics will help demonstrate the value of studying mathematics.

Problems that arise naturally from the situation are best, although

incidental problems are also fun. You will find that blazing a math trail is

itself a good math challenge.

Our emphasis throughout this book is on creating a math trail with a

written trail guide for the use and enjoyment of individuals or groups at

their own pace. We do not expect that you or anyone else will be acting as

leader for an organized walk. However, you may very well choose to act as

leader for a group of trail walkers as part of the process of creating the trail.

They may help you in finding interesting problems and with making the

choice on how detailed and prescripted an individual question in the guide

might be. It is not easy to decide, for example, when to ask the trail

walkers for several different ways of estimating how fast, how high, or how

many, and when to write a series of one-step questions that will lead to the

same result. In Part 2 we have taken the opportunity of describing settings

in a wide variety of ways, from detailed and prescriptive to open-ended to

asking you to consider the situation and choose a formulation. If it sounds
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at times as if we were leading a group on an unwritten walk, that’s part of

the thinking about the trail guide.

The creation of a written trail guide to be followed without a leader also

affects the kind of questions you can ask. You have to ask about features of

the landscape, the architecture, the animals, and the stores that you know

are going to be there for a while! Here is a building structure with lots of

line segments in the design. It’s interesting to ask how many different

triangles you can find, especially if they may be mutually overlapping and

inclusive. But if an advertising sign gives just as promising an opportunity,

you have to ask if it’s likely to be there for a while or is it in danger of

being replaced next week. Estimating the height of a building or statue you

can’t climb on can be done in more than one way. Asking the participants

to use shadows won’t succeed on a cloudy day, but it is great fun when it

works. Looking for tessellations and deciding what makes them different is

usually occasioned by walls or pavements or sides of buildings, and they

are always present. A pattern of stars on a flag is permanent, but there are

parts of the country where the same pattern in a flowerbed may disappear

seasonally in the park perhaps, but not in the mall!

Such problems are naturals for the stops on your trail. While walking from

place to place on the math trail, other questions and problems may arise.

You can decide if you are walking level or perhaps going uphill or down,

and you can think about this in several different ways. You can look for

special polygons (examples of n-gons with n up to perhaps 12, convex or

otherwise), or special polyhedra (examples with different numbers of faces,

convex or concave), or special curves and surfaces (circles, ellipses, ovals,

spheres, and parts of these). There are also problems that might be fun but

are not predictable: Perhaps special numerical properties of license plates of

passing cars, or the probability of meeting an unusually large number of
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consecutive persons of the same sex coming the other way. A trail guide

could suggest keeping an eye open for such opportunities even though they

don’t always occur.

ORGANIZING A MATH TRAIL PROJECT

Any project takes organization and planning. In addition to blazing the

trail, a math trail project will require some supporting work to see that it

functions smoothly.

■ Trailblazers. An individual might set up a trail, but teamwork is fun and

the result can be stronger for having contributions from several points of

view. Including a math user (engineer, business person, etc.,) can help

prevent a school-like tone to the problems. And including someone on

the team who is not a heavy math user can be a good reality check by

representing the majority of the public you will want to reach.

■ Sponsorship. Is there a club or other such group that will adopt the

math trail project? Of course, a school group might initiate a project, but

there are many other community groups that could step forward, such as

service clubs, scout troops, fraternal organizations, among others.

Sponsorship might include either the money or a mechanism for raising

the money to cover the costs of the project. The trailblazers will prepare

the master copy of the trail guide. Printing or duplication of the trail

guide is a cost. You might translate the guide into other languages

depending on the make-up of your community. Distributing the trail

guide is a problem to solve. You might consider approaching local

merchants, the library, or some other facility close to the trail. Publicity

will be helpful in alerting the community to the existence of the math

trail and in telling them how to get a trail guide. Sponsors can be helpful

in securing publicity. Consider putting signs in store windows or on
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community bulletin boards or an announcement in the local newspaper.

A sponsor could be helpful in case permissions are necessary for entries

into premises or otherwise. In any event, you might alert shops or other

businesses in the vicinity of a trail stop of the likelihood of groups of

people coming by, talking about mathematics or otherwise displaying

unusual mathematical behavior! Even if you have a non-school sponsor,

your local school can be helpful in publicizing the math trail with

students. A sponsor might offer a reward for finishing the trail. A badge

or simple certificate are nice symbols of participation as well as

suggestions that others walk the trail themselves. You will need to

arrange for a place where the successful trail walkers can receive their

badges or certificates.

■ Evaluation. You and your sponsors will want to know if your trail is a

success. You’ll want to agree on how to define success. The best

definition is probably one that is simple. Track the number of trail

guides distributed. Include an address for people to send a note after

walking the trail. Make a few visits to the trail when you might

anticipate a large number of walkers. Observe them and perhaps 

ask a few questions to gauge their reactions and to provide you with

some anecdotes. Anything much more elaborate is likely to overburden

the trailblazers.

■ History. Math trails are ephemeral. Capturing your experience can be

useful to others and interesting to those who think about popularization

of mathematics. Think about sending a brief letter concerning your math

trail and your trail guide to COMAP. Be sure to include your interesting

anecdotes, both from the trailblazers and from the trail walkers.
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PART 2 EXAMPLES OF MATH TRAILS

We give four examples of trails in particular situations: A park playground,

a city, a zoo, and a shopping mall. The playground and the shopping mall

are each a single actual location, the city and the zoo trails are composites

drawn from several locations. For each trail stop you will find one or more

pictures, and then ideas and questions suggested by the pictures. The trail

in the park playground is more specific than the others, in order for you to

see examples of the development from what you see to questions and ideas

to actual items for a trail guide.

RECREATIONAL MATHEMATICS IN THE PARK

Parks are popular places for many people, including family groups. In this

chapter we will take a tour of a local park to blaze a math trail in the park

playground. We’ll discuss our thinking as we spot opportunities to

highlight some math, identify questions to ask, and note choices to make in

settling on a final guide design. We’ll also include a draft of the trail guide

for each stop.

THE FIRE ENGINE

Our park has an attractive red

fire engine. Children of all ages

have fun climbing aboard the fire

engine, pretending to be the

driver or one of the firefighters

rushing to a fire across town. The

fire engine certainly is large, but

how large is it? Here’s a chance

for walkers to estimate some
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measurements using their hands and feet, although a tape measure would

help move things along more quickly.

Think about the size of the tires, the length of the truck or various pieces,

or the height of the seat from the ground. Walkers could record

measurements on the trail guide in order to compare their results. They

might also try estimating some of the lengths before measuring.

As an extension of this exploration, trail walkers can compare their

numerical results when they divide the height of the tire into its

circumference. While we would not expect everyone to get exactly the

same quotient, we would expect the trailers to obtain similar results. This

is a neat way to let everyone discover that π did not just “pop” out of the

sky! It (π) really does have a true and valid meaning in life and

mathematics. There will be other opportunities during our visit at the park

to explore π.
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GUIDE TO STOP 1—The Fire Truck

This truck is bigger than most cars on the road, but how big is

it? Even the tires are large. Each of you estimate how long

your hand is. Now use your hand to measure the height of 

a tire and then measure the distance around the outside of 

the tire. Compare your answers. Are they different? Talk 

about why.

Divide the height of the tire into its circumference. Is this

number familiar? Compare your results.

How long is the truck? How long is the front bumper? The

driver’s seat is high off the road, how high is it? Why is the seat so high? Try estimating the height first

and then measuring. Is it easier to estimate longer or shorter lengths?

Name:

Tire height:

Circumference:

Quotient:

Truck length:

Bumper length:

Seat height: 



TILING BLOCKS

This gate has a grid of square tiles, light on one side and dark on the other.

The tiles are mounted so that they rotate on a vertical wire. Rotating them

generates a great variety of patterns and that affords a variety of counting

problems. The most direct

problem is to estimate or count

the number of square tiles. A

more complex problem is to

count the number of different

patterns. You might want to

ask exactly what you mean 

by different.
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GUIDE TO STOP 2—Tile Grid

See how each small square tile rotates independently so that you

can turn either its light face or its dark face to the outside. Count

the number of rows of tiles. Count the number of columns. How

many individual tiles are there in the grid?

Each time you turn a tile, you change the pattern. One pattern

has all the light faces showing. The opposite pattern has all the

dark faces showing. There are many, many more patterns mixing

light and dark tiles.

Look at the four tiles in the corner that make a 2 x 2 square.

How many different patterns can you make with them?

How many patterns can you make with a 3 x 3 set of tiles?

How many patterns can you make on the whole board? The number is very large! Think about 4 x 4 and

5 x 5 arrays first and see if you can spot a pattern.

Rows

Columns

Tiles

2 x 2 patterns

3 x 3 patterns

4 x 4 patterns

5 x 5 patterns

Total patterns



SHAPES AND NUMBERS BOARD

This panel on the carousel is not

only decorative, but also an

instructive opportunity for very

small children to recognize

numbers and simple shapes. This

can be a prompt for the youngest

of the trail walkers to look for

numbers and shapes along the trail.

CHIMES

Chimes have always fascinated

children and adults alike.

Windchimes catch the breeze and

play beautiful musical notes. Other

chimes, such as the brightly colored

panel containing eight chimes

pictured here, need to be struck with

something like a stick in order for us

to hear musical notes.
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Figure 3.

Figure 4.

GUIDE TO STOP 3—Shapes and Numbers

Look at all of the shapes and numbers on the board.

Name them and trace them with your finger. As you

walk through the playground today, see if you can

find all of these shapes and numbers. Keep a tally for

each of the shapes and numbers. At the end of your

walk, check the tallies to see which shape you found

most often and which number you found most often.

How many?

0

1

2

3

4

5

6

How many?

7

8

9

Square

Triangle

Rectangle

Circle



GAME BOARD

Game boards can be found

throughout many playgrounds,

recreational picnic areas, and

zoos. This game board in our

playground is made up of Xs and

Os. Each of the nine faces can

come up either as an X or an O

or a blank. The game board is in

an arrangement of a 3 x 3 grid.

SLIDES

Slides are loads of fun for everyone! We never seem to outgrow the thrill of

coming down a slide—the steeper and faster, the more fun! One of the

things you learn in mathematics has to do with the slopes of lines. We can

combine the fun and thrill of a slide with the concept of the slope of the

slide. Once the walkers are comfortable finding the slope of the first slide,

it is a good idea to have them find other slides or ramps in the playground

and compare their slopes.
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Figure 5.

GUIDE TO STOP 4—Chimes

What a terrific place to stop and have some fun with musical chimes! Are

all the eight chimes the same length?

Hit each of the chimes starting from the shortest to the longest, left-to-

right. Do all of the chimes make the same sound? Which chime has the

lowest sound? Which has the highest sound? How do you think the length

of the chime and the pitch of the tone are related?
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GUIDE TO STOP 5—The Game Board

See how each square face of the game board rotates independently

so that you can turn an X or an O or a blank to the outside.

Work with a partner to see how many different ways you can

arrange the Xs and Os on the game board grid with no blanks. How

is this like Stop 2?

How many different ways can you arrange the Xs and Os if the nine

squares were lined up in a row instead of in a grid?

What if you decided that the Xs and Os must alternate? How many different ways can this be done?

Choose teams and play some games of tic-tac-toe.

GUIDE TO STOP 6—Straight Slides

Measure and record the height of the slide at its tallest point and at its lowest point. Subtract the lowest

from the highest and record your results in the numerator of the fraction below.

= ______________ = 

Now measure and record how far it is along the ground from the tallest point of the slide to the end of the

slide. Record this answer in the denominator of the fraction above.

This fraction is called the average slope of the slide.

Divide the first result by the second result.

height of tallest point –  height of lowest point
distance from tallest point to end of slide

Team 1 Team 2

Game 1

Game 2

Game 3

Game 4



Some slides are not perfectly

straight, but rather have a slight

bend toward the end of the slide.

This bend acts as a brake for

children, slowing them down

before they come to the end of

the slide. Once trail walkers are

comfortable finding the slope of

a straight slide, have them tackle

finding the slope of a slide with a

bend in it.
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Figure 6.

GUIDE TO STOP 6—Slides With Bends

Discuss ways of defining the slope of this slide. There might be more than one

suggestion for defining the slope. How close are the different slopes? Why are

there different answers? If you see other slides or ramps, find their slopes

and compare them.

GUIDE TO STOP 6—Slides

How long does it take to get down each

of the different slides you find on the

playground? Suppose your friend weighs

more than you. Would she/he get down

the slide faster than you? Record your

findings in the following table.

Time to get Walker 1 Walker 2 Walker 3down each slide

Slide 1

Slide 2

Slide 3

Slide 4



SWINGS

Have you ever noticed how

children run over eagerly to a

swing set once they spot it?

Many times they will also screech

with delight as they run toward

the swings. Adults also enjoy

swinging! There just seems to be

something relaxing and carefree

about swinging.

Some trail walkers could work the with the following situation using the

motion of the swing or “damping.”
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Figure 7.

GUIDE TO STOP 7—Swings

Now walk over and watch the children as they swing. Do some of the children

need to be pushed by someone else in order to go higher? Why? Take turns

swinging with your friends. How would you describe the motion of the

swings? How do you make yourself swing higher? Why does the swing

eventually stop?

GUIDE TO STOP 6—Slides

If you roll a ball down the slide, how far does it land from

the end of the slide?

What do you think affects this distance?

Distance from the end of the slide

Slide 1

Slide 2

Slide 3

Slide 4
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GUIDE TO STOP 7—Swings

At this stop along the math trail you are to decide if the motion of the swing or “damping” is constant. You

will need two friends to help you out with this activity. Have one of your friends sit in the swing. Stand

behind your friend and mark the position in the sand from where you will let the swing go. Another friend

should stand to the side of the swing to mark the distance the swing will travel. Now bring the swing back

to your marked position in the sand and let go. The friend on the side should place marks in the sand to

indicate the distance that the swing travels on each successive swinging motion. After the swing comes to a

stop (or near-stop), repeat the swinging and distance measuring activity again using the same person in

the swing and letting the swing go from the same position. Repeat once more and see if you can make a

conjecture about your observations.

GUIDE TO STOP 7—Swings

Find some other swings in the playground with

different length chains. Try the same experiment

using these swings and see if the length of the

chain affects the period of the swing.

GUIDE TO STOP 7—Swings

Now explore another activity at the swings. You will need a stopwatch or a watch with a second hand, and

two friends for this exploration. Do you remember what a period is? It is the time it takes for one back-

and-forth motion of the swing. Have a friend sit in one of the swings. Stand behind your friend and bring

the swing back and start your friend going in the swing. Have another friend time 10 back-and-forth

swings and divide that time by 10. Do this

several times giving your friend a different

amount of push on each trial. Does this affect

the period?

Repeat the whole process using different

distances from which to start the swing. Does this

affect the period?

Trial 1

Trial 2

Trial 3

Trial 4

Time for 10 back - and - forth swings
10

Swing 1

Swing 2

Swing 3

Swing 4

Time for 10 back - and - forth swings
10



COUNTING THE LEGS OF A CATERPILLAR

One of the best parts about a

math trail is that there is always

some mathematics that everyone

can do—no matter how young

they may be. Playground

designers will often include

opportunities for younger

children to try out their skills 

at counting.

THE SNACK BAR

After several stops on the math trail, walkers should be hungry and thirsty!

This provides an excellent opportunity for some mental arithmetic.
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GUIDE TO STOP 8—Counting the Legs of a Caterpillar

Count the number of legs on the left. How many are there? _____________

Count the number of legs on the right. How many are there? ____________

How do you tell the number of legs on the right without actually counting them?____________

Figure 8.

FOOD DRINKS MISC. ITEMS

HAMBURGER............2.50

CHEESEBURGER.......2.75

FRENCH FRIES.........1.25

CATFISH TRAY..........5.25

GRILLED CHEESE.....2.00
NACHO n CHEESE....2.50
BURRITOS.................1.75

HOT DOGS.................1.75
CORN DOGS...............1.75
CHICKEN SANDWICH......3.25

SODA  COFFEE  TEA

SM MED LG1.00 1.50 2.00
FRESH SQUEEZED
LEMONADE SM LG1.75 2.00
SOUVENIR CUPW/COKE 2.50

SOUVENIR CUPW/LEMONADE 2.95

ORANGE JUICE 1.50
SNOWCONES CHERRY

GRAPE 1.50
ICE CREAM CONES 1.50

SUNDAES 1.95VANILLA
CHOCOLATE

FLOATS
SM MED LG1.75 2.00 2.50

STRAWBERRY CHOCOLATE
PINEAPPLE

SUPER PRETZELS......1.75

PEANUTS...................1.00
POPCORN...................1.50

CHIPS......................... .85

CRACKERS.................. .85
CANDY......................... .85
COTTON CANDY.........2.50

SNOWCONE &
ICE CREAM MIX.........2.25 Figure 9.



THE TRAIN STATION

Many playgrounds and

recreational parks offer trains to

ride around the area. Children

and adults alike enjoy these train

rides. If the playground you are

using for a math trail offers train

rides, it is an excellent

opportunity to enjoy some

mathematics along with a pleasant

trip around the playground.
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GUIDE TO STOP 9—The Snack Bar

Suppose you have $6.00 and you want to buy a drink and a snack. Using the menu on page 25, what are

three possible combinations of drink and snack that you could buy? But wait! Is there any sales tax on the

food? Estimate the sales tax. Do you have enough money to pay for your food? Record your choices and

the total for each in the table below.

A clerk at the snack bar earns $5.50 per hour. How many hours must the clerk work to earn $75.00

before taxes?

Figure 10.

Food selection Cost Estimated tax Estimated total cost Estimated change

Combination 1

Combination 2

Combination 3



CIRCLES

As you plan your math trail at

the playground keep an eye out

for circles. There could be circles

within game boards, as edging

around a circular garden within

the playground, or as part of the

construction of the playground

equipment. Circles are the place 

to look for π.

MATH TRAILS - PART 2 27

GUIDE TO STOP 10—The Train Ride

Suppose the stationmaster tells you that the

average speed of the train is 5 mph. Time

the length for one complete ride on the

train. About how long is the train track?

Suppose the train stops in the station for 5

minutes before departing for the next tour

of the park. What is the probability that the

train will be in the station when you arrive?

If the train is gone when you arrive, what is

the probability that you will wait less than 5

minutes for the next train?

Now find the stationmaster and ask how long the train rests at the train stop before taking off on another

trip and the average speed of the train. Answer each of the questions in the previous paragraph for your

train ride.

Figure 11.

Figure 12.
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GUIDE TO STOP 11—Circles

As you walk around the playground

watch for circles. Recall from the stop at

the fire truck your estimate of the length

of your hand. When you find a circle,

use your hand to measure its

circumference and diameter. Record your

results in the table to the right.

As you come upon other circles during

your math trail adventure, find the

circumference and diameter of each and record the measurements in the table. Then find the ratio of each

circle’s circumference divided by its diameter and record this result in the table.

Divide the circumference of each circle by its diameter. Do you see a pattern? Where did similar questions

come up before on the walk? Compare the ratios of circumference divided by diameter from the fire truck

to the ratios you have just obtained. You observed then that the ratio of the circumference of a circle to its

diameter is a constant! You may recall that this number is called pi and is written as π. It is approximately

equal to 3.14.

Circumference Diameter
of circle of circle

Circle 1

Circle 2

Circle 3

Circle 4

Circle 5

Circle 6

Circumference
Diameter

GUIDE TO STOP 11—Circles

Now that we have found the circumferences and diameters of various circles as well as the ratio of the

circumference to the diameter for each circle, let’s find the area of each circle. Use the formula:

Area of a circle = π (radius)2, where radius = diameter1
2

Area of a circle = π (radius)2, where radius = diameter

Circle 1

Circle 2

Circle 3

Circle 4

Circle 5

Circle 6 

1
2
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GUIDE TO STOP 11—Circles

See if you can find a circle within another circle with the same center. You may recall that these are called

concentric circles.

Find the area of each of the two circles and record your results in the table below.

What is the probability that the coin will land in the smaller, inner circle?

First set of circles Second set of circles Third set of circles

Area of smaller 
circle (A)

Area of larger 
circle (B)

B – A

# of times coin 
landed in 
smaller circle

# of times coin 
landed in 
larger circle

Probability that 
coin lands in 
smaller circle



THE JUMPING POLE

Some playgrounds have a long, round

pole that is held up by supports and

is parallel to the ground. Children

call it a jumping pole or, perhaps, a

snake. It is different-looking from

much of the other play equipment on

the playground and children sometimes need to watch other children play

with it before they get the knack of playing on it themselves. Two children

can sit on the snake and push upward with their feet as they are bouncing

up and down. A third, or perhaps a fourth, child can also get on each end

of the snake and push up and down. As one or more children sit on the

snake and friends push up and down on the ends a wavy, up-and-down

movement occurs. It always looks like so much fun and children certainly

love to play on it!
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Figure 13.

GUIDE TO STOP 12—The Jumping Pole

Now let’s head over to the jumping pole for some fun. Sit on the jumping pole and push upward with your

feet. See how you go up and down as the snake moves in a wavy type motion. Now have a friend stand at

one end of the pole and push up and down. Describe the ride when your friend gives the pole just a little

push. What happens if your friend gives the end a harder push? How does the distance you travel up and

down depend on how your friend pushes on the end of the pole? Now have a taller or heavier friend take

your place on the pole and you do the pushing at one end of the pole. How does this affect the motion of

the pole? See what happens to the pole’s up-and-down motion if two people get on the pole and two more

do the pushing. What happens if the two people doing the pushing push down on the pole at the same

time? Try the same thing, but this time push one end down and the other end up. How does this action

affect the motion of the pole?

Time to try something different with the jumping pole. Have everyone get off. Let one person push down

hard on one end of the pole to start the wavy motion. What is the distance between the two high points of

the waves?

Have a person stand at each end of the pole. Then have each person push down on their end of the pole

at the same time. What happens to each wave?



LADDERS OF DIFFERENT SHAPES

It is also fun to look for ladders

of different designs and shapes

on the math trail. Ladders do not

always go straight up-and-down.

Some can be curved and each

ladder could have a different

angle of elevation.

Math trails are a truly fun

activity for the entire family!

One particular family of

trailblazers includes everyone in

the activity—even the family’s

Labradors! Penny and Maggie

first pose for their picture at the

end of the playground slide. That

being taken care of, they get down to the business of estimating the slope

of the slide by taking several trips up and down the slide to get a bird’s-eye

view from all angles!
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GUIDE TO STOP 13—Ladders Of Different Shapes

Describe in your own words the shape of this unusual ladder. Is it possible that this ladder is part of a

circle? How would you decide if it is really part of a circle or not? Now look at the rungs of the ladder. Are

they pieces of circles? Describe how you went about making your decision.

Figure 14.

Figure 15.



They compare notes

before they announce

their estimated slope of

the slide. Maggie prefers

to check the slope

estimate by actually

coming down the slide

while her mother, Penny,

opts for the stairway!

SOME REFLECTIONS FOR THE TRAILBLAZER

You have just finished your first playground math trail! Just look at all the

mathematics you found around you in the playground! Now that you are a

true “Math Trailer,” can you find even more mathematics in your playground?

As the creator of the math trail guide, you can judge how much detail your

trail walkers would want to put into each stop. Take a moment to consider

three playground items that are almost certain to be part of any playground:

a seesaw, a swing, and a slide.

With a seesaw, trail walkers can consider the question of what makes it

balanced—or unbalanced! Before anyone sits on the seesaw, it is probably

more or less in balance. If two children of equal weight sit at an equal

distance from the point of balance (the fulcrum), the seesaw will stay in

balance. If children of unequal weight sit on opposite sides of it, the

heavier child must sit closer to the fulcrum in order for the seesaw to be

balanced. A good mathematics question to ask here would be “How much

closer?” If child A weighs 40 pounds and child B weighs 80 pounds, should

child A sit twice as far from the fulcrum as child B? Some of your trail

walkers may come to that conclusion right away. However, it might be fun
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Figure 16. Figure 17.



for them to consider this question in a little more detail. Why is there a

problem? Because the seesaw itself has weight and often, for reasons of

strength, is actually pretty heavy. Say each half of the board itself weighs 50

pounds. What is the moment on the left side of the board? You may want to

remind your trail walkers that moment is weight times distance to the

fulcrum. You can think of the 50 pounds of board as being concentrated at

the midpoint on the left, and the distance is the distance from that

midpoint to the fulcrum. On the right side you have another 50 pounds

concentrated at the midpoint of the right part of the board. This means that

the moments are equal. Add the moment of the left side to the moment of

the child sitting on the left end of the seesaw and then add the moment of

the right side to the moment of the child sitting on the right end of the

seesaw. Now let’s say that the whole system, board plus children, is in

balance. So you set the two sums equal to each other. Then the moments

due to the board itself are equal, and when you subtract them, the

moments of the children by themselves have to balance! So it works after

all! Did we worry you for just a minute?

On the swings you can discover that, unlike the seesaw, the weights of the

children don’t matter! That’s quite a surprise! The period of the oscillation

doesn’t depend on the weight of the child—only the push needed to make

her start swinging does! Secondly, the period doesn’t seem to depend on the

initial displacement either—and you probably don’t want to get into the

mathematics of that—but the walkers can perhaps explore if a swing at the

end of a longer rope has a longer period. How much longer? Any guesses

on that?

A slide may be trickier because the friction between the slide and the

person, or favorite pet, going down has so much to do with how long it

takes to get to the end. But you might send balls of different sizes and
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weights down the slide and see that the time it takes for the balls to get to

the end doesn’t depend on the weight of the ball. Also it may not differ that

much from a child, or a pooch, as long as they have the confidence to let

go and not try to brake. How far from the end of the slide does the ball or

the child land on the ground? What does that depend on? Is it how heavy

the child is, how far the upper end of the slide is from the ground, or how

far the lower end is off the ground? How long did it take to get from the

top of the slide to the ground? What does this time depend on? Some slides

don’t go straight down, but may spiral a bit. As long as there is not a lot of

friction, what effect would such twisting have?

RECREATIONAL MATHEMATICS AROUND TOWN

Most of the time when we walk around town doing errands and exploring

new stores we neglect to see the mathematics surrounding us. Villages,

towns, small cities, and neighborhoods in larger cities all offer wonderful

opportunities for trail walkers to have fun with mathematics! We illustrate

the possibilities with samples from Toronto, Ontario; Waco, Texas; Paris,

France; New York City, New York; and Summit, New Jersey. In each

instance, we’ll look at a variety of mathematical questions that are inherent

in the setting. Aside from working out these possibilities, a trailblazer will

need to pick and choose which questions to use in order to achieve a trail

that balances interest, time, and mathematics.

THE FOUNTAIN IN A PARK IN TORONTO, ONTARIO

Many communities feature lovely gardens and fountains. Here’s a fountain

in Toronto, Canada. Geometry and measurement play obvious roles in the

design and layout of both the structural elements and the garden plantings.

In this case, symmetry, tessellations, patterns in the paving stones, and 
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comparisons among the

dimensions are all open to

discussion. The pool of this

fountain looks like a

rectangle with a quarter

circle cut out of each corner.

Shrubs form a border along

the edges of the pool,

perhaps to encourage people

to keep their distance from the water. Altogether the esthetic impression of

the fountain, pool, and plantings is attractive and pleasing because of the

geometry inherent in the design.

ACTIVITIES

■ Identify the geometric shapes in this structure.

■ Estimate the number of shrubs planted around the fountain. How does

this number compare with the perimeter of the fountain?

■ Assuming that the bottom of the fountain is level with the ground,

estimate the depth of the pool and then estimate the number of gallons

of water that the fountain can hold.

ACTIVITIES

■ Estimate the perimeter of the

darker gray brick rectangle.

■ How does this perimeter

compare with the perimeter

of the pool?
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The brick mason laid an interesting pattern of bricks at each corner of the

fountain and this contributes to the artwork. The darker gray bricks add a

finishing touch that defines the rectangle enclosing the structure.

INCIDENTAL SCULPTURE

Many cities and towns have sculptures or statues in various places about

the community. These might be used to inform passersby about some local

history or simply to add a pleasant and charming atmosphere. Some cities,

like Chicago, Illinois, have used non-permanent sculpture exhibits

throughout the town and actually created a ‘trail’ for automobiles to follow

in order to see the changing exhibits. Waco, Texas, has used this idea of

non-permanent sculptures and created a ‘traveling’ sculpture that appears

in different parts of town on an unannounced schedule. Passersby never

know what part of town the sculpture will appear in the next week! If it

were stationary, you might put in the center of town or as near to the

center as possible. What do you mean by center? The trail walkers might

enjoy this discussion. If you have a region shaped something like an S, no

matter if it is irregular, you can think of two points in it as far apart as

possible. The line segment joining them would be a diameter of S, and its

midpoint the center of the shape. It would have the property that the

maximum distance from anywhere in the region to that point would be as

small as the choice of point could make it.

Sculptured cows sitting so quietly

and peacefully on the town green

are always eye catchers,

particularly for younger children.

All of the cows in Figure 20 are

lying down on the grass and

facing different directions. 
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Figure 20.



ACTIVITIES

■ Decide if the cows are solid structures or if they are hollow.

■ How did you come to your decision?

■ Are the cows life-sized or smaller or larger than in real life?

■ Are all the sculptures the same and just placed differently on 

the grass or is each individual cow truly different from each of the 

other cows?

If your exhibit traveled to two locations, you can imagine dividing the

region into two pieces, each with a center, and making the maximum

distance to the center of each piece as small as possible. And so on for

more locations.

STREET INCLINES

Have you ever walked along a street that sloped down or sloped up? Of

course you have! Very few towns are built on flat land and that means the

streets rise and fall. Even so, the buildings along the streets have floors that

are level and walls that are vertical. Architects compensate for the slope of a

street. Another interesting observation on a street that goes downhill or

uphill has to do with perspective. 

ACTIVITIES

■ Does the street slope to the right or to the left?

■ Stand in the middle of the sidewalk and look down the sidewalk. What

do you notice about the width of the sidewalk as you look farther and

farther down the sidewalk? 
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■ Now turn around and look up the sidewalk. Does the same thing

happen to the width of the sidewalk as before when you were looking

down the street?

GEOMETRIC SHAPES WITHIN BUILDINGS

Architects use geometric shapes

and combinations of geometric

shapes to enhance new

buildings and additions to older

buildings. If you were to travel

to Europe, you would find a

beautiful example of this in the

newest addition to the Louvre

Museum in Paris, France.

Many people call this new addition the Pyramid, because the glass structure

has a pyramid shape. The water fountains are also in the shape of a triangle.

ACTIVITIES

■ What shape is the base of this pyramid? 

■ What is the name for a pyramid with a base shaped like this one?

■ Do all pyramids have the same shape base?

■ What shape is one of the faces of the pyramid?

■ What shape is each panel of glass?

■ Look for other geometric shapes within the face itself. 

■ Is the fountain triangle equilateral, isosceles, or scalene? 
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ACTIVITY

■ Find as many geometric

shapes as you can.

This is the view inside the

Louvre directly beneath the

Pyramid. This glass structure,

too, consists of different

geometric shapes. 

TILINGS

Sidewalks, road- or pathways, and floor tiling can contain all kinds of

interesting and beautiful mathematics. The foyers of hotels and public

buildings are wonderful places to have trail walkers look for geometric

shapes. Many of these floor tilings are large and colorful—meant to catch

the public’s eye not only through the contrasting colors and the use of

different geometric shapes, but also by setting the design into the white

floor tiles with a different angle. You can guide them in seeing a circle

inscribed within a square.

ACTIVITIES

■ Devise a method to

determine if the round

shape in the center of this

tiling is a circle and if the

shape surrounding it is a

square. 

■ Identify the geometric

shapes in this floor tiling.
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■ Estimate the area of the square and use that estimate to help estimate 

the area of the inscribed circle. 

■ Estimate the area of the entire tiling.

The second picture shows a tiling design that appears in a sidewalk in the

downtown area of a small town, Summit, New Jersey. Trail walkers will

notice that the pattern repeats itself.

ACTIVITIES

■ What two geometric shapes

are used over and over to

make the sidewalk? 

■ Were these two shapes laid

down in a particular order? 

■ Is it necessary for the order of

tiles to be constant so that the pattern continually repeats itself?

This tiling, with two octagons and a square meeting at each vertex

(mathematically referred to as an (4,8,8) tiling), is an example of what is

called a semi-regular tiling. There are eleven of these tilings. They occur in

so many math trails contexts that we have a section devoted to deriving

and discussing them on pp. 88–99 of this book. The derivation is in a very

leisurely and elementary fashion, and as a trailblazer you may be able to

adapt parts of it when the occasion arises.

The trail walker may want to discuss the (4,8,8) tiling further. It looks as if

the octagons occupy most of the area being tiled. How much is ‘most’? If

the square has unit side so that its area is 1, what is the area of the

octagon? Trail walkers may first estimate it by saying “Well, it looks like it
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would hold four of five of those little squares.” They may come up with

various ways of actually computing the area: One nice way to do it is to

imagine ‘filling out’ the octagon into a square by adding four little isosceles

right triangles in the corners. The hypotenuse of such a triangle is 1, its

side is 1/ , so that its area is . The side of the octagon augmented to 

be a square is then 1 + , so that its area is (1 + )2. The area of the

original, unaugmented, octagon is then (1 + )2 – 1 = 2 + 2 , or 

about 4.8.

This might be taken a bit further. Does this mean that throughout an entire

tiling, the ratio of area covered by octagons to area covered by squares is

about 4.8 to 1? That looks reasonable, but how would you be sure? (This

wouldn’t be true in every tiling. If you look at Figure 72, a (3,3,4,3,4) tiling,

found on p. 93, a triangle has slightly less than half the area of a square,

but the overall impression is of more area covered by triangles that by

squares!) One way to look at this is to imagine making a strange new

polygon—call it a “rattle”—by combining a square with the octagon to its

immediate right. You can then imagine the plane tiled with rattles. Since

each rattle is 4.8 to 1 octagon, so is the whole plane! (In order to do this

trick in Figure 25, you would have to attach two triangles to each square!)

Another way to estimate the relative area of the square and the octagon is

to toss some small objects like pennies or pebbles onto the pattern and

count how many land in a square and how many land in an octagon. What

if a penny crosses an edge? Then you count where the center of the coin

would be. The trail walker would obtain a so-called Monte Carlo estimate

of the relative area. This method of estimating areas of irregular-shaped

regions relies on the role of chance or random processes and, thus, was

named after the European city famous for its casinos.
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Another interesting activity with tilings is to think about all the motions of

the plane that would take the tiling onto itself. Can you move any vertex

onto any other in such a way that the tiling lands exactly on itself? Does

the fact that all vertices look alike imply that you can always do this?

Some tilings use only one geometric shape. Have your trail walkers use

their imagination to picture a sidewalk repeating only one geometric shape

other than a square or a rectangle. Is it possible to repeat the pattern

continuously to construct the sidewalk? (Hint: Think about the edges of

the sidewalk and those places where the sidewalk meets another sidewalk,

roadway, or simply ends.)

ACTIVITY

■ What geometric shape was

used for the tiling in this

sidewalk? 

The fourth example of a

sidewalk tiling is very

interesting! Quite different from

the previous examples your trail

walkers may have encountered!

How do you suppose the brick

masons planned this walkway?
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ACTIVITY

■ Think of yourself as the brick mason who laid this walk. What type of

rules do you think he/she would have needed to follow in order for the

pattern to fit together without any gaps? Answer: They are probably

aesthetic, not mathematical rules.

Examples of beautiful tilings can be found everywhere. Driveways and

roadways in front of public and private buildings such as museums and

hotels are often laid in patterns.

A beautiful example of a tiling used on a roadway outside a museum is

shown in the next picture. Notice the graceful arcs made by the bricks!

These arcs make a fan-like pattern that repeats itself. Is it possible that the

arc is really part of a circle? Have the group decide if this is true or false. 

ACTIVITY

■ These graceful arcs made out

of bricks are in a fan-like

pattern that repeats itself.

Work with your group to

decide if this arc is really 

part of a circle. 

Here is another roadway pattern using arcs. At first glance, this tiling might

appear to be the same pattern that the trail walkers have examined in other

roadways but just in a different colored brick. Encourage the group to

decide amongst themselves if the roadway tilings are the same pattern or

not. Then have the trail walkers make a list of those characteristics that the

tilings have in common and those in which they are different.
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ACTIVITIES

■ Make a list of those

characteristics that the tilings

using arcs have in common.

■ Make a second list of those

characteristics that the tilings

do not have in common.

Public buildings and hotels, in particular, use sculptures to enhance the

foyers. The title of this sculpture in the lobby of a large hotel is Parabola.

Some of your trail walkers would easily understand why the artist chose the

title Parabola for this particular sculpture. Walking around the Parabola will

give the walkers an opportunity to see the different three-dimensional effects

of the glass and the different angles at which the glass panels are positioned.
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ACTIVITIES

■ Find the lines or planes of symmetry for the Parabola sculpture.

■ It is possible that there is more than one line of symmetry. As you walk

around the sculpture point out possible lines or planes of symmetry for

others in your group. Then together discuss each observation and decide

which are lines of symmetry and which are not.

Companies use billboards to attract the attention of passersby and

encourage them to use and buy their products and services. The bid for

consumer dollars has led many advertisers to use flashier, more colorful,

and cleverer billboards. This particular example of a billboard advertises

three different products—not just one! But how is this done? Have trail

walkers spot an example of a rotating billboard to help them see how this

can happen. The long, narrow and flat, vertical slats of many

moving/changing billboards have a triangular cross section making it

possible to advertise three different products on one board. A motor

connected to this billboard changes the billboard’s face about every seven

seconds. It would be interesting to investigate the ideal time for a moving

billboard to stay on each face in order for a passerby to read and reflect on

all three faces of the billboard.
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ACTIVITIES

■ What is the geometric shape of a cross section of each of the vertical

slats used in the billboard?

■ How many seconds does it take for all three advertisements on the

billboard to be seen by the passersby?

■ Is this enough time? What would be the ideal time that you would

recommend for each message to be viewed and read by passersby? 

As trail walkers go about the town have them look for circular shapes used

in different ways. One beautiful example of a circle would be the wheels of

an antique gold carriage on display at The Mews in London.

ACTIVITIES

■ How many spokes are radiating out

from the center of the wheel? 

■ The spokes break the circle into how

many sections? 

■ If the sections are approximately

equal in size, how many degrees are

in each section of the circle?

Circles add grace and elegance to

doorways and windows. Encourage 

the group to discuss ways to determine

if they are, indeed, circles or parts 

of circles.
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ACTIVITY

■ As you walk about town look for

examples of circles. Keep a log of the

circles that you find, where they were

on your walk, and their different uses.

RECREATIONAL MATHEMATICS AT THE ZOO

One of the most exciting and fun math trails can be found by walking

through a zoo. Since many cities and towns of all sizes have a zoo, it is a

neat place to have fun while at the same time seeing all of the different

animals and exploring some interesting mathematics.

Many zoos have elaborate entrances to catch the attention of passersby. The

magnificent entrance gate to the Berlin Zoo in Germany is one of the

prettiest in the world. Before paying the admission fee to your zoo math

trail, walkers can take turns standing by one of the elephants or other

statues that might be a part of the entrance gate. They can estimate the

height of the statue by comparing its height to their own. Geometric shapes

are used within the design of an entrance

gate and throughout the zoo. Finding and

naming the different shapes is a

particularly fun activity for the younger

members of your group who might be just

learning the basic geometric shapes. They

love to race about the zoo to see if they can

find a new shape and be the first to point it

out to other trail walkers. Other examples

of geometry such as angles can be found

throughout the zoo.
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ACTIVITIES

■ Use one person’s known height as a gauge to help you estimate the

height of the entrance gate.

■ Find as many geometric shapes as possible within the entrance gate area.

As you continue your walk through the zoo, locate other geometric

shapes and note how they are used. 

■ The very top of the Berlin Zoo gate appears to be part of a circle. How

much of a circle do you think is used to form the top of the gate? 

■ The large lantern is suspended above the entrance gate by three heavy

wires forming two angles. Use them to initiate a discussion of the

symmetries of the gate. In fact, the center wire, if extended, is a line of

__________________ for the entire gate. 

■ Explore different ways to estimate the size of each of the two angles.

What would be the measure of the large angle? Test your method of

estimating these angles to see if it would work for all angles? As a group

explore different ways to estimate an angle (see p. 109).

Encourage the trail walkers to keep a keen eye as they walk through the

zoo. Mathematics can “jump out” from all directions! Trail walkers can

even find mathematics surrounding a little girl washing her hands at a

water fountain. The water flows from the mouth of the bear into a

container on the ground. The rim of the reservoir is not a circle, so the

reservoir cannot be half of a sphere. Walkers may need to review their

geometric shapes to help them determine the name for the shape of the rim

of the reservoir and then find the name for the three-dimensional figure

that has this shape.
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ACTIVITIES

■ What is the shape of the water

reservoir?

■ Estimate how many minutes it would

take to fill the reservoir. Then time the

filling to see how close you came to the

actual number of minutes.

Another interesting place to look for

mathematics within a zoo is a waterfall.

Encourage trail walkers to think of

different ways to estimate how fast the

water is flowing. 

ACTIVITIES

■ Discuss different ways to estimate

how fast the water is flowing.

■ How much water is flowing?

ACTIVITIES

■ If the Los Angeles Zoo is 9682 kilometers

away from the Berlin Zoo, how many

miles would that be?

■ Of the many different ways to travel from

Berlin to Los Angeles, which one do you

think is 9682 kilometers? 
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The walkways within many zoos have figures of animals drawn on them or

embedded in tiles. There are many interesting questions for walkers to

consider about the size of the animals. To estimate the height of the giraffe

or rhinoceros or another animal, one walker could lie down on the tiles

beside the animal and the other walkers could estimate how much taller or

shorter the animal is compared to that person’s height.

ACTIVITIES

■ Estimate the number of white tiles it

takes to outline the giraffe. Then

estimate the number of gray tiles

inside the giraffe. 

■ Estimate the number of white tiles it

takes to outline the rhinoceros. Then

estimate the number of gray tiles

inside the rhinoceros. 

■ Estimate the height of the giraffe and

the rhinoceros. One way to do this

is to have one of the trail walkers

lie down on the tiles beside the

animal and then the other walkers

can estimate how much taller or

shorter the animal is compared to

their friend’s height. Another way

would be to pace off the height of

each animal.

Nearly all zoos, no matter their size, have giraffes because they are a

favorite of children and adults alike! Children love to try to guess the
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height of each of the giraffes or compare the heights of a male giraffe to a

female giraffe or the height of a baby giraffe to its mother. Encourage trail

walkers to devise methods to estimate the heights of the different giraffes.

This particular giraffe is standing next to a large pillar with gray horizontal

lines. Walkers could estimate which gray horizontal line the giraffe would

come closest to if she were standing up straight.

ACTIVITY

■ Estimate the height of the giraffe. 

If the group comes up with more

than one way, compare the height

results to see if they are

approximately the same.

This would also provide an excellent opportunity for members of the group

to talk about proportionality. Encourage trail walkers to think about the

proportionality of the giraffe or another animal in comparison with its

surroundings. Have them also explain how grid paper helps them to estimate

the proportionality of the animals they are drawing.

ACTIVITIES

■ Use grid paper to draw a scaled picture of the giraffe.

■ As each of you works on your drawing, talk to each other and explain

how you are estimating the height of the animal and then representing

this on your grid paper. 

■ Most likely each of you will have a different sized giraffe on your grid

paper. How can this be possible when each of you is drawing a correctly

proportioned giraffe?

MATH TRAILS - PART 2 51

Figure 43.



Children really love to watch baby

giraffes! The fact that they are very

small compared with their mothers

and fathers really amazes kids,

because the baby is so big when

compared with members of the trail

walkers group or even other animals!

This picture shows Jenny with her

new baby boy. He was born on

Saturday, June 20, 1998, at the

Cameron Park Zoo in Waco, Texas. 

ACTIVITIES

■ The baby giraffe weighed 150 pounds and was 6 feet tall when he was

born. His mother weighs one ton and is 19 feet tall. Are these numbers

consistent?

■ Find a young giraffe or another baby animal with its mother. Estimate

the weight and height of the baby using what you know about the

mother’s weight and height. Then ask a zoo attendant how much the

baby weighs and how tall it is. How close was your estimate to the

correct weight and height?

Monkeys love to swing from ropes and swings made of different materials,

delighting children and adults alike with their games and many different

facial expressions! Some of the rope formations are really interesting works

of mathematical art! Heavy roping has been used to make a net for the

monkeys to jump into. They can also climb up the sides of the net. In this

case each rope, those going from left-to-right and those going from front to

back, is shaped very much like a parabola. 

52 PART 2 - MATH TRAILS

Figure 44.



ACTIVITY

■ Find various different geometric

shapes within the ropes and tires

used as swings by the monkeys.

Sidewalks within many zoos in the warmer, southern part of the United

States often have canopies to provide shade for visitors. In this zoo

beautiful, brightly multi-colored, fabric panels are laced together with rope

to follow the curved path of the sidewalk. 

ACTIVITIES

■ Estimate the width and length of

each colored panel and then count

the total number of panels used to

cover the walkway.

■ Approximately how many square

yards were needed to make the

entire canopy?

Many zoos have started to incorporate different versions of popular children’s

games along their pathways. One such popular game looks like tic-tac-toe

except there are pictures of animals, reptiles, and fish instead of Xs and Os.

For this particular game board each of the nine squares has two faces.
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By placing the nine blocks in a certain

order six real animals can be made. 

ACTIVITIES

■ How many different pictures of

make-believe animals can you make

on this game board?

■ Help each other design a game that

could be laid out on one of the zoo’s sidewalks.

Walking around a zoo always makes people hungry! Have the trail walkers

find a snack bar and look at the menu.

ACTIVITIES

■ Each trail walker has $8 to spend on

food for the entire day. Decide if you

want to use all of your $8 at lunch or

if you want to save some money for

an afternoon snack or drink. How

many different lunch orders can you

choose with the amount of money

you have decided to use?

■ Is there a sales tax? If so, how much

will it add to your total bill?

■ Now how much money do you have

left for an afternoon snack or drink?
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******* COMBO MEALS *******

**** DRINKS ****

***** KIDS COMBO MEALS *****

******** A LA CARTE ********

Coke • Diet Coke • Pepsi • Diet Pepsi • Sprite
Dr. Pepper • Diet Dr. Pepper • Big Red

Coffee • Tea • Ice Tea

Sm.  $1.00  Med. $1.25  Lg. $2.00

Hamburger  $3.50
Each meal includes fries and a med. drink

Hot Dog       $3.25
Chicken Sandwich       $3.50

Chicken Fingers $4.50
Mini Corn Dogs  $3.50

Each meal includes fries and an 8oz. drink
and a Bucket

Mini Corn Dogs  $2.25Chicken Fingers  $2.25

********** SNACKS **********
CANDY  $.75  CHIPS  $.75   POPCORN $1.00

Hamburger  $2.00 Hot Dog  $1.75
French Fries       Sm. $.75         Lg.  $1.25
Onion Rings       Sm. $1.00        Lg.  $1.50

NACHOS  Sm. $1.75   Lg. $3.00
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Remember throughout the walk to encourage walkers to hunt for geometric

shapes. They might even find a star inscribed within a circle! 

ACTIVITIES

■ Name each of the many different

geometric shapes you can find within

the circle.

■ Estimate the diameter of the circle and

then find the area.

■ Work with your fellow trail walkers to

devise a plan to help you find the area

within the star.

■ Once you have found the area of the circle and the star, how would you

find the area between the circle and the star? What is that area?

Larger and smaller zoos alike often supply each visitor with a map of the

zoo, or there may be a large map of the zoo mounted near the entrance and

at numerous places within the zoo. These maps can suggest many

explorations in graph theory. Perhaps the most natural question is to ask

for the shortest path through the zoo that will visit every exhibit. One

might prefer never to pass by any exhibit more than once, but in many

zoos this will not be possible. For example, if there is a path to a dead end,

like the Herpatorium in the picture, you will have to retrace that path to

get back to Pulse Point 2.
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Is there a path that will allow you to get to every exhibit once and only

once? Certainly there cannot be a dead end side trip, but even if there are

no dead ends, can it always be done? Absent such a path, what then? How

about a path through the zoo that repeats as little as possible? Can you 

find that?

Many zoos are too large for every exhibit to be seen within the time frame

the trail walkers may have available. 

ACTIVITIES

■ Make a list of the exhibits you really want to see.

■ Now use the map of the zoo to look for a path that doesn’t retrace 

any of its sections.
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You might decide that the trail walkers can do only so much walking and

no more. Now how much can you get to see? 

In some zoos, there are special opportunities for helping with time and

fatigue.  Both the San Diego Zoo and the Bronx Zoo in New York have a

skyride that can help visitors avoid a lot of retracing of steps, provide a rest

in the middle of the tour, and help get walkers to some very interesting

areas in a lot less time. Some zoos also have a tour bus where visitors can

ride and see a lot of the area and exhibits. How do you suppose the

management picks the route for these tours? Some zoos, especially in hilly

terrain, also have escalators to take you from the bottom of a valley to the

top. They, too, can provide a brief rest period in the middle of your visit.

All of these situations provide excellent opportunities for trail walkers to

explore mathematics on a fun-filled outing with family or friends.

Have your group plan a visit to one of these faraway zoos and lay out their

own tours. If the zoo does not have a train or trolley path, have the trail

walkers plan one for the zoo, discussing where the train or trolley would

travel and recommending stopping places for picking up or letting off

passengers.

RECREATIONAL MATHEMATICS IN A MALL

Shopping malls provide wonderful opportunities to blaze a math trail and

discover that mathematics can show up when you least expect it. We

cannot resist, however, bringing to your attention a good math trail

question for mall goers before they start: Why did you come to the mall?

The first answer may well be, “because things are so much cheaper.” Before

they accept this as fact, you should have them figure the cost of driving to

the mall, and the value of their time spent in getting and being there at the 
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mall. Well, what does it cost to drive? The Federal Government, and many

employers, nowadays use about $0.38 per mile as the cost of driving a car

when all factors are considered. If the mall is 20 miles away, that’s a round

trip cost of about $15. Will that much money be saved on a trip to the mall?

How about the value of your time? If it takes an hour to drive back and

forth, what could you have done with that time? Could you have done

something around the house or apartment that’s been on your “to-do” list a

long time? Could you have earned some more money by doing part-time

work from home? This may, of course, be the wrong way for you to look at

going to the mall. Perhaps it is the only place nearby where a particular

purchase can be made. If that is the reason, then there is no argument. On

the other hand, many people go to the mall to meet friends, see a new

movie, buy those new sneakers, experience the virtual reality of a video

game, or even ride a roller coaster. You are not going there to save money.

You are going for relaxation and leisure-time values. A little mathematical

thinking makes that quite clear. 

As shoppers walk through a mall, usually they are not conscious of the

mathematics surrounding them. Of course, they use mental math to

estimate the cost of a sweater that is on sale to make sure they have enough

money to buy it and to compare prices between stores. But do they actually

give much thought to mathematics not related to purchases? Chances are

the answer to that question is a definite “No!” Keep in mind that each mall

has its own unique examples of mathematics.

Every store at the mall works hard at attracting customers. One way to do

this is by advertising sales in the local newspaper. This is a good way to

bring people to the mall with the intention of coming to that particular

store. Stores also want to attract the passerby who had no prior plan to visit

the store. This can be done by an eye-catching display in front of the store
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and in each of the store’s windows. One such

example is illustrated by a display in front of

a sporting goods store: A clear hexagonal-

shaped column filled with tennis balls. A

word of advice: This example presents the

opportunity for a very large amount of

mathematics. There is a real danger of losing

the trail walker by doing too much in one

spot. We shall mention a variety of possible

topics, and at a trail stop like this, you will

have to pick and choose.

A first series of questions might concern the shape and size of this column.

Ask walkers to compare the shapes of slices through the column at the top

and at the bottom: They will probably decide that a slice has the same

shape all along the column, but not the same size. Each slice is hexagonal

in shape, and all the hexagons look the same because, while they are all

regular and therefore similar, the lengths of the sides are different. The

walkers may not know or remember the word ‘similar,’ but they will have

the idea. You can take this further if you want: What exactly is meant by

‘size’ of the column? The top of the column has a different diameter than

the bottom of the column. Trail walkers might be asked to decide what

they want to mean by the diameter of the column: Since the column is

vertical, they will naturally come to cross sections at different heights, so

it’s the diameter of a cross section that we are talking about. They may want

to think about what a diameter should mean. The trail walkers might

decide that they know for sure what they mean by the diameter of a circle

and that the diameter of the cross section is the diameter of the smallest

circumscribing or the largest inscribing circle. Once this is decided, have

the trail walkers estimate both of these diameters.
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ACTIVITIES

■ Look at this clear hexagonal-shaped column filled with tennis balls.

Estimate the number of tennis balls in the display column.

■ Suppose you could make two or three parallel horizontal cuts through

the column. What is the shape of each ‘slice’? Compare the shapes of 

the slices.

Another series of questions could lead to estimating the volume of the

column. To estimate the volume of the column, start with the height—a

more standard trail-walking problem. The areas of the top and bottom

hexagonal cross section can be estimated—perhaps by observing that they

almost fill the circumscribed circles whose diameters the walkers have

estimated. The walkers may wish to estimate volume as average area times

height. But what does average area mean? As the group of walkers discusses

how to do this, they might use the average of the top and bottom cross

sectional areas as a good estimate of the average cross sectional area. It is

possible they will decide that the average area should be weighted towards

one end or the other. If so, which end should they choose? 

ACTIVITIES

■ Work together to come up with a plan to determine the size of the

column. How would you go about measuring the column?

■ Estimate the volume of the column. Devise a plan that would help you

to come up with a good estimate.

A further natural series of questions might concern the balls inside the

column. Many tennis balls touch the plexiglass surface. Let’s first stick to

balls touching the surface. Trail walkers can pick out one particular tennis 
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ball that touches the flat plexiglass surface and count the number of tennis

balls touching that ball that are also touching the plexiglass surface. This

should be done several times in order to make a conjecture about the

maximum number of tennis balls that can touch one tennis ball. If we

think of balls on a flat surface, and of great circles of the balls parallel to

the surface, then we are really trying to see how many circles of equal size

can touch a given circle of that same size. What happens if the problem is

taken from a flat two-dimensional surface to three dimensions? Ask the

walkers to think about how many tennis balls of one size can touch a given

tennis ball of the same size. Without using the terms two-dimensional and

three-dimensional, you can move the walkers’ discussions and explorations

of two-dimensional ideas into those of three dimensions. In this way the

three-dimensional ideas become natural extensions of two-dimensional ideas.

ACTIVITIES

■ Find a tennis ball that touches the

plexiglass surface and is

surrounded by other balls also

touching the surface with as small

amount of gaps as possible. Count

the number of balls it takes to

totally surround that tennis ball.

Choose another tennis ball and do

the same. Make a conjecture about

the number of tennis balls that can

touch one target tennis ball and also the plexiglass.

■ Suppose you could climb into the column and find a tennis ball totally

surrounded by other tennis balls. What is the largest number of balls that 
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can touch one central ball? Choose another similar ball and do the same.

Try this several times before making a new conjecture about this number

of tennis balls.

The geometric questions that arose from the column of tennis balls lead to

many interesting mathematical possibilities. In laying out the trail guide,

you might center on the geometry as we have done. You might alternatively

choose to start with the question of estimating the number of tennis balls

inside the display. This in turn could lead to successive steps of estimating

the volume and the proportion of the volume occupied by tennis balls.

Questions about the shape of the column and its diameter would then arise

from trying to estimate the volume of the column. The close packing of the

balls becomes important when the walkers try to see what fraction of the

volume the balls occupy.

You will need to choose the setting into which you put this series of

questions. You may feel that estimating the number of tennis balls is just the

right level of both familiarity and challenge to catch the trail walkers’

attention. However, if you already have too many arithmetic questions, it

might be better to focus on the geometry. This could later lead into estimating

the number of balls in the column. This idea of using tennis balls is

interesting, but you can look at the same questions with a gumball machine. 

Another way to draw shoppers into a store, other than displays, is the

store’s sign. If you look at a row of stores in the mall you will notice that

each sign is different. Trail walkers can ask the question why. One reason is

that this leads to a type of eye-catching uniqueness for each different store.

National store chains have the same sign for each of their stores in malls

throughout the U. S. because shoppers become accustomed to that

particular store’s sign and seek it out at the different malls they visit. 
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ACTIVITY

■ If you look at a row of

stores in the mall you

will notice that each

sign is different. Have

you ever asked yourself why this is true? Talk with your fellow trail

walkers and see if you can come up with some reasons as to why this

may be true.

Consider the spacing between letters in a particular store’s name. Are the

letters evenly spaced? The problem of spacing letters in any type of

printing or font is called kerning. Old-fashioned typewriters used a uniform

size for the block each letter occupied, no matter whether the letter was an

l or a w or the number was a 1 or a 5. On the other hand, many fonts on

today’s computers have built-in automatic spacing adjustment. This

problem of spacing leads to another type of trail exploration. How is the

letter spacing in a sign decided? What makes it look right? Trail walkers

would need to decide what they mean by the word ‘right.’ Some walkers

might enjoy trying to formulate in a precise way what makes letter spacing

look good to them. Others might argue that this is a purely aesthetic

question and that such an attempt at a mathematical formulation is

artificial and irrelevant. Is it possible that some stores have signs that

actually are not appealing and eye-catching in their design? If you see such

a possibility, it might make a good trail stop. 
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ACTIVITIES

■ Look at the spacing between the letters of a particular store’s name. Are

the letters evenly spaced? Select the sign of another store and check to

see if those letters are evenly spaced.

■ How do you think the spacing between letters in each of the signs was

decided upon? What makes it look right?

The floors of malls are great places to look for interesting tiling designs that

can help to explore mathematics and geometry! Some tiling designs are

made up of concentric circles. The walkers might estimate the diameter and

circumference of each of the different circles. But that activity should bring

up another question: Is everyone using the same ‘gauge’ or unit of

measurement? You should lead the members of the group into explaining

how they are estimating these measurements and have them decide as a

group how to use these different estimates to obtain one ‘best’ estimate. It

might be that one method of estimating is better than another method or

that taking the average of all the different estimates is best. A similar format

of questions can be used when asking the group to estimate the area of each

of the circles and then comparing the area of the smallest and largest circles. 

ACTIVITIES

■ Estimate the diameter and

circumference of each of the

different circles.

■ Discuss how the estimates were

arrived at. Did everyone use the

same gauge for estimating?
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■ Is one method better than the others? Decide as a group how you might

use the different estimates to obtain one best estimate.

■ Compare the diameter and circumference of the smallest and largest

circles.

■ Repeat this activity for the area of each circle and compare the areas of

the smallest and largest circles.

■ Make a list of the geometric shapes that

can be found within the circles.

Another floor design involves a circle

surrounding a star. The trail walkers could

find the various regularities and patterns in

this medallion. 

ACTIVITIES

■ What geometric shapes could have been used to make the star in 

Figure 56?

■ Estimate the diameter, circumference, and area of this circle.

■ Estimate the area of the star inside the circle.

■ What percentage of the area of the circle does the star cover?

■ Do the points nearest the periphery of the circle look equally spaced? 

If so, how many degrees are there between consecutive points? 

■ How many degrees are in each point of the star?

Water fountains are great gathering and meeting places at malls—children

are always fascinated by the water and the sound it makes, they love to

throw coins into the water, and it is a nice place to sit and relax for a while

MATH TRAILS - PART 2 65

Figure 56.



66 PART 2 - MATH TRAILS

before continuing on the journey of the mall. People of all ages like to look

down on the water fountain from a staircase or floor above it. They look at

the shape the water makes as it shoots out and upward and then comes

back downward and splashes into the water in the fountain’s pool. Children

will sit on the floor near water fountains, look at the water and the arcs

made by the water, and listen to the soothing sound.

ACTIVITIES

■ The water shoots out of a vertical pipe in various directions at the same

angle with the vertical. Describe what shape the water makes as it comes

out of the pipe, reaches a peak, and then falls.

■ Estimate the amount of money on the floor of the fountain.

ACTIVITY

■ Decide if the pairs make up

squares. Discuss the various

techniques you used to come 

to a conclusion.

Figure 57. Figure 58.

Figure 59.



ACTIVITIES

The pattern is more complex.

■ What geometric shape is used to

make up this tiling? There are

several correct answers to this

question. Discuss why this is true.

■ Pick a point of intersection on the

tiles and count the number of

hexagons that meet at that point.

Use this result to help you decide

how many degrees there are in each

angle of a regular hexagon.

■ How many total degrees are there in a regual hexagon? Is this result the

same for a non-regular hexagon? Are you surprised by the answer?

■ Now find as many different quadrilateral, pentagonal, and heptagonal

shapes as you can in the tiles.

On the upper floors of many malls there are open areas surrounded by

brass railings where shoppers can look down on other shoppers and stores

on the lower floors. In the mall used in this illustration, the brass railing is

in the shape of an oval (two parallel lines with semi-circles at each end).

The walkers may not agree on a definition of oval. This is an example

where the meanings of a word in everyday English and in mathematics may

not agree. Some walkers may wish to call this an oval, while others, and

you, may not. Would you call it an oval if it were a running track around a

football field? 
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Figure 61. Figure 62.

ACTIVITY

■ Go to the open atrium area on one of the floors of the mall. What is the

shape of the brass railing? Explain how you came to your decision.

Throughout most malls there are benches for people to sit on. Many of the

benches are straight, but sometimes they are curved. The mall designers

probably did this so that the curve of the bench would follow the curve of

the railing. An interesting question for trail walkers to consider would be

how would a carpenter make a curved bench like this one? The pattern of

the wood of what had been the rings of the tree suggest whether the curved

bench was made by cutting the shape from the wood or by soaking the

wood until it is very wet, bending it, keeping it in the desired shape, and

then allowing the wood to dry completely. 

Figure 64.Figure 63.



ACTIVITY

■ See if you can find a curved bench in the mall. How do you think the

carpenter would make a curved bench like this one?

See if you can find an empty store in the local mall. Have trail walkers

estimate the square footage of the empty store. Then they could think

about the monthly rent per square foot, and what the monthly cash flow

would have to be to make a profit.

ACTIVITIES

■ Estimate the number of square feet in this empty store.

■ Go to the mall management office and ask about the monthly rental of

the store. How much does it cost to rent each square foot of the store

each month?

■ Is rent the only cost the store must pay each month? If not, estimate the

amount of these other monthly expenditures.

■ How much money would the store need to take in every month in order

to break even? How much money would be needed for the store to make

a profit?

A mall is a great place to find all kinds of mathematics at work! You have

now taken a short walk around one mall and discovered some mathematics.

Now go and see if you can discover even more on your own.
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PART 3  MATHEMATICS OF SEVERAL KINDS OF TRAIL SITUATIONS

PARKING

As you are walking along, you see cars parked along the curb or in a

parking lot in front of a supermarket or a neighborhood group of stores.

There are a lot of questions you might ask about the parking. For example,

1) On most streets, parking is often parallel parking, while in parking lots

it is often angle parking. If the street is very wide, you might also see

angle parking there. Why is parallel parking common on normal width

streets, but angle parking more likely on wide boulevards? What do you

think? Typical comments that people might make is that angle parking,

if the angle is not too big, is easier for the driver than parallel parking.

You can go right in without pulling up parallel to the car in front of the

space and then backing in, so why isn’t all parking angle parking if it’s

that much easier? Is it perhaps because of the less efficient use of

space? First of all, cars parked at an angle use up more of the width of

the street than parallel parked cars. How much more? If you imagine

the car to be roughly a rectangle, say length L and width W, the parallel

parking uses up a width W from the width of the street. Is that all?

Well, maybe an extra few inches since one doen’t always back perfectly

to the curb. (Also, if you have a passenger who has some difficulty

getting out of the car, you may have to stay a bit further from the curb

so the passenger can comfortably step onto the street first before

stepping up to the sidewalk.) If you park at an angle, how much extra

width do you take from the street because the rear end of the car sticks

out a little? See if you can figure that out.

Now, back to angle parking and another aspect of it. When you park at

an angle you leave a little triangle-shaped area empty. Where is it? Its



edges are the front bumper of the car, the white line (or the edge next

to the car), and the sidewalk. A further triangle behind the car is also

wasted if it isn’t marked in any way, like the one in front, but does take

something more away from the usable width of the street. How big are

these triangles in front and in back of the car? How would you find

out? Use a formula? Measure? Guess? Those are all OK.

Hey, wait a minute! If the angle in the angle parking is big enough,

these triangles you’re talking about are awfully small. In fact,

sometimes thay aren’t there at all! Suppose you pull in at right angles

(or you can say perpendicular) to the curb. There is no wasted triangle.

You see here an important point about thinking mathematically: You

have to be precise. It is true that there are little wasted triangles for

most angle parking, but not when the angle is 0° or 90°. You have to

account for such exceptions—some people call them “limiting cases”—

when you are being thorough.

What are the advantages and disadvantages of perpendicular parking?

Disadvantages: You are taking more width away from the street—this

time you take L away rather than W plus a little bit. Also, perpendicular

spaces are harder to get into than most angle spaces: You can’t go

straight in, but have to pull up at an angle behind the next car, back

up, and then go in. This maneuver needs a pretty wide street.

MATH TRAILS - PART 3 71

L

W

Figure 65.



Advantage: You can get more cars into a given length of parking

frontage. How much more? Is it really worth the trouble? Figure it out.

For a typical car, is L as much as twice W? What do you think? If it

were twice, what would you do to the number of parking spaces by

having perpendicular rather than parallel parking? (In a sample of one,

W was a little more than 6’, and L a bit more than 15’.)

Let’s get back to angle parking that isn’t either parallel or perpendicular.

When you see angle parking on a wide street, about how big an angle

do you think it is? How does someone decide at what angle to the curb

to paint the white lines? It’s perhaps a balance between making it easy

to get in and out, and the waste of space caused by the little triangles.

At what angle do you think the little triangles are biggest? The answer

turns out to be 45°. What tends to be the angle of angle parking? A

guess is that, in many places, angle parking tends to be at about 30°.

This brings up an interesting point. If you are out on a math trail, how

do you estimate an angle anyway? We typically know various “rules of

thumb” for estimating length. You might know the length of your foot

or your arm or the length of your stride. You know how to use

shadows. But what do you know that would allow you to estimate an

angle? Not many people have a technique for that. Please look in the

section called Estimation on pp. 108–111 of this book for a nice method.

Mathematical Note: One way to see how far a car parked at an angle

sticks out into the road is to develop a formula. If the acute angle

between the long side of the car and the curb is θ, then the furthest

distance of the front of the car from the curb is W cos θ. From that

point, the car sticks a further L sin θ into the street. So how much

space does the car take from the width of the street? W cos θ + L sin θ.

So if L were 15’, W were 6’, and θ were 30° then the car would stick
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out about 12.7’. This is well over the 6’ if it were parallel parked, but

less than the 15’ of perpendicular parking.

For what value of θ does the car stick out the most, and at what angle

would that happen? It turns out that the most the car ever sticks out is

a little over 16’, and this happens if θ is about 68°. So at worst it sticks

out more than its length! Did you expect that?

Let’s finish with a nice, open-ended, debatable question, how can the

traffic department pick θ? There are lots of ways of thinking about this,

but here’s one: It’s a tradeoff. If you make θ large, so that cars are close

to perpendicular to the curb, then you use up a lot of the width of the

street, but you save on how much curb you use up. If, on the other

hand, you have parallel parking, you take as little as possible from the

width of the street, but you use an awful lot of curb. If the car is 6’

wide and 15’ long and you do perpendicular parking, your spaces are

probably about 8’ wide because you need about 2’ for opening the door.

(Why didn’t we say 10’, for opening doors on both sides?) How far does

the car stick out into the street? It sticks out about 15’. So perpendicular

parking uses 8’ of curb and 15’ of width. Parallel parking will use about

17’ of curb (to allow 2’ between cars), but very little more than 6’ of

width (with parallel parking, an open door doesn’t run into another

car). At a 60° acute angle between car and curb, you would use a little

more than 9’ of curb (a bit more than perpendicular parking) and stick

out about 16’. What, more than perpendicular parking? Yes, because at

worst you stick out the length of a diagonal of our standard car, which

is a bit more than 16’. Here’s a little table for a car in the shape of a

rectangle 6’ long, 15’ wide, and doors that need 2’ to open.
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What you see is that most values of the angle use a lot of street width

and only parallel parking conserves street width. What you find in

many communities is that you have parallel parking on most streets

because width is scarce, and angle parking on wide enough streets in

shopping areas because curb space is scarce.

2) We have mentioned that, in most places, white lines typically mark

parking spaces. Why are parking spaces marked? Oh come on,

don’t be so naïve, so that people can put parking meters next to

them and make money for the town! But that’s not true in a mall or

supermarket parking lot. They don’t have meters, but they still have

marked parking spaces. One purpose might be to channel the traffic

so that cars don’t run into each other. Another purpose might be to

use space more efficiently. If you allow people to park anywhere,

they will leave an empty space between cars that is too small for

another car, but way more than safety requires. Let’s think about

this last one. If people were to be allowed to park anywhere there

was enough room, how much space would they waste?

It so happens that when you start to look at this question, it’s not easy.

Let’s begin by simplifying it. Let’s not imagine a parking lot because it is

two-dimensional and people could conceivably park in any direction, a

horrendous complication we don’t need. Let’s go to a more rural town,
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Angle Length of curb Street width used

90° (perpendicular) 8’ 15’

60° 9’ 16’

45° 11.3’ 16.3’

30° 16’ 14.4’

0° (parallel) 17’ 12’ at a minimum



or maybe a spa, where making money with parking meters isn’t a big

deal. A good image to have in mind, for example, would be the main

street in Saratoga Springs, NY, which is a nice wide street with (when

last seen) neither meters, nor marked parking spaces. You just parallel

park anywhere there is enough room!

How can you analyze this? When you consider parallel parking, you

want to have a minimum space between cars. So this time let L

represent the length of a car plus a couple of feet around it for safety

and a little maneuvering room. Imagine that all cars are the same

length. That isn’t true in the real world. Also some drivers are better

parallel parkers than others and may feel more comfortable getting into

a smaller space. These additional complications are real, of course, but

enough of the essence of the problem remains without them. Let’s try

an example. Say that the length of the block available for possible

parking is 300 feet. The sign says “No parking within 50 feet of the

corner” so subtract 50 feet at each end for safety. We are left with 200

feet for cars and we’ll make each space 20 feet long. So, if you have

marked spaces you can park 10 cars. Now suppose a car comes along;

parks in a space that’s S feet long, where S is at least 20; and leaves the

rest of the space, namely S – 20 feet, divided randomly between space

in front and back of the car. How much of S – 20 will be wasted? If 

S < 40, then all of it will be (why?) but it’s not this car’s fault. A

previous car loused things up by leaving a space that’s too large but still

holds only one car. But if S > 40, then the present car has a chance

either to waste parking frontage or to conserve it. What are the

possibilities? Try some cases and see.

So how would you find out what is likely to happen without marked

parking spaces? It turns out that this is a tough problem even for
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professional mathematicians. (It was first solved by the Hungarian

mathematician A. Renyi in 1958, and is still a subject of active

research.) You might try a few very simple cases like S between 40 and

60, and then use these to make some guesses. Or, if you get too

interested, you could perhaps simulate the situation: Use random

numbers to locate the front, or the middle, of the next car, and see how

many cars you can place before every remaining space is less than 20

feet. The answer is that, on a long block, about 25% of the space will be

wasted on the average.

3) While we’re at the subject of meters, you might want to think about

whether meters really do pay. The simplest question might be

whether a meter pays for itself during its lifetime. How much

money is a meter likely to take in during one day—or week or

month or year; how much does a new meter cost, how long does it

last? That’s a simple form of the question. You might go on from

there. If something goes wrong with a meter, is it easily repaired or

do you have to junk it? What’s most likely to go wrong anyway?

Perhaps people putting in a wrong coin or a slug and thereby

jamming the meter, or perhaps a car bumping into it. The oldest

author remembers 50 years ago, when he was a student taking the

East Boston ferry. They had a turnstile to enter. He tried a nickel—

too big. He grumbled and tried a dime, which got stuck. At this

point a worker came over, gave him a dirty look, took the dime out

and gave it back to him—and told him it cost a penny! Even then,

one didn’t think that anything cost a penny!

Now we can make the problem a little more complicated, and a little

more realistic. If you don’t hire any meter readers, for example, drivers

might just ignore the meters. So you need people to visit the meters
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periodically and write out parking tickets if the meter hasn’t been fed

sufficiently. How many people? Enough so that a driver will not feel it’s

worth the risk to leave the meter unfed. An itinerary for the meter

reader should not be too regular (people might learn to outguess it),

but the reader does need to visit every meter every so often. How

would you make out a route and a schedule for a meter reader? How

many would you hire? When you take their salaries and benefits into

account, does it still pay the city to have parking meters? What else

does the system within which the meter readers operate include? Do

the fines they levy balance their loaded salaries and the costs of the

associated judicial system?

4) Maybe one more math trail question about parking. As you walk

around and observe the traffic, can you tell if the town has enough

parking? In some places this is a subject of hot debate. “If we had

more parking, not so many people would go to the mall.” 

“If we had more parking, more people from nearby communities

would come here to shop.” 

“If we had more parking, people from other communities would

come here just to take the train, cause all kinds of traffic problems,

pollute the environment, and make this a less desirable place to

live.” So there are lots of ways to argue. What would you suggest as

a way to tell if the community had enough parking?

Some people will tell you that they just aren’t going to shop here

because they can never find a parking space. You could take data of

that kind, but that’s a bigger, long-term project. The receipts from each

parking meter will tell you something about how much it is used but

you don’t have that information right now. Here’s one thing you can do
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immediately: When a car pulls out of a parking space, time how long it

takes before someone else pulls in. In one town, the average figure was

only about 20 seconds! Would you take that as a clear indication of a

shortage of spaces, at least in that part of town? Do you have a better

measure to suggest? 

SUPERMARKETS

If the math trail takes you into a supermarket, there are many interesting

items you might want to consider. Let’s talk about a few of them.

1) You have a choice of several size packages of a particular item.

Which size should you get? One way of looking at this, of course,

simply deals with the price. Which is cheaper? Usually, but not

quite always, the smaller package is cheaper. So what? We shouldn’t

be looking at the total price, but the price per unit weight, say per

pound. Nowadays you no longer have to try to figure this out, the

label under the item on the shelf is supposed to tell you. (You

should check that the label takes into account the temporary

change in price if the item is on sale.) You still have to think a little

more: If the larger package is cheaper per pound, as it often is, will

you be able to use it up before it gets stale or spoils? Will there be

someone in the family for whom it is too heavy to lift?

The computation can get trickier if you have a coupon that is valid for

either size you are considering  and gives you the same discount. The

price per pound that’s written underneath the shelf may not be the best

way to look at it any more. The smaller item may well have become

cheaper by pound when you subtract the refund from the coupon. But

the problem is different if the coupon is for something you use a lot. 
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You have only one coupon! Maybe you should just buy the larger item

at the price reduced by the coupon, because if you buy the smaller one,

you’ll have to get a large one pretty soon anyway.

2) Where do you look for things on the shelves? There are items that

people tend to run out of unexpectedly, that lead to a quick trip to the

store. What, for example? Let’s say milk. You have probably noticed

that in many stores, milk is quite a long way from the door and the

cash registers. Why is that? Because something like 30% of all

supermarket purchases represent impulse buying, something you

didn’t intend to get when you came in the store. The further you have

to go when you come into the store, the more likely you are to buy

something else too. So milk and hamburger tend to be a long walk.

Supermarket managers may complain that this is unfair criticism. These

items require refrigeration, and the sections in which food is kept chilled

are naturally at the walls. That’s the way one builds supermarkets. Also

the refrigerated storage for meats is often at the back of the store, and the

meat counters will be close to that. All that is true, but there is also

another phenomenon. We are beginning to see frozen food sections in

the middle of the store rather than against the walls. In the summer,

these help with the cooling of the store as well as of the products. In the

winter, the heat removed from the cold storage can be used to help heat

the store itself—in which case you might like this heat source to be more

in the middle of the store. All we’re saying is that refrigeration may no

longer be a good excuse for shelving milk and hamburger far away.

Let’s return to the locations of items on the shelves. Think of the cereal

aisle. How do you suppose they decide at what height to put a

particular product? Why do high-fiber cereals tend to be on the top or 
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the bottom shelf, while the Soggies, which are the latest kiddie rage,

show up in their glorious multicolored packages on the middle shelf? A

possible explanation is that cereals that are advertised on Saturday

morning children’s television are put at the height of a child seated in

the carriage. That way the child will see it, ask (a euphemism for whine)

for it, and there you have one more impulse buy.

You may want to think about the following question, not just for the

supermarket, but also for a 5-and-10 (if there still are any), and for any

good-sized store. How much of one item should you display? If you

display too little you will keep running out, and restocking the shelves

in the middle of the day may be a nuisance. But space is valuable, and if

you display too much you are wasting space needed for some additional

product. On the other hand, even if the item is huge, you have to show

at least one! What’s a good balance? Do you use extra space for items

you sell a lot of or items that you wish you sold a lot of, but don’t? Some

stores use the most prominent display areas—say in front of the store

opposite the cash registers—for weekly specials. Why? Perhaps people

get a little angry if they come in for an advertised special and can’t find

it. Better to put those items where people can see them right away, and

then let them shop further in a happy frame of mind.

3) Many supermarkets have express lanes for people with n packages

or less. What is the value of n in the store in which you are at the

moment? Is it 10 packages? What other values of n have you seen?

Various supermarkets across the country seem to allow anywhere

from 5 to 15 packages in the express lane. If the number varies that

much, maybe people don’t really know what it should be. How

many packages do you think should be allowed in an express lane?
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How do you think about a question like that? One way would be to

figure out first why you have an express lane at all. That’s easy, to keep

customers happy. Yes, but how do you do that? You might want to

minimize the average waiting time at the checkout position. Average,

eh? Average over what, average wait per customer, or average wait per

package? Does it make a difference? In the first statement, you are

saying that all customers are created equal. A long wait for any of them

is equally bad. The second statement says that customers with a lot of

packages can wait longer than customers with just a few; the wait per

package might still be equal. There are other possible criteria. You

might say that it’s really long waits that are a problem. In that case you

want to minimize maximum waiting time. Maybe your consumer

research has shown that people are willing to wait ten minutes; after

that, they shove the carriage into a corner and go elsewhere. So what

you want to do is to minimize the probability that the wait exceeds ten

minutes—or whatever number you believe. How do all these criteria

square with the following argument? If you restrict the number of

packages in any lane, there will be times when under your rule that

lane is idle, but would be in use if there was no restriction. Therefore

an express lane must increase waiting time. Under what assumptions

would this actually be true?

Once you know what the waiting line is supposed to accomplish, you

can then take some data. How many people get in line with how many

packages? How does the time to go through the line vary with the

number of packages? Do four packages take twice as long as two? No,

because there is a setup time, which is the time to get ready for the

next customer, no matter how many packages s(he) has. But once you

take that into account the time may be linear, at least until the point at

which you need two bags instead of one. 
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One suggestion that has been made is that it takes a person to staff an

express lane. Allow as many packages in the express lane as will keep

one person as fully occupied as you can. Don’t allow a queue to grow at

that counter, but don’t allow much idle time either. That’s the most

efficient way to use the checker! Here’s a clever idea—think of the

problem from the point of view of the store management, not of the

customer. The customer enters the solution if the number of packages

this rule allows is too small. In that case, get a second express lane.

One supermarket we have seen disables all express lanes at the busiest

time, namely Friday night. What do you suppose is their idea of the

purpose of an express lane?

BUILDINGS

Almost any size locality has a fairly tall building. It may be a church, or

a big old house, or an apartment or an office building. It’s fun to

estimate how tall this building is. How many ways can you think of

doing that? If it’s a sunny day, shadows are a natural thought. Say the

shadow of the building is 30’ tall, how tall is the building? Well, you

have to know something else! Say you are 5’ tall and your shadow is 3’.

Then the shadow of the building is ten times your shadow, and

therefore the height of the building would be ten times your height. So

you would estimate the height of the building at 50’.

Another way to think about this would be to count floors. If you see 6

floors from ground level on up, and you guess that the ceilings are

about 8 feet from the floor, you might guess 48 feet for the height of

the building. What adjustments might you make to this first estimate?

First of all, the 8 feet is only a guess. Also, there is some distance from

the ceiling at one level to the floor of the next, and we have five of
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those gaps to account for. There is also a roof of some thickness. Maybe

the main floor is built for the kind of business that needs higher

ceilings than the upstairs offices. All in all if any of these thoughts

apply, you might adjust your estimate to 55 feet.

If it’s a church, trying to argue about floors won’t get you very far. You

might still be able to guess the height of a big window, and estimate

how many times the height of the window is to the height of the

church. What else might you try?

As you walk through the town, you might look for different geometric

shapes. Windows in many buildings are in the form of rectangles; in

churches you often see circles, or rectangles surmounted by semicircles

or surrounded by other, fancier shapes. Sometimes you see square

windows. On some pavements, you find triangles and hexagons and

octagons. When a piece of pavement has been cut out for a tree, what

shapes might you see there? Can you find a pentagon somewhere?

Brick buildings and brick walls offer some nice possible stops for a

math trail. There are many possible patterns in which bricks are laid,

and they have both practical and aesthetic features that you can

examine. Let’s begin by looking at two patterns, both are seen

frequently in brick walls.
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Each of these is called a “bond,” which means an arrangement of bricks

in a wall in such a manner as to prevent any collection of adjacent

vertical joints, which would be very bad for the strength of the wall.

When a brick is laid lengthwise, as every brick is in the first pattern, it

is called a “stretcher.” A brick laid so that the end is facing you, as

every other row is in the second pattern, is called a “header.” What do

you notice about the dimensions of a stretcher and a header? 

The thickness, of course, is the same, but the stretcher is a tiny bit

longer than twice a header. The most common bricks have dimensions

2” x 3 3/4” x 8”. This has the effect that two headers, when laid, are

exactly as long as one stretcher. How? This happens because there is an

extra 1/4” (or is it 1/2”?) of mortar in between the bricks. This 2 to 1

ratio is the basis of innumerable patterns for laying bricks. The first of

the two patterns above is called “running stretcher bond” and the

second is called an “English bond.”

It is interesting to find out what movements of the brick patterns bring

the pattern exactly on top of itself. In the running stretcher bond, if

you move the full length of a brick to the right (or left), you come back

onto the same pattern. If you move two rows up or down, you come

back onto the same pattern. If you move only one row up, you also

have to move half a brick sideways to come back onto the same

pattern. A motion that brings you back onto the same pattern is called

a “symmetry” of the pattern. So moving one brick length horizontally,

or two brick widths vertically, or one width vertically and half a length

horizontally at the same time are all symmetries of the pattern. Are

there any others? Well, you could imagine drawing a horizontal line

through the middle of a row of bricks and taking a mirror image across

that line. You might call that “reflecting” across that line. For what

vertical lines would the same thing be true? Also, there might be points

84 PART 3 - MATH TRAILS



where you can rotate the whole pattern around them by some amount

and come back to the same pattern. Can you see any?

Try these same questions for the other pattern. A way of distinguishing

brick patterns might be to examine their collection of symmetries. By

the way, if you follow one symmetry by another, will you get yet

another symmetry? One consequence of this, if it’s true, is that there are

an awful lot of symmetries of a brick pattern. Not in the real world, of

course, in which real walls begin and end (and aren’t made that

precisely anyway) but in the geometric abstraction of a brick wall with

which we have been playing. 

A HIKE IN THE COUNTRY

There are many different kinds of walks and terrain, so all we can do is

give some examples of ideas. If the state park or the national forest you

are in has provided a trail map, then you have the opportunity to map

out the route you want to follow and the time it should take. You can

use time and distance estimates, features on the map as well as in the

terrain itself, to keep track of where you are and what you should be

looking for next. A good map also allows you to judge the desirability

of a particular hike: The views you will have, access to drinking water,

the changes in elevation, and the amount of backtracking you may have

to do. Some people try to combine features such as these into an index

of expected pleasure for a particular route.

Many trails follow brooks or rivers some of the way, and it is fun to

estimate the speed of flow. Someone will perhaps estimate a distance

from where you are standing to a reference point, and then time a twig

or leaf that you’ve thrown in; that’s one way to do it. You may observe

that very few flowing bodies of water are straight and a larger stream
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that has not been regulated is likely to have a large number of

meanders. Why do you suppose rivers meander, and what determines

the amount of bending (someone may show off and say “curvature” or

“radius of curvature”)? Basically rivers bend because a straight river is

not stable: A little departure from straightness tends to lead to more

departure from straightness. Often, human attempts to straighten a

river lead to the water moving too fast and causing unexpected erosion

downstream. Rivers seem to want to meander.

You pick up a leaf and ask what tree it came from. The group may agree

it’s from a maple or an oak or a beech or a dogwood. The question is,

how do we tell? We look for particular patterns in the shape or the

color. If a leaf has lots of ins and outs then it can be from a maple or an

oak, but not from a dogwood or beech, which have leaves that are

pretty much convex. To make the difference precise: For example, if

you take two spots on a beech leaf and imagine drawing a line segment

between them, it will always be on the leaf, while this is far from true

on an oak or maple. That’s one way of making the notion of convex

precise. How can you tell an oak leaf from a maple leaf? The maple leaf

has a lot of pointed ‘ends’ while the oak leaf ends are more rounded.

How would you write down a sequence of choices that would permit a

decision among a larger variety of different leaves?

If trail walkers enjoy the leaf question, you can try a scheme in a

similar spirit for the bark of trees or for animal tracks or for wild

flowers or birdcalls.

If you walk by some farmer’s fields surrounded by fences or stonewalls,

you might wonder how big the field is. Farmers in Brazil are said to

estimate the area of fields with four more-or-less straight sides 

86 PART 3 - MATH TRAILS



(quadrilaterals is the fancy term) by taking the average length of each

pair of opposite sides and finding the product of these average lengths.

What do you think of this method? Does it give a pretty good guess

much of the time? Do you think it tends to give too big or too small an

answer? When does it give the ‘right’ answer by our understanding of

what we mean by area? Remember, of course, that our notion of area is

what our mathematical types have developed over the centuries, and

other people have every right to define a notion of area to suit their

convenience and utility.

One thing you often see on a farm is an old wagon wheel. If the condition

is at all good, it will have a series of spokes that connect the outer circle

to an inner polygon. The interior of the polygon will be the hole through

which an axle used to go. If you see such a wheel, how many spokes does

it have? If you imagine the outer rim made up of arcs that end at the

spokes, how many such arcs are there? If the inner polygon has edges

that end at the spokes, how many such edges are there?

As an example, suppose the wheel has 8 spokes. Then the number of

arcs comprising the outer rim is also 8, and so is the number of sides of

the inner polygon. Now imagine the simplest possible line drawing of

the wheel—not very realistic, I admit—consisting of an outer circle

made up of 8 arcs, 8 line segments representing the spokes, and 8 edges

of the inner octagon. On this line drawing there are 16 places where

line segments or arcs meet. We call these “vertices.” There are 24 line

segments, or arcs—call them “edges.” The piece of paper on which you

made the line drawing is divided into how many regions? Well, inside

the circular rim there are 8 sections bounded by spokes and one inner

polygon where the axle would go. Outside the circular rim there is one

region, the rest of your piece of paper. This makes 10 regions. If you
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take vertices minus edges plus regions, you get 16 – 24 + 10 = 2. With

a different number of spokes, you’d still get 2—try it! For any line

drawing you make with vertices, edges, and regions in the plane, you’ll

get 2! This is known as Euler’s formula.

TILINGS

We are going to do a very leisurely, purely arithmetic, classification of

semi-regular tilings. We present this in case the question comes up in

your trail planning and you choose to pursue it. The more rapid

algebraic classification is quicker and more familiar, but may be too

much concentrated mathematics all at once. Of course, ours may be

just as bad!

On many possible math trails, we will see tilings on the floor or the

walls or the pavement. Each individual tile is typically in the shape of a

polygon made out of clay, plastic, linoleum, or wood, or else designed

into the cement as if the pattern was made of individual tiles. There are

tilings that are not regular in any sense, for example, a walkway made

of rectangular stones of various sizes. We are not talking about those.

What distinguishes the bathroom or floor tilings? It looks like the

whole tiling has the same pattern that repeats itself many times and

could go on indefinitely, at least as long as the money and the supply of

tiles holds out. (There may be a border in some different pattern, but

we are ignoring that.) It also looks like every corner where the tiles

come together looks just like every other corner. It also appears, in

many cases, but by no means all, that every tile is a regular polygon.
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People have standard names for these things. If the pattern could go on

forever in all directions, if every corner looks like every other corner, if

every tile is a regular polygon, and if all these polygons have the same

shape and size, we call it a regular tiling. The ‘honeycomb’ pattern of

hexagons that is so typical of bathroom floors, and the squares laid end

to end on bathroom walls are examples of regular tilings. On the other

hand: If the pattern could go on forever in all directions, if every corner

looks like every other corner, if every tile is a regular polygon, but more

than one kind of regular polygon is allowed, we call it a semi-regular

tiling. Very likely you have seen some of these. Perhaps the most

common consists of squares and octagons. It looks like this:

You can see this can extend indefinitely, that every tile is a regular

polygon, but that more than one polygon is involved. We do need to

check that all the corners are alike: Each corner is indeed a corner of a

square and of two octagons, so this is a semi-regular tiling.

At this point, ask yourself what other regular and semi-regular tilings

you have seen. Make a list. This is not a trivial point, by the way. HOW

does one make a list? When do you want to call two tilings the same

and when do you want to call them different? What we hope you

discover as you make a list is that you need a system, some way of 
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listing possibilities that tries to make sure you don’t miss anything. We

will now show you one such system.

A START: 6 POLYGONS AT A CORNER

The basis of our system is the fact that every corner must look like

every other corner. Let’s start by asking how many polygons come

together at a corner. Well, the measures of the angles that meet at a

corner must add up to to 360°. How large is each angle? Well the

smallest angle you can find in any regular polygon is in an equilateral

triangle, where each angle measures 60°. On the other hand, since each

component figure is a regular polygon, each angle measures less than

180°. This says that there can be no more than six regular polygons

meeting at a corner (if they are all equilateral triangles), and that there

have to be at least three—because two numbers each less than 180

cannot add up to 360. OK, there have to be six, five, four, or three

polygons meeting at a corner, and if it’s six, they have to be six identical

equilateral triangles. So that’s a regular, not just a semi-regular tiling.

You can get it, for example, by taking the honeycomb tiling of regular

hexagons and dividing each hexagon into six triangles (Figure 79).

5 POLYGONS AT A CORNER

Now, let’s roll up our sleeves and continue to work systematically. What

angles do you get in regular polygons? The formula from geometry is:

If the regular polygon has n sides—we call it an n-gon—each angle

measures, in degrees, 180(n – 2)/n. Make a table of these angle

measures for n up to 12. So how can you get five polygons at a corner?

After the triangle, in which every angle measures 60°, the next regular

polygon is a square with each angle measuring 90°. Can you get 360 by

adding five numbers each of which is either a 60 or a 90? Just one 90
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and four 60s gives 330, which is too small. Two 90s and three 60s gives

360—there’s one! Three 90s and two 60s gives 390, which is too big,

and more than three 90s is even worse. So we have found a new

possible semi-regular tiling made up of three triangles and two squares

at each corner.

Is there such a tiling? Yes, probably you found one when you were

trying out possibilities. You take a strip as long as you feel like drawing

it, and cut it into squares.

Then you attach a strip of equilateral triangles above and below the

strip of squares, and another strip of squares above and below that. You

can continue alternating strips of squares and equilateral triangles as

long as you like, so that you do indeed have a tiling. Is it semi-regular?

Yes, at each corner there are two squares and three equilateral triangles,

just as we said.

Can you make a tiling with five polygons and use any regular

pentagons? An angle in a regular pentagon measures 108°, which

would leave 252° for four more angles. No combination of measures of
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angles from equilateral triangles, squares, or regular pentagons (60, 90,

or 108) can add up to 252, so no such tiling is possible.

Can you use five polygons if one is a regular hexagon? The angle of a

hexagon is 120°, and this plus four 60° angles makes 360°. So a semi-

regular tiling with four equilateral triangles and one regular hexagon

meeting at each corner is a possibility. Can it be drawn? Yes, see below.

This finishes tilings with five polygons meeting at each corner. Well,

almost. There is one more point we have to consider. Let’s summarize

what we know about semi-regular tilings: If 6 polygons meet at each

corner; every polygon is an equilateral triangle. If 5 polygons meet at

each corner, we have seen that they could be three triangles and two

squares, or they could be four triangles and a hexagon. We have also

seen tiling of each kind. What we haven’t said is that these two

examples are the only possible tilings with these particular polygons.

Could there perhaps be a different looking tiling where three triangles

and two squares meet at each corner?

Isn’t that just like a mathematician! Just when you are beginning to get

into the process of learning about a problem, and even enjoying it, here
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they come and try to rain on our parade—make life more complicated!

Why? The trouble is that as mathematicians we are trained to be as

scrupulously careful and honest as we can be. If you haven’t looked

into the question of whether there is only one tiling with three triangles

and two squares at each corner, we haven’t done the best job we can!

So all right, is there only one?

Obviously we are going to do more than just count polygons. What can

we say about the order in which we find the three triangles and the two

squares as we go around a corner? In our tiling, the two squares are

adjacent to each other, and then the three triangles are adjacent to each

other. Could the two squares be separated?

Well, separated by what? Triangles. How many?

As you go all the way around a corner, if the two

squares are not adjacent then they must be

separated by one triangle and then by two

triangles. The corner has to look like this:

Can you continue this tiling indefinitely? It doesn’t look very

promising, but all you can do is try. Are you constrained in how such a

tiling would continue? For

example, the two edges of the

upper left square have to be

edges of triangles to the west

and north. These triangles will

have a square between them,

and so forth. Yes, you can

continue such a tiling

indefinitely; see right.
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So there are two different tilings that use three triangles and two

squares at each corner. The previous one, where three triangles are

adjacent and the two squares are adjacent, can be written like this:

(3,3,3,4,4)—or, more compactly, (33,42). The tiling we have just seen,

where the squares are separated, can be written (32,4,3,4).

Our other semi-regular tiling with five polygons, which we can now

write as (34,6), is unique. How do you know? Because after the first

corner, every move is forced since every corner must look the same.

4 POLYGONS AT A CORNER

Had enough? Oh, but you can’t quit yet. We still have to look at four

polygons and three polygons at each corner. Again, we need a system.

Let’s look at four polygons at each corner. What’s the smallest angle?

We want to see how many triangles there will be at each corner,

because triangles have the smallest angle, namely 60°. First suppose

there is no triangle. Then the smallest angle measure is 90°. But there

are four angles that add up to 360° and the smallest is 90°! So each one

is 90°, there are four squares, and we have the familiar all-square

regular tiling, which we call (44). Good.

Next, let’s try exactly one triangle. That says one angle measures 60°

and every other angle is at least 90°. How can you do that? If you take

one square, you have now accounted for 60° + 90° = 150°, and that

leaves 210° to go with two polygons. So one must have an angle below

half of 210°, i.e., 105° and the other above 105°, but there are no

regular polygons with angles between 90° and 108°. Therefore the

smaller one must be 90° and the larger one 120°. We have a triangle,

two squares, and a hexagon; we have learned to write that as (3,42,6) if

the squares share an edge, and (3,4,6,4) if they don’t. Are these possible?
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(3,4,6,4) with the squares separated is drawn

on the right, but (3,42,6) can’t be done. Why

not? Try it and you’ll see. Suppose it was

possible: Draw such a corner, at y:

Now what will you do at z to the northwest of y? You must have two

squares there, and they will be adjacent. But now you have two squares

at x that are not adjacent and your attempt at a semi-regular tiling has

failed. Here, now is the (possible) (3,4,6,4):

Let’s get back to our system. We have taken care of zero or one triangle

at a corner, what about two? If you have two 60° angles, you have 240°

left to go, which means either two 120° angles or one 90° and one 150°

angle. The first is a (32,62) or a (3,6,3,6), while the second is a (32,4,12)

or a (3,4,3,12). Quickly you’ll see that (32,62) can’t be done (just as we

did above, it can’t continue very far) and (3,6,3,6) is the following:
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What about two 3s, a 4, and a 12? You will find when you try it that

neither (32,4,12) nor (3,4,3,12) (either the two 3s share an edge or they

don’t) can be continued very far. Neither of them can make a semi-

regular tiling.

So we have finished the case of four polygons meeting at a corner. The

possibilities that have succeeded are (44), which is regular, and (3,42,6)

and (32,62), which are semi-regular.

3 POLYGONS AT A CORNER

Now we need three angles of regular polygons that add up to 360°.

There are a lot of cases and the lazy thing to do is to get rid of many of

these cases before we end up working too hard.

Let’s suppose that one of the three regular polygons is an equilateral

triangle. We are going to draw a figure and explore a little. Our

intention is to find out more about what the other two polygons have

to be, something more than just that the angles must add up to 300°.

So we start out drawing the beginnings of a figure:

We draw an equilateral triangle and another edge of tiling coming out

of one of the vertices. On each side of the edge will be a regular

polygon, one with a sides on one side of that edge and one with b sides

on the other. Wait a minute! If this is to be a semi-regular tiling, that
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edge coming out is too long—much too long. It must be the same

length as the sides of the triangle. After all, each side is a regular

polygon. We correct and expand our figure. At P, the end of that edge

sticking out, another triangle has to begin, because all vertices have to

look alike.

So we have drawn a triangle at P, with its other

vertices at Q and R, and there must be one

additional edge coming out of each of Q and R.

Now the question is: What is the outer

polygon whose edge is the line segment

between Q and R? Because of the corner at Q,

it must be a b-gon, and because of the corner

at R, it must be an a-gon! So the only

possibility is that a = b! If you have three

polygons at each corner of a semi-regular

tiling and one is a triangle, the other two must have the same number

of sides! That fact is going to save us a lot of work. It means that if one

polygon is a triangle, so that it takes care of 60°, there are only 300° left

to go so the other two polygons must each have angles of 150°, which

means they are 12-gons (dodecagons, if you prefer). So we have only

one candidate for a semi-regular tiling with three polygons at each

corner, one a triangle: (3,122).

Does one of the polygons have to be a triangle, clearly not? If all three

polygons were the same then each would have 120° angles. That would

make for a tiling of three hexagons meeting at each corner—the regular

bathroom tiling pattern. But if three angles add up to 360° and they are

not all alike, at least one has to be smaller than 120°. That means the

smallest angle, if it is not 60°, is either 108° (from a regular pentagon),
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or 90° (from a square). By exactly the same argument we used with the

triangle, if one figure were a pentagon then the other two would have

to be regular polygons with the same number of sides. This means that

252° have to be shared by the two, so each would have to have angles

of 126°. But 126° does not appear on our list of possible angles in a

regular polygon, so this case is out. This leaves the possibility that one

is a square. The other two angles would have to add up to 360° – 90° =

270°. One way to do this is with two 135°-angles, which means two 

8-gons (octagons). See Figures 24 and 67. We saw this tiling at the

beginning as our first example of a semi-regular tiling. The other

possibility would be a (4,6,12) tiling with angles of 90°, 120°, and 150°.

This one can be done, see the figure at right.

Are we finished? Wait just a minute, says the mathematician, if you can

have (4,8,8), you could have (4,x,y) with x < 8 and y > 8. What is less

than 8? Well 5, 6, and 7. We’ve got the 6, that is the (4,6,12). How

about the other two? Ah, but they would have an odd number in them

(5 or 7), and we saw that each of these can only work if the other two

were equal, and neither (5,x,x) nor (7,x,x) is possible.

Finally, there is the regular (63).
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Yes, we are done. We have found eleven semi-regular tilings of which in

fact three are regular, and the other eight only semi-regular. Here they are: 

(36) (33,42); (34,6); (32,4,3,4) (44); (3,4,6,4); (3,6,3,6)

(3,122); (4,82); (4,6,12); (63).

AMERICAN FLAGS

On many math trails, you will have occasion to see an American flag. You

can ask how many stripes and how many stars it contains. The answer is

13 stripes and 50 stars. Why those numbers? Because there are 13 original

states and 50 current states. How are these stripes and stars arranged? The

stripes come simply on top of one another, but the stars are in a more

complicated pattern. There are nine rows of stars, alternatively containing 6

and 5 stars, with 6-star rows at both the top and the bottom. Does this

pattern have 50 stars? Yes: 6 + 5 + 6 + 5 + 6 + 5 + 6 + 5 + 6 = 50. Why did

people choose this particular pattern? Well, what others could you have?

Take some time to think about that and come up with some alternatives.

You could have just 10 rows of 5 stars each, or 5 rows of 10 stars each. You

could have 11 rows that alternated between 5 and 4 stars, with 5-star rows
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at the top and bottom. Of course, you could have 25 rows of 2 stars each,

but that would look pretty ridiculous!

How do we know it would look ridiculous? When does one pattern look

better than another? Why didn’t they use 10 rows of 5 or 5 rows of ten?

Let’s have a look and see if we can figure out what looks best. First we have

the existing pattern and then some alternatives.

We won’t draw 25 rows of 2 stars each!

I think we can see which one is going to look best. We want a pattern that’s

as nearly square as possible (the rows of stars on a real flag are closer

together than the ones in the drawings). We also like patterns that are

rectangular or nearly so. What does ‘nearly so’ mean? It means that

alternate rows may differ by one star, with the rows interlaced like the

current pattern for 50 stars. It looks like the way people prefer to plant

begonias or impatiens: A rectangular pattern is not quite as pleasing to the

eye as one that interlaces, but any of these is better than one that is not

nearly square.
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Well, what about a pattern like our current 6,5,6,5,6,5,6,5,6; but where the

top and bottom rows have the smaller rather than the larger number of

stars? That might be a nice alternative pattern for 50 stars if the length and

width are not too different. Well, try it. Can you get 50 stars that way? You

will find that you can’t—it can’t be done! How do you know? Just wait a bit

and we’ll show you. In the meantime just try it. Maybe you’ll discover why

it can’t be done.

But let’s notice that it doesn’t always fail, it only fails with 50 stars. Try 32

stars, for example. You can have 4 rows of 8; that’s the rectangular pattern.

You can have 5,4,5,4,5,4,5—call this the “out-in” pattern because the rows

that go further out include both the first and last rows. You can also have

6,7,6,7,6—that’s the “in-out” pattern, which is not possible with 50 stars.

In fact, here is the amazing result:

■ It is possible to have all three patterns—like 32.

■ It is possible to have just rectangular and out-in—like 50.

■ It is possible to have just rectangular and in-out—like 52.

■ It is possible to have just in-out and out-in—like 47.

■ It is possible to have only rectangular—like 30

■ It is possible to have only out-in—like 29

■ It is possible to have only in-out—like 31.

■ But at least one of them must always work. There is no number that

has none of the three.

MATH TRAILS - PART 3 101



Let’s look at 29, for which only the out-in is possible. There is no

rectangular pattern and no in-out pattern with 29 stars. What is the out-in

pattern? It is 10,9,10. It won’t be pretty, that’s true, because it is too long

with too few rows. The only other choice is 2,1,2,1,2, …, 1,2, which is

even worse. Now, let’s get more realistic and up-to-date about the United

States: What would happen if we added one more state and had to have a

51-star flag? A rectangular pattern would be possible: We could have three

rows of 17 stars each. From our previous findings we know that wouldn’t

look very good. And there is neither an out-in nor an in-out pattern for 51

stars! What a catastastrophe, as Jimmy Durante used to say. What to do?

See if you can come up with

something, which is of necessity, a

little different from anything we

have discussed, but that is at least

pleasing to the eye and close to

being a square. Here is one:

What is the mathematics behind all this? How did we get the examples

given above and how do we know that at least one of the three patterns

must always work? Let’s start with the rectangular patterns. For example,

for 50 stars we found a 5 by 10 or a 10 by 5 pattern. This means that 50

has been written as a product of two whole numbers larger than 1, i.e., 50

is a composite number not a prime number. It’s clear that a rectangular

pattern will exist whenever the number of stars is composite. The pattern

may not be pretty, like the 3 by 17 possibility for 51. We have discovered

that pretty patterns have roughly the same number of rows as they have

stars in any given row.

When is there an in-out pattern and how do we find it? Take twice the

number and add 1: There will be an in-out pattern whenever this new
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number is composite! Let’s think about this further. Call the original

number N, then this new number is 2N + 1. Now 2N + 1 will always be an

odd number. If 2N + 1 is composite, you can write 2N + 1 as a product of

two odd numbers, say 2a + 1 and 2b + 1. Then N will have an in-out

pattern with 2a + 1 rows, and b and b + 1 stars in alternate rows. Two

questions: How do you know this is true, and how do you discover 

such a truth, anyway? One way to know it’s true is by algebra: If 

2N + 1 = (2a + 1)(2b + 1), then N = 2ab + a + b. But this can be written 

as N = (a + 1)b + a(b + 1). What does this say? That N stars can be made

into a pattern of (a + 1) rows of b stars each, and a rows of (b + 1) stars

each. If you alternate these rows, you have an in-out pattern!

What about an out-in pattern? This will exist whenever 2N – 1 is

composite. Why? 2N – 1 is again odd. Let 2N – 1 = (2c – 1)(2d + 1). Then

N = 2cd + c – d, which in turn equals N = (d + 1)c + d(c – 1). So N stars can

be made as a pattern of (d + 1) rows of c stars each and d rows of (c – 1)

stars each, that is an out-in pattern.

It is impossible to resist a ‘pure’ mathematical note at this point. For what

N would both the out-in and the in-out pattern be impossible? This will

happen when both 2N – 1 and 2N + 1 are prime numbers. These would be

so-called twin primes (like 101 and 103 in the case of 51 stars). One of the

famous unsolved problems in mathematics is to decide whether there are a

finite number of pairs of twin primes.

How do you discover, as distinct from prove, when the in-out pattern is

possible? A way that often works is to use pictures, that is, geometry.

Suppose there is an in-out pattern, let’s say with N stars altogether. The top

row has b stars, the next row (b + 1), etc., the last row has b stars, and the

number of rows is a. Draw it.
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Now draw a second pattern next to it that is almost but not quite the same.

It has the same number of rows, namely a, but this time the top row has 

(b + 1) stars, the second row has b stars, the third row (b + 1) stars, etc.,

with the last row again having (b + 1) stars. How many stars are in this new

second pattern? There is one more than in the first pattern, which is N + 1.

So the combined pattern has 2N + 1 stars. Each row in the combined

pattern has the same number of stars, namely (2b + 1), and therefore 

2N + 1 will have been drawn as a pattern of a rows of (2b + 1) stars each.

But that says that 2N + 1 is a composite number!
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What did historical American flags look like? The flag with 20 stars had 4

rows of 5 stars, the flag with 28 stars had 4 rows of 7 stars, and the flag

with 48 stars had 6 rows of 8 stars. The flag with 34 stars, as of April 12

1861, presented a problem. The number N = 34 is composite, but 2 times

17 would not be at all attractive. The number 2N – 1 = 67 is prime so no

out-in pattern is possible, and 2N + 1 = 69 is composite but 3 times 23

would lead to three rows of 11, 12, and 11 stars respectively. Instead they

chose five rows of 7,7,6,7,7 stars. Could they have done better? They could

have tried five rows of 8,5,8,5,8 that is similar to the pattern for 51 stars

suggested earlier. Would it have looked better? That decision is up to you.

One more question: Why is at least one pattern of rectangular in-out and

out-in always possible (although it may be too long to be pretty)? We are

saying that at least one of the numbers N, 2N – 1 and 2N + 1 must be

composite! In fact, we claim that one of them must be divisible by 3! Why?

Well 2N – 1, 2N, and 2N + 1 are consecutive numbers, so that exactly one

of them must be divisible by 3. If either 2N – 1 or 2N + 1 is divisible by

three then it is composite. If, on the other hand, it happens to be 2N that is

divisible by 3 then N must be divisible by 3—and therefore composite. After

all, if you divide a number (2N) by 2, and 2N is a multiple of 3, then N is a

multiple of 3.
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MOVING VANS

It wouldn’t be surprising if you saw a moving van while you were walking a

math trail. There are many mathematical questions you can ask concerning

the process of moving. How much can a moving van hold? What are some

of the principles used to pack a moving van? What are the standard sizes of

the boxes that movers use and why were these sizes chosen? A question

with which many of us have struggled at home, on which opinions may

differ greatly, and one that can be attacked either mathematically or

instinctively, concerns moving objects (usually furniture) within the house.

Can you or can you not get the couch down the stairs and around the

corner without scratching anything? How should you get the legs through?

A simplified two-dimensional model of this type of question was the

subject of serious research some years ago. Given a corridor with an 

L-shape with the same width (call it w) in both legs, what is the largest

object you can get around the corner?

The most obvious answer is a square that is w on each side. You push it to

the end of the corridor where it is ready to go in the other direction. The

area you got through is w2. Can you get any more through? Yes, imagine a

semi-circle with radius w and its diameter along the inner wall. Push the

semi-circle until the center is at the inner corner C. Now pivot around C.

Because the radius is w and the center is now at C, it will turn into the

other leg of the corridor. How big is this? The answer is about 1.57w2,

which is quite an improvement. Maybe you can get a little more by cutting

out a bit of a hole beginning at the previous center, lengthening the object

a bit, keeping the width of the ‘ring’ at no more than w, and sliding the

pivot point. Will it work? What does this do for you?
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Suppose the floor inside the moving van is 90” by 120”. If you have boxes

that measure 30” by 36” (forget the height for a minute), how many can

you get in one layer in the van? Try it and see. After you have thought

about this for a while, you might argue that the area of the floor is 10,800

square inches and the area of a box is 1080 square inches. If you are lucky

in how they fit, you will be able to get in 10 boxes, but you’ll certainly

never get more than 10. It’s no trouble to get in eight boxes—put four of

the 30” widths next to each other to make 120”, and 2 columns of this will

fit easily into 90” with 18” to spare. Change the directions and you can fit

in nine boxes: Three 30” widths fit into 90” and three 36” lengths fit into

120”. But 10 boxes won’t fit, even though 10 times 1080 square inches

makes 10,080 square inches. The trouble is that while 30” divides into both

90” and 120” evenly, 36” doesn’t divide either one.

There’s more to this kind of story, however. Suppose the space was longer

and narrower: 66” by 180”. The boxes are still 30” by 36”. Total floor area is

11,880 square inches and each box is still 1080 square inches. Eleven of

them would fit into the area, but two columns 30” wide would accommodate

10 only! And yet you can pack 11 boxes in this time: Fill one column with

five boxes next to each other the long way and fill the second column with

six boxes adjacent the other way. But it is not true that either 30 or 36

divides 66!

HA!
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Try this one: A truck’s inside floor area is 8’ by 15’, and the boxes are 2.5’

by 3’. What’s the largest number of boxes you could possibly have in one

layer? (Answer is 120/7.5 = 16.) Show that it is possible to carry out this

packing of 16 boxes.

What are some standard size boxes that people use for moving things, and

how big is the inside of various trucks and vans? What other principles can

you think of that are involved in loading a truck? Have fun!

ESTIMATION

There are many times in thinking about a math trail when you want to be

able to estimate something: A certain distance, a time, an angle, an area, 

or velocity. What might people think of in such a situation? Here are a 

few samples.

Distance: On the one hand distance is a quantity that is difficult because

there is such a large range of measurements (from fractions of an inch to

many miles) in which you might be interested. On the other hand, distance

is easy because of the many different methods of estimating available. Many

people can show by using their thumbs and index fingers the distance of a

centimeter or an inch; they may know the distance of the span between the

tips of their thumbs and little fingers when their hands are spread out; they

may know the length of their arms; and many people know their height

(especially useful for estimating shadows). For longer distances, it may be

useful to know that the derivation of the word ‘mile’ is from the Latin mille

meaning ‘a thousand.’ A Roman soldier was trained to a standard of milia

passuum, a thousand paces or double steps per mile. Counting a hundred

double steps at a fairly good pace is a good estimate for 0.1 mile. (A Roman

mile was actually a little less, about 8%, than our familiar English mile.

Thus the Roman pace was about 5 feet.) For estimations of much greater
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distances, it is worth remembering that the circumference of the Earth is

about 25,000 miles, so that a time zone at the equator is about 1000 miles

wide. You can compute how much less is the width of a time zone at your

latitude.

Time: Because many people carry watches, this is not likely to be hard to

estimate. Some people can count a minute pretty accurately by saying “a

thousand one, a thousand two” etc., at a rate they have practiced. Often

they can estimate a minute this way to within a few seconds.

Angle: Most people have no idea how to estimate an angle. Here is one way

to prepare yourself for angle estimation: Go into the right-angle corner of a

room and put your right arm, say, straight out in front of you, palm up as if

you were a police officer stopping traffic. Line up the right edge of the right

palm with the wall on your right. The left edge of the palm should then be

lined up with some particular spot in front of you. Move the right edge of

the hand so that it lines up with that same spot and notice where the left

edge is now. Move the right edge of your palm to a new spot. Repeat this

process until your palm touches or crosses the left wall. If it has taken you

exactly 10 palm positions to get from one wall to the other then your hand is

90/10 or 9 degrees wide. If the middle of the 10th palm position is to the left

wall, then your palm is about 90/9.5 or about 9 1/2 degrees wide. An angular

width of a palm at arm’s length of about 9 or 10 degrees is pretty common.

This is pretty handy in guessing, for example, a possible identity for a

distant object when you have a view, a map, and another object that is clear

on both the map and in the view.

Area: People often estimate the area of a figure by thinking of that figure as

made up of equal-size squares and then estimating the number of squares

involved. If the edge of the figure is irregular, you may have to think of an
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outside fragment in the square that’s being counted as compensating for an

inside fragment that looks about the same and is not being counted. It

takes about three or four small shoe soles to make a square foot. For

curved edges it may help to know about a few circular figures: A quarter is

about (not quite) an inch in diameter and an eyeglass lens is about five

centimeters. An old-fashioned frisbee has an area of about 60 square inches

and a cookie tin lid around 40 to 45 square inches.

Velocity: Velocity is distance divided by time. Sometimes what makes it

tricky to estimate velocity is that distances tend to be measured in feet or

miles, and time is measured in seconds or hours. If you observe something

moving for a little time, you tend to measure in feet and seconds, but your

instincts for velocity may be based on miles per hour. By the time most

people have fussed with the conversion, they tend to have lost all interest

with the problem. The handy conversion to remember is that 60 miles per

hour equals exactly 88 feet per second. For estimations you can make it 90

feet per second if you prefer: A typical lively walking speed of four miles

per hour is the same as six feet per second.

While you are walking a math trail, a skateboarder or cyclist may pass you

and this presents an opportunity to estimate how fast such a person is

going. How do you do this? Here is one way: Start measuring time from the

moment the person passes you and pick a landmark (tree, bush etc.,) ahead

that you will both pass. The cyclist gets there in time tc, where t is time

(measured in seconds), and c stands for cyclist. The time that you, as a

walker, get to the same landmark is designated tw. Both of these are known.

Also there is the unknown velocity of the cyclist vc, and your known

walking velocity vw. How do we proceed from here? Well, the distance from
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the place where you were when you started to count to the landmark is

equal to tcvc and also to twvw. Therefore

tcvc = twvw.

Since you know tc, tw, and vw, you can solve for vc, which is what you

wanted to know!

Maybe you prefer a picture:

The same mathematictics can be used if you are on a four-lane highway and

want to estimate the speed of a car that passes you in what looks like

inordinate haste.

FINALE

We remember hearing John Conway give a lecture recently. He wondered

out loud how to end it. He said that the way to finish was to stop. So he did.
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HELP AND SPONSORSHIP

The trail organisers are particularly grateful to the following for their help and sponsorship:

■ The Age

■ CRA Limited

■ The Mathematics Education Centre, Monash University

■ The Mathematical Association of Victoria (MAV)

■ The State Bank Centre

■ The Family Maths Project Australia (FAMPA)

■ The girls of Yr. 7 (Room 48), Killbreda College and their teachers, 
Mrs. Margaret Hardy and Mr. Doug Fry

■ The Mathematics Diploma in Education Students, Monash University, and especially
Sava Agisilaou Melissa Marshall
Dawn Anderson Loretta Pote
Jane Ashby Evelyn Rak
Fred Brown-Greaves Angelos Siapkas
David Grundy Arthur Tsingoidas
Philip Knowles John Tucci

INSTRUCTIONS

1. Follow the Trail Map and Instructions contained in this booklet starting at the
State Bank Centre.

2. An answer sheet will be provided at the State Bank Centre on completion of 
the Trail.

3. Successful completion is defined as making a good attempt at all the questions
(excluding “Challenge Questions”) up to and including those at Flinders Street
Station. Please complete the rest if you have the energy!

4. Participants must return to the State Bank Centre to establish their “Successful
Completion” and for the award of badges and certificates.

5. “Trails” will not be issued after 2.30 pm and participants must be back at the State
Bank Centre by 4.30 pm on any particular day.

6. Please be aware of Road Safety at all times.

REQUIREMENTS

1. The main requirements are a pencil and preferably something to rest the booklet
on when writing.

2. A calculator, although not essential, will be helpful, especially for the “Challenge
Questions.” It is quite possible, however, to complete the basic trail without the
help of a calculator.
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INTRODUCTION

The idea of producing a “Mathematics Trail Around the City of Melbourne”

as part of the ANZAAS Festival of Science has grown out of some earlier

work carried out by the authors for the 1984 Mathematics Association of

Victoria (MAV) Conference at Monash University. The concept of

producing Mathematics Trails has been explored as a way of developing an

appreciation and enjoyment of mathematics in everyday situations, usually

to complement work in the classroom. There is no record of one having

been produced for parents and families and indeed there have been very

few for children. This trail may, therefore, be a world first and one of the

last great challenges! 

By not tying this trail to any particular age range or to any subsequent

work in school, some design difficulties arose which we hope we have

overcome. The trainee mathematics teachers from Monash University who

helped to design and prepare the material, the children and the teachers

who trialled it, and the authors have all enjoyed themselves and have

learned something more, both of mathematics and of Melbourne. We 

hope you do the same.

Happy Maths Trailing!

Dudley Blane & Doug Clarke



A. STATE BANK CENTRE

From the State Bank Centre cross Bourke St and then

Elizabeth St carefully so that you are on the corner

diagonally opposite the State Bank Centre and look

back at it.

1. Without calculating write down a quick estimate of the

number of small windows you can see in the side of

the tower facing you.

2. Now calculate the number of windows.

(Hint: Count how many there are in each row and the

number of floors.)

3. A window cleaner takes 1/4 hour to clean each

window. If the cleaner works for 8 hours each day, 5

days per week, how many weeks will it take to clean

all the small windows on the building?

B. GENERAL POST OFFICE (GPO)—OUTSIDE

Walk about 50 metres up Elizabeth St (north) and find

the stamp machines outside the GPO at the top of the

steps. The one on the left takes coins up to 50c, (1, 2,

5, 10, 20, 50). To be able to purchase the lowest value

stamp provided by this machine, calculate:

1. the greatest number of coins you could use

2. the least number of coins you need to use
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3. In how many different ways could you put coins to

the value of 10c into the machine?

4. On your left beside the machine you will see details of

posting times. If you post a letter to Perth on a

Tuesday at 5.00 pm, would you expect it to arrive on

the next working day?

5. If you post a letter to Sydney at the same time, will

that one arrive on the next working day?

C. GENERAL POST OFFICE—INSIDE

Enter the GPO building from Elizabeth Street. On

your right is the Daily Weather Report. From this:

1. What is the rainfall for Melbourne so far this year, 

in millimetres?

2. Is this above or below average for the past 129 years?

3. Estimate the average monthly rainfall so far this year.

4. If rain continues to fall at the same rate for the rest of

the year, estimate the total rainfall for this year.
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5. What might cause your answer to be different from

the actual answer?

The River Report is also on this wall. From the

information given calculate:

6. The height of the Murray River at Bringenbrong.

(NB. Use another town on the Murray River if the

Bringenbrong figures are not available.)

7. How far, in metres, does the Murray have to rise at the

town you used before it floods?

*CHALLENGE QUESTION*

If the change in the height of the river for the past 

24 hours continued at the same rate for some time,

calculate how long it would be before the river

a. floods (if change is positive)

b. dries up (if change is negative)

Moving further into the GPO from the entrance, you

will see hundreds of small private mail boxes on your

left. Look at the top five rows on Board A. If we use a

co-ordinate system with 1 to 36 along the bottom and

1 to 4 up the left hand edge, then Box 5A is at

position (1, 1).

8. What box is at (17, 3)?

CQa

CQb



9. Give the co-ordinates of Box 27A.

Leave the GPO by the same door and walk down

Elizabeth Street and enter the Bourke Street Mall. 

Re-enter the GPO through the Mall entrance. In the

passage there is a plaque on your right. 

10. Assuming that Victoria is 150 years in 1985, calculate

how old the State of Victoria was when the Postal Hall

was established?

Behind you is a painting of the only English Captain 

who came to Australia and failed to take a wicket or

score a run.

11. Write down his name.

D. BOURKE STREET MALL

Go down the steps into the Bourke Street Mall and

walk past the David Jones Store. Move to the front of

“K-K-K-Katies”, watching carefully for trams. Find a

circular pattern in the paving.

1. How wide across the middle is the smallest circle in

brick widths? (This is called the diameter (D).) D =

2. Using the same units, calculate the distance around

the outside of the circle (the circumference (C).) C =
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3. Divide C by D and give an approximate answer.

C ÷ D =

4. Move out three rings and take the same measurements

for the bigger circle. D =

5. Work out C divided by D again C ÷ D =

6. Do you think all the circles would have approximately

the same value for C ÷ D =

7. Write down what we call this value and the Greek

letter used to represent it.

E. SWANSTON STREET AND THE CITY SQUARE

1. Cross the Mall at the lights and then cross Swanston

Street. Walk down Swanston Street towards Flinders

Street Station. As you walk, try to locate the exact

single spot from where the photographs shown on the

next page were taken. (It is within this 300-metre

stretch of pavement.) Write down the name of the

object you find at this position.
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Walk past the Town Hall, cross Collins Street and you

will come to the City Square. On the ground 5 metres

in front of the Directory Board is a Surveyor’s Plaque.

2. What name do we give this shape?

3. How old is the Victorian Institute of Surveyors?

Look for the statue of Burke and Willis and the stream

of water beside it. Time how long it takes an object

(e.g., a leaf) to float down from the statue to where

the waterfall branches into two parts.

4. How far did it float, measured in bricks?

5. How long did it take in seconds?

6. Calculate its speed in bricks per second. (Hint: Divide

the numbers of bricks by the number of seconds.)
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E7

E8
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7. Is this faster or slower than your normal walking

speed?

8. How did you work this out? 

Return to the Directory Board. Locate the

Amphitheatre and the Reflecting Pool on the diagram.

Move to the Amphitheatre.

9. Look up. What shapes made by the roof struts can

you see? Write down as many names as you can.

Walk to the Reflecting Pool

*CHALLENGE QUESTION*

Notice how the spine of St. Paul’s Cathedral is

reflected in the pool. Similar triangles can help us 

to make a rough calculation of the height of the spire

as follows:

Cathedral
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Stand so that the tip of the cathedral spire is reflected

exactly at the centre of the edge of the pool furthest

from the cathedral spire. Looking from the side we

could draw a diagram as shown below.

We say that these two triangles are similar. That is,

one is an enlarged version of the other. Now measure

in your normal paces the distances A, B, and H. (H is

your own height but with some ingenuity you will be

able to work out your height in this way.)

c. A =

d. B =

e. H =

Because the triangles are similar: 

S ÷ B = H ÷ A so S = (H ÷ A) x B

f. From this calculate S, in paces S =

Not to scale

Pool

Eye level

Tip of
reflection

H
A B

S

CQc

CQd

CQe

CQf
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F1

F2

F3

g. By estimating the length of your pace (e.g., 1/2 metre,

3/4 metre) calculate the approximate height of the

spire.

F. THE PLAZA

Leave the City Square, walk past St. Paul’s Cathedral

and cross Flinders Street at the lights. On the corner

above the footpath there is a Plaza. Climb the steps to

reach it.

Look back towards the Cathedral (North) at the

Cathedral Spires and try to positions yourself so that

the cross on the front left hand spire completely

covers the cross on the larger rear spire. Without

leaving this spot, turn around 180° and face the 150th

Anniversary Arch. 

1. If you draw an imaginary line from the top of the Arts

Centre Tower straight down, which of the towns listed

on the Anniversary Arch do you come to first?

Rotate anti-clockwise until you see a tall building in

the distance with two blue stars on it. This is called

Nauru House.

2. How many sides does it have?

3. What do we call a shape with this number of sides?

CQg



Remaining on the Plaza, move to the corner nearest

the road intersection. Look down on the intersection

with the traffic lights.

4. Count the number of trams that pass through the

intersection in five minutes and write down your

answer.

5. If this rate was maintained for one hour, how many

trams would this be?

6. How many would pass through between 5.00 am 

and 11.00 pm?

G. FLINDERS STREET STATION

Cross Swanston Street and move into the foyer of

Flinders Street Station. From the timetables find out:

1. What time the first train leaves Flinders Street for

Werribee on a weekday?

2. When does it arrive at Werribee?

3. How long does the trip take?

4. If you have an appointment in Melbourne at 6.00 pm,

at what time would the last train that you could catch

to keep your appointment leave Werribee?
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F4

F5

F6

G1

G2

G3

G4



H. FLINDERS STREET

Leave the Station and walk along Flinders Street

(West) towards Elizabeth Street until you come to the

Station Booking Office. Stand with your back to the

“BOOKING Suburban Country Interstate” sign. Look

across Flinders Street at the Council for Adult

Education building.

1. When was it built?

2. When was it re-built?

3. How long was it between the two constructions?

4. If the building had continued to be re-built at the

same intervals of every (  ) years. How many times

would it have been re-built by 1987?

Continue along Flinders Street to the intersection with

Elizabeth Street and cross the road to the

Commonwealth Bank building. Look back up Flinders

Street where you will see a “CLEARWAY” sign. From

this calculate:

5. How many hours and minutes each weekday cars are

not permitted to park here?
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H1

H2

H3

H4

H5



I. ELIZABETH STREET AND EMBANK ARCADE

Walk up Elizabeth Street (North) and stop at the

corner of Elizabeth Street and Flinders Lane (West)

where you will see the Rialto Building in the distance.

1. Estimate the number of floors this building has.

2. How tall do you think it is in metres?

Now cross Elizabeth Street and Flinders Lane and

then walk up Elizabeth Street (North) until you reach

Embank Arcade. Turn into the Arcade and walk

through.

3. What must you beware of as you walk through 

the Arcade?

At the North end of the Arcade there is an interesting

mirrored ceiling. Move onto the footpath under the

mirrored ceiling and above you is another ‘you’

looking down at you. This is your reflection.

4. Calculate, in metres, how high your ‘reflected feet’

appear to be above the ground. (Hint: The blocks on

the wall may be a help in measuring.)

J. COLLINS STREET AND THE STOCK EXCHANGE

Walk about 10 metres further along Collins Street

(West) where you will see a public seating area. The

back of this area has some concrete pipes set up as

plant pots.
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I1

I2

I3

I4



1. How many more of the widest pot would fill up the

tiled area, assuming the seats were not there?

Continue along Collins Street in the same direction

until you arrive at the Melbourne Stock Exchange. Go

in (quietly) through the doors and on your right you

will see a pendulum clock on the wall.

2. Through what fraction of a complete circle does the

pendulum swing?

3. What is the name we give to the shape that is used as

a weight on the pendulum?

4. Look at the Stock Exchange “Coat of Arms” next to

the clock. What is the motto of the Exchange?

5. As part of the badge there are a number of gold and

silver balls. Which are there more of?

Move further into the building and look at Currency

Exchange Rates in the window of the New Zealand

Bank and calculate:

6. How much would the bank give you in United States

Dollar Notes for 100 Australian Dollars?

7. How many New Zealand Dollars for the same amount?
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J1

J2

J3

J4

J5

J6

J7



8. Based on the information given, how do you think the

bank makes a profit from currency exchange?

K. QUEEN STREET

Leave the Stock Exchange and walk up Collins Street

(West) and cross Queen Street and then cross Collins

Street. In front of you (in Queen Street) you will see a

clock with Roman numerals.

1. What is 9 in Roman numerals?

2. If this was a 24 hour clock: What would the hour

hand point to at 1800 hours (in Roman numerals)?

3. What time would it be when the hour hand is halfway

between XXI and XXII hours?

4. Under the clock are a number of parking meters. If a

car is parked at 9.47 am on a weekday, what time

must it leave by?

Continue to walk up Queen Street (North) until you

come to the RACV Building. This building has two

sets of doors onto Queen Street.
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K5

K6

K7

5. Calculate the difference in height between the two

entrances. (Hint: Look at the blocks on the wall.)

6. Using the same units of measurement, calculate the

horizontal distance between the two entrances.

*CHALLENGE QUESTION*

The gradient of a slope is found by calculating the

difference in height (H) divided by the horizontal

distance (D):

h. Using your answers for (H) and (D) calculate the

gradient of the hill between Little Collins Street and

Bourke Street. H ÷ D =

Walk further up the hill to the “Top Deck Flight and

Travel Centre” and look at the details of international

flights given in the window.

7. If you wanted to go to London and back but need 

to visit a friend in Auckland both ways, how much

extra money would you need to spend on fares by

visiting Auckland twice instead of travelling to

London via Singapore?

Horizontal difference (D)

Change in
height (H)

CQh
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L1

L2

TOTAL TIME

L. BOURKE STREET

Walk up to Bourke Street, cross Queen Street and

walk down (East) Bourke Street until you come to the

Colorcode Discount Bookstore.

1. If the book you want had a “Pink” sticker last time

you visited the shop, but today had an “Orange”

sticker and normally costs $10 before discount, how

much would you have saved if you bought it last time

you visited?

2. For a joke suppose someone had stuck all five 

stickers on the most expensive book in the shop

(normal price $100). How much would it appear to

cost after discount?

*CHALLENGE QUESTION*

i. If the discounts were applied one at a time in the

previous case, what would be the final price?

STATE BANK CENTRE

Go into the State Bank Centre and ask for an answer

sheet to check your answers. 

Make a note of the time

How long did the Trail take you?

WELL DONE!!

CQi



COMMENTS:
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