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Preface

Mathematics today is a vast enterprise. Advances and breakthroughs have been

painstakingly built on the structure(s) erected by earlier mathematicians. The his-

tory of mathematics is quite different from the that of other human endeavours. In

other fields, previously held views are typically extended or proved wrong with each

advance there is a process of correction and extension. “Only in mathematics is

there no significant correction – only extension”.

The work of Euclid has certainly been extended many times. Euclid, however,

has not been corrected – his theorems are valid today and for all time! The other

remarkable thing about mathematics is its extraordinary utility in describing and

quantifying the world around us. Mathematics is the language of the sciences, both

natural and social. This forces mathematics to be abstract, since it must embrace

theories from physics, economics, chemistry, psychology, etc. Mathematics is so

widely applicable precisely because of — not despite — its intrinsic abstractness.

MATH101 is the first half of the MATH101/102 sequence, which lays the founda-

tion for all further study and application of mathematics and statistics, presenting

an introduction to differential calculus, integral calculus, algebra, differential equa-

tions and statistics, providing sound mathematical foundations for further studies

not only in mathematics and statistics, but also in the natural and social sciences.

Achieving this, requires a brief, preliminary foray into the basics of mathematics,

because much of the material requires a high degree of abstract reasoning, rather

than rote learning of computational techniques.

A rigorous approach to the basics provides a deeper understanding of the whole

structure. The assumptions upon which the structure is built are thereby clarifed,

with both the scope and limitations of the intellectual framework made readily

understandable. Moreover, this deeper understanding, does not come at the expense

of applicability. Quite the contrary!

One consequence of providing sound fundamentals is that there is considerable

time devoted to matters whose importance and applicability is not immediately ob-

vious. But such study of these fundamental areas of mathematics is also stimulating.

If you enjoy puzzles here is an “intellectual game” par excellence. A game played

within a rigid framework of rules, but with unlimited scope for creativity in the

search for problems and the solutions to problems.

This is the first of three parts of the lecture notes which together constitute the

unit material for MATH101. These notes were originally prepared by Chris Radford

and have been revised by Shusen Yan and others.
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The reader is invited and encouraged to point out any mistakes (s)he finds. I

hope you enjoy the challenges the unit offers and that you experience a sense of

achievement at the end.

Bea Bleile

UNE
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Lecture 1.1 Mathematical Language and Proof

Introduction

What is research in mathematics? A mathematician would answer “proving

theorems”. The language and etiquette of mathematics has evolved over a long

period of time. Terms such as theorem, axiom, definition and proof have a universal

and well understood meaning. It is these conventions and definitions we want to

examine in this lecture.

Basic Terminology

Statement: A statement is a sentence which is either true or false

(according to some previously accepted criteria). Statements do not

include exclamations, questions or orders. A statement cannot be

true and false at the same time.

A statement is simple when it cannot be broken down into other statements. A

statement is compound when it contains more than one simple statement.

�Example “I will have a BBQ and it will rain” is a compound statement consisting

of two simple statements. “I will have a BBQ” and “It will rain”.

Definition: A definition is a statement of the precise meaning of a

word, phrase, mathematical symbol or concept.

In trying to understand a piece of mathematics it is important to have a good

working understanding of the initial definitions. You need to look at examples which

satisfy and do not satisfy the definitions.

Theorem: A theorem is a mathematical statement that can be proved

true by a chain of logical argument based on assumptions that are

given or implied in the statement of the theorem.

A theorem will give a deeper insight into the structure of a piece of mathematics.

Lemma: A lemma is a preliminary theorem read in the proof of

another theorem.
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Some theorems can have proofs that are long and intricate. It is useful in such

cases to break the proof into intermediate steps which are separated out as lemmas

which lead into the main result.

Corollary: A corollary is a theorem that is a natural consequence

of a preceding theorem. Generally, a corollary will follow in a rel-

atively easy and straight-forward way from the previous theorem or

proposition.

Proof: A proof of a proposition, theorem, lemma or corollary is a

sequence of logical reasoning. It is based on the given assumptions

or hypothesis and aims to establish the truth of the proposition or

theorem.

Basic Techniques of Proof

Implication

Consider the following compound statement: “If I pass MATH101 then I will do

MATH 102”. Under what circumstances is this statement true or false?

Let’s have a look at the two simple statements making up this compound state-

ment.

A. I pass MATH101.

B. I will do MATH102.

For statement A there are two possibilities,

1. I do pass MATH101 (A is true).

2. I fail MATH101 (A is false).

There are also two possibilities for B,

1. I will enrol in MATH102 (B is true).

2. I will not enrol in MATH102 (B is false).
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So we have to consider four possibilities:

A B

1. True True

2. True False

3. False True

4. False False

As well as the truth or otherwise of A and B, individually, we must consider the

truth of the original compound statement which takes the form of an implication.

This compound statement is “If A then B”. We enlarge our table above to include a

column for “If A then B”. We must decide for each of the four cases if the compound

entry is True or False.

Case 1: I pass MATH101 and enrol in MATH 102. The implication is True.

Case 2: I pass 101 and do not enrol in 102. Implication is False.

Case 3: I do not pass 101 but still enrol in 102. My original statement is not a

lie, it is not a falsehood. Implication is True.

Case 4: I do not pass 101 and do not enrol in 102. Again, my original statement

is not a lie or a falsehood. Implication is True.

A B If A then B

1. True True True

2. True False False

3. False True True

4. False False True

There is only one case when the implication is false, ie. when A is true and B is

false.

The implication “If A then B” is true if we can prove that it is

impossible to have A true and B false at the same time.

This means if we assume “A implies B” to be true and we also assume that A is

true then we must conclude that B is true.

The statement “if A then B” is equivalent to the statement “A is a

sufficient condition for B” and to the statement “B is a necessary

condition for A”.
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Notice that in a statement of the form “A implies B” the hypothesis, part A, is

clearly distinguished from the conclusion, part B. A direct proof of a mathematical

implication, “A implies B”, proceeds on the assumption that the hypothesis A is

true. The proof will work via a series of logically connected steps to obtain the

conclusion B.

�Example Prove that the sum of two prime numbers larger than 2 is an even

number.

Solution We formulate this as an implication:

“If p and q are prime numbers larger than 2 then p+ q is even”.

The hypothesis “p and q are prime numbers larger than 2” assumes that we know

what prime numbers are. A prime number is a natural or counting number divisible

only by itself and one – 2, 3, 5, 7, 11, 13, 17, 19, 23 are prime numbers.

So we are to assume p and q are prime numbers bigger than 2. We must then

construct a series of arguments which lead directly to the conclusion that p + q is

divisible by 2 (i.e. p+ q is even).

Firstly, we see that p and q must be odd. We must be careful about this point

because 2 is prime but even! However, for primes greater than 2 we note that a

prime cannot be divisible by 2; so it must have remainder 1 after division by 2. So

there must be counting numbers n and m such that

p = 2n+ 1

q = 2m+ 1

This really just says that p and q are odd. We can now move to our conclusion,

p+ q = (2n+ 1) + (2m+ 1)

= 2n+ 2m+ 2

= 2(n+m+ 1).

We conclude that p+ q is divisible by 2 and so p+ q is even. 2

This is a direct proof as we moved directly from the (assumed true) hypothesis,

“p and q are prime numbers larger than 2” directly to the conclusion “p + q is an

even number”.
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Proof by Contradiction

Recall that the implication “If A then B” can only be false if we have A true

and B false. So if we were to assume B to be false and prove, as a consequence,

that A is necessarily false, then we have proved the implication is true. We would

have shown that the only possible case with B false is A false which contradicts the

assumed truth of the hypothesis. This is proof by contradiction.

In general one tries to avoid using a proof by contradiction. If a direct proof is

straightforward then this is to be preferred – a direct proof usually provides more

insight into the mathematical structure at hand.

�Example Prove that if p is a prime number larger than 2 then p+1 is not prime.

Solution We formulate this statement as an implication with hypothesis “p is a

prime number larger than 2” and conclusion “p+ 1 is not prime”.

We will use a proof by contradiction. Assume the conclusion is false. We need

the negative of the statement “p + 1 is not prime”. This means we must assume

that “p+ 1 is prime”.

So our starting assumptions are now

“p is a prime number larger than 2” (hypothesis)

“p+ 1 is prime” (negative of the conclusion).

We are now free to use any means at our disposal to find a contradiction based on

these two assumptions. If we can find such a contradiction then we have established

the truth of the original implication.

We will use the result established in the previous example.

We have two primes p and p+1 both larger than 2, so we know that p+ (p+1)

must be even (this is the result of our earlier exercise). But this is clearly false as

p+ (p+ 1) = 2p+ 1 is an odd number.

We have a contradiction. Our proof is complete, our assumption that the con-

clusion is false cannot hold, the conclusion must be true. 2
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♠ Exercises 1

1. Construct a direct proof for the last example, above.

2. Use a direct proof technique to prove that if (a + b)2 = a2 + b2 for all real

numbers b, then a = 0.

*3. Let n be a counting number. If 2n − 1 is a prime number prove that n is also

prime. Use a proof by contradiction to establish the truth of this statement.
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Lecture 1.2 Important Types of Theorems and Proof

In your mathematical reading you will find that there are certain types of theorem

whose statement and proof follow a standard pattern. Our aim here is to look at a

couple of the more important examples.

Equivalence or “If and Only If” Theorems.

The statement of theorems of this type takes one of the following possible forms

“A is true if and only if B is true”

“A is false if and only if B is false”

“A is equivalent to B”.

Notice that these forms are all basically equivalent – the truth (or falsity) of A

automatically implies the truth (or falsity) of B and vice versa. So to prove such a

theorem we have to produce two proofs:

one proof for “A implies B” and

one proof for “B implies A”.

The first proof says A is sufficient for B (or B is necessary for A). The second

proof says B is sufficient for A (or A is necessary for B). In fact another com-

mon statement of equivalence is a theorem which takes the following form, “A is a

necessary and sufficient condition for B”.

�Example Let n be a counting number. Then n is odd if and only if n2 is odd.

Solution Let A be the statement “n is odd” and let B be the statement “n2 is

odd”.

We have to prove two implications

1. A implies B

2. B implies A

Firstly, let’s examine A implies B. We’ll provide a direct proof. So we assume

A, that is, we assume n is an odd counting number. This means there is a counting

number r such that

n = 2r + 1
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(any odd number is one plus an even number). Then we have

n2 = (2r + 1)2 = 4r2 + 4r + 1

= 4(r2 + r) + 1,

which is again an odd number. The first implication has been proved.

We must now tackle “B implies A”. This is not easy to do using a direct proof.

Try it, you need to assume n2 is odd and then prove n is odd. Here we will use a

proof by contradiction. The conclusion of the implication is that n is odd, so we will

assume that n is even in order to produce a contradiction to our assumed hypothesis

(that n2 is odd). That is, we assume n2 is odd (hypothesis) and that n is even and

show that this leads to a contradiction.

Well, if n is even there is a counting number m such that n = 2m. In which case

we have

n2 = (2m)2

= 4m2.

But his means n2 is even. We have a contradiction with the hypothesis that n2 was

odd. We have a proof by contradiction.

We conclude that A is equivalent to B. 2

The way we have written the above proof contains much more verbiage than we

would normally expect in a mathematical proof. We needed it to explain what was

going on! So let’s rewrite the above theorem and proof in a more economical and

“cleaner” style.

Theorem Let n be a counting number. Then n is odd if and only if n2 is odd.

Proof First, we assume n is odd. Then n = 2r + 1, for some counting number r.

We have

n2 = (2r + 1)2

= 4r2 + 4r + 1

= 4(r2 + r) + 1,

so that n2 is odd, as required.

Next, assume n2 is odd. To prove that n is odd using a proof by contradiction,

assume n is even. Then n = 2m, for some counting number m.
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Thus

n2 = (2m)2

= 4m2,

so that n2 is even. This contradicts our hypothesis. We conclude that n is odd,

completing the proof. �

This “if and only if” type of theorem need not be restricted to the equivalence

of just two statements. A theorem might state the equivalence between three (or

more) statements. Something like

“The following statements are equivalent”

1. A

2. B

3. C.

might be found in the mathematical literature. In such a case it is not necessary

to prove directly that each statement is equivalent to each of the others. For example,

it would suffice to prove the following three implications “A implies B”, “B implies

C” and “C implies A”. Why is this true?

Mathematical Induction

Mathematical induction is used to prove theorems that would otherwise require

the checking of a large (usually infinite) number of cases. For example, consider the

following claim for any counting number n,

1 + 2 + 3 + . . .+ n =
1

2
n(n + 1).

It is certainly easy to check the veracity of this statement for, say, the first ten

counting numbers. After that it gets a bit tiresome! For example for n = 6 we have

L.H.S. = 1 + 2 + 3 + 4 + 5 + 6 = 21

and R.H.S. = 1
2
6(6 + 1) = 3× 7 = 21.

Here, L.H.S. is an abbreviation for left hand side of the equation and R.H.S. an

abbreviation for right hand side of the equation.

Our statement says the equation is true for all counting numbers n. Just because

we have checked a few examples does not mean we can conclude that the general

case is true. We cannot go from the particular to the general.

The usual way in which statements like this are proved is via the principle of

mathematical induction. This technique involves three steps
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1. Verify that the statement is true for the smallest number that can be used in

the statement.

2. Assume that the statement is true for an arbitrary counting number k. This

is called the inductive hypothesis.

3. Using 1 and 2 prove that the statement is true for the next counting number

k + 1. This is called the deductive step.

Suppose that we wish to prove that the statement P (n) is true for all counting

numbers n. For example P (n) might be the statement

1 + 2 + 3 + . . .+ n =
1

2
n(n+ 1),

of our example above. Our three step program would now read

Mathematical Induction.

1. Verify that P (1) is true (we have assumed n = 1 is the lowest

value of n for which P (n) makes sense).

2. Assume that P (k) is true.

3. Use the assumed truth of P (k) and the verified truth of P (1)

to prove P (k + 1) is true.

If we can complete these three steps then we have proved P (n) for all counting

numbers n. To see why this is true notice that steps 2 and 3 show the following: If

P (k) is true then P (k + 1) is also true. Well, we know that P (1) is true (step 1),

so P (2) must be true. But if P (2) is true then P (3) must be true. And so on ‘ad

infinitum’ !

We can now finally prove the statement of our working example, that the sum

of the first n counting numbers is 1
2
n(1 + n).

Theorem For any counting number n

1 + 2 + 3 + . . .+ n =
1

2
n(1 + n).

Proof Let P (n) be the statement

1 + 2 + 3 + . . .+ n =
1

2
n(1 + n).
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We verify that P (1) is true.

L.H.S. P (1) = 1 and R.H.S. P (1) = 1
2
· 1 · (1 + 1) = 1 so P (1) is true.

Now assume P (k) is true (inductive hypothesis). That is, assume

P (k) : 1 + 2 + 3 + . . .+ k =
1

2
k(1 + k).

Next we prove P (k + 1) is true using the assumed truth of P (k). We have

L.H.S. P (k + 1) = 1 + 2 + 3 + . . .+ k + (k + 1)

=
1

2
k(1 + k) + (k + 1), using P (k).

And,

R.H.S. P (k + 1) =
1

2
(k + 1)(1 + (k + 1))

=
1

2
(k + 1)(k + 2)

=
1

2
(k + 1)k +

1

2
(k + 1)2

=
1

2
k(k + 1) + (k + 1).

Thus we conclude

L.H.S. P (k + 1) = R.H.S. P (k + 1),

so P (k + 1) is true.

Alternatively, we can rewrite the L.H.S. of P (k + 1) until we obtain the R.H.S.

using the assumed truth of P (k):

1 + 2 + 3 + . . .+ k + (k + 1)

=
1

2
k(1 + k) + (k + 1) using P (k)

=
1

2
k(k + 1) +

1

2
(2(k + 1)) as

1

2
× 2 = 1

=
1

2
(k(k + 1) + 2(k + 1)) by factorising

=
1

2
((k + 2)(k + 1)) again by factorising.

We have established, by the principle of mathematical induction, that P (n) is

true for all counting numbers n. �
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Theorem If n is a counting number greater than 9, then 2n > n3.

Proof Let P (n) be the statement 2n > n3.

Now n > 9, so we must verify P (10). We have

L.H.S. P (10) = 210 = 1024 and

R.H.S. P (10) = 103 = 1000.

We have established the truth of P (10).

Next, assume that P (k) is true, that is

P (k), 2k > k3.

We now prove P (k + 1). We have

L.H.S. P (k + 1) = 2k+1

= 2k · 2 > 2k3, usingP (k).

And,

R.H.S. P (k + 1) = (k + 1)3

= k3 + 3k2 + 3k + 1.

We note that 3k2 + 3k + 1 < 3k2 + 3k2 + k2 = 7k2, for k > 3. So if k > 9, we

have k3 > 7k2 > 3k2 + 3k + 1.

We can thus conclude

L.H.S. P (k + 1) = 2k+1 > 2k3 > k3 + 3k2 + 3k + 1 = R.H.S. P (k + 1).

So P (k + 1) is true.

So by the principle of mathematical induction, P (n) is true for all counting

numbers n. �
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♠ Exercises 2

1. Let m and n be counting numbers. Prove that the following statements are

equivalent:

(a) m > n.

(b) am > an, for all real numbers a > 1.

(c) am < an, for all positive real numbers a < 1.

2 For all counting numbers n prove that

1 + 2 + 22 + 23 + . . .+ 2n−1 = 2n − 1.

3. For all counting numbers n ≥ 1 prove that

13 + 23 + 33 + . . .+ n3 =

[
1

2
n(n+ 1)

]2

.

4. Let a be a real number with a > 0. Prove for any counting number n > 1 that

(1 + a)n > 1 + na.

5*. For all counting numbers n ≥ 1 prove that 32n − 1 is divisible by 8.
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Lecture 1.3 Sets and Functions

Basic Terminology

We do not attempt to define the word set. Intuitively a set is a collection,

aggregate or ensemble of objects which are called the elements or members of the

set. The set is completely determined by a knowledge of which objects are elements

of it.

Capital letters will be used to denote sets and lower case letters will denote

elements of the sets. The symbol ∈ is used to denote membership of a set. So

x ∈ S

reads “x is an element of the set S.” The statement “x is not an element of S” is

abbreviated to

x /∈ S.

Note that we do not exclude the possibility that x is a set in its own right, except

that x cannot be S: We explicitly exclude S ∈ S.

The statement that a set is completely determined by its elements can be thought

of in terms of the following equivalence.

If X and Y are sets then X = Y if and only if for all x ∈ X we

have x ∈ Y and for all y ∈ Y we have y ∈ X.

A set may be given by a property which defines the elements of the set. We

write

S = {x : “statement involving x”},

which reads S is the set of all x such that “statement involving x” holds. For

example,

N = {x : x is a natural number}
= {0, 1, 2, 3, 4, 5, . . .}

is the set of natural numbers. The set of even natural numbers could be written as

{2n : n ∈ N} or {m ∈ N : m = 2n, for n ∈ N}.
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If X and Y are sets and every element of X is also an element of Y , then X is

a subset of Y . This is denoted symbolically by

X ⊂ Y, or Y ⊃ X.

So X ⊂ Y is shorthand for the statement “if x ∈ X then x ∈ Y ”. We see that

X = Y is equivalent to the two statements X ⊂ Y and Y ⊂ X . The negation of

the statement X ⊂ Y is written

X 6⊂ Y,

and read as “X is not a subset of Y ”. A set X is called a proper subset of another

set Y if X ⊂ Y but X 6= Y .

The empty set is the set with no elements. It is denoted by the symbol φ. Note

that φ ⊂ X , for any set X .

Operations on Sets

The intersection of two sets X and Y , denoted by X ∩ Y , is defined to be the

set of all objects which are elements of both X and Y . In symbols,

X ∩ Y = {x : x ∈ X and x ∈ Y }.

The union of sets X and Y is the set of all objects which are elements of X or

Y . Note that the “or” is inclusive, that is, x is contained in the union of X and Y

if and only if it is in X , in Y or both in X and in Y . Symbolically,

X ∪ Y = {x : x ∈ X or x ∈ Y }.

If X is a subset of a set S, then the complement of X in S is the set of elements

of S which are not in X . If it is understood or explicitly stated in the context what

the set S is, then the words “in S” are often omitted. In probability theory S is

often understood as “the universal set”. We denote the complement of X (in S) by

X̄ ,

X̄ = {x ∈ S : x /∈ X}.
Venn diagrams provide a convenient diagrammatic way of representing the various

operations and relations on sets.
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A

x

S

x ∈ A

A B

S

A ∩B 6= φ

A B

S

A ∩B = φ

A B

S

A ∪ B

A

S

Ā (in S)

A B

S

A ∪ B̄

Such diagrams provide a simple way of demonstrating the equality of sets. For

example, draw the diagrams for A ∪B and for A ∩ B to discover that A ∪ B =

A ∩ B (one of the De Morgan laws).

Given two sets X and Y we define their Cartesian product, X × Y , to be the

set of all ordered pairs the first member of which is in X and the second member of

which is in Y .

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

The usual pictorial example of the Cartesian product is that of rectangular co-

ordinates in the plane. The whole plane is identified as the Cartesian product of the

two axes.
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�Example Find, explicitly, the Cartesian product of the two setsX = {1, 7, 9, 21, 66}
and Y = {2, 3}.

Solution The Cartesian product, X×Y , consists of all possible ordered pairs (x, y),

where x ∈ X and y ∈ Y . Hence

X × Y = {(1, 2), (1, 3), (7, 2), (7, 3), (9, 2), (9, 3), (21, 2), (21, 3), (66, 2), (66, 3)}

Notice in this example we can explicitly write down each element of X × Y . We

can do this here because the sets X and Y are finite. Of course this is not possible

if the sets are infinite. For example, the set of lattice points in the first quadrant of

the x− y plane is given by N×N – an infinite set of points (n,m) where n ∈ N and

m ∈ N.

Functions

If X and Y are sets a function from X to Y (or a function from X into Y , or

a function with values in Y ) is a rule which associates with each element of X a

unique element of Y . The words mapping or map are often used instead of function.

The function “rule” can be specified in many ways, but the important thing

is that to any given element of X we associate, somehow, a unique element of Y .

We indicate that we have a function or map between sets X and Y by the arrow

notation,

f : X −→ Y.

For any x ∈ X the element y of Y associated with x by the function f is denoted

f(x). Then f(x) ∈ Y and we write

y = f(x) or x 7−→ y.

This is a more general concept of a function than you have probably met before. The

familiar functions of calculus are functions from a subset, D, of the real numbers to

the real numbers. Denoting the set of real numbers by R, we obtain

f : D −→ R.

�Example We may use the formula f(x) = x2 + x+ 1 to define the function

f : R −→ R; x 7−→ x2 + x+ 1.

The graph of such a real valued function on D is the set of points (x, y) in the

plane such that y = f(x) for x ∈ D. In fact, this idea of graph is easy to generalise

to our more abstract setting.
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The graph of a function f : X −→ Y is the set of ordered pairs

{(x, y) ∈ X × Y : y = f(x)} or {(x, f(x)) ∈ X × Y : x ∈ X}

Another class of functions with which you should be familiar are the sequences.

A sequence {an} where n ∈ N can be thought of as a function

f : N −→ R.

This means for each n ∈ N the function f associates a real number f(n), which

by tradition we denote by a symbol such as an. In fact all your familiar functions

from calculus (quadratics, exponentials and so on) can be made into sequences if we

restrict ourselves to the subset N of R. For example, consider the quadratic

f : R −→ R, with f(x) = x2.

We may restrict this function to the subset of natural numbers, that is, we think of

f as acting only on the subset N of R. This is usually written as f |N, and read as “f

restricted to N”. The function f |N has exactly the same function rule as f , it simply

acts only on the subset N of R. This all sounds a bit abstract, but in practice it’s

very simple, we have

f |N : N −→ R, with f |N(n) = n2.

Similarly, restricting any function R −→ R we obtain a sequence. Our example,

f(x) = x2, defines the sequence {n2}n∈N = {1, 22, 32, 42, . . .}.

We will take a more detailed look at sequences later in these notes.

In our general setting with functions f : X −→ Y we make the following defini-

tions

The set X is called the domain and the set Y is called the codomain

of the function f . The set f(X) = {f(x) : x ∈ X} is called the

range or image of the function.

We should emphasise the importance of the domain in the definition of a function –

functions with different domains are different functions. Consider the following two

functions,

g : {x ∈ R : x ≥ 0} → {y ∈ R : y ≥ 0}, x 7−→ x2,

f : R → R, x 7−→ x2.
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They are given by the same formula, that is, f(x) = x2 and g(x) = x2, but they

are quite different functions – they have different domains. They also have different

properties, for example, g is one-to-one (see lecture 8), whereas f is not.

�Example What is the largest subset, D of R, such that

f : D −→ R, x 7−→
√
1− x2

is a function?

Solution As
√
u is defined if and only if u ≥ 0, we must have 1 − x2 ≥ 0, that is,

−1 ≤ x ≤ 1. Thus D = {x : −1 ≤ x ≤ 1}.

Suppose we have two functions f : X −→ Y and g : Y −→ Z, where X , Y and

Z are sets. Is there a natural way to go from X to Z using f and g? Well, we could

simply use f to take us from x ∈ X to y = f(x) ∈ Y and then use g to take us from

y to g(y) ∈ Z. This gives us a new function X −→ Z, the composition of f and g.

For functions f : X −→ Y and g : Y −→ Z the composition of f

and g, denoted g ◦ f , is defined to be the function

g ◦ f : X −→ Z

g ◦ f(x) = g(f(x)), for x ∈ X.

Notice the order of f and g in g ◦ f – we use the function f first and then we use g.

The expression g(f(x)) simply means g(y) where y = f(x).

�Example Find g ◦ f(x) and f ◦ g(x) where f, g : R −→ R are defined by

f(x) = x2 and g(x) = x2 + 1.

Solution

g ◦ f (x) = g(f(x))

= g(x2)

= (x2)2 + 1

= x4 + 1
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Perhaps this is a little easier to see if we introduce the intermediate step, y =

f(x) = x2, then

g ◦ f(x) = g(f(x)) = g(y)

= y2 + 1

= x4 + 1, as y = x2.

Furthermore,

f ◦ g (x) = f(g(x))

= f(x2 + 1)

= (x2 + 1)2

= x4 + 2x2 + 1

This shows that, in general, f ◦ g is not equal to g ◦ f . 2

�Example For functions h : N −→ R and g : R −→ R, where h(n) = 1
n
and

g(x) = 1
x2+1

, find the equation for g ◦ h(n).

Solution

g ◦ h(n) = g(h(n))

= g(
1

n
)

=
1

( 1
n
)2 + 1

=
n2

1 + n2

2
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♠ Exercises 3

1. If A ⊂ S show that

(a) (A) = A

(b) A ∪ A = A ∩A = A ∪ φ = A

2. Use a Venn diagram to demonstrate the truth of the second De Morgan law

A ∩ B = A ∪B.

3. Consider the functions f : Df −→ R and g : Dg −→ R given by f(x) =√
x2 − 4 and g(x) = x2 + 4.

(a) What are the largest subsets Df and Dg of R, such that f and g are

functions?

(b) What are the ranges (images) of f and g?

(c) Find the equation defining g ◦ f . What are the domain, codomain and

and range of g ◦ f?

4.Let f : X −→ Y be a function, let A and B be subsets of X . Prove that

(a) f(A ∪ B) = f(A) ∪ f(B).

(b) f(A ∩ B) ⊂ f(A) ∩ f(B).
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Lecture 1.4 Numbers

The awareness of numbers, particularly the counting numbers, is in some ways a

fairly primitive sensibility – certain birds can distinguish sets containing up to four

elements. But it is this concept of number which is at the heart of the origins of

mathematics.

Number theory, even today, offers some of the deepest and most challenging

problems in mathematics. Our aim over the next couple of lectures will be quite

modest. We want to give a brief introduction to those ideas from the theory of

number which are required for a rigorous look at the differential calculus.

Integers

We will accept as given the counting numbers {1, 2, 3, 4, . . .} and the natural

numbers N = {1, 2, 3, 4, . . .}, stressing only the facts needed for extensions of this

number system.

Elements of N can be added or multiplied to give further elements of N. If

m,n ∈ N then m + n ∈ N and mn ∈ N. This is called closure under addition or

multiplication. There is a number 0 for which 0 +m = m + 0 = m and there is a

number 1 for which 1.m = m.1 = m, for all m ∈ N. We call 0 the neutral element

with respect to addition and 1 the neutral element with respect to multiplication.

We also have an order expressed by the symbols < (less than),> (greater than).

To deal, in a more complete fashion, with equations

m+ x = n; m,n ∈ N

we will need to introduce more numbers. Notice this equation can only be solved

in N (i.e. with x ∈ N) if n > m. We widen our number system to include the

“negatives” of the counting numbers.

The integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Notice that the properties of closure under addition and multiplication still hold

for Z, as does the ordering property.
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If a and b are integers the equation

ax = b.

is not, in general, satisfied by an integral value of x. If this equation is to always

have a solution we need to again widen our number system to include the rationals

a/b (with a, b ∈ Z, b 6= 0).

Rational Numbers

The set of rational numbers, Q = {p
q
: q 6= 0; p, q ∈ Z}.

In the system of rationals the usual operations of arithmetic, addition, sub-

traction, multiplication and division all apply. The rationals can also be ordered

according to their “size” if we define

a

b
>

c

d
; a, b, c, d ∈ Z and b, d > 0

to mean ad > bc. Note the restriction b and d positive is not really a restriction at

all, if b < 0 then we can write
a

b
=

−a

−b
.

The denominator is then positive.

The rationals have an important property not possessed by the integers:

Theorem Between any two rationals there are infinitely many other rationals.

Proof The proof is a simple direct “construction”.

We simply give an infinite set of rationals between a
b
and c

d
; a

b
, c
a
∈ Q. As noted

above we can always take b and d to be positive integers. Then

a+mc

b+md

lies between a/b and c/d for any positive integer m. There are infinitely many

positive integers so we get infinitely many rationals between a/b and c/d. �
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Irrational Numbers

It was realised by the Greeks more than 2000 years ago that there is an incom-

pleteness about the system of rational numbers. The diagonal of a square with

sides of unit length has a length which is not a rational number – it is an irrational

number. In algebraic language the equation for x,

x2 = a, a ∈ Q,

has a rational solution for x only for exceptional values of the rational number a.

For our unit square Pythagoras’ theorem says that the length of the diagonal, x, is

given by

x2 = 12 + 12 = 2.

We will now show that the formal solution to this equation, x =
√
2, cannot be a

rational number. We call
√
2 an irrational number.

Theorem No rational number has square 2.

Proof This is a very old theorem having been proved first by Pythagoras or one of

his school. It is a very simple and economical proof by contradiction.

Assume, on the contrary, that the rational p/q has square 2. We can also assume

that p and q are integers having no common factors – if they did have common factors

we would simply cancel them from the “fraction”. We have

p2

q2
= 2, or

p2 = 2q2.

We see that p2 is divisible by 2 so p must be an even integer (see example in lecture

1.2). So we can write p = 2r, for some integer r. We now have

p2 = 4r2 = 2q2,

from which we see that q2 = 2r2 so that q must be even. This means that p and q

have the common factor 2, contradicting our hypothesis. The theorem is proved. �

It can be quite difficult to determine whether a given number is rational or not.

The fact that the number π (the ratio of the circumference of a circle to its diameter)

is not rational was only discovered at the end of the 18th century.

The rationals and irrationals together give us the real numbers – all possible

points on the number line.
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The Real Numbers.

The irrationals fill in the “gaps” in the rationals. Given any irrational we can

find rational numbers arbitrarily close to it. This process is just the decimal approx-

imation to the infinite decimal expression for the irrational number. This is most

easily seen by looking at the irrational
√
2 = 1.4142 . . . (an infinite decimal). We

then simply look at successive decimal approximations to
√
2,

1, 1.4, 1.41, 1.414, 1.4142, . . . .

Each of these numbers is rational (any finite decimal is rational, e.g. 1.414 = 1414
1000

)

and they are in increasing order. All of these numbers are less than
√
2. However,

we can get arbitrarily close to
√
2.

We can also approximate
√
2 from above

2, 1.5, 1.42, 1.415, 1.4143, . . . .

This sequence is found by adding a one to the last decimal place of our approximation

from below. Notice that this latter sequence is a decreasing sequence of rationals.

The sequence approximating
√
2 from below has no greatest member – we simply

go to the next decimal place to get a bigger member of the sequence. The sequence

approximating
√
2 from above has no smallest member.

So the irrational number
√
2 can be defined by cutting the rationals into two

classes L and R. Where L has no greatest member and R which has no smallest

member.

L
︷ ︸︸ ︷

R
︷ ︸︸ ︷

0 1
√
2 2 3

This is Dedekind’s definition (1872) of the irrationals by a cut of the rationals.

The rationals and the reals satisfy the axioms for what is known in algebra as an

ordered field. The reals are distinguished from the rationals by one further axiom,

Dedekind’s Axiom. Suppose that the system of all real numbers

is divided into two classes L and R, every member ℓ of L being

less than every member r of R (neither class being empty). Then

there is a dividing number ξ with the property that every number

less than ξ belongs to L and every number greater than ξ belongs to

R. The number ξ may belong to either L or R. If it is in L, it is

the greatest member of L. If ξ is in R it is the least member of R.
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Such a division of the real numbers into two classes by means of some rule is

called a Dedekind cut.

♠ Exercises 4

1. (a) Is 223
71

greater than 22
7
?

(b) Is 265
153

greater than 1351
780

?

2. If a, b ∈ R prove, that if a < b < 0, then

1

a
>

1

b
.

3. Prove that if m/n is a rational approximation to
√
2 from below then

m+ 2n

m+ n

is a closer approximation from above. Hence write down approximations to√
2, obtaining two which differ by less than 1

10,000
.

4*. The density property of the rationals amounts to saying that there is no ra-

tional which is next to another. The following plan for arranging the rationals

(not in order of magnitude) does assign a definite place to each

1

1
,
2

1
,
1

2
,
3

1
,
2

2
,
1

3
,
4

1
,
3

2
,
2

3
,
1

4
,
5

1
, . . . .

What place does 6
1
occupy? (Counting from the left, of course!)

Show that p/q occupies the {1
2
(p + q − 1)(p + q − 2) + q}th place. (Notice

that each rational occurs infinitely often in this scheme; e.g. 2 appears as
2
1
, 4
2
, 6
3
, . . . .)
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Lecture 1.5 Some Properties of Real Numbers

Basic Arithmetic

We assume the familiar properties of the real numbers: For all a, b, c ∈ R

• a+ b = b+ a (commutativity of addition);

• (a+ b) + c = a+ (b+ c) (associativity of addition);

• 0 + a = a+ 0 = a (0 is the neutral element with respect to addition);

• There exists y ∈ R such that a+y = y+a = 0 (existence of additive inverses);

• ab = ba (commutativity of multiplication);

• (ab)c = a(bc) (associativity of multiplication);

• 1a = a1 = a (1 is the neutral element with respect to multiplication);

• There exists z ∈ R such that az = za = 1 (existence of multiplicative inverses).

• (a+ b)c = ac+ bc (distributivity).

• One and only one of

a > b, a = b, a < b

is true.

• If a > b and b > c, then a > c.

• If a > b, then a+ c > b+ c.

• If a > b and c > 0, then ac > bc.

These properties are essentially the axioms for an ordered field. If we add the

Dedekind axiom of the last lecture then we have the axioms defining the real num-

bers.

From these basic rules or axioms all the well-known and well-used properties of

real numbers follow.
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For example, defining

an = a · a . . . a
︸ ︷︷ ︸

n times

and (for a 6= 0) a0 = 1, a−n =
1

an
,

we obtain the usual statements for exponentials of a

am · an = am+n

(am)n = amn

(ab)n = anbn,

with m,n ∈ Z. These index rules can, in fact, be extended to m,n ∈ R.

We can also impose a “distance measure” on R, this is the absolute value of a

real number – it measures the distance of that number from zero.

|a| =
{

a, if a ≥ 0

−a, if a ≤ 0.

Theorem The absolute value has the following properties:

1. |a| ≥ 0 for all a ∈ R and |a| = 0 if and only if a = 0.

2. |ab| = |a| · |b|, for all a, b ∈ R.

3. |a|2 = a2, for all a ∈ R.

4. |a+ b| ≤ |a|+ |b|, for all a, b ∈,R.

5. |a− b| ≥ ||a| − |b||, for all a, b ∈ R.

Proof The first three properties are trivial consequences of the definition and are

left as exercises.

To prove (4) note that if a+ b ≤ 0 then

|a+ b| = −(a + b)

= −a− b

= −a + (−b)

≤ |a|+ |b|,

as −a ≤ |a| and −b ≤ |b|. On the other hand, if a + b ≥ 0 then

|a+ b| = a+ b

≤ |a|+ |b|.
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And we have the required property.

To prove (5) note that

|a| = |(a− b) + b| ≤ |a− b|+ |b|,

so that

|a− b| ≥ |a| − |b|.
Similarly,

|b| = |(b− a) + a| ≤ |b− a|+ |a|,
so that

|b− a| = |a− b| ≥ |b| − |a|.
Combine the two inequalities for |a− b|,

|a− b| ≥ ±(|a| − |b|).

So we have (5),

|a− b| ≥ ||a| − |b||.
�

Bounded Sets of Numbers

Consider the following sets of numbers:

1. All prime numbers.

2. All integers greater than 1000 which are perfect squares.

3. All rational numbers x, with 1 ≤ x ≤ 2.

4. All real numbers x such that 1 ≤ x ≤ 2.

5. All real numbers x such that 1 < x < 2.

We first observe that all these sets are infinite. The examples 1 and 2 might give

the impression that an infinite set must contain elements which are unboundedly

large. However, examples 3, 4 and 5 correct that false impression!

The sets of examples 4 and 5 are of an important type, each is called an interval.

Example 4 in which the end points, x = 1 and 2, are members of the set is called a

closed interval and denoted by [1, 2]. In general, the closed interval from a to b with

a ≤ b is the set

[a, b] = {x ∈ R : a ≤ x ≤ b}.
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The set in example 5, in which the end points are excluded from the set, is called an

open interval and denoted by (1, 2). In general, the open interval from a to b with

a ≤ b is the set

(a, b) = {x ∈ R : a < x < b}.

If a set consists of finitely many numbers then clearly we can distinguish a

greatest (and least) element of that set. However, if S is an infinite set of numbers

there may or may not be a greatest element.

For example, in the set S = [−1, 1] the number 1 is greater than any other

member of S. The set S also has a least member, −1.

On the other hand the set S = (−1, 1) does not have a largest member. Given

any element of S we can always find another member of S which is larger. Suppose

k ∈ S = (−1, 1), then −1 < 1
2
(k + 1) < 1 so 1

2
(k + 1) ∈ S. But, 1

2
(k + 1) > k.

What both sets do have in common is the fact that they are bounded above (and

below). That is, there is a number K (not necessarily in the set S) such that x ≤ K

for all x ∈ S.

Let S be a set of real numbers. If there is a number K such that

for every x ∈ S, x ≤ K, we say S is bounded above. K is an upper

bound for S.

Similarly if there is a k ∈ R such that x ≥ k for all x ∈ S we say

S is bounded below. k is a lower bound for S.

A set which is both bounded above and below is said to be bounded.

�Example Is the set {1
2
, 2
3
, 3
4
, . . . , n

n+1
, . . .} bounded or unbounded?

Solution The set is clearly bounded. The number 1
2
serves as a lower bound – or

any number less than 1
2
. The number 1 (or any number greater than 1) serves as an

upper bound. Note that the set does have a least member, 1
2
. However, the set does

not have a greatest member. The elements of the set form an increasing sequence

which is bounded above by 1. 2

If K is an upper bound of a set S ⊆ R then any number greater than K is also

an upper bound. If we want to make the sharpest possible statement by confining

S as closely as possible then we would aim at getting the least upper bound. That is

a number K which is an upper bound, but such that K − ε is not an upper bound

for any positive number ε, no matter how small ε is. Or, stated another way

K ≥ x for all x ∈ S and for any ε > 0 there is an s ∈ S such that s > K − ε.
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In a similar fashion we may seek a greatest lower bound k with the properties

k ≤ x for all x ∈ S and for any ε > 0 there is an s ∈ S such that s < k + ε.

The least upper bound is usually called the supremum and we write

K = sup S, read as K is the supremum of the set S.

The greatest lower bound is usually called the infimum, and we write

k = inf S.

Using the Dedekind axiom we can prove that a (non-empty) set of real num-

bers which is bounded above must have a supremum. And in a similar way that a

nonempty set of real numbers which is bounded below must have an infimum. We

will not give the proof here – although we now certainly have the background to

tackle it. As illustrations consider the sets

1. S1 = {x ∈ Q : 0 ≤ x ≤ 1
2
}

2. S2 = {x ∈ Q : x2 < 2}

3. S3 = {1
2
, 2
3
, 3
4
, . . . , n

n+1
, . . .}.

For S1 the least upper bound is 1
2
, that is, sup S1 =

1
2
. Note 1

2
is also the greatest

member of S1.

The set S2 has a supremum of
√
2, i.e. sup S2 =

√
2. In this case sup S2 /∈ S2.

Finally, for the set S3 the supremum is 1, sup S3 = 1. Again, sup S3 /∈ S3.

We also have inf S1 = 0, inf S2 = −
√
2 and inf S3 =

1
2
.
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♠ Exercises 5

1. If a, b ∈ R and

a < b+ ε, for any ε > 0,

prove a ≤ b.

[Hint: try a proof by contradiction. The negative of the statement a ≤ b is

a > b.]

2. Show, for any a, b ∈ R,

maximum {a, b} =
a+ b+ |a− b|

2
minimum {a, b} = − maximum {−a,−b}

=
a+ b− |a− b|

2

3. Find (if they exist) the supremum and infimum of the following sets

(a) {1, 1
2
, 1
3
, 1
4
, . . . , 1

n
, . . .}

(b) {1.1, (1.1)2, (1.1)3, . . . , (1.1)n, . . .}

(c) {
√
2,
√√

2,

√
√√

2, . . .}

4. Given two bounded subsets A,B ⊆ R prove

sup (A ∪ B) = maximum {sup A, supB}.
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Lecture 1.6 Complex Numbers

Our system of real numbers R would appear to be perfectly adequate for mathe-

matics and indeed most applications. We feel comfortable with the fact that R can

be represented as the real number line every point of which is in R. We think of

rulers and other measuring devices as segments or intervals of the real number line.

Why would we want to extend further our system of numbers?

Well, curiosity would be one reason. If it is possible let’s try it! On the other

hand there are sound mathematical reasons why we might want to extend our num-

ber system. The extension to the complex numbers was first carried out by Gauss

in about 1795. Complex numbers are indispensable in modern mathematics and

physics. In Quantum theory in particular complex numbers are used in a funda-

mental way.

One motivation for the extension of the number system is to note that only

non-negative numbers have square roots. In all other respects there is complete

symmetry between positive and negative numbers. Another way of stating this is

to note that the equation

x2 = a, with a ∈ R,

has a solution x ∈ R if and only if a ≥ 0. If we write an equation such as

x2 = −1

then x 6∈ R. So there exist “numbers”, satisfying perfectly reasonable equations,

which are not in R.

We extend the field of real numbers to the field of complex numbers by adjoining

a new element, i, to the set. This element i is defined as a solution to the equation

i2 = −1.

It is traditional to write i =
√
−1 as the solution; note that x2 = −1 then has two

possible solutions x = ±i.

We also include in our set of complex numbers all numbers which can be formed

from i and R by use of the operations + and −. The elements of this field of complex

numbers then take the form a+ ib, where a, b ∈ R.

The Complex Numbers C = {a+ ib : a, b ∈ R}.
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All the axioms for multiplication and addition of the real number system listed

in the last lecture apply to C. However, the order axioms involving < and > no

longer apply. The real numbers can be included in C as a subset, namely R can be

identified with the complex numbers of the form a + i0. For this reason we write

a+ i0 = a.

So we may think of complex numbers as numbers of the form a+ ib, with a and

b real. We refer to the a as the real part and b as the imaginary part.

Any complex number z can be written as

z = a+ ib, with a, b ∈ R.

We write Re (z) = a for the real part of z and

Im (z) = b for the imaginary part of z.

Addition of Complex Numbers

For two complex numbers z1 = a1 + ib, and z2 = a2 + ib2, with

a1, a2, b1, b2 ∈ R, we have

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Notice that

Re (z1 + z2) = a1 + a2 = Re(z1) + Re(z2)

and Im (z1 + z2) = b1 + b2 = Im(z1) + Im(z2).

�Example

(a) (1 + 3i) + (3 + i) = 4 + 4i = 4(1 + i)

(b) (1 + 3i)− (3 + i) = −2 + 2i = 2(−1 + i)

(c) (π + i)− (1 +
√
2i) = (π − 1) + (1−

√
2)i

(d)
(
1
2
+ 1

3
i
)
+
(
1
4
− 1

6
i
)
= 3

4
+ 1

6
i
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Multiplication of Complex Numbers

Multiplication for elements of C follows the same field axioms as multiplication

of real numbers. Let’s start with an example.

�Example What is (1 + i) · (1− 3i)?

Solution

We simply expand the brackets,

(1 + i) · (1− 3i) = 1 · (1− 3i) + i · (1− 3i)

= 1− 3i+ i− i · 3i
= 1− 3i+ i− 3i2

= 1− 2i− 3 · (−1), as i2 = −1

i.e. (1 + i) · (1− 3i) = 4− 2i.

2

Now for the general case

For complex numbers z1 and z2 (as above) we have

z1z2 = (a1 + ib1)(a2 + ib2) = a1a2 − b1b2 + i(a1b2 + a2b1).

You should not bother memorising this formula, instead you simply multiply

out the brackets as per our example. In the general case we have

z1z2 = (a1 + ib)(a2 + ib2) = a1(a2 + ib2) + ib1)

= a1a2 + ia1b2 + ib1a2 + i2b1b2

= a1a2 − b1b2 + i(a1b2 + b1a2), as i2 = −1.

So the policy is expand everything in sight, use i2 = −1 and then collect terms into

two groups those with an i and those without an i. The terms without an i give the

real part of the product and the coefficient of the i gives the imaginary part. So,

Re (z1z2) = a1a2 − b1b2 and

Im (z1z2) = a1b2 + b1a2.

One thing worth emphasising Im (a + ib) = b is a real number, it is the coefficient

of i.
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�Example

(a) (3 + 4i)(6 + i) = 3 · (6 + i) + 4i · 6 + i)

= 18 + 3i+ 24i+ 4i2

= 18 + 3i+ 24i− 4

= 14 + 27i.

(b) (2− 7i)(3− 2i) = 2(3− 2i)− 7i(3− 2i)

= 6− 4i− 21i− 14

= −8− 25i.

(c) (
√
2 + i

√
3)(1− i) =

√
2(1− i) + i

√
3(1− i)

=
√
2− i

√
2 + i

√
3 +

√
3

= (
√
2 +

√
3) + i(

√
3−

√
2).

(d) (
√
2− i)2 = (

√
2)2 − 2

√
2i+ i2

= 2− 2
√
2i− 1

= 1− 2
√
2i.

Equality of Complex Numbers

To specify a complex number we must give two real numbers, the real and imagi-

nary parts. So two complex numbers are equal if and only if their real and imaginary

parts are equal (respectively).

For complex numbers z1 = a1+ib1 and z2 = a2+ib2 we have z1 = z2
if and only if a1 = a2 and b1 = b2.

�Example Find all complex numbers for which

z2 = −3 + 4i.

Solution We write z = x + iy, with x and y real. Substituting into the equation

we have

z2 = (x+ iy)2 = −3 + 4i

i.e. x2 − y2 + i2xy = −3 + 4i.
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Now equate real and imaginary parts – remember the complex number on the

left is equal to that on the right if and only if their real and imaginary parts are

(respectively) equal. We get

x2 − y2 = −3 and 2xy = 4.

From the second of these equations we have

y =
2

x
,

which we substitute into the first equation. This gives

x2 −
(
2

x

)2

= −3.

Multiplying this equation through by x2 gives as

x4 − 4 = −3x2

i.e. x4 + 3x2 − 4 = 0.

This is a quadratic in x2, we factorise

(x2 + 4)(x2 − 1) = 0,

so that x2 = 1 or x2 = −4. But x must be real, so we cannot have x2 = −4. So we

conclude x2 = 1, which gives x = ±1. We found earlier that y = 2/x, so we have

two possible solutions

(x, y) = (1, 2) or (−1,−2).

Giving two possible complex numbers z,

z = 1 + 2i or z = −1− 2i.

2

Division by Complex Numbers

If we have two complex numbers z1 = a1 + ib1 and z2 = a2 + ib2 6= 0 how do we

write
z1
z2

=
a1 + ib1
a2 + ib2

in the standard complex number form, i.e. as a + ib? To answer this question note

that what we really have to do is get rid of the complex number in the denominator.

Now recall that

(x+ iy)(x− iy) = x2 + y2



38 Lecture 1.6 Complex Numbers

is a real (positive) number. So if we multiply the denominator by a2 − ib2 we will

get a real number. But to keep the equality we will have to multiply the numerator

by a2 − ib2 as well. Here is the calculation

z1
z2

=
a1 + ib1
a2 + ib2

=
a1 + ib1
a2 + ib2

· a2 − ib2
a2 − ib2

=
(a1 + ib1)(a2 − ib2)

(a2)2 + (b2)2

=
a1a2 + b1b2 + i(b1a2 − a1b2)

(a2)2 + (b2)2

So the real and imaginary parts are

Re

(
z1
z2

)

=
a1a2 + b1b2
(a2)2 + (b2)2

and Im

(
z1
z2

)

=
b1a2 − a1b2
(a2)2 + (b2)2.

�Example Write 1+i
3−2i

in the form a+ ib.

Solution
1 + i

3− 2i
=

1 + i

3− 2i
· 3 + 2i

3 + 2i
=

(1 + i)(3 + 2i)

32 + 22

=
3 + 2i+ 3i− 2

9 + 4

=
1 + 5i

13

i.e.
1 + i

3− 2i
=

1

13
+ i

5

13

2

Solving Real Quadratic Equations

We can now solve all quadratic equations with real coefficients. For example we

solve

z2 + z + 1 = 0.

Using the usual quadratic formula

z =
−1 ±

√
12 − 4.1.1

2

=
−1 ±

√
−3

2
.

Clearly the solutions are complex, we write them in the standard a+ ib format.

We note that √
−3 =

√
−1× 3 =

√
−1 ·

√
3 = i

√
3.

So the solutions to the quadratic are

z =
−1 ±

√
−3

2
= −1

2
± i

√
3

2
.
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♠ Exercises 6

1. Express each of the following complex numbers in the form x+ iy.

(a) (2− i)(3 + 2i) (b) (6 + 5i)(2 + 7i)

(c) (3− 2i)2 (d) i3

(e)
2− i

1 + i
(f)

2

3 + i
− 1 + i

1− i

(g)
1− i

(2 + i)2
(h) i7

2. Show that
1 + sin θ + i cos θ

1 + sin θ − i cos θ
= sin θ + i cos θ.

3. Solve the following equations for z, writing your solution in the form a+ ib

(a) (−1 + 2i)z − 1 = 3i

(b) z2 + 2i+ 5 = 0

(c) 5z2 − 4z + 1 = 0.

4. Find all solutions of the equation

z2 = 6− 8i.
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Lecture 1.7 Complex Numbers (continued)

Complex Conjungation

If z = x + iy (with x and y real) is a complex number we define

the complex conjugate of z by z = x− iy.

Notice that all we have to do to get the complex conjugate of a complex number

is to replace the imaginary part by its negative.

�Example

(a) If z = 3 + 2i then z = 3− 2i.

(b) If z = 27− 5i then z = 27 + 5i.

(c) If z = 5 then z = 5.

(d) If z = 6i then z = −6i.

Theorem If z1, z2 ∈ C then z1z2 = z1z2.

Proof Let z1 = x1+iy1, and z2 = x2+iy2. Then z1z2 = (x1x2−y1y2)+i(y1x2+y2x1).

So (z1z2) = (x1x2 − y1y2)− i(y1x2 + y2x1).

Now,

z1 = x1 − iy1, and z2 = x2 − iy2 so

z1z2 = (x1 − iy1)(x2 − iy2)

= (x1x2 − y1y2)− i(y1x2 + y2x1), as (−i)2 = −1.

Comparing our expressions for z1z2 and z1z2 we conclude that z1z2 = z1z2, as

required. �

In a similar vein we also have:

Theorem If z1 and z2 are complex numbers then

(a) z1 + z2 = z1 + z2

(b)

(
z1
z2

)

=
z

1

z2
, for z2 6= 0.
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Proof Exercise!

Taken together these two theorems tell us that if we wish to take the complex

conjugate of an expression involving complex numbers all we have to do is write

down the expression with each complex number replaced by its conjugate.

�Example

For z1, z2, z3 ∈ C we have

(
z21 + 2z1z2 + z2 + 1− i

z3

)

=
z21 + 2z1z2 + z2 + 1 + i

z3
,

for z3 6= 0.

In the previous lecture we mentioned the method for writing a complex number
z1
z2

(with z1, z2 ∈ C) in the form x + iy. If z2 = x2 + iy2 we had to multiply the

expression by
x2 − iy2
x2 − iy2

. We now see that the method is simply multiplying the

expression by
z2
z2
. The method works because z2z2 is always a real number. This is

easily seen z2z2 = (x2 + iy2)(x2 − iy2) = (x2)
2 + (y2)

2.

For any complex number z we have

zz = (Re(z))2 + (Im(z))2.

�Example

(a) For z = 2 + 3i we have zz = 22 + 32 = 13

(b) If z = 2 then zz = 22 = 4

(c) If z = −3i then zz = (−3)2 = 9.

Argand Diagrams

A complex number has two parts, its real part and its imaginary part. We can

think of a complex number z = x + iy (x, y ∈ R) as an ordered pair (x, y). In this

way we see that a complex number can be thought of as a point in the plane –

we simply plot the point (x, y) in the xy plane. The resulting picture is called an

Argand diagram. We represent z by the point (x, y) in the plane.
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y

x

3

2

1

−2 −1 1 2 3

(1, 3) or 1 + 3i

(1, 1) or 1 + i(−1, 1) or −1 + i

The real numbers (numbers with no imaginary part) simply lie on the x-axis.

The pure imaginary numbers (those with no real part) lie along the y-axis.

y

x

2

1

−1

−2

−2 −1 1 2 3

(3, 2) or 3 + 2i

(3,−2) or 3− 2i

(−1, 1) or −1 + i

(−1,−1) or −1− i

The complex conjugate of a complex number represented on the Argand diagram.

The distance of a complex number z = x + iy from the origin on an Argand

diagram is
√

x2 + y2 =
√
zz.

Notice that when z is real (ie y = 0) we have the distance as

√
x2 = |x|.

This motivates the definition

If z = x+ iy ∈ C we define the modulus of z (or the absolute value

of z) to be |z| =
√

x2 + y2 =
√
zz.
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y

y

xx

|z|

z or (x, y)

�Example

(a) If z = 2− 3i then |z| =
√

22 + (−3)2 =
√
13.

(b) If z = 3− 4i then |z| =
√

32 + (−4)2 = 5.

(c) If z = 3 then |z| = 3.

(d) If z = −10 then |z| = 10.

(e) If z = 2i then |z| =
√
22 = 2.

Theorem

If z1, z2 ∈ C then

(i) |z1z2| = |z1||z2|.

(ii)

∣
∣
∣
∣

z1
z2

∣
∣
∣
∣
=

|z1|
|z2|

, for z2 6= 0.

Proof Both follow from the earlier theorem on the complex conjugate. We will

prove (ii) and leave (i) as an exercise. For (ii) we have

∣
∣
∣
∣

z1
z2

∣
∣
∣
∣
=

√
(
z1
z2

)(
z1
z2

)

=

√
z1
z2
.
z1
z2

=

√
z1z1
z2z2

=

√
z1z1√
z2z2

=
|z1|
|z2|.

�
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Notice that, in general, |z1 + z2| 6= |z1| + |z2|. For example for z1 = 1 + i and

z2 = 1− i we get

|z1 + z2| = |2| = 2.

And

|z1|+ |z2| = |1 + i|+ |1− i|
=

√
12 + 12 +

√

12 + (−1)2

=
√
2 +

√
2

= 2
√
2,

so |z1|+ |z2| > |z1 + z2|, in this case. In fact, we have

Theorem If z1, z2 ∈ C then

|z1 + z2| ≤ |z1|+ |z2|.

Proof Notice that |z1 + z2| and |z1| + |z2| are both non-negative so we can prove

the inequality by proving

|z1 + z2|2 ≤ (|z1|+ |z2|)2.

This is what we will now do.

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= (z1 + z2)(z1 + z2)

= z1z1 + z2z2 + z1z2 + z1z2.

And (|z1|+ |z2|)2 = (
√
z1z1 +

√
z2z2)

2

= z1z2 + z2z2 + 2
√
z1z1

√
z2z2.

Hence,

(|z1|+ |z2|)2 − |z1 + z2|2 = 2
√
z1z1

√
z2z2 − z1z2 − z1z2

= 2
√

(z1z2)(z1z2)− z1z2 − z1z2.

Now Z = z1z2 is a complex number so we can write z1z2 = Z = X + iY , with

X, Y real.

Then
√

(z1z2)(z1z2) =
√
ZZ =

√
X2 + Y 2 and z1z2 + z1z2 = 2X . So

(|z1|+ |z2|)2 − |z1 + z2|2 = 2
√
X2 + Y 2 − 2X ≥ 2

√
X2 − 2X ≥ 0.
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Thus

(|z1|+ |z2|)2 − |z1 + z2|2 ≥ 0

and our result follows. �

This result is also known as the triangle in equality. It can be thought of geo-

metrically as stating the old fact that the length of one side of a triangle is less than

the sum of the lengths of the other two sides.

De Moivre’s Theorem

To motivate de Moivre’s theorem we first introduce the polar form of a complex

number.

y

y

xx
θ

r

z = x+ iy

From our diagram we have z = x+ iy = r cos θ + ir sin θ.

The polar form of a complex number is z = r(cos θ+ i sin θ), |z| = r.

If we wanted to look at powers of z we would need to look at expressions of the

form

zn = [r(cos θ + i sin θ)]n

= rn(cos θ + i sin θ)n.

What can we say about (cos θ + i sin θ)n? It is here that the remarkable de

Moivre’s theorem enters.

Theorem If θ ∈ R then

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ),

for n any rational number.

Proof See the exercises!
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�Example

(a) 1 + i =
√
2

(
1√
2
+ i

1√
2

)

=
√
2
(

cos
π

4
+ i sin

π

4

)

.

(b) i = cos π
2
+ i sin π

2
.

(c) 1 = cos 0 + i sin 0

= cos(2π) + i sin 2π.

Notice in this last example we have a phenomenon typical of trigonometric func-

tions – they are periodic,

cos(θ + 2π) = cos θ

sin(θ + 2π) = sin θ .

In fact for any integer m,

cos(θ + 2mπ) + i sin(θ + 2mπ) = cos θ + i sin θ.

♠ Exercises 7

1. For each of the following complex numbers write down the complex conjugate

and modulus

(a) 6 + 2i

(b) 1− 3i

(c) 1+i√
2

(d) 1
1+i

(e) 2−3i
1−i

(f) i.

2. Let z1, z2 ∈ C. Show that

|z1 + z2|2 + |z1 − z2|2 = 2|z1|2 + 2|z2|2.

3. For z1, z2 ∈ C prove that

(
z1
z2

)

=
z1
z2

, for z2 6= 0.

4. Use the addition formulae for the sine and cosine functions to deduce that

(cos θ + i sin θ)(cos φ+ i sin φ) = cos(θ + φ) + i sin(θ + φ).
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5. By induction, or otherwise, prove de Moivres theorem

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

for n ∈ N.

6.* Extend de Moivre’s theorem taking n to be (i) a negative integer and then (ii)

n = p/q, a rational number.



48 Lecture 1.8 Functions on R

Lecture 1.8 Functions on R

In lecture 3 we introduced the idea of a function or mapping, f , consisting of set, A,

called the domain, a set B, called the codomain, and a rule which assigns to every

element a ∈ A a unique element b ∈ B. We write

f : A −→ B

and

f : a 7−→ b or f(a) = b.

In lecture 3 we also met the idea of composition of two functions f and g. For

f : A −→ B, a 7−→ b and

g : B −→ C, b 7−→ c

we define

g ◦ f : A −→ C, a 7−→ c

by

g ◦ f(a) = g(f(a)).

Before specialising to functions f : D −→ R with D ⊆ R, we examine two

general concepts. Firstly, the idea of a function being one-one:

A function f : A −→ B is one-one or injective if, for a, a′ ∈ A,

f(a) = f(a′) implies a = a′.

Another way of saying that f is injective is to say that, for every b ∈ B there is

at most one a ∈ A with f(a) = b. Or that, whenever a1 6= a2, with a1, a2 ∈ A, then

f(a1) 6= f(a2).

Our second concept of this type is that of surjectivity:

The function f : A −→ B is said to be onto or surjective if for

every b ∈ B there is at least one a ∈ A such that b = f(a).

An alternative statement is to say that f is surjective if f(A) = B, that is, the

codomain B is equal to the range of f .
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A function which is both injective and surjective is called bijective.

�Example

(a) f : N −→ R

f : n 7−→ f(n) =
1

1 + n
.

This function is one-one (injective) but not surjective.

(b) f : R −→ R

f(x) = x, x ∈ R.

This function is both injective and surjective – so its’ bijective.

(c) f : R −→ R

f(x) = x2.

The function is neither injective nor surjective. Note, however, that

g : R −→ [0,∞)

f(x) = x2.

is surjective (of course its’ still not injective).

(d) f : R −→ {0, 1}

f(x) =

{
0, when x is irrational,

1, when x is rational.

The function is clearly not injective. It is surjective.

(e) f : [−1, 1] −→ [0, 1]

f(x) =
√
1− x2.

The function is not injective but it is surjective. Note however that

g : [0, 1] −→ [0, 1]

f(x) =
√
1− x2

is both injective and surjective and thus bijective.

Real Valued Functions on R

We now specialise our study to consider only functions f : D −→ R, with D ⊆ R.

All our previous discussions of things such as domain, codomain, range, composition,

being injective, surjective and bijective apply to these more specialised functions.
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The concepts of injective, surjective and bijective are now particularly easy to

deal with. They are basically about how many ”x-values” correspond to a given ”y-

value” – one or none for injective; one or more for surjective; and one and only one

for bijective. The easiest way to visualise this is to draw the graph of the function,

the question now becomes how many times does a horizontal line drawn at the given

y-value hit the graph? Try it on the following examples.

�Example Decide whether the following functions are injective or surjective justi-

fying your statements.

(a) f : N −→ R, n 7−→ n2 − 9

(b) f : [−1, 1] = {x ∈ R : −1 ≤ x ≤ 1} −→ R, x 7−→
√
1− x4

(c) f : R \ {1} −→ R \ {0}, x 7−→ 1

x− 1

Solution

(a) For n1, n2 ∈ N with f(n1) = f(n2) we obtain n2
1 − 9 = n2

2 − 9. Thus n2
1 = n2

2,

so that n1 = n2 as n1, n2 ≥ 0. Hence f is injective. As there is no natural

number n with f(n) = 2, the function is not surjective.

(b) As f(−x) = f(x) for x ∈ [−1, 1], the function is not injective. Note that the

function is well–defined as 1−x4 ≥ 0 for all x ∈ [−1, 1]. Since the square root

is always greater than or equal to 0, the function is not surjective.

(c) Take x1, x2 ∈ R \ {1} with f(x1) = f(x2). Then

1

x1 − 1
=

1

x2 − 1
⇐⇒ x2 − 1 = x1 − 1

⇐⇒ x2 = x1

and hence f is injective. Now take y ∈ R, y 6= 0. Then

y =
1

x− 1
⇐⇒ y(x− 1) = 1

⇐⇒ x− 1 =
1

y

⇐⇒ x =
1

y
+ 1 =

1 + y

y

showing that f is surjective. Thus f is bijective.
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2

We should also recall the definition of the graph of a function f : D −→ R

as the set of ordered pairs {(x, y) ∈ R × R : y = f(x) for some x ∈ D}. We

identify the Cartesian product R × R as our usual x − y plane, R2. So the set

{(x, y) ∈ R× R : y = f(x), x ∈ D} is “identified” with our usual notion of the plot

of y = f(x). That is a very wordy way of saying that our usual idea of drawing the

graph of a function coincides (in the case f : D −→ R) with our more general idea

of a graph.

Your past experience with graph drawing will have taught you that the behaviour

of the function as x −→ ±∞, or as x approaches a singular point of the function, is

a most important feature of your sketch. To discuss such behaviour rigourously we

need to understand the notion of a limit.

A First Look at Limits

The idea we want to make precise is the following. Suppose we have a function

f : D −→ R with D ⊆ R and c ∈ R. Our question is does f(x) approach some

specific number, L, as x approaches c. If it does then we say f(x) has a limit at

x = c. We write this symbolically as

f(x) −→ L as x −→ c,

read as “f(x) approaches L as x approaches c”. Or as

lim
x−→c

f(x) = L,

read as the “limit of f(x) as x approaches c is L”. The idea here is that we can

make f(x) as close to L as we like simply by taking x sufficiently near to c.

You might like to think of this idea in terms of approximation. We can make the

difference f(x)− L as small as we like by simply taking x close enough to c. Well,

we can do this provided f(x) has limit L as x approaches c. We are saying that I

can always make |f(x)−L| smaller than any number you give me simply by taking

x close enough to c.

�Example f(x) = x2 has limit 1 as x −→ 1.

Give me any number, as small as you like, say 0.001. Then we can make |f(x)−1|
smaller than 0.001 by taking x close enough to 1.

We want |x2 − 1| < 0.001. We can achieve this by making x just less than 1 or

just greater than 1.
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Let’s have a look at the value of x, x0 say for which x2
0 − 1 = 0.001, so

x0 = +
√
1.001. Because of the absolute value signs |x2 − 1| we also need the value

x1, x2
1 − 1 = −0.001 i.e. x1 =

√
0.999. We conclude |x2 − 1| < 0.001 provided

x1 =
√
0.999 < x < x0 =

√
1.001.

Now x0 + 1.0005 and x1 + 0.9095 so we can ensure |x2−1| < 0.001 by (for example)

0.9996 < x < 1.004.

No matter what number you give me, lets say it is ε, I can always find x0, x1 such

that

|x2 − 1| < ε provided

x1 < x < x0,

where x0 and x1 are near x = 1. Such a statement is just about right for the abstract

definition of a limit, we’ll say more about this in the next lecture.

�Example

lim
x−→0

2x = 1.

This just says 2x −→ 1 as x −→ 0. This means that given any number, no

matter how small, we can always make |2x − 1| smaller than this number by taking

x close enough to 0. For example lets take the number ε = 0.01, the claim is we

can make |2x − 1| < 0.01 by choosing x close enough to 0. We don’t have to find

precisely the values of x for which the inequality is true we just need to find an

interval about x = 0 for which it is true. Try some values on a calculator.

x 2x(4 decimal places) |2x − 1|
-0.1 0.9330 0.0670

-0.05 0.9659 0.0341

-0.01 0.9931 0.0069

0.1 1.0718 0.0718

0.05 1.0070 0.0070

From this table of calculated values its clear that it would suffice to take −0.01 <

x < 0.01 to ensure that

|2x − 1| < 0.01.
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�Example Sketch the graph of the function f : R \ {−1} −→ R, x 7−→ 1

1 + x
.

Solution. The first thing you notice is that f(x) is “badly behaved” near x = −1,

it’s undefined there. What happens as we approach x = −1? Suppose we approach

from below, i.e. consider x = −1 − δ where δ is small and positive. Then

f(−1− δ) =
1

1 + (−1− δ)
= −1

δ
,

so if δ is small 1
δ
is large. The function is large in magnitude and negative just below

x = −1. As we approach x = −1 from below, f(x) −→ −∞.

Next let’s see what happens when we approach from above, let x = −1 + δ, δ

small and positive. Then

f(−1 + δ) =
1

1 + (−1 + δ)
=

1

δ
,

so f(x) −→ +∞ as we approach x = −1 from above. We have thus far

y

−1
x

The behaviour of the function for x > −1 or x < −1 is easy to determine once

we know what happens as x −→ ±∞. For x large and positive 1
1+x

will be small

and positive. That is f(x) −→ 0+ as x −→ +∞. We use the notation f(x) −→ 0+

to indicate that f(x) is approaching zero from above, i.e. from the positive side.

For x large and negative 1
1+x

will be small and negative. That is f(x) −→ 0−

as x −→ −∞, f(x) approaches 0 from below (i.e. from the negative side). One

important point on the graph is where it cuts the y-axis, this is at x = 0 and

f(0) = 1; so the graph cuts the y-axis at (0, 1). This is enough information to give

us a reasonably accurate sketch.
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y

−1
x

y = f(x) = 1
1+x

2
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♠ Exercises 8

1. What is the largest subset D ⊆ R such that f : D −→ R is a function, where

f is given by

(a) f(x) = 1
1+x2

(b) f(x) =
√
x2 − 9

(c) f(x) = x3 − 1

In each case find the range of f .

2. For each of the functions of question 1 state whether or not the function is

injective or surjective.

3. Find a δ > 0 such that |x3 − 1| < 1
10

whenever |x− 1| < δ.

[Hint: |x− 1| < δ means 1 − δ < x < 1 + δ. You have to find a δ > 0 which

ensures that

|x3 − 1| < 1

10
.]

4. Sketch the graph of f(x) = 1
x2−4

.

5*. Show that given any ε > 0 we can always find δ such that

∣
∣
∣
∣

1

x+ 1
− 1

∣
∣
∣
∣
< ε

whenever |x| < δ.

[Hint: The idea here is to explicitly give a relation which determines the

possible values of δ given ε. For example you may end up with something like

δ < 1 + ε (this doesn’t work here!).]
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Lecture 1.9 Limits

Formal Definition of a Limit

In the last lecture we began to discuss what is meant by a statement such as

“f(x) has limit L as x approaches c”. The statement

lim
x−→c

f(x) = L

means that given any number ε, no matter how small, we can ensure that the

distance, |f(x)−L|, between f(x) and L, is smaller than ε by taking x close enough

to c, that is, by making the distance |x− x| small enough. Let’s state this formally.

We will say lim
x−→c

f(x) = L, or f(x) −→ L as x −→ c or f(x) has

limit L as x −→ c, if, given any ε > 0 there exists a δ > 0 such

that |f(x)− L| < ε whenever 0 < |x− c| < δ.

Note that 0 < |x − c| < δ excludes x = c. For the limit we are only interested

in the behaviour of the function near c, not in f(c). In fact, we don’t even require

that c is in the domain of f .

To show that f(x) has limit L we have to demonstrate the existence of a δ > 0 for

any given ε. The idea is exactly that of the last lecture, you give me any number,

no matter how small, call it ε. Then I have to come up with a δ > 0 such that

|f(x)− L| <∈ whenever 0 < |x− c| < δ.

Lemma 1.1 Take a, c ∈ R. Then

(a) limx−→a c = c

(b) limx−→a x = a

Proof

Take a, c ∈ R and ε > 0.

(a) As |c− c| = 0 < ε no matter how far x is from a, we may choose any δ > 0,

for example, put δ = 231. Then |c − c| = 0 < ε whenever |x − a| < 231. Thus

limx−→a c = c.

(b) Put δ = ε. Then |x− a| < ε whenever |x− a| < δ = ε. Thus limx−→a x = a.

2
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�Example Prove that
1

1 + x
−→ 1 as x −→ 0.

Solution Let ε > 0 be given.

Our strategy has to be to find a δ > 0, depending on ε, such that if 0 < |x−0| < δ

then

∣
∣
∣
∣

1

1 + x
− 1

∣
∣
∣
∣
< ε.

Now we note that

∣
∣
∣
∣

1

1 + x
− 1

∣
∣
∣
∣

=

∣
∣
∣
∣

−x

1 + x

∣
∣
∣
∣

=
|x|

|1 + x|

≤ |x|
1− |x| , for |x| < 1.

So for |x| < δ < 1 we have
∣
∣
∣
∣

1

1 + x
− 1

∣
∣
∣
∣
<

δ

1− δ
.

[Note we have increased the numerator |x| to δ and decreased the denominator

from 1− |x| to 1− δ. So the fraction
|x|

1− |x| has been increased to
δ

1− δ
. ]

So we have to choose δ so that
δ

1− δ
< ε ie. δ <

ε

1 + ε
.

So given any ε > 0 we have
∣
∣
∣
∣

1

1 + x
− 1

∣
∣
∣
∣
< ε whenever

|x− 0| < δ <
ε

1 + ε
.

We are finished. 2

As you can see there is quite an art in getting one of these proofs to work.

Remember you are given ε > 0 and you have to find an appropriate δ such that

|x− c| < δ implies |f(x)− L| < ε. Here is another example:

�Example Prove that lim
x−→0

(
1 + x

1− x

)

= 1.

Solution Take x ∈ R \ {1} and ε > 0.
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And suppose 0 < |x| < δ, where δ > 0 is to be determined.

Now 1 + x ≤ 1 + |x| and 1− x ≥ 1− |x|, so we have that

1 + x

1− x
≤ 1 + |x|

1− |x| .

[Remember: You increase the value of a fraction a
b
by increasing the numerator

a or decreasing the denominator b (or both).]

And as 0 < |x| < δ we have

1 + x

1− x
≤ 1 + |x|

1− |x| <
1 + δ

1− δ
.

Now, for |x| < δ < 1 we have |1− x| ≥ 1− |x| > 0 and hence

1

1− |x| ≥
1

|1− x| .

We obtain
∣
∣
∣
∣

1 + x

1− x
− 1

∣
∣
∣
∣

=

∣
∣
∣
∣

x

1− x

∣
∣
∣
∣

=
|x|

|1− x|

≤ |x|
1− |x|

<
δ

1− δ

To obtain
δ

1− δ
= ε we must have δ =

ε

1 + ε
. Then δ < 1, so that

∣
∣
∣
∣

1 + x

1− x
− 1

∣
∣
∣
∣
< ε

whenever |x| < δ = ε/(1 + ε).

This is the formal definition of lim
x−→0

(
1 + x

1− x

)

= 1. 2

One-Sided Limits

Implicit in our definition of limits, so far, is the notion that we approach the

point x = c from either side. That is f(x) −→ L whether we approach c from

above, ie. x −→ c+, or from below, x −→ c−. But there are cases where we can

approach from only one side. For example, the limit of
√
x as x −→ 0. This limit,

for real valued functions, must be from above, ie. we should really write x −→ 0+.

This is a one-side limit.
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�Example Discuss the limit x −→ 0 for the function

f(x) =

{
x2 , x ≤ 0

1 + x , x > 0.

Solution

y

1

x

Notice the jump at x = 0. We need to discuss separately the limits from above and

below.

From above, it is easy to see

lim
x−→0+

f(x) = lim
x−→0+

(1 + x)

= 1.

And from below

lim
x−→0−

f(x) = lim
x−→0−

x2

= 0.

2

Two important one-sides limits are the limits x −→ ±∞, if they exist for the

given function.

Behaviour of a Function for Large |x|

If a function is defined for large values of x it may or may not approach a finite

value as x −→ ±∞.
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If f(x) does have a finite limit, L, as x −→ ±∞ then, in terms of our previous

understanding, we mean that given any ε > 0, |f(x)− L| < ε, whenever |x| is large
enough. Formally:

We say f(x) has finite limit L as x −→ ±∞, or

lim
x−→±∞

f(x) = L < ∞ or f(x) −→ L < ∞ as |x| −→ ∞, if given

ε > 0 there exists X > 0 such that |f(x)−L| < ε whenever |x| > X.

All this says is that if you give me any ε > 0 I can find a number X > 0 such

that |f(x)− L| is smaller than ε whenever |x| > X .

�Example

Prove that
1√
x
−→ 0 as x −→ ∞.

Solution Let ε > 0 be given. We have to find an X > 0 such that

∣
∣
∣
∣

1√
x

∣
∣
∣
∣
< ε

whenever x > X . Well this is pretty easy, in this case.

Let x > X , with X to be determined. Then
1√
x
<

1√
X
, as decreasing the

denominator increases the fraction. So

∣
∣
∣
∣

1√
x

∣
∣
∣
∣
=

1√
x
<

1√
X

= ε, for X = 1
ε2
. We are

finished, we have

∣
∣
∣
∣

1√
x

∣
∣
∣
∣
< ε whenever x > 1

ε2
. 2

�Example Prove that

√
x+ 1−

√
x− 1

x
−→ 0 as x −→ ∞.

Solution The trick here is to make the troublesome numerator “look better”. We

rationalize the numerator (i.e. eliminate the square roots),
(√

x+ 1−
√
x− 1

)(√
x+ 1 +

√
x− 1

)

= (x+ 1)− (x− 1), “difference of squares”.

= 2

Therefore
√
x+ 1−

√
x− 1

x
=

√
x+ 1−

√
x− 1

x
·
√
x+ 1 +

√
x− 1√

x− 1 +
√
x− 1

=
2

x
(√

x+ 1 +
√
x− 1

) .

It’s now clear that this expression tends to zero as x −→ ∞. We need to prove

it formally.
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We note that for x > 1,

√
x+ 1 +

√
x− 1 > 1,

so
1√

x+ 1 +
√
x− 1

< 1.

Thus we have
√
x+ 1−

√
x− 1

x
=

2

x
(√

x+ 1 +
√
x− 1

) <
2

x
.

So for x > X > 1, we have

∣
∣
∣
∣

√
x+ 1−

√
x− 1

x

∣
∣
∣
∣
<

2

x
<

2

X
= ε,

for X = 2
ε
. We are done. 2
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♠ Exercises 9

1. Give a formal proof that x2 −→ 1 as x −→ 1.

2. Prove formally that

lim
x−→0

1 + x2

1− x2
= 1.

3. Discuss the limit of 1
1−x2 as x −→ 1.

4. Prove that

lim
x−→∞

√

x+ 1

x− 1
= 1.
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Lecture 1.10 Limits and Continuous Functions

In manipulating and calculating limits it is useful to have a set of rules for such

things as the limit of a sum or product. The following theorem provides just those

rules.

Theorem Take f, g : D −→ R with D ⊆ R. Suppose that

lim
x−→c

f(x) = L1 < ∞ and

lim
x−→c

g(x) = L2 < ∞.

Then

(a) lim
x−→c

[αf(x) + βg(x)] = αL1 + βL2 where α, β ∈ R.

(b) lim
x−→c

[f(x)g(x)] = L1L2

(c) lim
x−→c

[
f(x)

g(x)

]

=
L1

L2
, for L2 6= 0.

Proof

(a) This just says that the “limit of a sum is the sum of the limits”.

Let ε > 0 be given. Assume one of α, β is non-zero. Now both f and g have

well defined limits as x −→ c so we know there exist a number δ such that

|f(x)− L1| <
ε

|α|+ |β| and |g(x)− L2| <
ε

|α|+ |β|

whenever |x− c| < δ. Then

|[αf(x) + βg(x)]− (αL1 + βL2)| = |α [f(x)− L1] + β [g(x)− L2]|
≤ |α [f(x)− L1]|+ |β [g(x)− L2]| ,

by the triangle inequality. Combining this with our previous equations we

have

|[αf(x) + βg(x)]− (αL1 + βL2)| ≤ |α| |f(x)− L1|+ |β| |g(x)− L2|

<
|α|ε

|α|+ |β| +
|β|ε

|α|+ |β| = ε.

Whenever |x− c| < δ.

Which completes the proof of (a).
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(b) This is quite an intricate little proof.

Firstly we observe that

f(x)g(x)− L1L2 = (f(x)− L1)g(x) + (g(x)− L2)L1

so by the triangle inequality.

(∗) |f(x)g(x)− L1L2| ≤ |f(x)− L1| |g(x)|+ |g(x)− L2| |L1| .

Now f and g both have well-defined limits as x −→ c, so we have for any ε > 0

and some δ > 0

|f(x)− L1| < ε and |g(x)− L2| < ε,

whenever |x− c| < δ.

From the second of these inequalities we also have

−ε < g(x)− L2 < ε,

i.e.,

L2 − ε < g(x) < L2 + ε, whenever |x− c| < δ.

So, whenever |x− c| < δ, we have

|f(x)− L1| < ε, |g(x)− L2| < ε

and |g(x)| < maximum (|L2 + ε| , |L2 − ε|)
< |L2|+ ε.

Put all this into (*)

|f(x)g(x)− L1L2| < ε (|L2|+ ε) + ε |L1| = ε (ε+ |L1|+ |L2|) .

This is true for any ε > 0, in particular for ε2 + ε (|L1|+ |L2|) = ε, i.e. for

ε =
1

2

[

− (|L1|+ |L2|) +
√

(|L1|+ |L2|)2 + 4ε

]

(use the quadratic formula). We have our proof,

|f(x)g(x)− L1L2| < ε

whenever |x− c| < δ.

(c) The proof is similar to that of (b). See Exercises. �
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�Example Evaluate the following limits

(i) lim
x−→0

3− 2x

x+ 6
(ii) lim

x−→∞

3− 2x

x+ 6

(iii) lim
x−→0

x+ 1

x− 1
cosx (iv) lim

x−→∞

(
x+ 4

x

)

.

Solution

Recall that limx−→a c = c and limx−→a x = a for a, c ∈ R and use the Theorem

above.

(i)

lim
x−→0

3− 2x

x+ 6
=

lim
x−→0

(3− 2x)

lim
x−→0

(x+ 6)

=
lim
x−→0

(3)− lim
x−→0

(2x)

lim
x−→0

(x) + lim
x−→0

(6)

=
3− lim

x−→0
(2) lim

x−→0
(x)

0 + 6

=
3− 0

6
=

1

2
.

(ii) We cannot apply (c) directly as 3 − 2x −→ −∞ as x −→ ∞. We may

assume x 6= 0 and rewrite the expression so that we can apply (c):

lim
x−→∞

3− 2x

x+ 6
= lim

x−→∞

3
x
− 2

1 + 6
x

=

lim
x−→∞

(
3

x
− 2

)

lim
x−→∞

(

1 +
6

x

)

=
−2

1
= −2.

(iii) Apply (b) and (c),

lim
x−→0

x+ 1

x− 1
cosx =

lim
x−→0

(x+ 1)

lim
x−→0

(x− 1)
lim
x−→0

cos x

=
1

−1
· 1

= −1.
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(iv) Again we cannot use (c) directly. We rewrite the expression so that we

can apply (c):

lim
x−→∞

(
x+ 4

x

)

= lim
x−→∞

(

1 +
4

x

)

= 1.

2

Continuity

You will have gained the impression that the common functions are what could

reasonably be called continuous, that is if you trace along the function by changing

x the graph of the function it does not have any breaks. We think, intuitively, of

a function being continuous if we can draw its graph without removing the pencil

from the paper.

We now refine these ideas and formalise them mathematically. In fact, a little

reflection should convince you that for a function to be continuous at x = c we

require two things:

1. f(c) is defined, that is, c ∈ D, where f : D −→ R, and

2. f(x) −→ f(c) as x approaches c.

But this is nothing more or less than a statement about limits.

A function f : D −→ R, D ⊆ R, is continuous at c ∈ D if

lim
x−→c

f(x) = f(c).

We say that f is continuous if it is continuous at all c ∈ D.

So to formally prove that f(x) is continuous at x = c we need to formally prove

that f(x) has limit f(c) at x = c.

�Example Prove that the identity function idR : R −→ R, x 7−→ x is continuous

at x for all x ∈ R.

Solution Recall that limx−→c x = c. Thus

lim
x−→c

idR(x) = lim
x−→c

x = c = idR(c).

So we are finished, idR is continuous on the whole real line. 2
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�Example Prove that f : R \ {0} −→ R, x 7−→ 1
x
is continuous at x for all

x ∈ (0,∞).

Solution We take x > 0 and let ε > 0 be given. Then for any c ∈ (0,∞),

∣
∣
∣
∣

1

x
− 1

c

∣
∣
∣
∣
=

|c− x|
cx

.

Let |x− c| < δ for some δ > 0 to be determined. Then

∣
∣
∣
∣

1

x
− 1

c

∣
∣
∣
∣
<

δ

xc
.

Now |x− c| < δ implies

−δ < x− c < δ,

i.e. c− δ < x < δ + c, we take δ ≤ c
2
so that

x ≥ c− c

2
=

c

2
.

Then ∣
∣
∣
∣

1

x
− 1

c

∣
∣
∣
∣
<

δ

xc
<

δ
c
2
· c =

2δ

c2
≤ ε,

for δ = minimum

(
c

2
,
εc2

2

)

. We have our formal statement of continuity at any

point c ∈ (0,∞). 2

A trivial consequence of our definition of continuity and our previous theorem

on limits is the following.

Theorem Let f : Df −→ R and g : Dg −→ R be continuous at x = c ∈ Df ∩Dg.

Then

(a) αf(x) + βg(x) is continuous at x = c for all α, β ∈ R;

(b) f(x)g(x) is continuous at x = c;

(c)
f(x)

g(x)
is continuous at x = c for g(c) 6= 0.

Armed with this theorem we can considerably expand our list of continuous

functions. All polynomial functions f : R −→ R given by

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

where n ∈ N and ai ∈ R, i = 0, 1, 2, . . . are continuous.
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Furthermore, all rational functions f : D −→ R given by

f(x) = p(x)/q(x)

where p(x) and q(x) are polynomials, are continuous.

For continuity at x = c it is necessary and sufficient that lim
x−→c+

f(x) = f(c) = lim
x−→c−

f(x).

This typically fails when there is a jump in f(x) from one side of x = c to the other.

�Example The following functions are discontinuous:

(a)

f : R −→ R, x 7−→
{

x2, x < 0

1 + x, x > 0
.

Here continuity fails at x = 0.

(b)

f : R −→ R, x 7−→ [x],

where [x] is the greatest integer less than or equal to x. This function has

discontinuities at x = n for all n ∈ N.

♠ Exercises 10

1. Sketch the two functions of the last example, indicating the discontinuities.

2. Evaluate the following limits:

(a) lim
x−→0

√
x2 + 1−

√
x+ 1

x

(b) lim
x−→−∞

x2 − 1

x2 + 1

(c) lim
x−→∞

x2 + x+ 1

2x2 − x− 1

3. Investigate the limit as x −→ 1 of

x2 − 3x+ 2

x3 − 3x2 + 2
.

4. Prove formally that f : (−1,∞] → R, x 7−→ 1

x+ 1
is continuous.
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Lecture 1.11 Continuous Functions

A function f : D −→ R is continuous in an open interval (a, b) ⊆ D

if it is continuous at each point x ∈ (a, b).

A function f : D −→ R is continuous on a closed interval [a, b] ⊆ D

if

(i) f(x) is continuous for each x ∈ (a, b);

(ii) lim
x→a+

f(x) = f(a) and lim
x→b−

f(x) = f(b).

So f : R 7−→ R, x 7−→ |x|, for example, is continuous on (0, 1) (in fact, on

(0,∞)), but not continuous on [0.1].

Graphs of continuous functions have all the “nice” properties one would expect

of a curve that is drawn on paper without removing your pencil from the page. A

good example of such properties is the intermediate value theorem.

The Intermediate Value Property

Theorem Suppose f is continuous on [a, b] and that f(a) 6= f(b). Then f(x), x ∈
(a, b), takes every value between f(a) and f(b).

Remark: As your pencil moves from f(a) to f(b) you must pass over every value

(every real number) between f(a) and f(b).

Proof We restrict our function f to [a, b] and suppose that there is a y ∈ ]f(a), f(b)[ \Im(f).

Put A := {x ∈ [a, b] | f(t) < y for all t ∈ [a, x]}.

Since a ∈ A, A 6= ∅. By the definition of A, b is an upper bound for A. Hence, by

the Completeness Axiom for the Real Numbers, A has a supremum, say s. Plainly,

s ∈ [a, b].

As f(s) 6= y, either f(s) < y, or f(s) > y. Put ε := |f(s)− y|, and take δ > 0.

If f(s) < y, then ε = y − f(s).

As s = supA, it follows from the definition of A that there is an x ∈ [s, s + δ[

with f(x) > y.
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Then

|f(x)− f(s)| = f(x)− f(s) as f(x) > y > f(s)

= f(x)− y + y − f(s)

= f(x)− y + ε

> ε as f(x) > y.

Thus, in this case, f is not continuous at s.

If, on the other hand, f(s) > y, then ε = f(s)− y.

Choose x ∈ A with s− δ
2
< x.

By the definition of A, f(x) < y. Then

|f(x)− f(s)| = f(s)− f(x) as f(x) < y < f(s)

= f(s)− y + y − f(x)

= ε+ y − f(x)

> ε as f(x) < y,

Thus, in this case, f is not continuous at s. 2

Continuity for Trigonometric Functions

We know from the previous lecture that all polynomial functions and all rational

functions are continuous.

We would also guess that the trigonometric functions, sine, cosine, tangent,

cotangent, secant and cosecant are continuous at all points of their respective natural

domains. Just sketch them! Let’s formalise this.

Theorem The functions

sin : R −→ R, x 7−→ sin x

cos : R −→ R, x 7−→ cosx

tan : R \ {2n+1
2

π : n ∈ Z} −→ R, x 7−→ tanx

sec : R \ {2n+1
2

π : n ∈ Z} −→ R, x 7−→ sec x

are continuous.

Proof We will only prove continuity of sin x, the other functions can be dealt with

in a similar manner. We measure x in radians, 360◦ is 2π radians, 180◦ is π radians

and 90◦ is π
2
radians. In general, x = 2π

360◦
θ, where θ is the angle measured in degrees.
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In the diagram below we have a unit circle, you need to know that if the angle

made by two radii (each one unit) is x radians then the length of the arc of the circle

between the ends of the radii is x. The circumference of the circle (the angle in this

case is 2π) is just 2π — remember the radius is 1.

1

1

sinx
sin c

x

c− x

c

From our diagram we isolate the triangle shown below.

sin c − sinx
c− x

The dotted lines form a right-angle triangle. The hypotenuse of this triangle

must be greater in length than either of the other two sides. In particular, it is

larger than sin c − sin x. However, this hypotenuse is smaller in length than the

circular arc of length c− x.

So for π
2
≥ x ≥ 0 we have

sin c− sin x ≤ c− x.

Thus given any c ∈ [0, π
2
] and any ε > 0 we have

| sin c− sin x| < ε,

whenever |c− x| < ε , for 0 < x < c.

This proves lim
x→c−

sin x = sin c. In a similar way we can prove lim
x→c+

sin x = sin c.

Which then shows that sin x is continuous on [0, π
2
]. The result is easy to extend to

all values of x. �

Using the continuity results established thus far with the results on continuity of

sums and products of the last lecture we can extend our list of continuous functions
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in an obvious way to a large list of powers, products, of trigonometric and rational

functions.

We are also now in a position to establish many limits involving these functions.

A particularly useful way to establish these limits is the squeezing principle. It says

that, if two functions have limit L as x approaches c ∈ R, then any function in

between must also have limit L as x approaches c.

Theorem (Squeezing Principle)

Let f, g and h be functions whose domains contain the open interval (a, b), such

that

g(x) ≤ f(x) ≤ h(x)

for all x ∈ (a, c) and for all x ∈ (c, b) with a < c < b.

If lim
x→c

g(x) = lim
x→c

h(x) = L then

lim
x→c

f(x) = L.

Proof Let x ∈ (a, b). From the definition of the limit we know that for any ε > 0

there exists a δ > 0 such that

|g(x)− L| < ε and |h(x)− L| < ε

whenever |x− c| < δ. Thus

−ε < g(x)− L < ε and − ε < h(x)− L < ε

whenever |x− c| < δ. Now

g(x) ≤ f(x) ≤ h(x),

so

g(x)− L ≤ f(x)− L ≤ h(x)− L.

Combining this with the previous inequalities, we obtain

−ε ≤ g(x)− L ≤ f(x)− L ≤ h(x)− L ≤ ε,

so that, −ε ≤ f(x)− L ≤ ε, whenever |x− c| < δ.

This establishes lim
x→c

f(x) = L. 2

We now use this principle to establish two very well-known limits.
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Theorem

(a) lim
x→0

sin x

x
= 1 and (b) lim

x→0

1− cosx

x
= 0.

Proof (a) We first establish “squeezing” inequalities for sinx
x
. We simply adapt the

techniques used in the proof of the continuity of sin x.

1

1

sinx

x

x

tanx

As before it is easy to see that x ≥ sin x using the following diagram.

1

1

sinx

x

x

On the other hand comparing the area of the large triangle (tanx as one side)

with the area of the sector of the unit circle subtended by the angle x we have

Area of triangle = 1
2
· 1 · tan x) ≥ Area of sector =

(
x
2

)
,

so that tanx ≥ x. We obtain

tanx ≥ x ≥ sin x.

Now x ≥ sin x so sinx
x

≥ 1 (for x > 0). Also tan x ≥ x is just

sin x

cosx
≥ x ,

which can be written as

sin x

x
≥ cosx for x > 0, x near 0.

Therefore

cos x ≤ sin x

x
≤ 1.
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Notice if x < 0 and x is near enough to 0 then

sin x

x
=

sin(−x)

(−x)
≥ cos(−x) = cos x, as sin(−x) = − sin x.

The same inequality applies either side of 0.

Now,

lim
x→0

cosx = 1 and lim
x→0

1 = 1.

We can apply the squeezing principle to get the result

lim
x→0

sin x

x
= 1.

(b) We use the result from part (a), the identity sin2 x = 1− cos2 x and rewrite our

expression as follows

1− cos x

x
=

1− cos x

x
· 1 + cosx

1 + cosx

=
1− cos2 x

x(1 + cosx)

=
sin2 x

x(1 + cosx)
=

[
sin x

x

] [
sin x

1 + cosx

]

.

Now take limits, remember we have proved the limit of product is the product of

the limits, etc.,

lim
x→0

(
1− cosx

x

)

= lim
x→0

[
sin x

x

]

lim
x→0

[
sin x

1 + cosx

]

= (1)

(
0

1 + 1

)

= 0.

�
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♠ Exercises 11

1. Evaluate the following limits:

(a) lim
h→0

sin h

2h
(b) lim

x→0

x+ sin x

x

(c) lim
x→0

1− cos2 x

x
(d) lim

y→0

sin(2y)

y

(e) lim
x→0

1− cosx

sin x
(f) lim

h→0

h

tanh

(g) lim
x→0+

sin x

|x| (h) lim
x→0−

sin x

|x| .

2. Find the value of the constant k which makes

f : R −→ R, x −→
{

sin 2x
x

, x 6= 0

k, x = 0

a continuous function at x = 0.

3. Find limx→1
sin(πx)
x−1

.

4. Prove that if f : R −→ R is a continuous function then sin ◦f is also continu-

ous.
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Lecture 1.12 More on Continuity

In this lecture we want to confirm the intuition that continuous functions on a closed

interval are “nice” functions.

Bounds of a Continuous Function

Theorem If f : D −→ R is continuous on [a, b] ⊆ D then it is bounded on the

interval, that is, {f(x) : x ∈ [a, b]} is bounded.

Remarks It is essential to the truth of the theorem that the interval is closed. The

function 1
x
is continuous in (0, 1], but is certainly not bounded as x −→ 0. We can

make 1
x
arbitrarily large by taking x near enough to 0.

Proof We first prove

Lemma 1.2 If the function f : R → R is continuous at a, then there is an r > 0

such that {f(x) | a− r < x < a+ r} is a bounded set of real numbers.

Proof Since f is continuous at a, and 1 > 0, there is an r > 0 with

f(a)− 1 < f(x) < f(a) + 1,

whenever a− r < x < a + r. 2

Now put A := {x ∈ [a, b] | f is bounded on [a, x]}. Since a ∈ A, A 6= ∅ and b is

an upper bound for A. Hence, A has a supremum, s ∈ [a, b].

Since f is continuous on [a, b], it follows by the Lemma above, that there is an

r > 0 such that f is bounded on the interval (s − r, s + r) ∩ [a, b], and so, in

particular, on [a, s+ r).

Since s = supA, this is only possible if (s, s+ r) ∩ [a, b] = ∅. Thus s = b. 2

This is again quite a subtle proof. Read it carefully to get the essential idea of

the argument.

Given a function, f : D −→ R, the supremum of f , supf , is the supremum of

the set {f(x)|x ∈ D}, that is, supf is the least upper bound of the image of f .

Similarly, the infimum of f , inff , is the infimum of {f(x)|x ∈ D}.
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�Example If they exist, find supf and inff for the following:

(a) f : (0, 1) −→ R, x 7−→ x2;

(b) f : (0, 1) −→ R, x 7−→ 1
x
;

(c) f : [0, π
2
] −→ R, x 7−→ sin x.

Solution

(a) Here supf = 1 and inff = 0. Note that there is no x ∈ (0, 1) such that

f(x) = sup or f(x) = inf. We say that f(x) does not attain its bounds.

(b) Here inff(x) = 1 and supf does not exist as the function is unbounded above –
1
x
→ ∞ as x −→ 0. Again we see there is no x ∈ (0, 1) such that f(x) = inff .

The function does not attain its lower bound.

(c) Here supf = 1 and inff = 0. In this case we see that f does attain its bounds

– note the interval is closed.

2

We already saw that a continuous function defined on a closed interval is bounded.

Thus it has a supremum and an infimum. We now show that it must attain its

bounds.

Theorem (The Extreme Value Theorem) Let f : [a, b] −→ R be a continuous

function with M = sup f and m = inf f . Then there exist x1, x2 ∈ [a, b] such that

f(x1) = M and f(x2) = m.

Proof We prove there exists an x1 ∈ [a, b] such that f(x1) = M . The proof for the

infinum is similar.

The proof we give is by contradiction – there is another proof using the so-called

method of bisection.

Proof by contradiction. Assume there is no x1 ∈ [a, b] for which f(x1) = M .

Then, as M is the supremum,

M − f(x) > 0 for all x ∈ [a, b].
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Since M − f(x) 6= 0 for all x ∈ [a, b] we see, from Lecture 10, that

1

M − f(x)

is continuous on [a, b].

So, by our previous theorem, 1
M−f(x)

is bounded on [a, b]. We have

1

M − f(x)
< K, for some finite K ∈ R, and all x ∈ [a, b].

Then, as M − f(x) > 0,
1

K
< M − f(x)

or

f(x) < M − 1

K
for x ∈ [a, b].

But this contradicts M = supf(x), M is the least upper bound, there cannot be a

smaller bound M − 1
K
! We have our proof by contradiction. �

We have had two reasonably difficult proofs for what would seem to be two

intuitively obvious facts!

�Example State whether or not the following functions meet the conditions of the

previous two theorems. If the function does, what are its supremum and infinum?

(a) f : (0, 1] −→ R, x 7−→ 1
x
;

(b) f : [1, 2] −→ R, x 7−→ 1
x
;

(c) f : [−1, 1] \ {0} −→ R, x 7−→ 1
x2 ;

(d) f : [0, π] −→ R, x 7−→ cosx.

Solution The hypothesis for both theorems is that f is defined on a closed interval

[a, b] and continuous.

(a) Does not satisfy the hypothesis, the interval is not closed.

(b) Satisfies the hypothesis. Note that 1
x
decreases from x = 1 to x = 2, so

sup

(
1

x

)

= 1, on [1, 2] and

inf

(
1

x

)

=
1

2
, on [1, 2].

Note that the function attains its bounds on [1, 2].
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(c) The function does not satisfy the hypothesis as it is not defined on a closed

interval.

(d) The function cos is continuous and restricting a continuous function to a closed

interval we obtain another continuous function. Thus the hypothesis is satis-

fied.

sup f = 1 and inff = −1.

Monotone Functions

Consider a function f : D −→ R, D ⊆ R. We say that f is increasing if, given

any points x1, x2 ∈ S with x1 < x2, then f(x1) ≤ f(x2). If we have f(x1) < f(x2)

we say f is strictly increasing. Reversing the inequalities on f defines a decreasing

or strictly decreasing function.

A function which is either increasing or decreasing is said to be

monotone. A function which is strictly increasing or strictly de-

creasing is said to be strictly monotone.

It is easy to see that every strictly monotone function must be injective (one-one)

but it is by no means true that every injective function has to be strictly monotone.

�Example The following functions are monotone

(a) idR : R −→ R, x 7−→ x;

(b) f : [0,∞) −→ R, x 7−→ x2;

(c) f : R −→ R, x 7−→







x, x < 0

0, 0 ≤ x < 1

x− 1, x ≥ 1

;

(d) f : (0,∞) −→ R, x 7−→ 1
x
.

Note that the functions in (a), (b) and (d) are strictly monotone, continuous

and injective. The function in example (c) is not strictly monotone, though it is

monotone. The example (c) is continuous but not injective. You should draw the

graphs of these functions to convince yourself of these facts.
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�Example The following functions are not monotone

(a) f : R −→ R, x 7−→ |x|;

(b) f : R −→ R, x 7−→ x2;

(c) f : R −→ R, x 7−→
{

x, x < 0

x− 1, x ≥ 0
;

(d) f : [0, π] −→ R, x 7−→ sin x.

The functions in (a), (b) and (d) are all continuous, but they are not injective.

Hence they cannot be monotone. The function in (c) is not continuous at x = 0

and not monotone. It is, however, injective. In fact, the function in (c) is monotone

on each of the intervals (−∞, 0) and [0,∞), separately. The same is also true for

the other functions – there exist subintervals on which the (restricted) function is

monotone.

Now for our main result on monotone functions.

Theorem Every injective and continuous function f : [a, b] −→ R is strictly mono-

tone.

Proof First we observe that f cannot be constant on any subinterval – if it was

there would be points x and y for which f(x) = f(y), which is not possible as f

is one-one. In fact it is not hard to see that if f is increasing on a subinterval it

must be strictly increasing (again use the fact that f is injective). Similarly, if f is

decreasing on a subinterval it must be strictly decreasing on that subinterval. Divide

[a, b] into subintervals on which f is either strictly increasing or strictly decreasing.

If there is only one subinterval (the whole of [a, b]) we are finished. So we assume

there are at least two. Hence there is a point c ∈ (a, b) such that for some δ > 0,

the function f is either strictly increasing on (c − δ, c) and strictly decreasing on

(c, c+ δ) or vice versa. Let us assume the former, so

f(y) > f(x) for x, y ∈ (c− δ, c) and y > x,

and f(y) < f(x) for x, y ∈ (c, c+ δ) and y > x.

Now f is continuous and so takes all values between f(c−δ) and f(c) for x ∈ (c−δ, c)

– note f(c) > f(c− δ). Similarly f must take all values between f(c+ δ) and f(c)

for x ∈ (c, c+ δ) – note f(c) > f(c+ δ).

Then either f(c − δ) > f(c + δ), in which case there is an x1 ∈ (c, c + δ) such

that f(c− δ) = f(x1). Or

f(c− δ) < f(c+ δ)
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in which case there is an x2 ∈ (c− δ, c) such that f(c+ δ) = f(x2). Or

f(c− δ) = f(c+ δ).

However, each of these possibilities contradicts the fact that f is injective. We can

thus have only one subinterval – f is either strictly increasing on [a, b] or strictly

decreasing on [a, b]. It’s monotone. 2

♠ Exercises 12

1. Given functions f, g : R −→ R, suppose f is continuous at x = a whereas g is

discontinuous at x = a.

(a) Can one conclude f + g is not continuous at x = a?

(b) Can one conclude fg is not continuous at x = a?

2. Repeat question 1 this time assuming both f and g are discontinuous at x = a.

3. State whether or not the following functions are monotone. Also decide if

the functions are are injective, surjective or bijective. If they exist, find the

supremum and infimum in each case and state whether or not the function

attains its bounds.

(a) f : [0, 3] −→ R, x 7−→ x3;

(b) f : R −→ R, x 7−→ 1
1+x2 ;

(c) f : (0, π
2
) −→ R, x 7−→ sin( 1

x
);

(d) f : (−1,∞) −→ R, x 7−→ 1−x
1+x

.

4*. Let f : [a, b] −→ R be bounded, such that, for every pair of values x1, x2 with

a ≤ x1 ≤ x2 ≤ b

f

(
x1 + x2

2

)

≤ 1

2
[f(x1) + f(x2)] .

Prove f is continuous on (a, b).
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Lecture 1.13 Sequences

A sequence is simply a function whose domain is N, the natural numbers.

f : N −→ R

f : n 7−→ f(n).

Of course this is not the notation you would be familiar with. The usual way of

specifying a sequence is to give the nth term, usually denoted by an. In function

notation the nth term is just f(n). Clearly any function f : R −→ R can be

restricted to the natural numbers to give a sequence.

�Example

(a) f(x) = 1
x2 , when restricted to N gives the sequence an = 1

n2 .

(b) f(x) = sin x, when restricted to N gives the sequence an = sin n.

Another common way of specifying a sequence is to write down some of the early

terms. But, unless the nth term is given, this does not uniquely specify a sequence.

�Example Examples of notation for sequences

(a) 1, 1
2
, 1
3
, 1
4
, . . . , 1

n
, . . .

(b)

{
1

n

}∞

n=1

=

{

1,
1

2
,
1

3
, . . . ,

1

n
, . . .

}

(c) f(n) = 1
n
.

A sequence need not be infinite, {1, 2, 3} is a sequence. If, for each n ∈ N, we

are assigned a number an then the sequence is said to be an infinite sequence.

For an infinite sequence perhaps the most interesting question is “does the se-

quence tend to a finite limit as n −→ ∞?”.

�Example

(a)

{
1

n

}∞

n=1

tends to the limiting value 0.

(b)
1

2
,
2

3
,
3

4
, . . . ,

n

n + 1
, . . . approaches the value 1.
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Formal Definition of Limits

We can define a limit for a sequence in much the same way as we defined the

one-sided limits for f(x) as x −→ ±∞.

A sequence with nth term an is said to have the limit a if, given

any ε > 0, there is an N such that

|an − a| < ε for all n > N.

We write lim
n−→∞

an = a or an −→ a as n −→ ∞.

Note that if a sequence an does have a limit then it must be bounded. For n > N

we have

−ε < an − a < ε

or a− ε < an < a+ ε.

Our definition of the limit can be abbreviated using some mathematical notation.

We introduce two symbols which replace commonly used mathematical phrases.

∃ . . . stands for the phrase “there exists”.

∀ . . . stands for the words “for all”.

So we can write our definition of the limit as,

an −→ a if

given ε > 0 ∃ N such that

|an − a| < ε, ∀ n > N.

The symbols ∃ and ∀ are not just used in the context of sequences, they may be used

in any (mathematical) situation in which the corresponding phrase is appropriate.

If a sequence does not tend to a finite limit it does not necessarily diverge to

±∞ – there are other types of behaviour.

�Example

(a) The sequence an = (−1)n oscillates.
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(b) The sequence an = sin(n) oscillates.

(c) The sequence an =
√
n tends to infinity.

(d) The sequence an = sin
(
1
n

)
approaches 0.

Formally, we will define a diverging sequence as follows.

The sequence an is said to tend to infinity, or an −→ ∞ if given

any A > 0 (no matter how large) there exists on N such that

an > A for all n > N.

We have a similar definition for a sequence diverging to −∞.

The sequence an is said to tend to negative infinity, or an −→ −∞
as n −→ ∞ if given A > 0 ∃ N such that

an < −A ∀ n > N.

Sequences such as an = (−1)n or bn = (−1)nn do not tend to a limit or ±∞.

Such sequences are said to oscillate.

From our earlier work on limits we would expect to have a theorem on the limit

sums and products of sequences. There is such a theorem.

Theorem Let an −→ a and bn −→ b as n −→ ∞ then

(a) αan + βbn −→ αa+ βb, ∀α, β ∈ R.

(b) anbn −→ ab

(c)
an
bn

−→ a

b
, provided b 6= 0.

Proof The technique of proof is the same as for limits of functions. We will prove

(c).
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Note that
∣
∣
∣
∣

an
bn

− a

b

∣
∣
∣
∣

=

∣
∣
∣
∣

ban − abn
bbn

∣
∣
∣
∣

=

∣
∣
∣
∣

b(an − a) + a(b− bn)

bbn

∣
∣
∣
∣

≤ |b(an − a)|+ |a(b− bn)|
|bbn|

,

ie.

(∗)
∣
∣
∣
∣

an
bn

− a

b

∣
∣
∣
∣
≤ |b| · |an − a|+ |a| · |bn − b|

|bbn|
.

Now an −→ a and bn −→ b so for any given ε > 0 we can find an N such that

|an − a| < |b|
4
ε, |bn − b| < |b|2

4|a|ε

and |bn| >
1

2
|b|

for n > N.

If |a| = 0 then we do not need the inequality for |bn − b|. Putting these last three

inequalities into (*) we have

∣
∣
∣
∣

an
bn

− a

b

∣
∣
∣
∣
<

|b| · |b|
4
ε+ |a| · |b|2

4|a|ε

|b|1
2
|b| = ε.

for n > N.

We have formally established
an
bn

−→ a

b
as n −→ ∞.

�Example Discuss the behaviour of the following sequences as n −→ ∞ :

(a)

(
n− 3

3n+ 1

)3

(b)

(
3n+ 1

n− 3

)3

(c) cosn (d)
(−1)n

n

Solution

(a) We need to use the trick of dividing out the n so as to apply our theorem on
an
bn

.

(
n− 3

3n+ 1

)3

=

(
1− 3

n

3 + 1
n

)3

=

(
1− 3

n

)3

(
3 + 1

n

)3 .
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Now apply the theorem to get

(
n− 3

3n + 1

)3

−→ (1− 0)3

(3 + 0)3
=

1

27
.

(b) Similar to (a),

(
3n+ 1

n− 3

)3

=

(
3 + 1

n

1− 3
n

)3

−→ 33

13
= 27.

(c) The sequence oscillates through all numbers between −1 and +1.

(d) The sequence tends to the limit 0,

i.e.
(−1)n

n
−→ 0 as n −→ ∞.

2

Monotone Sequences

If an+1 ≥ an for all n we call an increasing.

If an > an ∀ n we say an is strictly increasing. If an+1 ≤ an ∀ n we

say an is decreasing and if an+1 < an we say an is strictly decreasing.

A sequence which is increasing or decreasing is called monotonic.

Monotonic sequences have the very important property that they must tend to

a limit or to +∞ or to −∞. Monotonic sequences cannot oscillate.

We will prove this property for an increasing sequence. This proof is easily

adapted to the decreasing case.

Theorem An increasing sequence either tends to a limit or +∞ as n −→ ∞. An

increasing sequence cannot oscillate.

Proof Let an be an increasing sequence.

We have two possibilities either the sequence is bounded above or its not. That is

either of the following must hold

1. a number K can be found such that

an ≤ K ∀n

or

2. for any number A we can find an N such that an > A.



Lecture 1.13 Sequences 87

Deal with possibility (2) first. As an is increasing an > A not just for n = N but

for all n ≥ N . So from our definition an −→ ∞ as n −→ ∞.

Now for (1). The number K is an upper bound for the set {a1, a2, . . . , an, . . .} =

{an}, so the set must have supremum a which satisfies

an ≤ a ∀n and

an > a− ε for some particular value n = N.

As an is increasing the second inequality must hold for all n ≥ N . So we have

an < a(< a+ ε) and

a− ε < an

for all n > N . We can write this as

|an − a| < ε ∀n > N.

Which just says an has limit a.

♠ Exercises 13

1. Discuss the behaviour of the sequences as n −→ ∞.

(a) sin

(
1

n

)

(b) n sin

(
1

n

)

(c) (n!)
1

n

(d)
n3 − n2 + n + 1

10− 3n+ 2n3
(e)

n2 + 1

n
(f)

2n
2

n!

2. State which of the sequences are monotone. (Are they increasing or decreas-

ing?)

(a)
n

n2 + 1
(b) (−n)2 (c) nn

(d)
n2 + 1

n
(e) 2n+ (−1)n (f) n2−1

n3−1

3. Prove that if a > 0 then a
1

n −→ 1 as n −→ ∞.

4. In relativistic quantum mechanics the solution of the Dirac equation for the

electron in the hydrogen atom gives energy levels

En =
mc2

√

1 + γ2/c2
[

n+
√

κ2−γ2/c2
]

where m is the electron mass, γ is a constant related to the electric charge,

κ is a constant related to the orbital quantum number and n is the principle

quantum number. Does En give a monotonic sequence? Does En have a limit

as n −→ ∞?

5*. Prove that an −→ 0 as n −→ ∞ if lim
n−→∞

an+1

an
= L, where −1 < L < 1.
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As a direct consequence of our last theorem (Lecture 13) we have the following useful

result.

Theorem A bounded monotone sequence tends to a limit.

Proof Direct consequence of previous theorem for an increasing sequence – case 1.

The same technique works for a decreasing sequence. Try it! 2

The Geometric Sequence

The geometric sequence has nth term an = an where a is a constant. The

behaviour of the sequence as n −→ ∞ depends upon the value of a. There are four

main cases to consider.

1. If a = 1, an = 1 for all n. Clearly lim
n−→∞

an = 1! There is also the trivial case

a = 0 to consider.

2. a > 1 let a = 1+ k, k > 0 then (1+ k)n > 1+ nk (Exercise 4 Lecture 2). Now

as n −→ ∞ 1 + nk −→ ∞ and so an = (1 + k)n −→ ∞.

3. 0 < a < 1. Let a =
1

1 + k
, k > 0. Then

1

an
= (1 + k)n > 1 + nk. So

an =
1

(1 + k)n
<

1

1 + nk

Now
1

1 + nk
−→ 0 as n −→ ∞ so an =

1

(1 + k)n
−→ 0 as n −→ ∞.

4. a < 0. Firstly, if −1 < a < 0 we use a similar argument to that in 3 to find

an −→ 0. If a = −1 then an = (−1)n = ±1 and the sequence oscillates finitely.

If a < −1 then (using a similar argument to 2) we see that the sequence

oscillates infinitely.

Summing up

an = an, a constant

a > 1, an −→ ∞
a = 1 an −→ 1

−1 < a < 1 an −→ 0

a = −1 an oscillates finitely

a < −1 an oscillates infinitely.
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Infinite Series

Intuitively we think of an infinite series as a “sum to infinity” of an infinite

sequence {an}:
a1 + a2 + a3 + . . .+ an + . . . .

We will use a shorthand notation for such a sum

∞∑

n=1

an ≡ a1 + a2 + a3 + . . .+ an + . . . ;

this is the sigma or summation notation. We just think of the
∑

as standing for

sum over all counting number values between the given limits.

We have still not said what we mean by “sum to infinity”. This term is fraught

with danger and we need to say precisely what we mean by it. We will give the

appropriate definition below, but first an illustration of the dangers.

Consider
∞∑

n=1

(−1)n = −1 + 1− 1 + 1− 1 + 1 . . . . We might want to “sum” this

by grouping terms as follows (−1 + 1) + (−1 + 1) + (−1 + 1) + . . . to conclude that

the sum is zero. This would be wrong. To see this we could also group the terms

as −1 + (1 − 1) + (1 − 1) + . . . , to get a sum of −1! There is clearly something

wrong with the process of “grouping terms” for such a series.

We will define our infinite sums in terms of a sequence, the sequence of partial

sums.

Let {an}∞n=1 be an infinite sequence. We define the nth partial sum

Sn of the sequence as

Sn = a1 + 12 + a3 + . . .+ an, or

Sn =
n∑

r=1

ar.

We can now talk about the possible limit of the sequence {Sn}∞n=1.

If the sequence of partial sums {Sn} has a finite limit as n −→ ∞ we

say that the infinite series a1+a2+a3+ . . .+an+ . . . is convergent

or has a “sum to infinity” and that S = lim
n−→∞

Sn is its sum.
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A series which is not convergent is said to be divergent.

We think of the words “infinite sum” as applying only in the sense of a convergent

limit of the sequence of partial sums.

The Geometric Series

The geometric series is the “sum to infinity” of the geometric sequence. When

this sum exists!

Theorem The infinite geometric series

1 + a+ a2 + . . .+ an . . .

converges if and only if −1 < a < 1.

Proof The series has first term 1 so the nth term is an = an−1. We note that

Sn = 1 + a+ a2 + . . .+ an−1

and aSn = a+ a2 + . . .+ an.

So aSn − Sn = an − 1.

Therefore Sn = 1−an

1−a
, for a 6= 1, if a = 1 Sn = n. We see that if a = 1 then

Sn −→ ∞ as n −→ ∞. For a 6= 1 we have

Sn =
1− an

1− a
=

1

1− a
− 1

1− a
an.

We see that the sequence of partial sums Sn, converges if and only if the sequence

an converges. But from our section on the geometric sequence we know an tends to

a finite limit (which is 0) if and only if −1 < a < 1. This proves the theorem. Note

that we also have the sum to infinity in the case −1 < a < 1, it is

Sn −→ 1

1− a
as n −→ ∞.

�

The Harmonic Series
∑

1
n

Theorem The infinite series

∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ . . .

diverges.
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Proof Consider the following

1

3
+

1

4
> 2× 1

4
=

1

2
1

5
+

1

6
+

1

7
+

1

8
> 4× 1

8
=

1

2
1

9
+

1

10
+ . . .+

1

15
+

1

16
> 8× 1

16
=

1

2
,

and so on. The sum of successive blocks of 2, 4, 8, 16 . . . terms is greater than 1
2
.

Including the first two terms 1+ 1
2
we have that the sum of the first 2 + 2+ 4+ 8+

16 + . . .+ 2m−1 = 2m terms of the series is greater than

1 + 1
2
+ 1

2
×(number of blocks) = 1 + 1

2
+ 1

2
(m− 1) = 1 + 1

2
m.

So S2m > 1 + 1
2
m, ie. the partial sums of the first 2m terms is greater than 1 + 1

2
m.

Clearly, Sn −→ ∞ as n −→ ∞. The series diverges. �

The Comparison Test

Theorem If for every n > N (N finite),

(i) un ≥ 0, vn ≥ 0

(ii) un ≤ kvn, k > 0 is a constant,

then

(a) if
∑

vn converges
∑

un converges

or

(b) if
∑

un diverges
∑

vn diverges.

Proof

An exercise. Use the fact that the partial sums Sn =

n∑

r=1

un and Tn =

n∑

r=1

vn

form increasing sequences for n > N . Then use the results on monotone sequences.

�Example Discuss the convergence (or divergence) of the following infinite series.

(a)

∞∑

n=1

1√
n

(b)

∞∑

n=1

n

3n

(c)

∞∑

n=1

n

n2 + 1
(d)

∞∑

n=0

n2n + 1

5n + 1



92 Lecture 1.14 Sequences and Series

Solution

(a) For n ≥ 1
1√
n
≥ 1

n

The comparison test then shows that
∑

1√
n
diverges.

(b) For n ≥ 1 n < 2n so.
n

3n
<

2n

3n
=

1

(1.5)n

Now
∞∑

n=1

1

(1.5)

n

is a convergent geometric progression, so by the comparison

test
∑ n

3n
converges.

(c)
n

n2 + 1
≥ n

n2 + n2
, for n ≥ 1.

ie.
n

n2 + 1
≥ 1

2
· 1
n

∑
1
n
is the divergent harmonic series so

∑ n

n2 + 1
diverges by the comparison

test.

(d)
n2n + 1

5n + 1
<

n2n + n2n

5n + 1
<

n2n+1

5n
<

2n · 2n+1

5n

i.e.
n2n + 1

5n + 1
<

2 · (22)n
5n

= 2
1

(1.25)n

So comparison with the convergent geometric series
∑ 1

(1.25)n
shows that

∑ n2n + 1

5n + 1
converges.

2

♠ Exercises 14

1. A ball is dropped from a height of 20m. On each bounce the ball returns to a

height of 4
5
of that of the previous bounce.

What is height of the 3rd bounce?

Give a formula for the height of the nth bounce.

Give a formula for the distance travelled by the ball up to and including the

nth bounce.

What is the total distance travelled by the ball from the time it is first dropped

till the time it comes to rest?

2. Discuss the convergence or otherwise of the following infinite series:
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(a)
1

3
+

2

5
+

3

7
+ . . .+

n

2n + 1
+ . . .

(b) 1 +
1

1
+

1

2 · 1 +
1

3 · ·1 + . . .+
1

n!
+ . . .

(c)
∑ 2n + 1

3n + 1

(d)
∑ 1√

n2 + 1

(e)
∞∑

k=0

cos(kπ)

(f)
∑ n2

2n
.

3. Prove that if 0 ≤ an ≤ 1, then the series

∞∑

n=0

(anx
n) converges for 0 ≤ x < 1.

4. If

an =

(

1 +
1

n

)n

and bn =

(

1− 1

n

)−n

prove that an is an increasing and bn a decreasing sequence. Prove further

that as n −→ ∞, bn − an −→ 0, and that an and bn lead to the same limit.

(This limit is e the base of the natural logarithms.)



94 Lecture 1.15 Series

Lecture 1.15 Series

In the previous lecture we showed that the harmonic series
∑ 1

n
diverges. We now

generalise this result.

Theorem The infinite series

∞∑

n=1

1

nk
, k constant, converges if k > 1 and diverges if

k ≤ 1.

Proof We know the series diverges for k = 1 so for k ≤ 1 we can use the comparison

test. We have
1

nk
≥ 1

n
, for k ≤ 1.

So the series diverges for k ≤ 1.

For the case k > 1 we use the same device we used in proving the divergence of
∑

1
n
. Group terms of the series in blocks of length 2, 4, 8, . . . , to get

1

2k
+

1

3k
<

2

2k
=

1

2k−1

1

4k
+

1

5k
+

1

6k
+

1

7k
<

4

4k
=

1

4k−1
=

1

(2k−1)2

1

8k
+

1

9k
+ . . .+

1

15k
<

8

8k
=

1

8k−1
=

1

(2k−1)3
.

The series 1 +
1

2k−1
+

1

(2k−1)2
+

1

(2k−1)3
+ . . . is a convergent geometric series,

(as a 0 <
1

2k−1
< 1, for k > 1) . The sequence of partial sums Sn =

n∑

r=1

1

rk
is then

bounded by the sum to infinity of our geometric series ie.

Sn <
1

1− 2k−1
.

Now Sn is an increasing sequence so our theorem on monotone sequences (Lecture

14) tells us Sn must tend to a finite limit. Hence the series
∑ 1

nk
converges for

k > 1. We are finished. �

�Example Discuss the convergence or otherwise of the following series

(a)
∑ n2 + 1

n4 + 1
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(b)
∑ 1

3
√
n

Solution

(a) Note
n2 + 1

n4 + 1
<

n2 + n2

n4
=

2

n2
.

So, as
∑ 1

n2
, converges (see last theorem) we have from the comparison test

that
∑ n2 + 1

n4 + 1
converges.

(b) Straightforward application of last theorem with k =
1

3
.

∑ 1
3
√
n

diverges.

2

Properties of Infinite Series

Theorem For infinite series the following properties must hold.

1. The convergence or divergence of a series is unaffected if a finite number of

terms are inserted, or suppressed, or altered.

2. If
∑

un converges then un −→ 0 as n −→ ∞.

3. If
∑

un converges to s and
∑

sn converges to t then
∑

(un + vn) converges to

s+ t.

4. If
∑

un is convergent then so is any series obtained from
∑

un by bracketing

the terms in any manner. The two series have the same sum.

5. If un ≥ 0, for every n, the
∑

un either converges or diverges to +∞.

Proof

1. Changing a finite number of terms, say we replace

N∑

n=1

an by some other num-

ber A, say. Then

∞∑

n=1

an =

N∑

n=1

an +

∞∑

n=N+1

an and the new sum to infinity is
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A+
∞∑

n=N+1

an. However
∞∑

n=1

an converges (or diverges) if and only if
∞∑

n=N+1

an

converges (or diverges) as

N∑

n=1

an is finite. Hence the result.

2. Note that un = Sn − Sn−1 where Sn =
n∑

r=1

ur is the nth partial sum.

However, if
∑

un converges to s then Sn −→ s and Sn−1 −→ s as n −→ ∞.

The result follows.

3. Let Sn =

n∑

r=1

ur and Tn =

n∑

r=1

vn. Then lim
n→∞

Sn = s and lim
n→∞

Tn = t. However

from lecture 13 we know that

lim
n→∞

(Sn + Tn) = s+ t.

But, Sn + Tn = Pn =

n∑

r=1

(un + vn) the nth partial sum of
∑

(un + vn). The

result is proved.

4. Exercise.

5. With un ≥ 0 Sn =
n∑

r=1

ur is an increasing sequence. The result then follows

from lecture 13.

�

�Example Discuss the convergence or otherwise of

(a)
∑ (3n + 2n)

6n

(b)

∞∑

n=1

210−n

Solution

(a) The series
∑ 1

2n
and

∑ 1

3n
both converge so the series

∑
(

1

2n
+

1

3n

)

=
∑

(
3n + 2n

2n · 3n
)

=
∑ 2n + 3n

6n

must also converge by our last theorem.
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(b) ∞∑

n=1

210−n =
9∑

n=1

210−n +
∞∑

n=10

210−n

∞∑

n=10

210−n = 1 +
1

2
+

1

22
+

1

23
+ . . .

=

∞∑

n′=0

1

2n′
, where n′ = n− 10.

This last series is a convergent geometric series so the original series converges,

property 1 of the last theorem. 2

The Ratio Test

Theorem Let
∑

uk be a series with positive terms and suppose that

ρ = lim
n−→∞

un+1

un

(a) if ρ < 1, the series converges;

(b) if ρ > 1 the series diverges;

(c) if ρ = 1 the series may converge or diverge.

Proof

(a) Now
un+1

un

≥ 0 ∀n ∈ N so we have 0 ≤ ρ < 1 in this case.

As
un+1

un
−→ ρ < 1 we must have for n ≥ N , for some N ,

un+1

un
< 1. So there

is an r < 1 such that for n ≥ N ,
un+1

un
< r. Consider the series

∞∑

n=N

un. Now,

using
un+1

un
< r, for n ≥ N , we have

uN+1 < ruN

uN+2 < ruN+1 < r2uN

uN+3 < ruN+2 < r3uN

...

In general un < rn−NuN for n ≥ N . The series

∞∑

n=N

rn−NuN is a convergent

geometric series (as 0 < r < 1) so by the comparison test
∑

un converges.
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(b) In this case we have
uN+1

un

−→ ρ > 1 as n −→ ∞. So for some N we have

un+1

un

> 1 for all n ≥ N.

From which we have

uN+1 > uN

uN+2 > uN+1 > uN

...

In general un > uN for all n ≥ N . However, the series
∞∑

n=N

uN = uN

∞∑

n=N

1 = uN(1 + 1 + 1 + · · · ) clearly diverges. Hence, by the com-

parison test
∑

un must diverge.

(c) Consider the ratio test for un = 1
nk , where 0 < k < ∞. We have

un+1un =
nk

(n+ 1)k
=

(
n

n+ 1

)k

=
1

(
1 + 1

n

)k
.

But
1

(
1 + 1

n

)k
−→ 1 as n −→ ∞.

So for un = 1
nk , ρ = 1. However,

∑
un diverges if 0 < k ≤ 1 and converges for

k > 1.

�

�Example Determine whether the following series converge or diverge.

(a)
∞∑

n=1

nn

n!
(b)

∑ 3n

n!
(c)

∑ 5n

n2

Solution

(a) un =
nn

n!
=

nn

n(n− 1) . . . 2.1
, so

un+1

un
=

(n + 1)n+1

(n + 1)!
· n!
nn

=
(n + 1)n+1

(n+ 1)nn

=
(n + 1)n

nn
=

(

1 +
1

n

)n
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We know from an earlier exercise that

(

1 +
1

n

)n

−→ e > 1 as n −→ ∞. So

the series
∑ nn

n!
diverges.

(b) un =
3n

n!
,
un+1

un
=

3n+1

(n+ 1)!

n!

3n
=

3

n+ 1
. So

un+1

un
=

3

n+ 1
−→ 0 as n −→ ∞.

The series converges.

(c) un =
5n

n2
,
un+1

un

=
5n2

(n+ 1)2
= 5

(
1

1 + 1
n

)2

.

So,
un+1

un
=

5
(
1 + 1

n

)2 −→ 5 as n −→ ∞. The series diverges. 2

♠ Exercises 15

Determine the convergence or otherwise of these following infinite series.

1.
∑ 1

5n2 − n
2.

∑ 2

n2 + n

3.

∞∑

k=1

k

k3/2 − 1
2

4.
∑ n10

3k

5.
∑ k2

3k3 + 1
6.

∑ sin2 k

k2

7.
∑ k2

5k
8.

∑ (n!)2

(2n)!
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