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Abstract
Recent advances in the theory of complex symmetric operators are presented
and related to current studies in non-Hermitian quantum mechanics. The main
themes of the survey are: the structure of complex symmetric operators, C-
selfadjoint extensions of C-symmetric unbounded operators, resolvent esti-
mates, reality of spectrum, bases of C-orthonormal vectors and conjugate-
linear symmetric operators. The main results are complemented by a variety of
natural examples arising in field theory, quantum physics and complex
variables.

Keywords: complex symmetric operator, non-Hermitian, PT-symmetric

1. Introduction

The study of complex symmetric operators has flourished near the intersection of operator theory
and complex analysis. The general study of complex symmetric operators was undertaken by the
first author, third author, and WR Wogen (in various combinations) in [48, 50, 52, 56, 57, 61, 62].
A number of other authors have recently made significant contributions to the study of complex
symmetric operators [30, 64, 87, 88, 106, 147, 151, 154–156], which has proven particularly
relevant to the study of truncated Toeplitz operators [29, 31, 32, 58, 59, 137, 138], a rapidly growing
branch of function-theoretic operator theory stemming from the seminal work of D Sarason [131].

The last decade witnessed a revived interest in non-Hermitian quantum mechanics and in
the spectral analysis of certain complex symmetric operators. The proliferation of publications
and scientific meetings devoted to the subject leaves the mathematicians and the mathematical
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aspects of the theory far behind. As incomplete and subjective as it may be, our survey aims at
connecting the communities of mathematicians and physicists on their common interest in
complex symmetric operators. Having in mind a non-expert reader with inclination towards
mathematical physics, we proceed at a non-technical level, indicating instead precise bib-
liographical sources. Among the recently published monographs dealing at least tangentially
with complex symmetry we mention [110] devoted to resonance theory arising in quantum
mechanics and the thesis [114] where a clear link between complex symmetric operators and
spaces with an indefinite metric is unveiled. The reader may also wish to consult the recent
special issue on non-Hermitian quantum physics published in the Journal of Physics A:
Mathematical and Theoretical [13].

The study of complex symmetric (i.e., self-transpose) matrices has deep classical roots,
stretching back to the work of L-K Hua on automorphic functions [79], N Jacobson on
projective geometry [86], I Schur on quadratic forms [135], CL Siegel on symplectic geo-
metry [140], and T Takagi on function theory [146]. The connection between complex
symmetric matrices and the study of univalent functions emerged in the early 1980s
[38, 42, 77]. Nevertheless, complex symmetric matrices as a whole have not received the
attention which they deserve. The modern text [77, chapter 4.4] and the classic [47, chapter
XI] are among the few places where complex symmetric matrices are discussed in the
textbook literature.

The pioneering work of Glazman [67, 69] marks the foundation of the extension theory
of complex symmetric differential operators; see also [149, 157]. Glazmanʼs work was
complemented in a series of articles [93, 108, 122] offering a detailed analysis of the
boundary conditions for Sturm–Liouville operators that enjoy complex symmetry. The par-
allel to the theory of symmetric operators in an indefinite metric space is natural and
necessary; both symmetries have the form ⊆ *T ST S , with a conjugate-linear involution in the
first case, and a unitary involution in the second. Later on, complex symmetric operators and
symmetric operators with respect to an indefinite metric merged into a powerful modern
construct [2–5, 102].

In the realm of applied mathematics, complex symmetric matrices appear in the study of
quantum reaction dynamics [12, 21], electric power modeling [78], the numerical simulation
of high-voltage insulators [126], magnetized multicomponent transport [66], thermoelastic
wave propagation [136], the maximum clique problem in graph theory [23], elliptically
polarized plane waves in continuous media [20], inverse spectral problems for semisimple
damped vibrating systems [101], low-dimensional symplectic gravity models [90], the study
of decay phenomena [125], scattering matrices in atomic collision theory [22], and the
numerical solution of the time-harmonic Maxwell equation in axisymmetric cavity surface
emitting lasers [6]. Throughout the years, complex symmetric matrices have also been the
focus of sporadic numerical work [7, 11, 40, 43, 63, 75, 84, 85, 92, 105, 142, 143, 152].

We aim here to discuss the general mathematical properties of complex symmetric
operators, keeping an eye on those aspects of the theory that may be more appealing to the
mathematical physicist. Proofs are given when convenient, although much of the time we will
simply provide the reader with a sketch of the proof or a reference.

Disclaimer

Given the widespread recent interest in non-selfadjoint operators from the mathematical
physics community, it is likely that some of the results presented here already exist in the
physics literature. A rapid count on the American Mathematical Society scientific net
(MathSciNet) gives more than 200 articles solely devoted to 7; -symmetric operators. We
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are simply trying to help bridge the gap between the growing community of mathematical
physicists working on non-selfadjoint operators with our own community of operator the-
orists who study complex symmetric operators for their own sake. If we have omitted any key
references or major results, then we apologize.

We must also confess that in writing this survey article, we have borrowed freely from
our own previously published work. In particular, we have engaged in vigorous recycling of
material from our articles [35, 49, 51, 52, 56, 57, 120], although we have taken great care to
streamline our presentation and standardize the notation used throughout this article.

Notation

We adopt the customary notation used in the mathematics literature. For instance, our inner
products are linear in the first slot and we use z instead of z* to denote complex conjugation.
Vectors in an abstract Hilbert space will be most often written in bold (e.g., v) as opposed to
italic (e.g., v). On the other hand, vectors in concrete Hilbert spaces, such as 5L ( )2 , will be
denoted as appropriate for that setting.

Matrices and operators shall be denoted by upper-case letters such as …A B, , and
scalars by lower-case letters …a b, , or their Greek equivalents α β …, , . We let I denote the
identity operator and we use A* instead of †A to denote the adjoint of A. The superscript T, as
in AT, will denote the transpose of a matrix.

Two operators A and B are said to be unitarily equivalent if there exists a unitary operator
U such that = *A UBU . We denote this by ≅A B, noting that ≅ is an equivalence relation (in
the matrix theory literature, the term unitarily similar is preferred). The norm A of an
operator always refers to the operator norm = =A Axsup x 1 .

2. Complex symmetric operators

Since complex symmetric operators are characterized by their interactions with certain con-
jugate-linear operators, we begin with a brief discussion of these auxiliary operators.

2.1. Conjugations

The following concept is a straightforward generalization of complex conjugation ↦z z ,
which itself can be viewed as a conjugate-linear map on the one-dimensional Hilbert space &.

Definition 2.1. A conjugation on a complex Hilbert space / is a function / /→C:
that is

(1) conjugate-linear: α β α β+ = +C C Cx y x y( ) for all x y, in / , and α, β∈C,
(2) involutive: =C I2 ,
(3) isometric: =Cx x for all x in / .

The relevance of conjugations to the extension theory for unbounded symmetric (i.e.,
⊆ *T T ) operators was recognized by von Neumann, who realized that a symmetric densely

defined operator + /→T T: ( ) that is C-real (i.e., T=CTC) admits selfadjoint extensions
[150]. In the theory of von Neumann algebras, conjugations feature prominently in the
Tomita–Takesaki modular theory for Type III factors and thus in the non-commutative
geometry program initiated by A Connes [33].
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Some authors prefer to use the term antilinear instead of conjugate-linear. From this
perspective, a function that satisfies the first and third conditions listed above is called an
antiunitary operator. A conjugation is simply an antiunitary operator that is involutive. In
light of the polarization identity

= + − − + + − −i i i ix y x y x y x y x y4 , ,2 2 2 2

the isometric condition is equivalent to asserting that 〈 〉 = 〈 〉C Cx y y x, , for all x y, in/ . Let
us consider a few standard examples of conjugations.

Example 2.2. If μX( , ) is a measure space (with μ a positive measure on X), then the
canonical conjugation on μL X( , )2 is just pointwise complex conjugation:

=Cf x f x[ ]( ) ( ) .

Particular instances include the canonical conjugations

… = …C z z z z z z( , , , ) ( , , , ) (2.3)n n1 2 1 2

on & = … nℓ ({1, 2, , })n 2 and

… = …C z z z z z z( , , , ) ( , , , ) (2.4)1 2 3 1 2 3

on the space 1ℓ ( )2 of all square-summable complex sequences.

Example 2.5. The Toeplitz conjugation on &n is defined by

… = …−C z z z z z z( , , , ) ( , , , ). (2.6)n n n1 2 1 1

As its name suggests, the Toeplitz conjugation is related to the study of Toeplitz matrices. In
light of its appearance in the Szegő recurrence from the theory of orthogonal polynomials on
the unit circle (OPUC) [141, equation 1.1.7] one might also refer to (2.6) as the Szegő
conjugation.

Example 2.7. Building upon example 2.2, if one has a measure space μX( , ) that possesses
a certain amount of symmetry, one can sometimes form a conjugation that respects this
symmetry. For instance, the conjugation

= −Cf x f x[ ]( ) (1 ) (2.8)

on L [0, 1]2 arises in the study of certain highly non-normal integral operators (see
example 2.23).

Example 2.9. Consider the parity operator

7ψ ψ= −x x[ ]( ) ( )

and the time-reversal operator

;ψ ψ=x x[ ]( ) ( )

on 5L ( )n2 . Since ; is a conjugation on 5L ( )n2 that commutes with 7, it is not hard to show
that their composition 7; is also a conjugation. As the notation suggests, the conjugation
7; plays a central role in the development of 7; -symmetric quantum theory [17, 18].

Example 2.10. If the spin-degrees of freedom are considered, then we consider the Hilbert
space 5 & 5 &≅ ⊗+ +L L( , ) ( )n s n s2 2 1 2 2 1, where s is the spin of the particle. The time-reversal
operator now takes the form
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;ψ ψ= π− ⊗( )x x[ ] ( ) e ( ),i S1 y

where Sy is the y-component of the spin-operator acting on & +s2 1. For particles with integer
spin number s (bosons), ; remains a conjugation. Unfortunately this is not the case for
particles with half-integer spin number s (fermions), in which case the time-reversal operator
squares to −I . A conjugate-linear operator of this sort is called an anticonjugation [60,
definition 4.1].

It turns out that conjugations are, by themselves, of minimal interest. Indeed, the fol-
lowing lemma asserts that every conjugation is unitarily equivalent to the canonical con-
jugation on an ℓ

2-space of the appropriate dimension.

Lemma 2.11. If C is a conjugation on /, then there exists an orthonormal basis e{ }n of /
such that =Ce en n for all n. In particular, α α∑ = ∑C e e( )n n n n n n for all square summable
sequences α{ }n .

Proof. Consider the 5-linear subspace 2 /= +I C( ) of/ and note that each vector in 2
is fixed by C. Consequently 2 is a real Hilbert space under the inner product 〈 〉x y, since
〈 〉 = 〈 〉 = 〈 〉 = 〈 〉C Cx y y x y x x y, , , , for every x y, in 2 . Let e{ }n be an orthonormal basis
for2 . Since/ 2 2= + i , it follows easily that e{ }n is an orthonormal basis for the complex
Hilbert space / as well. □

Definition 2.12. A vector x that satisfies =Cx x is called a C-real vector. We refer to a
basis having the properties described in lemma 2.11 as a C-real orthonormal basis.

Example 2.13. Let =C z z z z z z( , , ) ( , , )1 2 3 3 2 1 denote the Toeplitz conjugation (2.5) on &3.
Then

= − = = −( ) ( ) ( )e e e, , , , , , , 0,i i
1

1
2

1
2

1
2 2

1
2

1
2

1
2 3 2 2

is a C-real orthonormal basis of &3.

Example 2.14. Let = −Cf x f x[ ]( ) (1 ) denote the conjugation (2.8) on L [0, 1]2 . For each
α π∈ [0, 2 ), one can show that

⎡⎣ ⎤⎦ =α π= + − ∈( )x i n x ne ( ) exp ( 2 ) ,n
1
2

is a C-real orthonormal basis for L [0, 1]2 [49, lemma 43].

2.2. Complex symmetric operators

Our primary interest in conjugations lies not with conjugations themselves, but rather with
certain linear operators that interact with them. We first restrict ourselves to the consideration
of bounded operators. An in-depth discussion of the corresponding developments for
unbounded operators is carried out in section 5.

Definition 2.15. Let C be a conjugation on / . A bounded linear operator T on / is called
C-symmetric if = *T CT C . We say that T is a complex symmetric operator if there exists a C
with respect to which T is C-symmetric.
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Although the terminology introduced in definition 2.15 is at odds with certain portions
of the differential equations literature, the equivalences of the following lemma indicate that
the term complex symmetric is appropriate from a linear algebraic viewpoint.

Lemma 2.16. For a bounded linear operator / /→T: , the following are equivalent:

(1) T is a complex symmetric operator,
(2) There is an orthonormal basis of / with respect to which T has a complex symmetric

(i.e., self-transpose) matrix representation,
(3) T is unitarily equivalent to a complex symmetric matrix, acting on an ℓ2-space of the

appropriate dimension.

Proof. The equivalence of (2) and (3) is clear, so we focus on ⇔(1) (2). Suppose that
= *T CT C for some conjugation C on / and let en be a C-real orthonormal basis for / (see

lemma 2.11). Computing the matrix entries T[ ]ij of T with respect to e{ }n we find that

= = * = *
= * = =

T T CT C C T C

T T T

e e e e e e

e e e e

[ ] , , ,

, , [ ] ,

ij j i j i i j

i j i j ji

which shows that ⇒(1) (2). A similar computation shows that if e{ }n is an orthonormal basis
of / with respect to which T has a complex symmetric matrix representation, then the
conjugation C which satisfies =Ce en n for all n also satisfies = *T CT C . □

We refer to a square complex matrix A that equals its own transpose AT as a complex
symmetric matrix. As lemma 2.16 indicates, a bounded linear operator is complex symmetric,
in the sense of definition 2.15, if and only if it can be represented as a complex symmetric
matrix with respect to some orthonormal basis of the underlying Hilbert space. Thus there is a
certain amount of agreement between the terminology employed in the matrix theory and in
the Hilbert space contexts. The excellent book [77], and to a lesser extent the classic text [47],
are among the few standard matrix theory texts to discuss complex symmetric matrices in any
detail.

Example 2.17. A square complex matrix T is called a Hankel matrix if its entries are
constant along the perpendiculars to the main diagonal (i.e., the matrix entry T[ ]ij depends
only upon +i j). Infinite Hankel matrices appear in the study of moment problems, control
theory, approximation theory, and operator theory [115–117]. Being a complex symmetric
matrix, it is clear that each Hankel matrix T satisfies = *T CT C, where C denotes the
canonical conjugation (2.4) on an ℓ

2-space of the appropriate dimension.

Example 2.18. The building blocks of any bounded normal operator (i.e., * = *T T TT ) are
the multiplication operators =M f z zf z[ ]( ) ( )z on μL X( , )2 where X is a compact subset of &
and μ is a positive Borel measure on X. Since = *M CM Cz z where C denotes complex
conjugation in μL X( , )2 , it follows that every normal operator is a complex symmetric
operator.

Example 2.19. It is possible to show that every operator on a two-dimensional Hilbert space
is complex symmetric. More generally, every binormal operator is a complex symmetric
operator [62].
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Example 2.20. A ×n n matrix T is called a Toeplitz matrix if its entries are constant along
the parallels to the main diagonal (i.e., the matrix entry T[ ]ij depends only upon −i j). The
pseudospectra of Toeplitz matrices have been the subject of much recent work [148] and the
asymptotic behavior of Toeplitz matrices and their determinants is a beautiful and well-
explored territory [19]. Generalizations of finite Toeplitz matrices are truncated Toeplitz
operators, a subject of much interest in function-related operator theory [59, 131]. Our
interest in Toeplitz matrices stems from the fact that every finite Toeplitz matrix T satisfies

= *T CT C where C denotes the Toeplitz conjugation (2.6).

Example 2.21. The question of whether a given operator is actually a complex symmetric
operator is more subtle than it first appears. For instance, one can show that among the
matrices

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0 7 0
0 1 2
0 0 6

0 7 0
0 1 3
0 0 6

0 7 0
0 1 4
0 0 6

0 7 0
0 1 5
0 0 6

0 7 0
0 1 6
0 0 6

, (2.22)

all of which are similar to the diagonal matrix diag(0, 1, 6), only the fourth matrix listed in
(2.22) is unitarily equivalent to a complex symmetric matrix [147]. A particularly striking
example of such an unexpected unitary equivalence is

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

≅

− + −

+ + +

− + +

i i

i

i

9 8 9
0 7 0
0 0 7

8
149
2

9
2

16837 64 149
13093

133672
13093

1296 149
13093

9
2

16837 64 149
13093

207440 9477 149
26186

18 3978002 82324 149
13093

133672
13093

1296 149
13093

18 3978002 82324 149
13093

92675 1808 149
13093

.

In particular, observe that a highly non-normal operator may possess rather subtle hidden
symmetries. Algorithms to detect and exhibit such unitary equivalences have been discussed
at length in [10, 54, 55, 107, 147].

Example 2.23. The Volterra operator and its adjoint

⎡⎣ ⎤⎦∫ ∫= * =Tf x f y y T f x f y y[ ]( ) ( )d , ( ) ( )d ,
x

x0

1

on L [0, 1]2 satisfy = *T CT C where = −Cf x f x[ ]( ) (1 ) denotes the conjugation from
example 2.7. The orthonormal basis

⎡⎣ ⎤⎦ =π= − ∈( )in x ne exp 2 ,n
1
2
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of L [0, 1]2 is C-real (see example 2.14). The matrix for T with respect to the basis =∈e{ }n n is

which is complex symmetric (i.e., self-transpose).

Example 2.24. Building upon examples 2.5 and 2.20, we see that a 3 × 3 nilpotent Jordan
matrix T satisfies = *T CT C, where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥= =T C

z
z
z

z
z
z

0 1 0
0 0 1
0 0 0

, .
1

2

3

3

2

1

Let e e e{ , , }1 2 3 denote the C-real orthonormal basis for &3 obtained in example 2.13 and
form the unitary matrix = | |U e e e[ ]1 2 3 , yielding

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

=

−

− * =

− −

−

U

i

i

U TU

i

i

i i

1
2

1
2 2

1
2

1
2

0

1
2

1
2 2

,

1
2

0
2

0
1
2 2

2 2
0

.

The following folk theorem is well-known and has been rediscovered many times
[47, 56, 77].

Theorem 2.25. Every finite square matrix is similar to a complex symmetric matrix.

Proof. Every matrix is similar to its Jordan canonical form. A suitable generalization of
example 2.24 shows that every Jordan block is unitarily equivalent (hence similar) to a
complex symmetric matrix. □

The preceding theorem illustrates a striking contrast between the theory of selfadjoint
matrices (i.e., = *A A ) and complex symmetric matrices (i.e., =A A )T . The Spectral Theorem
asserts that every selfadjoint matrix has an orthonormal basis of eigenvectors and that its
eigenvalues are all real. On the other hand, a complex symmetric matrix may have any
possible Jordan canonical form. This extra freedom arises from the fact that it takes +n n2
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real parameters to specify a complex symmetric matrix, but only n2 real parameters to specify
a selfadjoint matrix. The extra degrees of freedom occur due to the fact that the diagonal
entries of a selfadjoint matrix must be real, whereas there is no such restriction upon the
diagonal entries of a complex symmetric matrix.

2.3. Bilinear forms

Associated to each conjugation C on / is the bilinear form

= Cx y x y[ , ] , . (2.26)

Indeed, since the standard sesquilinear form 〈 · · 〉, is conjugate-linear in the second
position, it follows from the fact that C is conjugate-linear that [ · , · ] is linear in both
positions.

It is not hard to see that the bilinear form (2.26) is non-degenerate, in the sense that
=x y[ , ] 0 for all y in / if and only if =x 0. We also have the Cauchy–Schwarz inequality

⩽x y x y[ , ] ,

which follows since C is isometric. However, [ · , · ] is not a true inner product since
=θ θ θx x x x[e , e ] e [ , ]i i i2 2 for any θ and, moreover, it is possible for =x x[ , ] 0 to hold even

if ≠x 0.
Two vectors x and y are C-orthogonal if =x y[ , ] 0 (denoted by ⊥x yC ). We say that two

subspaces ,1 and ,2 are C-orthogonal (denoted , ,⊥C1 2) if =x x[ , ] 01 2 for every x1 in ,1
and x2 in ,2.

To a large extent, the study of complex symmetric operators is equivalent to the study of
symmetric bilinear forms. Indeed, for a fixed conjugation / /→C: , there is a bijective
correspondence between bounded, symmetric bilinear forms x yB ( , ) on/ /× and bounded
C-symmetric operators on / .

Lemma 2.27. If / / &× →B: is a bounded, bilinear form and C is a conjugation on /,
then there exists a unique bounded linear operator T on / such that

=B Tx y x y( , ) [ , ], (2.28)

for all x y, in /, where [ · , · ] denotes the bilinear form (2.26) corresponding to C. If B is
symmetric, then T is C-symmetric. Conversely, a bounded C-symmetric operator T gives rise
to a bounded, symmetric bilinear form via (2.28).

Proof. If B is a bounded, bilinear form, then ↦ B Cx y x y( , ) ( , ) defines a bounded,
sesquilinear form. Thus there exists a bounded linear operator / /→T: such that

= 〈 〉B C Tx y x y( , ) , for all x y, in / . Replacing y with Cy, we obtain =B Tx y x y( , ) [ , ]. If
=B Bx y y x( , ) ( , ), then 〈 〉 = 〈 〉T C T Cy x x y, , so that 〈 〉 = 〈 * 〉CT T Cx y x y, , holds for all

x y, . This shows that = *CT T C and hence T is C-symmetric. Conversely, if T is C-
symmetric, then

= = * = =T T C T C CT Tx y x y x y x y x y[ , ] , , , [ , ].

The isometric property of C and the Cauchy–Schwarz inequality show that the bilinear form
T x y[ , ] is bounded whenever T is. □

If B is a given bounded bilinear form, then lemma 2.27 asserts that for each conjugation
C on / , there exists a unique representing operator T on /, which is C-symmetric if B is
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symmetric, such that

=B CTx y x y( , ) , .

Although the choice of C is arbitrary, the conjugate-linear operatorCT is uniquely determined
by the bilinear form B x y( , ). One can also see that the positive operator | | = *T T T is
uniquely determined by the form B. Indeed, since = 〈 * 〉 = 〈 〉B T C CTx y x y y x( , ) , , , the
conjugate-linear operators CT and *T C are intrinsic to B and thus so is the positive
operator * = * = | |T C CT T T T( )( ) 2.

Without any ambiguity, we say that a bounded bilinear form B x y( , ) is compact if the
modulus | |T of any of the representing operators T is compact. If B x y( , ) is a compact bilinear
form, then the singular values of B are defined to be the eigenvalues of the positive operator
| |T , repeated according to their multiplicity.

3. Polar structure and singular values

3.1. The Godič–Lucenko theorem

It is well-known that any planar rotation can be obtained as the product of two reflections. The
following theorem of Godič and Lucenko [70] generalizes this simple observation and pro-
vides an interesting perspective on the structure of unitary operators.

Theorem 3.1. If U is a unitary operator on a Hilbert space/, then there exist conjugations
C and J on / such that U=CJ and * =U JC .

The preceding theorem states that any unitary operator on a fixed Hilbert space can be
constructed by gluing together two copies of essentially the same conjugate-linear operator.
Indeed, by lemma 2.11 any conjugation on / can be represented as complex conjugation
with respect to a certain orthonormal basis. In this sense, the conjugations C and J in theorem
3.1 are structurally identical objects. Thus the fine structure of unitary operators arises entirely
from how two copies of the same object are put together. The converse of theorem 3.1 is
also true.

Lemma 3.2. If C and J are conjugations on a Hilbert space /, then U=CJ is a unitary
operator. Moreover, U is both C-symmetric and J-symmetric.

Proof. If U = CJ, then (by the isometric property of C and J) it follows that
〈 * 〉 = 〈 〉 = 〈 〉 = 〈 〉 = 〈 〉f U g Uf g CJf g Cg Jf f JCg, , , , , for all f g, in / . Thus * =U JC
from which = *U CU C and = *U JU J both follow. □

Example 3.3. Let & &→U: n n be a unitary operator with n (necessarily unimodular)
eigenvalues ξ ξ ξ…, , , n1 2 and corresponding orthonormal eigenvectors …e e e, , , n1 2 . If C and
J are defined by setting ξ=Ce ek k k and =Je ek k for = …k n1, 2, , and extending by
conjugate-linearly to all of &n, then clearly U = CJ. By introducing offsetting unimodular
parameters in the definitions of C and J, one sees that the Godič–Lucenko decomposition of U
is not unique.

Example 3.4. Let μ be a finite Borel measure on the unit circle 7 . If U denotes the unitary
operator =θ θ θUf f[ ](e ) e (e )i i i on 7 μL ( , )2 , then U = CJ where
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= =θ θ θ θ θ( ) ( ) ( ) ( )Cf f Jf f[ ] e e e , [ ] e ei i i i i

for all f in 7 μL ( , )2 . The proof of theorem 3.1 follows from the spectral theorem and this
simple example.

Example 3.5. Let / 5= L x( , d )2 and let

-
5

∫ξ
π

= ξ−f f x x[ ]( )
1
2

e ( )dix

denote the Fourier transform. Since =Jf x f x[ ]( ) ( ) satisfies - -= *J J , we see that - is a J-
symmetric unitary operator. The Fourier transform is the product of two simple conjugations:

-=C J is complex conjugation in the frequency domain and J is complex conjugation in the
state space domain.

3.2. Refined polar decomposition

The Godič–Lucenko decomposition (theorem 3.1) can be generalized to complex symmetric
operators. Recall that the polar decomposition = | |T U T of a bounded linear operator

/ /→T: expresses T uniquely as the product of a positive operator | | = *T T T and a
partial isometry U that satisfies = | |U Tker ker and which maps | | −T(ran ) onto −T(ran ) . The
following lemma, whose proof we briefly sketch, is from [57]:

Theorem 3.6. If / /→T: is a bounded C-symmetric operator, then = | |T CJ T where J is
a conjugation that commutes with | | = *T T T and all of its spectral projections.

Proof. Write the polar decomposition = | |T U T of T and note that
= * = * | | *T CT C CU C CU T U C( )( ) since *U U is the orthogonal projection onto | | −T(ran ) .

One shows that * = | | *CU C CU T U Cker ker , notes that *CU C is a partial isometry and that
| | *CU T U C is positive, then concludes from the uniqueness of the terms in the polar

decomposition that = *U CU C (so that U is C-symmetric) and that the conjugate-linear
operator = *CU U C commutes with | |T and hence with all of its spectral projections. One
then verifies that this ‘partial conjugation’ supported on | | −T(ran ) can be extended to a
conjugation J on all of / . □

A direct application of the refined polar decomposition is an analogue of the celebrated
Adamyan–Arov–Kreĭn theorem asserting that the optimal approximant of prescribed rank of a
Hankel operator is also a Hankel operator (see [117] for complete details). The applications of
the Adamyan–Arov–Kreĭn theorem to extremal problems of modern function theory are
analyzed in a concise and definitive form in [130]. The case of complex symmetric operators
is completely parallel.

Theorem 3.7. Let T be a compact C-symmetric operator with singular values ⩾ ⩾ ⋯s s0 1 ,
repeated according to multiplicity, then

= − ′
′=

′ −
s T Tinf .n T n

T C
rank

symmetric
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Some applications of this theorem to rational approximation (of Markov functions) in the
complex plane are discussed in [121].

3.3. Approximate antilinear eigenvalue problems

A new method for computing the norm and singular values of a complex symmetric operator
was developed in [51, 57]. This technique has been used to compute the spectrum of the
modulus of a Foguel operator [53] and to study nonlinear extremal problems arising in
classical function theory [58].

Recall that Weylʼs criterion [124, theorem VII.12] states that if A is a bounded selfadjoint
operator, then λ σ∈ A( ) if and only if there exists a sequence xn of unit vectors so that

λ− =→∞ A I xlim ( ) 0n n . The following theorem characterizes σ | |T( ) in terms of an
approximate antilinear eigenvalue problem.

Theorem 3.8. Let T be a bounded C-symmetric operator and write = | |T CJ T where J is a
conjugation commuting with | |T (see theorem 3.6). If λ ⩾ 0, then

(1) λ belongs to σ | |T( ) if and only if there exists a sequence of unit vectors xn such that

λ− =
→∞

T C xlim ( ) 0.
n

n

Moreover, the xn may be chosen so that =Jx xn n for all n.
(2) λ is an eigenvalue of | |T (i.e., a singular value of T) if and only if the antilinear

eigenvalue problem

λ=T Cx x
has a non-zero solution x. Moreover, x may be chosen so that =Jx x.

Proof. Since the second statement follows easily from the first, we prove only the first
statement. Following theorem 3.6, write = | |T CJ T where J is a conjugation that commutes
with | |T . By Weylʼs criterion, λ ⩾ 0 belongs to σ | |T( ) if and only if there exists a sequence un

of unit vectors so that λ| | − →T u u 0n n . Since J is isometric and commutes with | |T , this
happens if and only if λ| | − →T J Ju u 0n n as well. Since not both of + Ju u( )n n

1
2

and
− Ju u( )

i n n
1
2

can be zero for a given n, we can obtain a sequence of unit vectors xn such that
=Jx xn n and

λ λ λ λ− = − = − = − →T C CT J T Tx x x x x x x( ) 0.n n n n n n n

On the other hand, if a sequence xn satisfying the original criteria exists, then it follows from
theorem 3.6 that λ| | − =→∞ T I xlim ( ) 0n n . By Weylʼs criterion, λ σ∈ | |T( ). □

3.4. Variational principles

The most well-known result in the classical theory of complex symmetric matrices is the so-
called Takagi factorization. However, as the authors of [76, section 3.0] point out, priority
must be given to L Autonne, who published this theorem in 1915 [8].

Theorem 3.9. If =A AT is ×n n, then there exists a unitary matrix U such that Σ=A U UT

where Σ = … −s s sdiag( , , , )n0 1 1 is the diagonal matrix that has the singular values of A
listed along the main diagonal.
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This result has been rediscovered many times, most notably by Hua in the study of
automorphic functions [79], Siegel in symplectic geometry [140], Jacobson in projective
geometry [86], and Takagi [146] in complex function theory. As a consequence of the
Autonne-Takagi decomposition we see that

Σ Σ Σ= = =( ) ( )A U U U Ux x x x x x y y,T T T T T T T

where = Uy xT . This simple observation is the key to proving a complex symmetric analogue
of the following important theorem, the finite dimensional minimax principle. The general
principle can be used to numerically compute the bound state energies for Schrödinger
operators [123, theorem XIII.1].

Theorem 3.10. If = *A A is ×n n, then for ⩽ ⩽ −k n0 1 the eigenvalues
λ λ λ⩾ ⩾ ⋯ ⩾ −n0 1 1 of A satisfy

= =
λ* =

= ∈
=

Ax xmin max .
k

kx
x

codim
1

The following analogue of minimax principle was discovered by J Danciger in 2006 [34],
while still an undergraduate at UC Santa Barbara.

Theorem 3.11. If =A AT is ×n n, then the singular values ⩾ ⩾ ⋯ ⩾ −s s sn0 1 1 of A satisfy

⎧
⎨⎪

⎩⎪= =
=

⩽ <

⩽ ⩽= ∈
=

A
s if k

n

if
n

k n
x xmin max Re

0
2

,

0
2

.k

T
k

x
x

codim
1

2

The preceding theorem is remarkable since the expression Ax xRe T detects only the
evenly indexed singular values. The Hilbert space generalization of Dancigerʼs minimax
principle is the following [35].

Theorem 3.12. If T is a compact C-symmetric operator on/ and σ σ⩾ ⩾ ⋯ ⩾ 00 1 are the
singular values of T, then

⎧
⎨⎪
⎩⎪

/

= =
σ= ⩽ <

= ∈
=

T if nx xmin max Re [ , ] 0
dim

2
,

0 otherwise.
(3.13)

n

n
x
x

codim
1

2

By considering the expression T x xRe [ , ] over 5-linear subspaces of /, one avoids the
‘skipping’ phenomenon and obtains all of the singular values of T.

Theorem 3.14. If T is a compact C-symmetric operator on a separable Hilbert space/ and
σ σ⩾ ⩾ ⋯ ⩾ 00 1 are the singular values of T, then
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= =
5

σ =
= ∈

=
T x xmin max Re [ , ] (3.15)n

n x
x

codim
1

holds whenever /⩽ <n0 dim . Here = ranges over all 5-linear subspaces of the complex
Hilbert space / and =5codim denotes the codimension of= in/ when both are regarded
as 5-linear spaces.

The proofs of these theorems do not actually require the compactness of T, only the
discreteness of the spectrum of | |T . It is therefore possible to apply these variational principles
if one knows that the spectrum of | |T is discrete. Moreover, these variational principles still
apply to eigenvalues of | |T that are located strictly above the essential spectrum of | |T .

4. Spectral theory

Although the spectral theory of complex symmetric operators is still under development, we
collect here a number of observations and basic results that are often sufficient for analyzing
specific examples.

4.1. Direct sum decomposition

The first step toward understanding a given operator is to resolve it, if possible, into an
orthogonal direct sum of simpler operators. Recall that a bounded linear operator T is called
reducible if ≅ ⊕T A B (orthogonal direct sum). Otherwise, we say that T is irreducible. An
irreducible operator commutes with no orthogonal projections except for 0 and I.

In low dimensions, every complex symmetric operator is a direct sum of irreducible
complex symmetric operators [60].

Theorem 4.1. If / /→T: is a complex symmetric operator and / ⩽dim 5, then T is
unitarily equivalent to a direct sum of irreducible complex symmetric operators.

The preceding theorem is false in dimensions six and above due to the following simple
construction.

Lemma 4.2. If / /→A: is a bounded linear operator and / /→C: is conjugation,
then = ⊕ *T A CA C is complex symmetric.

Proof. Verify that

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥*

=
*

*
□A

CA C
C

C
A

CA C
C

C
0

0
0

0
0

0
0

0
.

If A is an irreducible operator that is not complex symmetric, then = ⊕ *T A CA C is a
complex symmetric operator that possesses irreducible direct summands that are not complex
symmetric. In other words, the class of complex symmetric operators is not closed under
restriction to direct summands. The correct generalization (in the finite dimensional case) of
theorem 4.1 is the following [60]:
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Theorem 4.3. If T is a complex symmetric operator on a finite dimensional Hilbert space,
then T is unitarily equivalent to a direct sum of (some of the summands may be absent) of

(1) irreducible complex symmetric operators,
(2) operators of the form ⊕ *A CA C, where A is irreducible and not a complex symmetric

operator.

The preceding result found unexpected applications to quantum computing, specifically
to the trichotomy of constricted quantum semigroups recently singled out by Singh [144], see
also [129].

An operator is called completely reducible if it does not admit any minimal reducing
subspaces. For instance, a normal operator is complete reducible if and only if it has no
eigenvalues. In arbitrary dimensions, Guo and Zhu recently proved the following striking
result [72].

Theorem 4.4. If T is a bounded complex symmetric operator on a Hilbert space, then T is
unitarily equivalent to a direct sum (some of the summands may be absent) of

(1) completely reducible complex symmetric operators,
(2) irreducible complex symmetric operators,
(3) operators of the form ⊕ *A CA C, where A is irreducible and not a complex symmetric

operator.

A related question, of interest in matrix theory, is whether a matrix A that is unitarily
equivalent to AT is complex symmetric. This conjecture holds for matrices that are 7 × 7
smaller, but fails for matrices that are 8 × 8 or larger [60].

Currently, the preceding theorems are the best available. It is not yet clear whether a
concrete functional model for, say, irreducible complex symmetric operators, can be obtained.
However, a growing body of evidence suggests that truncated Toeplitz operators may play a
key role (see the survey article [59]).

4.2. C-projections

If T is a bounded linear operator and f is a holomorphic function on a (not necessarily
connected) neighborhood Ω of σ T( ), then the Riesz functional calculus allows us to define an
operator f(T) via the Cauchy-type integral

∫π= −
Γ

−f T
i

f z zI T z( )
1

2
( ) ( ) d (4.5)1

in which Γ denotes a finite system of rectifiable Jordan curves, oriented in the positive sense
and lying in Ω [37, p 568].

For each clopen (relatively open and closed) subset Δ of σ T( ), there exists a natural
idempotent ΔP ( ) defined by the formula

∫Δ π= −
Γ

−P
i

zI T z( )
1

2
( ) d , (4.6)1

where Γ is any rectifiable Jordan curve such that Δ is contained in the interior Γint of Γ and
σ Δ⧹T( ) does not intersect Γint . We refer to this idempotent as the Riesz idempotent
corresponding to Δ.
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If the spectrum of an operator T decomposes as the disjoint union of two clopen sets, then
the corresponding Riesz idempotents are usually not orthogonal projections. Nevertheless, the
Riesz idempotents that arise from complex symmetric operators have some nice features.

Theorem 4.7. Let T be a C-symmetric operator. If σ T( ) decomposes as the disjoint union
∪σ Δ Δ=T( ) 1 2 of two clopen sets, then the corresponding Riesz idempotents Δ=P P ( )1 1

and Δ=P P ( )2 2 defined by (4.6) are

(1) C-symmetric: = *P CP Ci i for i=1,2,
(2) C-orthogonal, in the sense that ⊥P Pran ranC1 2.

The proof relies on the fact that the resolvent − −zI T( ) 1 is C-symmetric for all &∈z .
We refer to a C-symmetric idempotent as a C-projection. In other words, a bounded linear
operator P is a C-projection if and only if = *P CP C and =P P2 . It is not hard to see that if P
is a C-projection, then ⩾P 1 and Pran is closed. Moreover, for any C-projection, we have

∩ =P Pker ran {0}. This is not true for arbitrary complex symmetric operators (e.g., a 2 × 2
nilpotent Jordan matrix).

A classical theorem of spectral theory [37, p 579] states that if T is a compact operator,
then every non-zero point λ in σ T( ) is an eigenvalue of finite order λ=m m ( ). For each such
λ, the corresponding Riesz idempotent has a non-zero finite dimensional range given by

λ= −λP T Iran ker( )m. In particular, the non-zero elements of the spectrum of a compact
operator correspond to generalized eigenspaces.

Theorem 4.8. The generalized eigenspaces of a compact C-symmetric operator are C-
orthogonal.

Proof. It follows immediately from theorem 4.7 and the preceding remarks that the
generalized eigenspaces corresponding to non-zero eigenvalues of a compact C-symmetric
operator T are mutually C-orthogonal. Since 0 is the only possible accumulation point of the
eigenvalues of T, it follows that a generalized eigenvector corresponding to a non-zero
eigenvalue is C-orthogonal to any vector in the range of

∫π= −ϵ ϵ=
−P

i
zI T z

1
2

( ) d
z

1

if ϵ > 0 is taken sufficiently small. In particular, ϵPran contains the generalized eigenvectors
for the eigenvalue 0 (if any exist). □

4.3. Eigenstructure

With respect to the bilinear form [ · , · ], it turns out that C-symmetric operators superficially
resemble selfadjoint operators. For instance, an operator T is C-symmetric if and only if

=T Tx y x y[ , ] [ , ] for all x y, in / . As another example, the eigenvectors of a C-symmetric
operator corresponding to distinct eigenvalues are orthogonal with respect to [ · , · ], even
though they are not necessarily orthogonal with respect to the original sesquilinear
form 〈 · · 〉, .

Lemma 4.9. The eigenvectors of a C-symmetric operator T corresponding to distinct
eigenvalues are orthogonal with respect to the bilinear form [ · , · ].
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Proof. The proof is essentially identical to the corresponding proof for selfadjoint operators.
If λ λ≠1 2, λ=T x x1 1 1, and λ=T x x2 2 2, then

λ λ λ λ= = = = =[ ] [ ] [ ] [ ]T Tx x x x x x x x x x x x[ , ] , , , , [ , ].1 1 2 1 1 2 1 2 1 2 1 2 2 2 1 2

Since λ λ≠1 2, it follows that =x x[ , ] 01 2 . □

There are some obvious differences between selfadjoint and complex symmetric
operators. For instance, a complex symmetric matrix can have any possible Jordan canonical
form (theorem 2.25) whereas a selfadjoint matrix must be unitarily diagonalizable. The
following result shows that complex symmetric operators have a great deal more algebraic
structure than one can expect from an arbitrary operator (see [52] for a complete proof;
theorem 4.8 addresses only the compact case).

Theorem 4.10. The generalized eigenspaces of a C-symmetric operator corresponding to
distinct eigenvalues are mutually C-orthogonal.

We say that a vector x is isotropic if =x x[ , ] 0. Although 0 is an isotropic vector, non-
zero isotropic vectors are nearly unavoidable (see lemma 4.11 below). However, isotropic
eigenvectors often have meaningful interpretations. For example, isotropic eigenvectors of
complex symmetric matrices are considered in [136] in the context of elastic wave propa-
gation. In that theory, isotropic eigenvectors correspond to circularly polarized waves.

The following simple lemma hints at the relationship between isotropy and multiplicity
that we will explore later.

Lemma 4.11. If / /→C: is a conjugation, then every subspace of dimension ⩾2 contains
isotropic vectors for the bilinear form [ · , · ].

Proof. Consider the span of two linearly independent vectors x1 and x2. If x1 or x2 is
isotropic, we are done. If neither x1 nor x2 is isotropic, then

= = −y x y x
x x
x x

x,
[ , ]

[ , ]1 1 2 2
2 1

1 1
1

are C-orthogonal and have the same span as x x,1 2. In this case, either y2 is isotropic (and we
are done) or neither y1 nor y2 is isotropic. If the latter happens, we may assume that y1 and y2
satisfy = =y y y y[ , ] [ , ] 11 1 2 2 . Then the vectors ± iy y1 2 are both isotropic and have the same
span as x1 and x2. □

The following result shows that the existence of an isotropic eigenvector for an isolated
eigenvalue is determined by the multiplicity of the eigenvalue.

Theorem 4.12. If T is a C-symmetric operator, then an isolated eigenvalue λ of T is simple if
and only if T has no isotropic eigenvectors for λ.

Proof. If λ is an isolated eigenvalue of T, then the Riesz idempotent P corresponding to λ is
a C-projection. If λ is a simple eigenvalue, then the eigenspace corresponding to λ is spanned
by a single unit vector x. If x is isotropic, then it is C-orthogonal to all of / since x is C-
orthogonal to the range of the complementary C-projection −I P. This would imply that x is
C-orthogonal to all of / and hence =x 0, a contradiction. If λ is not a simple eigenvalue,
then there are two cases to consider.
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case 1: If λ− >T Idim ker( ) 1, then by lemma 4.11, λ−T Iker( ) contains an isotropic
vector. Thus T has an isotropic eigenvector corresponding to the eigenvalue λ.

case 2: If λ− =T Idim ker( ) 1, then λ− =T I xker( ) span{ } for some ≠x 0 and
λ− >T Idim ker ( ) 12 since λ is not a simple eigenvalue. We can therefore find

a non-zero generalized eigenvector y for λ such that λ= −T Ix y( ) . Thus

λ λ= − = − = =T I T Ix x x y x y 0 y[ , ] [ , ( ) ] [( ) , ] [ , ] 0

and hence x is an isotropic eigenvector. □

Example 4.13. The hypothesis that λ is an isolated eigenvalue is crucial. The operator
⊕ *S S , where S is the unilateral shift on 1ℓ ( )2 , is complex symmetric and has each point in

the open unit disk as a simple eigenvalue [57]. Nevertheless, every eigenvector is isotopic.

4.4. C-orthonormal systems and Riesz bases

Let / be a separable, infinite dimensional complex Hilbert space endowed with a con-
jugation C. Suppose that u{ }n is a complete system of C-orthonormal vectors:

δ=u u[ , ] , (4.14)n m nm

in which [ · , · ] denotes the symmetric bilinear form (2.26) induced by C. In other words,
suppose that u{ }n and Cu{ }n are complete biorthogonal sequences in / . Such sequences
frequently arise as the eigenvectors for a C-symmetric operator (see section 4.3). Most of the
following material originates in [52].

We say that a vector x in / is finitely supported if it is a finite linear combination of the
un and we denote the linear manifold of finitely supported vectors by - . Due to the C-
orthonormality of the un, it follows immediately that each such -∈x can be recovered via
the skew Fourier expansion

∑=
=

∞
x x u u[ , ] , (4.15)

n
n n

1

where all but finitely many of the coefficients x u[ , ]n are non-zero. We will let - /→A :0

denote the linear extension of the map =A u Cun n0 to - . Since - is a dense linear
submanifold of /, it follows that if - /→A :0 is bounded on - , then A0 has a unique
bounded extension (which we denote by A) to all of / .

It turns out that the presence of the conjugation C ensures that such an extension must
have several desirable algebraic properties. In particular, the following lemma shows that if A
is bounded, then it is C-orthogonal. Specifically, we say that an operator / /→U: is C-
orthogonal if * =CU CU I . The terminology comes from the fact that, when represented with
respect to a C-real orthonormal basis, the corresponding matrix will be complex orthogonal
(i.e., =U U IT as matrices).

The importance of C-orthogonal operators lies in the fact that they preserve the bilinear
form induced by C. To be specific, U is a C-orthogonal operator if and only if

=U Ux y x y[ , ] [ , ] for all x y, in / . Unlike unitary operators, C-orthogonal operators can
have arbitrarily large norms. In fact, unbounded C-orthogonal operators are considered in
[127], where they are called J-unitary operators.

Lemma 4.16. If A0 is bounded, then its extension / /→A: is positive and C-orthogonal.
If this is the case, then A is invertible with = ⩾−A CAC 01 and the operator =B A is also
C-orthogonal.
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Proof. By (4.15), it follows that 〈 〉 = ∑ | | ⩾=
∞A x x x u, [ , ] 0n n0 1

2 for all x in - . If A0 is
bounded, then it follows by continuity that A will be positive. The fact that A is C-orthogonal
(hence invertible) follows from the fact that * = =CA C A CAu u u( ) ( )n n n

2 for all n. Since
= = −CBC CBC CAC A( )( ) 1 and ⩾CBC 0, it follows that CBC is a positive square root of

−A 1. By the uniqueness of the positive square root of a positive operator, we see that
= −CBC B 1 and hence B is also C-orthogonal. □

We remark that lemma 4.16 shows that if the map ↦ Cu un n is bounded, then its linear
extension / /→A: is necessarily invertible. This property distinguishes C-orthonormal
systems u{ }n and their duals Cu{ }n from general biorthogonal systems. Among other things,
lemma 4.16 also shows that if A0 is bounded, then the skew conjugation

∑ = ∑=
∞

=
∞( )J c cu un n n n n n1 1 (defined initially on - ) is given by

= = = −J CA CBB B CB.1

In other words, the skew conjugation J is similar to our original conjugation C via the
operator =B A . Another consequence of the boundedness of A0 is the existence of a natural
orthonormal basis for / .

Lemma 4.17. If A0 is bounded, then the vectors s{ }n defined by = Bs un n (where =B A )
satisfy the following:

(1) s{ }n is orthonormal: δ〈 〉 =s s,j k jk for all j k, ,
(2) s{ }n is C-orthonormal: δ=s s[ , ]j k jk for all j k, ,
(3) =Cs sn n for all n.

Furthermore, s{ }n is an orthonormal basis for / .

Proof. This follows from direct computations:

⎡⎣ ⎤⎦
δ

δ
= = = = =
= = = = =
= = = = =

−

− −

B B A C

C B CB B B C C

C CB B C B B B

s s u u u u u u u u

s s s s u u u u u u

s u u u u s

, , , , [ , ] ,

, , , , , ,

.

j k j k j k j k j k jk

j k j k j k j k j k jk

j j j j j j

1

1 1 2

We now show that the system s{ }n is complete. If x is orthogonal to each s j, then
〈 〉 = 〈 〉 = 〈 〉 =B Bx u x u x s, , , 0j j j for all j. Since B is invertible, it follows that =x 0 since
u{ }n is complete. □

If the operator A0 is bounded, then its extension A is a positive, invertible operator whose
spectrum is bounded away from zero. Thus Θ = −i Alog can be defined using the functional
calculus for A and the principal branch of the logarithm. Since A is selfadjoint and the
principal branch of the logarithm is real on ∞(0, ), it follows that Θ is skew-Hermitian:
Θ Θ* = − . Moreover, since A is a C-orthogonal operator, it follows that Θ is a C-real
operator: Θ Θ= , where Θ Θ= C C .

Returning to our original C-symmetric operator T, we see that if A0 is bounded, then T is
similar to the diagonal operator / /→D: defined by λ=Ds sn n n since = −T B DB1 .
Writing this in terms of the exponential representation Θ=A iexp ( ) and inserting a parameter
τ ∈ [0, 1], we obtain a family of operators
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=τ
τ Θ τ Θ−T De e

i i
2 2

that satisfies =T D0 and =T T1 . This provides a continuous deformation of T to its diagonal
model D. We also remark that the fact that Θ is C-real and skew-Hermitian implies that the
operators Θ± τexp ( )i

2
are C-orthogonal for all τ. From here, it is easy to show that each

intermediate operator τT is C-symmetric and that the path τ ↦ τT from [0, 1] to /B ( ) is norm
continuous.

The following theorem provides a number of conditions equivalent to the boundedness
of A0:

Theorem 4.18. If u{ }n is a complete C-orthonormal system in /, then the following are
equivalent:

(1) u{ }n is a Bessel sequence with Bessel bound M,
(2) u{ }n is a Riesz basis with lower and upper bounds −M 1 and M,
(3) A0 extends to a bounded linear operator on / satisfying ⩽A M0 ,
(4) There exists >M 0 satisfying:

∑ ∑⩽
= =

c M cu u ,
n

N

n n
n

N

n n
1 1

for every finite sequence …c c c, , , N1 2 .
(5) The Gram matrix 〈 〉 =

∞u u( , )j k j k, 1 dominates its transpose:

− ⩾
=

∞( )M u u u u, , 0j k k j
j k

2

, 1

for some >M 0.
(6) The Gram matrix = 〈 〉 =

∞G u u( , )j k j k, 1 is bounded on 1ℓ ( )2 and orthogonal ( =G G IT as
matrices). Furthermore, ⩽G M

(7) The skew Fourier expansion

∑
=

∞
[ ]f u u,

n
n n

1

converges in norm for each ∈f H and

∑⩽ ⩽
=

∞
[ ]

M
f f M fu

1
, .

n
n

2

1

2 2

In all cases, the infimum over all such M equals the norm of A0.

A non-trivial application of the preceding result to free interpolation in the Hardy space
of the unit disk is described in [48]. More appropriate for the profile of the present survey are
the following Riesz basis criteria for the eigenvectors of a complex symmetric operator.

A classical observation due to Glazman [68] gives conditions solely in terms of the
(simple) spectrum of a dissipative operator for the root vectors to form a Riesz basis [68]. This
idea was further exploited, and put into a general context in the last chapter of Gohberg and
Kreĭnʼs monograph [71]. We illustrate below how complex symmetry can be used to weaken
Glazmanʼs assumption without changing the conclusion.

Suppose that T is a C-symmetric contraction with a complete system u{ }n of eigenvectors
corresponding to the simple eigenvalues λ{ }n . Note that, due to the C-symmetry assumption
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=u u[ , ] 0n m for ≠n m (lemma 4.9). Moreover, ≠u u[ , ] 0n n because the system u{ }n is
complete.

Letting = − *D I T T , we see that ⩾D 0 and hence 〈 〉Dx y, defines a positive sesqui-
linear form on / /× and thus

⩽D D Dx y x x y y, , ,

for all x y, in / . Setting =x u j and =y uk we find that

λ λ

= −

= −

D T Tu u u u u u

u u

, , ,

1 , .

j k j k j k

j k j k

Similarly, we find that

λ= −Du u u, 1j j j j
2

and thus

λ λ
λ λ

⩽
− −

−
u u u u,

1 1

1
.j k j k

j k

j k

2 2

This leads us to the following result from [48].

Theorem 4.19. Let T be a contractive C-symmetric operator with simple spectrum λ =
∞{ }n n 1

and complete system of corresponding eigenvectors u{ }n . Assume that the normalization
= ⩾nu u[ , ] 1, 1,n n is adopted. If the matrix

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

λ λ
λ λ

− −
−

=

∞

u u
1 1

1
j k

j k

j k
j k

2 2

, 1

defines a linear bounded operator on 1ℓ ( )2 , then u{ }n is a Riesz basis for / .

Glazmanʼs original result [68], stated for unit eigenvectors and without the complex
symmetry assumption, invoked the finiteness of the Hilbert–Schmidt norm of the matrix

λ λ
λ λ

− −
−

1 1

1
.

j k

j k

2 2

A completely analogous result can be stated for an unbounded C-symmetric purely
dissipative operator [48].

Theorem 4.20. Let + /→T: be a C-symmetric, purely dissipative operator with simple
spectrum λ{ }n and complete sequence of corresponding unit eigenvectors v{ }n . If the
separation condition

>v vinf [ , ] 0 (4.21)
n

n n
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holds and if the matrix

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

λ λ
λ λ−

=

∞
( )( )Im Im

(4.22)
j k

j k
j k, 1

defines a bounded linear operator on 1ℓ ( )2 , then

(1) The sequence v{ }n forms a Riesz basis for / .
(2) Each x in/ can be represented by a norm-convergent skew Fourier expansion given by

∑=
=

∞
x

x v
v v

v
[ , ]

[ , ]
.

n

n

n n
n

1

In particular, if the matrix (4.22) is bounded above, then it is also invertible.

We close this section with two instructive examples.

Example 4.23. Let / π π= −L [ , ]2 , endowed with normalized Lebesgue measure
= πmd td

2
, and let = −Cf x f x[ ]( ) ( ). Let h be an odd, real-valued measurable function on

π π−[ , ], such that eh is unbounded but belongs to / . The vectors

== + ∈u x h x inx n( ) exp ( ( ) ), ,n

are uniformly bounded in norm since ∥ ∥ = ∥ ∥u en
h and they are C-orthonormal. Since the

operator A0 is simply multiplication by −e h2 , it is essentially selfadjoint and unbounded. Thus
u{ }n is not a Riesz basis, in spite of the fact that it is a C-orthonormal system whose vectors
are uniformly bounded in norm.

Example 4.24. Let α β= +w i where α and β are real constants and consider L [0, 1]2 ,
endowed with the conjugation = −Cf x f x[ ]( ) (1 ). A short computation shows that if w is not
an integer multiple of π2 , then the vectors

⎡⎣ ⎤⎦ =π= + − ∈( )u x i w n x n( ) exp ( 2 ) , ,n
1
2

are eigenfunctions of the C-symmetric operator

∫ ∫= + −Tf x f y y f y y[ ]( ) e ( )d e ( )diw
x

iw

x

2

0

2
1

(i.e., = + *−T V Ve eiw iw2 2 where V denotes the Volterra integration operator; see example
2.23) and that the system u{ }n is complete and C-orthonormal. One the other hand, one might
also say that the un are eigenfunctions of the derivative operator with boundary
condition =f f(1) e (0)iw .

We also see that the map A0 given by ↦u Cun n extends to a bounded operator on all of
L [0, 1]2 . Indeed, this extension is simply the multiplication operator = β −Af x f x[ ]( ) e ( )x2 ( 1 2)

whence =B A is given by

= β −Bf x f x[ ]( ) e ( ).x( 1 2)

The positive operators A and B are both C-orthogonal (i.e., * =CA CA I and * =CB CB I ) and
the system u{ }n forms a Riesz basis for L [0, 1]2 . In fact, u{ }n is the image of the C-real
orthonormal basis s{ }n , defined by sn = Bun, under the bounded and invertible operator −B 1.
The sn are given by
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⎡⎣ ⎤⎦α π= + −( )s x i n x( ) exp ( 2 )n
1
2

and they are easily seen to be both orthonormal and C-real [49, Lemma 4.3].

4.5. Local spectral theory

Among all of the various relaxations of the spectral properties of a normal operator, Foiaş’
notion of decomposability is one of the most general and versatile. A bounded linear operator

/ /→T: is called decomposable if for every finite open cover of its spectrum

∪ ∪ ∪σ ⊆ …T U U U( ) ,n1 2

there exists closed T-invariant subspaces / / /…, , , n1 2 , with the property that

/σ ⊆ ⩽ ⩽( )T U i n, 1ii

and

/ / / /+ + ⋯ + = .n1 2

Checking for decomposability based upon the definition is highly non-trivial. In this respect,
the early works of Dunford and Bishop are notable for providing simple decomposability
criteria. We only mention Bishopʼs property β( ): for every open set &⊆U , the map

6 / 6 /− →zI T U U: ( , ) ( , ),

is injective and has closed range. Here 6 /U( , ) stands for the Fréchet space of / -valued
analytic functions on U. A bounded linear operator T is decomposable if and only if both T
and T* possess Bishopʼs property β( ). We refer to [41] for details.

By combining the results above with the definition of C-symmetry, we obtain the fol-
lowing observation.

Proposition 4.25. If T is a bounded C-symmetric operator, then T is decomposable if and
only if T satisfies Bishopʼs condition β( ).

The articles [87–89] contain a host of related results concerning the local spectral theory
of complex symmetric operators and we refer the reader there for further details and addi-
tional results.

5. Unbounded complex symmetric operators

5.1. Basic definitions

When extending definition 2.15 to encompass unbounded operators, some care must be
taken. This is due to the fact that the term symmetric means one thing when dealing with
matrices and another when dealing with unbounded operators.

Definition 5.1. Let + /→T T: ( ) be a closed, densely defined linear operator acting on /
and let C be a conjugation on / . We say that T is C-symmetric if ⊆ *T CT C .

Equivalently, the operator T is C-symmetric if

=CTf g CTg f, , (5.2)
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for all f g, in + T( ). We say that an operator T is C-selfadjoint if = *T CT C (in particular, a
bounded C-symmetric operator is C-selfadjoint). Unbounded C-selfadjoint operators are
sometimes called J-selfadjoint, although this should not be confused with the notion of J-
selfadjointness in the theory of Kreĭn spaces (in which J is a linear involution).

In contrast to the classical extension theory of von Neumann, it turns out that a C-
symmetric operator always has a C-selfadjoint extension [67, 69] (see also [46, 122]). Indeed,
the maximal conjugate-linear symmetric operators S (in the sense that 〈 〉 = 〈 〉Sf g Sg f, , for
all f g, in + S( )) produce C-selfadjoint operators CS. Because of this, we use the term
complex symmetric operator freely in both the bounded and unbounded situations when we
are not explicit about the conjugation C. Much of this theory was developed by Glazman [67].

In concrete applications, C is typically derived from complex conjugation on an
appropriate L2 space and T is a non-selfadjoint differential operator. For instance, the articles
[93, 122] contain a careful analysis and parametrization of boundary conditions for
Sturm–Liouville type operators with complex potentials which define C-selfadjoint operators.
Such operators also arise in studies related to Dirac-type operators [28]. The complex scaling
technique, a standard tool in the theory of Schrödinger operators, also leads to the con-
sideration C-selfadjoint operators [120] and the related class of C-unitary operators [127].

A useful criterion for C-selfadjointness can be deduced from the equality

+ + +* = ⊕ ∈ * * * * + ={ }( ) ( )CT C T f T CT C T CT Cf f( ) : 0 ,

which is derived in [122]. A different criterion goes back to Žihar′ [157]: if the C-symmetric
operator T satisfies / += −T zI T( ) ( ) for some complex number z, then T is C-selfadjoint.
The resolvent set of T consists of exactly the points z fulfilling the latter condition. We denote
the inverse to the right by − −T zI( ) 1 and note that it is a bounded linear operator defined on
all of / . We will return to these criteria in subsection 5.2 below. We focus now on the
following important result.

Theorem 5.3. If + /→T T: ( ) is a densely defined C-symmetric operator, then T admits a
C-selfadjoint extension.

The history of this results dates back to von Neumann himself, who proved that every
densely defined, C-symmetric operator T which is also C-real, in the sense that CT=TC,
admits a selfadjoint extension [150]. Shortly thereafter, Stone demonstrated that an extension
can be found that is C-real and hence C-selfadjoint [145]. Several decades passed before
Glazman established that if T is densely defined and dissipative (meaning that 〈 〉 ⩽Ax xIm , 0
on + T( )), then a dissipative C-selfadjoint extension of T exists [67]. Motivated by work on
the renormalized field operators for the problem of the interaction of a ‘meson’ field with a
nucleon localized at a fixed point [45], Galindo simultaneously generalized the von Neu-
mann–Stone and Glazman results by eliminating both the C-real and the dissipative
requirements which had been placed upon T [46]. Another proof was later discovered by
Knowles [93].

Example 5.4. Consider an essentially bounded function &π π− →q: [ , ] which satisfies
⩾qIm 0 and ⩾qRe 1 almost everywhere. The operator

= − ″ +Tf x f x q x f x[ ]( ) ( ) ( ) ( )

defined on the Sobolev space π π−W [ , ]0
2 is dissipative and C-selfadjoint with respect to the

canonical conjugation =Cf f [57]. By a deep theorem of Keldysh [71, theorem V101], the
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eigenfunctions of T are complete in π π−L [ , ]2 and hence such operators are a prime
candidates for analysis using the methods of section 4.

Example 5.5. Let q(x) be a real valued, continuous, even function on −[ 1, 1] and let α be a
non-zero complex number satisfying α| | < 1. For a small parameter ϵ > 0, we define the
operator

ϵ= − ′ +α[ ]T f x if x q x f x( ) ( ) ( ) ( ), (5.6)

with domain

+ α= ∈ − ′ ∈ − = −α { }( )T f L f L f f[ 1, 1] : [ 1, 1], (1) ( 1) .2 2

Clearly αT is a closed operator and + αT( ) is dense in −L [ 1, 1]2 . If C denotes the
conjugation = −Cu x u x[ ]( ) ( ) on −L [ 1, 1]2 , then the non-selfadjoint operator αT satisfies

=α αT CT C1 . A short computation shows that =α α*T T1 and hence αT is C-selfadjoint.

Example 5.7. Consider a Schrödinger operator �+ 5→H L: ( ) ( )d2 2 defined by
�= − +H v x( )2 where the potential v x( ) is dilation analytic in a finite strip θ| | < IIm 0

and ∇2-relatively compact. The standard dilation

ψ ψ=θ θ θ( )[ ]U x x( ) e ed 2

allows us to define an analytic (type A) family of operators:

�≡ = − +θ θ θ
θ θ− − ( )H U HU v xe e ,1 2 2

where θ runs in the finite strip θ| | < IIm 0 (see [123] for definitions). It is readily verified that
the scaled Hamiltonians θH are C-selfadjoint with respect to complex conjugation =Cf f .

5.2. Refined polar decomposition

If an unbounded C-selfadjoint operator has a compact resolvent, then a canonically associated
antilinear eigenvalue problem always has a complete set of mutually orthogonal eigenfunc-
tions [57, 120]:

Theorem 5.8. If + →T T H: ( ) is an unbounded C-selfadjoint operator with compact
resolvent − −T zI( ) 1 for some complex number z, then there exists an orthonormal basis

=
∞u{ }n n 1 of / consisting of solutions of the antilinear eigenvalue problem:

λ− =T zI Cu u( ) ,n n n

where λ =
∞{ }n n 1 is an increasing sequence of positive numbers tending to ∞.

This result is a consequence of the refined polar decomposition for bounded C-symmetric
operators described in theorem 3.6. The preceding result provides a useful tool for estimating
the norms of resolvents of certain unbounded operators.

Corollary 5.9. If T is a densely defined C-selfadjoint operator with compact resolvent
− −T zI( ) 1 for some complex number z, then
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λ− =−T zI( )
1

inf
, (5.10)

n
n

1

where the λn are the positive solutions to the antilinear eigenvalue problem:

λ− =T zI Cu u( ) . (5.11)n n n

We also remark that the refined polar decomposition = | |T CJ T applies, under certain
circumstances, to unbounded C-selfadjoint operators:

Theorem 5.12. If + /→T T: ( ) is a densely defined C-selfadjoint operator with zero in its
resolvent, then = | |T CJ T where | |T is a positive selfadjoint operator (in the von Neumann
sense) satisfying + +| | =T T( ) ( ) and J is a conjugation on / that commutes with the
spectral measure of | |T . Conversely, any operator of the form described above is C-
selfadjoint.

5.3. C-selfadjoint extensions of C-symmetric operators

The theory of C-selfadjoint extensions of C-symmetric operators is parallel to von Neumannʼs
theory of selfadjoint extensions of a symmetric operator. It was the Soviet school that
developed the former, in complete analogy, but with some unexpected twists, to the later.
Two early contributions are [149, 157] complemented by Glazmanʼs lucid account [67].

A convenient C-selfadjointness criterion is offered by the following observation of
Žihar′ [157].

Theorem 5.13. If T is a C-symmetric operator such that + /λ− =T Tran( ) ( ) for some
complex number λ, then T is C-selfadjoint.

To have an effective description of all C-selfadjoint extensions of an operator T one
assumes (after Višik [149]) that there exists a point &λ ∈0 and a positive constant γ with the
property

+λ γ∥ − ∥ ⩾ ∥ ∥ ∈( )T I Tx x x, ( ).0

Then one knows from Žihar′ [157] that there are C-selfadjoint extensions which are also
bounded from below at λ0. Consequently, the familiar von Neumann parametrization of all
such extensions ∼

T in terms of a direct sum decomposition is available:

+ + λ λ λ* = + − * − + * −∼ −( ) ( ) ( )( )CT C T T I T I C T I( ) ker ker .0
1

0 0

Consequently λ* −T Idim ker( )0 is constant among all points λ for which λ−T I( ) is
bounded from below.

The analysis of C-selfadjoint extensions is pushed along the above lines by Knowles
[93], who provided efficient criteria applicable, for instance, to Sturm–Liouville operators of
any order. We reproduce below an illustrative case.

Example 5.14. Let ∞a[ , ) be a semi-bounded interval of the real line and let p p,0 1 denote
Lebesgue integrable, complex valued functions on ∞a[ , ) such that ′p0 and p1 0 are also
integrable. We define the Sturm–Liouville operator
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τ = − ′ ′ +( )f p f p f( ) 0 1

with maximal domain, in the sense of distributions, + ⊆ ∞T L a( ) [ , )max
2 . By choosing C to

be complex conjugation we remark that τ is formally C-symmetric. One can define the
minimal closed operator Tmin having as graph the closure of τf f( , ( )) with +∈f T( )max of
compact support in (a,b). Then =*CT C Tmin max, hence Tmin is C-symmetric and there are
regularity points in the resolvent of Tmin. Assume that the deficiency index is equal to one, that
is λ− =Tdim ker( ) 1max 0 for some point &λ ∈0 . Any regular C-selfadjoint extension

∼
T of

Tmin is the restriction of τto a domain

+ + +⊆ ⊆∼( )( ) ( )T T Tmin max

specifically described by a pair of complex numbers α α( , )0 1 :

+ + α α= ∈ + ′ =∼( ) { }( )T f T f a p a f a; ( ) ( ) ( ) 0 .max 0 1 0

The existence of regular points in the resolvent set of a C-symmetric operator is not
guaranteed. However, there are criteria that guarantee this; see [93, 122]. The anomaly in the
following example is resolved in an ingenious way by Race [122] by generalizing the notion
of resolvent.

Example 5.15. We reproduce from [108] an example of simple Sturm–Liouville operator
without regular points in the resolvent. Consider on ∞[0, ) the operator

τ = − ″ − +f x f x i f x( )( ) ( ) 2 e ( ).i x2(1 )

Then for every &λ ∈ there are no solutions f of τ λ=f f belonging to ∞L [0, )2 .

Finally, we reproduce a simple but illustrative example considered by Krejčiříc, Bila and
Znojil [98].

Example 5.16. Fix a positive real number d. Let = − ″αH f f defined on the Sobolev space
W d([0, ])2,2 with boundary conditions

α α′ + = ′ + =f i f f d i f d(0) (0) 0, ( ) ( ) 0,

where α is a real parameter. Then the operator αH is C-symmetric, with respect to the standard
7; -symmetry = −Cf x f d x[ ]( ) ( ), that is =α α* −H H .

It turns out by simple computations that the spectrum of αH is discrete, with only simple
eigenvalues if α is not an integer multiple of π d :

⎧⎨⎩
⎫⎬⎭σ α π π π= …α( )H

d d d
, ,

2
,

3
, .2

2

2

2 2

2

2 2

2

The eigenfunctions of α*H are computable in closed form:

= + −α
h x d

d
( ) 1

e 1i x

0
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corresponding to the eigenvalue α2, and respectively

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

π α
π

π= +h x d
j x
d

i
j

j x
d

( ) 2 cos
d

sinj

corresponding to the eigenvalues ⩾π j, 1.j

d

2 2

2

Remarkably, these eigenfunctions form a Riesz basis in L d([0, ])2 , whence the operator
αH can be ‘symmetrized’ and put in diagonal form in a different Hilbert space metric which

turns the functions ⩾h k, 0,k into an orthonormal basis. See also [97, 99]. One should be
aware that this is not a general rule, as there are known examples, such as the even non-
selfadjoint anharmonic oscillators, where the eigenfunctions form a complete set but they do
not form a basis in the Hilbert, Riesz or Schauder sense [74]. The cubic harmonic oscillator,
to be discussed below, is also an example displaying same phenomenon.

6. PT -symmetric Hamiltonians

The question of what is the correct way to represent an observable in quantum mechanics has
been brought up more often lately. Among its axioms, the traditional quantum theory says
that the classical observables are represented by selfadjoint operators whose spectrum of
eigenvalues represents the set of values one can observe during a physical measurement of
this observable. It has been noted, however, that the selfadjointness of an operator, which can
be seen as a symmetry property relative to complex conjugation and transposition, can be
replaced with other types of symmetries and the operator may still posses a set of real
eigenvalues.

A good introduction to the subject is the paper by Bender [16] where the reader can also
find a valuable list of references. A personal view of the role of non-Hermitian operators in
quantum mechanics is contained in Znojilʼs article [159]. The aficionados of 7; -symmetry
in quantum physics maintain an entertaining and highly informative blog http://ptsymmetry.
net/, while a serious criticism was voiced by Streater http://mth.kcl.ac.uk/~streater/lostcauses.
html#XIII. We seek here only to comment on the connection between 7; -symmetric and
complex symmetric operators.

6.1. Selected results

The work by Bender and Mannheim [15] resulted in a set of necessary and sufficient con-
ditions for the reality of energy eigenvalues of finite dimensional Hamiltonians. The first
interesting conclusion of this work is the fact that for the secular equation

λ− =H Idet( ) 0

to contain only real coefficients, the Hamiltonian must necessarily obey

7; 7; =−H H( ) ( ) ,1

where 7 is a unitary matrix with 7 = 12 and ; is a conjugation. In many examples of
interest, one can identify 7 with the parity operator and ; with the time-reversal operator
(this excludes fermionic systems for which ; = −12 ). Hence, the reality of the energy
eigenvalues always requires some type of 7; symmetry, but this condition alone is generally
not sufficient.

For diagonalizable finite dimensional 7; -symmetric Hamiltonians, the following cri-
terion gives a sufficient condition. Consider the set C of operators * that commute with H and
satisfy * = 12 . Note that if P is the spectral projection for an eigenvalue, then * = − ⊥P P
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satisfies these conditions. The criterion for the reality of the spectrum says that if every *
from C commutes with 7; , then all of the eigenvalues of H are real. If at least one such *
does not commute with 7; , then the spectrum of H contains at least one conjugate pair of
complex eigenvalues.

For non-diagonalizable Hamiltonians, Bender and Mannheim derived the following
criterion: the eigenvalues of any non-diagonalizable Jordan block matrix that possesses just
one eigenvector will all be real if the block is 7; -symmetric, and will all be complex if the
block is not 7; -symmetric.

The reality of the energy spectrum of a 7; -symmetric Hamiltonian is only part of the
story because to build a quantum theory with a probabilistic interpretation one needs a unitary
dynamics. One useful observation in this direction is that a non-Hermitian 7; -symmetric
Hamiltonian becomes Hermitian with respect to the inner product

7;27; =f g f g( , ) , ,

where 2 denotes ordinary complex conjugation. The shortcoming of the construction is that
7;· ·( , ) is indefinite. The hope is then in finding an additional complex linear symmetry

* which commutes with the hamiltonian, so that inner product

7;*2*7; =f g f g( , ) ,

is positive definite. The work [14] highlighted some interesting possibilities in this respect.
Specifically, it was shown that if the symmetry transformation * is bounded, then indeed the
7; -symmetric Hamiltonian can be realized as Hermitian operator on the same functional-
space but endowed with a new scalar product. In contradistinction, if the symmetry
transformation * is unbounded, then the original 7; -symmetric operator has selfadjoint
extensions but in general is not essentially selfadjoint. That means, it accepts more than one
selfadjoint extension, and the possible extensions describe distinct physical realities. The
extensions are defined in a functional-space that is strictly larger than the original Hilbert
space.

In the same direction, a cluster of recent discoveries [2–5] provided rigorous construc-
tions of the symmetries C above from additional hidden symmetries of the original operator.
In particular, motivated by carefully chosen examples, Albeverio and Kuzhel combine in a
novel and ingenious manner von Neumannʼs classical theory of extensions of symmetric
operators, spectral analysis in a space with an indefinite metric, and elements of Clifford
algebra. Notable is their adaptation of scattering theory to the study of 7; -selfadjoint
extensions of 7; -symmetric operators. We refer to [3] for details, as the rather complex
framework necessary to state the main results contained in that paper cannot be reproduced in
our survey.

Example 6.1. The perturbed cubic oscillator operator

α α= − ″ + + ⩾αT y y ix y i xy, 0,3

defined with maximal domain on 5L dx( , )2 served as a paradigm during the evolution of 7;
quantum mechanics. It is a complex symmetric operator, =α α*T CT C , with respect to the
7; -conjugation

= −Cf x f x( ) ( ) .

The reality of its spectrum was conjectured in 1992 by Bessis and Zinn-Justin. The conjecture
was numerically supported by the work of Bender and Boettcher [17] and settled into the
affirmative by Shin [139] and Dorey–Dunning–Tateo [36]. The rigorous analysis of the last
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two references rely on classical PDE techniques such as asymptotic analysis in the complex
domain, WKB expansions, Stokes lines, etc. The survey by Giordanelli and Graf [65] offers a
sharp, lucid account of these asymptotic expansions. The next section will be devoted to a
totally different method of proving the reality of the spectrum of the operator αT , derived this
time from perturbation theory in Kreĭn space.

In a recent preprint Henry [73] concludes that the operator αT is not similar to a
selfadjoint operator by estimating the norm of the spectral projection on the nth eigenvalue,
and deriving in particular that the eigenfunctions of αT do not form a Riesz basis, a result
already proved by Krejčiřík and Siegl [100].

We select in the subsequent sections a couple of relevant and mathematically complete
results pertaining to the flourishing topics of non-Hermitian quantum physics.

6.2. Perturbation theory in Kreĭn space

Among the rigorous explanations of the reality of the spectrum of a non-selfadjoint operator,
perturbation arguments play a leading role. In particular, perturbation theory in Kreĭn space
was succesfully used by Langer and Tretter [102, 103]. The thesis of Nesemann [114]
contains an accessible and self-contained account of the interaction between the perturbation
theory of operators acting on a Kreĭn space and the reality of the spectra of complex sym-
metric differential operators.

A Kreĭn space is a vector space 2 endowed with an inner product · ·{ , }, such that
there exists a direct sum orthogonal decomposition

2 / / / /= + =+ − + −{ }, , 0,

in which / /· · − · ·+ −( , { , }), ( , { , }) are Hilbert spaces. Note that such a decomposition
is not unique, as a two dimensional indefinite example immediately shows. The underlying
positive definite form

/ /· · = · · − · ·+ −, { , } { , }

defines a Hilbert space structure on 2 . In short, a Kreĭn space corresponds to a linear, unitary
involution J, acting on a Hilbert space 2, with the associated product

= Jx y x y{ , } , .

For a closed, densely defined operator T on 2, the Kreĭn space adjoint *T [ ] satisfies

+ += * ∈ ∈ *T T T Tx y x y x y{ , } { , }, ( ), ( ).[ ] [ ]

The operator T is selfadjoint (sometimes called J-selfadjoint) if = *T T [ ], that is * =T J JT . A
subspace , 2⊆ is called positive if ⩾x x{ , } 0 for all ,∈x and uniformly positive if there
exists a constant γ > 0 such that

,γ⩾ ∥ ∥ ∈x x x x{ , } , .2

In the most important examples that arise in practice, a second hidden symmetry is
present in the structure of a J-selfadjoint operator (in the sense of Kreĭn spaces), bringing into
focus the main theme of our survey. Specifically, assume that there exists a conjugation C,
acting on the same Hilbert space as the linear operators T and J, satisfying the commutation
relations:
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= =CT TC CJ JC, .

Then the J-selfadjoint operator T is also CJ -symmetric:

* = * = = =T CJ T JC JTC JCT CJT.
Operator theory in Kreĭn spaces is well-developed, with important applications to con-

tinuum mechanics and function theory; see the monograph [9]. An important result of Langer
and Tretter states that a continuous family of selfadjoint (unbounded) operators in a Kreĭn
space preserves the uniform positivity of spectral subspaces obtained by Riesz projection
along a fixed closed Jordan curve. The details in the statement and the proof are contained in
the two notes [102, 103]. We confine ourselves to reproduce a relevant example for our
survey.

Example 6.2. Let 2 = −L x([ 1, 1], d )2 be the Kreĭn space endowed with the inner
product

∫= −
−

f g f x g x x{ , } ( ) ( )d .
1

1

The positive space/ + can be chosen to consist of all even functions in2, while the negative
space to be formed by all odd functions.

Let ∈ −∞V L [ 1, 1] be a 7; -symmetric function, that is

− =V x V x( ) ( ).

Then the Sturm–Liouville operator

= − ″ +Tf x f x V x f x( ) ( ) ( ) ( ),

with domain + 2= ∈ − = =T f f f( ) { ; ( 1) (1) 0} is symmetric in the Kreĭn space sense.
More precisely, let

= − ∈ −Jf x f x f L( )( ) ( ), [ 1, 1]2

be the unitary involution (parity) that defines the Kreĭn space structure and let C denote
complex conjugation: =Cf f( ) . Note that CJ = JC. The J-symmetry of the operator T
amounts to the obvious identity (of unbounded operators):

* =T J JT.
On the other hand

* =T C CT ,

and

=TCJ CJT.

Therefore we are dealing with a C-symmetric operator T commuting with the conjugation

7;= = −CJf x f x f x( )( ) ( ) ( ) .

By means of the linear deformation ϵ ϵ= − ″ + ⩽ ⩽ϵT f x f x V x f x( ) ( ) ( ) ( ), 0 1, the
conclusion of [102] is that, assuming

π∥ ∥ <∞V
3
8

,
2

one finds that the spectrum of T consists of simple eigenvalues λj, all real, alternating between
positive and negative type, and satisfying
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λ π− ⩽ ∥ ∥∞
j

V
4

.j

2 2

In particular one can choose = +V x ix( ) n2 1 with an integer ⩾n 0.

6.3. Similarity of differential C-symmetric operators

The intriguing question why certain 7; -symmetric hamiltonians with complex potential
have real spectrum is still open, in spite of an array of partial answers and a rich pool of
examples, see [17, 18, 111–113].

The recent works [24, 25] offer a rigorous mathematical explanation for the reality of the
spectrum for a natural class of Hamiltonians. We reproduce below a few notations from this
article and the main result.

The authors are studying an algebraic, very weak form of similarity between two closed,
densely defined linear operators + /→ =A A j: ( ) , 1, 2j j . Start with the assumption that
both spectra &σ σ ⊆A A( ), ( )1 2 are discrete and consist of eigenvalues of finite algebraic
multiplicity. That is, for a point λ σ∈ A( )j there exists a finite dimensional space (of gen-
eralized eigenvectors) +λ ⊆E A( ) ( )j

j
( ) satisfying

λ λ= −( )E A I( ) ker ,j
j

N( )

for N large enough. Assume also that there are linear subspaces +⊆ =V A j( ), 1, 2,j j such
that

λ⋃ ⊆
λ σ∈ ( )

E V( )
A

j
j

( )

j

and

⊆ =A V V j, 1, 2.j j j

The operators Aj are called similar if there exists an invertible linear transformation
→X V V: 1 2 with the property =XA A X.1 2 Then it is easy to prove that σ σ=A A( ) ( )1 2 . If,

under the above similarity condition, the operator A1 is selfadjoint, then the spectrum of A2 is
real. This general scheme is applied in [25] to a class of differential operators as follows.

Let ξq x( , ) be a complex valued quadratic form on 5 5×d d so that qRe is positive
definite. The 7; -symmetry of the operator with symbol q is derived from an abstract
5-linear involution 5 5κ →: d d, so that

5 5ξ κ κ ξ ξ= − ∈ ×( )q x q x x( , ) ( ), ( ) , ( , ) .t d d

Let Q denote Weylʼs quantization of the symbol q, that is the differential operator

∑= +
α β

α β
α β β α

+ =
Q q

x D x D
2

,
2

,

where D stands as usual for the tuple of normalized first order derivatives = − ∂
∂D i .k xk

It is
known that the maximal closed realization of Q on the domain

+ 5 5= ∈ ∈{ }( ) ( )Q u L Qu L( ) ;d d2 2

coincides with the graph closure of the restriction of Q to the Schwarz space : 5( ).d The
operator Q is elliptic, with discrete spectrum and 7; -symmetric, that is 7; =Q[ , ] 0, where
7; ϕ ϕ κ=x x( )( ) ( ( )). Attached to the symbol q there is the fundamental matrix
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& &→F: d d2 2 , defined by

&σ= ∈q X Y X FY X Y( , ) ( , ), , ,d2

where q X Y( , ) denotes the polarization of q, viewed as a symmetric bilinear form on & d2 and
σ is the canonical complex symplectic form on & d2 .

Under the above conditions, a major result of Caliceti, Graffi, Hitrik, Sjöstrand [24] is the
following.

Theorem 6.3. Assume that 5σ ⊆Q( ) . Then the operator Q is similar, in the above
algebraic sense, to a selfadjoint operator if and only if the matrix F has no Jordan blocks.

The reader can easily construct examples based on the above criterion. The same article
[24] contains an analysis of the following example.

Example 6.4. Let

Δ ω ω= − + + +Q igx x x x2 ,1 1
2

2
2

2
2

1 2

where ω ω ω> = ≠j0, 1, 2,j 1 2 and 5∈g . The operator Q is globally elliptic and
7; -symmetric, with respect to the involution κ = −x x x x( , ) ( , )1 2 1 2 . This operator appears
also in a physical context [26].

The above theorem shows that the spectrum of Q is real precisely when

ω ω ω ω− − ⩽ ⩽ −g21
2

2
2

1
2

2
2

while Q is similar to a selfadjoint operator if and only if

ω ω ω ω− − < < −g2 .1
2

2
2

1
2

2
2

6.4. Pauli equation with complex boundary conditions

An interesting example of a 7; -symmetric spin-1
2
system is the Pauli Hamiltonian [94]:

�� σ= − + · + × + ·B L B BH x( )2 2

defined on the Hilbert space 5 &Ω ∈ ⊗L ( )2 2 2. The domain of H is defined by boundary
condition:

ψ ψ Ω∂
∂ + = ∂
n

A 0, on ,

where n is the outward pointing normal to the boundary and A is a 2 × 2 complex-valued
matrix. Above, B represents a magnetic field and all the physical constants were set to one.

The selfadjoint property of the Hamiltonian can be broken to a 7; -symmetry by such
boundary conditions. Interestingly, the same type of boundary condition, when numerically
tuned, can lead to situations where the eigenvalue spectrum is entirely real or entirely
complex. This example is also interesting because the time reversal transformation is given
by:
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟; ;

ψ
ψ

ψ
ψ= − = −+

−

−

+
i

x

x

x

x

( )

( )

( )

( )
, 1, (6.5)2

as appropriate for spin-1
2
systems. The parity operation acts as usual 7ψ ψ= −x x( ) ( ). The

article [94] analyzed the model in some simplifying circumstances, namely, for =B B(0, 0, )
in which case ·B L and ×B x( )2 act only on the first two coordinates and σ·B reduces to
Bσ3. The domain was taken to be 5Ω = × − a a( , )2 and the matrix A entering the boundary
condition was taken independent of the first two space-coordinates. Under these conditions,
the model separates into a direct sum of two terms, out of which the term acting on the third
space-coordinate x is of interest to us

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

− +

− −
H dx

b

x
b

d
0

0
d

d

,b

2

2

2

2

which is defined on the Hilbert space / &= −L a a(( , ), )2 2 and subjected to the boundary
conditions:

ψ ψ± + ± =±
x

a A a
d
d

( ) ( ) 0. (6.6)

The boundary conditions preserving the 7; -symmetry of the system are those with:

; ;=− +A A .

The analysis of the spectrum led to the following conclusions.

(1) The residual spectrum is absent.
(2) Hb has only discrete spectrum.
(3) In the particular 7; -symmetric case:

⎡
⎣⎢

⎤
⎦⎥

α β
α β= ±

±
±A

i
i

0
0

,

with α, β real parameters, and β ⩾ 0, the spectrum of Hb is always entirely real. If β < 0,
then complex eigenvalues may show up in the spectrum.

7. Miscellaneous applications

We collect below a series of recent applications of complex symmetric operators to a variety
of mathematical and physical problems.

7.1. Exponential decay of the resolvent for gapped systems

This is an application taken from [120]. Let ��− D
2 denote the Laplace operator with Dirichlet

boundary conditions over a finite domain 5Ω ⊆ d with smooth boundary. Let v x( ) be a scalar
potential, which is ��D

2-relatively bounded with relative bound less than one, and let A x( ) be a
smooth magnetic vector potential. The following Hamiltonian:

�� ��+ Ω→ = − + +( )H L H i vA x: ( ), ( ) ( ),DA A
2 2 2
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generates the quantum dynamics of electrons in a material subjected to a magnetic field
�= ×B A. We will assume that this material is an insulator and that the magnetic field is

weak. In this regime, even with the boundary, the energy spectrum of HA will generically
display a spectral gap ρ⊆− +E E H[ , ] ( )A . This will be one of our assumptions. There is a
great interest in sharp exponential decay estimates on the resolvent − −H E( )A

1 with E in the
spectral gap [119].

In the theory of Schrödinger operators, non-selfadjoint operators are often generated by
conjugation with non-unitary transformations, such as:

Definition 7.1. Given an arbitrary 5∈q d ( ≡ | |q q ), letUq denote the following bounded and
invertible map

⎡⎣ ⎤⎦Ω Ω→ =U L L U f fx x: ( ) ( ), ( ) e ( ),q q
qx2 2

which leaves the domain of HA unchanged.

The conjugation of HA with the transformation Uq defines a family of (non-selfadjoint)
scaled Hamiltonians:

5≡ ∈−H U H U q, .q
d

q A q A,
1

The scaled Hamiltonians are explicitly given by

�� ��+ Ω→ = + + −( )H L H H i qq A: ( ), 2 ( ) . (7.2)Dq A q A A,
2 2

,
2

Note that Hq A, are not C-symmetric operators, with respect to any natural conjugation. The
following construction fixes this shortcoming.

Lemma 7.3. Consider the following block-matrix operator H and the conjugation C on
Ω Ω⊕L L( ) ( )2 2 :

⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎡
⎣⎢

⎤
⎦⎥

*
*= =

− −

H

H
CH

0

0
, 0

0
,

q A

q A

,

,

where * is the ordinary complex conjugation. Then H is C-selfadjoint: * = C CH H .
Moreover,

∥ − ∥ = ∥ − ∥ = ∥ − ∥− −
− −

−( ) ( )E H E H EH( ) . (7.4)qq A A
1

,
1

,
1

Proof. The statement follows from =* −H Hq A q A, , and * *= −H Hq A q A, , . □

The refined polar decomposition for C-selfadjoint operators and its consequences permit
sharp estimates on the resolvent of the scaled Hamiltonians. Indeed, according to theorem
5.8, the antilinear eigenvalue problem (with λ ⩾ 0n )

ϕ λ ϕ− =E CH( ) (7.5)n n n
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generates an orthonormal basis ϕn in Ω Ω⊕L L( ) ( )2 2 and

λ∥ − ∥ =−EH( )
1

min
. (7.6)

n
n

1

The task is then to generate a lower bound on the sequence λ{ }n . The advantage of using the
antilinear eigenvalue equations is that one can find explicit (but somewhat formal)
expressions for the λʼs. Indeed, if one writes ϕ = ⊕f gn n n, then:

��
λ =

− − + ++ −f H E q f f P i P f

Sf g

q A, 4 Re , [ ( ) ]

Re ,
, (7.7)n

n n n n

n n

A
2

where = −+ −S P P and ±P are the spectral projections of HA for the upper/lower (relative to
the gap) part of the spectrum. These formal expressions have already separated a large term
(the first term in the numerator), which can be controlled via the spectral theorem for the
selfadjoint operator HA, and a small term (the second term in the numerator), which can be
estimated approximately. The following lower bound emerges.

Proposition 7.8.

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟λ ⩾ − − −

− − − +±
−

+ −( )( ){ }E E q q
E

E E q E E q
min 1 2 .n

2
2 2

Note that this lower bound is based on information contained entirely in the eigen-
spectrum of original Hamiltonian (no information about the eigenvectors is needed). Let

∫ ∫ω
≡

ϵ ϵ ϵ− ⩽ − ⩽
G x x x y g x y( , )

1
d d ( , ),E Ex x y x

1 2 2
1 2

where ωϵ is the volume of a sphere of radius ϵ in 5d . We can now assemble the main result.

Theorem 7.9. For q smaller than a critical value qc(E), there exists a constant Cq E, ,
independent of Ω, such that:

⩽ − −G Cx x( , ) e . (7.10)E q E
q x x

1 2 , 1 2

Cq E, is given by:

ω=
− −

· −
ϵ

ϵ−

±
C

E E q q F q E

e

min

1
1 ( , )

(7.11)q E

q

,

1 2

2

with

=
− − − ++ −

−

( )( )
F q E

E E q E E q

E
( , )

4
. (7.12)

2 2

The critical value qc(E) is the positive solution of the equation =q F q E( , ).

Proof. If χx denotes the characteristic function of the ϵ ball centered at x (i.e., χ ′ =x( ) 1x for
ϵ| ′ − | ⩽x x and 0 otherwise), then one can equivalently write
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ω χ χ= −ϵ
− −( )G H Ex x( , ) , .E x A x1 2

2 1
1 2

If φ χ≡ − −x x( ) e ( )q x x
x1

( )1
1

and φ χ≡ −x x( ) e ( )x
q x x

2
( )2

2
, then

ω φ φ= −ϵ
− − − −( )G H Ex x( , ) , e ,E q A

q x x
1 2

2
1 ,

1
2

( )1 2

where we used the identity: − = −− −( )( )U H E U H Eq A q q A
1

,
1
. Choosing q parallel to

−x x1 2, we see that

ω⩽ ∥ − ∥ϵ
ϵ− − −

=

−( )G H Ex x( , ) e e sup .E
q q

q

x x

q
q A1 2

1 2
,

1
1 2

The statement then follows from the estimates of proposition 7.8. □

7.2. Conjugate-linear symmetric operators

Let / /→T: be a bounded C-symmetric operator and let A = CT. Then A is a conjugate-
linear operator satisfying the symmetry condition

/= ∈A Ax y y x x y, , , , . (7.13)

Indeed

= = = = =A CT T T C T Ax y x y x y x y x y y x, , [ , ] [ , ] , , .

Conversely, if A is a conjugate-linear bounded operator satisfying

/= ∈A Ax y x y x yRe , Re , , , ,

then identity (7.13) holds, simply by remarking that

= = =A A i A i Ax y x y y x y xIm , Re ( ), Re , Im ,

also holds true.
Thus, there is a straightforward dictionary between conjugate-linear operators that are

5-selfadjoint and C-symmetric operators. A study of the first class, motivated by classical
examples such as Beltrami or Hankel operators, has been vigorously pursued by the Finnish
school [39, 80–83, 128]. We confine ourselves to reproduce below only a small portion of
their results. In particular, we discuss the adapted functional calculus for conjugate-linear
operators and the related theory of complex symmetric Jacobi matrices.

Suppose that A is a bounded conjugate-linear operator and p(z) is a polynomial. Then p
(A) makes sense as a 5-linear transformation. Moreover, writing

= +( ) ( )p z q z zr z( ) 2 2

one immediately finds that

= +( ) ( )p A q A Ar A( ) ,2 2

in which the first term is &-linear and the second is conjugate-linear. Assume that A is
5-selfadjoint in the sense of formula (7.13). Then we know from the refined polar
decomposition (theorem 3.6) that = | |A J T , in which T is a positive &-linear operator and J is
a conjugation commuting with | |T . Thus = | |A T2 2 is a positive operator and

= +p A q T J T r T( ) ( ) ( ).2 2
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The spectrum σ A( ) of a conjugate-linear operator A is circularly symmetric, that is, it is
invariant under rotations centered at the origin. By passing to a uniform limit in the obser-
vation above, one finds the following result of Huhtanen and Perämäki.

Theorem 7.14. Let A be a bounded conjugate-linear operator which is 5-selfadjoint and let
= | |A J T be its polar decomposition, in which J is a conjugation commuting with | |T . For a

continuous function = | | + | |f z q z zr z( ) ( ) ( )2 2 with q r, continuous on σ ⊆ ∞A( ) [0, )2 the
spectral mapping theorem holds

σ σ=f A f A( ( )) ( ( )).

In particular,

λ∥ ∥ =
λ σ∈

f A f( ) max ( ) .
A( )

The selection of examples we present below is related to the classical moment problem
on the line, where Jacobi matrices play a central role.

Example 7.15. Let α{ }n be a bounded sequence of complex numbers and let β{ }n be
bounded sequences of positive numbers. The associated infinite matrix

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

Ξ

α β
β α β

β α=

…
…
…

⋮ ⋮ ⋱ ⋮
… ⋱ ⋮

0 0

0

0 0

0 0

1 1

1 2 2

2 3

is complex symmetric. As such, Ξ is C-symmetric, regarded as an operator on 1ℓ ( )2 , with
respect to the standard conjugation =C x x( ) ( ).n n Then the operator Ξ=A C is conjugate-
linear and 5-selfadjoint in the above sense.

In view of the functional calculus carried by the operator Ξ = | |J T , it is natural to
consider the vector space 7 of polynomials generated by | |z n2 and | |z z n2 . An element of 7 is of
the form

= +f z q z zr z( ) ( ) ( )2 2

where q and r are polynomials in | |z 2. Let E denote the spectral measure of the operator | |T . If
μ λ= 〈 〉E e ed (d ) ,1 1 , in which = …e (1, 0, 0, )1 , then

∫Ξ λ μ λ=
σ Ξ( )q e e q, ( )d ( ).2

1 1
( )

2

Next observe that

Ξ ⩾f e eRe ( ) , 01 1

whenever | ⩾σ ΞfRe 0.( ) Hence the measure μ can be extended to a positive measure ν
supported by σ Ξ( ) and satisfying

7∫Ξ λ ν λ= ∈
σ Ξ

f e e f f( ) , ( )d ( ), .1 1
( )

Due to the rotational symmetry of σ Ξ( ), the extension ν of μ is far from unique.
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As a consequence one obtains a positive definite inner product on 7, defined by

∫Ξ Ξ ν= =
σ Ξ

f g f e g e fg( , ) ( ) , ( ) d . (7.16)1 1
( )

The reader will now recognize the classical relationship between orthogonal polynomials,
Jacobi matrices and positive measures. In our particular case, we obtain the recurrence
relations

λ λ β λ α λ β λ= + + ⩾+ + −p p p p j( ) ( ) ( ) ( ), 0,j j j j j j j1 1 1

where …p p, ,0 1 represent the orthonormal sequence of polynomials obtained from
| | | | | | …z z z z z1, , , , ,2 2 4 with respect to the inner product (7.16). We take by convention
=−p 01 and β = 00 .

The framework above offers a functional model for all conjugate-linear 5-selfadjoint
operators possesing a cyclic vector. Numerous details, including a numerical study of the
relevant inversion formulae is contained in [81, 82].

7.3. The Friedrichs operator

Motivated by boundary value problems in elasticity theory, Friedrichs [44] studied a varia-
tional problem for a compact symmetric form on the Bergman space of a planar domain. The
bilinear from introduced by Friedrichs is represented against the standard L2 inner product by
a conjugate-linear operator now known as the Friedrichs operator of a planar domain. The
present section, adapted from [35], only touches one aspect of this topic, namely its con-
nection to complex symmetric operators and their minimax principles.

Let &Ω ⊆ denote a bounded, connected domain and let ΩL ( )a
2 denote the Bergman

space of Ω, the Hilbert subspace of all analytic functions in the Lebesgue space
Ω Ω=L L dA( ) ( , )2 2 . The symmetric bilinear form (see section 2.3)

∫=
Ω

B f g f z g z A z( , ) ( ) ( )d ( ) (7.17)

on Ω Ω×L L( ) ( )a a
2 2 was studied by Friedrichs and others in the context of classical potential

theory and planar elasticity. This form is clearly bounded, and it turns out that it is compact
whenever the boundary Ω∂ is α+C1 for some α > 0. In the other direction, Friedrichs himself
showed that if Ω∂ has an interior angle of α, then α α| |sin belongs to the essential spectrum
of the form and hence B is not compact. We assume throughout this section that the domain Ω
is chosen so that the bilinear form B is compact.

We are interested here in finding the best constant Ω <c ( ) 1 and an optimal subspace =
of ΩL ( )a

2 of codimension one for which the Friedrichs inequality

∫ ∫Ω⩽
Ω Ω

f A c f Ad ( ) d (7.18)2 2

holds for all f in =. As we will shortly see, the optimal constant Ωc ( ) is precisely σ2, the
second singular value of the bilinear form (7.17).

One important aspect of the Friedrichs inequality is that it provides an ΩL dA( , )2 bound
on harmonic conjugation. Recall that harmonic conjugation ↦ ∼u u (where u and ∼u are real-
valued harmonic functions on Ω) is well-defined only after insisting upon a certain nor-
malization for the conjugate functions ∼u . Typically, one requires that ∼u vanishes at a certain
point z0 in Ω. Such requirements correspond to restricting the analytic function = + ∼f u iu to
lie in a subspace = of ΩL ( )a

2 of codimension one. The fact that Ω σ=c ( ) 2 in (7.18) yields
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the best possible ΩL dA( , )2 bound on harmonic conjugation:

∫ ∫σ
σ⩽ +

−
∼

Ω Ω
u A u Ad

1
1

d ,2 2

2

2

where ∼u is normalized so that + ∼u iu belongs to the optimal subspace =. This follows
immediately upon substituting = + ∼f u iu in (7.18) and simplifying (see the proof of lemma
7.19 for a similar computation).

Without any further restrictions on the domain Ω, the bilinear form (7.17) is not
represented by a C-symmetric operator in any obvious way. Indeed, there are few natural
conjugations on the Bergman space ΩL ( )a

2 that are evident. Although one might attempt to
define a conjugation on ΩL ( )a

2 in terms of complex conjugation with respect to an ortho-
normal basis of ΩL ( )a

2 , such bases are notoriously difficult to describe explicitly, even for
relatively simple Ω.

For any fixed conjugation C on ΩL ( )a
2 , lemma 2.27 guarantees the existence of a

bounded C-symmetric operator T representing B in the sense that
= = 〈 〉B f g Tf g f CTg( , ) [ , ] , for all f g, in ΩL ( )a

2 . In the present situation, it turns out that
the conjugate-linear operator CT appearing in the preceding formula is more natural to work
with than any potential linear representing operator T.

Let Ω Ω→ΩP L L: ( ) ( )a
2 2 denote the Bergman projection, the orthogonal projection from

the full Lebesgue space ΩL ( )2 onto the Bergman space ΩL ( )a
2 . The Friedrichs operator is

the conjugate-linear operator Ω Ω→ΩF L L: ( ) ( )a a
2 2 defined by the equation

=Ω ΩF f P f ,

which can also be written in terms of the Bergman kernel K z w( , ) of Ω:

∫ Ω= ∈Ω Ω
[ ]F f z K z w f w A w z( ) ( , ) ( ) d ( ), .

The Friedrichs operator represents the bilinear form (7.17) in the sense that

= ΩB f g f F g( , ) ,

for all f g, in ΩL ( )a
2 . Indeed, this is a straightforward computation:

= = =Ω Ω ΩB f g P f g f P g f F g( , ) , , ,

and hence = ΩCT F for any C-symmetric operator T representing the bilinear form B. In light
of the refined polar decomposition (theorem 3.6), we see that there exists a conjugation J that
commutes with | |T and satisfies = | |ΩF J T .

Since ΩP is a projection, it follows immediately that ⩽ | | ⩽T I0 . In fact, we can say a
good deal more about | |T (or equivalently, about the symmetric bilinear form (7.17)). We start
by recalling a useful fact, implicit in the article of Friedrichs:

Lemma 7.19. If Ω is connected, then σ σ< = 11 0 . In particular, the largest singular value
of B x y( , ) has multiplicity one and the corresponding eigenfunctions are the constant
functions.

Proof. Since = | |ΩF J T and J commutes with | |T , one can find a basis of each spectral
subspace of | |T (corresponding to a non-zero eigenvalue) which is left invariant by J. If f is
such an eigenvector corresponding to the eigenvalue 1, then | | =T f f and Jf = f, which implies
that =ΩF f f . Consequently
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∫ ∫= = = =
Ω Ω Ω

f A B f f f F f f f f Ad ( , ) , , d .2 2

Setting = +f u iv where u and v are real-valued and harmonic, we obtain

∫ ∫ ∫
∫

+ = − +

= −
Ω Ω Ω

Ω

( ) ( )
( )

u v A u v A i uv A

u v A

d d 2 d

d

2 2 2 2

2 2

since the left-hand side is real. This implies that ∫ =Ω v Ad 02 and hence v vanishes
identically on Ω. Since Ω is connected and f analytic, f must be constant throughout Ω.
Conversely, it is clear that σ = 10 since ⩽ | | ⩽T I0 and ΩF fixes real constants. □

The following result demonstrates the nature of Friedrichs inequality at the abstract
level [35].

Theorem 7.20. If / / /× →B: is a compact, symmetric, bilinear form with singular
values σ σ⩾ ⩾ ⋯ ⩾ 00 1 , repeated according to multiplicity, and corresponding unit
eigenfunctions …e e, ,0 1 , then

σ⩽B x x x( , ) (7.21)2
2

whenever x is orthogonal to the vector σ σ+ ie e1 0 0 1. Furthermore, the constant σ2 in
(7.21) is the best possible for x restricted to a subspace of / of codimension one.

In essence, (7.21) provides the best possible bound on a symmetric bilinear form that can
be obtained on a hyperplane which passes through the origin. Since the orthogonal com-
plement of the vector σ σ− ie e( )1 0 0 1 also has the same property, we see that the optimal
subspace in theorem 7.20 is not unique.

7.4. Asymptotics of eigenvalues of compact symmetric bilinear forms

The example of the Friedrichs operator discussed in the previous section is only one instance
of a more general framework. We reproduce below from [121] a few abstract notions and
facts, with the direct aim at illuminating some aspects of the asymptotic analysis of the spectra
of compact symmetric bilinear forms.

Let / be a complex separable Hilbert space and let B x y( , ) be a compact bilinear
symmetric form on / . Following the discussion in section 2.3, the singular values of B (also
called the characteristic values of B) form a decreasing sequence λ λ⩾ ⩾ … ⩾ 00 1 and we
can find a sequence of associated vectors u{ }n that are characterized by the double ortho-
gonality conditions:

λ δ δ= =B u u u u( , ) , , . (7.22)n m n mn n m mn

These vectors are obtained as eigenvectors, fixed by the auxiliary conjugation J (theorem 3.6)
of the modulus | |T of any C-symmetric representing operator T satisfying

= 〈 〉B T Cx y x y( , ) , , as in lemma 2.27.
The following variant of the Weyl–Horn estimate is the root of all asymptotic evaluations

of the distribution of the characteristic values of B.

Proposition 7.23. Let · ·B ( , ) be a compact bilinear symmetric form on a complex
Hilbert space / and let λ λ⩾ ⩾ … ⩾ 00 1 denote its sequence of characteristic values. Let

J. Phys. A: Math. Theor 47 (2014) 353001 S R Garcia et al

41



…g g g, , , n0 1 be a system of vectors in / . Then for any non-negative integer n,

λ λ λ⩽ ⋯( ) ( )( )B g g g gdet , det , . (7.24)i j n i j0 1

Proof. Let u{ }k denote an orthonormal system satisfying (7.22). Write

∑= ⩽ ⩽
=

∞
c i ng u , 0 .i

k
ik k

0

Then

∑ ∑λ= =( )B c c B c cg g u u, ( , ) .i j
k

ik jk k k
k

k ik jk

Therefore

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑

∑

∑

λ λ

λ λ λ

λ λ λ

λ λ

= + ! ⋯

⩽ ⋯ + !

= ⋯

= □

( )( )

( )

( )

( )

( )B
n

c

n
c

c c

g g

g g

det ,
1

( 1)
det

1
( 1)

det

det

... det , .

i j
k k

k k ik

n
k k

ik

n
k

ik jk

n i j

,...,

2

0 1
,...,

2

0 1

0

n

n j

n

j

0

0

0

A cousin of the preceding result is stated below, as a compact bilinear symmetric form
variant of the Ky Fan inequality.

Proposition 7.25. Let · ·B ( , ) be a compact bilinear symmetric form on a complex
Hilbert space / and let λ λ⩾ ⩾ … ⩾ 00 1 denote its sequence of characteristic values. Then
for any orthonormal system g g g, ,..., n0 1 of vectors in /

∑ λ λ λ⩽ + + +
=

B g g( , ) ... .
i

n

i i n
0

0 1

Proof. Let u{ }k denote an orthonormal system satisfying (7.22). We have

∑= ⩽ ⩽
=

∞
c j ng u , 0 ,j

k
ik k

0

∑ δ= =c cg g, , (7.26)i j
k

ik jk ij

and

∑λ=( )B c cg g, .i j
k

k ik jk
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It is easy to see that

∑ ∑∑ ∑∑λ λ= ⩽
= = =

B c cg g( , ) .
i

n

i i
i

n

k
k ik

i

n

k
k ik

0 0

2

0

2

Let us consider the following polynomial of degree +n 1:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑λ λ λ= −( )P c c( ) det . (7.27)

k
k ik jk

As above, one finds

∑λ λ λ λ λ= + ! − − ( )( ) ( )P
n

c( )
1

( 1)
... det .

k k
k k ik

,...,

2

n

n j

0

0

From this, by (7.26) and (7.27), we infer

∑∑ ∑

∑

λ λ λ

λ λ

λ λ
λ λ

= + ! + +

⩽ + + + !

= + +
= + + □

=

( )

( )

( )

( )

( )

( )

c
n

c

n
c

g g

1
( 1)

... det

...
1

( 1)
det

... det ,

... .

i

n

k
k ik

k k
k k ik

n
k k

ik

n i j

n

0

2

,...,

2

0
,...,

2

0

0

n

n j

n

j

0

0

0

Examples abound. We relate the above to the Friedrichs operator studied in section 7.3,
as follows. Let Ω be a bounded open subset of the complex plane, with the analytic quad-
rature identity

∫ ∫ μ=
Ω

f z A z f z z( )d ( ) ( )d ( ),
K

where f is an analytic function defined on the closure of Ω and μ is a positive measure
supported by a compact set Ω⊆K . We will work with Friedrichs’ bilinear form defined on
Bergman space:

∫ Ω= ∈
Ω

B f g fg A f g L( , ) d , , ( ).a
2

The compactness of the form B follows from Montelʼs Theorem. Putting together the
preceding inequalities one obtains the asymptotic behavior of the eigenvalues λn of
Friedrichs’ form.

Theorem 7.28. Let Ω be a planar domain carrying an analytic quadrature identity given by
a positive measure μ supported by the compact set Ω⊆K . Then:

λ λ λ Ω⩽ − ∂→∞ ( ) C Klim sup ... exp ( 1 ( , )),n n
n

0 1
1 2

where Ω∂C K( , ) is the capacity of the condenser Ω∂ K( , ),

λ Ω⩽ − ∂→∞ C Klim sup exp ( 1 ( , )),n n
n1
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and

λ Ω⩽ − ∂→∞ C Klim inf exp ( 2 ( , )).n n
n1

The proof, and other similar examples of asymptotics of the eigenvalues of compact
bilinear symmetric forms are contained in [121].

7.5. The Neumann–Poincaré operator in two dimensions

The classical boundary problems for harmonic functions can be reduced to singular integral
equations on the boundary of the respective domain via single and double layer potentials.
The double layer potential, also known as the Neumann–Poincaré operator, offers an elegant
path for solving such boundary problems and at the same time it is one of the most important
and well studied singular integral operators [1, 118]. The spectrum of the Neumann–Poincaré
operator coincides, up to normalization, with the Fredholm eigevalues of the underlying
domain, providing important invariants in quasi-conformal mapping theory. Two real
dimensions are special, due to the existence of complex variables and the harmonic conjugate
of a harmonic functions. An intimate relationship between the Neumann–Poincaré operator
and a C-symmetric operator, acting on the underlying Bergman space, was discovered by
Schiffer [132, 133]. We illustrate, from the restricted point of view of our survey, this
connection. Complete details can be found in [91].

Let Γ be C2-smooth Jordan curve, surrounding the domain &Ω ⊆ , and having Ωe as
exterior domain. We denote by ζ …z w, , , the complex coordinate in & and by ∂ = ∂

∂z z
the

Cauchy–Riemann operator. The area measure will be denoted Ad . Following Poincaré we
consider the space H consists of (real-valued) harmonic functions h on & Γ⧹ having square
summable gradients:

H ∫ ∪∈ ⇔ ∂ < ∞ ∞ =
Ω Ω

h h z A z h( ) d ( ) , ( ) 0.z
2

e

Note that the gradients ∂ hz are now square summable complex conjugate-analytic functions.
The gradients of elements in Hi form the Hilbert spaceB Ω( ), which is the complex conjugate
of the Bergman space ΩL ( )a

2 of Ω. Boundary values will be considered in appropriate
fractional order Sobolev spaces ΓW ( )s .

The Hilbert space H possesses two natural direct sum decompositions:

H S D H H= ⊕ = ⊕ .i e

The first one corresponds to the ranges of the single Sf, respectively double Df, layer potentials
of charge distributions f on the boundary Γ. The second subspaces are

H H H H= ∈ = ∈{ } { }( ) ( )h h, 0 , 0, .i i e e

The single and double layer potentials are in this case strongly related to Cauchyʼs
integral. For instance, the singular integral component of the double layer potential is

⎡
⎣⎢

⎤
⎦⎥∫ ∫ζ ζ

π ζ π ζ ζ= − = −
Γ Γ

Kf z f
i z

f z( )( ) ( ) Re
d

2 ( )
1

2
( ) d arg( ).

The following complex conjugate-linear singular integral operator plays the role of the
symmetry −P Pd s in our notation. Let �=F S f , for Γ∈f W ( )1 2 , be regarded as a single
conjugate-analytic function defined on all ∪Ω Ωe. Define the Hilbert (sometimes called
Beurling) transform
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∫ ∪π
ζ

ζ
ζ=

−Ω Ω ( )
TF z

F

z
A( )( ) p. v.

1 ( )
d ( ).

2
e

Lemma 7.29. Let H∈h be represented as = +h D Sf g, in which Γ∈f W ( )1 2 and
Γ∈ −g W ( )1 2 . Then

� �+ = −( ) ( )T D S D S .f g f g

Corollary 7.30. The conjugate-linear transform T is an isometric isomorphism of the space
B BΩ Ω⊕( ) ( )e onto itself.

We are ready to define the principal conjugate-linear operator for our study:

B BΩ Ω Ω→ = ∈Ω ΩT T F z T F z z: ( ) ( ), ( )( ) ( , 0)( ), ,

where F( , 0) means the extension of Ω∈F L ( )a
2 by zero on Ωe. Thus the operator ΩT and the

one described above coincide as linear transformations over the real field.
A key observation, going back to the pioneeering work of Poincaré is that the angle

operator −P P P P( )s e i s measuring the balance of energies (inner-outer) of a harmonic field
generated by a single layer potential is unitarily equivalent to K, see for details [91]. But it is a
simple matter of the geometry of Hilbert spaces that the angle operator −P P P P( )i d s i is
unitarily equaivalent to −P P P P( )s e i s. We are led to the following non-trivial consequences,
originally proved by Schiffer [132, 133].

Theorem 7.31. Let Ω be a bounded planar domain with C2 smooth boundary and let
Ω Ω→ΩT L L: ( ) ( )a a

2 2 be the conjugate-linear operator

∫π
ζ

ζ
ζ Ω Ω=

−
∈ ∈Ω Ω

[ ]T f z
f

z
A f A z( ) p. v.

1 ( )

( )
d ( ), ( ), .

2
2

Then ΩT is compact and the eigenvalues of the conjugate-linear eigenvalue problem

λ=ΩT f fk k k

coincide (multiplicities included) with the spectrum of the Neumann–Poincaré operator K,
except the eigenvalue 1. The eigenfunctions f{ }k are orthogonal and complete in ΩL ( )a

2 .

In particular one finds that

λ∥ ∥ =Ω
+T , (7.32)1

where λ +
1 is the largest eigenvalue of K less than 1.

Note the ambiguity of phase in the eigenvalue problem λ=ΩT f f . By multiplying f by a
complex number τ of modulus one, the complex conjugate-linearity of ΩT implies τ λ=ΩT f f .2

On the other hand, we have identified T with an 5-linear operator ( −P Pd s) acting on gra-
dients of real harmonic functions. This simple observation leads to the following character-
istic symmetry of the Neumann–Poincaré operator specific for two variables.

Proposition 7.33. Let 5Γ ⊆ 2 be a C2-smooth Jordan curve. Then, except the point 1, the
spectrum of the Neumann–Poincaré operator acting on ΓL ( )2 is symmetric with respect to
the origin, multiplicities included: λ σ λ∈ <K( ), 1 if and only if λ σ− ∈ K( ).
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Proof. Let λ σ∈ ⧹K( ) {1} and let H∈u( , 0) be the associated eigenfunction of the operator
−P P P P( )i d e i . By the above correspondence there exists an antianalytic function = ∂F uz

satisfying λ=ΩT F F . Let G = iF and remark that the conjugate-linearity of ΩT implies
λ= −ΩT G G. Remark also that = ∂ ∼G u ,z where ∼u is the harmonic conjugate of u. Thus, the

eigenvector in H corresponding to the eigenvalue λ− is simply ∼u( , 0). □

Another symmetry is also available from the above framework.

Proposition 7.34. Let Ω be a bounded planar domain with C2-smooth boundary and let Ωe

be the exterior domain. Then the Bergman space operators ΩT and ΩT e have equal spectra.

Proof. Let F( , 0) be an eigenvector of ΩT , corresponding to the eigenvalue λ. Denote
λ=T F F G( , 0) ( , ). Since =T I2 we get

λ λ λ= + = +( )F T F T G F G T G( , 0) ( , 0) (0, ) , (0, ).2

Thus λ λ= − −T G F G(0, ) ((1 ) , )2 . This means λ σ− ∈ ΩT( )e and by the preceding
symmetry principle λ σ∈ ΩT( )e . □

We can assert with confidence that most of Schiffer (and collaborators) works devoted to
the Fredholm spectrum of a planar domain are, although not stated as such, consequences of
the obvious unitary equaivalence between the angle operators −P P P P( )s e i s and −P P P P( )i d s i

[132, 133].

7.6. Symmetrizable operators

A great deal of effort was put in the physics community for deriving from the C-symmetry of
an operator T,

* =T C CT
the reality of its spectrum. Almost all studies starting by a rescaling of the Hilbert space
metric with the aid of a positive operator of the form

= >A CS 0,

where S is bounded and commutes with T. Indeed, in this case

* = * = = =T A T CS CTS CST AT , (7.35)

or in equivalent terms

=ATf g Af Tg, , .

Non-selfadjoint operators with this property are called symmetrizable. In general, but not
always, the operator A is assumed to be invertible. In case A is only one-to-one and non-
negative it has a dense range in the underlying Hilbert space, so that the sequilinear form
〈 〉Af g, defines a norm which is not equivalent to the original one. The latter framework is the
origin of the concept of generalized function in a Gelfand triple of Hilbert spaces, with its
known impact in diagonalizing concrete unbounded operators. Far from being exhaustive, we
refer to the following list of works relating 7; -symmetric operators to symmetrizable ones
[2–5, 134, 158, 160, 161].

Symmetrizable operators appear in many physics contexts. As explained in the work by
Scholtz and collaborators [134], even in the traditional formulation of Quantum Mechanics,
there are important situations when one has to deal with non-selfadjoint operators. This is the
case, for example, for the effective quantum models obtained by tracing out a number of
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degrees of freedom of a large quantum system, an operation leading to non-selfadjoint
physical observables. Such effective models can be soundly interpreted and analyzed if the
physical observables are symmetrizable. The authors of [134] went on to formulate the
following problem: Given a set of non-selfadjoint observables Ti that are simultaneously
symmetrizable by the same A, i.e., =*T A ATi i for all Tiʼs, in which conditions is the ‘metric
operator’ A uniquely defined? The issue is important because the expected values of the
observables are physically measurable and they must be un-ambiguously defined. The
uniqueness of A will ensure that through the rescaled Hilbert space metric by A. The answer to
this question, which is quite satisfactory from a physical point of view, is as follows: The
metric operator A is uniquely defined by the system of Tiʼs if and only if the set of these
observables is irreducible, that is, if the only operator (up to a scaling factor) commuting with
all Tiʼs is the identity operator.

The rescaling of norm idea is however much older, with roots in potential theory. As a
continuation of the preceding section we briefly recount here this classical framework which
has inspired several generations of mathematicians but apparently did not reach the
7; -community.

Let Ω be a bounded domain in 5d with boundary Γ. We assume that Γ is at least C2-
smooth. The −d( 1)-dimensional surface measure on Γ is denoted by σd and the unit outer
normal to a point Γ∈y will be denoted ny. We denote by = −E x y E x y( , ) ( ) the nor-
malized Newtonian kernel:

⎧
⎨⎪
⎩⎪

π= − =

− ⩾−
E x y x y

d

c x y d

( , )

1
2

log
1

, 2,

, 3,d
d2

where −cd
1 is the surface area of the unit sphere in 5d . The signs were chosen so that Δ δ= −E

(Diracʼs delta-function).
For a C2-smooth function (density) f(x) on Γ we form the fundamental potentials: the

single and double layer potentials in 5d; denoted Sf and Df respectively:

∫
∫

σ

σ

=

= ∂
∂

Γ

Γ

S x E x y f y y

D x
n

E x y f y y

( ) ( , ) ( )d ( )

( ) ( , ) ( )d ( ).

f

f
y

The Neumann–Poincaré kernel, appearing in dimenion two in the preceding section,

= − ∂
∂ − * = − ∂

∂ −K x y
n

E x y K x y
n

E x y( , ): ( ); ( , ) ( )
y x

satisfies growth conditions which insure the compactness of the associated integral operator
acting on the boundary:

∫ σ Γ σ= ∈
Γ

Kf x K x y f y y f L( )( ) 2 ( , ) ( )d ( ), ( , d ).2

Similarly, the linear operator

Γ= ∈ΓSf S f L, ( ),f
2

turns out to be bounded (from ΓL ( )2 to the same space). Remark that the representing kernel
E x y( , ) of S is pointwise non-negative for ⩾d 3. As a matter of fact the total energy of the
field generated by the pair of harmonic functions Sf (in Ω and its complement) is 〈 〉 ΓSf f, 2, .

J. Phys. A: Math. Theor 47 (2014) 353001 S R Garcia et al

47



Returning to the main theme of this section, the following landmark observation, known
as Plemelj’ symmetrization principle unveils the reality of the spectrum of the Neu-
mann–Poincaré operator K, see [118]. For a modern proof and details we refer to [91].

Theorem 7.36. The layer operators Γ Γ⟶S K L L, : ( ) ( )2 2 satisfy the identity

= *KS SK . (7.37)

For an early discussion of the importance of the above rescaling identity in potential
theory see [95, 109]. It was however Carleman who put Plemelj’ symmetrization principle at
work, in his remarkable dissertation focused on domains with corners [27].

Numerous authors freed the symmetrization principle from its classical field theory roots,
to mention only [96, 104, 153]. We reproduce only Kreĭnʼs observation, which potentially can
impact the spectral analysys of unbounded C-symmetric operators via their resolvent.

Let / be an infinite dimensional, separable, complex Hilbert space and let
* * /= ⩾p( ), 1,p p be the Schatten-von Neumann class of compact operators acting on / .

Theorem 7.38. Let ⩾p 1 and let * /∈M ( )p be a linear bounded operator with the
property that there exists a strictly positive bounded operator A such that = *AM M A.

Then the spectrum of M is real and for every non-zero eigenvalue λ, if λ− =M f( ) 0m for
some >m 1, then λ− =M f( ) 0.

Moreover, the eigenvectors of M*, including the null vectors, span / .

The above theorm directly applies to the Neumann–Poincaré operator K and, in the case
of dimension two, to the Beurling transform ΩT discussed in the preceding section, see [91].
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