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Chapter 1

Introduction

An outline for this course.

• We will observe that many phenomena in ecology, biology and biochemistry can be

modelled mathematically.

• We will initially focus on systems where the spatial variation is not present or, at

least, not important. Therefore only the temporal evolution needs to be captured

in equations and this typically (but not exclusively) leads to difference equations

and/or ordinary differential equations.

• We are inevitably confronted with systems of non-linear difference or ordinary dif-

ferential equations, and thus we will study analytical techniques for extracting in-

formation from such equations.

• We will proceed to consider systems where there is explicit spatial variation. Then

models of the system must additionally incorporate spatial effects.

• In ecological and biological contexts the main physical phenomenon governing the

spatial variation is typically, but again not exclusively, diffusion. Thus we are in-

variably required to consider parabolic partial differential equations. Mathematical

techniques will be developed to study such systems.

• These studies will be in the context of ecological, biological and biochemical appli-

cations. In particular we will draw examples from:

– enzyme dynamics and other biochemical reactions;

– epidemics;

– interaction ecological populations, such as predator-prey models;

– biological pattern formation mechanisms;

– chemotaxis;

– the propagation of an advantageous gene through a population;

– nerve pulses and their propagation.
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Chapter 1. Introduction 6

1.1 References

The main references for this lecture course will be:

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I [8].

• J. D. Murray, Mathematical Biology, 3rd edition, Volume II [9].

Other useful references include (but are no means compulsory):

• J. P. Keener and J. Sneyd, Mathematical Physiology [7].

• L. Edelstein-Keshet, Mathematical Models in Biology [2].

• N. F. Britton, Essential Mathematical Biology [1].



Chapter 2

Spatially independent models for a

single species

In this chapter we consider modelling a single species in cases where spatial variation is not

present or is not important. In this case we can simply examine the temporal evolution

of the system.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 1 and Chapter

2 [8].

• L. Edelstein-Keshet, Mathematical Models in Biology, Chapter 1, Chapter 2 and

Chapter 6 [2].

• N. F. Britton, Essential Mathematical Biology, Chapter 1 [1].

2.1 Continuous population models for single species

A core feature of population dynamics models is the conservation of population number,

i.e.

rate of increase of population = birth rate− death rate (2.1)

+ rate of immigration − rate of emigration.

We will make the assumption the system is closed and thus there is no immigration or

emigration.

Let N(t) denote the population at time t. Equation (2.1) becomes

dN

dt
= f(N) = Ng(N), (2.2)

where g(N) is defined to be the intrinsic growth rate. Examples include:

7



Chapter 2. Spatially independent models for a single species 8

The Malthus model. This model can be written as:

g(N) = b− d
def
= r, (2.3)

where b and d are constant birth and death rates. Thus

dN

dt
= rN, (2.4)

and hence

N(t) = N0e
rt. (2.5)

The Verhulst model. This model is also known as the logistic growth model:

g(N) = r

(

1− N

K

)

. (2.6)

Definition. In the logistic growth equation, r is defined to be the linear birth rate

and K is defined to be the carrying capacity.

For N ≪ K, we have
dN

dt
≃ rN ⇒ N ≃ N0e

rt. (2.7)

However, as N tends towards K,
dN

dt
→ 0, (2.8)

the growth rate tends to zero.

We have
dN

dt
= rN

(

1− N

K

)

, (2.9)

and hence

N(t) =
N0Ke

rt

K +N0(ert − 1)
→ K as t→ ∞. (2.10)

Sketching N(t) against time yields solution as plotted in Figure 2.1: we see that solutions

always monotonically relaxes to K as t→ ∞.

Aside. The logistic growth model has been observed to give very good fits to popula-

tion data in numerous, disparate, scenarios ranging from bacteria and yeast to rats and

sheep [8].

2.1.1 Investigating the dynamics

There are two techniques we can use to investigate the model

dN

dt
= f(N) = Ng(N). (2.11)
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Figure 2.1: Logistic growth for N0 < K (left-hand) and N0 > K (right-hand). Parameters

are as follows: r = 0.015 and K = 100.

Method (i): analytical solution

For the initial conditions N(t = 0) = N0, with N0 fixed, we can we formally integrate

equation (2.2) to give N(t) = N∗(t), where N∗(·) is the inverse of the function F (·) defined
by

F (x) =

∫ x

N0

1

f(s)
ds. (2.12)

However, unless integrating and finding the inverse function is straightforward, there is an

easier way to determine the dynamics of the system.

Method (ii): plot the graph

Plot dN/dt = f(N) = Ng(N) as a function of N . For example, with

f(N) = Ng(N) = N(6N2 −N3 − 11N + 6) = N(N − 1)(N − 2)(3 −N), (2.13)

we have the plot shown in Figure 2.2.
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Figure 2.2: Growth according to the dynamics f(N) = N(N − 1)(N − 2)(3−N).
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Note 1. For a given initial condition, N0, the system will tend to the nearest root of

f(N) = Ng(N) in the direction of f(N0). The value of |N(t)| will tend to infinity with

large time if no such root exists.

For f(N) = Ng(N) = N(N − 1)(N − 2)(3 −N), we have:

• when N0 ∈ (0, 2] the large time asymptote is N(∞) = 1;

• for N0 > 2 the large time asymptote is N(∞) = 3;

• N(t) = 0 ∀t if N(0) = 0.

Note 2. On more than one occasion we will have a choice between using a graphical

method and an analytical method, as seen above. The most appropriate method to use

is highly dependent on context. The graphical method, Method (ii), quickly and simply

gives the large time behaviour of the system and stability information (see below). The

analytical method, Method (i), is often significantly more cumbersome, but yields all

information, at a detailed quantitative level, about the system.

Definition. A stationary point, also known as an equilibrium point, is a point where

the dynamics does not change in time. Thus in our specific context of dN/dt = f(N) =

Ng(N), the stationary points are the roots of f(N) = 0.

Example. For dN/dt = f(N) = Ng(N) = N(N − 1)(N − 2)(3 − N), the stationary

points are

N = 0, 1, 2, 3. (2.14)

Definition. A stationary point is stable if a solution starting sufficiently close to the

stationary point remains close to the stationary point.

Non-examinable. A rigorous definition is as follows. Let NN0
(t) denote the solution

to dN/dt = f(N) = Ng(N) with initial condition N(t = 0) = N0. A stationary point,

Ns, is stable if, and only if, for all ǫ > 0 there exists a δ such that if |Ns −N0| < δ then

|NN0
(t)−Ns| < ǫ.

Exercise. Use Figure 2.2 to deduce which of stationary points of the system

dN

dt
= f(N) = Ng(N) = N(N − 1)(N − 2)(3 −N), (2.15)

are stable.

Solution. Figure 2.2 shows that both Ns = 1 and Ns = 3 are stable.
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2.1.2 Linearising about a stationary point

Suppose Ns is a stationary point of dN/dt = f(N) and make a small perturbation about

Ns:

N(t) = Ns + n(t), n(t) ≪ Ns. (2.16)

We have, by using a Taylor expansion of f(N) and denoting ′ = d/dN , that

f(N(t)) = f(Ns + n(t)) = f(Ns) + n(t)f ′(Ns) +
1

2
n(t)2f ′′(Ns) + . . . , (2.17)

and hence

dn

dt
=
dN

dt
= f(N(t)) = f(Ns) + n(t)f ′(Ns) +

1

2
n(t)2f ′′(Ns) + . . . (2.18)

The linearisation of dN/dt = f(N) about the stationary point Ns is given by neglecting

higher order (and thus smaller) terms to give

dn

dt
= f ′(Ns)n(t).

The solution to this linear system is simply

n(t) = n(t = 0) exp

[

t
df

dN
(Ns)

]

. (2.19)

Definition. Let Ns denote a stationary point of dN/dt = f(N), and let

n(t) = n(t = 0) exp

[

t
df

dN
(Ns)

]

, (2.20)

be the solution of the linearisation about Ns. Then Ns is linearly stable if n(t) → 0 as

t→ ∞. In other words, Ns is linearly stable if

df

dN
(Ns) < 0. (2.21)

Exercise. By algebraic means, deduce which stationary points of the system

dN

dt
= f(N) = Ng(N) = N(N − 1)(N − 2)(3−N), (2.22)

are linearly stable. Can your answer be deduced graphically?

Solution. Differentiating f(N) with respect to N gives

f ′(N) = 2− 22N + 18N2 − 4N3, (2.23)

and hence f ′(0) = 6 (unstable), f ′(1) = −8 (stable) etc.

Consider the graph of f(N) to deduce stability graphically—steady states with negative

gradient are linearly stable c.f. Figure 2.2.
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Figure 2.3: Growth according to the dynamics f(N) = (1−N)3.

Exercise. Find a function f(N) such that dN/dt = f(N) has a stationary point which

is stable and not linearly stable.

Solution. The function

f(N) = (1−N)3, (2.24)

gives f ′(1) = 0 and is therefore not linearly stable (see Figure 2.3).

2.1.3 Insect outbreak model

First introduced by Ludwig in 1978, the model supposes budworm population dynamics

to be modelled by the following equation:

dN

dt
= rBN

(

1− N

KB

)

− p(N), p(N)
def
=

BN2

A2 +N2
. (2.25)

The function p(N) is taken to represent the effect upon the population of predation by

birds. Plotting p(N) as a function of N gives the graph shown in Figure 2.4.
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Figure 2.4: Predation, p(N), in the insect outbreak model. Parameters are as follows:

A = 150, B = 0.5.
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Non-dimensionsionalisation

Let

N = N∗u, t = Tτ, (2.26)

where N∗, N have units of biomass, and t, T have units of time, with N∗, T constant.

Then

N∗

T

du

dτ
= rBN

∗u

(

1− N∗u

KB

)

− B(N∗)2u2

A2 + (N∗)2u2
, (2.27)

⇒ du

dτ
= rBTu

(

1− N∗u

KB

)

− BTN∗u2

A2 + (N∗)2u2
. (2.28)

Hence with

N∗ = A, T =
A

B
, r = rBT =

rBA

B
, q =

KB

N∗
=
KB

A
, (2.29)

we have
du

dτ
= ru

(

1− u

q

)

− u2

1 + u2
def
= f(u; r, q). (2.30)

Thus we have reduced the number of parameters in our model from four to two, which

substantially simplifies our subsequent study.

Steady states

The steady states are given by the solutions of

ru

(

1− u

q

)

− u2

1 + u2
= 0. (2.31)

Clearly u = 0 is a steady state. We proceed graphically to consider the other steady states

which are given by the intersection of the graphs

f1(u) = r

(

1− u

q

)

and f2(u) =
u

1 + u2
. (2.32)

The top left plot of Figure 2.5 shows plots of f1(u) and f2(u) for different values of r and

q. We see that, depending on the values of r and q, we have either one or three non-zero

steady states. Noting that
df(u; r, q)

du

∣
∣
∣
∣
u=0

= r > 0, (2.33)

typical plots of du/dτ vs. u are shown in Figure 2.5 for a range of values of r and q.

Definition. A system displaying hysteresis exhibits a response to the increase of a

driving variable which is not precisely reversed as the driving variable is decreased.

Remark. Hysteresis is remarkably common. Examples include ferromagnetism and

elasticity, amongst others. See http://en.wikipedia.org/wiki/Hysteresis for more

details.
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Figure 2.5: Dynamics of the non-dimensional insect outbreak model. Top left: plots of

the functions f1(u) (dashed line) and f2(u) (solid line) with parameters r = 0.2, 0.4, 0.6,

q = 10, 15, 20, respectively. Top right: plot of f(u; r, q) with parameters r = 0.6, q = 0.6.

Bottom left: plot of f(u; r, q) with parameters r = 0.6, q = 6. Bottom right: plot of f(u; r, q)

with parameters r = 0.6, q = 10.

Extended Exercise

• Fix r = 0.6. Explain how the large time asymptote of u, and hence N , changes as

one slowly increases q from q ≪ 1 to q ≫ 1 and then one decreases q from q ≫ 1 to

q ≪ 1. In particular, show that hysteresis is present. Note for this value of r, there

are three non-zero stationary points for q ∈ (q1, q2) with 1 < q1 < q2 < 10.

Solution. For small values of q there is only one non-zero steady state, S1. As q is

increased past q1, three non-zero steady states exist, S1, S2, S3, but the system stays

at S1. As q is increased further, past q2, the upper steady state S3 is all that remains

and hence the system moves to S3. If q is now decreased past q2, three non-zero

steady states (S1, S2, S3) exist but the system remains at S3 until q is decreased

past q1.

Figure 2.6 shows f(u; r, q) for different values of q. The dashed line shows a plot for

q = q1 whilst the dash-dotted line shows a plot for q = q2.

• What is the biological interpretation of the presence of hysteresis in this model?
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Figure 2.6: Left-hand plot: du/dτ = f(u; r, q) in the non-dimensional insect outbreak model

as q is varied. For small q there is one, small, steady state, for q ∈ (q1, q2) there are three

non-zero steady states and for large q there is one, large, steady state. Right-hand plot: the

steady states plotted as a function of the parameter q reveals the hysteresis loop.

Solution. If the carrying capacity, q, is accidentally manipulated such that an out-

break occurs (S1 → S3) then reversing this change is not sufficient to reverse the

outbreak.

2.1.4 Harvesting a single natural population

We wish to consider a simple model for the maximum sustainable yield. Suppose, in the

absence of harvesting, we have

dN

dt
= rN

(

1− N

K

)

. (2.34)

We consider a perturbation from the non-zero steady state, N = K. Thus we write

N = K + n, and find, on linearising,

dn

dt
= −rn ⇒ n = n0e

−rt. (2.35)

Hence the system returns to equilibrium on a timescale of TR(0) = O(1/r).

We consider two cases for harvesting:

• constant yield, Y ;

• constant effort, E.

Constant yield

For a constant yield, Y = Y0, our equations are

dN

dt
= rN

(

1− N

K

)

− Y0
def
= f(N ;Y0). (2.36)
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Figure 2.7: Dynamics of the constant yield model for Y0 = 0.00, 0.15, 0.30. As Y0 is increased

beyond a critical value the steady states disappear and N → 0 in finite time. Parameters are

as follows: K = 100 and r = 0.01.

Plotting dN/dt as a function of N reveals (see Figure 2.7) that the steady states disappear

as Y0 is increased beyond a critical value, and then N → 0 in finite time.

The steady states are given by the solutions of

rN∗ − rN∗2

K
− Y0 = 0 ⇒ N∗ =

r ±
√

r2 − 4rY0/K

2r/K
. (2.37)

Therefore extinction will occur once

Y0 >
rK

4
. (2.38)

Constant effort

For harvesting at constant effort our equations are

dN

dt
= rN

(

1− N

K

)

− EN
def
= f(N ;E) = N(r − E)− rN2

K
, (2.39)

where the yield is Y (E) = EN . The question is: how do we maximise Y (E) such that the

stationary state still recovers?

The steady states, N∗, are such that f(N∗;E) = 0 (see Figure 2.8). Thus

N∗(E) =
(r −E)K

r
=

(

1− E

r

)

K, (2.40)

and hence

Y ∗(E) = EN∗(E) =

(

1− E

r

)

KE. (2.41)

Thus the maximum yield, and corresponding value of N∗, are given by the value of E such

that
∂Y ∗

∂E
= 0 ⇒ E =

r

2
, Y ∗

max =
rK

4
, N∗

max =
K

2
. (2.42)
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Linearising about the stationary state N∗(E) we have N = N∗(E) + n with

dn

dt
≃ fE(N

∗) +
df(N ;E)

dN

∣
∣
∣
∣
N=N∗

n+ . . . = −(r − E)n + . . . , (2.43)

and hence the recovery time is given by

TR(E) ≃ O
(

1

r − E

)

. (2.44)

Defining the recovery time to be the time for a perturbation to decrease by a factor of e

according to the linearised equations about the non-zero steady state, then

TR(0) =
1

r
, TR(E) =

1

r − E
. (2.45)

Hence, at the maximum yield state,

TR(E) =
2

r
since E =

r

2
at maximum yield. (2.46)

As we measure Y it is useful to rewrite E in terms of Y to give the ratio of recovery times

in terms of the yield Y (E) and the maximum yield YM :

TR(Y )

TR(0)
=

2

1±
√

1− Y
YM

. (2.47)

Derivation. At steady state, we have

K

r
E2 −KE + Y ∗ = 0 as Y ∗ = EN∗ = KE

(

1− E

r

)

. (2.48)

This gives

E =
r ± r

√

1− 4Y ∗/Kr

2
⇒ r − E =

r

2

[

1∓
√

1− Y ∗

Y ∗
M

]

. (2.49)

Substituting into equation (2.45) gives the required result.

Plotting TR(Y )/TR(0) as a function of Y/YM yields some interesting observations, as

shown in Figure 2.8.

Note. As TR increases the population recovers less quickly, and therefore spends more

time away from the steady state, N∗. The biological implication is that, in order to

maintain a constant yield, E must be increased. This, in turn, implies TR increases,

resulting in a positive feedback loop that can have disastrous consequences upon the

population.
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Figure 2.8: Dynamics of the constant effort model. The left-hand plot shows the logistic

growth curve (solid line) and the yield, Y = EN (dashed lines), for two values of E. The

right-hand plot shows the ratio of recovery times, TR(Y )/TR(0), with the negative root plotted

as a dashed line and the positive root as a solid line. Parameters are as follows: K = 100 and

r = 0.01.

2.2 Discrete population models for a single species

When there is no overlap in population numbers between each generation, we have a

discrete model:

Nt+1 = Ntf(Nt) = H(Nt). (2.50)

A simple example is

Nt+1 = rNt, (2.51)

which implies

Nt = rtN0 →







∞ r > 1

N0 r = 1

0 r < 1

. (2.52)

Definition. An equilibrium point, N∗, for a discrete population model satisfies

N∗ = N∗f(N∗) = H(N∗). (2.53)

Such a point is often known as a fixed point.

An extension of the simple model, equation (2.51), called the Ricker model includes a

reduction of the growth rate for large Nt:

Nt+1 = Nt exp

[

r

(

1− Nt

K

)]

, r > 0 K > 0, (2.54)

or, in non-dimensionalised form,

ut+1 = ut exp [r (1− ut)]
def
= H(ut). (2.55)

We can start developing an idea of how this system evolves in time via cobwebbing, a

graphical technique, as shown in Figure 2.9.
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Figure 2.9: Dynamics of the Ricker model. The left-hand plot shows a plot of Nt+1 =

Nt exp [r (1−Nt/K)] alongside Nt+1 = Nt with the cobwebbing technique shown. The right-

hand plot shows Nt for successive generation times t = 1, 2, . . . , 10. Parameters are as follows:

N0 = 5, r = 1.5 and K = 100.

In particular, it is clear that the behaviour sufficiently close to a fixed point, u∗, depends

on the value of H ′(u∗). For example:

• −1 < H ′(u∗) < 0

• H ′(u∗) = −1
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• H ′(u∗) < −1

2.2.1 Linear stability

More generally, to consider the stability of an equilibrium point algebraically, rather than

graphically, we write

ut = u∗ + vt, (2.56)

where u∗ is an equilibrium value. Note that u∗ is time-independent and satisfies u∗ =

H(u∗). Hence

ut+1 = u∗ + vt+1 = H(u∗ + vt) = H(u∗) + vtH
′(u∗) + o(v2t ). (2.57)

Consequently, we have

vt+1 = H ′(u∗)vt where H ′(u∗) is a constant, independent of t, (2.58)

and thus

vt =
[
H ′(u∗)

]t
v0. (2.59)

This in turn enforces stability if |H ′(u∗)| < 1 and instability if |H ′(u∗)| > 1.

Definition. A discrete population model is linearly stable if |H ′(u∗)| < 1.

2.2.2 Further investigation

The equations are not as simple as they seem. For example, from what we have seen thus

far, the discrete time logistic model seems innocuous enough.

Nt+1 = rNt

(

1− Nt

K

)

, r > 0 K > 0. (2.60)

If we put in enough effort, one could be forgiven for thinking that the use of cobwebbing

will give a simple representation of solutions of this equation. However, the effects of

increasing r are stunning. Figure 2.10 shows examples of cobwebbing when r = 1.5 and

r = 4.0.

It should now be clear that even this simple equation does not always yield a simple

solution! How do we investigate such a complicated system in more detail?
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Figure 2.10: Dynamics of the discrete logistic model. The left-hand plot shows results for

r = 1.5 whilst the right-hand plot shows results for r = 4.0. Other parameters are as follows:

N0 = 5 and K = 100.

Definition. A bifurcation point is, in the current context, a point in parameter space

where the number of equilibrium points, or their stability properties, or both, change.

We proceed to take a closer look at the non-dimensional discrete logistic growth model:

ut+1 = rut (1− ut) = H(ut), (2.61)

for different values of the parameter r, and, in particular, we seek the values where the

number or stability nature of the equilibrium points change. Note that we have equilibrium

points at u∗ = 0 and u∗ = (r − 1)/r, and that H ′(u) = r − 2ru.

For 0 < r < 1, we have:

• u∗ = 0 is a stable steady state since |H ′(0)| = |r| < 1;

• the equilibrium point at u∗ = (r − 1)/r is unstable. It is also unreachable, and thus

irrelevant, for physical initial conditions with u0 ≥ 0.

For 1 < r < 3 we have:

• u∗ = 0 is an unstable steady state since |H ′(0)| = |r| > 1;

• u∗ = (r − 1)/r is an stable steady state since |H ′((r − 1)/r)| = |2− r| < 1.

In Figure 2.11 we plot this on a diagram of steady states, as a function of r, with stable

steady states indicated by solid lines and unstable steady states by dashed lines.

When r = 1 we have (r − 1)/r = 0, so both equilibrium points are at u∗ = 0, with

H ′(u∗ = 0) = 1. Clearly we have a switch in the stability properties of the equilibrium

points, and thus r = 1 is a bifurcation point.



Chapter 2. Spatially independent models for a single species 22

0 1 2 3

0.0

0.2

0.4

0.6

0.8

r

u*

Figure 2.11: Bifurcation diagram for the non-dimensional discrete logistic model. The non-

zero steady state is given, for r > 1, by N∗ = (r − 1)/r.

What happens for r > 3? We have equilibrium points at u∗ = 0, u = (r − 1)/r and

H ′(u∗ = (r − 1)/r) < −1; both equilibrium points are unstable. Hence if the system

approaches one of these equilibrium points the approach is only transient; it quickly moves

away. We have a switch in the stability properties of the equilibrium points, and thus r = 3

is a bifurcation point.

To consider the dynamics of this system once r > 3 we consider

ut+2 = H(ut+1) = H [H(ut)]
def
= H2(ut) = r [rut(1− ut)] [1− rut(1− ut)] . (2.62)

Figure 2.12 shows H2(ut) for r = 2.5 and r = 3.5 and demonstrates the additional steady

states that arise as r is increased past r = 3.
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Figure 2.12: Dynamics of the non-dimensional discrete logistic model in terms of every

second iteration. The left-hand plot shows results for r = 2.5 whilst the right-hand plot shows

results for r = 3.5.

Note. The fixed points of H2 satisfy u∗2 = H2(u
∗
2), which is a quartic equation in u∗2.

However, we know two solutions, the fixed pointsH(·), i.e. 0 and (r−1)/r. Using standard
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techniques we can reduce the quartic to a quadratic, which can be solved to reveal the

further fixed points of H2, namely

u∗2 =
r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
. (2.63)

These roots exist if (r − 1)2 > 4, i.e. r > 3.

Definition. The mth composition of the function H is given by

Hm(u)
def
= [H ·H . . .H ·H]
︸ ︷︷ ︸

m times

(u). (2.64)

Definition. A point u is periodic of period m for the function H if

Hm(u) = u, Hi(u) 6= u, i ∈ {1, 2, . . . m− 1}. (2.65)

Thus the points

u∗2 =
r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
, (2.66)

are points of period 2 for the function H.

Problem. Show that the u∗2 are stable with respect to the function H2 for r > 3,

(r − 3) ≪ 1.

Let

u0
def
=

r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
, u1 = H(u0), u2 = H2(u0), (2.67)

and let

λ =
∂

∂u
[H2(u)] |u=u0

. (2.68)

Then

λ =
∂

∂u
[H ·H(u)] |u=u0

= H ′(u0)H
′(u1). (2.69)

Thus for stability we require |H ′(u0)H
′(u1)| < 1.

Exercise. Finish the problem: show that the steady states

u∗2 =
r + 1

2r
± 1

2r

[
(r − 1)2 − 4

]1/2
, (2.70)

are stable for the dynamical system ut+1 = H2(ut), with r > 3, (r − 3) ≪ 1.
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Exercise. Suppose u0 is an equilibrium point of period m for the function H. Show

that u0 is stable if

Πm−1
i=0

[
H ′(ui)

]
< 1, (2.71)

where ui = Hi(u0) for i ∈ {1, 2, . . . ,m− 1}.

Solution. Defining λ in a similar manner as before, we have

λ =
∂

∂u
Hm(u)

∣
∣
∣
∣
u=u0

, (2.72)

=
∂

∂u
[H(Q(u)]

∣
∣
∣
∣
u=u0

, where Q(u) = Hm−1(u), (2.73)

= H ′(Q(u))
∂Q

∂u

∣
∣
∣
∣
u=u0

, (2.74)

= H ′(um−1)
∂

∂u
Hm−1

∣
∣
∣
∣
u=u0

. (2.75)

Hence, by iteration, we have the result.

We plot the fixed points of H2, which we now know to be stable, in addition to the fixed

points of H1, in Figure 2.13. The upper branch, u∗2U , is given by the positive root of

equation (2.70) whilst the lower branch, u∗2L, is given by the negative root. We have

u∗2L = H(u∗2U ), u
∗
2U = H(u∗2L). Thus a stable, period 2, oscillation is present, at least for

(r − 3) ≪ 1. Any solution which gets sufficiently close to either u∗2U or u∗2L stays close.
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Figure 2.13: Bifurcation diagram for the non-dimensional discrete logistic model with inclu-

sion of the period 2 solutions.

For higher values of r, there is a bifurcation point for H2; we can then find a stable

fixed point for H4(u) : : H2[H2(u)] in a similar manner. Increasing r further there is a

bifurcation point for H4(u). Again, we are encountering a level of complexity which is too

much to deal with our current method.

To bring further understanding to this complex system, we note the following definition.
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Definition. An orbit generated by the point u0 are the points {u0, u1, u2, , u3, . . .}
where ui = Hi(u) = H(ui−1).

We are primarily interested in the large time behaviour of these systems in the context of

biological applications. Thus, for a fixed value of r, we start with a reasonable initial seed,

say u∗ = 0.5, and plot the large time asymptote of the orbit of u∗, ie. the points Hi(u
∗)

once i is sufficiently large for there to be no transients. This gives an intriguing plot; see

Figure 2.14.
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Figure 2.14: The orbit diagram of the logistic map. For each value of r ∈ [3, 4] along

horizontal axis, points on the large time orbits of the logistic map are plotted.

In particular, we have regions where, for r fixed, there are three points along the ver-

tical corresponding to period 3 oscillations. This means any period of oscillation exists

and we have a chaotic system. This can be proved using Sharkovskii’s theorem. See P.

Glendinning, Stability, Instability and Chaos [4] for more details on chaos and chaotic

systems.

Note. A common discrete population model in mathematical biology is

Nt+1 =
rNt

1 + aN b
t

. (2.76)

Models of this form for the Colorado beetle are within the periodic regimes, while Nichol-

son’s blowfly model is in the chaotic regime [8].

2.2.3 The wider context

In investigating the system

ut+1 = rut (1− ut)
def
= H(ut), (2.77)

we have explored a very simple equation which, in general, exhibits greatly different be-

haviours with only a small change in initial conditions or parameters (i.e. linear growth

rate, r). Such sensitivity is a hallmark feature of chaotic dynamics. In particular, it makes
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prediction very difficult. There will always be errors in a model’s formalism, initial condi-

tions and parameters and, in general, there is no readily discernible pattern in the way the

model behaves. Thus, assuming the real system behaviour is also chaotic, using statistical

techniques to extract a pattern of behaviour to thus enable an extrapolation to predict

future behaviour is also fraught with difficulty. Attempting to make accurate predictions

with models containing chaos is an active area of research, as is developing techniques to

analyse seemingly random data to see if such data can be explained by a simple chaotic

dynamical system.



Chapter 3

Continuous population models:

interacting species

In this chapter we consider interacting populations, but again in the case where spatial

variation is not important. Appendix A contains relevant information for phase plane

analysis that may be useful.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 3 [8].

• L. Edelstein-Keshet, Mathematical Models in Biology, Chapter 6 [2].

• N. F. Britton, Essential Mathematical Biology, Chapter 2 [1].

There are three main forms of interaction:

Predator-prey An upsurge in population I (prey) induces a growth in population II

(predator). An upsurge in population II (predator) induces a decline in population

I (prey).

Competition An upsurge in either population induces a decline in the other.

Symbiosis An upsurge in either population induces an increase in the other.

Of course, there are other possible interactions, such as cannibalism, especially with the

“adult” of a species preying on the young, and parasitism.

3.1 Predator-prey models

The most common predator-prey model is the Lotka-Volterra model. With N the number

of prey and P the number of predators, this model can be written

dN

dt
= aN − bNP, (3.1)

dP

dt
= cNP − dP, (3.2)

27
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with a, b, c, d positive parameters and c < b. Non-dimensionalising with u = (c/d)N ,

v = (b/a)P , τ = at and α = d/a, we have

1

1/a

d

c

du

dτ
=
ad

c
u− bd

c

a

b
uv ⇒ du

dτ
= u− uv = u(1− v) ≡ f(u, v), (3.3)

1

1/a

a

b

dv

dτ
= c

d

c

a

b
uv − d

a

b
v, ⇒ dv

dτ
= α(uv − v) = αv(u− 1) ≡ g(u, v), (3.4)

There are stationary points at (u, v) = (0, 0) and (u, v) = (1, 1).

Exercise. Find the stability of the stationary points (u, v) = (0, 0) and (u, v) = (1, 1).

The Jacobian, J , is given by

J =

(

fu fv
gu gv

)

=

(

1− v −u
αv α(u− 1)

)

. (3.5)

At (0, 0) we have

J =

(

1 0

0 −α

)

, (3.6)

with eigenvalues 1, −α. Therefore the steady state (0, 0) is an unstable saddle.

At (1, 1) we have

J =

(

0 −1

α 0

)

, (3.7)

with eigenvalues ±i√α. Therefore the steady state (1, 1) is a centre (not linearly stable).

These equations are special; we can integrate them once, as follows, to find a conserved

constant:
du

dv
=

u(1 − v)

α(u− 1)v
⇒

∫
u− 1

u
du =

∫
1− v

αv
. (3.8)

Hence

H = const = αu+ v − α lnu− ln v. (3.9)

This can be rewritten as (
ev

v

)(
eu

u

)α

= eH , (3.10)

from which we can rapidly deduce that the trajectories in the (u, v) plane take the form

shown in Figure 3.1. Thus u and v oscillate in time, though not in phase, and hence we

have a prediction; predators and prey population numbers oscillate out of phase. There

are often observations of this e.g. hare-lynx interactions.
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Figure 3.1: Dynamics of the non-dimensional Lotka-Volterra system for α = 1.095 and

H = 2.1, 2.4, 3.0, 4.0. The left-hand plot shows the dynamics in the (u, v) phase plane whilst

the right-hand plot shows the temporal evolution of u and v.

3.1.1 Finite predation

The common predator-prey model assumes that as N → ∞ the rate of predation per

predator becomes unbounded, as does the rate of increase of the predator’s population.

However, with an abundance of food, these quantities will saturate rather than become

unbounded. Thus, a more realistic incorporation of an abundance of prey requires a refine-

ment of the Lotka-Volterra model. A suitable, simple, model for predator-prey interactions

under such circumstances would be (after a non-dimensionalisation)

du

dτ
= f(u, v) = u(1− u)− auv

d+ u
, (3.11)

dv

dτ
= g(u, v) = bv

(

1− v

u

)

, (3.12)

where a, b, d are positive constants. Note the effect of predation per predator saturates

at high levels of u whereas the predator levels are finite at large levels of prey and drop

exceedingly rapidly in the absence of prey.

There is one non-trivial equilibrium point, (u∗, v∗), satisfying

v∗ = u∗ where (1− u∗) =
au∗

d+ u∗
, (3.13)

and hence

u∗ =
1

2

[

−(a+ d− 1) +
√

(a+ d− 1)2 + 4d
]

. (3.14)

The Jacobian at (u∗, v∗) is

J =

(

fu fv
gu gv

)∣
∣
∣
∣
∣
(u∗,v∗)

, (3.15)

where

fu(u
∗, v∗) = 1− 2u∗ − au∗

d+ u∗
+

au∗v∗

(d+ u∗)2
= −u∗ + a(u∗)2

(d+ u∗)2
. (3.16)
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fv(u
∗, v∗) = − au∗

d+ u∗
, (3.17)

gu(u
∗, v∗) =

b(v∗)2

(u∗)2
= b, (3.18)

gv(u
∗, v∗) = b

(

1− 2
v∗

u∗

)

= −b. (3.19)

The eigenvalues satisfy

(λ− fu)(λ− gv)− fvgu = 0 ⇒ λ2 − (fu + gv)λ+ (fugv − fvgu) = 0, (3.20)

and hence

λ2 − αλ+ β = 0 ⇒ λ =
α±

√

α2 − 4β

2
, (3.21)

where

α = −u∗ + a(u∗)2

(u∗ + d)2
− b, β = b

(

u∗ − a(u∗)2

(u∗ + d)2
− (u∗ − 1)

)

. (3.22)

Note that

β = 1− a(u∗)2

(u∗ + d)2
= 1− u∗(1− u∗)

(u∗ + d)
=

(u∗ + d)− u∗ + (u∗)2

u∗ + d
=
d+ (u∗)2

d+ u∗
> 0. (3.23)

Thus, if α < 0 the eigenvalues λ are such that we have either:

• a stable node (α2 − 4β > 0);

• stable focus (α2 − 4β < 0);

at the equilibrium point (u∗, v∗).

If α > 0 we have an unstable equilibrium point at (u∗, v∗).

3.2 A look at global behaviour

This previous section illustrated local dynamics: we have conditions for when the dynamics

will stably remain close to the non-trivial equilibrium point. One is also often interested

in the global dynamics. However, determining the global dynamics of a system, away

from its equilibrium points, is a much more difficult problem compared to ascertaining the

local dynamics, sufficiently close to the equilibrium points. For specific parameter values,

one can readily solve the ordinary differential equations to consider the behaviour of the

system. One is also interested in the general properties of the global behaviour. This is

more difficult, and we will consider one possible approach below.

There are many potential tools available: nullcline analysis, the Poincaré-Bendixson The-

orem, the Poincaré Index and the Bendixson-Dulac Criterion. The Poincaré-Bendixson

Theorem is a useful tool for proving that limit cycles must exist, while Poincaré indices

and the Bendixson-Dulac Criterion are useful tools for proving a limit cycle cannot exist.
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We will briefly consider nullclines and the Poincaré-Bendixson Theorem in detail. Please

refer to P. Glendinning, Stability, Instability and Chaos: An Introduction to the Theory

of Nonlinear Differential Equations [4], or D. W. Jordan and P. Smith, Mathematical

Techniques: An Introduction for Engineering, Mathematical and Physical Sciences [6], for

further details than considered here.

3.2.1 Nullclines

Definition. Consider the equations

du

dt
= f(u, v),

dv

dt
= g(u, v). (3.24)

The nullclines are the curves in the phase plane where f(u, v) = 0 and g(u, v) = 0.

Reconsider

du

dτ
= f(u, v) = u(1− u)− auv

d+ u
, (3.25)

dv

dτ
= g(u, v) = bv

(

1− v

u

)

. (3.26)

The u nullclines are given by

f(u, v) ≡ 0 ⇒ u ≡ 0 and v =
1

a
(1− u)(u+ d). (3.27)

The v nullclines are given by

g(u, v) ≡ 0 ⇒ v ≡ 0 and v = u. (3.28)

A sketch of the nullclines and the behaviour of the phase plane trajectories is shown in

Figure 3.2.

3.2.2 The Poincaré-Bendixson Theorem

For a system of two first order ordinary differential equations, consider a closed bounded

region D. Suppose a positive half path, H, lies entirely within D. Then one of the

following is true:

1. H is a closed trajectory, e.g. a limit cycle;

2. H asymptotically tends to a closed trajectory, e.g. a limit cycle;

3. H terminates on a stationary point.

Therefore, if D does not have a stationary point then there must be a limit cycle.

For a proof see P. Glendinning, Stability, Instability and Chaos: An Introduction to the

Theory of Nonlinear Differential Equations [4].
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Figure 3.2: The (u, v) phase-plane for the finite predation model when the steady state is

stable. The u nullclines are plotted in red and the v nullclines in green. Trajectories for a

number of different initial conditions are shown as dashed lines. Parameters are as follows:

a = 2.0, b = 0.1, d = 2.0.

Exercise. Explain why α > 0 in the previous example (see equation (3.22)) implies

we have limit cycle dynamics. What does this mean in terms of the population levels of

predator and prey?

Solution. For α > 0 the steady state is an unstable node or spiral. Further, we can find a

simple, closed boundary curve, C, in the positive quadrant of the (u, v) plane, such that

on C phase trajectories always point into the domain, D, enclosed by C. Applying the

Poincaré-Benedixon Theorem to the domain gives the existence of a limit cycle. See J. D.

Murray, Mathematical Biology Volume I [8] (Chapter 3.4) for more details.

3.3 Competitive exclusion

We consider an ordinary differential equation model of two competitors. An example might

be populations of red squirrels and grey squirrels [8]. Here, both populations compete for

the same resources and a typical model for their dynamics is

dN1

dt
= r1N1

(

1− N1

K1
− b12

N2

K1

)

, (3.29)

dN2

dt
= r2N2

(

1− N2

K2
− b21

N1

K2

)

, (3.30)

where K1, K2, r1, r2, b12, b21 are positive constants. Let us associate N1 with red squirrels

and N2 with grey squirrels in our example.

In particular, given a range of parameter values and some initial values for N1 and N2 at

the time t = 0, we would typically like to know if the final outcome is one of the following

possibilities:

• the reds become extinct, leaving the greys;
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• the greys become extinct, leaving the reds;

• both reds and greys become extinct;

• the reds and greys co-exist. If this system is perturbed in any way will the reds and

greys continue to coexist?

After a non-dimensionalisation (exercise) we have

u′1 = u1(1− u1 − α12u2)
def
= f1(u1, u2), (3.31)

u′2 = ρu2(1− u2 − α21u1)
def
= f2(u1, u2), (3.32)

where ρ = r2/r1.

The stationary states are

(u∗1, u
∗
2) = (0, 0), (u∗1, u

∗
2) = (1, 0), (u∗1, u

∗
2) = (0, 1), (3.33)

and

(u∗1, u
∗
2) =

1

1− α12α21
(1− α12, 1− α21), (3.34)

if α12 < 1 and α21 < 1 or α12 > 1 and α21 > 1.

The Jacobian is

J =

(

1− 2u1 − α12u2 −α12u1
−ρα21u2 ρ(1− 2u2 − α21u1)

)

. (3.35)

It is a straightforward application of phase plane techniques to investigate the nature of

these equilibrium points:

Steady state (u∗1, u
∗
2) = (0, 0).

J− λI =

(

1− λ 0

0 ρ− λ

)

⇒ λ = 1, ρ. (3.36)

Therefore (0, 0) is an unstable node.

Steady state (u∗1, u
∗
2) = (1, 0).

J− λI =

(

−1− λ −α12

0 ρ(1− α21)− λ

)

⇒ λ = −1, ρ(1− α21). (3.37)

Therefore (1, 0) is a stable node if α21 > 1 and a saddle point if α21 < 1.

Steady state (u∗1, u
∗
2) = (0, 1).

J− λI =

(

1− α12 − λ 0

−ρα21 −ρ− λ

)

⇒ λ = −ρ, 1− α12. (3.38)

Therefore (0, 1) is a stable node if α12 > 1 and a saddle point if α12 < 1.
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Steady state (u∗1, u
∗
2) =

1
1−α12α21

(1− α12, 1− α21).

J− λI =
1

1− α12α21

(

α21 − 1− λ α12(α12 − 1)

ρα21(α21 − 1) ρ(α21 − 1)− λ

)

. (3.39)

Stability depends on α12 and α21.

There are several different possible behaviours. The totality of all behaviours of the above

model is reflected in how one can arrange the nullclines within the positive quadrant.

However, for competing populations these straight line nullclines have negative gradients.

Figure 3.3 shows the model behaviour for different sets of parameter values.
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Figure 3.3: Dynamics of the non-dimensional competitive exclusion system. Top left: α12 =

0.8 < 1, α21 = 1.2 > 1 and u2 is excluded. Top right: α12 = 1.2 > 1, α21 = 0.8 < 1 and u1 is

excluded. Bottom left: α12 = 1.2 > 1, α21 = 1.2 > 1 and exclusion is dependent on the initial

conditions. Bottom right: α12 = 0.8 < 1, α21 = 0.8 < 1 and we have coexistence. The stable

steady states are marked with ∗’s and ρ = 1.0 in all cases. The red lines indicate f1 ≡ 0 whilst

the green lines indicate f2 ≡ 0.

Note. In ecology the concept of competitive exclusion is that two species competing for

exactly the same resources cannot stably coexist. One of the two competitors will always

have an ever so slight advantage over the other that leads to extinction of the second

competitor in the long run (or evolution into distinct ecological niches).
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3.4 Mutualism (symbiosis)

We consider the same ordinary differential equation model for two competitors, i.e.

dN1

dt
= r1N1

(

1− N1

K1
+ b12

N2

K1

)

, (3.40)

dN2

dt
= r2N2

(

1− N2

K2
+ b21

N1

K2

)

, (3.41)

where K1, K2, r1, r2, b12, b21 are positive constants or, after non-dimensionalisation,

u′1 = u1(1− u1 + α12u2)
def
= f1(u1, u2), (3.42)

u′2 = ρu2(1− u2 + α21u1)
def
= f2(u1, u2). (3.43)

In symbiosis, the straight line nullclines will have positive gradients leading to the following

two possible behaviours shown in Figure 3.4.
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Figure 3.4: Dynamics of the non-dimensional symbiotic system. The left-hand figure shows

population explosion (α12 = 0.6 = α21) whilst the right-hand figure shows population coex-

istence (α12 = 0.1 = α21). The stable steady states are marked with ∗’s and ρ = 1.0 in all

cases. The red lines indicate f1 ≡ 0 whilst the green lines indicate f2 ≡ 0.

3.5 Interacting discrete models

It is also possible, and sometimes useful, to consider interacting discrete models which

take the form

ut+1 = f(ut, vt), (3.44)

vt+1 = g(ut, vt), (3.45)

and possess steady states at the solutions of

u∗ = f(u∗, v∗), v∗ = g(u∗, v∗). (3.46)

It is interesting and relevant to study the linear stability of these equilibrium points, and

the global dynamics, but we do not have time to pursue this here.
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Enzyme kinetics

In this chapter we consider enzyme kinetics, which can be thought of as a particular case

of an interacting species model. In all cases here we will neglect spatial variation.

Throughout, we will consider the m chemical species C1, . . . , Cm.

• The concentration of Ci, denoted ci, is defined to be the number of molecules of Ci

per unit volume.

• A standard unit of concentration is moles m−3, often abbreviated to mol m−3. Recall

that 1 mole = 6.023 × 1023 molecules.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 6 [8].

• J. P. Keener and J. Sneyd, Mathematical Physiology, Chapter 1 [7].

4.1 The Law of Mass Action

Suppose C1, . . . , Cm undergo the reaction

λ1C1 + λ2C2 + . . .+ λmCm

kf
GGGGGGBF GGGGGG

kb
ν1C1 + ν2C2 + . . .+ νmCm. (4.1)

The Law of Mass Action states that the forward reaction proceeds at rate

kf c
λ1

1 c
λ2

2 . . . cλm

m , (4.2)

while the back reaction proceeds at the rate

kbc
ν1
1 c

ν2
2 . . . cνmm , (4.3)

where kf and kb are dimensional constants that must be determined empirically.

36
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Note 1. Strictly, to treat kf , kb above as constant, we have to assume that the tem-

perature is constant. This is a very good approximation for most biochemical reactions

occurring in, for example, physiological systems. However, if one wanted to model re-

actions that produce extensive heat for example, burning petrol, one must include the

temperature dependence in kf and kb and subsequently keep track of how hot the sys-

tem gets as the reaction proceeds. This generally makes the modelling significantly more

difficult. Below we assume that we are dealing with systems where the temperature is

approximately constant as the reaction proceeds.

Note 2. The Law of Mass Action for chemical reactions can be derived from statistical

mechanics under quite general conditions (see for example L. E. Riechl, A Modern Course

in Statistical Physics [11]).

Note 3. As we will see later, the Law of Mass Action is also used in biological scenarios to

write down equations describing, for example, the interactions of people infected with, and

people susceptible to, a pathogen during an epidemic. However, in such circumstances its

validity must be taken as an assumption of the modelling; in such scenarios one cannot rely

on thermodynamic/statistical mechanical arguments to justify the Law of Mass Action.

4.2 Michaelis-Menten kinetics

Michaelis-Menten kinetics approximately describe the dynamics of a number of enzyme

systems. The reactions are

S + E
k1

GGGGGGBF GGGGGG

k−1

SE, (4.4)

SE
k2

GGGGGGA P + E. (4.5)

Letting c denoting the concentration of the complex SE, and s, e, p denoting the con-

centrations of S, E, P , respectively, we have, from the Law of Mass Action, the following

ordinary differential equations:

ds

dt
= −k1se+ k−1c, (4.6)

dc

dt
= k1se− k−1c− k2c, (4.7)

de

dt
= −k1se+ k−1c+ k2c, (4.8)

dp

dt
= k2c. (4.9)

Note that the equation for p decouples and hence we can neglect it initially.

The initial conditions are:

s(0) = s0, e(0) = e0 ≪ s0, c(0) = 0, p(0) = 0. (4.10)
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Key Point. In systems described by the Law of Mass Action, linear combinations of

the variables are often conserved. In this example we have

d

dt
(e+ c) = 0 ⇒ e = e0 − c, (4.11)

and hence the equations simplify to:

ds

dt
= −k1(e0 − c)s+ k−1c, (4.12)

dc

dt
= k1(e0 − c)s − (k−1 + k2)c, (4.13)

with the determination of p readily achievable once we have the dynamics of s and c.

4.2.1 Non-dimensionalisation

We non-dimensionalise as follows:

τ = k1e0t, u =
s

s0
, v =

c

e0
, λ =

k2
k1s0

, ǫ
def
=

e0
s0

≪ 1, K
def
=

k−1 + k2
k1s0

, (4.14)

which yields

u′ = −u+ (u+K − λ)v, (4.15)

ǫv′ = u− (u+K)v, (4.16)

where u(0) = 1, v(0) = 0 and ǫ≪ 1. Normally ǫ ∼ 10−6. Setting ǫ = 0 yields

v =
u

u+K
, (4.17)

which is inconsistent with the initial conditions. Thus we have a singular perturbation

problem; there must be a (boundary) region with respect to the time variable around t = 0

where v′ ≁ O(1). Indeed for the initial conditions given we find v′(0) ∼ O(1/ǫ), with u(0),

v(0) ≤ O(1). This gives us the scaling we need for a singular perturbation investigation.

4.2.2 Singular perturbation investigation

We consider

σ =
τ

ǫ
, (4.18)

with

u(τ, ǫ) = ũ(σ, ǫ) = ũ0(σ) + ǫũ1(σ) + . . . , (4.19)

v(τ, ǫ) = ṽ(σ, ǫ) = ṽ0(σ) + ǫṽ1(σ) + . . . . (4.20)

Proceeding in the usual way, we find that ũ0, ṽ0 satisfy

dũ0
dσ

= 0 ⇒ ũ0 = constant = 1, (4.21)

and
dṽ0
dσ

= ũ0 − (1 +K)ṽ0 = 1− (1 +K)ṽ0 ⇒ ṽ0 =
1− e−(1+K)σ

1 +K
, (4.22)
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which gives us the inner solution.

To find the outer solution we expand

u(τ, ǫ) = u0(τ) + ǫu1(τ) + . . . , (4.23)

v(τ, ǫ) = v0(τ) + ǫv1(τ) + . . . , (4.24)

within the equations

u′ = −u+ (u+K − λ)v, (4.25)

ǫv′ = u− (u+K)v, (4.26)

to find that
du0
dτ

= −u0 + (u0 +K − λ)v0, (4.27)

and

0 = u0 − (u0 +K)v0. (4.28)

This gives

v0 =
u0

u0 +K
and

du0
dτ

= − λu0
u0 +K

. (4.29)

In order to match the solutions as σ → ∞ and τ → 0 we require

lim
σ→∞

ũ0 = lim
τ→0

u0 = 1 and lim
σ→∞

ṽ0 = lim
τ→0

v0 =
1

1 +K
. (4.30)

Thus the solution looks like that shown in Figure 4.1.
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Figure 4.1: Numerical solution of the non-dimensional Michaelis-Menten equations clearly

illustrating the two different time scales. The u dynamics are indicated by the solid line and

the v dynamics by the dashed line. Parameters are ǫ = 0.01, K = 0.1 and λ = 1.0.
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Often the initial, fast, transient is not seen or modelled and one considers just the outer

equations with a suitably adjusted initial condition (ultimately determined from consis-

tency/matching with the inner solution). Thus one often uses Michaelis-Menten kinetics

where the equations are simply:

du

dt
= − λu

u+K
with u(0) = 1 and v =

u

u+K
. (4.31)

Definition. We have, approximately, that dv/dτ ≃ 0 using Michaelis-Menten kinet-

ics. Taking the temporal dynamics to be trivial,

dv

dτ
≃ 0, (4.32)

when the time derivative is fast, i.e. of the form

ǫ
dv

dτ
= g(u, v), (4.33)

where ǫ ≪ 1, g(u, v) ∼ O(1), is known as the pseudo-steady state hypothesis and is a

common assumption in the literature. We have seen its validity in the case of enzyme

kinetics about at least away from the inner region.

Note. One must remember that the Michaelis-Menten kinetics derived above are a very

useful approximation, but that they hinge on the validity of the Law of Mass Action.

Even in simple biological systems the Law of Mass Action may breakdown. One (of

many) reasons, and one that is potentially relevant at the sub-cellular level, is that the

system in question has too few reactant molecules to justify the statistical mechanical

assumptions underlying the Lass of Mass Action. Another reason is that the reactants are

not well-mixed, but vary spatially as well as temporally. We will see what happens in this

case later in the course.

4.3 More complex systems

Here we consider a number of other simple systems involving enzymatic reactions. In

each case the Law of Mass Action is used to write down a system of ordinary differential

equations describing the dynamics of the various reactants. See J. Keener and J. Sneyd,

Mathematical Physiology [7], for more details.

4.3.1 Several enzyme reactions and the pseudo-steady state hypothesis

We can have multiple enzymes. In general the system of equations reduces to

u′ = f(u, v1, . . . , vn), (4.34)

ǫiv
′
i = gi(u, v1, . . . , vn), (4.35)
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for i ∈ {1, . . . , n}, while the pseudo-steady state hypothesis gives a single ordinary differ-

ential equation

u′ = f(u, v1(u), . . . , vn(u)), (4.36)

where v1(u), . . . , vn(u) are the appropriate roots of the equations

gi(u, v1, . . . , vn) = 0, i ∈ {1, . . . , n}. (4.37)

4.3.2 Allosteric enzymes

Here the binding of one substrate molecule at one site affects the binding of another

substrate molecules at other sites. A typical reaction scheme is:

S + E
k1

GGGGGGBF GGGGGG

k−1

C1

k2
GGGGGGA P + E (4.38)

S + C1

k3
GGGGGGBF GGGGGG

k−3

C2

k4
GGGGGGA C1 + E. (4.39)

Further details on the investigation of such systems can be found in J. D. Murray, Mathe-

matical Biology Volume I [8], and J. P. Keener and J. Sneyd, Mathematical Physiology [7].

4.3.3 Autocatalysis and activator-inhibitor systems

Here a molecule catalyses its own production. The simplest example is the reaction scheme

A+B
k→ 2B, (4.40)

though of course the positive feedback in autocatalysis is usually ameliorated by inhibition

from another molecule. This leads to an example of an activator-inhibitor system which

have a very rich behaviour. Other examples of these systems are given below.

Example 1

This model qualitatively incorporates activation and inhibition:

du

dt
=

a

b+ v
− cu, (4.41)

dv

dt
= du− ev. (4.42)

Example 2

This model is commonly referred to as the Gierer-Meinhardt model [3]:

du

dt
= a− bu+

u2

v
, (4.43)

dv

dt
= u2 − v. (4.44)
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Example 3

This model is commonly referred to as the Thomas model [8]. Proposed in 1975, it is an

empirical model based on a specific reaction involving uric acid and oxygen:

du

dt
= a− u− ρR(u, v), (4.45)

dv

dt
= α(b− v)− ρR(u, v), (4.46)

where

R(u, v) =
uv

1 + u+Ku2
, (4.47)

represents the interactive uptake.



Chapter 5

Introduction to spatial variation

We have initially considered biological, biochemical and ecological phenomena with neg-

ligible spatial variation. This is, however, often not the case. Consider a biochemical

reaction as an example. Suppose this reaction is occurring among solutes in a relatively

large, unstirred solution. Then the dynamics of the system is not only governed by the dy-

namics of the rate at which the biochemical react, but also by the fact there can be spatial

variation in solute concentrations, which entails that diffusion of the reactants can occur.

Thus modelling such a system requires taking into account both reaction and diffusion.

We have a similar problem for population and ecological models when we wish to incor-

porate the tendency of a species to spread into a region it has not previously populated.

Key examples include modelling ecological invasions, where one species invades another’s

territory (as with grey and red squirrels in the UK [10]), or modelling the spread of dis-

ease. In some, though by no means all, of these ecological and disease-spread models the

appropriate transport mechanism is again diffusion, once more requiring that we model

both reaction and diffusion in a spatially varying system.

In addition, motile cells can move in response to external influences, such as chemical

concentrations, light, mechanical stress and electric fields, among others. Of particular

interest is modelling when motile cells respond to gradients in chemical concentrations, a

process known as chemotaxis, and we will also consider this scenario.

Thus, in the following chapters, we will study how to model such phenomena and how

(when possible) to solve the resulting equations in detail, for various models motivated

from biology, biochemistry and ecology.

References.
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5.1 Derivation of the reaction-diffusion equations

Let i ∈ {1, . . . ,m}. Suppose the chemical species Ci, of concentration ci, is undergoing a

reaction such that, in the absence of diffusion, one has

dci
dt

= Ri(c1, c2, . . . , cm). (5.1)

Recall that Ri(c1, c2, . . . , cm) is the total rate of production/destruction of Ci per unit

volume, i.e. it is the rate of change of the concentration ci.

Let t denote time, and x denote the position vector of a point in space. We define

• c(x, t) to be the concentration of (say) a chemical (typically measured in mol m−3).

• q(x, t) to be the flux of the same chemical (typically measured in mol m−2 s−1).

Recall that the flux of a chemical is defined to be such that, for a given infinitesimal

surface element of area dS and unit normal n̂, the amount of chemical flowing through

the surface element in an infinitesimal time interval, of duration dt, is given by

n̂ · q dSdt. (5.2)

Definition. Fick’s Law of Diffusion relates the flux q to the gradient of c via

q = −D∇c, (5.3)

where D, the diffusion coefficient, is independent of c and ∇c.

Bringing this together, we have, for any closed volume V (fixed in time and space), with

bounding surface ∂V ,

d

dt

∫

V
ci dV = −

∫

∂V
q · ndS +

∫

V
Ri(c1, c2, . . . , cm) dV, i ∈ {1, . . . ,m}. (5.4)

Hence

d

dt

∫

V
ci dV =

∫

V
∇ · q dV +

∫

V
Ri(c1, c2, . . . , cm) dV (5.5)

=

∫

V
{∇ · (D∇ci) +Ri(c1, c2, . . . , cm)} dV, (5.6)
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and thus for any closed volume, V , with surface ∂V , one has
∫

V

{
∂ci
∂t

−∇ · (D∇ci)−Ri

}

dV = 0, i ∈ {1, ...,m}. (5.7)

Hence
∂ci
∂t

= ∇ · (D∇ci) +Ri, x ∈ D, (5.8)

which constitutes a system of reaction-diffusion equations for the m chemical species in

the finite domain D. Such equations must be supplemented with initial and boundary

conditions for each of the m chemicals.

Warning. Given, for example, that
∫ 2π

0
cos θ dθ = 0 6⇒ cos θ = 0, θ ∈ [0, 2π], (5.9)

are you sure one can deduce equation (5.8)?

Suppose
∂ci
∂t

−∇ · (D∇ci)−Ri 6= 0, (5.10)

at some x = x∗. Without loss of generality, we can assume the above expression is positive

i.e. the left-hand side of equation (5.10) is positive.

Then ∃ ǫ > 0 such that
∂ci
∂t

−∇ · (D∇ci)−Ri > 0, (5.11)

for all x ∈ Bǫ(x
∗).

In this case ∫

Bǫ(x∗)

[
∂ci
∂t

−∇ · (D∇ci)−Ri

]

dV > 0, (5.12)

contradicting our original assumption, equation (5.7).

Hence our initial supposition is false and equation (5.8) holds for x ∈ D.

Remark. With one species, with a constant diffusion coefficient, in the absence of reac-

tions, we have the diffusion equation which in one dimension reduces to

∂c

∂t
= D

∂2c

∂x2
. (5.13)

For a given length scale, L, and diffusion coefficient, D, the timescale of the system is T =

L2/D. For a cell, L ∼ 10−5m = 10−3cm, and for a typical protein D ∼ 10−7cm2s−1 would

not be unreasonable. Thus the timescale for diffusion to homogenise spatial gradients of

this protein within a cell is

T ∼ L2

D
∼ 10−6 cm2

10−7 cm2 s−1 ∼ 10 s, (5.14)

therefore we can often neglect diffusion in a cell. However, as the scale doubles the time

scale squares e.g. L× 10 ⇒ T × 100 and L× 100 ⇒ T × 104.
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Note. The above derivation generalises to situations more general than modelling chem-

ical or biochemical diffusion. For example, let I(x, y, t) denote the number of infected

people per unit area. Assume the infectives, on average, spread out via a random walk

mechanism and interact with susceptibles, as described in Section (6.2.1). One has that

the flux of infectives, qI , is given by

qI = −DI∇I, (5.15)

whereDI is a constant, with dimensions of (length)2 (time)−1. Thus, one has, via precisely

the same ideas and arguments as above, that

∂I

∂t
= ∇ · (DI∇I) + rIS − aI, (5.16)

where S(x, y, t) is the number of susceptibles per unit area, and r and a have the same

interpretation as in Section 6.2.1.

Fisher’s Equation. A very common example is the combination of logistic growth and

diffusion which, in one spatial dimension, gives rise to Fisher’s Equation:

∂u

∂t
= D

∂2u

∂x2
+ ru

(

1− u

K

)

, (5.17)

which was first proposed to model the spread of an advantageous gene through a popula-

tion. See Section 6.1 for more details.

5.2 Chemotaxis

As briefly mentioned earlier, motile cells can move in response to gradients in chemical

concentrations, a process known as chemotaxis. This leads to slightly more complicated

transport equations, as we shall see.

The diffusive flux for the population density of the cells, n, is as previously: JD = −D∇n.
The flux due to chemotaxis (assuming it is an attractant rather than a repellent) is taken

to be of the form:

JC = nχ(a)∇a = n∇Φ(a), (5.18)

where a is the chemical concentration and Φ(a) increases monotonically with a. Clearly

χ(a) = Φ′(a); the cells move in response to a gradient of the chemical in the direction in

which the function Φ(a) is increasing at the fastest rate.

Thus the total flux is

JD + JC = −D∇n+ nχ(a)∇a. (5.19)

Combining the transport of the motile cells, together with a term describing their repro-

duction and/or death, plus an equation for the chemical which also diffuses and, typically,



Chapter 5. Introduction to spatial variation 47

is secreted and degrades leads to the following equations

∂n

∂t
= ∇ · (D∇n)−∇ · (nχ(a)∇a) + f(n, a), (5.20)

∂a

∂t
= ∇ · (Da∇a) + λn− µa. (5.21)

In the above the above f(n, a) is often taken to be a logistic growth term while the function

χ(a) describing the chemotaxis has many forms, including

χ(a) =
χ0

a
, (5.22)

χ(a) =
χ0

(k + a)2
, (5.23)

where the latter represents a receptor law, with Φ(a) taking a Michaelis-Menten form [5].
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Travelling waves

Certain types of models can be seen to display wave-type behaviour. Here we will be

interested in travelling waves, those that travel without change in shape and at constant

speed.
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6.1 Fisher’s equation: an investigation

Fisher’s equation, after suitable non-dimensionalisation, is

∂β

∂t
=
∂2β

∂z2
+ β(1− β), (6.1)

where β, z, t are all non-dimensionalised variables.

Clearly the solution of these equations will depend on the initial and boundary conditions

we impose. We state these conditions for the time being as

β(z, t) → β±∞ as z → ±∞ and β(z, τ = 0) = β0(z), (6.2)

where β±∞, β0, are constants.

6.1.1 Key points

• We will investigate whether such a wave solution exists for the above equations which

propagates without a change in shape and at a constant (but as yet unknown) speed

v. Such wave solutions are defined to be travelling wave solutions.

48
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• The investigation of the potential existence of a travelling wave solution will be

substantially easier to investigate on performing the transformation to the moving

coordinate frame y = z − vτ as, by the definition of a travelling wave, the wave

profile will be independent of time in a frame moving at speed v.

• Using the chain rule and noting that we seek a solution that is time independent

with respect to the y variable, we have

∂β

∂t
=
∂β

∂y

∂y

∂t
+
∂β

∂τ

∂τ

∂t
and

∂β

∂z
=
∂β

∂y

∂y

∂z
+
∂β

∂τ

∂τ

∂z
, (6.3)

i.e.
∂

∂t
7→ −v ∂

∂y
+

∂

∂τ
and

∂

∂z
7→ ∂

∂y
. (6.4)

Assuming β = β(y) so that ∂β/∂τ = 0 the partial differential equation, (6.1), reduces

to

β′′ + vβ′ + β(1 − β) = 0 where ′ =
d

dy
. (6.5)

• One must choose appropriate boundary conditions at ±∞ for the travelling wave

equations. These are the same as the boundary conditions for the full partial differ-

ential equation (but rewritten in terms of y), i.e.

β(y) → β±∞ as y → ±∞, (6.6)

where β±∞, are the same constants as specified in equation (6.2).

• One must have that β+∞, β−∞ only take the values zero or unity:

∫
∞

−∞

[
β′′ + vβ′ + β(1− β)

]
dy = 0, (6.7)

gives
[
β′ + vβ

]∞

−∞
+

∫
∞

−∞

β(1− β)dy = 0. (6.8)

If we want β → constant as y → ±∞ and β, β′ finite for ∀y we must have either

β → 0 or β → 1 as y → ∞ and similarly for y → −∞.

• With the boundary conditions (β(−∞), β(∞)) = (1, 0), we physically anticipate

v > 0.

Indeed there are no solutions of the Fisher travelling wave equations for these bound-

ary conditions and v ≤ 0.
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• Solutions to equations (6.1) and (6.2) are unique. The proof would be an exercise

in the theory of partial differential equations.

• The solutions of the travelling wave equations are not unique. One may have solu-

tions for different values of the unknown v. Also, if β(y) solves (6.5) for any fixed

value of v then, for the same value of v, so does β(y +A), where A is any constant.

For both v and A fixed the solution of the travelling wave equations are normally

unique.

• Note that the solutions of the travelling wave equations, (6.5), can only possibly

be solutions of the full partial differential equation, when considered on an infi-

nite domain. [Realistically one requires that the length scale of variation of the

system in question is much less than the length scale of the physical domain for

a travelling wave to (have the potential to) be an excellent approximation to the

reaction-diffusion wave solutions on the physical, i.e. finite, domain].

• One “loses” the partial differential equation initial conditions associated with (6.1)

and (6.2). The solution of the travelling wave equations given above for β are only

a solution of the full partial differential equation, (6.1), for all time if the travelling

wave solution is consistent with the initial conditions specified in (6.2).

• However, often (or rather usually!), one finds that for a particular choice of v the

solutions of the full partial differential equation system, (6.1) and (6.2), tend, as

t → ∞, to a solution of the travelling wave equations (6.5), with fixed v and A, for

a very large class of initial conditions.

• The Russian mathematician Kolmogorov proved that solutions of the full partial

differential equation system, (6.1) and (6.2), do indeed tend, as t→ ∞, to a solution

of the travelling wave equations for v = 2 for a large class of initial conditions.

6.1.2 Existence and the phase plane

We will investigate the existence of solutions of Fisher’s equation, equation (6.5), with the

boundary conditions (β(−∞), β(∞)) = (1, 0) and v > 0, by means of an extended exercise

involving the phase plane (β′, β).

Consider the travelling wave equation

d2β

dy2
+ v

dβ

dy
+ β(1− β) = 0, (6.9)

with v > 0 and the boundary conditions (β(−∞), β(∞)) = (1, 0).

Exercise 1. Show that the stationary point at (β, β′) = (1, 0) is always a saddle point

and the stationary point at (β, β′) = (0, 0) is a stable node for v ≥ 2 and a stable focus

for v < 2.
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Solution. Writing β′ = γ gives

d

dy

(

β

γ

)

=
d

dy

(

β

β′

)

=

(

γ

−vγ − β(1 − β)

)

. (6.10)

The Jacobian, J , is given by

J =

(
∂f
∂β

∂f
∂γ

∂g
∂β

∂g
∂γ

)

=

(

0 1

−1 + 2β −v

)

. (6.11)

At (0, 0) we have

det(J − λI) = det

(

−λ 1

−1 −v − λ

)

⇒ λ2 + vλ+ 1 = 0, (6.12)

and hence

λ =
−v ±

√
v2 − 4

2
. (6.13)

Therefore:

• if v < 2 we have λ = −v/2± iµ and hence a stable spiral;

• if v > 2 we have λ = −v/2± µ and hence a stable node;

• if v = 2 we have λ = −1 and hence a stable node.

At (1, 0) we have

det(J − λI) = det

(

−λ 1

1 −v − λ

)

⇒ λ2 + vλ− 1 = 0, (6.14)

and hence

λ =
−v ±

√
v2 + 4

2
. (6.15)

Therefore (1, 0) is a saddle point.

Exercise 2. Explain why solutions of Fisher’s travelling wave equations must tend to

phase plane stationary points as y → ±∞. Hence explain why solutions of (6.9) with

v < 2 are unphysical.

Solution. (β, γ) ≡ (β, β′) will change as y increases, unless at a stationary point. Therefore

they will keep moving along a phase space trajectory as y → ∞ unless the y → ∞ limit

evolves to a stationary point.

To satisfy limy→0 β(y) = 0, we need to be on a phase space trajectory which “stops” at

β = 0. Therefore we must be on a phase space trajectory which tends to a stationary

point with β = 0 as y → ∞.

Hence we must tend to (0, 0) as y → ∞ to satisfy limy→∞ β(y) = 0 as y → ∞.

An analogous argument holds as y → −∞.

If v < 2 then β < 0 at some point on the trajectory which is unphysical:
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Exercise 3. Show that the gradient of the unstable manifold at (β, β′) = (1, 0) is given

by
1

2

(

−v +
√

v2 + 4
)

. (6.16)

Sketch the qualitative form of the phase plane trajectories near to the stationary points

for v ≥ 2.

Solution. We require the eigenvectors of the Jacobian at (1, 0):

(

0 1

1 −v

)(

1

q±

)

= λ±

(

1

q±

)

⇒ q± = λ± and 1− vq± = λ±q±. (6.17)

Hence

v± =

(
1

1
2

[

−v ±
√
v2 + 4

]

)

. (6.18)

Exercise 4. Explain why any physically relevant phase plane trajectory must leave

(β, β′) = (1, 0) on the unstable manifold pointing in the direction of decreasing β.

Solution. Recall that, close to the stationary point,

(

β

γ

)

−
(

β∗

γ∗

)

= a−e
λ−yv− + a+e

λ+yv+. (6.19)

The solution moves away from the saddle along the unstable manifold, which corresponds

to a−.
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Exercise 5. Consider v ≥ 2. With γ
def
= β′ show that for β ∈ (0, 1] the phase plane

trajectories, with gradient
dγ

dβ
= −v − β(1 − β)

γ
, (6.20)

satisfy the constraint dγ/dβ < −1 whenever γ = −β.

Solution.
dγ

dβ

∣
∣
∣
∣
β=−γ

= −v + (1− β) ≤ (−v + 2)− (1 + β) < −1. (6.21)

Exercise 6. Hence show that with v ≥ 2 the unstable manifold leaving (β, β′) = (1, 0)

and entering the region β′ < 0, β < 1 enters, and can never leave, the region

R def
= {(β, γ) | γ ≤ 0, β ∈ [0, 1], γ ≥ β}. (6.22)

Solution. Along L1 = {(β, γ) | γ = 0, β ∈ (0, 1)} the trajectories point vertically into R
as ∣

∣
∣
∣

dγ

dβ

∣
∣
∣
∣
→ ∞ as we approach L1 and γ′ = −β(1− β) < 0. (6.23)

Along L2 = {(β, γ) | β = 1, γ ∈ (−1, 0)} we have

dγ

dβ

∣
∣
∣
∣
L2

= −v − β(1− β)

γ
= −v < 0. (6.24)

Hence trajectories that enter R cannot leave. There any trajectory must end at a station-

ary point and trajectories are forced to the point (β, γ) = (0, 0).

Exercise 7. Thus prove that that there exists a monotonic solution, with β ≥ 0, to

equation (6.9) for every value of v ≥ 2 and, with v ≥ 2 fixed, the phase space trajectory

is unique.

Solution. The above analysis is valid for v ≥ 2. For v fixed a trajectory enters the region

R along the unstable manifold (only one unstable manifold enters R). The solution is

monotonic as γ < 0 throughout R.

Figure 6.1 shows the results of numerical simulation of the Fisher equation (6.1) with

initial and boundary conditions given by (6.2) at a series of time points.

6.1.3 Relation between the travelling wave speed and initial conditions

We have seen that, for v fixed, the phase space trajectory of Fisher’s travelling wave

equation is unique. The non-uniqueness associated with the fact that if β(y) solves Fisher’s

travelling wave equation then so does β(y + A) for A constant simply corresponds to a

shift along the phase space trajectory. This, in turn, corresponds simply to translation of

the travelling wave.
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Figure 6.1: Solution of the Fisher equation (6.1) with initial and boundary conditions given

by (6.2) at times t = 10, 20, 30, 40, 50.

Key question. Do solutions of the full system, equations (6.1) and (6.2), actually evolve

to a travelling wave solution, and if so, what is its speed?

Non-Examinable: initial conditions of compact support

Kolmogorov considered the equation

∂ψ

∂τ
=
∂2ψ

∂z2
+ ψ(1 − ψ), (6.25)

with the boundary conditions

ψ(z, τ) → 1 as z → −∞ and ψ(z, τ) → 0 as z → ∞, (6.26)

and non-negative initial conditions satisfying the following: there is a K, with 0 < K <∞,

such that

ψ(z, τ = 0) = 0 for z > K and ψ(z, τ = 0) = 1 for z < −K. (6.27)

He proved that ψ(z, τ) tends to a Fisher travelling wave solution with v = 2 as t→ ∞.

This can be applied to equations (6.1) and (6.2) providing the initial conditions are non-

negative and the initial condition for β satisfies the above constraint, i.e. there is a K,

with 0 < K <∞, such that

β(z, τ = 0) = 0 for z > K and β(z, τ = 0) = 1 for z < −K. (6.28)

Under such constraints β also tends to a Fisher travelling wave solution with v = 2.

6.2 Models of epidemics

The study of infectious diseases has a long history and there are numerous detailed models

of a variety of epidemics and epizootics (i.e. animal epidemics). We can only possibly

scratch the surface. In the following, we consider a simple, framework model but even this

is capable of highlighting general comments about epidemics and, in fact, approximately

describes some specific epidemics.
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6.2.1 The SIR model

Consider a disease for which the population can be placed into three compartments:

• the susceptible compartment, S, who can catch the disease;

• the infective compartment, I, who have and transmit the disease;

• the removed compartment, R, who have been isolated, or who have recovered and

are immune to the disease, or have died due to the disease during the course of the

epidemic.

Assumptions

• The epidemic is of short duration course so that the population is constant (counting

those who have died due to the disease during the course of the epidemic).

• The disease has a negligible incubation period.

• If a person contracts the disease and recovers, they are immune (and hence remain

in the removed compartment).

• The numbers involved are sufficiently large to justify a continuum approximation.

• The ‘dynamics’ of the disease can be described by applying the Law of Mass Action

to:

S + I
r−→ 2I, I

a−→ R. (6.29)

The model

Then the equations describing the time evolution of numbers in the susceptible, infective

and removed compartments are given by

dS

dt
= −rIS, (6.30)

dI

dt
= rIS − aI, (6.31)

dR

dt
= aI, (6.32)

subject to

S(t = 0) = S0, I(t = 0) = I0, R(t = 0) = 0. (6.33)

Note that
d

dt
(S + I +R) = 0 =⇒ S + I +R = S0 + I0. (6.34)

Key questions in an epidemic situation are, given r, a, S0 and I0,
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1. Will the disease spread, i.e. will the number of infectives increase, at least in the

short-term?

Solution.

dS

dt
= −rIS ⇒ S is decreasing and therefore S ≤ S0. (6.35)

dI

dt
= I(rS − a) < I(rS0 − a). (6.36)

Therefore, if S0 < a/r the infectives never increase, at least initially.

2. If the disease spreads, what will be the maximum number of infectives at any given

time?

Solution.
dI

dS
= −(rS − a)

rS
= −1 +

ρ

S
where ρ

def
=

a

r
. (6.37)

Integrating gives

I + S − ρ lnS = I0 + S0 − ρ lnS0, (6.38)

and so, noting that dI/dS = 0 for S = ρ, the maximum number of infectives is given

by

Imax =

{

I0 S0 ≤ ρ

I0 + S0 − ρ lnS0 − ρ ln ρ− ρ S0 > ρ
. (6.39)

3. How many people in total catch the disease?

Solution. From 2, I → 0 as t → ∞. Therefore the total number who catch the

disease is

R(∞) = N0 − S(∞)− I(∞) = N0 − S(∞), (6.40)

where S(∞) < S0 is the root of

S∞ − ρ lnS∞ = N0 − ρ lnS0, (6.41)

obtained by setting S = S∞ and N0 = I0 + S0 in equation (6.38).

6.2.2 An SIR model with spatial heterogeneity

We consider an application to fox rabies. We will make the same assumptions as for the

standard SIR model, plus:

• healthy, i.e. susceptible, foxes are territorial and, on average, do not move from their

territories;

• rabid, i.e. infective, foxes undergo behavioural changes and migrate randomly, with

an effective, constant, diffusion coefficient D;

• rabies is fatal, so that infected foxes do not return to the susceptible compartment

but die, and hence the removed compartment does not migrate.
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Figure 6.2: Numerical solution of the SIR model, equations (6.30)-(6.32), where the solid

lines indicate the phase trajectories and the dashed line S + I = S0 + I0. Parameters are as

follows: r = 0.01 and a = 0.25.

Taking into account rabid foxes’ random motion, the SIR equations become

∂S

∂t
= −rIS, (6.42)

∂I

∂t
= D∇2I + rIS − aI, (6.43)

∂R

∂t
= aI. (6.44)

The I and S equations decouple, and we consider these in more detail. We assume

a one-dimensional spatial domain x ∈ (−∞,∞) and apply the following scalings/non-

dimensionalisations,

I∗ =
I

S0
, S∗ =

S

S0
, x∗ =

√

D

rS0
x, t∗ = rS0t, λ =

a

rS0
, (6.45)

where S0 is the population density in the absence of rabies, to obtain

∂S

∂t
= −IS, (6.46)

∂I

∂t
= ∇2I + I(S − λ), (6.47)

where asterisks have been dropped for convenience in the final expression.

Travelling waves

We seek travelling wave solutions with

S(x, t) = S(y), I(x, t) = I(y), y = x− ct, c > 0, (6.48)

which results in the system

0 = cS′ − IS, (6.49)

0 = I ′′ + cI ′ + I(S − λ), (6.50)
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where ′ = d/dy.

We assume λ = a/(rS0) < 1 below. This is equivalent to the condition for disease spread

in the earlier SIR model.

Boundary conditions

We assume a healthy population as y → ∞:

S → 1 and I → 0, (6.51)

and as y → −∞ we require

I → 0. (6.52)

Bound on travelling wave speed

We write S = 1− P and linearise about the wavefront:

−cP ′ − I = 0 and I ′′ + cI ′ + I(1 − λ). (6.53)

The I equation decouples and analysis of this equation gives a stable focus at (I, I ′) = (0, 0)

if the eigenvalues

µ =
−c±

√

c2 − 4(1− λ)

2
, (6.54)

are complex. This requires

c ≥ 2
√
1− λ. (6.55)

Severity of epidemic

S(∞) is a measure of the severity of the epidemic. We have I = cS′/S and therefore

d

dy
(I ′ + cI) + cS′

(
S − λ

S

)

= 0. (6.56)

Therefore

(I ′ + cI) + c(S − λ lnS) = constant = c, (6.57)

by evaluating the equation as y → ∞.

In this case

S(−∞)− λ lnS(−∞) = 1, where S(−∞) < 1, (6.58)

gives the severity of the epidemic.

Further comments on travelling wave speed

Typically, the wave evolves to have minimum wave speed:

c ≃ cmin. (6.59)
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Pattern formation

Examples of the importance of spatial pattern and structure can be seen just about every-

where in the natural world. Here we will be concerned with building and analysing models

which can generate patterns; understanding how self-organising principles may lead to the

generation of shape and form.
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7.1 Minimum domains for spatial structure

Consider the non-dimensionalised, one dimensional, budworm model, but with a diffusive

spatial structure:

ut = Duxx + f(u), where f(u) = ru

(

1− u

q

)

− u2

1 + u2
. (7.1)

We also suppose that exterior to our domain conditions are very hostile to budworm so

that we have the boundary conditions

u(0, t) = 0, u(L, t) = 0, (7.2)

where L > 0 is the size of the domain. Note that f ′(0) = r > 0.

Question. Clearly u = 0 is a solution. However, if we start with a small initial distri-

bution of budworm, will we end up with no budworm, or an outbreak of budworm? In

particular, how does this depend on the domain size?

Solution. For initial conditions with 0 ≤ u(x, t = 0) ≪ 1, sufficiently small, we can

approximate f(u) by f ′(0)u at least while u(x, t) remains small. Thus our equations are,

approximately,

ut = Duxx + f ′(0)u, u(0, t) = 0, u(L, t) = 0. (7.3)

59
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We look for a solution of the form (invoking completeness of Fourier series):

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

L

)

. (7.4)

This gives that the time-dependent coefficients satisfy

dan
dt

=
Dn2π2

L2
an + f ′(0)an = σnan, (7.5)

and hence

u(x, t) =

∞∑

n=1

a(0)n exp

[(

f ′(0)− Dn2π2

L2

)

t

]

sin
(nπx

L

)

. (7.6)

For the solution to decay to zero, we require that all Fourier modes decay to zero as t→ ∞,

and hence we require that

σn < 0 ∀n ⇒ f ′(0)− Dn2π2

L2
< 0 ∀n, (7.7)

and thus that

f ′(0) <
Dn2π2

L2
⇒ L ≤

[
Dπ2

f ′(0)

]
def
= Lcrit. (7.8)

Hence there is a critical lengthscale, Lcrit, beyond which an outburst of budworm is possible

in a spatially distributed system.

7.1.1 Domain size

On first inspection one probably should be surprised to see that Lcrit increases linearly

with the diffusion coefficient, i.e. diffusion is destabilising the zero steady state.

We can further investigate how the nature of a steady state pattern depends on the

diffusion coefficient. Suppose L > Lcrit and that the steady state pattern is of the form:

We therefore have

0 = Duxx + f(u). (7.9)

Multiplying by ux and integrating with respect to x, we have

0 =

∫

Duxuxx dx+

∫

uxf(u) dx. (7.10)
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Thus we have

1

2
Du2x + F (u) = constant = F (umax) where F ′(u) = f(u). (7.11)

We can therefore find a relation between L, D, integrals of

F (u)
def
=

∫ u

0
f(y) dy, (7.12)

and max(u), the size of the outbreak, as follows:

ux = −
(

2

D

) 1

2 √

F (umax)− F (u) since x > 0 and therefore ux < 0. (7.13)

Integrating, gives

2

∫ L/2

0
dx = −(2D)

1

2

∫ 0

umax

1
√

F (umax)− F (ū)
dū, (7.14)

and hence

L = (2D)
1

2

∫ umax

0

1
√

F (umax)− F (ū)
dū. (7.15)

Therefore umax is a function of L/
√
2D and the root of equation (7.15).
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Figure 7.1: Numerical simulation of the um-L space, equation (7.15) with r = 0.6, q = 6.2

and D = 0.1.

7.2 Diffusion-driven instability

Consider a two component system

ut = Du∇2u+ f(u, v), (7.16)

vt = Dv∇2v + g(u, v), (7.17)
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for x ∈ Ω, t ∈ [0,∞) and Ω bounded.

The initial conditions are

u(x, 0) = u0(x), v(x, 0) = v0(x), (7.18)

and the boundary conditions are either Dirichlet, i.e.

u = uB , v = vB, x ∈ ∂Ω, (7.19)

or homogeneous Neumann, i.e.

n · ∇u = 0, n · ∇v = 0, for x ∈ ∂Ω, (7.20)

where n is the outward pointing normal on ∂Ω.

Definition. Patterns are stable, time-independent, spatially heterogeneous solutions

of equations (7.16)-(7.17).

Definition. A diffusion-driven instability, also referred to as a Turing instability,

occurs when a steady state, stable in the absence of diffusion, goes unstable when

diffusion is present.

Remark. Diffusion-driven instabilities, in particular, can drive pattern formation in

chemical systems and there is significant, but not necessarily conclusive, evidence that it

can drive pattern formation in a variety of biological systems. A key point is that this

mechanism can drive the system from close to a homogeneous steady state to a state with

spatial pattern and structure. The fact that diffusion is responsible for this is initially quite

surprisingly. Diffusion, in isolation, disperses a pattern; yet diffusion, when in combination

with the kinetic terms, often can drive a system towards a state with spatial structure.

7.2.1 Linear analysis

We wish to understand when a diffusion-driven instability occurs. Using vector and matrix

notation we define

u =

(

u

v

)

, F (u) =

(

f(u, v)

g(u, v)

)

, D =

(

Du 0

0 Dv

)

, (7.21)

and write the problem with homogeneous Neumann boundary conditions as follows:

ut = D∇2u+ F (u), (7.22)

i.e.

∂

∂t

(

u

v

)

=

(

Du 0

0 Dv

)

∇2

(

u

v

)

+

(

f(u, v)

g(u, v)

)

, (7.23)

with

n · ∇u = 0, x ∈ ∂Ω, (7.24)
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i.e.

n.∇u = 0 = n.∇v x ∈ ∂Ω. (7.25)

Let u∗ be such that F (u∗) = 0. Implicit in this definition is the assumption that u∗ is a

constant vector.

Let w = u− u∗ with |w| ≪ 1. Then we have

∂w

∂t
= D∇2w + F (u∗) + Jw + higher order terms, (7.26)

where

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)∣
∣
∣
∣
∣
u=u∗

, (7.27)

is the Jacobian of F evaluated at u = u∗. Note that J is a constant matrix.

Neglecting higher order terms in |w|, we have the equation

wt = D∇2w + Jw, n · ∇w = 0, x ∈ ∂Ω. (7.28)

This is a linear equation and so we look for a solution in the form of a linear sum of

separable solutions. To do this, we first need to consider a general separable solution

given by

w(x, t) = A(t)p(x), (7.29)

where A(t) is a scalar function of time. Substituting this into equation (7.28) yields

1

A

dA

dt
p = D∇2p+ Jp. (7.30)

Clearly to proceed, with p dependent on x only, we require Ȧ/A to be time independent.

It must also be independent of x as A is a function of time only. Thus Ȧ/A is constant.

We take Ȧ = λA, where λ is as yet an undetermined constant. Thus

A = A0 exp(λt), (7.31)

for A0 6= 0 constant. Hence we require that our separable solution is such that

[
λp− Jp−D∇2p

]
= 0. (7.32)

Suppose p satisfies the equation

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.33)

where k ∈ R. This is motivated by the fact in one-dimensional on a bounded domain, we

have p′′+k2p = 0; the solutions are trigonometric functions which means one immediately

has a Fourier series when writing the sum of separable solutions.
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Then we have
[
λp− Jp+Dk2p

]
= 0, (7.34)

and thus
[
λI − J +Dk2

]
p = 0, (7.35)

with |p| not identically zero. Hence

det
[
λI − J + k2D

]
= 0. (7.36)

This can be rewritten as

det

(

λ− fu +Duk
2 −fv

−gu λ− gv +Dvk
2

)

= 0, (7.37)

which gives the following quadratic in λ:

λ2 +
[
(Du +Dv)k

2 − (fu + gv)
]
λ+ h(k2) = 0, (7.38)

where

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv). (7.39)

Note 1. Fixing model parameters and functions (i.e. fixing Du, Dv, f , g), we have an

equation which gives λ as a function of k2.

Note 2. Thus, for any k2 such that equation (7.33) possesses a solution, denoted pk(x)

below, we can find a λ = λ(k2) and hence a general separable solution of the form

A0e
λ(k2)tpk(x). (7.40)

The most general solution formed by the sum of separable solutions is therefore

∑

k2

A0(k
2)eλ(k

2)tpk(x), (7.41)

if there are countable k2 for which equation (7.33) possesses a solution. Otherwise the

general solution formed by the sum of separable solutions is of the form
∫

A0(k
2)eλ(k

2)tpk2(x) dk
2, (7.42)

where k2 is the integration variable.

Unstable points

If, for any k2 such that equation (7.33) possesses a solution, we find Re(λ(k2)) > 0 then:

• u∗ is (linearly) unstable and perturbations from the stationary state will grow;

• while the perturbations are small, the linear analysis remains valid; thus the per-

turbations keep growing until the linear analysis is invalid and the full non-linear

dynamics comes into play;
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• a small perturbation from the steady state develops into a growing spatially hetero-

geneous solution which subsequently seeds spatially heterogeneous behaviour of the

full non-linear model;

• a spatially heterogeneous pattern can emerge from the system from a starting point

which is homogeneous to a very good approximation.

Stable points

If, for all k2 such that equation (7.33) possesses a solution, we find Re(λ(k2)) < 0 then:

• u∗ is (linearly) stable and perturbations from the stationary state do not grow;

• patterning will not emerge from perturbing the homogeneous steady state solution

u∗;

• the solution will decay back to the homogeneous solution1.

7.3 Detailed study of the conditions for a Turing instability

For a Turing instability we require the homogeneous steady state to be stable without

diffusion and unstable with diffusion present. Here we analyse the requirements for each

of these conditions to be satisfied.

7.3.1 Stability without diffusion

We firstly require that in the absence of diffusion the system is stable. This is equivalent

to

Re(λ(0)) < 0, (7.43)

for all solutions of λ(0), as setting k2 = 0 removes the diffusion-driven term in equation

(7.36) and the preceding equations.

We have that λ(0) satisfies

λ(0)2 − [fu + gv]λ(0) + [fugv − fvgu] = 0. (7.44)

Insisting that Re(λ(0) < 0) gives us the conditions

fu + gv < 0 (7.45)

fugv − fvgu > 0. (7.46)

1Technical point: Strictly, this conclusion requires completeness of the separable solutions. This can

be readily shown in 1D on bounded domains. (Solutions of p′′ + k2p = 0 on bounded domains with

Neumann conditions are trigonometric functions and completeness is inherited from the completeness of

Fourier series). Even if completeness of the separable solutions is not clear, numerical simulations of the

full equations are highly indicative and do not, for the models typically encountered, contradict the linear

analysis results. With enough effort and neglecting any biological constraints on model parameters and

functions, one may well be able to find Du, Dv, f, g where there was such a discrepancy but that is not

the point of biological modelling.
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The simplest way of deducing (7.45) and (7.46) is by brute force.

The roots of the quadratic are given by

λ(0)± =
(fu + gv)±

√

(fu + gv)2 − 4(fugv − fvgu)

2
. (7.47)

7.3.2 Instability with diffusion

Now consider the effects of diffusion. In addition to Re(λ(0)) < 0, we are required to

show, for diffusion-driven instability, that there exists k2 such that

Re(λ(k2)) > 0, (7.48)

so that diffusion does indeed drive an instability.

We have that λ(k2) satisfies

λ2 +
[
(Du +Dv)k

2 − (fu + gv)
]
λ+ h(k2) = 0, (7.49)

where

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv), (7.50)

and

α = (fu + gv)− (Du +Dv)k
2 < 0. (7.51)

Thus Re(λ(k2)) > 0 requires that

Re
(

α±
√

α2 − 4h(k2)
)

> 0 ⇒ h(k2) < 0. (7.52)

Hence we must find k2 such that

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv) < 0, (7.53)

so that we have k2 ∈ [k2−, k
2
+] where h(k

2
±) = 0. Figure 7.2 shows a plot of a caricature

h(k2).

This gives us that we have an instability whenever

k2 ∈
[

A−
√
A2 −B

2DuDv
,
A+

√
A2 −B

2DuDv

]

=
[
k2−, k

2
+

]
, (7.54)

where

A = Dvfu +Dugv and B = 4DuDv(fugv − gufv) > 0, (7.55)

and there exists a solution of the following

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.56)

for k2 in the above range.
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Figure 7.2: A plot of a caricature h(k2).

Insisting that k is real and non-zero (we have considered the k = 0 case above) we have

A > 0 and A2 −B > 0, (7.57)

which gives us that when Re(λ(k2)) > 0, the following conditions hold:

A > 0 : Dvfu +Dugv > 0, (7.58)

A2 −B > 0 : (Dvfu +Dugv) > 2
√

DuDv(fugv − fvgu). (7.59)

7.3.3 Summary

We have found that a diffusion-driven instability can occur when conditions (7.45), (7.46),

(7.58), (7.59) hold whereupon the separable solutions, with k2 within the range (7.54) and

for which there is a solution to equation (7.33), will drive the instability.

Key point 1. Note that constraints (7.45) and (7.58) immediately gives us that Du 6=
D2. Thus one cannot have a diffusion-driven instability with identical diffusion coefficients.

Key point 2. From constraints (7.45), (7.46), (7.58) the signs of fu, gv must be such

that J takes the form

J =

(

+ +

− −

)

or

(

+ −
+ −

)

or

(

− −
+ +

)

or

(

− +

− +

)

. (7.60)

Key point 3. A Turing instability typically occurs via long-range inhibition, short-range

activation. In more detail, suppose

J =

(

+ −
+ −

)

. (7.61)
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Then we have fu > 0 and gv < 0 by the signs of J . In this case Dvfu+Dugv > 0 ⇒ D2 >

Du. Hence the activator has a lower diffusion coefficient and spreads less quickly than the

inhibitor.

7.3.4 The threshold of a Turing instability.

The threshold is defined such that equation (7.39), i.e.

DuDvk
4
c − (Dvfu +Dugv)k

2
c + (fugv − gufv) = 0, (7.62)

has a single root, k2c .

Thus we additionally require

A2 = B i.e. (Dvfu +Dugv)
2 = 4DuDv(fugv − gufv) > 0, (7.63)

whereupon

k2c =
A

2DuDv
=
Dvfu +Dugv

2DuDv
. (7.64)

Strictly one also requires that a solution exists for

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.65)

when k2 = k2c . However, the above value of k2c is typically an excellent approximation.

7.4 Extended example 1

Consider the one-dimensional case:

ut = Duuxx + f(u, v), (7.66)

vt = Dvvxx + g(u, v), (7.67)

for x ∈ [0, L], t ∈ [0,∞) and zero flux boundary conditions at x = 0 and x = L.

The analogue of

∇2p+ k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (7.68)

is

pxx + k2p = 0, p′(0) = p′(L) = 0, (7.69)

which gives us that

pk(x) = Ak cos (kx) , k =
nπ

L
, n ∈ {1, 2, . . .}, (7.70)

where Ak is k-dependent in general but independent of t and x.

Thus the separable solution is of the form
∑

k

Ake
λ(k2)t cos (kx) , (7.71)

where the sum is over the allowed values of k i.e.

k =
nπ

L
, n ∈ {1, 2, . . .}. (7.72)
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Figure 7.3: Numerical simulation of the Gierer-Meinhardt model for pattern formation.

7.4.1 The influence of domain size

If the smallest allowed value of k2 = π2/L2 is such that

k2 =
π2

L2
>
A+

√
A2 −B

2DuDv
= k2+, (7.73)

then we cannot have a Turing instability.

Thus for very small domains there is no pattern formation via a Turing mechanism.

However, if one slowly increases the size of the domain, then L increases and the above

constraint eventually breaks down and the homogeneous steady state destabilises leading

to spatial heterogeneity.

This pattern formation mechanism has been observed in chemical systems. It is regularly

hypothesised to be present in biological systems (e.g. animal coat markings, fish markings,

the interaction of gene products at a cellular level, the formation of ecological patchiness)

though the evidence is not conclusive at the moment.

7.5 Extended example 2

Consider the two-dimensional case with spatial coordinates x = (x, y)T , x ∈ [0, a], y ∈
[0, b], and zero flux boundary conditions. We find that the allowed values of k2 are

k2m,n =

[
m2π2

a2
+
n2π2

b2

]

, (7.74)

with

pm,n(x) = Am,n cos
(mπx

a

)

cos
(nπy

b

)

, n,m ∈ {0, 1, 2, . . .}, (7.75)

excluding the case where n, m are both zero.
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Suppose the domain is long and thin, b≪ a. We may have a Turing instability if

k2m,n =

[
m2π2

a2
+
n2π2

b2

]

∈
[
k2−, k

2
+

]
where h(k2±) = 0. (7.76)

For b sufficiently small, this requires n = 0 and therefore no spatial variation in the y

direction.

This means we have that the seed for pattern formation predicted by the linear analysis

is a separable solution which is “stripes”; this typically invokes a striped pattern once the

non-linear dynamics sets in.

For a large rectangular domain, b ∼ a sufficiently large, it is clear that a Turing instability

can be initiated with n, m > 0. This means we have that the seed for pattern formation

predicted by the linear analysis is a separable solution which is “spots”. This typically

invokes a spotted pattern once the non-linear dynamics sets in.
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Figure 7.4: Changes in patterning as the domain shape changes.

Figure 7.4 shows how domain size may affect the patterns formed. On the left-hand side

the domain is long and thin and only a striped pattern results, whilst the on the right-hand

side the domain is large enough to admit patterning in both directions.

Suppose we have a domain which changes its aspect ratio from rectangular to long and

thin. Then we have the following possibilities:
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This leads to an interesting prediction, in the context of animal coat markings, that if it

is indeed driven by a Turing instability, then one should not expect to see an animal with

a striped body and a spotted tail.

Figure 7.5: Animal coat markings which are consistent with the predictions of pattern

formation by a Turing instability.

Common observation is consistent with such a prediction (see Figure 7.5) but one should

not expect universal laws in the realms of biology as one does in physics (see Figure

7.6). More generally, this analysis has applications in modelling numerous chemical and

biochemical reactions, in vibrating plate theory, and studies of patchiness in ecology and

modelling gene interactions.

Figure 7.6: Animal coat markings which are inconsistent with the predictions of pattern

formation by a Turing instability.



Chapter 8

Excitable systems: nerve pulses

Many cells communicate with one another via nerve impulses, also known as action po-

tentials. Action potentials are brief changes in the membrane potential of a cell produced

by the flow of ionic current across the cell membrane. Such type of communication is not

limited to neurons by make occur in other cells, for example cardiac and muscle cells.

See http://en.wikipedia.org/wiki/Action_potential and related links for more de-

tails.

References.

• J. P. Keener and J. Sneyd, Mathematical Physiology, Chapter 4 and Chapter 8 [7].

8.1 Background

Here we outline the background physics required to write down a model to describe a

nerve impulse. Firstly, we note that:

• numerous fundamental particles, ions and molecules have an electric charge, e.g. the

electron, e−, and the sodium ion, Na+;

• it is an empirical fact that total charge is conserved;

• electric charges exert electrical forces on one another such that like charges repel and

unlike charges attract. The electric potential, denoted V , is the potential energy of

a unit of charge due to such forces and is measured in volts;

• a concentration of positive particles has a large positive potential, while a concen-

tration of negative particles has a large, but negative potential;

• electric current is defined to be the rate of flow of electric charge, measured in Amps.

72
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8.1.1 Resistance

Ohms Law, ∆V = IR, holds in most situations, where ∆V is the change in potential, I is

the current flowing and R, which may depend on material properties and geometries but

not on I nor V is the resistance.

Key point. Suppose one uses a wire of low resistance to connect a region with a con-

centration of positive charges to a region with a concentration of negative charges. The

charges will, very quickly, flow onto/off the wire until the potential is constant and there

is no further flow of charge.

8.1.2 Capacitance

A simple example of capacitor is two conducting plates, separated by an insulator, for

example, an air gap.

Connecting a battery to the plates, as illustrated, using wires of low resistance leads to

charge flowing onto/off the plates. It will equilibrate (very quickly!); let Qeqm denote the

difference in the total value of the charge stored on the two plates. The capacitance of the

plates, C, is defined to be

C =
Qeqm

V
> 0, (8.1)

where C is a constant, independent of V . Thus the higher the capacitance, the better the

plates are at storing charge, for a given potential.
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Suppose now the potential is a function of time, V = V (t). Charge will flow on and off the

plates in response to time dependent changes in V (t). If the time for a significant change

in V (t) is far longer than the time it takes for the difference in the total value of the charge

stored on the two plates, Q, to reach its equilibrium value, Qeqm, as is essentially always

the case, one has

Q = Qeqm = CV (t). (8.2)

Hence, the current, J , i.e. the rate of flow of charge on/off the plates is given by

J = Q̇ = CV̇ . (8.3)

8.2 Deducing the Fitzhugh Nagumo equations

An axon is a part of nerve cell:

dendrites

nucleus

soma (cell body)

axon

synapse

axon terminals

dendrite of 

another cell

direction of signal propagation

The nerve signal along the axon is, in essence, a propagating pulse in the potential dif-

ference across the plasma (i.e. outer) membrane of the axon. This potential difference,

V , arises due to the preferential permeability of the axon plasma membrane which allows

potassium and sodium ions, K+ and Na+, to pass through the membrane at rates which

differ between the two ions and vary with V . In the rest state, V = Vrest ≃ −70mV

(millivolts); in a nerve signal pulse in V rises to a peak of ∼ 15mV. It is this pulse we are

interested in modelling.

The geometry of the axon can be treated as a cylindrical tube. An axon is axisymmetric,

so we have no θ dependence in any of our models of the axon.

8.2.1 Space-clamped axon

A common, simplifying, experimental scenario is to space-clamp the axon, i.e. to place a

conducting wire along the axon’s axis of symmetry.
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• The interior of the axon will quickly equilibrate, and there will be no spatial variation

in the potential difference, nor any current, along the inside of the axon.

• Thus, by conservation of charge, the total current flowing across the axon membrane

must be zero.

• Note that any changes in the interior due to, for example the axon allowing K+

and Na+ to pass through its membrane, will occur on a much slower timescale and

hence one has that the interior of the space-clamped axon has no spatial variation

in its potential difference, no current flowing along the inside of the axon, and, most

importantly, the total current flowing through the axon membrane is zero.

The basic model for the space-clamped axon plasma membrane potential is given by

0 = total transmembrane current per unit area,

= c
dV

dt
+ INa + IK + I0 + Iapplied(t), (8.4)

where

• Iapplied(t) is the applied current, i.e. the current injected through the axon plasma

membrane in the experiment, which is only function of time in most experimental

set-ups. We will take Iapplied(t) = 0 below.
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• cdV/dt is the capacitance current through a unit area of the membrane. Recall:

Rate of flow on/off capacitor = C dV/dt.

Therefore rate of flow of charge per unit area of membrane = cdV/dt where c is the

membrane capacitance per unit area.

• INa, IK are the voltage dependent Na+ and K+ currents. I0 is a voltage dependent

background current.

These currents actually take complicated forms involving numerous other variables

which satisfy complex equations, that can be simplified, if somewhat crudely. An

excellent account is given in T. F. Weiss, Cellular Biophysics [12].

The resulting equations written in terms of the non-dimensional variables v = (V −
Vrest)/|Vrest| and τ = t/T where T = 6 ms, the time scale of a typical nerve pulse,

are

ǫ
dv

dτ
= Av(δ − v)(v − 1)− n, (8.5)

dn

dτ
= −γn+ v, (8.6)

where A, γ, ǫ, δ are positive parameters such that A, γ ∼ O(1), 0 < ǫ≪ δ ≪ 1.

Key point. The spatially independent behaviour of a space-clamped axon is approxi-

mated by the above Fitzhugh Nagumo equations, (8.5)-(8.6).

8.3 A brief look at the Fitzhugh Nagumo equations

We have

ǫ
dv

dτ
= Av(δ − v)(v − 1)− n, (8.7)

dn

dτ
= −γn+ v, (8.8)

where A, γ, ǫ, δ are positive parameters such that A, γ ∼ O(1), 0 < ǫ≪ δ ≪ 1.

8.3.1 The (n, v) phase plane

The nullclines of equations (8.5)-(8.6) are the lines where v̇ = 0 and ṅ = 0. A plot of the

nullclines separates the (v, n) phase plane into four regions, as shown in Figure 8.1.

There are several things to note about the dynamics.

• There is one stationary point which is a stable focus.

• Thus, with initial conditions sufficiently close to the stationary point, the system

evolves to the stationary point in a simple manner.
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Figure 8.1: The phase plane for the Fitzhugh-Nagumo equations with the v nullcline shown

in red and the n nullcline in green. The trajectories for two different initial perturbations

from the steady state are shown as dashed lines. Parameters are as follows: A = 1, γ = 0.5,

δ = 0.1 and ǫ = 0.001.

• Consider initial conditions with n ∼ 0, but v increased sufficiently. The system does

not simply relax back to the equilibrium. However, one can understand how the

qualitative behavioural of the system by considering the phase plane.

• We anticipate that v = (V −Vrest)/|Vrest| behaves in the manner shown in Figure 8.2

for a sufficiently large perturbation in v.
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time (t)
1.0 1.5 2.0 2.5
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0.00
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time (t)

Figure 8.2: Solutions of the Fitzhugh Nagumo equations with v dynamics indicated by the

solid line and n dynamics by the dashed line. The right-hand figure shows the oscillations

that arise for large t. Parameters are as follows: A = 1, γ = 0.5, δ = 0.1 and ǫ = 0.01.

• This is essentially a nerve pulse (although because of the space clamping all the

nerve axon is firing at once).

Definition. A system which, for a sufficiently large perturbation from a stationary

point, undergoes a large change before eventually returning to the same stationary

point is referred to as excitable.
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8.4 Modelling the propagation of nerve signals

In the following, we generalise the ideas we have seen for modelling the plasma membrane

potential of an axon to scenarios where this potential can vary along the axon.

8.4.1 The cable model

In the model we are about to develop we make following assumptions.

• The cell membrane is a cylindrical membrane separating two conductors of electric

current, namely the extracellular and intracellular mediums. These are assumed to

be homogeneous and to obey Ohm’s law.

• The model has no θ dependence.

• A circuit theory description of current and voltages is adequate, i.e. quasi-static

terms of Maxwell’s equations are adequate; for example, electromagnetic radiation

effects are totally negligible.

• Currents flow through the membrane in the radial direction only.

• Currents flow through the extracellular medium in the axial direction only and the

potential in the extracellular medium is a function of z only. Similarly for the

potential in the intracellular medium.

These assumptions are appropriate for unmyelinated nerve axons. Deriving the model

requires considering the following variables:

• Ie(z, t) – external current;

• Ii(z, t) – internal current;

• J(z, t) – total current through the membrance per unit length;

• Jion(z, t) – total ion current through the membrance per unit area;

• V (z, t) = Vi(z, t)− Ve(z, t) – transmembrane potential;

• ri – internal resistance per unit length;

• re – external resistance per unit length;

• C – membrane capacitance per unit area.



Chapter 8. Excitable systems: nerve pulses 79

Consider the axial current in the extracellular medium, which has resistance re per unit

length. We have

Ve(z + dz)− Ve(z) = −reIe(z)dz ⇒ reIe(z) = −∂Ve
∂z

, (8.9)

where the minus sign appears because of the convention that positive current is a flow of

positive charges in the direction of increasing z. Hence, if Ve(z+dz) > Ve(z) then positive

charges flow in the direction of decreasing z giving a negative current. Similarly,

riIi(z) = −∂Vi
∂z

. (8.10)

Using conservation of current, we have

Ie(z + dz, t)− Ie(z, t) = J(z, t)dz = Ii(z, t)− Ii(z + dz, t), (8.11)

which gives

J(z, t) = −∂Ii
∂z

=
∂Ie
∂z

. (8.12)

Hence

J =
1

ri

∂2Vi
∂z2

= − 1

re

∂2Ve
∂z2

, (8.13)

and so
∂2V

∂z2
= (ri + re)J. (8.14)

Putting this all together gives

0 = −∂(Ii + Ie)

∂z
=

∂

∂z

(
1

re

∂Ve
∂z

+
1

ri

∂Vi
∂z

)

=

(
re + ri
reri

)
∂2Ve
∂z2

+
1

ri

∂2V

∂z2
, (8.15)

and so

0 =
1

ri

∂2V

∂z2
−
(
re + ri
ri

)
∂Ie
∂z

=
1

ri

(
∂2V

∂z2
+ (re + ri)J(z, t)

)

. (8.16)
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We also have that

J(z, t) = 2πa

(

Jion(V, z, t) + C
∂V

∂t

)

, (8.17)

and finally, therefore,

1

2πa(ri + re)

∂2V

∂z2
= C

∂V

∂t
+ Jion(V, z, t). (8.18)

This gives an equation relating the cell plasma membrane potential, V , to the currents

across the cell plasma membrane due to the flow of ions, Jion(V, z, t).

Note 1. Note even though, physically, there is no diffusion, we still have a parabolic

partial differential equation, so the techniques we have previously studied are readily

applicable.

Note 2. From the above equation one can model cell plasma membrane potentials given

suitable initial and boundary conditions, and a suitable expression for Jion(z, t).

We use the same expression for Jion(z, t), i.e. the expression for INa + IK + I0 as in the

Fitzhugh Nagumo model of a space-clamped axon.

Thus with v = (V − Vrest)/|Vrest| and x = Kz, where K is a constant, we have

ǫ
∂v

∂τ
= ǫ2

∂2v

∂x2
+Av(δ − v)(v − 1)− n, (8.19)

dn

dτ
= −γn+ v, (8.20)

where 0 < A, γ ∼ O(1), 0 < ǫ ≪ δ ≪ 1.

Note that K has been chosen so that the coefficient infront of the vxx term is ǫ2. This

means, with respect to such variables, the front of the nerve pulse is extremely sharp.

Hence, for such a scaling to exist, the extent of the nerve pulse must be less than ǫL, where

L is the length of the axon; this constraint holds true for typical parameter estimates. The

reason for the choice of this scaling is simply mathematical convenience in a travelling wave

analysis.

We are interested in nerve pulses, so we take the boundary conditions to be n, v → 0 as

x→ ±∞.

We thus again have a system of parabolic partial differential equations to solve, and we

are particularly interested in travelling pulse solutions. This entails that a travelling wave

analysis would be most insightful. With the travelling wave coordinate y = x − cτ and

v(y) = v(x, τ), n(y) = n(x, τ), we obtain

ǫ2
d2v

dy2
+ ǫc

dv

dy
+Av(δ − v)(v − 1)− n = 0, (8.21)

c
dn

dy
− γn+ v = 0. (8.22)

We have 0 < A ∼ O(1), 0 < γ−1, δ, ǫ ≪ 1. One can readily investigate these ordinary

differential equations to find that the travelling wave speed is unique, giving a unique

prediction for the speed of a nerve pulse in terms of biophysical parameters.



Appendix A

The phase plane

Throughout this appendix we will be concerned with systems of two coupled, first-order,

autonomous, non-linear ordinary differential equations.

Disclaimer. This material should have been covered elsewhere (for example in your

course on differential equations) and hence below is intended to review, rather than intro-

duce and lecture this topic.

We can represent solutions to the equations

dx

dt
= X(x, y), (A.1)

dy

dt
= Y (x, y), (A.2)

as trajectories (or “integral paths”) in the phase plane, that is the (x, y) plane. Suppose,

for the initial condition x(t = tinitial) = x0, y(t = tinitial) = y0 we plot, in the (x, y) plane,

the solution of (A.1):

We can do exactly the same for all the values of {tinitial, xinitial, yinitial}, to build-up a

graphical representation of the solutions to the equations (A.1) and (A.2) for many initial

conditions. This plot is referred to as the “phase plane portrait”.

81
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A.1 Properties of the phase plane portrait

The gradient of the integral path through the point (x0, y0) is given by

dy

dx
=

dy

dt

/
dx

dt
=

(
Y (x, y)

X(x, y)

)∣
∣
∣
∣
(x0,y0)

=
Y (x0, y0)

X(x0, y0)
. (A.3)

Key point 1. Note that if Y (x0, y0) = 0 and X(x0, y0) 6= 0 then

(
dy

dx

)∣
∣
∣
∣
(x0,y0)

= 0, (A.4)

which corresponds to a horizontal line segments in the phase plane.

Key point 2. If Y (x0, y0) 6= 0 and X(x0, y0) = 0 then

∣
∣
∣
∣

dy

dx

∣
∣
∣
∣
→ ∞ as (x, y) → (x0, y0), (A.5)

which corresponds to a vertical line segment in the phase plane.

Key point 3. Assuming that either X(x0, y0) 6= 0 or Y (x0, y0) 6= 0, then two path

integral curves do not cross at the point (x0, y0). This is because under these circumstances

dy/dx takes a unique value, i.e. the following is not possible:

A.2 Equilibrium points

Definition. A point in the phase plane where X(x0, y0) = Y (x0, y0) = 0 is defined

to be an equilibrium point, or equivalently, a stationary point.

The reason for the above definition is because if (x, y) = (x0, y0) then both dx/dt and

dy/dt are zero, and hence (x, y) do not change as t increases; hence x(t), y(t) remain at

(x0, y0) for all time.
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Key point 1. Integral curves cannot cross at points which are not equilibrium points.

Key point 2. If an integral path ends it must end on a stationary point.

Key point 3. As we shall see below, equilibrium points are only approached as t→ ∞
or t→ −∞.

However, what about the gradient of integral paths at (x0, y0)? We informally have

dy

dx
=

0

0
, (A.6)

which is not uniquely defined—the value ultimately depends on the details of how quickly

X(x, y) and Y (x, y) approach zero as (x, y) → (x0, y0), and this generally depends on the

direction upon which (x, y) approaches (x0, y0).

A.2.1 Equilibrium points: further properties

Suppose the equations (A.1) and (A.2) have an equilibrium point at (x0, y0). Thus

X(x0, y0) = Y (x0, y0) = 0. To determine the behaviour of integral paths close to the

equilibrium point we write

x = x0 + x̄, y = y0 + ȳ, (A.7)

where it is assumed that x̄, ȳ are sufficiently small to allow the approximations that we

will make below.

By Taylor expansion, we have

X(x, y) = X(x0 + x̄, y0 + ȳ) = X(x0, y0) + x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t.

= x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t., (A.8)

using the fact X(x0, y0) = 0. Similarly, we have

Y (x, y) = Y (x0 + x̄, y0 + ȳ) = Y (x0, y0) + x̄
∂Y

∂x
(x0, y0) + ȳ

∂Y

∂y
(x0, y0) + h.o.t.,

= x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t. (A.9)

Note that x0 and y0 are constant, and hence have zero time derivative. Hence, by use

of Taylor expansions and neglecting higher orders (i.e. taking x̄, ȳ sufficiently small), we

can neglect terms of the order O
(
x̄ȳ, x̄2, ȳ2

)
and hence we can write equations (A.1) and

(A.2) in the form

du

dt
=

(
∂X
∂x (x0, y0)

∂X
∂y (x0, y0)

∂Y
∂x (x0, y0)

∂Y
∂y (x0, y0)

)

u
def
= Ju where u

def
=

(

x̄

ȳ

)

. (A.10)
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Definition. The matrix

J =

(
∂X
∂x (x0, y0)

∂X
∂y (x0, y0)

∂Y
∂x (x0, y0)

∂Y
∂y (x0, y0)

)

, (A.11)

is defined to be the Jacobian matrix at the equilibrium point (x0, y0).

A.3 Summary

The key points thus far are as follows.

1. We have taken the full non-linear equation system, (A.1) and (A.2), and expanded

about one of its (possibly many) equilibrium points taken to be located at (x0, y0),

using Taylor expansions of X(x, y), Y (x, y).

2. We assume that we are sufficiently close to (x0, y0) to enable us to only consider

linear terms of the order of (x− x0), (y − y0).

3. In this way, we obtain a set of two coupled, linear, autonomous ordinary differential

equations, i.e. equation (A.10) above, which in principle we can solve!

4. This procedure is sometimes referred to as “a linearisation of equations (A.1) and

(A.2) about the point (x0, y0)”.

5. In virtually all cases the behaviour of the linearised system is the same as the be-

haviour of the full non-linear equations sufficiently close to the point (x0, y0). In this

respect one should note that the statement immediately above can be formulated

more rigorously and proved for all the types of stationary points except:

• centre type equilibrium points, i.e. case [3c] below;

• the degenerate cases where λ1 = 0 and/or λ2 = 0, which are briefly mentioned in

item 2 on page (87). These stationary points can be considered non-examinable.

The relevant theorem is “Hartmann’s theorem”, as discussed further in P. Glendin-

ning, Stability, Instability and Chaos [4].

6. However, one should also note that the solution of the linearised equations may

behave substantially differently from the solutions of the full non-linear equations,

(A.1) and (A.2), sufficiently far from (x0, y0).

A.4 Investigating solutions of the linearised equations

We now have a set of two coupled, linear, autonomous ordinary differential equations,

(A.10). It is useful to look for a solution of the form

u = u0e
λt, (A.12)
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for some constant, λ. Substituting this into equation (A.10) we obtain

λu0e
λt = Ju0e

λt i.e. (J − λI)u0 = 0. (A.13)

For a non-zero solution, we must have u0 6= (0, 0) and hence we require

det (J − λI) = 0, (A.14)

where I is the 2× 2 identity matrix.

This quadratic equation has two roots for λ, denoted λ1, λ2, which are possibly equal and

possibly complex; these are, of course, the eigenvalues of J evaluated at the point (x0, y0).

A.4.1 Case I

λ1, λ2 real, with λ1 6= 0, λ2 6= 0, λ1 6= λ2. Without loss of generality we take λ2 > λ1
below.

We have two distinct, real eigenvalues. Let the corresponding eigenvectors be denoted by

e1 and e2. We thus have

Je1 = λ1e1, Je2 = λ2e2. (A.15)

We seek a solution of the form

u = A1e1 +A2e2. (A.16)

Substituting this into equation (A.10), we find, by comparing coefficients of e1 and e2,

that
dA1

dt
= λ1A1,

dA2

dt
= λ2A2, (A.17)

and hence

A1 = A1(t = 0)eλ1t, A2 = A2(t = 0)eλ2t. (A.18)

Thus we have (

x̄

ȳ

)

def
= u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.19)

which gives us a representation of the solution of (A.10) for general initial conditions. This

information is best displayed graphically, and we do so below according to the values of

λ2, λ1.

Note. The equilibrium point i.e. (x̄, ȳ) = (0, 0) can only be reached either as t→ ∞ or

t→ −∞.

1. λ1 < λ2 < 0. The phase plot of the linearised equations in the (x̄, ȳ) plane looks

like one of the two possibilities in Figure A.1.

Definition. An equilibrium point which results in this case is called a stable

node, with the word “stable” referring to the fact that integral paths enter the

node, i.e. the equilibrium point at (0, 0).
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Figure A.1: Possible phase portraits of a stable node. The equilibrium point in each case is

denoted by the large dot.

2. λ2 > λ1 > 0. We still have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2. (A.20)

However, the direction of the arrows is reversed as the signs of λ1, λ2 are changed.

The phase plane portraits are the same as in Figure A.1 except the direction of the

arrows is reversed.

Definition. An equilibrium point which results in this case is called an unstable

node, with the word “unstable” referring to the fact that integral paths leave the

node, i.e. the equilibrium point at (0, 0).

3. λ2 > 0 > λ1. Once more, we still have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.21)

but again the phase plane portrait is slightly different—see Figure A.2.

Definition. An equilibrium point which results in this case is called a saddle

point.

Definition. The two integral paths originating from the saddle point are some-

times referred to as the unstable manifolds of the saddle point. Conversely, the

integral paths tending to the saddle point are sometimes referred to as the sta-

ble manifolds of the saddle point. This forms part of a nomenclature system

commonly used in more advanced dynamical systems theory; see P. Glendinning,

Stability, Instability and Chaos [4].
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Figure A.2: The phase portrait of a saddle point. The equilibrium point is denoted by the

large dot.

A.4.2 Case II

λ2, λ1 real. One, or more, of the following also holds:

λ2 = λ1, λ1 = 0, λ2 = 0. (A.22)

We typically will not encounter these degenerate cases in this course. We briefly note

that behaviour of the full equations, (A.1), can be highly nontrivial when the linearisation

reduces to these degenerate cases. Further details of such cases can be found in P. Glendin-

ning, Stability, Instability and Chaos [4], which is on the reading list for this course. When

λ1, λ2 = 0, Hartmann’s theorem doesn’t hold.

A.4.3 Case III

λ2, λ1 complex. The complex eigenvalues of a real matrix always occur in complex conju-

gate pairs. Thus we take, without loss of generality,

λ1 = a− ib = λ∗2, λ2 = a+ ib = λ∗1, (A.23)

where a, b real, b 6= 0, and ∗ denotes the complex conjugate.

We also have two associated complex eigenvectors e1, e2, satisfying

Je1 = λ1e1, Je2 = λ2e2, (A.24)

which are complex conjugates of each other, i.e. e1 = e∗2.

Using the same idea as in Case I above, we have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.25)

though now, in general, A1(t = 0), λ1, e1, A2(t = 0), λ2, e2 are complex, and hence so is

u.
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Restricting u to be real gives

u = A1(t = 0)eλ1te1 +A∗
1(t = 0)eλ2te2 = A1(t = 0)eλ1te1 + (A1(t = 0)eλ1te1)

∗, (A.26)

and this is real, as for any complex number z, we have z + z∗ ∈ R.

After some algebra this reduces to

u = eat [M cos(bt) +K sin(bt)] = eat

[(

M1

M2

)

cos(bt) +

(

K1

K2

)

sin(bt)

]

, (A.27)

whereM = (M1,M2)
T , K = (K1,K2)

T are real, constant vectors, which can be expressed

in terms of A1(t = 0), A2(t = 0) and the components of the eigenvectors e1 and e2.

Equivalently, we have

x̄ = eat [cos(bt)M1 + sin(bt)K1] , ȳ = eat [cos(bt)M2 + sin(bt)K2] , (A.28)

where M1, M2, K1, K2 are real constants.

1. a > 0. We have x̄, ȳ are, overall, increasing exponentially but are oscillating too.

For, example, with K1 = 0, M1 = 1 we have x̄ = eat cos(bt), which looks like:

Note that the overall growth of x̄ is exponential at rate a. Thus, in general, the

phase plane portrait looks like one of the examples shows in Figure A.3.

Note. The sense of the rotation, clockwise or anti-clockwise, is easily determined

by calculating dȳ/dt when ȳ = 0 or dx̄/dt when x̄ = 0.

Definition. An equilibrium point which results in the above, is called an un-

stable spiral or, equivalently, an unstable focus. The word “unstable” refers to

the fact that integral paths leave the equilibrium point.
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Figure A.3: Possible phase portraits of a focus. The equilibrium point in each case is denoted

by the large dot.

2. a < 0. This is the same as 1. except now the phase plane portrait arrows point

towards the equilibrium point as x̄ and ȳ are exponentially decaying as time increases

rather than exponentially growing.

Definition. An equilibrium point which results in this case is called a stable

spiral or, equivalently, a stable focus. The word “stable” refers to the fact that

integral paths enter the equilibrium point.

3. a = 0. Thus we have λ2 = −ib = −λ1, b 6= 0, b real, and

x̄ = [cos(bt)M1 + sin(bt)K1] , ȳ = [cos(bt)M2 + sin(bt)K2] , (A.29)

where M1, M2, K1, K2 are constants. Note that

K2x̄−K1ȳ = L cos(bt), −M2x̄+M1ȳ = L sin(bt), (A.30)

where L = K2M1 − K1M2. Letting x∗ = K2x̄ − K1ȳ and y∗ = −M2x̄ +M1ȳ, we

have

(x∗)2 + (y∗)2 = L2, (A.31)

i.e. a circle in the (x∗, y∗) plane, enclosing the origin, which is equivalent to, in

general, a closed ellipse, in the (x̄, ȳ) plane enclosing the origin.

Note. As with 3. above, the sense of the rotation, clockwise or anti-clockwise, is

easily determined by calculating dȳ/dt when ȳ = 0 or dx̄/dt when x̄ = 0.

Definition. An equilibrium point which results in this case, is called a centre.

A centre is an example of a limit cycle.
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Definition. A limit cycle is an integral path which is closed (and which does not

have any equilibrium points).

A.5 Linear stability

Definition. An equilibrium point is linearly stable if the real parts of both eigenvalues

λ1, λ2 are negative.

From the expressions for u above, for example

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.32)

when λ1, λ2 real, we see that any perturbation away from the equilibrium decays back to

the equilibrium point.

Definition. An equilibrium point is linearly unstable if the real parts of at least one

of the eigenvalues λ1, λ2 is positive (and the other is non-zero).

Other situations are in general governed by the non-linear behaviour of the full equations

and we do not need to consider them here.

A.5.1 Technical point

The behaviour of the linearised equations and the behaviour of the non-linear equations

sufficiently close to the equilibrium point are guaranteed to be the same for any of the

equilibrium points [I 1-3], [III 1,2] or [II] with λ1 = λ2 6= 0. All these equilibrium points are

such that Re(λ1) Re(λ2) 6= 0. This is the essence of Hartmann’s theorem. This guarantee

does not hold for centres, or the equilibrium points described in [II] with λ1λ2 = 0.

The underlying reasons for this are as follows.

• First, note from the above that integral paths which meet the equilibrium point

can either grow/decay at exponential rate Re(λ1), or exponential rate Re(λ2), or

consist of the sum of two such terms. Second, note that in the above we took a

Taylor expansion. Including higher order terms in this Taylor expansion can lead to

a small correction for the rate of exponential decay towards or growth away from

the stationary point exhibited by the integral paths. These corrections tend to zero

as one approaches the equilibrium point.

• Consider the centre equilibrium point, which has Re(λ1) = Re(λ2) = 0, and an

exponential growth/decay of zero. If the corrections arising from the Taylor series are

always positive, the exponential growth/decay rate of all integral paths sufficiently

near the stationary point is always (slightly) positive. Hence these integral paths

grow exponentially away from the stationary point. However, b is non-zero, so x̄ and

ȳ are still oscillating. Hence one has the non-linear equations behave like a stable

focus.



Chapter A. The phase plane 91

• If Re(λ1), Re(λ2) 6= 0, then for all integral paths reaching the stationary point, the

above mentioned corrections, sufficiently close to the equilibrium point, are negligi-

ble, e.g. they cannot change exponential growth into exponential decay or vice-versa.

This allows one to show that stationary points with Re(λ1) Re(λ2) 6= 0 are guar-

anteed to have the same behaviour for the linearised and the non-linear equations

sufficiently close to the equilibrium point.

A.6 Summary

We will typically only encounter stationary points [I 1-3], [III 1-3]. Of these stationary

points, all but centres exhibit the same behaviour for the linearised and the non-linear

equations sufficiently close to the equilibrium point as plotted above and in D. W. Jordan

and P. Smith, Mathematical Techniques [6].
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