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Module 1

Introduction to Scilab

1.1 Introduction

MATLAB and Scilab are (mostly) equivalent software packages commonly used to

perform scientific computations. Scilab (http://www.scilab.org ) is a MATLAB clone

and is the open source software we will use throughout the workshops this semester.

A full and proper introduction to Scilab requires more time than we have so here we

will only go through the very basics.

1.1.1 Some basics

If you feel you need more assistance, type help at the Scilab prompt, or pull down on

the Help menu on a PC.

It is important to make sure that your current directory is the directory

where you are going to save all your work to. You can click File → Display

current directory to see what your current directory is set as. If you want to work

1
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in a different directory, you can either click File → Change current directory... and

select the folder you want to work in, or you can click on the blue folder icon in the

toolbar and select the folder you want to work in. (If you do not see the toolbar, you

need to click on Preferences → Show/Hide Toolbar.)

1.2 Entering and Executing Scilab Commands

Scilab is an interactive computing language. As with any computing or programming

language, you enter and execute commands. Commands have a particular syntax,

which means things like punctuation, case and symbols are important and you have

to pay attention to the way you type things. This is similar to any spoken language

— if the syntax (i.e. spelling and grammar) is not correct, then it is difficult to

understand what things mean.

There are a couple of ways you can enter and execute commands in scilab:

Start Scilab and type and execute commands at the Scilab prompt in the command

window.

One can also collect commands or functions into a separate file called a .sce file (one

can use files other than .sce files but that is all that we will be using). Once you

have collected all the commands or functions into your .sce file, you can run these

commands or load the functions all at once. In Scilab, the “exec” command is used

to execute a .sce file.

QUESTION: Download the file oracle.sce. What is the result of executing the file

oracle.sce? Discuss the correct answer with your peers.
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1.2.1 Commands within the Scilab software

You can type Scilab commands in the command window at the Scilab command line

prompt, which is denoted by −− >. Press Enter or return to execute commands. For

example, at the scilab prompt type in the following command and press Enter.

ImportantAnswer = 1/3 + 1/4

You can use the up and down arrow keys to easily recall a command, and then edit

the command with the left and right arrows. Try it by closing the graphics window

which was opened when you executed the oracle.sce file then execute the oracle.sce

file again by pressing the up key and not by retyping the “exec” command.

This kind of command is called an assignment statement; it is not an equation.

It is an action that stores the output of the expression on the right hand side of the

equals sign into the variable (a name) given on the left hand side. Not using the

assignment statement correctly is one of top 10 errors beginners make.

1.3 Using the Scilab Editor

After downloading a .sce file, one can open it from Scilab’s editor. Or alternately,

one can double click on the file which will open it in the editor.

Download the file introduction lab.sce and make sure it is in your current directory

(check the folder icon and make sure that you see the file in your folder). You can

open the editor by typing either of the following commands at the command prompt:
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−− > edit

or

−− > editor

This command opens the editor. Go to the menu “File → Open a file...” or “File →

Open...” and select introduction lab.sec. The editor shows

function y=sum1(n)

// sum1(n) computes the sum of 1 + 2 + ... + n

total = 0;

for i = 1:n,

total = total + i;

end;

y = total;

endfunction;

Go to the command console and execute the following command:

−− > exec introduction lab.sce

In general the command exec executes a file.

This file defines a function sum1(n). The command sum1(3) returns 6 since 1+2+3 =
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6.

QUESTION: What is the value of sum1(8)?

We are going to edit this file. First save as introduction lab2.sce. Then change the

name of the function to sum2(n).

function y = sum2(n)

Next change the help line so the integers are squared.

sum2(n) computes the sum of 1∧2 + 2∧2 + ...+ n∧2

The help line is ONLY for reference, to leave a documentation of what is being done.

It is optional. We change the code to match, note the i squared.

total = total + i∧2

Save and try the code. Try sum2(3) which should be 14 = 12 + 22 + 32 = 1 + 4 + 9.

Remember that you need to execute the file before you can try the code.

QUESTION: What is the value of sum2(8)?

We could go on and define sum3 etc.
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1.4 Basic Operations in Scilab

As you have seen, some commands are just like you would type things in a calculator.

If you want to refer to the result of the command, you need to give it a name, or

in other words, assign the result to a variable. The following command assigns the

result to the variable s. (Note that scilab didn’t save the true answer 7
12

but rather a

decimal approximation.)

−− > s = 1/3 + 1/4

s =

0.5833333

(The command above created a location in Scilab memory that had the address s and

now stores the value 0.5833333.)

This is an assignment statement.

If a command does not fit on one line, use an ellipsis (three periods), ..., followed by

Return/Enter to indicate that the statement continues on the next line. For example,

s = 1− 1/2 + 1/3− 1/4 + 1/5− 1/6 + 1/7...

−1/8 + 1/9− 1/10 + 1/11− 1/12
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s =

0.6532107

(In the command above, the memory address is s, so it now stores the value 0.6532107.

The old value of 0.5833333 was thrown away.) You can always see the value of your

variable by just typing the name of the variable and executing it in Scilab.

−− > s

s =

0.6532107

(The most current value of s is returned.)

1.4.1 Expressions

Like most other programming languages, Scilab provides mathematical expressions.

The building blocks of expressions are: Variables, Numbers, Operators, Functions.

For example, use the caret symbol (ˆ) to raise something to an exponent.

answer = 89∧2
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answer =

7921.

Expressions use familiar arithmetic operators and precedence rules. There are also

functions, such as cosine or sine. You surround the input of the function by paren-

thesis. For example, to calculate the square root of two, you type

−− > squareRoot2 = sqrt(2)

squareRoot2 =

1.4142136
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Symbol Operation

+ Addition

− Subtraction

∗ Multiplication

/ Division

∧ Power

′ Complex conjugate transpose

() Specify evaluation order

abs(x) Absolute value

sqrt(x) Square root
√

(x)

exp(x) Exponential function ex

sin(x) sin (x) where x is assumed to be in radians

cos(x) cos (x) where x is assumed to be in radians

Taking the square root or logarithm of a negative number is not an error; the ap-

propriate complex result is produced automatically. Scilab also provides many more

advanced mathematical functions.

TAKE NOTE: The help browser has a whole section on elementary mathematical

functions. Type help in the command console or click on the help icon in the toolbar.

It will open the help browser in tree view in a new window. Elementary functions

is near the top in the tree view. Several special functions provide values of useful

constants. Note that e = 2.7182818 is missing from this list. One must use the exp

function exp(x) for ex and exp(1) for e itself.
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Constant Value

%pi π = 3.1415927

%i i, the imaginary unit, i =
√

(−1)

%inf Inf, Infinity ∞

%nan Nan, Not-a-number

(Matlab uses pi for π without the % sign and similarly for other constants.)

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined

mathematical expressions that overflow. (Try 10310 or exp(999).)

Not-a-number is generated by trying to evaluate expressions like 0
0

or∞−∞ that do

not have well defined mathematical values.

TAKE NOTE: When assigning names to variables or expressions, it is good practice

to make the names useful. Observe that you CANNOT have spaces in variable names

(ie. no spaces in names on the left hand side of the equals sign). Giving useful names

to your variables or output will help you (and the TAs!) keep track of what your are

doing.

A popular way of defining variable names is to use capitalization to mark word bound-

aries. One can also use underscores like rho sq, but we will avoid them. (They don’t

cut and paste well.)

1.5 The CLEAR Command

This command clears the internal memory. All the variables are removed; both their

current values and their addresses. You don’t need to clear memory to change a value

of a variable; just assign a new value to the variable by typing variable = 17. The
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clear command would never be needed if people were perfect.

However, for debugging purposes, this is useful to use at the start of any script file (or

any Lab problem!) to make sure the values of all variables have been cleared. This

is particularly important if you are going to use the same variable names over and

over for different problems. By using the clear command between problems you can

ensure that values from one problem are not used in another problem. It is easier to

find and fix a undefined variable error than a strange error caused by using a matrix

of the wrong size which was left over from the previous problem.

Syntax: clear

Description: Erase values of all previously declared variable

1.6 Additional Help

There is lots of help available through the menus. Additionally you can type help at

the scilab prompt. The help browser called by just the command help has sections on

Elementary Functions,the graphics library and many other sections. The use of help

command-name will give you help on a specific command. For example, help plot.

There are lots of Internet resources available too. This concludes the first part of the

introductory lab module.

1.7 A note to Mac Users

While Scilab on the Mac is officially supported in version 5.2 it only runs on newer

Intel based Mac’s and not on the older PPC processors. (But it has been several

years since Apple has sold a PPC processor.) One can obtain older versions of Scilab
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for the Mac which work on PPC processors. They require you to install X11, which

is on system disc, but not installed by default.

1.8 Plotting

Now we introduce how to do plotting using Scilab, especially using the plot command

and its enhancements such as the title, labels and the legend. Drawing the graph is

important. It is also important to add information so that the graph can stand on

its own. You can and should enhance your graphs with axis labels, titles, color, and

legends, if appropriate. Often scientific papers have figures (graphs) that ”float”.

They are moved to make good looking page breaks and can be disconnected from

where they are discussed in the text.

Often we want to graph functions, like f(t) = t2 or g(t) = sin(t) and Scilab has aids

to help us. The most confusing aid for new comers are the elementwise operations

which are different from the matrix ones. We will sometimes need to use 8.∗′ (dot

star) and 8 .̂ ′ (dot power) where you are used to using just star or power. On the

plus side, most Scilab functions f(x) are vectorized, so if x is a vector, then y = f(x)

is also a vector. This is very handy indeed.

1.8.1 Plot basics

The basic plot command has vectors of x and y data and an optional way of giving

the color, marker and/or linestyle. As a simple example, suppose

x = [1, 2, 4, 5]
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and

y = [1, 4, 16, 20]

then

plot(x, y,′ ro−′)

will give a graph like Figure 1. This is called plotting y vs x, the range versus the

domain. The ′ro−′ is optional, but it gives us control over the drawing. (In the text,

Figure 1 was defined next.)

Figure 1:Result of
plot ([1, 2, 4, 5] , [1, 4, 16, 20] ,′ ro−′)

Figure 1.1: *
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This command plots the points (1, 1), (2, 4), (4, 16) and (5, 20), puts circles at these

locations, and connects them with a solid line. The graph is sized to barely hold the

data. There are ticks and values on both the x− and y−axes. The ′ro−′ tells Scilab

to plot the graph in color red (because of the r), to put a circle (called a marker)

at each data point, and to connect the points with a solid line (because of the −).

There are many possible replacements for ′ro−′ described below in syntax for color,

marker, linestyle characters.

This plot is incomplete. It needs a title. If x and y have names or units, there

should be axis labels. One can plot two or more graphs at the same time using a

template like plot(x1, y1,′ ro−′, x2, y2,′ b :′) which combines plot(x1, y1, ′ro−′) with

plot(x2, y2, ′b :′). (More than 2 is also possible) If the plot has multiple graphs, then

a legend is often required. These are described below in label basics.

1.8.2 Label basics

To add a title to your plot use

title(′The title in single quotes′)

To label the x− or y−axes

xlabel(′time t in fortnights′)

ylabel(′distance y in furlongs′)

The legend is the hardest of these commands. Legend requires you to label each graph
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and has an optional location. If you plotted both x2 and x3 and then you might use

legend (′x∧2′,′ x∧3′, 2)

Sometimes the legend will block part of the graph and need to be moved. A full list of

legend locations is given by using the help legends command (see Scilab command

list below).

1.9 The Graphics Window

Scilab has a graphic environment where the plot is displayed in a separate graphic

window. This window has ways for interactively labeling a graph, including titles,

axis labels, creating legends, color bars, etc. But we will not use these features in this

class.

You may need to create a graphics window and then plot your graph. Type the fol-

lowing commands at the Scilab prompt.

scf(0);

x = 0 : 0.01 : 2 ∗%pi;

y = sin(x);

plot(x, y)

If you were to type commands in Scilab for a new plot, they will appear in the pre-
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vious window. If you want them to appear in a new figure window, then you would

type the command

scf(1)

before doing the plot command to create a new (second figure window). The most

recent figure window that you specify will be where your graphs are plotted. So, to

plot in a previous window, you need to specify that window using the figure command.

Saving your Figure

If you want to save the drawing in the graphics window, there are many ways of

exporting your graph into another document.

1. If you want to save graphics window number n, then from the command line, use

the command

xs2png(n,′ plot.png′)

which will save a copy of graphics window n into the file plot.png in the current

directory. The plots for last week’s lesson were made this way.The command

xs2jpg(n,′ plot.jpg′)
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will save the graphics window n as a jpeg in the file plot.jpg in the current directory.

There are more possibilities: xs2eps, s2ps, xs2pdf, etc. but xs2pdf is buggy.

2. Alternatively, File→ Export allows you to save the plot in a graphics format, such

a png, jpg, or eps. You can select the format by selecting the appropriate format

in the ”Format Selection” area in the Export dialog window.

1.10 Appendix – Details

1.10.1 Syntax for color, marker, linestyle, characters

It is possible to specify color, linestyle, and markers, such as plus signs or circles,

with a string of 1-4 characters inside single quotes. Color and marker are always one

character, while linestyle can be one or two characters.

plot(x1, y1,′ColorMarkerStyle1′, x2, y2,′ColorMarkerStyle2′)

The color characters are ‘b’ for blue, ‘c’ for cyan, ‘g’ for green, ‘k’ for black, ‘m’

for magenta, ‘r’ for red, and finally ‘y’ for yellow which doesn’t print well. Both

letters and symbols are used for markers. The letters are ‘d’ for diamonds (♦), ‘h’

for hexagrams (six pointed stars), ‘o’ for circles (◦), ‘p’ for pentagrams (five pointed

stars ?), ‘s’ for squares (�), ‘v’ for triangles pointing down (O), and ‘x’ for x-marks

×) The symbols are ‘+’ for plus (+), ‘.’ for point (·), ‘*’ for (eight pointed stars), ‘ˆ’

for triangles pointing up (M), ‘>’ for triangles pointing right (B), and ‘<’ for triangles

pointing left (C). Finally there are the linestyles ‘-’ for solid, ‘:’ for dotted, ‘-.’ for

dashdot and ‘–’ for dashed. This list of commands are repeated by the command:

help plot.

It is suggested that you always use the order: color, marker, linestyle for the charac-
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ters. Scilab can usually figure out other orders, but not always (compare ‘b.-’ with

‘b-.’). If you leave out the color, Scilab will pick one for you. If you leave out the

marker, there will be no markers. If you leave off the linestyle but have marker, then

no line is drawn. If you leave off the linestyle and the marker, Scilab will pick a

linestyle for you.

1.10.2 Scilab command list

Here are the list commands used in this lab:

Syntax: plot(X, Y )

Description: Theplot(X, Y ) command plots vector Y versus vector X.

This produces a graph of Y versus X.

Can be combined and used like

plot(x1, y1,′ColorMarkerStyle1′, x2, y2,′ColorMarkerStyle2′) so you can specify

the appearance of each curve within the command.

Syntax: scf(n);

Description: Makes graphics window number n the current graphics window. If it

is not visible one can use the show window command to raise it above all other

windows on the screen. If graphics n does not exist, and n is an integer, a new

graphics n is created.

Graph Title Syntax: title(′text′)

When giving titles to graphs, the convention is to list the dependent variable (y)

first. For example, if x = time and y = speed, a valid graph title would be ”Speed

Versus Time”, or alternatively, ”y versus x”

Axis Label Syntax: xlabel(′text′) and ylabel(′text′)
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Axis Scaling Syntax: a = gca(); a.data bounds = [xmin xmax ymin ymax];

Text in Graph at location (x, y) Syntax: xstring(x, y,′ text′)

Legend Syntax:

legend(′text1′,′ text2′, ...) or legend(′text1′,′ text2′, LOC) uses the specified ‘text’ as

labels in the legend. If the number LOC is include, the location of the legend is

indicated by the value of LOC. Common values for LOC are 1 for upper right, 2 for

upper left, 3 for lower left, 4 for lower right. These correspond to inside plot top

right (default), inside plot top left, inside plot top, etc, for the best location inside

the plot to least conflict with data in the plot. A full list of these options can be

found at: help legends

Syntax: xs2eps(n,′ figure.eps′)

Description: Stores a color postscript version of the graphics window n in the file

figure.eps. Similar commands exist for formats like pdf, jpeg and png.

1.11 Notes

This module was adapted from two modules originally made by Juan Gutierrez

(http://people.mbi.ohio-state.edu/jgutierrez/jbg personal/index en.html).



Module 2

The Cell and Biomolecules

2.1 Biological Introduction

The chemical environment inside living cells differs markedly from the environment

outside the cell. Cell membranes regulate the ongoing exchange between the in-

tracellular and extra-cellular environments, making it possible for cells to get vital

raw materials (examples: oxygen, sugars, amino acids), rid themselves of wastes

(examples: carbon dioxide, urea), and maintain a healthy electrical balance (mem-

brane potential). It is the objective of this module to gain a deeper understanding

of cell membrane structure and the processes of transport that systematically move

molecules in and out of cells. Especially we will focus here on diffusion and osmo-

sis, two passive means of exchange. Prepare for your workshop by reading in your

textbook (ex. Campbell, 7th edition, Chapter 7) and completing the Pre-Workshop

Activities posted on Blackboard as part of module 2b. Answers to any mathematical

questions completed below should be submitted to your workshop leader in written

form.

20
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2.2 Cell membrane

Use the figure below for the next portion of the workshop. In turn, each member of

the group should identify the structure described. As a group you should answer the

associated the questions. Many but not all of the structures are identified by white

boxes.

(1) Identify the phospholipid bilayer. Which is the hydrophilic side? Which is the hy-

drophobic side? How does this contribute to the structure of cellular membranes?

Identify the cytoplasmic and extracellular fluid on either side of the membrane.

(2) Identify a transmembrane protein that could act as a gated channel. Explain

what it does. Suggest one molecule or ion that might cross it.

(3) Identify a receptor protein with a bound ligand. Explain the process that goes

on here.



22

(4) Identify a recognition proteina glycoprotein. Explain what it does.

(5) Identify an integral protein that spans the entire membrane. This protein is an

electrogenic pump. Explain what it does and give an example.

(6) Identify several cholesterol molecules in the membrane. Take note of their general

shape. What purpose for these molecules serve for the membrane?

(7) Identify some cytoskeletal elements in the picture above. Note how they are at-

tached to the membrane. What is their role in maintaining membrane structure?

(8) Assume that immediately outside the picture is a cell membrane belonging to

another cell. These two cells membranes are connected by a gap junction. What

function does this junction serve for the two cells?

(9) If the gated channel in item 2 were open and conducted Na+ ions, what would

happen if 8 Na+ ions were outside the cell and 2 Na+ ions were inside the cell?

What process is involved?

(10) Assume the channel in item 8 is closed and conducts K+ ions. If there were 8

K+ ions in the cell and 2 K+ ions outside the cell, what will happen when the

gate opens?

(11) What is the difference between the two channels described in items 8 and 9 and

the sodium-pottasium pump pictured below? Describe the process in the picture

below including the type of energy used?
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2.3 Transport Process

Each pair of students take one of the following problems. Spend 5 min working on

them. When the group is reassembled, the pair should present their solutions to the

rest of the group and answer questions and make corrections if needed.

1. A one-celled organism called an Amoeba encounters a particle of food moving

through its watery environment. The particle is too large to pass through its cell

membrane. The Amoeba is able to ingest it anyway.

a. Suggest how the particle is taken in. Explain your suggestion.

b. Draw a simple diagram of the process using several sketches to show the stages.
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c. Describe where in the cell the particle is located after being ingested. Be specific.

d. Suggest what might happen to the particle next so the Amoeba can use it for

food.

2. Small molecules are passing from inside the cell across the membrane to the ex-

tracellular fluid. The cell expends no energy, nor are there any special channels

involved. The rate of movement is rapid for a while and then slows to a steady

rate.

a. Suggest the type of transport moving the molecules. Explain your suggestion.

b. Draw a simple diagram of the process using several sketches to show the stages.

c. Propose the conditions (energy, gradients, metabolic activity) that must exist

for the rapid and slow steady phases of molecular movement.

d. Think of a cell in which this transport might occur in the rapid and steady

phases.

3. A large protein is secreted by a cell. It was manufactured in the ER.

a. Suggest a type of transport for getting the large protein out of the cell.

b. Draw a simple diagram of the process using several sketches to show the stages.

c. Discuss the role of membranes in this transport process.

d. Give an example of a substance that is transported in this manner.

4. A cell has too many Na+ ions in its cytoplasm and must use energy to lower the

internal concentration back to normal levels since the Na+ concentration is higher

outside the cell than in.
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a. Suggest a type of transport for getting the Na+ out of the cell. Explain your

suggestion.

b. Draw a simple diagram of the process using several sketches to show the stages.

c. Explain how this type of transport differs from simple diffusion.

d. Give an example of this type of transport in cells.

e. Suggest the electrical consequences of moving Na+ out of the cell.

5. A cell has many more potassium ions (K+) in its cytoplasm than in the extracel-

lular fluid. The cell membrane has low permeability to potassium normally and

very little leaves. Suddenly a large number of K+ ions rush out of the cell, and

then the transport stops again.

a. Suggest what type of transport is responsible for the outward rush of K+ ions.

b. Draw a simple diagram of the process using several sketches to show the stages.

c. Identify the conditions (energy, gradients, stimuli, etc.) that must be present

in the cell for this type of transport to occur.

d. Propose a way that the K+ ions might get back in the cell.

6. The figure in the next section is based upon the model of sucrose uptake by cells.

Assume that cells have a lower concentration of hydronium ions (H+) inside as

compared to outside the cell.

a. What effect would increasing the extra-cellular sucrose concentration have on

the rate of sucrose transport into the cell?
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b. What effect would lowering the extracellular pH have on the rate of transport

of sucrose into the cell? Be careful!! Remember what happens with lowering

pH?

c. What effect would adding an inhibitor of ATP generation have on the rate of

transport of sucrose into the cell?

d. Name this type of transport mechanism.

2.4 Osmosis and Diffusion Problems

As a group complete the following problems on osmosis and diffusion.

1. Answer the items below using this figure. N = nucleus. Be sure to read the legends

below the figure.
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a. Which is the intracellular compartment and which the extracellular compart-

ment?

b. What will be in each compartment, beyond the solutes shown, in a live cell?

c. Determine the solute and solvent gradients that exist as it is drawn.

d. How does the osmotic pressure of the two compartments compare as it is drawn.

e. Describe what the distribution of solutes would be like after a few hours.

f. Compare the osmotic pressure in the two compartments if only solutes, but not

solvents moved between the compartments.

g. Now indicate any solvent movements that might occur and how the shape of

the cell might change.

2. Answer the items below using this figure. N = nucleus. Be sure to read the legends

below the figure.

a. Determine the concentrations of each solute in the two compartments assuming

each symbol represents a concentration of 0.01M.
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b. Determine the solute and solvent gradients that exist as it is drawn.

c. How does the osmotic pressure of the two compartments compare as it is drawn.

d. After 24 hours, which solute(s) have diffused across the membrane into the cell?

Which out of the cell?

e. How will the cell appear in size and shape after 24 hr?

f. Describe the relationship between the inside of the cell and the extracellular

environment using the terms hypertonic, hypotonic, or isotonic.

g. Suggest a scenario in which the cell could reach equilibrium.

Item 2 describes the process of diffusion. Another way to describe diffusion is using

a mathematical model. Mathematical models are able to predict how a cell will

react when placed in solutions with higher and lower concentrations of solutes. These

models can also identify the rate of diffusion at any given time, identify the equilibrium

concentration of a solute for a given cell, and determine how long it will take for a

cell to reach equilibrium. Below are two examples of diffusion using mathematical

models. You will be able to graphically visualize the rate of diffusion at multiple time

points and the time to equilibrium. You can also see how adjusting the permeability

of the membrane (diffusion coefficient) or the initial concentration of solutes affects

the rate of diffusion and time to equilibrium.

In this section, we will show how mathematics can be used to study the process of

diffusion.
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2.4.1 Functions of one variable

When you think of a function, you probably think of an equation that relates two

quantities. The equation describes precisely how the value of the dependent variable

depends on the value of the independent variable. For example, the position of

an object traveling along a straight line depends on how long the object has been

traveling for. So if s represents the position of an object and t represents the time

the object has been traveling for, and we know the equation describing this motion,

we could write a function. An example would be s(t) = t3 − 6t2 + 9t.

Once you begin studying calculus, you can ask answer questions like: How fast is the

position of this object changing as time changes (or, what is the object’s velocity)?

This is the idea of derivative from calculus, which is a central idea in the study of

the subject. A related but slightly different question you can ask is: If I know the

velocity of the object, what is the function describing the object’s motion? This

type of question is the basis for the subject of differential equations. In a differential

equation, you are given information about the derivative(s) of a function and asked to

figure out what the original function was. An example of a differential equation would

be ds
dt

= s2. This says that the objects velocity is s2 and you would need to figure

out what the position of the object is (or what the original position function is which

led to this velocity). For some differential equations, there are techniques for figuring

out the solutions to the equation. For others, the equations are too complicated to

solve. But even in such cases, we can usually figure out some qualitative information

about the solution, even if we cannot figure out the solution itself.

One important qualitative feature of a differential equation that is usually of interest

is the equilibrium. The equilibrium is the value which, once attained, the solution
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will remain at that value unless some outside force pushes it away from that value.

To visualize an equilibrium value, think about a valley between two hills. If you place

a ball at the trough of the valley, the ball will remain unchanged (at equilibrium)

unless something or someone moves it.

2.4.2 Functions of more than one variable

Though we typically think of the value of the dependent variable depending on just

one single independent variable, it is possible for the dependent variable to depend

on more than one independent variable. A multivariable function is an equation in

which you have multiple independent variable determining the value of the dependent

variable. For a simple example, think about temperature on Earth. The temperature

depends both on location and time. The temperature in Miami is different than

the temperature in Chicago, but even in Miami, the temperature in December is

different than it is in June. So, if x represents position, t represents time, T represents

temperature, and we knew the equation describing how position and time affected

temperature, we could write a multivariable function. An example would be T (x, t) =

xt+ x2.

The ideas of calculus extend to multivarable functions and this is the idea behind

multivariable calculus. With multivariable calculus, we could answer questions like:

How fast is the temperature changing as your position changes, for a fixed time? How

fast is the temperature changing as time changes, in a fixed position? How fast does

temperature change as time changes and as your position changes in a certain direc-

tion? And just like with single variable functions, you can ask the related question: If

I know how the temperature changes with position and/or time, what was the original



31

temperature? This leads to partial differential equations. An example of a partial

differential equation is ∂T
∂t

= D ∂2T
∂x2

. This equation is usually called either the heat

equation or diffusion equation. As with differential equations which arise from single

variable functions, there are techniques for solving some partial differential equa-

tions (such differential equations are usually called ordinary differential equations),

although most cannot be solved explicitly (in fact, partial differential equations are

usually such harder to solve than ordinary differential equations.

Luckily, the diffusion equation is one which can be solved in simple cases, although

that is beyond the scope of this module. Notice that in the equation, there is an

extra parameter, D. This parameter is called the diffusion coefficient or diffusivity.

The diffusion coefficient is a measure of how effectively the particles disperse from a

high concentration to a low concentration and is a characteristic of the solute and

the fluid in which it is dissolved. The diffusion coefficient usually depends on things

such as the size of the particles, the type of solvent, and the temperature.

When solving the diffusion equation, you usually start with some conditions above and

beyond just the equation itself. Usually, you start with certain boundary conditions

and certain initial conditions. Usually, we dealing with diffusion, whatever is diffusing

(whether it is particles or animals or whatever) does so in a certain region of space,

which we call the domain. The domain usually has some sort of boundary (whether

it is the borders of a cell in which particles are diffusing or the coast of an island

in which a population is diffusing). We can specify condition on this boundary,

such as no animals on the boundary, no particles coming in or out of the domain

through the boundary, or animals at these locations, this many animals coming in

at this location, and this many animals going out at that location. These conditions
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constitute the boundary conditions. The boundary conditions can play an important

role in the eventual composition of the population within the domain. The other

condition, called the initial condition, tells you at each location, how is the population

distributed at the very beginning.

The situations we will look will consist of particles inside two infinitely long parallel

strips. The boundary conditions we will use are no particles coming in or going out at

either of the boundaries (the left side or the right side). We will look at two different

initial conditions: one where the particles have a higher initial concentration on the

left side of the strip and one where the particles have a higher initial concentration

in the center of the strip. These examples are a bit different than particles diffusing

across a cell membrane but they are much simpler to handle mathematically and still

demonstrate the idea of diffusion pretty well.

2.4.3 Diffusion with Scilab

Download the file diffusionleft.sce, then execute it in Scilab. For certain fixed values

of t, you will see how the concentration of particles changes with position, x.

QUESTION: Describe what you see in the graph.

Download the file diffusioncenter.sce, then execute it in Scilab. For certain fixed

values of t, you will see how the concentration of particles changes with position, x.

QUESTION: Describe what you see in the graph.

Now open the Scilab editor and open the code for each of the files you downloaded.

In each, you will see parameters T, u, a in lines 7 - 9. These parameters represent:

T is temperature (in Kelvin), u is cell size (in cm), and a is viscocity of solvent.

Note: For the next few questions, if you want to leave the original graph open in its
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original graphics window and open the new graphs in their own graphics windows so

you can compare them all side-by-side, you need to change line 17 or 18 (depending

on which of the two files you are working with) where it says scf(1);. The 1 indicates

that the graph is being opened in graphics window 1. If you change the 1 to 2, that

will open the graph in graphics window 2. If you change it to 3, it will open the graph

in graphics window 3.

QUESTION: What is the affect of changing the temperature from 298 to 398? From

298 to 198? How does temperature affect diffusion?

QUESTION: What is the affect of changing the viscosity from 0.498 to 0.098? From

0.498 to 0.998? How does viscosity affect diffusion?

QUESTION: What is the affect of changing the cell size from 0.0001 to 0.001? From

0.0001 to 0.00001? How does cell size affect diffusion?



Module 3

Protein Synthesis

3.1 Biological Introduction

The discovery of DNA structure as a double helix and the function of this macro-

molecule as the genetic material of the cell was a primary scientific achievement of

the 20th century. Countless scientist have contributed to understanding the processes

by which the genetic information is replicated prior to cell division and expressed in

cell structure and function by the synthesis of RNA and proteins. The goal of this

workshop is to master the basics of three processes, DNA replication, the formation

of RNA by transcription, and the synthesis of proteins, a process called translation.

The three are bound by a universal genetic code that is common to most living things.

Prepare for your workshop by reading assignments in your textbook (Campbell and

Reece, 6th edition, Chapters 16 and 17) and completing the Pre-Workshop Activities

in Module 5 on Blackboard. Show your work on these pages.

34
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3.2 Scholarly definitions

Evaluate the definitions below. Circle any items that are incorrect and change the

words to make them correct. Write TRUE if all information is already correct. After

completion, go over each item as a large group.

(1) DNA: located in the nucleus; a polymer made of amino acids; contains ribose,

phosphate groups, and nitrogen bases; replicates during the S phase of the cell

cycle; one strand acts as a template for mRNA replication; strands can be divided

into 3-base sequences called codons.

(2) mRNA: m stands for “messenger”; is synthesized in the nucleus; the process of

synthesis is called translation; works in polysaccharide synthesis on ribosomes in

the cytoplasm; is composed of 3-base units called codons; is single stranded; has

T substituted for U in synthesis from DNA.

(3) template: a name given to a DNA strand that serves in mRNA synthesis; has

a sequence of triplets which determine the codons of mRNA; works by binding

complementary nucleotides which are then linked to form the mRNA strand;

binding to free nucleotides is by hydrogen bonding.

(4) codons: an example would be ATC; many occur in sequence on mRNA molecules;

sites of attachment for the anticodons of tRNA; determine the order in which

amino acids attach to form a polypeptide; are complementary to DNA triplets

from which they were formed initially.

(5) tRNA: are short polynucleotide strands; t stands for “target”; carries a sugar

at one end for polysaccharide synthesis; at the other end of the molecule is an
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anticodon for attachment to codons of mRNA; if the mRNA codon were AUG,

the anticodon of tRNA would be UAC; occurs in many varieties to carry different

amino acids.

(6) transcription: manufacture of proteins using mRNA and tRNA; occurs on ribo-

somes in rough endoplasmic reticulum; involves the encoding of a sequence of

triplets into a comple-mentary sequence of codons.

(7) translation: the raw materials for the process are free amino acids in the cyto-

plasm or rough ER; requires enzymes to attach amino acids to one another; occurs

on free ribosomes or ribosomes of the rough endoplasmic reticulum; mRNA and

tRNA each play an important role; final product is a protein; DNA is only in-

volved if RNA cannot finish the job.

(8) DNA replication: a double DNA strand separates into two single strands; each sin-

gle strand attracts complementary nucleotides which attach by hydrogen bonding;

an enzyme hooks adjacent nucleotides together forming the new double strand;

occurs before a cell divides in mitosis.

(9) nucleotides: are the monomers from which DNA and RNA are synthesized; occur

in four different varieties in DNA, and three varieties in RNA; each one includes a

sugar, nitrogen base and a phosphate group; are synthesized into RNA and DNA

in the nucleus; occur only in the nucleus.

(10) ribosome: some of its parts are manufactured in the nucleus; consists of rRNA

and proteins; serves as a location for protein synthesis; has two connected parts,

one large and one small; occurs free in the cytoplasm and attached to the walls

of rough endoplasmic reticulum.
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3.3 Short Problems

Organize into pairs and complete two of the following problems. When the second

problem assigned to you is presented, your job will be to make any corrections and

additions that are appropriate or show an alternative way to represent the problem.

1. A newly formed complementary strand of DNA has the base sequence: AGGTCT-

GAG.

What is the sequence of bases in the template from which it was synthesized?

2. An mRNA strand has the base sequence: AUGACCUUA.

How many codons are present if only codons are shown?

What is the sequence of triplets for the DNA strand that acted as a template for

its synthesis?

3. A very small gene has the base sequence TAGTAGCAT.

Describe the molecule it could give rise to which would control protein synthesis

in the cytoplasm of the cell.

4. A strand of DNA has the following sequence of bases:

GCC GAC GAT AGA

(a) Using the table provided, determine the sequence of bases in the mRNA strand

that can be transcribed from the DNA.

(b) Determine the amino acid sequence in the polypeptide that will be translated

from the mRNA.
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5. For the molecule in question #4, determine what the anticodons are for the tRNAs

that attach to them in protein synthesis.

3.4 Diagramming the Processes

Divide the group into three teams. Each team will do one of the problems below

and then share their results with the other students. Make the diagrams on the

blackboard or large sheets of newsprint.
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1. a. Make a rough labeled diagram of how you envision the process of DNA replica-

tion including the important molecules in the following list: DNA double helix,

DNA polymerase, leading strand, lagging strand, single deoxyribonucleotides,

and triplets. Include: Okazaki fragments, DNA ligase, helicase, primase.

b. Indicate by arrows and numbers the sequence of steps.

c. Explain the diagram to the other groups, and make any modifications that are

needed.

2. a. Make a rough labeled diagram of how you remember the process of RNA tran-

scription including the important elements in the following list: DNA template,

single ribonucleotides, RNA polymerase, promoters, initial RNA transcript,

RNA splicing, mRNA, rRNA, tRNA, codons.

b. Indicate by arrows and numbers the sequence of steps.

c. Explain the diagram to the other groups, and make any modifications that are

needed.

3. a. Make a rough labeled diagram of how you envision the process of translation

including the important elements in the following list: mRNA, ribosomes, amino

acids, tRNA, anticodons, codons, aminoacyl-tRNA synthetase, peptide bond,

protein. Include: P site and A site.

b. Indicate by arrows and numbers the sequence of steps.

c. Explain the diagram to the other groups, and make any modifications that are

needed.
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3.5 Mathematical Introduction

One process you have studied during this workshop is DNA replication. DNA repli-

cation is a necessary part of the cell cycle. In order for cellular division to occur,

the cell must first duplicate its DNA. During the cell cycle, the cell grows and after

DNA replication, it divides in two cells containing identical cellular material. DNA

replication and cell division are regulated by several key checkpoints during the cell

cycle that you will learn about in more detail in lecture. Whether or not replication

and cell division occur is dependent on several factors including the mass of the cell

and the presence and abundance of a group of substances known as cyclins and cyclin

dependant kinases (Cdk).

Thanks to research on this matter, it is possible to determine how frequently cell

division occurs as a function of cellular mass or cyclin concentration. Below is a

model that described how this occurs.

3.6 Mathematical model

To learn more about cell cycle control and the model, read section 10.1 - 10.3 in

Computational Cell Biology, edited by Christopher P. Fall, Eric S. Marland, John

M. Wagner, and John J. Tyson, 2002. Pay attention to the model equations and

the meanings of the variables. The model is a system of four ordinary differential

equations (ODEs). A differential equation is an equation that relates the derivative

of a function to the function itself. In other words, it describes the rate at which

a quantity changes. This system in particular is a coupled system of ODEs, which

means that the rates of change of each of the quantities depends on each other. In
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this model, the quantities which are changing are the concentration of cyclin/Cdk,

the concentration of Cdh1/APC, the concentration of the Cdc20 activator, and the

size of the cell.

As you read about the model, do not get hung up on what the terms in the model

mean. Just observe that they depend on each other and concentrate on what happens

with the biology of the system. Also, don’t get wrapped up in any fancy mathematical

jargon. For example, when you read the sentence, “Consequently, the S-G2-M steady

state is lost by a saddlenode bifurcation, and the control system jumps irreversibly

back to the G1 state” you should understand that the cell cycle control system is going

from the S-G2-M phase back to the G1 phase as a result of whatever is mentioned in

the previous sentence.

3.6.1 Scilab File

Download and execute the file cell cycle control.sce. Once the graphics window opens,

maximize the window, then export the figure as a JPEG (go to File → Export to...

then change the Files of type option from All files to JPEG). Be sure to note where

you saved the figure and what name you gave it so you can retrieve it on your com-

puter.

QUESTION: Open the figure you saved from the Scilab file. Using any program

which allows you to draw on pictures (MS Paint, MS Word, Photoshop, etc.) draw

a vertical line at the Start and Finish of each cell cycle and label each as start or

Finish. Then label the G1 and S-G2-M phases.

QUESTION: The text you read on the model claims that APC destroys cyclin

molecules. Is this claim supported by the figure? Explain.
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QUESTION: The text you read on the model claims that cyclin/Cdk activates

Cdc20. Is this claim supported by the figure? Explain.



Module 4

Gene Regulation

4.1 Biological Introduction

Gene expression results in translation into proteins. Genes typically do not express

themselves until they are switched on. This is accomplished by the binding of tran-

scription factors to the promoter region of the DNA. Upstream sequences can code

for the production of small protein molecules that either induce or repress gene ex-

pression. We will explore these concepts in this module.

We will also consider viruses and bacteria. These are two categories of microbes that

play a multiplicity of roles in life. Their structure, function and genetics have enabled

scientists to gain an ever deeper understanding of the basic operations of life at the

cellular/molecular level. This workshop will give you some incite into this microscopic

and sub-microscopic world.

Prepare for this workshop by reading your textbook (Campbell and Reece, 7th edition,

Chapters 18 and 19) and completing the Pre-Workshop Activities in Module 6 on

Blackboard.
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4.2 lac Operon

In the laboratory, you are given ten strains of E.coli with the following lac operon

genotypes, where I = lacI (the repressor gene), P = Plac (the promoter), O = lac O

(the operator), and Z = lacZ (the β-galactosidase gene). (Note: In the partial diploid

strains (6-10), one copy of the lac operon is in the host chromosome and the other

copy is in the extrachromosomal F factor.)

For each strain, predict whether β-galactosidase will be produced (a) if lactose is

absent from the growth medium and (b) if lactose is present in the growth medium.

1. I+P+O+Z+

2. I-P+O+Z+

3. I+P+OcZ+

4. I-P+OcZ+

5. I+P+OcZ-

QUESTION: Compare and contrast the lac operon and trp operon with respect to

their inducible and repressible features.

QUESTION: What happens when glucose levels are high and lactose levels are low?

4.3 Eukaryotic Gene Regulation

Label the following diagram indicating stages in gene expression that can be regulated

in eukaryotic cells.
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QUESTION:What are the major differences between gene regulation in prokaryotes

and eukaryotes?

4.4 Conjugation in Bacteria

QUESTION: In the image below, which process represents an F+ x F- cross and

which represent an Hfr x F- cross
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QUESTION: What are the major differences between the F+ x F- and the Hfr x

F- bacterial crosses?

4.5 Viral reproduction and Bacteria

Below is an image of a phage infecting a bacterium. Identify which half of the diagram

represents the lytic cycle and which represents the lysogenic cycle.
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QUESTION: What are the major differences between the lysogenic and lytic phases

of a bacteriophage?

4.6 Mathematical Introduction

A specific type of virus, called a retrovirus, uses a similar but much more effective

method to transfer its genetic material to its host. Retroviruses do not have DNA

but rather have RNA based genomes. Once they infect a cell, they release an enzyme

called reverse transcriptase which transcribe the RNA into a double stranded DNA.

This is called a provirus. The provirus is then incorporated into the cell’s chromosomal

DNA and is transcribed into RNA repeatedly along with the rest of the genes in the

cell. As you can imagine, this is extremely dangerous to the host organism and can

quickly result in the formation of millions of copies of a virus. You will learn more

about this process later in the semester.

One example of a retrovirus is HIV. Based on what you know about how HIV repro-

duces you can understand how dangerous it is to its host and why it is so important

to develop effective treatments for this virus. Researchers can utilize mathematical

models to determine the effectiveness of different treatment strategies, to best figure

out how to treat HIV while they are still trying to find a cure. Below is an example

of one such model.

4.6.1 Mathematical Background

In mathematics, it is common to want to try and optimize some quantity, which is

usually represented by a function. In application, this function which you are trying

to optimize has some practical meaning. For example, if you own a business then
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perhaps you have a function r(x) which described how much revenue you make from

selling x items, which you want to maximize. Or maybe you have a function c(w)

which tells you how much your company’s costs are based on hiring w workers, which

you want to minimize. In calculus, you are taught to find the maximum or minimum

of a function using derivatives. But sometimes the story is more complicated than

that. In our previous example, perhaps we are most interested in maximizing the

profit. This would involve a combination of maximizing our revenue and minimizing

our costs. But there could be a complicated interplay between the two. For instance,

the more employees you hire, the higher your costs will be. But on the other hand,

the more employees you have, the more sales you can make so the higher your revenue

too. On the flip side, the more items you sell, the higher your revenue will be, but

you will also need to produce more items and so your costs will be higher too. So now

determining the optimal number of employees and items to maximize your profits is a

lot more complicated. In fact, it might be the case that instead of having one optimal

level of employees and items, there could be a strategy which changes over time. For

instance, perhaps it is better to have only a few employees initially then gradually

increase for six months, then scale back again. Or maybe it is better to start off with

lots of employees and after three months, double your workforce.

The mathematical field of optimal control theory deals with exactly these types of

complicated problems. In optimal control theory, there is a variable (or variables)

which are controlled by some outside factors and you want to figure out how we should

control this variable to produce the “best” outcome, based on some predetermined

goal(s).

In this module, you will be using optimal control to determine the best treatment
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strategy for treating HIV with chemotherapy.

4.7 HIV Model

One strategy which researchers have studied for treating HIV is the use of chemother-

apy of reverse transcription inhibitors, such as AZT, to reduce viral production. These

drugs interrupt key stages of the infection process during the life cycle of HIV within

a host cell. It is assumed that drug resistance occurs so treatment only acts to re-

duce the infectivity of the virus until then. The benefit of chemotherapy is increased

CD4+T cell count. This model has the following 13 parameters with the following

values:

s = 10: rate of generation of new CD4+T cells

m1 = 0.02: natural death rate of uninfected CD4+T cells

m2 = 0.5: natural death rate of infected CD4+T cells

m3 = 4.4: natural death rate of free virus particles

r = 0.03: growth rate of the T cells per day

Tmax = 1500: maximum level which T cells can grow to

k = 0.000024: rate at which free virus cells infect T cells

N = 300: average number of virus particles which are produced before the host cell

dies, once infection of a T cell occurs and replication is initiated

T0 = 800: initial concentration of uninfected CD4+T cells

Ti0 = 0.04: initial concentration of infected CD4+T cells

V0 = 1.5: initial concentration of free virus particles

A = 0.05: “cost” of chemotherapy to the body

tfinal = 20: time frame before drug resistance occurs
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For this model, the control variable, u(t), is the strength of the chemotherapy. Here,

u(t) = 1 represents no chemotherapy and u(t) = 0 represents maximum chemother-

apy. The goal of this model is to maximize the number of uninfected T cells while

minimizing the “cost” of the chemotherapy to the body at the same time.

Download the file HIV control.sce. When you execute the file, you will notice that

in the Scilab console window, the code will stop running and you will see this message:

[Continue display? n (no) to stop, any other key to continue]

As long as this message is in the console window, Scilab won’t proceed with the code.

In fact, Scilab will freeze until you tell it what to do at this point. Press “n” and

Scilab will finish the first part of the code. It will then ask you to enter a value for

the source term s, then it will ask you to enter a value for the natural death rate of

T cells (m1), etc. It will ask for values for each of the 13 parameters in the model.

For each parameter, enter the value listed above. After you have finished entering the

last parameter value, Scilab will continue with the code and eventually, you will see

the same message in the console window asking about continuing the display. Again,

press n so that Scilab can finish with that part of the code.

Once that is done, Scilab will tell you to type 1 or 2. What Scilab is asking for here

is if you would like to input a second value for one of the parameters so that you

can see how changing one of the parameters affects the treatment strategy. Press 1.

Scilab will then tell you to type 1 - 13. Here Scilab is asking you which of the 13

parameters you want to change so you can see how it affects the treatment strategy.

Each of the questions below will tell you which of the 13 parameters you are going
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to change and what to change it to. Each time you answer a question, you should

close the graphics window and then execute the file using the initial parameter values

from above. When you enter your second parameter value, Scilab will again stop

in the middle of the code and you will see the same message in the console window

about continuing the display. Press “n” so that your graphics window ends up with

four graphs. The top graph is T (concentration of uninfected CD4+T cells) vs. t

(time). The second graph is Ti (concentration of infected CD4+T cells) vs. t. The

third graph is V (concentration of free virus particles) vs. t. The fourth graph is u(t)

(strength of chemotherapy) vs. t.

QUESTION:N = 50: Which parameter value allows the uninfected T cell count

to increase the most? Why is or isn’t this what you would expect? Describe the

difference in treatment strategies for the two parameter values.

QUESTION:s = 7: Which parameter value involves more chemotherapy as part of

its strategy? Notice the relationship between the concentration of uninfected T cells

& viral particles and chemotherapy strategy for each of the parameter values. How

do they compare for the different parameter values?

QUESTION:k = 0.000032: Which parameter value involves more chemotherapy?

Does the increased chemotherapy result in a lower concentration of infected T cells

and viral cells? How do the results of changing this parameter differ from the results

in the previous question?

4.8 Notes

The matehmatical model and Scilab file used in this module were adapted from Opti-

mal Control Applied to Biological Models by Suzanne Lenhart and John T. Workman,
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2007.



Module 5

Control Systems

5.1 Biological Introduction

The most striking feature as the level of complexity increases in living systems is the

development of integration and coordination of body functions such as respiration,

circulation of blood, and excretion. This integration and coordination ensures home-

ostasis; the maintenance of a relatively stable internal environment. Homeostasis is

accomplished by two systems; the endocrine system and nervous system.

Although both hormone producing cells and nerve cells synthesize specific chemicals,

store them in specialized regions of the cell, and release them when they are stim-

ulated, there are major differences between the endocrine system and the nervous

system. First, nerve cells usually release their chemicals (neurotransmitters) close to

the cells that they influence compared to endocrine cells, which release hormones into

the blood to act on distant target cells. Second, this difference in distance affects

the degree of control of the two systems. A nerve cell will chemically influence an

adjacent nerve cell whereas hormones bathe millions of cells indiscriminately. Third,
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since the nervous system is an electrical system, its response is more rapid than the

endocrine system in which hormones are released into the blood stream.

In this module we will explore how the endocrine system and nervous system work

together to achieve homeostasis. Prepare for this module by completing the pre-

workshop activities available on Blackboard.

5.2 Endocrine System

(1) Which of the images below represents the actions of a typical protein hormone

and which represents a typical lipid hormone.

QUESTION:What are the major differences between the actions of lipid and protein

hormones?
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(2) Suppose that a researcher announces a discovery of a hormone that affects the

metabolism of fats in lab rats. Preliminary data indicate that the hormone is a

single polypeptide chain 100 amino acids large. Design a protocol for isolating

the receptor for the hormone. Using fat cells growing in vitro, how could you test

the hypothesis that hormone binding causes a change in a second messenger?

(3) In the image below identify the processes and hormones involved in the regulation

of blood glucose levels.

QUESTION:How does the regulation of blood glucose compare to the regulation of

blood calcium levels?
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5.3 Nervous System

Fill in the blanks in this concept map to help you learn the functional organization

of the vertebrate nervous system.

QUESTION:Provide some examples where the nervous system and endocrine sys-

tem interact to maintain homeostasis.

This diagram shows the changes in voltage-gated ion channels during an action po-

tential. Label the channels and gates ions, and five phases of the action potential.

Label the axes of the graph and show where each phase occurs. Describe the ion

movements associated with each phase.
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We have just covered the basics of how an action potential is formed. This action

potential can then conduct down the entire length of a neuron by depolarizing a

neighboring region of the neuron. This is also sometimes called a nerve impulse. We

can use mathematical models to see how action potentials conduct down a neuron.

We can also see how changing the current will affect an action potential. Using the

models below you will be able to explore action potentials in greater detail. While

you work with these models, keep in mind what is happening to the sodium and

potassium ions during depolarization and repolarization.
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5.4 Mathematical Introduction

In 1952, Alan Hodgkin and Andrew Huxley published a mathematical model describ-

ing the propagation of an electrical signal along a squid giant axon. Their work earned

them the Nobel Prize for Physiology and Medicine in 1963. Their model consists of

four coupled differential equations. The first equation describes the potential differ-

ence caused primarily by the sodium and potassium ions, although other ions play

a part. The second equation describes the potassium activation. The third equa-

tion describes the sodium activation and the fourth equation describes the sodium

inactivation.

The problem with this system of equations is that it is too complicated to be able

to do any qualitative analysis on it. So in the 1960s, Richard FitzHugh (1961) and

Jin-Icki Nagumo (1962) independently studied the work of Hodgkin and Huxley. The

result was a simplified system of two equations, which was much more conducive for

qualitative analysis. The key to the FitzHugh-Nagumo equations is the fact that the

change in potential and the sodium activation happen on a much faster time scale

than the potassium activation and sodium inactivation (by a factor of 10). So since

the potassium activation and sodium inactivation are changing so slowly, they can be

thought of as being constant in the equations for the potential and sodium activation,

which eliminates two of the equations from the system.

In this module, you will be simulating both the Hodgkin-Huxley equations and the

FitzHugh-Nagumo equations. You will notice the qualitative similarities between the

two models.



59

QUESTION:Describe what happens to a nerve cell after it receives a stimulus suf-

ficiently large to trigger an action potential.

5.4.1 Scilab Simulations

Download the files Hodgkin Huxley.sce and Fitzhugh Nagumo.sce. First execute the

Hodgkin-Huxley system. In this simulation, we start with an applied current of 0,

which means that there is no stimulation to the axon after the first action potential.

To answer the next couple of questions pertaining to the Hodgkin-Huxley equations,

you will need to edit the applied current, which is on line 19 of the code and is labeled

as iapp.

QUESTION: What is the effect of changing the applied current to 5? Explain why

you think this happens.

QUESTION: What is the effect of changing the applied current to 10? Explain why

you think this happens.

Now execute the FitzHugh-Nagumo system. In this simulation, we also start with

an applied current of 0. To answer the next couple of questions pertaining to the

FitzHugh-Nagumo equations, you will need to edit the applied current, which is on

line 8 of the code and is labeled as I.

QUESTION: What is the effect of changing the applied current to 0.1?

QUESTION: What is the effect of changing the applied current to 0.2?



60

QUESTION: What qualitative similarities do you see between the simulations of

the Hodgkin-Huxley equations and the FitzHugh-Nagumo equations?



Module 6

Immune System

6.1 Biological Introduction

In our lifetime we are continually exposed to disease causing bacteria and viruses, as

well as a wide variety of parasitic worms, fungi, and protists. Our immune system has

evolved to ward off these foreign invaders. There are two types of immunity: innate

immunity and acquired immunity. Our innate immunity allows for the recognition of

a broad range of pathogens using a small set of receptors. The response is rapid. In

this workshop we will discuss one of these responses, the inflammatory response.

Acquired immunity allows for the recognition of specific pathogens using a wide vari-

ety of receptors. The response is slower than innate immunity. In this workshop you

will explore two types of acquired immunity responses: the humoral response and cell

mediated response. Prepare for your workshop by reading in your textbook (Camp-

bell and Reece 8th edition, Chapter 43 and completing the Pre-Workshop Activities

on the Blackboard site.
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6.2 Humoral and Cell Mediated Immunity

Below is a schematic diagram comparing the humoral immune and cell mediated

immune responses.

Label everything indicated by an oval or rectangular. As a group compare and con-

trast humoral and cell mediated immune responses.
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6.3 Cytotoxic and Helped T cells

Label all letters in the figures above. Describe the processes indicated by 1 and 2 in

Figures A and B.

6.4 Vaccines

QUESTION:What do vaccines need to contain in order to be effective? Why dont

we have vaccines for HIV? Why do people need to get a new flu shot every year?
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6.5 Life cycle of HIV

(a) Label all parts of the HIV virus in Figure a.

(b) Describe what is happening in b. Be a specific as possible.

(c) Describe the processes occurring in the three steps in c.

(d) What is the arrow in d pointing to (only the blue part).

(e) Describe the processes occurring in rectangle e.

QUESTION:To test for tuberculosis in AIDS patients why wouldnt you inject puri-

fied bacterial antigen and assess signs of immune system reaction several days later?
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6.6 Mathematical Introduction

In this module, we will study an SIR epidemiological model. In this model, there

are 3 classes of individuals: susceptible, infected, and recovered. The rate at which

susceptible individuals become infected is β and the rate at which infected individuals

recover is γ.

One important piece of information which can be determined from this model is the

basic reproductive number, R0, which tells you how many secondary infections which

one primary infection could generate. If R0 < 1 then the disease will die out. If

R0 > 1 then there will be an epidemic. In this model, R0 depends on 3 factors: S0,

which is the number of individuals initially susceptible to the disease, β, which is the

transmission rate, and γ, which is the recovery rate.

6.6.1 Model Simulations

Download and execute the file SIR.sce. In this simulation the parameters are S0 =

10, 000, β = 0.000007, and γ = 0.03, which can be found in lines 14, 11, and 12 of

the code, respectively.
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QUESTION: For this combination of parameters, does the disease die out or is

there an epidemic?

QUESTION: Decrease the value of S0 from 10,000 to 5,000 and execute the file.

Then increase the value of S0 to 50,000 and execute the file again. If you are trying to

prevent the disease from becoming an epidemic, would you want to try and increase

or decrease S0? What kind of practical control strategy could be used to achieve this

goal?

Change the parameter values back to their original values.

QUESTION: Decrease the value of β from 0.000007 to 0.0000007 and execute the

file. Then increase the value of β to 0.00007 and execute the file again. If you are

trying to prevent the disease from becoming an epidemic, would you want to increase

or decrease β? What kind of practical control strategy could be used to achieve this

goal?

Change the parameter values back to their original values.

QUESTION: Decrease the value of γ from 0.03 to 0.015 and execute the file. Then

increase the value of γ to 0.045 and execute the file again. If you are trying to prevent

the disease from becoming an epidemic, would you want to increase or decrease γ?

What kind of practical control strategy could be used to achieve this goal?



Module 7

Genetics

7.1 Biological Introduction

Patterns of inheritance are often much more complex than those encountered in the

first genetics module. Mammals, birds, plants like garden peas, and insects have

thousands of different genes in their genomes. Frequently scientists wish to study

inheritance patterns for two or more genes simultaneously. When two different genes

are involved, dihybrid crosses are made and the distribution of the alleles from parent

to filial generations is traced. In some cases, when the genes have loci on different

chromosomes, the alleles assort independently. From Mendels work came the Principle

of Independent Assortment. However, all alleles are not distributed independently

into gametes. If the gene loci are linkedthat is, located on the same chromosome, they

move together most of the time. The phenomenon of linkage adds another dimension

to the patterns of inheritance.

Most complex organisms have separate sex chromosomes as distinguished from the

others which are called autosomes. In mammals the females have two full-sized X
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sex chromosomes. Males, in contrast, have one X and one Y chromosome. The Y

chromosome is not full sized, and lacks most of the loci on the X chromosome. It

follows that, if a gene is located on the X chromosome, a female will get two alleles

for that gene while the male gets only one. This creates some potential problems

for males related to any gene that is sex-linked. We will study the inheritance of

sex-linked genes that result in some diseases and disabilities that occur mainly in

males.

Although we will not be covering the subject in this module, you should know that

not all phenotypic characters and traits exhibit simple patterns of Mendelian inheri-

tance. These characters result from complex interplays among many genes (epistasis)

and their interactions with the environment. Human height and intelligence are

among these complex polygenic characters. To prepare for the workshop read your

text chapter, review your lecture notes and complete the pre-workshop activities on

Blackboard.

7.2 Genetic Problem Solving

Use the genotypes from the following two tables for the questions below.

Garden Pea Plant Table
Genotypes Phenotypes
PP or Pp Purple flowers
pp White flowers
YY or Yy Yellow seeds
yy Green Seeds
RR or Rr smooth seed coat
rr wrinked seed coat
TT or Tt Tall plant
tt Short plants
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Human Table
Genotypes Phenotypes
EE or Ee Free earlobes
ee Attached earlobes
RR or Rr Rh positive
yy Green Seeds
RR or Rr smooth seed coat
rr Rh negative
FF or Ff freckles
ff uniform pigment distribution

1. Represent the parent cell and different gametes that come from that cell by the

alleles they carry. (In some problems there may be more than one possibility. List

all possibilities.)

a. A dihybrid heterozygous tall pea plant with purple flowers

b. A short pea plant that is heterozygous for seed coat

c. A pea plant that produces yellow seeds with a smooth coat

d. A human who is heterozygous for earlobes and freckles

e. A human with Rh positive blood type and has attached earlobes

f. A Rh- person with free earlobes

2. Represent the following crosses. Include all possible genotypes.

a. Tall pea plant with purple flowers × a short plant with white flowers
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b. A short pea plant with a smooth seed coat × a tall plant with a smooth seed

coat

c. An Rh+ man with free earlobes (heterozygous) × an Rh-woman with attached

earlobes

d. An unfreckled man with attached earlobes × a freckled woman with free ear-

lobes

3. Determine the genotypic ratios for the crosses in #2 (when more than one cross

was possible for a given part of the question, you may select to do one of the

crosses) and express them with the genotypes written below the numbers.

4. Determine the phenotypic ratios for the crosses in #2. Indicate the phenotypes

next to the numbers.

7.3 Genetic Concepts

1. Explain briefly Mendels Law of Independent assortment.

Give an example of situations in which it applies and doesnt apply to inheritance

patterns.

2. Explain the physical basis for linkage or non-linkage between two alleles.

How could a linkage pattern between genes can be changed?

What type of test cross might you conduct in order to tell if two genes are linked or

non-linked? Set it up and show the expected outcomes.
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3. Explain the difference between a sex-linked and autosomal gene.

Why are sex-linked recessives genes are more often expressed in male than female

mammals.

In what situation can the recessive alleles be expressed in females?

What type of test cross might you conduct to determine if a gene is sex-linked or

not? Set up a specific cross and its outcomes in either case.

7.4 Genetics Problems

For each of the following problems, solve the problem and state whether the cross is

a case of simple dominance, sex-linked trait, or linkage

1. In humans, tasters of a bitter substance (PTC) are TT or Tt, while non-tasters

are tt. Normally pigmented people are either AA or Aa, while albinos are aa. A

normally pigmented woman, who is a nontaster, has an albino taster father. Her

albino taster husband has a mother who is a non-taster. Indicate all genotypes

and phenotypes possible in their children. T/t and A/a genes occur on different

chromosomes.

2. A couple has three girls and one boy. How does this compare with the expected

ratio of boys to girls among four offspring? Are their chances of a boy greater now

if they have a fifth child than when they had their first child? Explain why or why

not.

3. A mating is made between two black, crested birds. The F1 contains 13 offspring

in the following proportions: 7 black, crested; 3 red, crested; 2 black, plain; and 1

red, plain. What are the probable genotypes of the parents?
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4. Red-green color blindness is a sex-linked recessive trait. A color-blind man marries

a woman who is heterozygous for the color vision gene. What are the expected

genotypic ratios of their sons? of their daughters? Give the phenotypic ratios.

5. A man with normal color vision marries a heterozygous woman. What are the

expected genotypic ratios of their sons? Of their daughters? Give the phenotypic

ratios.

6. In fruit flies, body color is normally gray, the expression of a dominant allele (b+),

while black color is the expression of a recessive allele (b). Normal long wings result

from an allele (vg+) and short vestigial wings are the expression of a recessive allele

(vg). A male that is heterozygous for both genes is mated with a black, vestigial

winged female. The cross produced 1000 offspring of which 470 had gray bodies

and long wings and 480 had black bodies and vestigial wings. 24 had gray bodies

and vestigial wings and 26 had black bodies and long wings. Determine if the

two genes are linked or not by showing the predicted outcomes with and without

linkage. What explains the gray-vestigial and black-long winged flies?

7.5 Linkage

1. Make a drawing of a cell with 2N = 4 with the following genes and loci identified.

On a large pair of homologous chromosomes place 3 gene loci. Near one end of the

chromosomes, place loci for gene A/a (heterozygous). Near the other end, place

loci for gene B/b. Place allele B on the chromosome with allele a, and allele b

with A. Between loci A/a and B/b, place loci C/c, but position it close to A/a

and more distant from B/b. Make the cell heterozygous for C/c, with C linked to
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A and c linked to a.

a. Are genes that are on the same chromosome necessarily linked? Is it possible

that there is no linkage detected between two genes on the same chromosome,

if they are far enough apart? How is this possible?

b. Explain the mechanism by which the linkage patterns would change, giving an

example.

c. Between which pairs is the linkage pattern going to be changed most frequently?

Least frequently? Explain why.

d. If the percentage of offspring in which the pattern is changed is 20% between

A/a and C/c, predict the approximate percentages between A/a and B/b. Be-

tween B/b and C/c.

2. Use the following recombination frequencies to map four genes, A-D.

Genes Recombination Frequency

A,B 8%

A,C 4%

C,B 4%

A,D 4%

B,D 11%

Consider that there is a fifth gene E that also is linked. If you know that the A-

to-E recombination frequency is 4%, can you locate E on the map you constructed

above?

As you have seen, a variety of factors affect the inheritance pattern of a trait. Another

factor that has to be taken into account is the fitness of a given trait. Often times,
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individuals with one genotype are more likely to produce offspring than individuals

with another genotype. One example of this would be if the a allele was responsible

for a disease in which only half the individuals survived to breed. In this case,

individuals with the aa genotype would only be half as fit as individuals with the AA

or Aa genotype.

Another example is recessive lethal traits. In recessive lethal traits, any zygote with

an aa genotype fails to fully develop. As a result only AA and Aa individuals are

represented in the population, and the fitness of the aa genotype is 0. The fitness

of a given genotype can sometimes vary depending on the environmental conditions,

with some genotypes being beneficial in certain situations and detrimental in others.

Luckily, we can apply mathematical models to identify how the frequency of an allele

will change in a population, depending on its fitness.

7.6 Mathematical Introductions

In this module you will be simulating a model in which there are two alleles, A &

a, at one locus, where the allele A occurs with frequency p and the allele a occurs

with frequency q. In this model, the frequencies of each of the alleles depends on the

fitness of each genotype. The fitness of the AA genotype is represented by fAA. The

fitness of the Aa genotype is represented by fAa and the fitness of the aa genotype is

represented by faa.

Download and execute the file allele frequency.sce. Notice that the fitness of the each

of genotypes mentioned above occurs in lines 14 - 16 of the code. In this case, the

fitness of the AA genotype is fAA = 1.0, the fitness of the Aa genotype is fAa = 1.0,

and the fitness of the aa genotype is faa = 0.5.
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QUESTION: Change the fitness of the aa genotype to faa = 0. In this case the aa

genotype is lethal. What are the similarities and differences in this case compared to

the original one? Why do you think that is?

QUESTION: Change the fitness of the Aa genotype to fAa = 0.75 and the fitness

of the aa genotype back to faa = 0.5. What are the similarities and differences in this

case compared to the original one? Why do you think that is?

QUESTION: Change the fitness of the AA genotype to fAA = 0.75 and the fitness

of the Aa genotype back to fAa = 1.0. This is the case for a person who has sickle

cell. What are the similarities and differences in this case compared to the original

one? Why do you think that is?



Module 8

Macroevolution vs. Microevolution

8.1 Biological Introduction

In this workshop, we will contrast macroevolutionary patterns and processes with

microevolutionary ones. This will help you gain a better understanding of the sim-

ilarities and differences between these two broad categories of ecological mechanisms,

as well as help you expand your understanding of evolutionary terms and concepts.

We will also explore how small genetic changes can result in large phenotypic differ-

ences, ultimately resulting in large scale evolutionary change. Finally, we will explore

a mathematical model that demonstrates one way that these small genetic changes

can occur at the DNA sequence level.

Macroevolution is the category of evolutionary processes and patterns that occur

at or above the level of species. Some examples of these include species formation

(speciation), the formation of novel evolutionary traits (e.g. the evolution of verte-

brate jaws from precursor characteristics in jawless ancestors), and patterns of rapid

evolutionary diversification (adaptive radiation).
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Microevolution is the category of evolutionary processes that occur below the level

of species acting on populations and groups of populations. Specifically, microevolu-

tion is both (1) change the genetic constitution of populations, and (2) the processes

that produce such changes (e.g., mutation, migration, genetic drift, non-random mat-

ing, natural selection).

QUESTION: Based on these definitions, as a group which of the following state-

ments describe microevolutionary processes and which describe macroevolutionary

processes.

1. changes in allele frequencies within a population from one generation to the next

2. evolutionary diversification of flowering plants in the late Cretaceous

3. differential survivorship by phenotypes within a population

4. evolutionary transition from theropod dinosaurs to birds

5. decrease in the allele that causes sickle cell anemia in parts of the world where

malaria has been eradicated

8.2 Modes of Evolutionary Change

8.2.1 Phyletic Gradualism vs. Punctuated Equilibrium

While Darwin’s theory of evolution by natural selection is extremely well supported,

various modification to this theory have resulted over the years. Some of these have

been more controversial than others. Here are two such examples. You be the judge.

Phyletic gradualism is the idea that evolution is a consequence of the culmination
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over many generations of small differences in reproductive success among individuals

within populations. This was the concept that Darwin originally put forth in his

book On the Origin of Species. Darwin argued that evolutionary forces (especially

natural selection, including sexual selection), operating generation after generation on

individual variation within populations would, over the immensity of geological time,

bring about ancestor-to-descendent evolutionary change. In other words, “descent

with modification.” While Darwin argued that phyletic gradualism was sufficient to

result in macroevolutionary events, many disagreed with him and argued that another

process must be at work.

QUESTION: Can the evolution of structures as complex as the photoreceptors

of arthropods, cephalopod molluscs, and vertebrates, for example, be properly at-

tributed to the cumulative effects of microevolutionary processes operating over the

long term? Think of some other examples of extrememly complex characteristics that

are unlikely to have arisen from very gradual genetic changes within populations.

Punctuated equilibrium is the idea that long periods of evolutionary stasis–during

which a population underwent little or no evolutionary change–were “punctuated”

by relatively short spans during which a smaller subset of the population underwent

relatively rapid evolutionary change. This idea was first proposed by Niles Eldredge

and Stephen Jay Gould when they noted that while the fossil record did contain

records of what appeared to be “smooth transitions” from one ancestral form to new

species, there were also many examples of apparently rapid changes from one form

to another, in which transitional fossil forms were lacking. This is an extension of

observations first presented by Darwin in Origin of Species.

However, this idea has been seen as highly controversial because of a perceived simi-
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larity to the largely debunked idea of saltational evolution which suggests that a

new species may arise in a single generation via a single macromutation. Rather,

when Gould and Eldredge referred to “short spans ... of rapid evolutionary change”

they were talking on the order of several thousand to millions of years. This time

frame is a small blip on a geological time scale. Rather than being a ground breaking

refute of Darwin’s idea of phyletic gradualism, punctuated equilibrium actually serves

as a logical expansion of this theory.

QUESTION: Can you think of some complex characteristics (in any living organ-

isms) that might be good “candidates” for evolution via punctuated equilibrium?

Discuss some of these as a group. Propose how they could arise by either phyletic

gradualism or punctuated equilibrium.

8.3 Forces of Evolutionary Change

8.3.1 Heterochrony

While humans (Homo sapiens) and chimpanzees (Pan spp.) share many common

traits, and are each other’s closest living relatives, they differ in many obvious and

important respects. For example, chimps are not fully bipedal, have a smaller cra-

nial capacity than humans, have forward-projecting jaws, heavy brow ridges, and a

sagittal crest on the skull that serves as a surface for the attachment of powerful jaw

muscles. Despite the close genetic relationship, chimp-human hybrids are unknown,

and members of the two species do not normally attempt to breed with one another.

Clearly, in the evolutionary divergence between the lineage that led to chimps and

the lineage that led to humans, the accumulation of small genetic differences has had
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profound phenotypic consequences.

Heterochrony-an evolutionary change in the timing of developmental events-provides

a plausible explanation for how this might have happened. Even small genetic changes

in the developmental program, when expressed early in development, can have pro-

found and far-reaching effects on the resultant adult phenotype.

Imagine an evolutionary change in the timing of developmental events such that,

relative to the development of an ancestral species,

1. development of the reproductive system is accelerated (PAEDOGENESIS)

2. development of non-reproductive (somatic) tissues is retarded (NEOTENY)

The result could be an organism that is a “mosaic” of adult characteristics (e.g.,

reproductive competence) and juvenile characteristics. Such an organism is said to be

paedomorphic (from the Greek paed (“child”) and morph (“form”)), and its juvenile

from generated via one of the two forms of heterochrony described above. More

specifically, paedomorphosis describes the appearance of juvenile (or larval)features

of an ancestor in the adult of a descendant. The phenomenon of paedomorphosis

appears to have been important in the evolution of our own species from the ape-like

ancestor we shared with chimpanzees. As an example, depicted are fetal, juvenile and

adult skulls of human and chimp.
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Notice that the fetal skulls of the chimp and human are quite similar in shape, much

more so than in the adult. The juvenile skull of the chimp, though already showing

more of a protruding jaw than the human skull, is almost more similar to that of the

human than it is to that of the adult ape.

QUESTION: In what ways do the fetal skulls of the two species differ? In what

ways do the adult skulls differ? Which species, is more ”child shaped” as an adult?

How do we know that human evolution has involved the suppression of terminal

developmental stages rather than the addition of developmental stages in the chimp

lineage?
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8.3.2 Allometric and Isometric Growth

Differential timing of developmental events may occur within a species, as well as

across species over evolutionary time. Ontogenetic allometry (analysis of single

populations) are estimates obtained for single populations across age groups, with

changes reflecting growth of individuals. Evolutionary allometry (comparative

analysis of populations/species) is a comparison of allometric patterns among different

population or species. This relates directly to heterochrony (evolutionary changes in

ontogeny).

Ontogenetic Allometry

As an organism grows larger during ontogeny, or as an evolving lineage of organ-

isms increases in size over evolutionary time, the various parts of the organisms also

increase in size. Bigger organisms have bigger parts. But not all of the parts nec-

essarily grow at the same rate. Such differential growth of different parts is termed

allometry, and it results in shape changes as the animal grows. When all parts of an

organism grow at the same rate, the organism is said to exhibit isometric growth,

and this results in a change in size without a change in shape. Although most or-

ganisms exhibit allometric growth, some, such as certain salamanders are essentially

isometric in their growth.
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Note that the various body proportions remain more or less constant as the animal

increases in size.

Growth in our own species is decidedly allometric, most obviously with respect to the

growth of the head relative to the body. At birth, the head is relatively enormous,

and comprises nearly a third of the length of the infant. As we grow larger, our

body grows more rapidly than the head such that the body “catches up” eventually

to produce the proportions that we recognize as normal in the adult. Maturation in

humans thus involves both increase in size and a change in shape.
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QUESTION: In humans (and in vertebrates in general), the head is large at birth

relative to the rest of the body Why is this so?

Evolutionary Allometry

A lineage of organisms can also exhibit allometric growth over evolutionary time, as

exemplified by the brontotheres, an extinct group of large mammals.
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The brontothere lineage shows a clear trend of increasing size, as seen in the com-

parison of these four species. From a small, hornless ancestral species, the trend has

been for an increase in overall body size, but an even more rapid increase in horn

size. Over evolutionary time, the horns have increased in size more rapidly than the

head or body, producing a change in shape as well as a change in size.

QUESTION: What might be the adaptive significance of horns in brontotheres? If

horns in brontotheres are restricted to males only, what would this suggest concerning

the selective agents involved in their evolution?
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Regardless of what macorevolutionary processes are at play, all evolution begins below

the level of species. Evolution occurs at the level of populations, with selection acting

to promote some individuals to produce more offspring then others. Several forces

result in evolution at the level of population. These include gene flow, genetic drift,

and natural selection. If a population is not experiencing any evolutionary forces it is

said to be in Hardy-Weinberg equilibrium. For a population to be in Hardy-Weinberg

equilibrium it must meet the following five conditions: no mutation, no selection, no

gene flow, random mating, and large population size. While these conditions are often

violated in nature, it is not often possible to simply look at a population and tell if

it is in hardy Weinberg equilibrium. Luckily we can apply mathematical methods,

including models, to populations to see if it is in equilibrium and what will happen if

it deviates from equilibrium.

8.4 Mathematical Introduction

8.4.1 Difference Equations

Suppose we want to describe a quantity which changes at discrete time steps. Usually

the value of that quantity at one time step depends on the value of the quantity at

one or more of the previous time steps. A difference equation is an equation which

is used to describe such a quantity based; it relates the quantity at a certain time

with the quantity at a previous time. Since a difference equation uses the value of the

quantity at a previous time to determine the value of the quantity at a later time, it

is necessary to have some information to start with. Usually, a difference equation is

accompanied by an initial condition (starting value), which specifies the value of the
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quantity at time t = 0.

If we use P to represent the number of individuals of a population which changes

at discrete time steps, then Pt represents the number of individuals at time t. Like-

wise, Pt−1 represents the number of individuals at the previous time, t− 1 and Pt+1

represents the number of individuals in the population at the next time step, t + 1.

Using this notation, the initial condition (the number of individuals at time t = 0 is

represented by P0.

QUESTION: Compute P1 . . . P5 (the number of individuals in generations 1 - 5),

given that the population grows according to the difference equation Pt+1 = 3Pt − 4

with initial condition P0 = 5.

One important piece of information about a difference equation is its equilibrium

value; i.e., the value at which the quantity remains unchanged as time passes. In

order for the value to remain the same for each time step, it must satisfy the equation

Pt+1 = Pt.

QUESTION: Compute the equilibrium value of the difference equation in the pre-

vious problem.

8.4.2 Hardy-Weinberg Law

Suppose we have one locus with two alleles, A1, which occurs in the population with

frequency p, and A2, which occurs in the population with frequency q. Note that if

A1 and A2 are the only two alleles, then p + q = 1. If mating is by random union of

gametes, then the frequency with which the genotype A1A1 occurs in the population
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is p × p = p2. Similarly, the frequency with which the genotype A2A2 occurs in the

population is q × q = q2. The frequency of A1A2 is p × q = pq and the frequency

of A2A1 is q × p = qp. But these are the same genotype, so the frequency of the

A1A2 genotype is pq + qp = 2pq. Note that every individual must be one of either

the A1A1, A1A2 or A2A2 genotypes, so p2 + 2pq + q2 = 1.

QUESTION: Suppose there are 2,000 individuals (so 4,000 alleles in the gene pool

at locus A) in a population, of which 1 in 400 individuals possesses a recessive trait.

How many heterozygotic and how many homozygotic dominant individuals are in the

population?

A population in which the Hardy-Weinberg frequencies are not changing with time is

said to be in Hardy-Weinberg equilibrium.

8.4.3 Model of Natural Selection

The following model describes how genes spread because of natural selection. We

assume that all organisms reproduce only once and then die, so all generations are

nonoverlapping. We also assume that each time step corresponds to one generation

and zygotes are made random unions of gametes. We let p represent the fraction

of the population with the A1 allele and q represent the fraction of the population

with the A2 allele (so the frequency of the A1A1 genotype is p2, the frequency of the

A1A2 genotype is 2pq, and the frequency of the A2A2 genotype is q2. Let `ij represent

the probability that genotype AiAj survives to adulthood. Let mij represent half of

the number of gametes than an individual of genotype AiAj makes that are actually

incorporated into zygotes that start the next generation. Then the fraction of the
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gene pool with the A1 allele in the t+ 1 generation is given by

pt+1 =
m11`11pt +m12`12qt

m11`11p2t +m12`122ptqt +m22`22q2t
pt

Let’s see where this equation came from. To get the fraction of the gene pool with

the A1 allele at time t + 1, we need to know two things: the total number A1 alleles

at time t+ 1 and the total number of alleles at time t+ 1. Once we know these two,

we will have

pt+1 =
total number of A1 alleles at time t+ 1

total number of alleles at time t+ 1

To get the total number of A1 alleles at time t + 1, we need to take all the gametes

made from the parents of genotype A1A1 plus half of the gametes from the parents

of genotype A1A2. Let N represent the total population size. Then the start of the

t + 1 generation, when all of the organisms are zygotes, there are p2tNt zygotes from

the A1A1 allele from the end of the time t generation. Hence, there are `11p
2
tNt adults

at the end of the generation from the A1A1 allele. Therefore, there are 2m11`11p
2
tNt

gametes from the A1A1 allele. Similarly, there are 2ptqtNt zygotes at the beginning of

the t+1 generation from theA1A2 allele from the time t generation, of which `122ptqtNt

survive to become adults at the end of the generation, producing 2m12`122ptqtNt

gametes.

total number of A1 alleles at time t+ 1 = 2m11`11p
2
tNt +

(
1

2

)
2m12`122ptqtNt

For the total number of alleles at time t + 1, we need to add the total number of

A2 alleles to the total number of A1 alleles (which we just figured out). For the

total number of A2 alleles, take all the gametes made from the parents of genotype
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A2A2 plus half of the gametes from the parents of genotype A1A2. Luckily, we just

computed half of the gametes from the genotype A1A2, so all we need is the number

of gametes from the A2A2 genotype. But, as we stated above, we only take half of

the gametes made from the parents of genotype A1A2, so the number of alleles from

the A1A2 genotype is
(
1
2

)
2m12`122ptqtNt. Thus, as before, at the start of the t + 1

generation, there are q2tNt zygotes from the t generation before. Of these, `22qtNt

survive to adulthood, and 2m22`22q
2
tNt gametes from the A2A2 allele. Hence, we have

total number of alleles at time t+ 1 = 2m11`11p
2
tNt + 2m12`122ptqtNt + 2m22`22q

2
tNt

Therefore,

pt+1 =
2m11`11p

2
tNt +

(
1
2

)
2m12`122ptqtNt

2m11`11p2tNt + 2m12`122ptqtNt + 2m22`22q2tNt

=
m11`11p

2
t +

(
1
2

)
m12`122ptqt

m11`11p2t +m12`122ptqt +m22`22q2t

=
m11`11pt +m12`12qt

m11`11p2t +m12`122ptqt +m22`22q2t
pt

It is a common practice in evolutionary biology models to combine survival and

reproduction into a single quantity. In this case, that means we define wij = mij`ij.

We call wij selective value or ”fitness” of an individual. Making this combination

here gives us the final form of our equation, which is

pt+1 =
w11pt + w12qt

w11p2t + w122ptqt + w22q2t
pt
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QUESTION: Write an equation analogous to the one above but for qt+1, the fre-

quency of the A2 allele at time t+ 1.

QUESTION: Using the equations for pt+1 (given above) and qt+1 (which you derived

in the previous problem), determine the equilibria of the system. Hint: It will be

easier to utilize the fact that p+ q = 1 to rewrite each equation as an equation with

one variable instead of two. There will be three equilibria and you will need the

quadratic formula for two of them.

QUESTION: What conditions are necessary for the third equilibrium to be biolog-

ically relevant? What does this mean for the chances of an allele to survive?

8.5 Notes

This module was adapted from Primer of Theoretical Ecology by Joan Roughgarden,

1998.



Module 9

Alternation of Generations

9.1 Biological Introduction

For students new to the study of Kingdom Plantae, the life cycle of plants–in which

a diploid generation alternates with a haploid generation–can be difficult to under-

stand. The purpose of this workshop is to allow the student to better relate to the

phenomenon of Alternation of Generations by (1) examining the details of plant ga-

metophyte and sporophyte structure and function, and (2) creating an animal analog

to this type of life history.

In today’s workshop, your goals will be to

1. Understand the alternation of haploid and diploid individuals in the plant life

cycle.

2. Understand the terminology used to describe parts of the life cycle, and recognize

what each life cycle stage looks like in the major plant taxa.
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3. Acquire a more ”personal” understanding of how the alternation of generations

works by designing an imaginary animal that goes through this type of life cycle.

9.2 Overview

The plant life cycle, unlike that of animals, consists of alternating generations of indi-

vidual organisms that are haploid (the gametophyte) and diploid (the sporophyte).

Specialized diploid cells in the sporophyte undergo meiosis to produce haploid spores

(hence the name “sporophyte”). Each spore grows mitotically to become the new

gametophyte, which then produces gametes (hence, the name “gametophyte”) which

fuse to form a zygote. This grows into the sporophyte, and the cycle continues, as

shown in the diagram below.

In the diagram

1. Indicate the ploidy (n for haploid, 2n for diploid) of each life cycle stage or struc-
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ture.

2. Over each of the five arrows, indicate which of the following processes is taking

place: mitosis, meiosis, or fertilization.

In the sporophyte, the structure within which diploid cells undergo meiosis to become

haploid spores is the sporangia.

QUESTION: Where is this structure found in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

If the spore-producing structures you just named are found on a leaf specialized to

bear those structures, that leaf is called a sporophyll.

QUESTION: What does this structure look like in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

A spore that develops into a female gametophyte is called a megaspore.
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QUESTION: Where is this structure found in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

A spore that develops into a male gametophyte is called a microspore.

QUESTION: Where is this structure found in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

A sporophyll that bears megaspores is called a megasporophyll.
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QUESTION: What does this structure look like in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

A sporophyll that bears microspores is called a microsporophyll.

QUESTION: What does this structure look like in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

QUESTION: Describe the appearance of the mature male and female gametophyte

in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)
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In the female gametophyte, the structure within which haploid cells develop into ova

is called the archegonium.

QUESTION: Describe what this structure looks like in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

In the male gametophyte, the structure within which haploid cells develop is called

the antheridium.

QUESTION: Describe what this structure looks like in:

a. a moss (or other bryophyte)

b. a fern (or other seedless tracheophyte)

c. a pine (or other gymnosperm)

d. a flowering plant (any of the angiosperms)

QUESTION: What do the terms monoecious and dioecious mean?
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9.3 An Animal Analogy

Don’t get your hopes up too high. We are merely going to mimic the life cycle stages

as one typically sees them in a SEEDLESS TRACHEOPHYTE. The sporophyte pro-

duces spores in sporangia on sporophylls, then releases the spores to the environment.

A spore germinates into a free-living gametophyte that produces gametes in gametan-

gia (analogous to testes and ovaries). Fertilization occurs when sperm travel from the

male gametophyte to the female, enter her gametangium and fertilize her ovum to

produce a zygote. The zygote grows into the new sporophyte, obliterating the female

gametophyte. The male withers and dies shortly after the sperm are released. Keep

this cycle in mind when you design your animal model.

1. As a group, create an animal (it can be an existing animal, or something similar

to a species with which you are already familiar) that is diploid. This animal will

be your sporophyte generation, and you should decide in advance whether it will

be dioecious or monoecious. Does this animal have gonads (ovaries or testes)?

Explain. Briefly describe your animal sporophyte.

2. Next, choose an area on the animal where specialized diploid cells will undergo

meiosis to produce spores. Remember that this should be an external area, since

the spores will be released to the environment. Also remember to create the areas

on your animal as appropriate to dioecy or monoecy, whichever you have chosen

your animal to be.

3. Release the spores! What happens to the spores that land in an area appropriate

to germination? Describe the resulting organism (the gametophyte generation of

this species), and again note whether it is monoecious or dioecious, since this will
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be important in the next few steps. Be sure to note this animal’s ploidy, and

whether it has gonads (testes and/or ovaries).

4. If your gametophyte is bisexual, describe how and in what anatomical locations it

will produce sperm and ova. How will sperm reach the ova? Describe the process.

5. If your gametophyte animal is male, describe how and in what anatomical location

it will produce sperm. How will these gametes reach the female gametophyte’s ova?

Describe the process.

6. If your gametophyte animal is female, describe how it will produce ova, and where.

Will these gametes be released into the environment, or will they remain inside

the female? If they remain inside the female, describe where they will be found.

7. Describe fertilization between the male and female gametophytes of your species

(if the species is monoecious) or how fertilization takes place in your individual bi-

sexual gametophyte (if the species is dioecious). What is the result of fertilization?

Where would you find it if you were to dissect your gametophyte animal?

8. What will now happen to the fertilized ovum (zygote)? Describe how it grows,

and where. What happens to the gametophytes once fertilization is complete?

9. Describe the mature result of growth of the zygote. What will be the next step in

this life cycle?

9.4 Mathematical Introduction

In this module, we will consider a metapopulation model with five species sharing a

patchy environment. Each habitat patch (site) in this environment can be occupied
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by only one species at a time. All five species compete not only for sites to occupy,

but also for other natural resources. We will assume that there is a trade-off between

a species’ dispersal and colonization abilities and their competitive abilities; that is,

species that are better at dispersing and colonizing are worse competitors and vice-

versa. What we will be investigating is how habitat destruction affects the fraction

of sites occupied by each species.

We will start with Colonizer #1/ Competitor #5 occupying 8.2% of the sites, Colo-

nizer #2/ Competitor #4 occupying 10.24% of the sites, Colonizer #3/ Competitor

#3 occupying 12.8% of the sites, Colonizer #4/ Competitor #2 occupying 16% of

the sites, and Colonizer #5/ Competitor #1 occupying 20% of the sites (the rest of

the sites are unoccupied).

QUESTION: Given that we start with dispersal/colonization abilities (and hence

competition abilities) suitable for all five species to coexist and no habitat destruction,

state the order in which you think the species will occupy the largest fraction of sites

down to the smallest fraction of sites.

Download and execute the file dispersal.sce.

QUESTION: Were your predictions correct?

On line 20 of the Scilab code, you will see a quantity q. This quantity represents habi-

tat destruction. Change 0 to 0.3 for all five species, but do not execute the file yet.

(Note: If you want the new graph to open in a new graphics window so that you can

keep the original graphics window intact, change line 23 of the code from scf(1); to

scf(2);.)
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QUESTION: What affect do you think increasing the habitat destruction will have

on the fraction of sites occupied by each species?

Now execute the file with the habitat destruction of 0.3 for all five species.

QUESTION: Was your prediction correct? Why do you think the results of the

simulation were the way they were?

Now change the habitat destruction from 0.3 to 0.63 for all five species, but do not execute the file yet.

You can change the graphics window from 2 to 3 if you think it will help to keep the

previous window open for comparison.

QUESTION: What do you think will happen in this case?

Now execute the file with the habitat destruction of 0.63 for all five species.

QUESTION: Was your prediction correct?

Now change the habitat destruction from 0.63 to 0.73 for all five species, but do not execute the file yet.

QUESTION: What affect do you think this will have?

Now execute the file with the habitat destruction of 0.73 for all five species.

QUESTION: Was your prediction correct?
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Now change the habitat destruction from 0.73 to 0.93 for all five species. This will

cause all five species to go extinct. Also change the final time in line 15 of the code

from 2000 to 500, but do not execute the file yet.

QUESTION: In what order do you expect the species to go extinct in? Why?

Now execute the file with the habitat destruction of 0.93 for all five species and with

the ending time of 200.

QUESTION: Was your prediction correct? Why do you think the results of the

simulation were the way they were?

In all of these simulations, Colonizer #1/ Competitor #5 started off with the smallest

fraction of sites occupied. Change the habitat destruction back to 0 for all five species

and change the final time back to 2000. On line 21 of the code, you will see the quan-

tity p0. This represents the fraction of sites each species initially occupies, starting

with Colonizer #1/ Competitor #5. Change the first one (for Colonizer #1/ Com-

petitor #5) from .082 (8.2%) to .382 (38.2%), but do not execute the file yet.

QUESTION: What affect do you think this change will have on the results?

Now execute the file.

QUESTION: Was your prediction correct?
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QUESTION: If you were to repeat all of the previous simulations, how do you think

the outcomes of each would differ? Why?

Now repeat each of the previous simulations but with Colonizer #1/ Competitor #5

now occupying 38.2% of the sites initially.

QUESTION: Were your predictions correct?

9.5 Notes

This module was adapted from Primer of Theoretical Ecology by Joan Roughgarden,

1998.



Module 10

Speciation

10.1 Introduction

Speciation is the process by which new species arise. In order for speciation to occur,

two populations must become reproductively isolated, and as a result incapable of

producing fertile offspring. Reproductive isolation may evolve due to changes in

genotype and phenotype frequencies in a population as a result of:

1. Mutation

2. Gene flow

3. Genetic Drift

4. Non-random mating

5. Natural selection

Each of these processes can result in reproductive isolation, but more commonly sev-

eral processes combine to produce this isolation.

104
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QUESTION: Discuss with your peers how gene flow and genetic drift might act to

enhance or eliminate the effects of mutation?

There are four recognized geographic modes of speciation: allopatric, peripatric, para-

patric, and sympatric. Allopatric speciation results when a population is separated

into two geographically isolated populations, followed by genotypic or phenotypic

divergence. This can occur following mountain formation, island formation, or habi-

tat fragmentation, among other things. One example of allopatric speciation is the

formation of the Isthmus of Panama which has resulted in the formation of several

reproductively isolated species.

Peripatric speciation results when a small portion of a population becomes geograph-

ically isolated from the larger population. As a result, this speciation is a special

case of allopatric speciation. The isolated population then experiences genetic drift,

or different selective pressures than the larger population, resulting in reproductive

isolation. This is typically the result of a founder effect. One example is the Pacific

robin, Petroica multicolor.

Parapatric speciation occurs in the absence of a geographic barrier to gene flow. In

this case organisms are more likely to mate with those geographically close to them,

producing a gradient of genetic variation. This may result when the environment

variers greatly throughout the species range. This may occur along a mountain where

some organisms are better capable of inhabiting areas with reduced oxygen at higher

elevations. The grass Anthoxanthum appears to be undergoing parapatric speciation

due to varying concentrations heavy metals in the soil surrounding mines.
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Sympatric speciation occurs in the absence of any geographically isolating barriers to

gene flow. As a result, speciation occurs in a completely interbreeding population.

This type of speciation can result from sexual selection, niche exploitation, or ploidy

shifts. Sexual selection is believed to have resulted in the formation of several species

of African cichlids. Over time cichlids developed a preference for mating with sim-

ilarly colored fish, which eventually led to the formation of separate species. Niche

exploitation is indicated in the speciation of the apple and hawthorn flies. After the

introduction of apples to the US, hawthorn flies began colonizing both types of trees

which fruit at different times. Over time this led to the formation of separate species.

Finally, ploidy shifts, duplications of partial or entire genomes, can result in repro-

ductive isolation. As such, this type of speciation is typically spontaneous. This is

hypothesized to have occurred several times in the evolutionary history of plants.

QUESTION: Discuss with your peers a hypothetical example of each type of geo-

geographic mode of speciation?

The reproductive isolation associated with speciation can take two forms: prezygotic

(prevents the formation of viable zygotes) or postzygotic (a zygote forms but cannot

pass on its genes).

Types of prezygotic isolation

1. Environmental/spatial isolation occurs when two species either never come into

contact, or breed in different habitats within the same environment. An example

of this is the red-legged frog which occurs in the same habitat as the bullfrog, but

breeds in different bodies of water.
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2. Temporal isolation occurs when two species share a common habitat but have

different breeding seasons. A good example of this is the hawthorn and apple flies

which were previously mentioned.

3. Behavioral isolation results when species develop courtship rituals or calls that

only attract members of the same species. Two similar species with different calls

are the wood and leopard frogs.

4. Mechanical isolation occurs when two species are physically incapable of inter-

breeding due to differences due to morphological incompatibility. Bush babies

are divided into several species due to unique differences in their genitalia which

prevent interspecies breeding.

5. Gametic isolation results when the sperm and ova of two species cannot combine

to form a zygote. This is common in aquatic environments where sperm and ova

are released into the environment and then fuse.

Types of posyzygotic isolation

1. Hybrid inviability results when a zygote forms but is incapable of developing to

maturity. This type of isolation occurs between water buffalo and cattle as well as

between roof rats and Norway rats.

2. Hybrid sterility occurs when a mating produces a zygote which develops to matu-

rity but the resulting offspring is incapable of producing offspring. Examples this

include mules (horse-donkey), leopons (lion-leopard), and goat-sheep hybrids.

3. Hybrid breakdown occurs when hybrids are viable but have a reduced fitness com-

pared with either species. This reduced fitness continues to reduce over successive
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generations. This has been identified in pocket gophers, and is also common in

plant hybrids developed by horticulturists.

QUESTION: As a a group identify one additional example of prezygotic and postzy-

gotic isolation and identify what category each fits into?

10.2 Example

As you can see, many factors are involved in the process of speciation. Sometimes

these factors work together to promote speciation, other times they work against each

other. Mathematical modeling can be used to identify the processes involved in spe-

ciation in nature. One example of this is the rough periwinkle, Littorina saxatilis. It

was hypothesized that this Swedish snail underwent nonallopatric speciation. In or-

der to test this, researchers developed a mathematical model that took into account

ecological and spatial data, and incorporated experimental data on mate selection

preferences. Using this model, they were able to identify naturally occurring para-

patric speciation. They were also able to identify the necessary conditions for this

speciation to occur. Finally, researchers found that ecotype formation which was be-

lieved to promote speciation, can actually inhibit speciation in some cases. As such,

they identified that a complex system of factors and interactions were involved. Be-

low we will explore the model they developed, and how changing parameters of this

model affects the speciation process.
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10.2.1 Mathematical Background

A probability distribution tells you the probability of the value of a random variable

being within a certain range. One of the most common probability distributions is the

normal or Gaussian distribution. The normal distribution is bell-shaped and is used

to describe data that clusters around a mean. A few examples of normal distributions

are given in Figure 10.1.

Figure 10.1: A few examples of normal distributions

The probability density function for the random variable x with mean µ and variance

σ2 is given by

f(x) =
1√

2πσ2
e

−(x−µ)2

2σ2
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QUESTION: Write a Scilab program and graph (all on the same plot) the normal

distribution for:

(a) µ = 0, σ2 = 1
2
,

(b) µ = 1, σ2 = 4, and

(c) µ = −2, σ2 = 1
8

for −8 ≤ x ≤ 8.

Use a different color for each graph and be sure to put a title and legend on the graph.

Discuss with your peers how µ and σ2 effect the graph of the normal distribution.

10.2.2 Littorina saxatilis

Littorina saxatilis form ecotypes that are adapted to cliff and bolder habitats inter-

spersed along the coast of the Swedish North Sea. There are three habitats which

Littorina saxatilis inhabit:

• Exposed cliffs where wave action is a major cause of mortality (exposed)

• Boulder shores where predatory crabs exist in large quantities (sheltered)

• Intermediate habitat

The exposed phenotype is small, thin-shelled snails with large apertures and feet

providing strong adhesion, while the sheltered phenotype is large, thick-shelled snails

with small apertures. Littorina saxatilis who ecotype is locally adapted to their

optimal habitat survive three times better.

Let x be a trait that determines a certain ecological phenotype which influences

mating behavior. Let f be a trait of females for a certain ecological phenotype
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preferred by males. Let c be a trait that determines the strength and direction of

mating preference (mating discrimination). Then the fitness, w of an individual with

ecological phenotype x is given by

w = e
− (x−θ)2

2σ2s

where θ is the optimum phenotype and σs controls the strength of the mating pref-

erence.

QUESTION: Download and execute the file fitness.sce. Discuss with your peers the

relationship between trait x and fitness within each habitat.

The relative probability of mating between a male with traits f and c and a female

with trait x is given by

ψ(x, f, c) =


e
−(2c−1)2 (f−x)2

2σ2a , if c < 0.5

1, if c = 0.5

e
−(2c−1)2 (f−(1−x))2

2σ2a , if c < 0.5

where σa controls the strength of the male mating preference.

QUESTION: Download and execute the file mating probability.sce. Discuss with

your peers the relationship between trait c and the mating probability of a male with

trait f with a female with trait x.



Module 11

Animal Body Plan

11.1 Biological Introduction

Perhaps even more than the other Eukarya, Animalia is characterized by a distinct

progression of complexity in form and function as one moves from the more primi-

tive to the more derived taxa. Early in animal evolution, major changes in body

symmetry, embryonic germ layers, and ontogenetic origins of major anatom-

ical structures diverge in the nascent monophyletic groups. Over the course of this

workshop, you will review the major changes that occurred during the evolution of

Kingdom Animalia. By the end of the workshop, you should be able to

1. List the synapomorphies that distinguish animals from other eukaryotes

2. Understand the meanings of asymmetry, radial symmetry and bilateral symmetry

3. Be able to recognize the major animal phyla on the basis of

a. body symmetry

112
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b. embryonic germ layers

c. presence or absence of an internal body cavity

d. ontogeny and morphology of the internal body cavity

e. ontogenetic differences between protostomes and deuterostomes

4. Be able to recognize acoelomate, pseudocoelomate and coelomate body plans

5. Distinguish between

a. spiral and radial cleavage

b. determinate and indeterminate cleavage

c. schizocoely and enterocoely

QUESTION: What are some characteristics that set animals apart from other types

of organisms?

11.2 Body Plan

11.2.1 Germ Layers

Information about the development of organisms can sometimes be useful to identify

evolutionary relationships among those organisms.

QUESTION: At what stage in an embryo’s development are germ layers first

present? Which germ layers form first and where are they located?

For each of the following phyla identify how many germ layers it contains and what

the name of the middle layer is called?
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1. Porifera

2. Cnidarian

3. Platyhelminthes

4. Nematoda

5. Annelida

6. Echinodermata

QUESTION: For each of these groups is the middle layer derivated from the endo-

derm, ectoderm, or mesoderm?

QUESTION: Look at the similarities in germ layer development. Do these similar-

ities identify monophyletic groups. Why or why not?

11.2.2 Symmetry

QUESTION: Identify which organism in the picture exhibits each of the following

types of body plan: asymmetry, radial symmetry, bilateral symmetry? What do each

of those terms mean?
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QUESTION: What type of symmetry does this organism have? What other types

of organisms is this true of? Are these organisms monophyletic?
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QUESTION: What type of symmetry does this organism have? What other phyla

are characterized by these type of symmetry? Is this type of symmetry homologous

among these phyla? Why or why not?

QUESTION: What type of symmetry does this organism have? Why do most

animals possess this type of symmetry?

11.2.3 Body Cavities

Your textbook, course notes and other resources often provide you with a crosssec-

tional view of the three animal body plans. On a separate piece of paper sketchan

acoelomate, pseudocoelomate, and coelomate body plan in LONGITUDINAL section.

Label ectoderm, endoderm, and mesoderm/mesenchyme, intestinal lumen, parietal

and visceral surfaces.

QUESTION: What is the function of a pseudocoelem? Why is it considered a

persistent blastocoel?
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QUESTION: What is the function of the coelom in the following groups of organ-

isms?

Annelida

Mollusca

Arthropoda

Echniodermata

Chordata

QUESTION: What does similarity in body cavity and function tell you about the

evolutionary relationships among these organisms? Anything?

11.2.4 Protostome vs. Deuterostome

The most derived lineages of eumetazoans have an internal body cavity (coelom)

lined on both the parietal and visceral surfaces with mesoderm. However, the two

major (putatively) monophyletic groups of coelomates achieve this adult anatomy

in different ways. Other ontogenetic features also suggest that although the proto-

stomes and deuterostomes share a common ancestor, the taxa within each lineage

are distinct unto themselves. Consider the following and discuss.

QUESTION: What phylum might be an appropriate outgroup you could use to

determine which protostome and deuterostome character states are primitive? What

might a hypothetical common ancestor of protostomes and deuterostomes have looked

like? Do you think the coelom of an Annelid is homologous or analogous to that of a

Chordate?
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QUESTION: Describe some possible ontogenetic origins of the following in a hypo-

thetical common ancestor of protostomes and deuterostomes:

a. origin of mesoderm (i.e., from ectoderm or endoderm?)

b. fate of the blastopore (mouth or anus?)

c. cleavage at the 4- to 8-cell stage (i.e., spiral or radial?)

d. determinate or indeterminate cleavage?

e. embryonic location of the circulatory system

f. embryonic location of the nervous system

=

11.3 Diversification and Progression of Complex-

ity

You should now have a good grasp of the progression of complexity in ontogeny

and anatomy of the animals. Using the phylogenetic tree below, place each of the

characters listed at the proper place where it originated in an ancestral lineage, giving

rise to today’s extant animal phyla. At the root of the tree, begin with a hypothetical

ancestral colonial flagellate. (Note that this phylogenetic tree does not include all

animal phyla, and it’s only the most recent hypothesis. It could change as new data

become available.)

a. diversification of cell types
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b. gastrulation

c. ectoderm & endoderm (diploblasty)

d. mesenchyme (mesogloea with cellular components)

e. true mesoderm (triploblasty)

f. pseudocoelom

g. coelom derived via schizocoely

h. coelom derivedc via enterocoely

i. blastopore becomes the mouth

j. blastopore becomes the anus

k. circulatory system dorsal in the embryo

l. circulatory system ventral in the embryo

m. nervous system ventral in the embryo

n. nervous system dorsal in the embryo

o. spiral, determinate cleavage

p. radial, indeterminate cleavage
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QUESTION: The tree above is based on molecular data. Are the morphological

characters you placed on the tree consistent with a most parsimonious explanation

for the evolutionary relationships shown? How is it possible that morphological data

and molecular data might not produce trees that are congruent with each other?

The truth is that similarities in morphological characters frequently disagree with

molecular data. However, molecular data is the most effective and honest data we
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have to identify the evolutionary relationships among organisms, Remember, all evo-

lution begins at the DNA sequence level. Mutation is a microevolutionary process

that involves changes in the DNA sequence of an cell. Regardless of how evolution

proceeds, observed phenotypic changes are the result of changes in the DNA sequence

of an organism. In order to accurately assess the evolutionary relationships among

organisms using molecular data, we must have an understanding of how mutation

and the evolution of DNA sequences occurs. By combining biological knowledge with

mathematics, we can use mathematical models to identify how changes occur in a

DNA sequence, how they accumulate over time, and what types of changes occur.

11.4 Mathematical Introduction

11.4.1 Conditional Probabilities

A conditional probability describes the probability that an event will occur, given that

another event has already occurred. For example, suppose a bag contains 3 orange

marbles and 7 green marbles. The probability of pulling an orange marble out of the

bag at random is 3
10

= 0.3. But if we know that a green marble has already been

pulled out of the bag, then the conditional probability of pulling an orange marble out

of the bag, given that a green marble has already been pulled out is now 3
9

= 0.333.

So the probability of pulling an orange marble out of the bag has increased based on

the previous event of a green marble having been pulled out of the bag.
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11.4.2 Markov Models

Suppose that we have an ancestral DNA sequence, where each site in the sequence can

be occupied by one of the four bases: A, G, C, or T. Suppose that we want to model

the mutation process over one time step, assuming that only base substitutions occur;

i.e., there are no deletions, insertions, or inversions. Such a process is an example

of a Markov process, which means the state of the system (the DNA sequence in

this case) changes over time, transitioning between one of a finite number of states

to another, and where the state of the system at the next time step depends only

on the state of the system at the current time step. In other words, the system has

no memory of the past time steps because it does not matter how the system got

to the current state. Let PA, PG, PC , and PT represent the probabilities that each

base will occur at any given site in the sequence. Note that one of the four bases

must occur at each site, so PA,+PG + PC + PT = 1. In order to see how these

probabilities change from one time step to the next, we need to know the probability

of each base changing into each of the other bases. In other words, we need to know

the conditional probabilities of having any base in any site in the sequence, given that

that site was previously occupied by any of the bases. If we represent the conditional

probability of a site being occupied by base i, given that it was occupied by base j

(where i, j = A,G,C, T ) in the previous time step by Pi|j, then we can form a matrix

called the transitional matrix, M with all these conditional probabilities by allowing

all the columns to share the same ancestral base and all the rows to share the same
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descendant base. In other words,

M =



PA|A PA|G PA|C PA|T

PG|A PG|G PG|C PG|T

PC|A PC|G PC|C PC|T

PT |A PT |G PT |C PT |T


It turns out that all the entries of M are ≥ 0 since they all represent probabilities,

and each column of M adds up to 1, since every site in the sequence must be occupied

by one of the four bases in the descendant sequence, regardless of what base that site

was occupied by in the ancestral sequence. Any matrix satisfying these conditions

is called a Markov matrix. If we represent the ancestral base distribution (i.e., we

can represent the fraction of sites that we would expect to be occupied by each of

the four bases) by the vector p0 = (PA, PG, PC , PT ), then the descendant base

distribution after the first time step, p1 is found by multiplying p1 = Mp0. Similarly,

the descendent base distribution after the second time step, p2 is found by multiplying

p2 = Mp1 = M2p0.

11.4.3 Exercise

Suppose a 40-base ancestral DNA sequence is

S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT
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and its descendent aligned sequence is

S1 : ACATGTTGCTTGACGACAGGTCCATGCGCCTGAGAACGGC

QUESTION: What is p0 in this case? Round to three decimal places.

The frequencies of S1 = i and S0 = j for i, j = A,G,C,T are summarized in the

following table.

S1\S0 A G C T
A 7 0 1 1
G 1 9 2 0
C 0 2 7 2
T 1 0 1 6

Total 9 11 11 9

QUESTION: Compute the transitional matrix, M , of conditional probabilities of

having any base in any site in the sequence, given that that site was previously

occupied by any of the bases. Round to three decimal places.

In the Scilab console, define the vector p0 and the transitional matrix M by typing

p0 = [PA;PG;PC ;PT ]

and

M =

[PA|A,PA|G,PA|C ,PA|T ;PG|A,PG|G,PG|C ,PG|T ;PC|A,PC|G,PC|C ,PC|T ;PT |A,

PT |G,PT |C ,PT |T

]
.

(Note: You should type the actual values for the probabilities and not Pi or Pi|j.

Additionally, all the values should be entered on one line in the brackets, not two.
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Finally, be careful to type the commas and semicolons exactly as you see them above.)

QUESTION: What are the descendent base sequences p1 and p2?

To determine the equilibrium base distribution; i.e., the final DNA sequence in which

all mutations have stopped, we need to compute p∞ = limt→∞M
tp0.

QUESTION: What is the equilibrium base distribution for this example? Hint: To

do this limit, you will need to make a table of values.

11.4.4 Jukes-Cantor Model

The simplest Markov model of molecular evolution is called the Jukes-Cantor model.

The Jukes-Cantor model makes two simplifying assumptions:

(1) All bases occur with equal probability in the ancestral sequence; i.e., p0 =(
1
4
, 1

4
, 1

4
, 1

4

)
.

(2) The conditional probability describing an observable base substitution from any

base to any other base are all the same. In other words, if α is the probability

that a given site in the sequence will change from its current base to any of the

three other bases, then Pi|j = α
3

for i 6= j. Therefore, in the Jukes-Cantor model,

the transitional matrix is

M =



1− α α
3

α
3

α
3

α
3

1− α α
3

α
3

α
3

α
3

1− α α
3

α
3

α
3

α
3

1− α


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The value of α will depend on the time step used and the features of the particular

DNA sequence being modeled. Although α is a probability, we can interpret it as

the rate at which observable base substitutions occur over one time step, measured

in units of (substitutions per sites)/(time step).

Download and execute the file Jukes-Cantor.sce. Notice that the sequence starts at

its equilibrium distribution.

QUESTION: In line 4 of the code, change p0 to [.2; .3; .4; .1]. In this case, what is

the equilibrium base distribution?

In the previous problem, the graph opened in graphics window 2. Leave this graphics

window when you do the next problem so that you can compare the graphs.

QUESTION: In line 1 of the code, reduce the value of α (represented by a in the

Scilab code) from .06 to .03 and change line 10 of the code from 2 to 1. This will open

the new graph in graphics window 1. Before closing the graphics windows, increase

α to 0.9 and change line 10 to 3 so that this new graph opens in graphics window 3.

What affect does changing α have on the equilibrium base distribution? Does this

support the alternate interpretation we gave of α above?



Module 12

Animal Form and Function

12.1 Biological Introduction

This is the currently accepted phylogeny of the Kingdom Animalia. There are several

characters unique to particular groups of animals, many of which identify mono-

phyletic groups of organisms.
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12.2 Synapomorphies defining animal taxa

Place each of the following characters on the phylogenetic tree above, indicating where

it first evolved (making it a synapomorphy uniting all the taxa above it on the tree).

a. lophophore feeding apparatus coelom

formed via schizocoely

b. mesoderm lines parietal side of body

wall

c. body cavity contains non-cellular

mesogloea

d. coelom formed via enterocoely

e. mesoderm derived from endoderm

f. body cavity contains cellular

mesenchyme

g. cellular division of labor

h. complete digestive system

i. diploblasty

j. triploblasty

k. coelom formed via schizocoely

l. bilateral symmetry

m. radial symmetry

n. cnidoblast stinging cells

o. true tissues

p. nervous system embryonically dorsal

q. secondary opening becomes the anus

r. secondary opening becomes the mouth

s. trochophore larva

t. pseudocoelom a persistent blastocoel

QUESTION: What does this tree imply about evolutionary relationships among

the Lophotrochozoa?
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QUESTION: What are the common names of each of the taxa in the tree? Give an

example of an organism from each group of taxa?

12.3 Ancestry, Form, and Function

For each of the following taxa indicate what their most recent common ancestor likely

looked like and what characters it had.

Protostomes and Deuterostomes

Ecdyzoans

Lophotrochozoans

QUESTION: What synapomorphies set nematodes and arthropods apart from the

ancestral Ecdyzoan? How does the main body cavity of a nematode differ from that

of an arthropod?

QUESTION: What synapomorphies set molluscs and annelids apart from the an-

cestral Lophotrocozoan? How does the main body cavity of a nematode differ from

that of an arthropod?

Both Mollusks and Arthropods have (1) an open circulatory system and (2) a reduced

coelom that functions as the pericardium and gonocoel.

QUESTION: What is a pericardium? A Gonocoel? What defines a true coelom?

What does this suggest about these two characters in these two phyla?
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For each of the following taxa indicate what their most recent common ancestor likely

looked like and what characters it had.

Deuterostomes

Echinodermata

Hemichordata

Chordata

What characters set each of these groups apart from the ancestral deuterostome?

12.4 Practical Applications

A drug called lufenuron interferes with the activity of an enzyme known as chiti-

nase, which is involved in the normal formation of chitin. Lufenuron prevents normal

maturation of animals that use chitin as structural support.
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QUESTION: Which of the following do you think would most likely be adversely

affected by medicating an infected host mammal with lufenuron?

a. fleas

b. ear mites

c. leeches

d. heartworms (a nematode)

e. liver flukes

f. tapeworms

g. ticks

h. caterpillars

Lufenuron is effective against all insects but is not effective against ticks. What could

explain this?

Animal phyla have long been classified into putatively monophyletic assemblages on

the basis of their body plans. Unfortunately, as we are now discovering with more

sophisticated identification techniques such as DNA sequencing and metabolic studies,

this can sometimes create artificial taxa that are para- or polyphyletic. Consider

the following phylogenetic trees. The one on the left shows a classification based

upon molecular (DNA sequencing) data. The one on the right shows a “traditional”

classification based upon body plans and morphology.
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In the previous module you learned about the application of molecular sequence data

to develop phylogenies. As you can see here, molecular data and morphological data

frequently disagree. However, as we said before, molecular data provides the most

accurate information about the evolutionary history of organisms.

You also learned that we can apply mathematical models to identify how DNA se-

quences evolve. In particular we discussed the Jukes-Cantor model of sequence evo-

lution. We can apply this model of DNA evolution in a different way to identify how

genetically different species are from each other. To do this we measure the genetic

distance between sequences, which is a measure of how different sequences are based

on the types of substitutions between them and the likelihood of multiple changes at

a single site.
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12.5 Mathematical Introduction

12.5.1 Review

In the previous module Animal Body Plan, we studied Markov models and in partic-

ular, we looked at the Jukes-Cantor model. There, we said that in order to describe

the mutation process for a given DNA sequence, we need the transitional matrix, M

which describes the conditional probabilities, Pi|j, of any site in the sequence changing

to base i given that it was previously occupied by base j (i, j = A,G,C, T ).

M =



PA|A PA|G PA|C PA|T

PG|A PG|G PG|C PG|T

PC|A PC|G PC|C PC|T

PT |A PT |G PT |C PT |T


.

For the Jukes-Cantor model in particular, the transitional matrix is

M =



1− α α
3

α
3

α
3

α
3

1− α α
3

α
3

α
3

α
3

1− α α
3

α
3

α
3

α
3

1− α


.

Using the transitional matrix, M , we were able to determine the descendant base

distribution after one time step, p1, from the ancestral base distribution, p0 by mul-

tiplying p1 = Mpp0. Similarly, the descendant base distribution after two time steps,

p2 was p2 = Mp1 = M2p0.
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12.5.2 More on the Jukes-Cantor Model

If we want the descendant base distribution after t time steps, it is pt = M tp0. If

you calculate M t, it turns out to be

M t =



1
4

+ 3
4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t

1
4
− 1

4

(
1− 4

3
α
)t 1

4
+ 3

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t

1
4
− 1

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t 1

4
+ 3

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t

1
4
− 1

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t 1

4
− 1

4

(
1− 4

3
α
)t 1

4
+ 3

4

(
1− 4

3
α
)t


.

From this, we see that the fraction of the sites we would expect to observe no change

in, between time 0 and time t, is q(t) = 1
4

+ 3
4

(
1− 4α

3

)t
(from the diagonal entries).

And the fraction of the sites that we expect to be different from time 0 to time t is

p(t) = 1− q(t) = 3
4
− 3

4

(
1− 4α

3

)t
.

Download and execute the file Jukes-Cantor differences.sce.

QUESTION: How does increasing the value of α affect p(t)? What does the maxi-

mum value of p(t) appear to be?

12.5.3 Jukes-Cantor Distances

Suppose we have two DNA sequences - an ancestral sequence and a mutated sequence

from some later time. By comparing the number of sites which are different after the

mutations with the total number of sites, we can estimate p(t). But from p(t), we

usually cannot recover α and t. So instead we use their product, tα, which can still

tell us something useful based on p(t). By approximating this product, we get the
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Jukes-Cantor distance between the DNA sequences S0 and S1, which is

dJC(S0, S1) = −3

4
ln

(
1− 4

3
p

)
.

This Jukes-Cantor distances tells us the total number of expected substitutions per

site during the elapsed time. In other words, distance refers to how different the

sequences are due to mutations.

In Scilab, the command

→ log(x)

is used to compute ln x.

Consider the two 40-base DNA sequences from the previous module:

S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

and its descendent aligned sequence is

S1 : ACATGTTGCTTGACGACAGGTCCATGCGCCTGAGAACGGC

QUESTION: Compute dJC(S0, S1) for these two sequences. Why do you think the

average number of observed base substitutions per site (given by p) is different from

the estimated number of substitutions per site that occurred in the course of evolution

(given by dJC)?

QUESTION: Do you think the Jukes-Cantor distance will increase or decrease as p

increases? Why?
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Download and execute the file Jukes-Cantor distance.sce.

QUESTION: Was your answer to the previous question confirmed? If not, why do

you think you were wrong?



Module 13

Predation

13.1 Biological Introduction

Predation is the process by which one organism feeds on and kills another organism.

This process requires two components: the predator (the one feeding) and the prey

(the one being consumed). Predatory-prey interactions commonly refer to one animal

(a carnivore) hunting and killing another animal (an herbivore), but they can also

refer to several other types of interactions.

QUESTION:Describe at least two predator prey interactions that do not involve

carnivores consuming herbivores. How do predator prey interactions differ from host-

parasite interaction?

Since predator-prey interactions are not limited to one animal feeding on another,

predator prey interactions can be illustrated as webs or pyramids of interactions.

These are commonly referred to as food webs or trophic cascades. These cascades

describe all of the predator prey interactions within an ecosystem, and are valuable
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for looking at the transfer of energy in a particular system. This is of particular

importance because only about 10% of the energy consumed from prey is converted

to biomass for the predator. In turn, 90% of energy consumed is lost to cellular and

homeostatic processes of the predator, or excreted as waste. As a result, a great deal

of energy is lost in a trophic cascade. For instance, plants commonly serve as prey for

herbivores, which serve as prey for carnivores, which then may serve as prey for sec-

ondary and tertiary carnivores. One example of this is as follows, a rabbit consumes

a flowering plant in the Everglades, the rabbit is then consumed by a rattlesnake, the

rattlesnake is then consumed by an eagle. In each prey event energy is transferred

from the prey to the predator, and a large portion is lost.

QUESTION:In the previous example, how much of the energy of the plant is eventu-

ally transferred to the eagle? What implications does this have for food consumption

by predators? Identify another example by which energy is transferred from a plant

to at least a tertiary consumer.

As you can see, predatory-prey relationships involve a complex series of interactions.

These interactions occur across a wide range of species and in nearly every environ-

ment on Earth. As a result these interactions can have a variety of consequences for

both the predator and the prey. One such consequence is the evolution of antipreda-

tory adaptations. In these cases, individuals that by chance have developed certain

behaviors or morphological characteristics are less likely to be preyed upon that those

that do not exhibit these characteristics. As a result, those individuals survive, and

their traits are passed on to the next generation eventually becoming widespread

throughout the population. Examples of such adaptations include schooling behavior

in fish, herding in zebras, and aposematic coloration in a variety of species. Apose-
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matism is the use of bright coloration to deter potential predators. It is commonly

referred to as warning coloration because it is typically associated with animals that

pose a physical or chemical threat to predators.

QUESTION:Give another example of an antipredatory adapatation and hypothesize

how it may have developed.

13.2 Example

On a more simple level predatory prey interactions result in fluctuations in popula-

tions for both groups of organisms involved. An increase in prey items, provides more

food predators, allowing their populations to increase. As predatory populations in-

crease, they exert a greater pressure on prey and the prey population decreases. Once

the prey population decreases predators have less food and begin to starve, resulting

in a decrease in number of predators, and the cycle begins again. This is just one

example of possible population dynamics associated with predator prey interactions.

However, it is probably the most well documented type of interaction, largely due

to the case of the Canadian lynx and the snowshoe hare. In 1937, MacLulich pub-

lished a paper analyzing data collected by fur trappers selling pelts to The Hudson

Bay Company over a period of nearly 100 years. From these data, a “classic” Lynx

vs. Snowshoe Hare population fluctuation phenomenon emerged, as shown below.

MacLulich noted that the “boom” and “bust” of hare and lynx population seem to

mirror each other, with the lynx peaks and valleys coming slightly after those of the

hares.
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QUESTION:Describe two other examples whereby different outcomes could result.

These examples may be either hypothetical or real world examples.

There are a variety of responses that predator and prey populations can have as a

result of pressures. Many if not all potential outcomes of predator prey interactions

can be predicted and model by combining experimental and field data with some

simple mathematical models.

13.3 Mathematical Models

In this module, we studied a discrete-time single species population model, called the

Discrete Logistic Model. Here, we will study models which involve two species, where

the presence of each species affects the other population. In this case, the model

equations are called coupled equations because both must be considered together

as one system of equations. The way in which a predator-prey system is modeled

depends on what is being assumed about the populations being modeled. In the

models we consider, we will use xt to denote the prey population at time t and yt to



141

denote the predator population at time t.

In the first model, we make the following assumptions:

1. The fraction of the prey population that survives from one generation to the next

is given by

1

1 + ayt

So, the fraction of prey that survive is inversely related to the number of predators.

2. The prey have a net reproductive rate of r.

3. The only source growth for the predator population is the prey.

4. Each consumed prey gives rise to b new predators.

The form of the first model is:

xt+1 = rxt
1+ayt

yt+1 = b
(

1− 1
1+ayt

)
xt

Download the file predator prey1.sce and execute it in Scilab.

QUESTION: What are the similarities and differences between the behavior of this

model and the behavior of the Lynx vs. Snowshoe Hare populations? What do you

think the model is lacking to account for this difference? Explain why the qualitative

behavior of the predator vs. prey graph on the right should be expected from the

dynamics of the population vs. time graph on the left.

In the next model we consider, we make the following assumptions:



142

1. The fraction of the prey population that survives declines exponentially with the

number of predators.

2. There is a limit to the predators’ appetite, so as the number of prey increase, the

number of predator-prey interactions does not grow unbounded.

3. The prey have a net reproductive rate of r.

4. The only source of growth for the predator population is the prey.

The form of the second model is:

xt+1 = xte
r(1−xtK )−ayt

yt+1 = xt (1− e−ayt)

Download the file predator prey2.sce and execute it in Scilab.

QUESTION: What are the similarities and differences between the behavior of this

model and the behavior of the previous model? Explain the qualitative behavior of

the predator vs. prey graph on the right from the dynamics of the population vs.

time graph on the left.

The last model we consider has the form:

xt+1 = r
(
1− xt

K

)
xt − ayt

yt+1 = byt + xt

Download the file predator prey3.sce and execute it in Scilab.
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QUESTION: What modeling assumptions were used in constructing this model?

What are the similarities and differences between the behavior of this model and

the behavior of the previous models? Explain why the qualitative behavior of the

predator vs. prey graph on the right should be expected from the dynamics of the

population vs. time graph on the left.



Module 14

Population Ecology

14.1 Biological Introduction

Ecology is the scientific study of the interactions that determine the distribution and

abundance of organisms. More generally, it is the study of how organisms interact

with each other and their environments. Population ecology is the study of changes

in growth and composition in a single group of organisms.

As the name implies, this can be an extremely daunting task. An, infinitely large

number of factors can affect how populations change. These factors can be divided

into two groups: abiotic and biotic.

Abiotic factors are non-living environmental factors that can affect

populations (temperature, radiation, amount of light, etc.).

Biotic factors are living factors and interactions that can affect populations (preda-

tors, prey, etc.).
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QUESTION:Give two additional abiotic and two biotic factors that may affect a

population.

Abiotic and biotic factors combine to change population demographics and distri-

butions over time. There are a great many factors that researchers study in order

to gain insight into populations and how they are changing. In this module we will

explore four:

1. Age Structure of Populations

2. Population Growth Rate

3. Beneficial Species Interactions (Symbioses)

4. Intra- and Interspecific Competition

QUESTION:Describe two other factors that may affect a populations demographics

and distribution. HINT: We have already had a module on one of them this semester.

14.1.1 Age Structure of Populations

Many factors influence the age structure of a population of organisms. These are

commonly broke down into three categories: fecundity, morbidity, and survivorship.

While these are not the only factors involved, they give us a good place to start.

Fecundity can be expressed as the number of offspring produced per female per unit

time (i.e. 0.5 children per female per year, this indicates that half of females in a

population have one offspring each year). This can also be described as the birth

rate for the population. Mortality can be expressed as the number of individuals



146

dying per unit time. This is also commonly known as the death rate of the popula-

tion. Survivorship is the proportion of individuals in a population which survive

to a given age. Other factors which may affect the age distribution of a population

include age at sexual maturity, immigration, and emigration.

QUESTION:What would you expect the survivorship curve to look like for a fish

that produces large clutches of really small live offspring? What would the cor-

responding age distribution pyramid look like? See pg. 1154 in Campbell for an

example of an age pyramid.

QUESTION:What do you expect the age pyramid to look like for each of the fol-

lowing population scenarios: rapid growth, rapid decline, stable? What would the

ratio of birth rate to death rate be for each of the above cases?

14.1.2 Population Growth Rate

Closely tied to age structure is the concept of population growth rate. This is the rate

at which a population increases or decreases and depends on many of the same factors

previously described. Fecundity, morbidity, survivorship, age at sexual maturity,

immigration, and emigration all have an impact on how a population grows. Other

important factors that can impact how a population grows are whether generations

are overlapping or discrete, and availability of resources. Much of this was covered in

the module on population growth from earlier this semester.

From this module and your class material, you know that there are two types of

growth: exponential and logistic.

QUESTION:What are the equations for logistic growth and exponential growth?

What do each of the variable represent (see p.1143-1147 in Campbell)
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In exponential growth models, populations continue to grow at a rate that is depen-

dent exclusively on the birth rate of the population.

QUESTION:Why is this an unrealistic model for most populations? Give an ex-

ample when this model may prove accurate? In your example will this model always

apply or will the population switch to a logistic growth? Why?

In logistic growth models, populations cannot grow infinitely, but are limited by a

populations carrying capacity, the maximal population size that can be sustained in

the given environment.

QUESTION:What factors may influence a populations carrying capacity? Which of

these models will produce a J shaped curve? Which will produce an S shaped curve?

What is the difference between an r selected population and a K selected population?

14.1.3 Beneficial Species Interactions

Beneficial species interaction can also be described as symbiosis. A symbiosis is a

relationship between two organisms where both organisms receive a benefit. These

interactions are common throughout nature and can have a great impact on the

demographics and distribution of a population. However, not all interactions are this

clear cut. Oftentimes, a relationship that is a symbiosis in one situation can actually

become a commensalism in another situation. A commensalism is a relationship

between two organisms in which one benefits and the other is not significantly harmed

or helped. The following example provides just such a case.
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Example

Mycorrhizae are plant root-fungus symbioses. They can have a profound impact on

the growth and survival of individual plants and therefore plant populations. This

can then lead to influencing plant community composition and succession of an area.

Look at the following graph (modified from Maffia 1997). By final harvest, Sunflower

plants grown at high density without mycorrhizas are twice the size of those grown

with mycorrhizas. The total number of Sunflower plants grown without mycorrhizas

are, however, only half that of the Sunflowers grown with mycorrhizas.

QUESTION:Based on these data, describe a scenario where it is advantageous to

have mycorrhizas; disadvantageous to have mycorrhizas. Speculate as to why Sun-

flowers continue to associate with mycorrhizas.

14.1.4 Competition

Competition is an interaction between two that use or seek the same set of limited

resources. This is interaction is detrimental to both species. In this case each species
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is competing with the other for these resources. These resources can include a specific

habitat, a particular breeding ground, a certain food source, etc. In addition, it is

important to note that competition can be either intraspecific or interspecific.

QUESTION:Why is competition detrimental to both groups of organisms involved?

Intraspecific competition occurs when two populations of the same organism seek to

utilize the same resource at the same time. This commonly occurs when organisms

are seeking specific breeding grounds. Established populations must often exhibit

considerable energy to maintain their breeding grounds from other members of the

same species.

Interspecific competition occurs when the organisms competing for a particular re-

source are members of different species. While this type of competition may be more

difficult to understand, it is still quite common. Additionally, it can have a strong

impact on the population demographics of both species involved. An example of this

would be when two populations of rodents inhabit the same area and eat the same

food. These populations are in constant competition for habitat, breeding area, and

available food. As a result, the population demographics of both species are impacted.

If one species has an advantage over the other, then the competition may eventually

result in the loss of one species from the environment while the other thrives. More

commonly, the two species continue to coexist in a state of flux in a given habitat.

This commonly results in variation in the population demographics of both species.
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QUESTION:Describe a situation whereby two species continuously compete in a

particular habitat? Include in your description an explanation of why one species

does not outcompete the other?

In an increasingly urbanized world, these situations become all the more common as

available habitat and food sources continue to shrink. In response to this we can use

mathematical modeling to explore the effects of competition in a variety of different

scenarios.

14.2 Mathematical Model

In this module, we will consider a discrete-time model for two species, x (Species 1)

and y (Species 2), which exhibit both interspecific competition with each other, and

intraspecific competition among themselves. The form of the model we will use is:

xt+1 =
b1xt

1 + c11xt + c12yt

yt+1 =
b2yt

1 + c21xt + c22yt

Here, b1 and b2 represent growth rates for Species 1 and Species 2, respectively. The

constants cij for i, j = 1, 2 represent the strength of the competition on Species i by

Species j.

QUESTION: Give a specific interpretation for c11, c12, c21, c22. Which ones repre-

sent interspecific competition and which ones represent intraspecific competition?



151

Download the file competition.sce and execute it in Scilab. You will notice four iden-

tical graphs, labeled Model #1, Model #2, Model #3, and Model #4. They show

Species 1, which starts with an initial population of x(1) = 1.6 and Species 2, which

starts with an initial population of y(1) = 1.1 coexisting and coming to equilibrium

at the same population level.

QUESTION: Find a set of parameter values which allows both species to coexist,

but come to equilibrium at different population levels. Hint : Use the four graphs to

make various changes and simultaneously compare the changes.

QUESTION: Find two sets of parameter values which allows Species 1 to exclude

Species 2 (Species 1 exists but Species 2 becomes extinct). First do it by changing

only the growth rates then do it by changing only the interspecific competition.

QUESTION: Can changing the strength of the intraspecific competition save Species

2 in either set of parameter values in the previous problem?

QUESTION: What, if any, interesting, unexpected, or different phenomena did you

discover while searching for the sets of parameter values you were asked to find?



Appendix A

Scilab Code

A.1 Introduction to Scilab

A.1.1 oracle.sce

t = 0:0.5:10;

y = 0.5*t + sin(t)/2;

// best linear fit; general case is datafit or leastsq

[m b] = reglin(t,y);

z = m*t + b;

scf(0);

clf;

plot(t,y,'rx',t,z,'b:');

// Scilab also has xtitle command

xlabel('t'); ylabel('y');

title('Data points in red x; Blue dotted line is best 

linear fit');

xs2eps(0,'oracle.eps')

xs2pdf(0,'oracle.pdf')

xs2png(0,'oracle.png')
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A.1.2 introduction lab.sce

lines(0);

function y=sum1(n)

// sum1(n) computes the sum of 1 + 2 + ... + n

total = 0; 

for i = 1:n,

        total = total + i;

end;

y = total;

endfunction;

function out = firstRowDown(in)

row1 = in(1,:);

n = size(in,2);

for i = 1:n,

out(i,1) = row1(i);

end;

endfunction

function out = firstRowDownSecondColumn(in)

row1 = in(1,:);

n = size(in,2);

for i = 1:n,

out(i,2) = row1(i);

end;

endfunction

function out = countDownNumberOfColumns(in)

n = size(in,2);

for i = 1:n,

out(i,1) = i;

end;

endfunction
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A.2 The Cell and Biomolecules

A.2.1 diffusionleft.sce

resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.498;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(0);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');
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A.2.2 diffusioncenter.sce

resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.498;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-
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4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(10);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');
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A.3 Protein Synthesis

A.3.1 cell cycle control.sce

function dx = cdkapc(t,x)

dx(1) = k1-(k2p+k2pp*x(2))*x(1)

dx(2) =

((k3p+k3pp*x(3))*(1-x(2)))/(J3+1-x(2))-(k4*x(4)*x(1)*x(2))

/(J4+x(2))

dx(3) =

k5p+k5pp*((x(4)*x(1))̂ n)/(J5^n+(x(4)*x(1))̂ n)-k6*x(3)

dx(4) = u*x(4)*(1-x(4)/Ms)

endfunction

scf(0);

clf;

k1 = 0.04

k2p = 0.04

k2pp = 1

k3p = 1

k3pp = 10

J3 = 0.04

k4 = 35

J4 = 0.04

k5p = 0.005

k5pp = 0.2

k6 = 0.1

n = 4

J5 = 0.3

u = 0.01

Ms = 1

t = 0:0.01:400;

x0 = [0.05 ;0.04; 0.0; 0.6];

x = ode(x0,0,t,cdkapc);

plot2d(t,x(1,:),style= 1)
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plot2d(t,x(2,:),style= 2)

plot2d(t,x(3,:),style= 3)

legends(['[cyclin/Cdk]','Cdh1/APC','[Cdc20]'],[1 2 

3],"ur")

xlabel('Time')

ylabel('Concentration')
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A.4 Gene Regulation

A.4.1 HIV control.sce

//close

function y =

code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A,tfinal)

test = -1;

delta = 0.001;

M = 1000;

t=linspace(0,tfinal,M+1);

h=tfinal/M;

h2 = h/2;

T=zeros(1,M+1);

Ti=zeros(1,M+1);

V=zeros(1,M+1);

T(1)=T0;

Ti(1)=Ti0;

V(1)=V0;

lambda1=zeros(1,M+1);

lambda2=zeros(1,M+1);

lambda3=zeros(1,M+1);

u=zeros(1,M+1);

while(test < 0)

    oldu = u;

    oldT = T;

    oldTi = Ti;

    oldV = V;
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    oldlambda1 = lambda1;

    oldlambda2 = lambda2;

    oldlambda3 = lambda3;

for i=1:M

        k11 = s/(1 + V(i)) + T(i)*(-m1 + r*(1 - (T(i) +

Ti(i))/Tmax) - u(i)*k*V(i));

        k12 = u(i)*k*V(i)*T(i) - m2*Ti(i);

        k13 = N*m2*Ti(i) - m3*V(i);

        k21 = s/(1 + (V(i)+h2*k13)) + (T(i)+h2*k11)*(-m1

+ r*(1 - ((T(i)+h2*k11) + (Ti(i)+h2*k12))/Tmax) -

0.5*(u(i)+u(i+1))*k*(V(i)+h2*k13));

        k22 =

0.5*(u(i)+u(i+1))*k*(V(i)+h2*k13)*(T(i)+h2*k11) -

m2*(Ti(i)+h2*k12);

        k23 = N*m2*(Ti(i)+h2*k12) - m3*(V(i)+h2*k13);

        k31 = s/(1 + (V(i)+h2*k23)) + (T(i)+h2*k21)*(-m1

+ r*(1 - ((T(i)+h2*k21) + (Ti(i)+h2*k22))/Tmax) -

0.5*(u(i)+u(i+1))*k*(V(i)+h2*k23));

        k32 =

0.5*(u(i)+u(i+1))*k*(V(i)+h2*k23)*(T(i)+h2*k21) -

m2*(Ti(i)+h2*k22);

        k33 = N*m2*(Ti(i)+h2*k22) - m3*(V(i)+h2*k23);

        k41 = s/(1 + (V(i)+h*k33)) + (T(i)+h*k31)*(-m1 +

r*(1 - ((T(i)+h*k31) + (Ti(i)+h*k32))/Tmax) -

u(i+1)*k*(V(i)+h*k33));

        k42 = u(i+1)*k*(V(i)+h*k33)*(T(i)+h*k31) -

m2*(Ti(i)+h*k32);

        k43 = N*m2*(Ti(i)+h*k32) - m3*(V(i)+h*k33);
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        T(i+1) = T(i) + (h/6)*(k11 + 2*k21 + 2*k31 + k41);

        Ti(i+1) = Ti(i) + (h/6)*(k12 + 2*k22 + 2*k32 +

k42);

        V(i+1) = V(i) + (h/6)*(k13 + 2*k23 + 2*k33 + k43);

end

for i = 1:M

        j = M + 2 - i;

        k11 = -(A + lambda1(j)*(-m1 + r*(1 - (2*T(j) +

Ti(j))/Tmax) - u(j)*k*V(j)) + lambda2(j)*(u(j)*k*V(j)));

        k12 = -(lambda1(j)*(-r*T(j)/Tmax) +

lambda2(j)*(-m2) + lambda3(j)*(N*m2));

        k13 = -(lambda1(j)*(-s/((1+V(j))̂ 2) -

u(j)*k*T(j)) + lambda2(j)*(u(j)*k*T(j)) +

lambda3(j)*(-m3));

        k21 = -(A + (lambda1(j)-h2*k11)*(-m1 + r*(1 -

(2*0.5*(T(j)+T(j-1)) + 0.5*(Ti(j)+Ti(j-1)))/Tmax) -

0.5*(u(j)+u(j-1))*k*0.5*(V(j)+V(j-1))) +

(lambda2(j)-h2*k12)*(0.5*(u(j)+u(j-1))*k*0.5*(V(j)+V(j-1))

));

        k22 =

-((lambda1(j)-h2*k11)*(-r*0.5*(T(j)+T(j-1))/Tmax) +

(lambda2(j)-h2*k12)*(-m2) + (lambda3(j)-h2*k13)*(N*m2));

        k23 =

-((lambda1(j)-h2*k11)*(-s/((1+0.5*(V(j)+V(j-1)))̂ 2) -

0.5*(u(j)+u(j-1))*k*0.5*(T(j)+T(j-1))) +

(lambda2(j)-h2*k12)*(0.5*(u(j)+u(j-1))*k*0.5*(T(j)+T(j-1))

) + (lambda3(j)-h2*k13)*(-m3));

        k31 = -(A + (lambda1(j)-h2*k21)*(-m1 + r*(1 -
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(2*0.5*(T(j)+T(j-1)) + 0.5*(Ti(j)+Ti(j-1)))/Tmax) -

0.5*(u(j)+u(j-1))*k*0.5*(V(j)+V(j-1))) +

(lambda2(j)-h2*k22)*(0.5*(u(j)+u(j-1))*k*0.5*(V(j)+V(j-1))

));

        k32 =

-((lambda1(j)-h2*k21)*(-r*0.5*(T(j)+T(j-1))/Tmax) +

(lambda2(j)-h2*k22)*(-m2) + (lambda3(j)-h2*k23)*(N*m2));

        k33 =

-((lambda1(j)-h2*k21)*(-s/((1+0.5*(V(j)+V(j-1)))̂ 2) -

0.5*(u(j)+u(j-1))*k*0.5*(T(j)+T(j-1))) +

(lambda2(j)-h2*k22)*(0.5*(u(j)+u(j-1))*k*0.5*(T(j)+T(j-1))

) + (lambda3(j)-h2*k23)*(-m3));

        k41 = -(A + (lambda1(j)-h*k31)*(-m1 + r*(1 -

(2*T(j-1) + Ti(j-1))/Tmax) - u(j-1)*k*V(j-1)) +

(lambda2(j)-h*k32)*(u(j-1)*k*V(j-1)));

        k42 = -((lambda1(j)-h*k31)*(-r*T(j-1)/Tmax) +

(lambda2(j)-h*k32)*(-m2) + (lambda3(j)-h*k33)*(N*m2));

        k43 = -((lambda1(j)-h*k31)*(-s/((1+V(j-1))^2) -

u(j-1)*k*T(j-1)) + (lambda2(j)-h*k32)*(u(j-1)*k*T(j-1)) +

(lambda3(j)-h*k33)*(-m3));

        lambda1(j-1) = lambda1(j) - (h/6)*(k11 + 2*k21 +

2*k31 + k41);

        lambda2(j-1) = lambda2(j) - (h/6)*(k12 + 2*k22 +

2*k32 + k42);

        lambda3(j-1) = lambda3(j) - (h/6)*(k13 + 2*k23 +

2*k33 + k43);

end

    temp = ((lambda2 - lambda1).*k.*V.*T + 2)./2;

    u1 = min(1, max(0, temp));
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    u =  0.5*(u1 + oldu);

    temp1 = delta*sum(abs(u)) - sum(abs(oldu - u));

    temp2 = delta*sum(abs(T)) - sum(abs(oldT - T));

    temp3 = delta*sum(abs(Ti)) - sum(abs(oldTi - Ti));

    temp4 = delta*sum(abs(V)) - sum(abs(oldV - V));

    temp5 = delta*sum(abs(lambda1)) - sum(abs(oldlambda1

- lambda1));

    temp6 = delta*sum(abs(lambda2)) - sum(abs(oldlambda2

- lambda2));

    temp7 = delta*sum(abs(lambda3)) - sum(abs(oldlambda3

- lambda3));

    test = min(temp1, min(temp2, min(temp3, min(temp4,

min(temp5, min(temp6,temp7))))));

end

y(1,:) = t;

y(2,:) = T;

y(3,:) = Ti;

y(4,:) = V;

y(5,:) = u;

endfunction

flag1=0;

flag2=0;

flag3=0;

flag4=0;

var1=0;

var2=0;

var3=0;

var4=0;
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while(flag1==0)

    var1 = input('Enter a value for the source term s: ');

if(var1>0)

        s=var1;

        flag1=1;

else

disp('        ')

disp('ERROR: s must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a value for natural death rate of

T cells (m_1): ');

if(var1>0)

        m1=var1;

        flag1=1;

else

disp('        ')

disp('ERROR: m_1 must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a value for death rate of 

infected T cells (m_2): ');

if(var1>0)
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        m2=var1;

        flag1=1;

else

disp('        ')

disp('ERROR: m_2 must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a value for viral death rate 

(m_3): ');

if(var1>0)

        m3=var1;

        flag1=1;

else

disp('        ')

disp('ERROR: m_3 must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a value for the T cell growth 

rate (r): ');

if(var1>0)

        r=var1;

        flag1=1;

else

disp('        ')
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disp('ERROR: r must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a maximum T cell level (T_max): 

');

if(var1>0)

        Tmax = var1;

        flag1=1;

else

disp('        ')

disp('ERROR: T_max must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a value for infection rate (k): 

');

if(var1>0)

        k = var1;

        flag1=1;

else

disp('        ')

disp('ERROR: k must be positive.')

disp('        ')

end

end
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flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter the average number of virus cells

produced (N): ');

if(var1>0)

        N = var1;

        flag1=1;

else

disp('        ')

disp('ERROR: N must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter an initial uninfected T cell 

concentration (T_0): ');

if(var1>0)

        T0 = var1;

        flag1=1;

else

disp('        ')

disp('ERROR: T_0 must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter an initial infected T cell 
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concentration (T_i0): ');

if(var1>0)

        Ti0 = var1;

        flag1=1;

else

disp('        ')

disp('ERROR: T_i0 must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter an initial free virus 

concentration (V_0): ');

if(var1>0)

        V0 = var1;

        flag1=1;

else

disp('        ')

disp('ERROR: V_0 must be positive.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter a value for the weight parameter 

A: ');

if(var1>=0)

        A = var1;

        flag1=1;
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else

disp('        ')

disp('ERROR: A must be non-negative.')

disp('        ')

end

end

flag1=0;

disp('          ')

while(flag1==0)

    var1 = input('Enter the number of days you would like

to run this model (t_final): ');

if(0<var1);

        time=var1;

        flag1=1;

else

disp('            ')

disp('ERROR: t_final must be positive.')

disp('            ')

end

end

disp('           ')

disp('One moment please...')

y1=code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A,time);

disp('               ')

while(flag2==0)

disp('Would you like to vary any parameters?')

disp('1. Yes')

disp('2. No')

    var2=input('Type 1 or 2: ');
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if(var2==1)

disp('         ')

        flag2=1;

while(flag3==0)

disp('Which parameter would you like to 

vary?')

disp('1. s')

disp('2. m_1')

disp('3. m_2')

disp('4. m_3')

disp('5. r')

disp('6. T_max')

disp('7. k')

disp('8. N')

disp('9. T_0')

disp('10. T_i0')

disp('11. V_0')

disp('12. A')

disp('13. t_final')

            var3=input('Type 1 - 13: ');

if(var3==1)

disp('        ')

while(flag4==0)

                    var4 = input('Enter a second s value:

');

if(var4 > 0)

           s2 = var4;

                        flag4 = 1;

else

disp('            ')

disp('ERROR: s must be positive.')

disp('       ')



174

end

end

disp('       ')

disp('One moment please...')

y2=code8(s2,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==2)

disp('        ')

while(flag4==0)

                    var4=input('Enter a second m_1 value:

');

if(var4 > 0)

                        m12 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: m_1 must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m12,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==3)

disp('        ')

while(flag4==0)

                    var4 = input('Enter a second m_2 

value: ');
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if(var4 > 0)

                        m22 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: m_2 must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m22,m3,r,Tmax,k,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==4)

disp('        ')

while(flag4==0)

                   var4=input('Enter a second m_3 value: 

');

if(var4 > 0)

                       m32 = var4;

                       flag4 = 1;

else

disp('      ')

disp('ERROR: m_3 must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')
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y2=code8(s,m1,m2,m32,r,Tmax,k,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==5)

disp('        ')

while(flag4==0)

                    var4=input('Enter a second r value: 

');

if(var4 > 0)

           r2 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: r must be positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r2,Tmax,k,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==6)

disp('        ')

while(flag4==0)

                    var4=input('Enter a second T_max 

value: ');

if(var4 > 0)

                        Tmax2 = var4;

                        flag4 = 1;

else

disp('      ')
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disp('ERROR: T_max must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax2,k,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==7)

disp('           ')

while(flag4==0)

                    var4=input('Enter a second k value: 

');

if(var4 > 0)

           k2 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: k must be positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k2,N,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==8)

disp('           ')

while(flag4==0)
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                    var4=input('Enter a second N value: 

');

if(var4 > 0)

           N2 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: N must be positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k,N2,T0,Ti0,V0,A,time);

                flag3=1;

elseif(var3==9)

disp('           ')

while(flag4==0)

                    var4=input('Enter a second T_0 value:

');

if(var4 > 0)

                        T02 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: T_0 must be 

positive.')

disp('        ')

end

end

disp('            ')
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disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k,N,T02,Ti0,V0,A,time);

                flag3=1;

elseif(var3==10)

disp('           ')

while(flag4==0)

                    var4=input('Enter a second T_i0 

value: ');

if(var4 > 0)

                        Ti02 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: T_i0 must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti02,V0,A,time);

                flag3=1;

elseif(var3==11)

disp('           ')

while(flag4==0)

                    var4=input('Enter a second V_0 value:

');

if(var4 > 0)

                        V02 = var4;

                        flag4 = 1;
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else

disp('      ')

disp('ERROR: V_0 must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V02,A,time);

                flag3=1;

elseif(var3==12)

disp('           ')

while(flag4==0)

                    var4=input('Enter a second A value: 

');

if(var4 >= 0)

           A2 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: A must be 

non-negative.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A2,time);

                flag3=1;
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elseif(var3==13)

disp('           ')

while(flag4==0)

                    var4=input('Enter a second t_final 

value: ');

if(var4 > 0)

                        time2 = var4;

                        flag4 = 1;

else

disp('      ')

disp('ERROR: t_final must be 

positive.')

disp('        ')

end

end

disp('            ')

disp('One moment please...')

y2=code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A,time2);

                flag3=1;

else

disp('         ')

disp('Pardon?')

disp('           ')

end

end

elseif(var2==2)

disp('            ')

            flag2=1;

scf(1)

subplot(4,1,1);plot(y1(1,:),y1(2,:))
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subplot(4,1,1);xlabel('Days')

subplot(4,1,1);ylabel('T')

subplot(4,1,2);plot(y1(1,:),y1(3,:))

subplot(4,1,2);xlabel('Days')

subplot(4,1,2);ylabel('T_i')

subplot(4,1,3);plot(y1(1,:),y1(4,:))

subplot(4,1,3);xlabel('Days')

subplot(4,1,3);ylabel('V')

subplot(4,1,4);plot(y1(1,:),y1(5,:))

subplot(4,1,4);xlabel('Days')

subplot(4,1,4);ylabel('u^*')

subplot(4,1,4);axis([0 time -0.1 1.1])

else

disp('     ')

disp('Pardon?')

disp('          ')

end

end

if(var2==1)

subplot(4,1,1);plot(y1(1,:),y1(2,:),'b',y2(1,:),y2(2,:),'g

')

subplot(4,1,1);xlabel('Days')

subplot(4,1,1);ylabel('T')

subplot(4,1,1);legend('First value','Second value')

subplot(4,1,2);plot(y1(1,:),y1(3,:),'b',y2(1,:),y2(3,:),'g

')

subplot(4,1,2);xlabel('Days')

subplot(4,1,2);ylabel('T_i')

subplot(4,1,2);legend('First value','Second value')
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subplot(4,1,3);plot(y1(1,:),y1(4,:),'b',y2(1,:),y2(4,:),'g

')

subplot(4,1,3);xlabel('Days')

subplot(4,1,3);ylabel('V')

subplot(4,1,3);legend('First value','Second value')

subplot(4,1,4);plot(y1(1,:),y1(5,:),'b',y2(1,:),y2(5,:),'g

')

subplot(4,1,4);xlabel('Days')

subplot(4,1,4);ylabel('u^*')

subplot(4,1,4);legend('First value','Second value')

if(var3==13)

subplot(4,1,4);mtlb_axis([0 max(time,time2) -0.1

1.1])

else

subplot(4,1,4);mtlb_axis([0 time -0.1 1.1])

end

end
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A.5 Control Systems

A.5.1 Hodgkin Huxley.sce

function dx =hodgkinhuxley(t,x)

alpham = 0.1*(25-x(1))/(exp((25-x(1))/10)-1)

betam = 4*exp(-x(1)/18)

alphah = 0.07*exp(-x(1)/20)

betah = 1/(exp((30-x(1))/10)+1)

alphan = 0.01*(10-x(1))/(exp((10-x(1))/10)-1)

betan = 0.125*exp(-x(1)/80)

dx(1) =

(-gk*x(3)̂ 4*(x(1)-vk)-gna*x(2)̂ 3*x(4)*(x(1)-vna)-gl*(x(1)-

vl)+iapp)/cm

dx(2) = alpham*(1-x(2))-betam*x(2)

dx(3) = alphan*(1-x(3))-betan*x(3)

dx(4) = alphah*(1-x(4))-betah*x(4)

endfunction

scf(0);

clf;

cm = 1

gk = 36

vk = -12

iapp = 0

gna = 120

vna = 115

gl = 0.3

vl = 10.6

t = 0:0.001:55;

x0 = [0 ;0; 0; 1];

x = ode(x0,0,t,hodgkinhuxley);

//xbasc()

plot2d(t,x(1,:),style=1)

//legends(['Voltage'],[1],"ur")
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xtitle('ActionPotential')

xlabel('Time')

ylabel('Potential')

A.5.2 Fitzhugh Nagumo.sce

function dx = actionpotential(t,x)

dx(1) = x(1)*(x(1)-0.1)*(1-x(1))-x(2)+I

dx(2) = 0.01*(x(1)-0.5*x(2))

endfunction

scf(1);

clf;

I = 0

t = 0:0.001:550;

x0 = [0.22 ;0;];

x = ode(x0,0,t,actionpotential);

//xbasc()

plot2d(t,x(1,:),style=1)

//legends(['A','B'],[1 2],"ur")

xtitle('Action Potential')

xlabel('Time')

ylabel('Potential')
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A.6 Immune System

A.6.1 SIR.sce

clear

function dx = SIR(t,x)

dx(1) =-r*x(1)*x(2)

dx(2) = r*x(1)*x(2)-a*x(2)

dx(3) = a*x(2)

dx(4) = 0

endfunction

scf(1);

clf;

r = .000007;

a = .03

t = 0:0.001:600;

S0 = 10000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')
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A.7 Genetics

A.7.1 allele frequency.sce

function dx = genetics(t,x)

fA = x(1)*fAA+(1-x(1))*fAa

fa = x(1)*fAa+(1-x(1))*faa

f = x(1)*fA+(1-x(1))*fa

dx(1) = x(1)*(1-x(1))*(fA-fa)

dx(2) = x(2)*f

dx(3) = -x(1)*(1-x(1))*(fA-fa)

endfunction

fAA = 1.0

fAa = 1.0

faa = 0.5

t = 0:0.001:100;

x0 = [0.5 ;100000; 0.5];

x = ode(x0,0,t,genetics);

//xbasc()

scf(0);

plot2d(t,x(1,:),style=1)

plot2d(t,x(3,:),style=2)

legends(['A', 'a'],[1 2],"ur")

xlabel('Time')

ylabel('Allele Frequency')
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A.8 Alternation of Generations

A.8.1 dispersal.sce

function dx = dispersal(t,p)

  global m c q n;

  for i = 1:n

    sum1 = 0.0

    sum2 = 0.0

    for j = 1:i ;

      sum1 = sum1 +p(j);

    end

    for j = 1:(i-1)

      sum2 = sum2 +c(j)*p(i)*p(j)

    end

    dx(i,1) = c(i)*p(i)*(1-q(1)-sum1)-m(i)*p(i)-sum2;

  end

endfunction

t = 0:1:2000;

  global c m n q

  m = [.02; .02; .02; .02; .02];

  c = [.025; .039; .061; .095; .149];

  n = 5;

  q = [0; 0; 0; 0; 0];

  p0 = [.082; .1024; .128; .16; .2]

  p = ode(p0,0,t,dispersal);

  scf(1);

  plot(t,p(1,:),'r')

  plot(t,p(2,:),'b')

  plot(t,p(3,:),'g')

  plot(t,p(4,:),'m')

  plot(t,p(5,:),'k')

  legend('Colonizer #1/ Competitor #5','Colonizer #2/ 

Competitor #4','Colonizer #3/ Competitor #3','Colonizer 

#4/ Competitor #2','Colonizer #5/ Competitor #1');

  xlabel('years');

  ylabel('proportion of habitat occupied by species i');
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A.9 Speciation

A.9.1 fitness.sce

//exposed

  theta = 0;

  x = 0:.1:1;

  sigma(1) = .02;

for i = 1:3

    sigma(i) = .02+.06*(i-1)

end

  w1 = exp(-(x-theta).^2/(2.*sigma(1)));

  w2 = exp(-(x-theta).^2/(2.*sigma(2)));

  w3 = exp(-(x-theta).^2/(2.*sigma(3)));

scf(1); clf;

subplot(3,1,1)

plot(x,w1,'b:',x,w2,'r-',x,w3,'k--')

title('Exposed (theta = 0)')

xlabel('x');

ylabel('Fitness, w');

legend('sigma_s = 0.02','sigma_s = 0.08', 'sigma_s = 

0.14');

//intermediate

  theta = 0.5;

  x = 0:.1:1;

  sigma(1) = .02;

for i = 1:3

    sigma(i) = .02+.06*(i-1)

end

  w1 = exp(-(x-theta).^2/(2.*sigma(1)));

  w2 = exp(-(x-theta).^2/(2.*sigma(2)));

  w3 = exp(-(x-theta).^2/(2.*sigma(3)));

scf(1);

subplot(3,1,2)

plot(x,w1,'b:',x,w2,'r-',x,w3,'k--')
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title('Intermediate (theta = 0.5)')

xlabel('x');

ylabel('Fitness, w');

legend('sigma_s = 0.02','sigma_s = 0.08', 'sigma_s = 

0.14');

//sheltered

  theta = 1.0;

  x = 0:.1:1;

  sigma(1) = .02;

for i = 1:3

    sigma(i) = .02+.06*(i-1)

end

  w1 = exp(-(x-theta).^2/(2.*sigma(1)));

  w2 = exp(-(x-theta).^2/(2.*sigma(2)));

  w3 = exp(-(x-theta).^2/(2.*sigma(3)));

scf(1);

subplot(3,1,3)

plot(x,w1,'b:',x,w2,'r-',x,w3,'k--')

title('Sheltered (theta = 1.0)')

xlabel('x');

ylabel('Fitness, w');

legend('sigma_s = 0.02','sigma_s = 0.08', 'sigma_s = 

0.14',2);



191

A.9.2 mating probability.sce

//f = 0.000

 sigma_a = 0.05

  x = 0:.05:1;

  f = 0.000;

  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(1); clf;

subplot(3,1,1)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.000')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.125

 sigma_a = 0.05
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  x = 0:.05:1;

  f = 0.125;

  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(1);

subplot(3,1,2)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.125')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.250

    sigma_a = 0.05

  x = 0:.05:1;

  f = 0.250;
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  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(1);

subplot(3,1,3)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.250')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.375

    sigma_a = 0.05

  x = 0:.05:1;

  f = 0.375;

  c(1) = 0.000;

for i = 1:9
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    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(2);

subplot(3,1,1)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.375')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.500

    sigma_a = 0.05

  x = 0:.05:1;

  f = 0.500;

  c(1) = 0.000;

for i = 1:9
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    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(2);

subplot(3,1,2)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.500')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.625

    sigma_a = 0.05

  x = 0:.05:1;

  f = 0.625;

  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end
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  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(2);

subplot(3,1,3)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.625')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.750

    sigma_a = 0.05

  x = 0:.05:1;

  f = 0.750;

  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);
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  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(3);

subplot(3,1,1)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.750')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 0.875

    sigma_a = 0.05

  x = 0:.05:1;

  f = 0.875;

  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end

   psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);
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  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(3);

subplot(3,1,2)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 0.875')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');

//f = 1.000

    sigma_a = 0.05

  x = 0:.05:1;

  f = 1.000;

  c(1) = 0.000;

for i = 1:9

    c(i) = 0.125.*(i-1);

end

  psi9 = exp(-(2.*c(1)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi8 = exp(-(2.*c(2)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi7 = exp(-(2.*c(3)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi6 = exp(-(2.*c(4)-1).^2.*(f-x).^2/(2.*sigma_a).^2);

  psi5 = 1;

  psi4 = exp(-(2.*c(6)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);
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  psi3 = exp(-(2.*c(7)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi2 = exp(-(2.*c(8)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

  psi1 = exp(-(2.*c(9)-1).^2.*(f-1+x).^2/(2.*sigma_a).^2);

scf(3);

subplot(3,1,3)

plot(x,psi1,'r-',x,psi2,'b-',x,psi3,'k-',x,psi4,'m-',x,psi

5,'r:.',x,psi6,'r-.',x,psi7,'b-.',x,psi8,'k-.',x,psi9,'m-.

')

title('f = 1.000')

xlabel('x');

ylabel('Psi');

legend('c = 0.000','c = 0.125','c = 0.250','c = 

0.375','c = 0.500','c = 0.625','c = 0.750','c = 0.875','c

= 1.000');
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A.10 Animal Body Plan

A.10.1 Jukes-Cantor.sce

a=.06;

b=a/3;

M=[1-a,b,b,b;b,1-a,b,b;b,b,1-a,b;b,b,b,1-a];

p=[.25;.25;.25;.25];

P=p;

for i=1:100

  p=M*p;

  P=[P p];

end;

scf(2);

plot(P')

legend('A','G','C','T');

A.11 Animal Form and Function

A.11.1 Jukes-Cantor differences.sce

alpha = 0.01;

t = 0:.1:400;

p1 = (3/4)-(3/4)*(1-((4*alpha)/3)).^t;

p2 = (3/4)-(3/4)*(1-((40*alpha)/3)).^t;

p3 = (3/4)-(3/4)*(1-((100*alpha)/3)).^t;

plot(t,p1,'b:',t,p2,'r-',t,p3,'k--')

title('p(t) for different values of alpha')

xlabel('t');

ylabel('p(t)');

legend('alpha = 0.01','alpha = 0.1', 'alpha = 0.25', opt = 4);
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A.11.2 Jukes-Cantor distance.sce

p = 0:.00001:0.7499999999;

djc = -(3/4)*log(1-((4.*p)/3));

plot(p,djc)

title('Jukes-Cantor Distances')

xlabel('p');

ylabel('Jukes-Cantor distance');
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A.12 Predation

A.12.1 predator prey1.sce

//Model #1

t = 1:1:152;

r = 2.5;

w(1) = 0.6;

z(1) = 0.1;

for i = 1:151

  w(i+1)=r.*w(i)./(1+z(i));

  z(i+1)=w(i).*z(i)./(1+z(i));

end

scf(1);

subplot(1,2,2)

plot(w,z);

xlabel('prey');

ylabel('predator');

subplot(1,2,1);

plot(t,w,'r-',t,z,'k--');

xlabel('generation');

ylabel('population size');

legend('prey','predator');
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A.12.2 predator prey2.sce

//Model #2

t = 1:1:152;

l = 2.1;//(r)

m = .6;//(a)

k = 5;

a(1) = 0.1;

b(1) = 0.6;

for i = 1:151

  a(i+1)=a(i).*exp(l.*(1-a(i)./k)-m.*b(i));

  b(i+1)=a(i).*(1-exp(-m.*b(i)));

end

scf(2);

subplot(1,2,2);

plot(a,b);

xlabel('prey');

ylabel('predator');

subplot(1,2,1);

plot(t,a,'r-',t,b,'k--');

xlabel('generation');

ylabel('population size');

legend('prey','predator');
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A.12.3 predator prey3.sce

//Model #3

t = 1:1:152;

g = .35;

c(1) = .1;

d(1) = 0.01;

for i = 1:151

  c(i+1)=(1-c(i)).*c(i)-g.*d(i);

  d(i+1)=.5.*d(i)+c(i);

end

scf(3);

subplot(1,2,2);

plot(c,d);

xlabel('prey');

ylabel('predator');

subplot(1,2,1);

plot(t,c,'r-',t,d,'k--');

xlabel('generation');

ylabel('population size');

legend('prey','predator');
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A.13 Population Ecology

A.13.1 competition.sce

//Model #1

t = 1:1:252;

b1 = 1.5;

b2 = 1.5;

c11 = 1;

c12 = .25;

c21 = .25;

c22 = 1;

x(1) = 1.6;

y(1) = 1.1;

for i = 1:251

  x(i+1)=b1.*x(i)./(1+c11.*x(i)+c12.*y(i));

  y(i+1)=b2.*y(i)./(1+c21.*x(i)+c22.*y(i));

end

scf(1); clf;

subplot(2,2,1)

plot(t,x,'k-',t,y,'r--');

title('Model #1')

xlabel('time');

ylabel('population size');

legend('x','y');

//Model #2

t = 1:1:252;

b1 = 1.5;

b2 = 1.5;

c11 = 1;

c12 = .25;

c21 = .25;

c22 = 1;

x(1) = 1.6;

y(1) = 1.1;
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for i = 1:251

  x(i+1)=b1.*x(i)./(1+c11.*x(i)+c12.*y(i));

  y(i+1)=b2.*y(i)./(1+c21.*x(i)+c22.*y(i));

end

scf(1);

subplot(2,2,2);

plot(t,x,'k-',t,y,'r--');

title('Model #2')

xlabel('time');

ylabel('population size');

legend('x','y');

//Model #3

t = 1:1:252;

b1 = 1.5;

b2 = 1.5;

c11 = 1;

c12 = .25;

c21 = .25;

c22 = 1;

x(1) = 1.6;

y(1) = 1.1;

for i = 1:251

  x(i+1)=b1.*x(i)./(1+c11.*x(i)+c12.*y(i));

  y(i+1)=b2.*y(i)./(1+c21.*x(i)+c22.*y(i));

end

scf(1);

subplot(2,2,3);

plot(t,x,'k-',t,y,'r--');

title('Model #3')

xlabel('time');

ylabel('population size');
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legend('x','y');

//Model #4

t = 1:1:252;

b1 = 1.5;

b2 = 1.5;

c11 = 1;

c12 = .25;

c21 = .25;

c22 = 1;

x(1) = 1.6;

y(1) = 1.1;

for i = 1:251

  x(i+1)=b1.*x(i)./(1+c11.*x(i)+c12.*y(i));

  y(i+1)=b2.*y(i)./(1+c21.*x(i)+c22.*y(i));

end

scf(1);

subplot(2,2,4);

plot(t,x,'k-',t,y,'r--');

title('Model #4')

xlabel('time');

ylabel('population size');

legend('x','y');



Appendix B

Workshop Leader Guides

B.1 Introduction to Scilab

QUESTION: Download the file oracle.sce. What is the result of executing the file

oracle.sce? Discuss the correct answer with your peers.

Solution: Executing the file oracle.sce produces the following graph:
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Note: Executing the file introduction lab.sce does not produce a graph. The list of

commands from the .sce files will be displayed in the Scilab console but otherwise,

Scilab won’t do anything.

QUESTION: What is the value of sum1(8)?

Solution: If you type sum1(8) into the Scilab console, it will give you the answer:

sum1(8) = 36

Note: The Scilab code for the file introduction lab2.sce that the students will be

creating should look as follows:
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lines(0);

function y=sum2(n)

// sum2(n) computes the sum of 1^2 + 2^2 + ... + n^2

total = 0; 

for i = 1:n,

        total = total + i^2;

end;

y = total;

endfunction;

function out = firstRowDown(in)

row1 = in(1,:);

n = size(in,2);

for i = 1:n,

out(i,1) = row1(i);

end;

endfunction

function out = firstRowDownSecondColumn(in)

row1 = in(1,:);

n = size(in,2);

for i = 1:n,

out(i,2) = row1(i);

end;

endfunction

function out = countDownNumberOfColumns(in)

n = size(in,2);

for i = 1:n,

out(i,1) = i;

end;

endfunction
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QUESTION: What is the value of sum2(8)?

Solution: Executing the file introduction lab2.sce again does not produce a graph.

But now if you type sum2(8) into Scilab, you get the answer:

sum2(8) = 204

B.2 The Cell and Biomolecules

Note: Executing the file diffusionleft.sce produces the following graph:

QUESTION: Describe what you see in the graph.
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Solution: Initially (time t = 0), the concentration is high on the left side and low

on the left side, but as time passes, the concentration on the left side decreases and

the concentration on the right side increases until the concentration on the two sides

nearly evens out at time t = 10.

Note: Executing the file diffusioncenter.sce produces the following graph:

QUESTION: Describe what you see in the graph.

Solution: Initially (time t = 0), the concentration is high in the center and it de-

creases as you move away from the center, either to the left or to the right. As time
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passes, the concentration evens out a bit, more on the left than the right initially,

until at time t = 10 when the concentration is nearly even at all positions.

QUESTION: What is the affect of changing the temperature from 298 to 398? From

298 to 198? How does temperature affect diffusion?

Solution: After changing the temperature from 298 to 398 in diffusionleft.sce, the

Scilab code should look as follows:



214

resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 398;

u = 0.498;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(1);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');

Executing this code produces the following graph:

After making the same changes to the file diffusioncenter.sce, the Scilab code should

look as follows:
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resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 398;

u = 0.498;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-
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4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(11);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');

Executing this code produces the following graph:
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After changing the temperature to 198 in diffusionleft.sce, the Scilab code should look

as follows:
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resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 198;

u = 0.498;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(2);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');

Executing this code produces the following graph:

After making the same changes to the file diffusioncenter.sce, the Scilab code should

look as follows:



224

resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 198;

u = 0.498;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-



225

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(12);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');

Executing this code produces the following graph:
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From these graphs we see that the higher the temperature, the faster the concen-

trations even out. The differences between the graphs is kind of subtle, but if you

look at say the diffusionleft file and compare the concentrations at position 0 (you

could use the other file or look at any other position but these seem like they are the

easiest to see), you will see that for T = 198 (graphics window 2), the concentration

at time t = 1 is around 0.93, at time t = 3 the concentration is around 0.81, and

at time t = 5 the concentration is around 0.71. For T = 298 (graphics window 0),

the concentration at position 0 at time t = 1 is around 0.9, at time t = 3 the con-

centration is around 0.73, and at time t = 5 the concentration is around 0.62, so the

concentrations are getting close to 0.5 faster with the higher temperature. And for
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T = 398 (graphics window 1), the concentration at position 0 at time t = 1 is about

0.87, the concentration at time t = 3 is around 0.67, and the concentration at time

t = 5 is around 0.56, so the concentration is getting closer to 0.5 even faster now that

the temperature is even higher.

QUESTION: What is the affect of changing the viscosity from 0.498 to 0.098? From

0.498 to 0.998? How does viscosity affect diffusion?

Solution: After changing the viscosity from 0.498 to 0.098 in diffusionleft.sce, the

Scilab code should look as follows:
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resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.098;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(3);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');

Executing this code produces the following graph:

After making the same changes to the file diffusioncenter.sce, the Scilab code should

look as follows:
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resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.098;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-
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4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(13);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');

Executing this code produces the following graph:
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After changing the viscosity to 0.998 in diffusionleft.sce, the Scilab code should look

as follows:
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resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.998;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(4);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');

Executing this code produces the following graph:

After making the same changes to the file diffusioncenter.sce, the Scilab code should

look as follows:
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resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.998;

a = .0001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-
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4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(14);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');

Executing this code produces the following graph:
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From these graphs we see that the lower the viscosity, the faster the concentrations

even out. The differences here are a bit easier to see. If you look at say the diffu-

sioncenter file you see that when the viscosity is 0.098 (graphics window 13), then by

time t = 4, the concentrations are evened out. When the viscosity is 0.498 (graphics

window 10), the concentration is nearly evened out by time t = 10. And when the

viscosity is 0.998 (graphics window 14), even by time t = 10, the concentration on

the left is a bit higher than the concentration on the right so even more time would

be needed for the concentration to even out.

QUESTION: What is the affect of changing the cell size from 0.0001 to 0.001? From

0.0001 to 0.00001? How does cell size affect diffusion?
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Solution: After changing the cell size from 0.0001 to 0.001 in diffusionleft.sce, the

Scilab code should look as follows:
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resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.498;

a = .001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(5);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');

Executing this code produces the following graph:

After making the same changes to the file diffusioncenter.sce, the Scilab code should

look as follows:
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resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.498;

a = .001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-
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4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(15);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');

Executing this code produces the following graph:
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After changing the cell size to 0.00001 in diffusionleft.sce, the Scilab code should look

as follows:
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resethistory()

t1 = 0.0; 

t2 = 1.0;

t3 = 3.0;

t4 = 5.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.498;

a = .00001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t1)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t1)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t1)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t1)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t1)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t1)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t1);

y2 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t2)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t2)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t2)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t2)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t2)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t2)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8
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*%pi*x)*exp(-D*8^2*%pi*%pi*t2);

y3 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t3)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t3)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t3)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t3)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t3)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t3)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t3);

y4 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t4)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t4)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t4)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t4)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t4)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex

p(-D*7^2*%pi*%pi*t4)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t4);

y5 =

sin(2)/2-(-1)^1*4*sin(2)/(1^2*%pi*%pi-4)*cos(1*%pi*x)*exp(

-D*1^2*%pi*%pi*t5)-(-1)^2*4*sin(2)/(2^2*%pi*%pi-4)*cos(2*%

pi*x)*exp(-D*2^2*%pi*%pi*t5)-(-1)^3*4*sin(2)/(3^2*%pi*%pi-

4)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)-(-1)^4*4*sin(2)/(4^

2*%pi*%pi-4)*cos(4*%pi*x)*exp(-D*4^2*%pi*%pi*t5)-(-1)^5*4*

sin(2)/(5^2*%pi*%pi-4)*cos(5*%pi*x)*exp(-D*5^2*%pi*%pi*t5)

-(-1)^6*4*sin(2)/(6^2*%pi*%pi-4)*cos(6*%pi*x)*exp(-D*6^2*%

pi*%pi*t5)-(-1)^7*4*sin(2)/(7^2*%pi*%pi-4)*cos(7*%pi*x)*ex
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p(-D*7^2*%pi*%pi*t5)-(-1)^8*4*sin(2)/(8^2*%pi*%pi-4)*cos(8

*%pi*x)*exp(-D*8^2*%pi*%pi*t5);

scf(6);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 1','t = 3','t = 5','t = 10');

Executing this code produces the following graph:

After making the same changes to the file diffusioncenter.sce, the Scilab code should

look as follows:
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resethistory()

t1 = 0.0; 

t2 = 0.5;

t3 = 1.0;

t4 = 4.0;

t5 = 10.0;

x = 0:0.01:%pi/4;

T = 298;

u = 0.498;

a = .00001;

D =0.00000000457*T/(u*a);

y1 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t1)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t1)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t1)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t1)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t1)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t1)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t1)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t1);

y2 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t2)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t2)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t2)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t2)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t2)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t2)+((-1)^7*4*cos(4)-
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4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t2)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t2);

y3 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t3)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t3)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t3)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t3)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t3)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t3)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t3)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t3);

y4 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t4)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t4)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t4)+((-1

)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t4)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t4)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t4)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t4)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t4);

y5 =

sin(2)/2+((-1)^1*4*cos(4)-4)/(1^2*%pi*%pi-16)*cos(1*%pi*x)

*exp(-D*1^2*%pi*%pi*t5)+((-1)^2*4*cos(4)-4)/(2^2*%pi*%pi-1

6)*cos(2*%pi*x)*exp(-D*2^2*%pi*%pi*t5)+((-1)^3*4*cos(4)-4)

/(3^2*%pi*%pi-16)*cos(3*%pi*x)*exp(-D*3^2*%pi*%pi*t5)+((-1
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)^4*4*cos(4)-4)/(4^2*%pi*%pi-16)*cos(4*%pi*x)*exp(-D*4^2*%

pi*%pi*t5)+((-1)^5*4*cos(4)-4)/(5^2*%pi*%pi-16)*cos(5*%pi*

x)*exp(-D*5^2*%pi*%pi*t5)+((-1)^6*4*cos(4)-4)/(6^2*%pi*%pi

-16)*cos(6*%pi*x)*exp(-D*6^2*%pi*%pi*t5)+((-1)^7*4*cos(4)-

4)/(7^2*%pi*%pi-16)*cos(7*%pi*x)*exp(-D*7^2*%pi*%pi*t5)+((

-1)^8*4*cos(4)-4)/(8^2*%pi*%pi-16)*cos(8*%pi*x)*exp(-D*8^2

*%pi*%pi*t5);

scf(16);

plot(x,y1,'b',x,y2,'g',x,y3,'k',x,y4,'m',x,y5,'r');

title('Concentration vs Position for fixed values of t');

xlabel('Position, x');

ylabel('Concentration');

legend('t = 0','t = 0.5','t = 1','t = 4','t = 10');

Executing this code produces the following graph:
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From these graphs we see that the smaller the cell size, the faster the concentrations

even out. The differences here are also bit easy to see. If you look at say the

diffusioncenter file you see that when the cell size is 0.00001 (graphics window 16),

then by time t = 1, the concentrations are nearly evened out. When the cell size is

0.0001 (graphics window 10), the concentration is nearly evened out by time t = 10.

And when the cell size is 0.001 (graphics window 15), even by time t = 10, the

concentration on the left is much higher than the concentration on the right so a lot

more time would be needed for the concentration to even out.
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B.3 Protein Synthesis

Note: After executing the file Cell cycle control.sce, the following graph should

appear:

QUESTION: Open the figure you saved from the Scilab file. Using any program

which allows you to draw on pictures (MS Paint, MS Word, Photoshop, etc.) draw

a vertical line at the Start and Finish of each cell cycle and label each as start or

Finish. Then label the G1 and S-G2-M phases.

Solution:
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QUESTION: The text you read on the model claims that APC destroys cyclin

molecules. Is this claim supported by the figure? Explain.

Solution: Yes, the claim is supported by the figure because in the figure, when the

concentration of APC (blue curve in the graph) is at its lowest (just after start),

cyclin (black curve in the graph) is increasing. Then as APC begins to rise in the

S-G2-M phase, cyclin reaches its maximum concentration then begins to decrease.

Then when APC concentration is high (during the G1 phase), cyclin concentration is

at its minimum. And as APC concentration declines again near start, cyclin concen-

tration begins to increase again.

QUESTION: The text you read on the model claims that cyclin/Cdk activates

Cdc20. Is this claim supported by the figure? Explain.

Solution: Yes, the claim is supported by the figure because in the figure, when as

concentration of cyclin/Cdk (black curve in the graph) starts increasing, the concen-
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tration of Cdc20 (green curve in the graph) also starts to increase a short period of

time later. Then as the concentration of cyclin/Cdk starts to decrease, the concentra-

tion of Cdc20 also starts to decrease a short period of time later. The increases and

decreases in Cdc20 concentration follow the increases and decreases in cyclin/Cdk

concentration, but on a short time lag.

B.4 Gene Regulation

Note: When you execute the file HIV control.sce, initially no graph will appear and

it will seem that Scilab hasn’t done anything. If you look at the Scilab console, you

will see the following message:

  
-->//close
 
 
-->function y = code8(s,m1,m2,m3,r,Tmax,k,N,T0,Ti0,V0,A,tfinal)
-->test = -1;
-->delta = 0.001;
-->M = 1000;
-->t=linspace(0,tfinal,M+1);
-->h=tfinal/M;
-->h2 = h/2;
-->T=zeros(1,M+1);
-->Ti=zeros(1,M+1);
-->V=zeros(1,M+1);
-->T(1)=T0;
-->Ti(1)=Ti0;
-->V(1)=V0;
-->lambda1=zeros(1,M+1);
-->lambda2=zeros(1,M+1);
-->lambda3=zeros(1,M+1);
-->u=zeros(1,M+1);
-->while(test < 0)
-->    oldu = u;
-->    oldT = T;
[Continue display? n (no) to stop, any other key to continue]

As long as that message appears in the Scilab console, Scilab won’t do anything else.

Press “n” and Scilab will proceed. At this point, a graph still will not appear. But in

the Scilab console you will be prompted to enter a value for s. Enter 10 as is indicated

in the module. You will then be prompted for each of the other parameter values

in turn. Enter the values given in the module for each parameter until you reach

the value of tfinal, which is the last parameter value. After entering 20 as the value

of tfinal, Scilab will display the same message as before, asking to continue display.

Again, Scilab will not do anything until you press “n.” Scilab will then tell you to

“Type 1 or 2.” Press 1. Scilab will then tell you to “Type 1 - 13.” What Scilab is

asking for here is which of the 13 parameters do you want to change from its original

value. The number you press at this point will change with each of the next three
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questions. The first question tells you to change the value of N to 50. In the module,

N is parameter #8, so you would type 8 and enter the new value for N . To do the

second question, you will have to execute the file HIV control.sce again and reenter

all the parameter values. But this time the question wants you to change the value of

s, which is parameter #1, to 7, so when Scilab prompts you to “Type 1 - 13” you will

type 1 and enter the new value for s. Likewise, in order to do the third question, you

will need to execute the file one more time and reenter all the parameter values one

more time. But this time the questions wants you to change the value of k, which is

parameter #7, to 0.000032. Each time you enter the new value for the variable, Scilab

will think for a minute and then a graph will appear. But there should be 4 graphs.

If you look at the Scilab console, you will see the same message asking to continue

display. Scilab won’t display all the graphs until you press “n.” The top graph is

T (concentration of uninfected CD4+T cells) vs. t (time). The second graph is Ti

(concentration of infected CD4+T cell) vs. t. The third graph is V (concentration of

free virus particles) vs. t. And the bottom graph is u(t) (strength of chemotherapy

where 1 represents no chemotherapy and 0 represents maximum chemotherapy) vs.

t.

QUESTION:N = 50: Which parameter value allows the uninfected T cell count

to increase the most? Why is or isn’t this what you would expect? Describe the

difference in treatment strategies for the two parameter values.

Solution: After executing the file, entering all the parameter values, and entering

50 as the new value of N , the following graph will appear:
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The top graph shows the concentration of uninfected CD4+T cells versus time. From

that graph, we see that the second value (of N , which is 50) allows the uninfected

T cell count to increase the most. Since N represents the average number of virus

particles which are produced before the host cell dies, once infection of a T cell occurs

and replication is initiated, then the smaller the value of N , then the fewer number of

virus particles are produced on average, so there should be more uninfected T cells.

The treatment strategy is shown in the bottom graph. For the first value (of N ,

which is 300), we start with maximum chemotherapy (remember that 0 is maximum

chemotherapy and 1 is no chemotherapy) for close to 5 days then gradually decrease



263

the chemotherapy until there is no chemotherapy around day 17 - 20.

QUESTION:s = 7: Which parameter value involves more chemotherapy as part of

its strategy? Notice the relationship between the concentration of uninfected T cells

& viral particles and chemotherapy strategy for each of the parameter values. How

do they compare for the different parameter values?

Solution: After executing the file again, entering all the parameter values, and now

entering 7 as the new value of s, the following graph will appear:

As before, the bottom graph shows the chemotherapy strategy. Both strategies look
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almost identical (they differ only slightly and only for about a week before the strate-

gies become the same again) but for the first value (of s), we stick with the maximum

chemotherapy (remember that 0 is maximum chemotherapy) for about 1
2

- 1 day

longer, so s = 10 involves more chemotherapy as part of its strategy. Even though

the chemotherapy strategy is nearly identical for both parameter values, the concen-

tration of uninfected T cells (top graph) is quite different. Even initially when the

chemotherapy strategies are identical the concentration of uninfected T cells is differ-

ent. For s = 10 (the first value), there is a little more chemotherapy and a lot more

uninfected T cells. With the viral particles (third graph from the top) the concen-

trations remain virtually identical, even when the chemotherapy strategies begin to

diverge from each other. In this case, for the higher value of s (the first value when

s = 10) more chemotherapy is needed to attain the same low level of viral particles.

Since S represents the rate of generation of new CD4+T cells, it seems plausible that

if the cells are being generated quicker then more chemotherapy would be needed to

achieve the same level of viral cells as when the rate of generation is lower.

QUESTION:k = 0.000032: Which parameter value involves more chemotherapy?

Does the increased chemotherapy result in a lower concentration of infected T cells

and viral cells? How do the results of changing this parameter differ from the results

in the previous question?

Solution: After executing the file again, entering all the parameter values, and now

entering 7 as the new value of s, the following graph will appear:
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As before, the bottom graph shows the chemotherapy strategy. Both strategies are

virtually the same (one strategy mirrors the other one except in the amount of time

before the amount of chemotherapy is reduced) but this time for the second value

(of k), we stick with the maximum chemotherapy for about 1 - 11
2

days longer and

the chemotherapy strategies never become the same again. So k = 0.000032 involves

more chemotherapy. In this case, more chemotherapy (second value) results in the

same concentration of uninfected T cells (top graph) and the same concentration of

viral cells (third graph from the bottom) until around day 17 when the second value

has a higher concentration of viral cells, despite also having more chemotherapy. In
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the previous question, more chemotherapy was able to result in the same level of

infected T cells and viral cells for both parameter values whereas in this case, even

with more chemotherapy, we cannot achieve the same level of infected T cells and

viral cells at the end of treatment.

B.5 Control Systems

Note: Executing the file Hodgkin Huxley.sce produces the following graph:

QUESTION: What is the effect of changing the applied current to 5? Explain why

you think this happens.
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Solution: After changing the applied current to 5, the Scilab code should look as

follows:

function dx = hodgkinhuxley(t,x)

alpham = 0.1*(25-x(1))/(exp((25-x(1))/10)-1)

betam = 4*exp(-x(1)/18)

alphah = 0.07*exp(-x(1)/20)

betah = 1/(exp((30-x(1))/10)+1)

alphan = 0.01*(10-x(1))/(exp((10-x(1))/10)-1)

betan = 0.125*exp(-x(1)/80)

dx(1) = 

(-gk*x(3)̂ 4*(x(1)-vk)-gna*x(2)̂ 3*x(4)*(x(1)-vna)-gl*(x(1)-vl)+iapp)/cm

dx(2) = alpham*(1-x(2))-betam*x(2)

dx(3) = alphan*(1-x(3))-betan*x(3)

dx(4) = alphah*(1-x(4))-betah*x(4)

endfunction

scf(1);

clf;

cm = 1

gk = 36

vk = -12

iapp = 5

gna = 120

vna = 115

gl = 0.3

vl = 10.6

t = 0:0.001:55;

x0 = [0 ;0; 0; 1];

x = ode(x0,0,t,hodgkinhuxley);

//xbasc()

plot2d(t,x(1,:),style=1)

//legends(['Voltage'],[1],"ur")

xtitle('Action Potential')

xlabel('Time')

ylabel('Potential')
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Executing the file produces the following graph:

Increasing the applied current to 5 causes repeated spikes in potential after the nerve

returns to its resting potential, but the spikes decrease in size as time goes on. This is

because the stimulus is not strong enough to raise the potential sufficiently to induce

another action potential.

QUESTION: What is the effect of changing the applied current to 10? Explain why

you think this happens.

Solution: After changing the applied current to 10, the Scilab code should look as

follows:
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function dx = hodgkinhuxley(t,x)

alpham = 0.1*(25-x(1))/(exp((25-x(1))/10)-1)

betam = 4*exp(-x(1)/18)

alphah = 0.07*exp(-x(1)/20)

betah = 1/(exp((30-x(1))/10)+1)

alphan = 0.01*(10-x(1))/(exp((10-x(1))/10)-1)

betan = 0.125*exp(-x(1)/80)

dx(1) = 

(-gk*x(3)̂ 4*(x(1)-vk)-gna*x(2)̂ 3*x(4)*(x(1)-vna)-gl*(x(1)-vl)+iapp)/cm

dx(2) = alpham*(1-x(2))-betam*x(2)

dx(3) = alphan*(1-x(3))-betan*x(3)

dx(4) = alphah*(1-x(4))-betah*x(4)

endfunction

scf(2);

clf;

cm = 1

gk = 36

vk = -12

iapp = 10

gna = 120

vna = 115

gl = 0.3

vl = 10.6

t = 0:0.001:55;

x0 = [0 ;0; 0; 1];

x = ode(x0,0,t,hodgkinhuxley);

//xbasc()

plot2d(t,x(1,:),style=1)

//legends(['Voltage'],[1],"ur")

xtitle('Action Potential')

xlabel('Time')

ylabel('Potential')

Executing the file produces the following graph:



270

By increasing the applied current to 10 the nerve undergoes repeated action potentials.

This is because the stimulus is now strong enough to increase the potential to a level

necessary to elicit an action potential after the nerve has returned to its resting

potential.

Note: Executing the file FitzHugh-Nagumo.sce produces the following graph:
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QUESTION: What is the effect of changing the applied current to 0.1?

Solution: After changing the applied current to 0.1, the Scilab code should look as

follows:
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function dx = actionpotential(t,x)

dx(1) = x(1)*(x(1)-0.1)*(1-x(1))-x(2)+I

dx(2) = 0.01*(x(1)-0.5*x(2))

endfunction

scf(2);

clf;

I = 0.1

t = 0:0.001:550;

x0 = [0.22 ;0;];

x = ode(x0,0,t,actionpotential);

//xbasc()

plot2d(t,x(1,:),style=1)

//legends(['A','B'],[1 2],"ur")

xtitle('Action Potential')

xlabel('Time')

ylabel('Potential')

Executing the file produces the following graph:
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Increasing the applied current to 0.1 causes repeated spikes in potential after the

nerve returns to its resting potential, but this time spikes remain constant in size as

time goes on. This is because the stimulus is not strong enough to raise the potential

sufficiently to induce another action potential.

QUESTION: What is the effect of changing the applied current to 0.2?

Solution: After changing the applied current to 0.2, the Scilab code should look as

follows:
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function dx = actionpotential(t,x)

dx(1) = x(1)*(x(1)-0.1)*(1-x(1))-x(2)+I

dx(2) = 0.01*(x(1)-0.5*x(2))

endfunction

scf(3);

clf;

I = 0.2

t = 0:0.001:550;

x0 = [0.22 ;0;];

x = ode(x0,0,t,actionpotential);

//xbasc()

plot2d(t,x(1,:),style=1)

//legends(['A','B'],[1 2],"ur")

xtitle('Action Potential')

xlabel('Time')

ylabel('Potential')

Executing the file produces the following graph:
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By increasing the applied current to 0.2 the nerve undergoes repeated action poten-

tials. This is because the stimulus is now strong enough to increase the potential to a

level necessary to elicit an action potential after the nerve has returned to its resting

potential.

QUESTION: What qualitative similarities do you see between the simulations of

the Hodgkin-Huxley equations and the FitzHugh-Nagumo equations?

In both cases, when there is no applied current then the nerve returns to its resting

potential after the initial action potential. In both cases, when there is a sufficiently

small stimulus (applied current), the potential has small, repeated spikes after re-
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turning to its resting potential but no further action potentials are produced. And in

both cases, when there is a sufficiently large stimulus, the potential increases causes

repeated action potentials.

B.6 Immune System

Note: Executing the file SIR.sce produces the following graph:

QUESTION: For this combination of parameters, does the disease die out or is

there an epidemic?

Solution: Since the number of individuals susceptible to the disease doesn’t become
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zero, then that means the disease dies out before everyone becomes infected.

QUESTION: Decrease the value of S0 from 10,000 to 5,000 and execute the file.

Then increase the value of S0 to 50,000 and execute the file again. If you are trying to

prevent the disease from becoming an epidemic, would you want to try and increase

or decrease S0? What kind of practical control strategy could be used to achieve this

goal?

Solution: After making the first change, namely decreasing the value of S0 from

10,000 to 5,000, the Scilab code should look as follows:
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clear

function dx = SIR(t,x)

dx(1) =-Beta*x(1)*x(2)

dx(2) = Beta*x(1)*x(2)-Gamma*x(2)

dx(3) = Gamma*x(2)

dx(4) = 0

endfunction

scf(1);

clf;

Beta = .000007;

Gamma = .03

t = 0:0.001:600;

S0 = 5000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')

Executing the code produces the following figure:
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After making the second change, namely increasing the value of S0 to 50,000, the

Scilab code should look as follows:
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clear

function dx = SIR(t,x)

dx(1) =-Beta*x(1)*x(2)

dx(2) = Beta*x(1)*x(2)-Gamma*x(2)

dx(3) = Gamma*x(2)

dx(4) = 0

endfunction

scf(2);

clf;

Beta = .000007;

Gamma = .03

t = 0:0.001:600;

S0 = 50000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')

Executing the code produces the following figure:
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In the first graph, notice that some of the susceptible individuals remain susceptible,

while in the second graph, none of the susceptible individuals remain susceptible. So

in the second graph, all the individuals in the population have become infected with

the disease. So if you were trying to prevent the disease from becoming an epidemic,

you would want to decrease the value of S0 rather than increase it. One control

strategy that could be used to decrease S0; i.e., to decrease the number of individuals

initially susceptible to the disease, would be the use of vaccines.
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QUESTION: Decrease the value of β from 0.000007 to 0.0000007 and execute the

file. Then increase the value of β to 0.00007 and execute the file again. If you are

trying to prevent the disease from becoming an epidemic, would you want to increase

or decrease β? What kind of practical control strategy could be used to achieve this

goal?

Solution: After changing S0 back to 10,000 and decreasing beta from 0.000007 to

0.0000007, the Scilab code should look as follows:
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clear

function dx = SIR(t,x)

dx(1) =-Beta*x(1)*x(2)

dx(2) = Beta*x(1)*x(2)-Gamma*x(2)

dx(3) = Gamma*x(2)

dx(4) = 0

endfunction

scf(1);

clf;

Beta = .0000007;

Gamma = .03

t = 0:0.001:600;

S0 = 10000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')

Executing the file produces the following graph:
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After increasing β to 0.00007, the Scilab code should look as follows:
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clear

function dx = SIR(t,x)

dx(1) =-Beta*x(1)*x(2)

dx(2) = Beta*x(1)*x(2)-Gamma*x(2)

dx(3) = Gamma*x(2)

dx(4) = 0

endfunction

scf(2);

clf;

Beta = .00007;

Gamma = .03

t = 0:0.001:600;

S0 = 10000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')

Executing the file produces the following graph:
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In the first graph, notice that some of the susceptible individuals remain susceptible,

while in the second graph, none of the susceptible individuals remain susceptible. So

in the second graph, all the individuals in the population have become infected with

the disease. So if you were trying to prevent the disease from becoming an epidemic,

you would want to decrease the value of β rather than increase it. One control strat-

egy that could be used to decrease β; i.e., to decrease the transmission rate, would

be to quarantine or isolate infected individuals.
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QUESTION: Decrease the value of γ from 0.03 to 0.015 and execute the file. Then

increase the value of γ to 0.045 and execute the file again. If you are trying to prevent

the disease from becoming an epidemic, would you want to increase or decrease γ?

What kind of practical control strategy could be used to achieve this goal?

Solution: After changing β back to 0.00007 and decreasing γ to 0.015, the Scilab

code should look as follows:

clear

function dx = SIR(t,x)

dx(1) =-Beta*x(1)*x(2)

dx(2) = Beta*x(1)*x(2)-Gamma*x(2)

dx(3) = Gamma*x(2)

dx(4) = 0

endfunction

scf(1);

clf;

Beta = .000007;

Gamma = .015

t = 0:0.001:600;

S0 = 10000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')
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Executing the file produces the following graph:

After increasing γ to 0.045, the Scilab code should look as follows:
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clear

function dx = SIR(t,x)

dx(1) =-Beta*x(1)*x(2)

dx(2) = Beta*x(1)*x(2)-Gamma*x(2)

dx(3) = Gamma*x(2)

dx(4) = 0

endfunction

scf(2);

clf;

Beta = .000007;

Gamma = .045

t = 0:0.001:600;

S0 = 10000;

I0 = 2000;

R0 = 0;

N = S0 + I0 + R0

x0 = [S0 ; I0 ; R0; N];

x = ode(x0,0,t,SIR);

//xbasc()

plot2d(t,x(1,:),style=1)

plot2d(t,x(2,:),style=2)

plot2d(t,x(3,:),style=3)

plot2d(t,x(4,:),style=4)

legends(['S', 'I', 'R','N'],[1, 2, 3, 4],"ur")

xtitle('SIR Model')

xlabel('Time')

ylabel('Individuals')

Executing the file produces the following graph:
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In the first graph, notice that none of the susceptible individuals remain susceptible,

while in the second graph, some of the susceptible individuals remain susceptible. So

in the first graph, all the individuals in the population have become infected with the

disease. So if you were trying to prevent the disease from becoming an epidemic, you

would want to increase the value of γ rather than increase it. One control strategy

that could be used to increase γ; i.e., to increase the recovery rate, would be through

medical intervention, such as the use of medications.
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B.7 Genetics

Note: After executing the file allele frequency.sce, the following graph will appear:

QUESTION: Change the fitness of the aa genotype to faa = 0. In this case the aa

genotype is lethal. What are the similarities and differences in this case compared to

the original one? Why do you think that is?

Solution: After changing the fitness of genotype aa to faa = 0, the Scilab code

should look as follows:
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function dx = genetics(t,x)

fA = x(1)*fAA+(1-x(1))*fAa

fa = x(1)*fAa+(1-x(1))*faa

f = x(1)*fA+(1-x(1))*fa

dx(1) = x(1)*(1-x(1))*(fA-fa)

dx(2) = x(2)*f

dx(3) = -x(1)*(1-x(1))*(fA-fa)

endfunction

fAA = 1.0

fAa = 1.0

faa = 0

t = 0:0.001:100;

x0 = [0.5 ;100000; 0.5];

x = ode(x0,0,t,genetics);

//xbasc()

scf(1);

plot2d(t,x(1,:),style=1)

plot2d(t,x(3,:),style=2)

legends(['A', 'a'],[1 2],"ur")

xlabel('Time')

ylabel('Allele Frequency')

After executing the code, we get the following graph:
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We see that in both the original graph and in this graph, the a allele approaches

extinction while the A allele nears a frequency of 1 within the population. But in

this graph, the frequency of the a allele decrease faster and the frequency of the A

allele increases more rapidly compared to the original graph. (The difference is very

subtle and may be hard to see but if you look at a specific time, say 10, and compare

the height of each graph at that time, you will see that the frequency of the a allele

is slightly lower in the new graph compared to the original graph.) The reason for

this is because the aa genotype is lethal so some of the a alleles are removed from the

population faster.
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QUESTION: Change the fitness of the Aa genotype to fAa = 0.75 and the fitness

of the aa genotype back to faa = 0.5. What are the similarities and differences in this

case compared to the original one? Why do you think that is?

Solution: After changing the fitness of the aa genotype back to 0.5 and changing

the fitness of the Aa genotype to 0.75, the Scilab code should look as follows:

function dx = genetics(t,x)

fA = x(1)*fAA+(1-x(1))*fAa

fa = x(1)*fAa+(1-x(1))*faa

f = x(1)*fA+(1-x(1))*fa

dx(1) = x(1)*(1-x(1))*(fA-fa)

dx(2) = x(2)*f

dx(3) = -x(1)*(1-x(1))*(fA-fa)

endfunction

fAA = 1.0

fAa = 0.75

faa = 0.5

t = 0:0.001:100;

x0 = [0.5 ;100000; 0.5];

x = ode(x0,0,t,genetics);

//xbasc()

scf(2);

plot2d(t,x(1,:),style=1)

plot2d(t,x(3,:),style=2)

legends(['A', 'a'],[1 2],"ur")

xlabel('Time')

ylabel('Allele Frequency')

Executing the code produces the following graph:
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We see that in this case, just as in the original, the frequency of the A allele increases

while the frequency of the a allele decreases. But in this case, the a allele decreases

must faster than in the original, reaching extinction within the first 100 time steps.

This is because the frequency of the aa allele is so small and the frequency of the Aa

allele can no cannot sustain the a allele because it too is diminished.

QUESTION: Change the fitness of the AA genotype to fAA = 0.75 and the fitness

of the Aa genotype back to fAa = 1.0. This is the case for a person who has sickle

cell. What are the similarities and differences in this case compared to the original

one? Why do you think that is?

Solution: After changing the frequency of the Aa allele back to 1.0 and the frequency
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of the AA allele to 0.75, the Scilab code should look as follows:

function dx = genetics(t,x)

fA = x(1)*fAA+(1-x(1))*fAa

fa = x(1)*fAa+(1-x(1))*faa

f = x(1)*fA+(1-x(1))*fa

dx(1) = x(1)*(1-x(1))*(fA-fa)

dx(2) = x(2)*f

dx(3) = -x(1)*(1-x(1))*(fA-fa)

endfunction

fAA = 0.75

fAa = 1.0

faa = 0.5

t = 0:0.001:100;

x0 = [0.5 ;100000; 0.5];

x = ode(x0,0,t,genetics);

//xbasc()

scf(3);

plot2d(t,x(1,:),style=1)

plot2d(t,x(3,:),style=2)

legends(['A', 'a'],[1 2],"ur")

xlabel('Time')

ylabel('Allele Frequency')

Executing the code produces the following graph:
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As in the original, the frequency of the a allele decreases and the frequency of the A

allele increases. But this time, the a allele reaches an equilibrium value around 0.35

instead of going extinct. Similarly, the A allele reaches an equilibrium value around

0.65 instead of 1.0. This is because the Aa genotype has the highest fitness so it

supports the survival of both alleles.

B.8 Macroevolution vs. Microevolution

QUESTION: Compute P1 . . . P5 (the number of individuals in generations 1 - 5),

given that the population grows according to the difference equation Pt+1 = 3Pt − 4

with initial condition P0 = 5.
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Solution: The equation we are given is for Pt+1, so to get P1, we plug in 0 for t, since

P0+1 = P1. Doing the same thing on the right side of the equation gives us 3P0 − 4.

But we are given that P0 = 5, so we plug this in to get 3P0−4 = 3(5)−4 = 15−4 = 11.

So we get:

P1 = 11

To get P2, we plug in 1 for t, since P1+1 = P2. Doing the same thing on the right

side of the equation gives 3P1 − 4. But we just computed P1 and figured out that

P1 = 11, so we plug this in to get 3P1 − 4 = 3(11)− 4 = 33− 4 = 29. So we get:

P2 = 29

To get P3, we plug in 2 for t on both sides of the equation to get P3 = 3P2 − 4 =

3(29)− 4 = 87− 4 = 83. So we have:

P3 = 83

To get P4, we plug in 3 for t on both sides of the equation to get P4 = 3P3 − 4 =

3(83)− 4 = 249− 4 = 245. So we have:

P4 = 245

And to get P5, we plug in 4 for t on both sides of the equation to get P5 = 3P4− 4 =

3(245)− 4 = 735− 4 = 731. So we have:

P5 = 731

QUESTION: Compute the equilibrium value of the difference equation in the pre-

vious problem.
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Solution: To get the equilibrium value of the equation, we set Pt+1 = Pt. In other

words, we need to solve the equation

3Pt − 4︸ ︷︷ ︸
Pt+1

= Pt.

To do that, we first need to get Pt on one side of the equation, which we accomplish

by subtracting 3Pt from both sides of the equation to get

−4 = −2Pt.

Now to get Pt by itself, divide both sides of the equation by −2 to get the equilibrium

value of

Pt = 2

QUESTION: Suppose there are 2,000 individuals (so 4,000 alleles in the gene pool

at locus A) in a population, of which 1 in 400 individuals possesses a recessive trait.

How many heterozygotic and how many homozygotic dominant individuals are in the

population?

Solution: If we suppose that A1 is the dominant allele and has frequency p, and A2

is the recessive allele and has frequency q, then individuals who possess a recessive

trait have the A2A2 genotype and their frequency within the population is q2. If the

frequency of this recessive trait is 1 out of 400, then we know that q2 = 1/400. To get

q, we square root both sides of this equation. This gives us q = 1/20 = 0.05. So the

frequency of the A2 allele is 1/20. To get the frequency of the A1 allele, we use the fact

that p+ q = 1. So we have that p+ 0.05 = 1⇒ p = 0.95 = 19
20

. This tells us that the
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frequency of the A1A2 genotype is 2pq = (2)(0.05)(0.95) = 0.095 = 38
400

= 19
200

and the

frequency of the A1A1 genotype is p2 = 0.9025 = 361
400

. So, if there are 1,000 individ-

uals and 19
200

have the A1A2 genotype, then the number of heterozygotic individuals

is 2000× 19
200

= 180 . Similarly, the number of homozygotic dominant individuals is

2000 ∗ 361
400

= 1805 .

QUESTION: Write an equation analogous to the one above but for qt+1, the fre-

quency of the A2 allele at time t+ 1.

Solution: To get the fraction of the gene pool with the A2 allele at time t + 1, we

need to know two things: the total number A2 alleles at time t + 1 and the total

number of alleles at time t+ 1. Once we know these two, we will have

qt+1 =
total number of A2 alleles at time t+ 1

total number of alleles at time t+ 1

To get the total number of A2 alleles at time t + 1, we need to take all the gametes

made from the parents of genotype A2A2 plus half of the gametes from the parents

of genotype A1A2. Since N represents the total population size, then the start of the

t + 1 generation, when all of the organisms are zygotes, there are q2tNt zygotes from

the A2A2 allele from the end of the time t generation. Hence, there are `22q
2
tNt adults

at the end of the generation from the A2A2 allele. Therefore, there are 2m22`22q
2
tNt

gametes from the A2A2 allele. Similarly, there are 2ptqtNt zygotes at the beginning of

the t+1 generation from theA1A2 allele from the time t generation, of which `122ptqtNt

survive to become adults at the end of the generation, producing 2m12`122ptqtNt



301

gametes.

total number of A2 alleles at time t+ 1 = 2m22`22p
2
tNt +

(
1

2

)
2m12`122ptqtNt

For the total number of alleles at time t+ 1, we can use the expression calculated in

the module, which is

total number of alleles at time t+ 1 = 2m11`11p
2
tNt + 2m12`122ptqtNt + 2m22`22q

2
tNt

Therefore,

qt+1 =
2m22`22q

2
tNt +

(
1
2

)
2m12`122ptqtNt

2m11`11p2tNt + 2m12`122ptqtNt + 2m22`22q2tNt

=
m2`2q

2
t +

(
1
2

)
m12`122ptqt

m11`11p2t +m12`122ptqt +m22`22q2t

=
m22`22qt +m12`12pt

m11`11p2t +m12`122ptqt +m22`22q2t
qt

Using the same convention as mentioned in the module of combining survival and

reproduction into a single quantity, and using the same notation of letting wij = mij`ij

represent selective value or ”fitness” of an individual, then we get the final form of

our equation, which is

qt+1 =
w22qt + w12pt

w11p2t + w122ptqt + w22q2t
qt
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QUESTION: Using the equations for pt+1 (given above) and qt+1 (which you derived

in the previous problem), determine the equilibria of the system. Hint: It will be

easier to utilize the fact that p+ q = 1 to rewrite each equation as an equation with

one variable instead of two. There will be three equilibria and you will need the

quadratic formula for two of them.

Solution: Let’s start with the equilibrium for p. The equation for p was

pt+1 =
w11pt + w12qt

w11p2t + w122ptqt + w22q2t
pt.

To get the equilibrium, we need to solve the equation pt+1 = pt. In this case, that

becomes

pt =
w11pt + w12qt

w11p2t + w122ptqt + w22q2t
pt︸ ︷︷ ︸

pt+1

.

In order to simplify this, we can get rid of the q’s by utilizing the fact that pt+qt = 1.

If we solve for qt, we get qt = 1− pt. If we plug this into the equation then we get

pt =
w11pt + w12(1− pt)

w11p2t + w122pt(1− pt) + w22(1− pt)2
pt.

The first thing we can do to begin solving this is to move pt from the left to the right

side of the equation so that the equation equals zero. Doing this gives us

0 =
w11pt + w12(1− pt)

w11p2t + w122pt(1− pt) + w22(1− pt)2
pt − pt.

Now, since both terms on the right side have pt in common, we can factor it out as
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a common factor, giving us gives us

0 = pt

(
w11pt + w12(1− pt)

w11p2t + w122pt(1− pt) + w22(1− pt)2
− 1

)
.

Setting each factor equal to zero gives us

0 = pt or 0 =
w11pt + w12(1− pt)

w11p2t + w122pt(1− pt) + w22(1− pt)2
− 1.

So we know that one equilibrium value of p is pt = 0. To get the other equilibrium

value, we will need to solve the second equation above. We can get rid of the fraction

by multiplying both sides of the equation by the denominator. That will give us

0 = w11p
2
t + w122pt(1− pt) + w22(1− pt)2 −

(
w11p

2
t + w122pt(1− pt) + w22(1− pt)2

)
= w11p

2
t + w122pt(1− pt) + w22(1− pt)2 − w11p

2
t − w122pt(1− pt)− w22(1− pt)2

You will notice that this equation is a quadratic equation because we have p2t . So in

order to solve it, we will need to use the quadratic formula. Recall that the quadratic

formula says that if ax2 + bx + c = 0 then x = −b±
√
b2−4ac
2a

. So we need to get the

equation into standard form. In order to do this, we first distribute and FOIL as

needed on both sides of the equation.

0 = w11p
2
t +

2w12pt−2w12p2t︷ ︸︸ ︷
w122pt(1− pt) +

w22(1−2pt+p2t)=w22−2w22pt+w22p2t︷ ︸︸ ︷
w22(1− pt)2 −w11pt −

w12−w12pt︷ ︸︸ ︷
w12(1− pt) .
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So we have

0 = w11p
2
t + 2w12pt − 2w12p

2
t + w22 − 2w22pt + w22p

2
t − w11pt − w12 + w12pt.

Now we combine like terms and arrange the terms in decreasing order of their expo-

nents.

0 = (w11 − 2w12 + w22)p
2
t − (w11 − 3w12 + 2w22)pt + (w22 − w12).

Plugging into the quadratic equation gives us the following (Note: The numerator

didn’t fit on one line, but the denominator is under the whole thing and not just the

term in the second line.):

pt = −
(
− (w11 − 3w12 + 2w22)

)
±
√(
− (w11 − 3w12 + 2w22)

)2
− 4(w11 − 2w12 + w22)(w22 − w12)

2(w11 − 2w12 + w22)

= (w11 − 3w12 + 2w22)

±
√

(w11 − 3w12 + 2w22)2 − 4(w11 − 2w12 + w22)(w22 − w12)

2(w11 − 2w12 + w22)

To simplify this further, we need to square and distribute the terms in the parenthesis,

then combine like terms.

(w11 − 3w12 + 2w22)
2 = w2

11 − 6w11w12 + 4w11w22 + 9w2
12 − 12w12w22 + 4w2

22

4(w11 − 2w12 + w22)(w22 − w12) = 4
(
w11w22 − w11w12 − 3w12w22 + 2w2

12 + w2
22

)
= 4w11w22 − 4w11w12 − 12w12w22 + 8w2

12 + 4w2
22
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If we subtract these, then the term inside the parenthesis becomes

w2
11 − 6w11w12 + 4w11w22 + 9w2

12 − 12w12w22 + 4w2
22

−
(
4w11w22 − 4w11w12 − 12w12w22 + 8w2

12 + 4w2
22

)
= w2

11 − 2w11w12 + w2
12.

So what we have is

pt = (w11 − 3w12 + 2w22)

±
√

(w11 − 3w12 + 2w22)2 − 4(w11 − 2w12 + w22)(w22 − w12)

2(w11 − 2w12 + w22)

=
(w11 − 3w12 + 2w22)±

√
w2

11 − 2w11w12 + w2
12

2(w11 − 2w12 + w22)

=
(w11 − 3w12 + 2w22)±

√
(w11 − w12)2

2(w11 − 2w12 + w22)

=
(w11 − 3w12 + 2w22)± (w11 − w12)

2(w11 − 2w12 + w22)

So we have two possibilities:

pt = (w11−3w12+2w22)+(w11−w12)
2(w11−2w12+w22)

or pt = (w11−3w12+2w22)−(w11−w12)
2(w11−2w12+w22)

= 2w11−4w12+2w22

2(w11−2w12+w22)
= −2w12+2w22

2(w11−2w12+w22)

= 2(w11−2w12+w22)
2(w11−2w12+w22)

= 2(−w12+w22)
2(w11−2w12+w22)

= 1 = −w12+w22

w11−2w12+w22

So for the equilibrium of the q equation, we have two options. One would be to solve

the equation qt+1 = qt, which would require us to go through similar calculations to
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what we just did. The other option is to again utilize the fact that p+ q = 1, which

tells us that q = 1−p. If we plug in each of our three equilibrium values for p (the two

that we just determined and one that we found at the beginning of this calculation

which was pt = 0), we get

qt = 1− 0 or qt = 1− 1 or qt =1− −w12+w22

w11−2w12+w22

= 1 = 0 = w11−2w12+w22

w11−2w12+w22
− −w12+w22

w11−2w12+w22

= w11−2w12+w22−(−w12+w22)
w11−2w12+w22

= w11−w12

w11−2w12+w22

So we have three equilibria:

(pt, qt) = (0, 1) and (pt, qt) = (1, 0) and (pt, qt) =
(

−w12+w22

w11−2w12+w22
, w11−w12

w11−2w12+w22

)
QUESTION: What conditions are necessary for the third equilibrium to be biolog-

ically relevant? What does this mean for the chances of an allele to survive?

Solution: Notice that depending on the values of w11, w12, and w22, the third equi-

librium could have coordinates which are either positive or negative. But since pt and

qt represent the frequency with which an allele is present in a population, we are only

interested in the cases when they are positive. In other words, we need to know when

−w12 + w22

w11 − 2w12 + w22

> 0 and
w11 − w12

w11 − 2w12 + w22

> 0.

In order for −w12+w22

w11−2w12+w22
> 0, either the numerator and denominator must both be
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positive (since a positive divided by a positive is positive) or both must be negative

(since a negative divided by a negative is positive). The same is true in order to

have w11−w12

w11−2w12+w22
> 0. Since both fractions have the same denominator, then if one

fraction’s numerator is positive, then the other one will have to also be positive at

the same time. And if one fraction’s numerator is negative, then the other one will

also have to be negative at the same time.

In order for both numerators to be positive at the same time, we must have −w12 +

w22 > 0 and w11 − w12 > 0 which is the same as w22 > w12 and w11 > w12. Notice

that if both of these occur at the same time, then the denominator is also positive.

To see this, note that the denominator being positive means w11 − 2w12 + w22 > 0.

But this is the same as w11 +w12 > 2w12. But if w11 > w12 and w22 > w12, then when

you add the two sides of the inequalities which are bigger, namely w11 +w22, that will

be bigger than if you add the two sides of the inequalities which are smaller, namely

w12 +w12 = 2w12. So one way in which the the third equilibrium could be biologically

relevant is if both w11 > w12 and w22 > w12; in other words, if both homozygotic

genotypes have a higher fitness than the heterozygotic genotype.

In order for both denominators to be negative at the same time, we must have −w12+

w22 < 0 and w11 − w12 < 0 which is the same as w22 < w12 and w11 < w12. Notice

that if both of these occur at the same time, then the denominator is also negative.

To see this, note that the denominator being negative means w11 − 2w12 + w22 < 0.

But this is the same as w11 + w12 < 2w12. But if w11 < w12 and w22 < w12, then

when you add the two sides of the inequalities that are smaller, namely w11 + w12,

that will be smaller than if you add the two sides of the inequalities which are bigger,

namely w12 + w12 = 2w12. So the other way in which the third equilibrium could
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be biologically relevant is if both w11 < w12 and w22 < w12; in other words, if the

heterozygotic genotype has a higher fitness than both of the homozygotic genotypes.

B.9 Alternation of Generations

QUESTION: Given that we start with dispersal/colonization abilities (and hence

competition abilities) suitable for all five species to coexist and no habitat destruction,

state the order in which you think the species will occupy the largest fraction of sites

down to the smallest fraction of sites.

Solution: Answers will vary by student.

Note: When you execute the file dispersal.sce, the graph should look as follows:
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QUESTION: Were your predictions correct?

Solution: Answers will vary depending on student responses to the previous question.

But students should notice the better the species is at dispersing and colonizing, the

larger the fraction of sites they occupy; in other words, Colonizer #1/ Competitor

#5 occupies the largest fraction of sites, followed by Colonizer #2/ Competitor #4,

Colonizer #3/ Competitor #3, Colonizer #2/ Competitor #4, with Colonizer #5/

Competitor #1 occupying the fewest fraction of sites. And this is despite the fact

that the number of sites they all initially occupied was reverse what they ended up

being.

Note: After making the changes to the Scilab code, namely changing the value of q
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from 0 to 0.3 and changing the graphics window from 1 to 2, the Scilab code should

look like this:

function dx = dispersal(t,p)

  global m c q n;

  for i = 1:n

    sum1 = 0.0

    sum2 = 0.0

    for j = 1:i ;

      sum1 = sum1 +p(j);

    end

    for j = 1:(i-1)

      sum2 = sum2 +c(j)*p(i)*p(j)

    end

    dx(i,1) = c(i)*p(i)*(1-q(1)-sum1)-m(i)*p(i)-sum2;

  end

endfunction

t = 0:1:2000;

  global c m n q

  m = [.02; .02; .02; .02; .02];

  c = [.025; .039; .061; .095; .149];

  n = 5;

  q = [0.3; 0.3; 0.3; 0.3; 0.3];

  p0 = [.082; .1024; .128; .16; .2]

  p = ode(p0,0,t,dispersal);

  scf(2);

  plot(t,p(1,:),'r')

  plot(t,p(2,:),'b')

  plot(t,p(3,:),'g')

  plot(t,p(4,:),'m')

  plot(t,p(5,:),'k')

  legend('Colonizer #1/ Competitor #5','Colonizer #2/ 

Competitor #4','Colonizer #3/ Competitor #3','Colonizer 

#4/ Competitor #2','Colonizer #5/ Competitor #1');

  xlabel('years');

  ylabel('proportion of habitat occupied by species i');
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QUESTION: What affect do you think increasing the habitat destruction will have

on the fraction of sites occupied by each species?

Solution: Answers will vary by student.

Note: After executing the file with the value of q changed from 0 to 0.3, graphics

window 2 will open with the following graph:

QUESTION: Was your prediction correct? Why do you think the results of the

simulation were the way they were?

Solution: Answers will vary by student, depending on their response to the previous

question. But students should notice that habitat destruction leads to a loss of

resources, which gives better competitors a survival advantage. In fact, Colonizer
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#1/ Competitor #5 had previously occupied the largest fraction of sites but now

they went extinct because they weren’t good enough at competing for resources.

Note: After making the changes to the Scilab code, namely changing the value of

q from 0.3 to 0.63 and changing the graphics window from 2 to 3, the Scilab code

should look like this:
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function dx = dispersal(t,p)

  global m c q n;

  for i = 1:n

    sum1 = 0.0

    sum2 = 0.0

    for j = 1:i ;

      sum1 = sum1 +p(j);

    end

    for j = 1:(i-1)

      sum2 = sum2 +c(j)*p(i)*p(j)

    end

    dx(i,1) = c(i)*p(i)*(1-q(1)-sum1)-m(i)*p(i)-sum2;

  end

endfunction

t = 0:1:2000;

  global c m n q

  m = [.02; .02; .02; .02; .02];

  c = [.025; .039; .061; .095; .149];

  n = 5;

  q = [0.63; 0.63; 0.63; 0.63; 0.63];

  p0 = [.082; .1024; .128; .16; .2]

  p = ode(p0,0,t,dispersal);

  scf(3);

  plot(t,p(1,:),'r')

  plot(t,p(2,:),'b')

  plot(t,p(3,:),'g')

  plot(t,p(4,:),'m')

  plot(t,p(5,:),'k')

  legend('Colonizer #1/ Competitor #5','Colonizer #2/ 

Competitor #4','Colonizer #3/ Competitor #3','Colonizer 

#4/ Competitor #2','Colonizer #5/ Competitor #1');

  xlabel('years');

  ylabel('proportion of habitat occupied by species i');
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QUESTION: What do you think will happen in this case?

Solution: Answers will vary by student.

Note: After executing the file, graphics window 3 will open with the following graph:

QUESTION: Was your prediction correct?

Solution: Answers will vary depending on student responses to the previous question.

But students should notice that again, the worse competitor was driven to extinction,

despite previously occupying the largest fraction of sites.

Note: After making the changes to the Scilab code, namely changing the value of

q from 0.63 to 0.73 and changing the graphics window from 3 to 4, the Scilab code
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should look like this:

function dx = dispersal(t,p)

  global m c q n;

  for i = 1:n

    sum1 = 0.0

    sum2 = 0.0

    for j = 1:i ;

      sum1 = sum1 +p(j);

    end

    for j = 1:(i-1)

      sum2 = sum2 +c(j)*p(i)*p(j)

    end

    dx(i,1) = c(i)*p(i)*(1-q(1)-sum1)-m(i)*p(i)-sum2;

  end

endfunction

t = 0:1:2000;

  global c m n q

  m = [.02; .02; .02; .02; .02];

  c = [.025; .039; .061; .095; .149];

  n = 5;

  q = [0.73; 0.73; 0.73; 0.73; 0.73];

  p0 = [.082; .1024; .128; .16; .2]

  p = ode(p0,0,t,dispersal);

  scf(4);

  plot(t,p(1,:),'r')

  plot(t,p(2,:),'b')

  plot(t,p(3,:),'g')

  plot(t,p(4,:),'m')

  plot(t,p(5,:),'k')

  legend('Colonizer #1/ Competitor #5','Colonizer #2/ 

Competitor #4','Colonizer #3/ Competitor #3','Colonizer 

#4/ Competitor #2','Colonizer #5/ Competitor #1');

  xlabel('years');

  ylabel('proportion of habitat occupied by species i');
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QUESTION: What affect do you think this will have?

Solution: Answers will vary by student.

Note: After executing the file, graphics window 4 will open with the following graph:

QUESTION: Was your prediction correct?

Solution: Answers will vary depending on responses to the previous question. But

students should notice that again, the worse competitor was driven to extinction,

despite previously occupying the largest fraction of sites.

Note: After making the changes to the Scilab code, namely changing the value of q

from 0.73 to 0.93, changing the graphics window from 4 to 5, and changing the final
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time from 2000 to 200, the Scilab code should look like this:

function dx = dispersal(t,p)

  global m c q n;

  for i = 1:n

    sum1 = 0.0

    sum2 = 0.0

    for j = 1:i ;

      sum1 = sum1 +p(j);

    end

    for j = 1:(i-1)

      sum2 = sum2 +c(j)*p(i)*p(j)

    end

    dx(i,1) = c(i)*p(i)*(1-q(1)-sum1)-m(i)*p(i)-sum2;

  end

endfunction

t = 0:1:500;

  global c m n q

  m = [.02; .02; .02; .02; .02];

  c = [.025; .039; .061; .095; .149];

  n = 5;

  q = [0.93; 0.93; 0.93; 0.93; 0.93];

  p0 = [.082; .1024; .128; .16; .2]

  p = ode(p0,0,t,dispersal);

  scf(5);

  plot(t,p(1,:),'r')

  plot(t,p(2,:),'b')

  plot(t,p(3,:),'g')

  plot(t,p(4,:),'m')

  plot(t,p(5,:),'k')

  legend('Colonizer #1/ Competitor #5','Colonizer #2/ 

Competitor #4','Colonizer #3/ Competitor #3','Colonizer 

#4/ Competitor #2','Colonizer #5/ Competitor #1');

  xlabel('years');

  ylabel('proportion of habitat occupied by species i');



318

QUESTION: In what order do you expect the species to go extinct in? Why?

Solution: Answers will vary by student.

Note: After executing the file, graphics window 5 will open with the following graph:

QUESTION: Was your prediction correct? Why do you think the results of the

simulation were the way they were?

Solution: Answers will vary depending on student responses to the previous question.

But students should notice that when habitat loss is high and resources are insufficient

to sustain any of the populations then competition is no longer an issue. And when

this happens, dispersal and colonization abilities become the important factor again
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and so the worse colonizers go extinct first and the better colonizers take longer to

go extinct.

Note: After changing the habitat destruction back to 0, the ending time back to

2000, the graphics window back to 1, and the initial fraction of sites that colonizer

#1/ Competitor #5 occupies from .082 to .382, the Scilab code should look like this:
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function dx = dispersal(t,p)

  global m c q n;

  for i = 1:n

    sum1 = 0.0

    sum2 = 0.0

    for j = 1:i ;

      sum1 = sum1 +p(j);

    end

    for j = 1:(i-1)

      sum2 = sum2 +c(j)*p(i)*p(j)

    end

    dx(i,1) = c(i)*p(i)*(1-q(1)-sum1)-m(i)*p(i)-sum2;

  end

endfunction

t = 0:1:2000;

  global c m n q

  m = [.02; .02; .02; .02; .02];

  c = [.025; .039; .061; .095; .149];

  n = 5;

  q = [0; 0; 0; 0; ];

  p0 = [.382; .1024; .128; .16; .2]

  p = ode(p0,0,t,dispersal);

  scf(1);

  plot(t,p(1,:),'r')

  plot(t,p(2,:),'b')

  plot(t,p(3,:),'g')

  plot(t,p(4,:),'m')

  plot(t,p(5,:),'k')

  legend('Colonizer #1/ Competitor #5','Colonizer #2/ 

Competitor #4','Colonizer #3/ Competitor #3','Colonizer 

#4/ Competitor #2','Colonizer #5/ Competitor #1');

  xlabel('years');

  ylabel('proportion of habitat occupied by species i');
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QUESTION: What affect do you think this change will have on the results?

Solution: Answers will vary by student.

Note: After executing the file, graphics 1 will open with the following graph:

QUESTION: Was your prediction correct?

Solution: Answers will vary depending on student responses to the previous question.

But students should notice that, as before, when there is no habitat destruction, the

better a species is at colonizing, the larger the fraction of sites they will occupy. Of
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course, given that we are now considering the case where the best colonizer begins

occupying the largest fraction of sites (as opposed to before when the best colonizer

began by occupying the smallest fraction of sites), this should probably be what the

students predicted would happen.

QUESTION: If you were to repeat all of the previous simulations, how do you think

the outcomes of each would differ? Why?

Solution: Answers will vary by student.

Note: Repeating the simulations but with the the best colonizer starting off occupy-

ing a the largest fraction of sites produces the exact same results. So even by starting

off occupying the largest fraction of sites, habitat destruction cannot save the worst

competitor (best colonizer) from going extinct first.

QUESTION: Were your predictions correct?

Solution: Answers will vary by student.

B.10 Speciation

QUESTION: Write a Scilab program and graph (all on the same plot) the normal

distribution for:

(a) µ = 0, σ2 = 1
2
,

(b) µ = 1, σ2 = 4, and

(c) µ = −2, σ2 = 1
8

for −8 ≤ x ≤ 8.

Use a different color for each graph and be sure to put a title and legend on the graph.

Discuss with your peers how µ and σ2 effect the graph of the normal distribution.
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Solution: The Scilab code will vary from student to student, but here is one example

which will work.

x = -8:.1:8;

mu_a = 0;

sigmasquared_a = 1/2;

y = 

1/(2*%pi*sigmasquared_a)*exp(-(x-mu_a).*(x-mu_a)/(2*sigma

squared_a));

mu_b = 1;

sigmasquared_b = 4;

w = 

1/(2*%pi*sigmasquared_b)*exp(-(x-mu_b).*(x-mu_b)/(2*sigma

squared_b));

mu_c = -2;

sigmasquared_c = 1/8;

z = 

1/(2*%pi*sigmasquared_c)*exp(-(x-mu_c).*(x-mu_c)/(2*sigma

squared_c));

scf(1);

plot(x,y,'r',x,w,'b',x,z,'k')

title('Normal distribution for different values of mu 

and sigma^2');

legend('mu = 0 & sigma^2 = 1/2','mu = 1 & sigma^2 = 

4','mu = -2 & sigma^2 = 1/8');

Executing this code will produce the following graph:
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This graph shows that µ determines the center of the distribution, while σ2 controls

the width and height of the distribution, with larger values of σ2 producing shorter

but wider distributions and smaller values of σ2 producing taller but more narrow

distributions.
QUESTION: Download and execute the file fitness.sce. Discuss with your peers the

relationship between trait x and fitness within each habitat.

Solution: Executing the file produces the following graphs:
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To determine the relationship between trait x and the fitness within each habitat,

notice that above each figure, the optimal phenotype is given by the value of θ (theta).

In the top graph (exposed habitat), θ = 0. And in the graph, the fitness is highest

when x is close to 0 and the fitness decreases as x increases away from 0. In the middle

graph (intermediate habitat), θ = 0.5. And in that graph, the fitness is highest when

x is close to 0.5 and the fitness decreases as x moves away from 0.5. In the bottom

graph (sheltered habitat), θ = 1.0. In that graph, the fitness is highest when x is close
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to 1 and the fitness decreases as x decreases away from 1. So within each habitat,

the closer an individual’s x trait value is to the optimum phenotype for that habitat,

the higher their fitness.

QUESTION: Download and execute the file mating probability.sce. Discuss with

your peers the relationship between trait c and the mating probability of a male with

trait f with a female with trait x.

Solution: Executing the file produces the following graphs:

(a) graphics window 1
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(b) graphics window 2

(c) graphics window 3
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In all the cases, if a male has c = 0.5, the mating probability is flat, meaning there is

an equal likelihood that the male will mate with any female, regardless of the male’s

f trait value or female’s x trait value. The farther c gets from c = 0.5, the pickier the

male gets. For c < 0.5, males prefer to mate with females whose x trait values are

as different to their f trait value as possible. The male’s f trait value is given above

each graph, so when c < 0.5 (the solid lines in each graph), the mating probability,

ψ (psi), will be highest when the value of x is most different from the value of f and

ψ will be lowest when the value of x is closest to the value of f . For c > 0.5, males

prefer to mate with females whose x trait values are as close to their f trait value

as possible. So when c > 0.5 (the dashed/dotted lines in each graph), the mating

probability, ψ will be highest when the value of x is closest to the value of f and ψ

will be lowest when the value of x is most different from the value of f .

B.11 Animal Body Plan

QUESTION: What is p0 in this case? Round to three decimal places.

Solution: The ancestral base sequence is

S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

so if we count the number of sites occupied by each base, we see that there are 9 A’s,

11 C’s, 11 G’s, and 9 T’s. Since there are 40 sites, we have PA = 9
40

= .225, PC =

11
40

= .275, PG = 11
40

= .275, and Pt = 9
40

= .225. So the ancestral base distribution is
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p0 = (.225, .275, .275, .225)

QUESTION: Compute the transitional matrix, M , of conditional probabilities of

having any base in any site in the sequence, given that that site was previously

occupied by any of the bases. Round to three decimal places.

Solution: The following table (from the module) summarizes the number of transi-

tions from each base into each other base.

S1\S0 A G C T
A 7 0 1 1
G 1 9 2 0
C 0 2 7 2
T 1 0 1 6

Total 9 11 11 9

So we see that of the 9 sites that were initially occupied by A, 7 of them remained

A, 1 changed to G, 0 changed to C, and 1 changed to T . Similarly, of the 11 sites

which were initially occupied by G, 0 changed to A, 9 remained G, 2 changed to C,

and 0 changed to T . Going down the columns, the same can be determine for sites

initially occupied by C and sites initially occupied by T . For the first column of M ,

we start with the fact that initially, 9 sites were occupied by A. Of those, 7 remained

occupied by A, so PA|A = 7
9

= .778. And of those 9 initially occupied by A, 1 changed

to G, so PG|A = 1
9

= .111. Similarly, PC|A = 0
9

= 0 and PT |A = 1
9

= .111. For the

second column of M , we start with the fact that 11 sites were initially occupied by

G. Given those 11 sites, 0 changed to A, so PA|G = 0
9

= 0. Similarly, of the 11 sites

initially occupied by G, 9 remain occupied by G so PG|G = 9
11

= .818. Likewise,

PC|G = 2
11

= .182 and PT |G = 0
11

= 0. For the third column of M , we start with

the fact that 11 sites were initially occupied by C. Of those 11 sites, 1 changed to
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A so PA|C = 1
11

= .091. Of the 11 sites initially occupied by C, 2 changed to G so

PG|C = 2
11

= .182. Similarly, PC|C = 7
11

= .636 and PT |C = 1
11

= .091. And for

the fourth column of M , we start with the fact that 9 sites were initially occupied

by T . Of those 9 sites, 1 changed to A so PA|T = 1
9

= .111. Of the 9 sites initially

occupied by T , 0 changed to G so PG|T = 0
9

= 0. Similarly, PC|T = 2
9

= .222 and

PT |T = 6
9

= .667. So the transitional matrix is

M =



PA|A PA|G PA|C PA|T

PG|A PG|G PG|C PG|T

PC|A PC|G PC|C PC|T

PT |A PT |G PT |C PT |T


=



.778 0 .091 .111

.111 .818 .182 0

0 .182 .636 .222

.111 0 .091 .667


Note: In the module, you are told to type p0 and M into Scilab. When you do so,

it should look as follows:

        ___________________________________________        
                       scilab-5.2.0

                 Consortium Scilab (DIGITEO)
               Copyright (c) 1989-2009 (INRIA)
               Copyright (c) 1989-2007 (ENPC)
        ___________________________________________        
 
 
Startup execution:
  loading initial environment
 
-->p0 = [.225; .275; .275; .225]
 p0  =
 
    0.225  
    0.275  
    0.275  
    0.225  
 
-->M=[.778, 0, .091, .111; .111, .818, .182, 0; 0, .182, .636, .222; .111, 0, .091, .667]
 M  =
 
    0.778    0.       0.091    0.111  
    0.111    0.818    0.182    0.     
    0.       0.182    0.636    0.222  
    0.111    0.       0.091    0.667  
 

QUESTION: What are the descendent base sequences p1 and p2?
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Solution: p1 = Mp0, so we type this into Scilab, which gives us

-->M*p0

 ans  =

    0.22505   

    0.299975  

    0.2749    

    0.200075  

If we round to three decimal places then that gives us

p1 =



.225

.300

.275

.200


p2 = Mp1 = M2p0, so we have two options for the way we enter this into Scilab. We

can either define p1 in Scilab the same way we defined p0 in Scilab or we can just

use M and p0 which are already defined in Scilab. Either way we would get the same

answer. Doing these would look as follows:
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-->p1=[.225; .300; .275; .200]
 p1  =
 
    0.225  
    0.3    
    0.275  
    0.2    
 
-->M*p1
 ans  =
 
    0.222275  
    0.320425  
    0.2739    
    0.1834    
 
-->M^2*p0
 ans  =
 
    0.2223131  
    0.3203919  
    0.2738485  
    0.1834465  
 

Rounding to three decimal places gives us

p2 =



.222

.320

.274

.183


QUESTION: What is the equilibrium base distribution for this example? Hint: To

do this limit, you will need to make a table of values.

Solution: The equilibrium base distribution is given by p∞ = limt→∞M
tp0. As the

hint in the problem says, we need to make a table of values in order to determine this

limit. So in Scilab, we will compute M10p0, M
100p0, M

1000p0, M
10000p0, . . . until

we can see what the limit is. Doing this gives us
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-->M^10*p0
 ans  =
 
    0.1939358  
    0.3839634  
    0.2779849  
    0.1441159  
 

 
-->M^100*p0
 ans  =
 
    0.1848654  
    0.3946166  
    0.2818690  
    0.1386491  
 

 
-->M^1000*p0
 ans  =
 
    0.1848654  
    0.3946166  
    0.2818690  
    0.1386491  
 

 
-->M^10000*p0
 ans  =
 
    0.1848654  
    0.3946166  
    0.2818690  
    0.1386491  
 

If we round to three decimal places then the equilibrium base distribution is

p∞ = (.185, .395, .282, .139)

Note: When you execute the file Jukes-Cantor.sce, you will get the following figure:

QUESTION: In line 4 of the code, change p0 to [.2; .3; .4; .1]. In this case, what is

the equilibrium base distribution?

Solution: The Scilab code should now look like this:

a=.06;

b=a/3;

M=[1-a,b,b,b;b,1-a,b,b;b,b,1-a,b;b,b,b,1-a];

p=[.2;.3;.4;.1];

P=p;

for i=1:100

  p=M*p;

  P=[P p];

end;

scf(2);

plot(P')

legend('A','G','C','T');
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When the file is executed, the new graph should look like this:
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So we can see that in this case, the equilibrium base distribution is

p∞ = (.25, .25, .25, .25)

QUESTION: In line 1 of the code, reduce the value of α (represented by a in the

Scilab code) from .06 to .03 and change line 10 of the code from 2 to 1. This will open

the new graph in graphics window 1. Before closing the graphics windows, increase

α to 0.9 and change line 10 to 3 so that this new graph opens in graphics window 3.

What affect does changing α have on the equilibrium base distribution? Does this

support the alternate interpretation we gave of α above?

Solution: If we make the changes mentioned in the first part of the question, namely
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changing the value of α from .06 to .03 and changing the graphics window from 2 to

1, the new Scilab code and graph look as follows:

a=.03;

b=a/3;

M=[1-a,b,b,b;b,1-a,b,b;b,b,1-a,b;b,b,b,1-a];

p=[.2;.3;.4;.1];

P=p;

for i=1:100

  p=M*p;

  P=[P p];

end;

scf(1);

plot(P')

legend('A','G','C','T');
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If we make the next set of changes mentioned in the question, namely changing the

value of α from .03 to .09 and changing the graphics window from 1 to 3, the new

Scilab code and graph look as follows:

a=.09;

b=a/3;

M=[1-a,b,b,b;b,1-a,b,b;b,b,1-a,b;b,b,b,1-a];

p=[.2;.3;.4;.1];

P=p;

for i=1:100

  p=M*p;

  P=[P p];

end;

scf(3);

plot(P')

legend('A','G','C','T');
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So if we compare all three graphs, we see the following:

(a) Graphics window 1 with α = .03 (b) Graphics window 2 with α = .06

(c) Graphics window 3 with α = .09

So the value of α does not affect the equilibrium base distribution, as the equilibrium

base distribution is p∞ = (.25, .25, .25, .25) is all three cases, just as it was before

the changed p0 in the previous question. But notice that the smaller the value of α,

the longer it takes to reach equilibrium and the larger the value of α, the faster it

reaches equilibrium. So the graphs do support the interpretation of α as the rate at

which observable base substitutions occur over one time step.
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B.12 Animal Form and Function

Note: When you execute the file Jukes-Cantor differences.sce, the following graph

will appear:

QUESTION: How does increasing the value of α affect p(t)? What does the maxi-

mum value of p(t) appear to be?

Solution: From the figure, we see that as α increases, the fraction of site that we

expect to be different increases and reaches its maximum faster. We see that the

maximum value of p(t) is 0.75.
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QUESTION: Compute dJC(S0, S1) for these two sequences. Why do you think the

average number of observed base substitutions per site (given by p) is different from

the estimated number of substitutions per site that occurred in the course of evolution

(given by dJC)?

Solution: Comparing the sequence

S0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

to the sequence

S1 : ACATGTTGCTTGACGACAGGTCCATGCGCCTGAGAACGGC

we see that substitutions have occurred in 11 of the 40 sites, so in this case p = 11
40

. If

we plug this into the formula for dJC(S0, S1) and plug that into a calculator, we get

dJC(S0, S1) = −3
4

ln
(
1− 4

3
· 11
40

)
≈ 0.343

The reason that the average number of observed base substitutions per site is

11
40

= 0.275, while the estimated number of substitutions per site that occurred

in the course of evolution is 0.343, is because we do not observe changes that leave

the site with the same base as it start with. For example, if site #1 is initially occu-

pied by base A but then changes to C, T , C, and back to A, then we do not observe

the intermediate mutations when we compare the initial and final sequences.

QUESTION: Do you think the Jukes-Cantor distance will increase or decrease as p

increases? Why?
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Solution: Answers will vary by student.

Note: After executing the file Jukes-Cantor distance.sce, the following graph will

appear:

QUESTION: Was your answer to the previous question confirmed? If not, why do

you think you were wrong?

Solution: Answers will depending on student responses to the previous question. But

students should notice that as p increases, the Jukes-Cantor distance also increases.

And as p, the fraction of sites that are different in the descendant sequence from the

ancestral sequence, approaches its maximum value of 0.75, the Jukes-Cantor distance,
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the number of expected substitutions per site during the elapsed time, increases more

rapidly than when p is small.

B.13 Predation

Note: After executing the file predator˙prey1.sce the following graph will appear:

QUESTION: What are the similarities and differences between the behavior of this

model and the behavior of the Lynx vs. Snowshoe Hare populations? What do you

think the model is lacking to account for this difference? Explain why the qualitative

behavior of the predator vs. prey graph on the right should be expected from the

dynamics of the population vs. time graph on the left.
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Solution: Both models exhibit cyclic or periodic behavior for both the predator

and prey populations. But in the model, the periodic behavior is more regular in

frequency and in intensity. The model doesn’t take into account random events in

nature which cause slight irregularities in the populations from year to year. The

graph on the right shows the predator population vs. the prey population, and it

cycles around with one population following the other, just as the graph on the left

does. Just as the graph on the left shows that the cycles vary slightly in intensity,

the graph on the right shows the size of the cycles also varies.

Note: After executing the file predator˙prey2.sce the following graph will appear:
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QUESTION: What are the similarities and differences between the behavior of this

model and the behavior of the previous model? Explain the qualitative behavior of

the predator vs. prey graph on the right from the dynamics of the population vs.

time graph on the left.

Solution: This model exhibits cyclic or periodic behavior just as the previous model

did. But in this model, the populations are not as close in size as they were in the

previous model and in this model, the intensity of the cycles decreases as time passes

until the populations almost don’t cycle at all.

Note: After executing the file predator˙prey3.sce the following graph will appear:
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QUESTION: What modeling assumptions were used in constructing this model?

What are the similarities and differences between the behavior of this model and

the behavior of the previous models? Explain why the qualitative behavior of the

predator vs. prey graph on the right should be expected from the dynamics of the

population vs. time graph on the left.

Solution: The modeling assumptions here include the following:

1. The fraction of the prey population that survives declines proportional to the

number of predators.

2. The prey have a net reproductive rate of r.

3. The rate of growth of the prey population is limited by the environmental carrying

capacity, K.

4. Even in the absence of the prey, the predator population can still grow.

Like the previous model, this model exhibits cyclic or periodic behavior where the

intensity of the cycles decreases over time. The size of the two populations is much

closer to each other than in the previous model and they cycle much more smoothly

about each other.

B.14 Population Ecology

QUESTION:Give a specific interpretation for c11, c12, c21, c22. Which ones repre-

sent interspecific competition and which ones represent intraspecific competition?

Solution: Since cij for i, j = 1, 2 represents the strength of the competition on species

i by species j, then c11 is the strength of the competition on species 1 by species 1.
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This represents intraspecific competition. c12 is the strength of the competition on

species 1 by species 2 and it represents interspecific competition. c21 is the strength of

the competition on species 2 by species 1 and it represents interspecific competition.

c22 is the strength of the competition on species 2 by species 2 and it represents

intraspecific competition.

Note: After executing the file competition.sce, the following graphs will appear:

QUESTION: Find a set of parameter values which allows both species to coexist,

but come to equilibrium at different population levels. Hint : Use the four graphs to

make various changes and simultaneously compare the changes.
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Solution: Answers will vary by student, but as long as the levels of competition

aren’t equal, the species should have different equilibrium values, and as long as the

difference in competition isn’t too much then both species should be able to coexist.

For example, decreasing c12 to .15 and increasing c21 to .5, while increasing c11 to

11.25 and decreasing c22 to .75 would allow both species to coexist at different levels.

QUESTION: Find two sets of parameter values which allows Species 1 to exclude

Species 2 (Species 1 exists but Species 2 becomes extinct). First do it by changing

only the growth rates then do it by changing only the interspecific competition.

Solution: Answers will vary by student. For changing the growth rates, the growth

rate of Species 1 needs to be sufficiently bigger than the growth rate of Species 2.

For example, set b1 = 2.5 and b2 = .5. For changing the interspecific competition,

the competition on Species 2 needs to be sufficiently more than the competition on

Species 1. For example, set c12 = .1 and c21 = 1.1.

QUESTION: Can changing the strength of the intraspecific competition save Species

2 in either set of parameter values in the previous problem?

Solution: If the differences in growth rate or interspecific competition aren’t too

high and the level of intraspecific competition is reduced sufficiently, then Species 2

can be saved.

QUESTION: What, if any, interesting, unexpected, or different phenomena did you

discover while searching for the sets of parameter values you were asked to find?

Solution: Answers will depend on what parameter choices they made while trying

to answer the previous problems. One possibility would be if students left b1 =
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1.5, b2 = 1.5, c11 = 1, c12 = .25, and c22 = 1 but changed c21 = 1, then Species 1

would exclude Species 2, but if they then decrease the intraspecific competition for

Species 2 to c22 = .1 then not only would that save Species 2, but Species 2 would

then exclude Species 1, driving them to extinction.


