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Presence exercise

Exercise 1.1 IVP 9x “ xptq ¨ fptq, xp0q “ x0

As a generalisation of the differential equation defined in the lecture, consider now the initial value
problem

9xptq “ xptq ¨ fptq, xp0q “ x0

(with a time dependent function f !). Its solution reads

xptq “ x0e
şt
0 fpτqdτ .

Subtask 1.1.1 Verification of the statement

Verify the statement.

Subtask 1.1.2 Derivation/separation of variables

Derive the solution in a constructive way
(by using separation of variables, which will be explained by the tutor).
[Hint: 9xptq

xptq “
d
dt log xptq] [!]

Exercise 1.2 Check solution of a 2nd order ODE

Let the function g : RÑ R be twice differentiable with g1pxq ‰ 0 for all x P R. Furthermore, let the
function f : RÑ R be defined by fpxq “ cospkgpxqq, where k P R. Show that

f2 ´ f 1
g2

g1
` pkg1q

2
f “ 0.

1 – 1



Home exercise

Exercise 1.3 Spreading of a disease

We want to describe the spreading of an infectious disease, which is transmitted at rate α if an infected
individual meets a noninfected one, and from which infected individuals recover at rate µ. Let p be
the proportion of infected individuals in a population; then 1´p is the proportion of noninfected ones.
Since infections require contact between infected and noninfected individuals, the increase of the
proportion of infected individuals is proportional to both p and 1´ p; the constant of proportionality
is α. The loss of infected individuals is only proportional to p with constant of proportionality µ.
Altogether, p changes at rate

9p “ αpp1´ pq ´ µp

Subtask 1.3.1 Phase line diagrams, 1 point

Draw the phase line diagrams for α ă µ and α ą µ. What follows for the qualitative behavior
(equilibria, stability)? Sketch selected solutions.

Subtask 1.3.2 Discussion state of health, 1 point

Discuss what the two cases mean for the state of ’health’ of the population and the spreading of the
disease?

Exercise 1.4 Logistic ODE: Check solution of IVP, 1 point

Consider the logistic differential equation, this time in the form

9x “ λx
K ´ x

K

Verify that the function

xptq “
Kx0

x0 ` pK ´ x0qe´λt

is the solution of this differential equation with initial value x0.
[Hint: Differentiate and have a sharp look at the resulting expression. Don’t expand in any case!] [!]

Exercise 1.5 Solution xptq “ 2et ´ 1 given: find IVP, 1 point

Find the initial value problem that is solved by xptq “ 2et ´ 1

1 – 2
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Exercise 2.1 Calcute eigensystem

Calculate the eigenvalues and (right) eigenvectors of the following matrices:

A “

ˆ

1 1
0 2

˙

and B “

ˆ

1´ α β
α 1´ β

˙

2 – 1



Home exercise

Exercise 2.2 Carrion eater-hyena-model

Consider the behaviour of two competing species, i.e. carrion eater and hyenas. The population size of
the carrion eater at timepoint t is denoted by Apt), those of the hyenas by Hptq. Both species compete
more or less for the same ressource. The following equations may serve to describe the dynamic of the
population sizes:

dA
dt “ A´ pA2 ` αAHq

dH
dt “ H ´ pH2 ` αHAq

with the additional condition that 0 ă α.

Subtask 2.2.1 Equlibria, 1 point

Calculate all equilibria.

Subtask 2.2.2 Graphical analysis, 1 point

Draw the nullisoclines as well as the vector field sketch in the case α “ 2. Sketch the trajectories in
the case α “ 2 for an initial value pA0, H0q with A0 ă H0. Conclude the stability of the equilibria for
this α with the help of your sketch.

Subtask 2.2.3 Analysis via Jacobian, 3 points

Validate the stability of the equilibria for an arbitrary α ‰ 1 by using the Jacobian matrix. Which
case distinction is necessary? What can you conclude for the long time development of both species
from your results?

2 – 2
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Exercise 3.1 Solution in the plane

Consider the following solution of a differential equation in the plane:

Subtask 3.1.1 Coordinates as functions of t, 1 point

Draw the corresponding time courses xptq, yptq, as precisely as possible. The 11 time points are
equidistant.

Subtask 3.1.2 Possible nullisoclines and ODE system, 3 points

Draw possible nullisoclines in the picture and set up an associated possible system of differential
equations.

3 – 1



Home exercise

Exercise 3.2 Generalised logistic ODE

Consider the following differential equation, which describes the size of a population:

9x “ ´rx
´

1´ x

T

¯´

1´ x

K

¯

with 0 ă T ă K.

Subtask 3.2.1 Phase lines, equilibria, stability, 2 points

First draw the phase line diagram and use it to conclude the stability of the equilibria. Then verify
the stability properties by analysing the derivative of the right-hand side at equilibrum.

Subtask 3.2.2 Time course of solutions, long time behaviour, 1 point

Sketch the time course of the solution for 0 ă x0 ă T , T ă x0 ă K, and x0 ą K, and draw conclusions
about the long-term behaviour of the size of the population. Interpret the meaning of the parameter
T .

Exercise 3.3 System of ODEs

Consider the ODE system

9x “ gpx, yq “ 5´ x´ xy ` 2y
9y “ hpx, yq “ xy ´ 3y.

Subtask 3.3.1 Equilibria , 1 point

Calculate the equilibra. (Hint: factorise h and insert its solutions (individually) into g (g cannot be
factorised)).

Subtask 3.3.2 Nullisoclines, 1 point

Solve g for y to obtain the x nullisocline as a function of x. This function has a vertical and a horizontal
asymptote; which ones? What kind of function is the x nullisocline?
Draw both nullisoclines as well as the equilibria.

Subtask 3.3.3 Vector field sketch, 1 point

Determine the signs of 9x and 9y in the positive quadrant (i.e. for x, y ą 0). (Hint: A case distinction
is required.)
Sketch the corresponding vector field. Can you conclude the stability of the equilibrium in the positive
quadrant?

3 – 2
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Exercise 4.1 SI-model

Consider the following infection model:

9I “ αIS ´ µI

9S “ ´αIS ` ρS
´

1´ I ` S

K

¯

Here I denotes the number of infected, S the number of susceptible individuals.

Subtask 4.1.1 Description of the model

Which situation ist described by the model? What meaning do the parameters α, µ, ρ,K have?

Subtask 4.1.2 Nullisoclines, equilibria, vector field, stability

Calculate and draw the nullisoclines and the equilibria and sketch the vector field in the positive
quadrant. Can you infer the stability of the internal equilibrium (that is, the one with both components
positive)?

4 – 1



Home exercise

[TODONächstes Mal: Nptq schon in Aufgabenstellung definieren.] [!!!]

Exercise 4.2 SIR-model

Let Sptq be the number of individuals that can be infected with a disease (suspectibles), Iptq be the
number of those that are already infected (infecteds) and Rptq be the number of those that were
infected and are recovered now (recovered). β, ν and γ are positive parameters. The interplay of the
three groups may be described by a simple epidemiological model

dS
dt “ ´βS

I

N
` γR

dI
dt “ βS

I

N
´ νI

dR
dt “ νI ´ γR.

Subtask 4.2.1 constant population size, 1 point

Show that the total population size,

Nptq :“ Sptq ` Iptq `Rptq,

is constant over time.

Subtask 4.2.2 Assumptions and reduction, 1 point

Interpret the equations in terms of the basic assumptions of the model; in particular, describe the
meaning of the parameters. Then, reduce the model to a system of two coupled differential equations.
For this purpose, use the additional condition in the form R “ N ´ I ´ S.

Subtask 4.2.3 Equilibria, stability, 3 points

Calculate the equilibria of the reduced model. Use the Jacobian matrix to examine the equilibrium
pS̄, Īq “ pN, 0q with respect to stability. Under which condition is it attractive? Interpret your result.

Subtask 4.2.4 Enhancement to birth-death process, 1 point

The above model is unrealistic in various ways. Generalise the system of equations by including
births and deaths of individuals. Use µ as a constant rate of birth and death per individual. Which
assumption do you make?

4 – 2
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Exercise 5.1 Blood-cell model

Most types of blood cells are formed from primitive bone marrow stem cells. Until today, the exact
production process of blood cells has not yet been sufficiently understood. However, it is known
that the production rate depends on the cell density yptq. A model that has very well described the
measured cell density is based on the equation

9y “
bθny

θn ` yn
´ cy “ ppyq ´ cy,

where b, θ, c, n ą 1 are positive parameters with b ‰ c and ppyq “ bθny
θn`yn indicating the production

rate of blood cells.

Subtask 5.1.1 Transformation of the differential equation

Show that, via the subtitution y “ uθ, the equation above may be transformed into:

9u “
bu

1` un ´ cu. (1)

Subtask 5.1.2 Equilibria, stability

Find all equilibria and calculate their stability.

5 – 1



Home exercise

Exercise 5.2 Diploid selection equation

Consider the following differential equation

9x “ γx2p1´ xq ´ ux “ gpxq

with parameters u, γ ą 0.
(This is the so-called diploid selection equation for a recessive allele.)

Subtask 5.2.1 , 1 point

Determine the equilibra; distinguish the cases u ă 1
4γ and u ą 1

4γ (you need not consider the case
u “ 1

4γ).

Subtask 5.2.2 , 1 point

Sketch the phase line diagram and determine the stability of the equilibria, individually for the two
cases in 5.2.1. (Hint: Since g is a polynomial, 5.2.1 already gives you the required information; no
further calculation is needed.)

Subtask 5.2.3 , 1 point

Represent the equilibria and their stabilities graphically as a function of u.

Exercise 5.3 BRN SIR

Subtask 5.3.1 , 1 point

Consider again the SIR model of Exercise 4.2.
Calculate its basic reproduction number, that is, the mean number of secondary cases induced by a
single infected individual introduced into an otherwise susceptible population.

Subtask 5.3.2 , 1 point

Consider now the following modified version of the SIR model

dS

dt
“ ´βSI ` γR

dI

dt
“ βSI ´ νI

dR

dt
“ νI ´ γR ,

again with Nptq :“ Iptq ` Sptq `Rptq ” N .
Calculate R0 for this model. What is different, and why?

5 – 2
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Exercise 6.1 IVP 9y “ cy2, determine solution and validate it

Solve the initial value problem
9y “ cy2, ypt0q “ y0 ą 0, c ą 0

via separation of variables. Does the solution exist for all t ą t0?

6 – 1



Home exercise

Exercise 6.2 Vaccination , 1 point

Consider some infection model with a given R0. Consider now the case that at the beginning a share
v of the population is vaccinated. What is the value of the new reproduction number, Rv? How big
must v be to avoid an outbreak? Calculate the proportion of vaccinated people necessary to prevent
the spread of the disease. Evaluate this proportion explicitly for the case of measles (R0 “ 15 without
vaccination) and smallpox (R0 “ 6 without vaccination).

Exercise 6.3 Exponential transformation , 4 points

Consider the differential equation

9y “ ´syp1´ yq ` up1´ yq ´ vy, y P r0, 1s .

Consider now the following quantities obtained from y via

z0ptq :“
`

1´ yptq
˘

fptq
z1ptq :“ yptq fptq

where fptq “ e
şt
0 sp1´ypτqqdτ .

Find the system of differential equations that is satisfied by zptq “
`

z0ptq, z1ptq
˘

.
Interpret this system in terms of a population model with two types of individuals that reproduce and
mutate.
Express yptq and 1´ yptq as functions of zptq. So what is the meaning of yptq and 1´ yptq in terms of
thte population model?
Also give an interpretation of fptq in terms of the population model.

6 – 2
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Exercise 7.1 Fitzhugh–Nagumo model with additional coefficients

Consider again the Fitzhugh–Nagumo model, that is

d

dt
v “ ´vpv ´ aqpv ´ 1q ´ w

d

dt
w “ εpv ´ γ wq.

(2)

In the right-hand side of the equation for v, the coefficients seem to be missing; it may seem more
appropriate to formulate the model as

d

dτ
ṽ “ ´β̃ rṽpṽ ´ aqpṽ ´ 1q ´ α̃ w̃s ,

d

dτ
w̃ “ ε̃pṽ ´ γ̃ w̃q.

(3)

Here, τ “ u t is a new time variable, and α̃ and β̃ are additional parameters. Starting from (3), we
want to obtain (2) for vptq “ ṽpτq and wptq “ α̃ w̃pτq. How do we have to choose u, ε̃, and γ̃?

7 – 1



Home exercise

Exercise 7.2 Fishing , 3 points

Consider a fish population that grows logistically (with reproduction rate r ą 0 and competition
paramter γ ą 0) and is fished at rate µ with 0 ă µ ă r, so its size evolves according to

9x “ rx´ γx2 ´ µx .

Determine the equilibria and their stability. Then determine the fishing rate µ˚ that maximises the
yield at the stable equilibrium. What is the equilibrium population size at µ “ µ˚? Compare it with
the equilibrium size of the population without fishing, that is, for µ “ 0. Why does the result make
sense?

Exercise 7.3 Original Fitzhugh model

The original model by Fitzhugh was a bit different from the one presented in the lecture, namely:

dx

dt
“ c

ˆ

y ` x´
1
3x

3 ´ I

˙

,

c
dy

dt
“ a´ x´ by.

Here, x is the membrane potential (analogous to v in the lecture), and y is a ‘relaxation variable’,
such as the opening state of the potassium channel. I is the input (current, taken to be constant),
and a, b, and c are positive parameters with b ă c, b ă 1, b ă c2.

Subtask 7.3.1 2 points

Calculate the Jacobian at an equilibrium point px̄, ȳq. (Assume x̄, ȳ as parameters, without calculating
the equilibrium explicitly.) Show that the equilibrium is stable if

b

c
´ c

`

1´ px̄q2
˘

ą 0, 1´ b
`

1´ px̄q2
˘

ą 0.

Subtask 7.3.2 1 point

Show that the equilibrium is unstable if and only if´γ ă x̄ ă γ, where γ “
b

1´ b
c2 .

Subtask 7.3.3 1 point

Show that, due to the condition in 7.3.2, for any unstable equilibrium px̄, ȳq, x̄ must be between the
local minimum and the local maximum of the x-nullisocline.

7 – 2
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Exercise 8.1 Luria-Delbrück: variance

Verify the statement made in the lecture:
For the Luria-Delbrück experiment, one has

VpZq “
T
ÿ

t“1
VpY ptqq “ p2T ´ 1qNpp1´ pq.

[Hint: geometric series] [!]

8 – 1



Home exercise

Exercise 8.2 Equilibria of simple infection model , 1 point

Consider again the simple infection model of Exercise 1.3, that is,

9p “ αpp1´ pq ´ µp .

You already know its equilibria and their stability. Represent them graphically as a function of µ.

Exercise 8.3 Finite number of replicates, 3 points

In the lecture, we considered expectation and variance of the number of mutation events and the
number of mutated cells in the Luria-Delbrück model.
Expectation and variance are theoretical quantities, which would be observed if the experiment were
repeated an infinite number of times. In the true experiment, however, only a finite number of
replicates can be performed.
Let us therefore consider the effect of a finite number of replicates.

1. Assume that we have C parallel cultures. Under the hypothesis of spontaneous mutations, cal-
culate the probability that the first mutation event (over all C cultures) happens in generation t.

2. Plot the resulting distribution of time points for p “ 10´7 and C “ 10, 100, 1000, 10000.

3. Discuss your result in terms of the evaluation of the Luria-Delbrück experiment.
[Hint: Remember, that ErY ptqs “ Np is indenpendent of t.] [!]

Exercise 8.4 Voltage clamp, 3 points

Consider the voltage-clamp experiment, where the membrane potential is stepped from the resting
potential νr “ 0 to some given value ν̄ and fixed there (via a feedback amplifier). Show that, under
the original Hodgkin–Huxley model, the probability pptq of a gating-particle to be “on” is given by

pptq “ p̄´
`

p̄´ pp0q
˘

e´
`

αppν̄q`βppν̄q
˘

t , (4)

where p P tm,n, ku . It is assumed that the voltage step has happened at t “ 0. Furthermore, pp0q
and p̄ are given by pp0q “ αpp0q

αpp0q`βpp0q
and p̄ “ αppν̄q

αppν̄q`βppν̄q
.

8 – 2
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Exercise 9.1 Expectation and variance: new assumptions concerning mutation

Calculate EpZq and VpZq in the Luria-Delbrück model if

1. mutated cells only divide every second generation

2. mutated cells do not divide at all any more.

9 – 1



Home exercise

Exercise 9.2 n-step transition probability

The most general two-state Markov chain has transition matrix of the form

P “

ˆ

1´ α α
β 1´ β

˙

, α, β ě 0 ,

as represented by the transition graph

Subtask 9.2.1 , 2 points

Show that pPnq11 “ PpXn “ 1 |X0 “ 1q satisfies the recursion

pPn`1q11 “ p1´ α´ βqpPnq11 ` β, pP
0q11 “ 1 . (5)

[Hint: Pn`1 “ PnP for n ě 0.] [!]

Subtask 9.2.2 , 2 points

Show that the (unique) solution of (5) is given by

pPnq11 “

#

β
α`β `

α
α`β p1´ α´ βq

n, α` β ą 0 ,
1, α` β “ 0 .

(6)

Exercise 9.3 virus mutation , 2 points

Suppose a virus can exist in N different strains and in each generation either stays the same, or with
probability α ą 0 mutates to another strain, which is chosen at random. What is the probability that
the strain in the nth generation is the same as in the 0th?
To approach the problem, use the symmetry present in the mutation model to describe the process
via two-state Markov chain (with states “initial” and “other”), so that you can then use part (9.2.2).

9 – 2
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Exercise 10.1 Competition model

The following system of differential equations

9x “ xp1´ 2x´ yq
9y “ yp2´ y ´ xq

describes the competition between two populations.

Subtask 10.1.1 Explanation, ODE for symbiosis

First, explain why this is a competition model. Next, write down a differential equation system that
describes the symbiosis of two populations.

Subtask 10.1.2 Geometrical analysis and biological interpretation

Consider now your symbiosis model. Calculate and draw the nullisoclines and equilibria. Indicate the
directions of the vector field and draw conclusions about the stability of the equilibria. Draft some
solutions in the x-y plane. Also draft the time course for an initial value of your choice.
Finally, interpret your results biologically.

10 – 1



Home exercise

Exercise 10.2 n-step transition matrix , 2 points

Consider again the two-state Markov chain of Ex. (9.2) and calculate its n-state transition matrix Pn
(ignore the trivial cases α “ β “ 0 and α “ β “ 1). What is limnÑ8 P

n? What can you conclude
about the long-term behaviour of the chain?

Exercise 10.3 diagonalisation of Markov transition matrix , 4 points

Consider the Markov transition matrix

P “

¨

˚

˚

˝

1 0 0
1
2 0 1

2

1
2

1
2 0

˛

‹

‹

‚

.

Calculate its eigenvalues and eigenvectors and use them to diagonalise P , that is, to write P in the
form

P “ UΛU´1 , (7)

Λ a diagonal matrix that holds the eigenvalues. Use (7) to calculate Pn explicitly; write out the
intermediate steps. Read off the long-term behaviour.

10 – 2
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Exercise 11.1 Luria-Delbrück, start with M cells

Let us go back once more to the Luria-Delbrück experiment, more precisely to its initial condition.
Indeed it could never be guaranteed that the culture started with exactly one sensitive cell. It was
rather a culture of a small (but unknown) number M of cells, of whom one or more may have been
resistant.

Subtask 11.1.1

Assume that the culture starts withM sensitive cells. Calculate ErZs and VrZs for the case of directed
and the case of spontaneous mutation.

Subtask 11.1.2

What can we say about Z (again for the ’directed’ and the ’spontaneous’ case each)? (There is no
need to do a calculation here; a qualitative statement is sufficient.)
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Home exercise

Exercise 11.2 warm-up absorption probabilities Markov chain , 2 points

Consider the Markov chain pXnqně0 with the following transition graph:

Calculate the absorption probabilities

ai :“ P
`

pXnqně0 absorbs in 4 |X0 “ i
˘

[Hint: Write down the first-step decomposition together with the boundary conditions, and solve the
resulting linear system.] [!]

Exercise 11.3 Absorption probabilities , 4 points

Calculate the absorption probabilities of the random walk pZjqjě0 with increments `1 and ´1 with
probabilities 0 ă p ă 1{2 and q “ 1 ´ p, respectively, and absorbing states ´1 and y ą 0. Namely,
calculate the probabilities

ai :“ P
`

pZjqjě0 absorbs in y | Z0 “ i
˘

, ´1 ď i ď y ,

via a first-step analysis (and taking into account the boundary conditions). In particular, verify that

a0 “
1´ pq{pq´1

pq{pqy ´ pq{pq´1

as stated in the lecture.
[Hint: Use the first-step equation to express ai`1 ´ ai as a function of ai ´ ai´1 and thus of a0. Then
use a telescopic sum to express ai in terms of a0. Finally, use the boundary condition at y to find a0.] [!]
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Presence exercise

Exercise 12.1 Mulitype Wright–Fisher model

Up to now we have only considered genetic drift for two types (for example A, a). Consider now the
Wright–Fisher model with K types. Let Xpiqn be the number of individuals of type i in generation
n, i “ 1, . . . ,K such that ΣK

i“1X
piq
n “ N . The next generation is then constructed as follows: Each

individual draws (with replacement) its parent from the previous generation and inherits its type.
Find the probability, that the next generation consists of j11 individuals of type 1, . . . , j1K individuals
of type K, where pΣij

1
i “ Σiji “ Nq. Thus give the probability

PpXn`1 “ j1 | Xn “ jq

with Xn “ pX
p1q
n , . . . , X

pKq
n q, j “ pj1, . . . , jKq, and accordingly for j1.

12 – 1



Home exercise

Exercise 12.2 Typefrequency under genetic drift

Subtask 12.2.1 2 points

Genetic drift in a population of size 1 corresponds to repeated self-fertilisation. Consider a population
that consists of self-fertile heterozygote plants that all start with genotype Aa in generation 0. In
every generation, one offspring is chosen at random from every parental plant. The vector ppnq “
p
pnq
AA, p

pnq
Aa , p

pnq
aa contains the frequencies of the genotypes in the n-th (discrete!) generation. How does

the transition matrix P read for the number of A alleles in a given line (that is, every given population
of size 1)? Use P to calculate pp1q, pp2q, andpp3q. Conclude the general expression for ppnq.

Subtask 12.2.2 1 point

Calculate the expected time until a given line is homozygous.

[Hint: The offspring of a heterozygous individual is homozygous with probability 1/2. What is the
distribution of the number of generations until a homozygous state is achieved?] [!]

Exercise 12.3 Two-state Markov chain in continuous time, 3 points

Consider the Markov chain in continuous time characterised by the transition graph 1
µ
á
â
λ

2. Write
down the rate matrix Q and calculate the corresponding Markov semigroup P ptq.
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