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Introduction, Overview and
Historical Remarks

This book grew out of a course taught at the Toyota Technological Institute at
Chicago designed to raise the level of mathematical maturity of students study-
ing machine learning. The first half of the book develops Boolean type theory
— a type-theoretic formal foundation for mathematics designed specifically for
this course. Boolean type theory allows much of the content of mathematical
maturity to be formally stated and proved as theorems about mathematics in
general. The second half of the book is a series of case studies in particular
mathematical concepts illustrating the general principles developed in the first
half. The topics in these case studies have been selected so as to be relevant to
machine learning and emphasize topics related to linear algebra.

Students are usually expected to attain maturity by taking introductory
classes such as discrete mathematics, real analysis, or linear algebra. The con-
tent of mathematical maturity is somehow implicit in these courses. This book,
on the other hand, directly formulates much of the content of mathematical
maturity allowing this content to be explicitly taught.

A first hallmark of maturity is the ability to distinguish statements that
are well formed from those that are not. For example, a statement involving
a sum of a scalar and a vector is not well formed — we can add two vectors
but we cannot add a vector and a scalar. The general notion of well-formedness
fundamentally involves types. For example, the types “scalar” and “vector”. A
fundamental property of mathematics is its ontological richness — the richness of
types occurring in mathematical discourse. One can talk about integers, reals,
groups, rings, fields, vector spaces, Hilbert spaces, Banach spaces and so on.
Well-formedness is formulated here in terms of a type system for mathematics.

A second hallmark of mathematical maturity is an intuitive understanding of
the notion of isomorphism. Isomorphism is meaningful for every kind of math-
ematical object. We have isomorphic groups, graphs, fields, topological spaces,
differentiable manifolds and so on. Every mathematical mature person knows,
for example, that no well-formed statement about an abstract graph can distin-
guish between isomorphic graphs. The type theory developed here formulates
a general principle of substitution of isomorphics — two isomorphic objects are
substitutable for each other in type-theoretically well formed contexts.

vii



viii INTRODUCTION, OVERVIEW AND HISTORICAL REMARKS

The notion of isomorphism is related to the notion of an abstract interface
in computer programming. An abstract interface specifies what information
and behavior an object provides. Two different implementations can produce
identical behavior as viewed through an abstract interface. An example of this
is given by the real numbers. Textbooks on real analysis typically start from ax-
ioms involving multiplication, addition, and ordering. Addition, multiplication
and ordering define an abstract interface — the well-formed statements about
real numbers are limited to those that can be defined in terms of addition, mul-
tiplication and ordering. We can implement real numbers in different ways —
as Dedekind cuts or Cauchy sequences. However, these different implementa-
tions provide identical behavior as viewed through the interface — the different
implementations are isomorphic. The axioms of real analysis specify the reals
up to isomorphism.

A third hallmark of mathematical maturity is the ability to recognize the ex-
istence, or non-existence, of canonical objects. For example, there is no canon-
ical basis for a vector space — any two choices of basis are isomorphic and
hence indistinguishable by vector-space properties. There is also no canonical
inner product operation on a vector space and no canonical isomorphism of
a vector space with its dual. Mathematically mature people understand the
general concept of isomorphism, understand that isomorphic objects are inter-
substitutable, and understand that when different choices are isomorphic to each
other no canonical choice exists.

A fourth hallmark of mathematical maturity is the ability to recognize equiv-
alent definitions. For example, a group can either be defined as a pair of a set
and a binary group operator satisfying certain existential statements, e.g., that
an inverse operation exists, or as a four tuple of a set, a binary operator, an
inverse operator, and an identity element satisfying certain equations. A math-
ematically mature person recognizes that these definitions are equivalent and
the choice is of no consequence.

Most mathematicians today recognize Zermelo-Fraenkel set theory with the
axiom of choice (ZFC) as the foundation of mathematics. Unfortunately, ZFC
does not illuminate the working mathematicians notion of a well formed state-
ment. It is common in set theory to define the natural numbers by identifying
zero with the empty set and identifiing n+ 1 with the set containing the single
element n. We then have, for example, 4 ∈ 5. But any working mathematician
would agree that 4 ∈ 5 is not a well formed statement of arithmetic — it vio-
lates the abstraction barrier, or abstract interface, normally associated with the
natural numbers.

The second half of this book develops a variety of case studies in types,
isomorphism, and type equivalence. The case studies have been selected for
their relevance to the field of machine learning. Linear algebra is central to
the mathematics of machine learning. Using the general notion of isomorphism
developed in the first half of the book we formally prove that a vector space has
no canonical basis (no canonical coordinate system), no canonical inner prod-
uct, and no canonical isomorphism with its dual. We also consider the ques-
tion of which well-known vector-space algorithms of machine learning require
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an ambient inner product and which do not. Newton’s method, least squares
regression, covariance matrices, the central limit theorem, and canonical cor-
relation analysis (CCA) do not assume any ambient inner product. Principle
component analysis (PCA), gradient descent, and L2 regularization all assume
an ambient inner product. There is a also a presentation of Hilbert spaces and
Banach spaces. The book ends with a consideration of invariance to nonlinear
coordinate transformations including a presentation of differentiable manifolds,
Riemannian manifolds, information geometry, natural gradient descent, and Jef-
fery’s prior.

This book gives very little discussion of related work or references to recent
type-theoretic literature. Most literature related to the first part of the book
involves type systems for computer programming languages. A discussion of
programming languages would be a distraction from the central theme of for-
malizing aspects of mathematical maturity. The case studies in the second part
of the book present quite standard elementary material and references can be
found easily found elsewhere if desired.

Although this book has only limited references to related work, some basic
historical remarks are in order. Types were central to Whitehead and Russell’s
Principia Mathematica published in 1910. This type system was motivated
by the need to avoid set-theoretic paradoxes (Russell’s paradox) and did not
establish a notion of isomorphsm or a principle of substition of isomorphics.
The type-theoretic approach to avoiding paradoxes was supplanted by Zermello-
Fraenkel set theory with the axiom of Choice (ZFC) which appeared in its final
form in the early 1920’s. While ZFC is generally accepted today as capturing the
fundamental principles of mathematical proofs, as mentioned above it is untyped
and does not provide abstraction barriers preventing access to implementation
details.

The intuitively clear fact that a vector space does not have a canonical basis,
or a canonical inner product, has come to be formally explained with the con-
cepts of category theory. The desire to formalize the non-existence of a canonical
isomorphism between a vector space and its dual was given in the opening para-
graph of the original 1945 Eilenberg and MacLane paper introducing category
theory. However, the category-theoretic formulation of such statements is not
derived from type-theoretic abstraction barriers imposed by the type-theoretic
definition of the objects involved. Category theory plays no role in this book.

While axiomatic set theory largely supplanted type theory as a foundation
of mathematics for most working mathematicians, type theory has continued
to evolve as an alternative foundation. This evolution has largely focused on
constructive mathematics starting from a 1934 observation by Curry that impli-
cation formulas P ⇒ Q (that statement P implies statement Q) can be placed
in correspondence with function types σ → τ (the type of a function mapping
objects of type σ to objects of type τ). This has become known as the Curry-
Howard isomorphism or the formulas-as-types paradigm. The Curry-Howard
isomorphism for propositional logic was extended to a full constructive foun-
dation for mathematics by Coquand and Huet in 1988. The resulting system
is called the calculus of construction (COC) and is the foundation of the Coq
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interactive theorem prover which is in wide use as of this writing.
The constructive mathematics underling the axiomatic system COC, and

the software system Coq, requires that in proving the existence of an object
one must give an explicit method of constructing or exhibiting it. While most
mathematicians agree that constructive proofs provide more information than
non-constructive proofs, non-constructive proofs are still generally accepted as
(also) valid and most working mathematicians today see no reason to disallow
them. In contrast to the formulas-as-types paradigm of constructive mathemat-
ics, Boolean type theory adopts a classical formulas-as-Booleans paradigm. The
formulas-as-Booleans paradigm imposes a Boolean abstraction barrier on for-
mulas — a formula denotes a truth value and hence provides only a single bit of
information. This Boolean abstraction barrier on formulas appears to be essen-
tial to the principle of substitution of isomorphics. Constructive mathematics
and the formulas-as-types paradigm play no role in this book.

Types are clearly important in computer programming and type theory has
evolved that context. In 1983 John Reynolds published his abstraction theorem
which is related to the principle of substitution of isomorphics developed here.
But Reynolds’ abstraction theorem is based on the notion of a logical relation
rather than the working mathematician’s notion of isomorphism. Logical re-
lations arise in programming because programming languages do not support
equality at function types or universal or existential quantification at infinite
types. Logical relations are in one way more general than isomorphisms —
they handle the case where an interface disallows equality and/or quantifica-
tion. But in another respect logical relations are less general — they do not
properly handle the form of structure types (dependent sum types) found in
working mathematics.

This book is not the final word in type-theoretical mathematical foundations.
A more complete treatment would handle homomorphisms and Reynolds’ notion
of logical relation as well as isomorphism. This book is intended to cover only
the most fundamental aspects of general mathematical maturity.
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Foundations
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Part I of this book gives a type-theoretic foundation for mathematics. At
a high level the foundation is simple — there are only types, truth values,
functions and structures. The most fundamental type is bool. Expressions of
type bool denote one of the values “true” or “false”. For example the expression
as 2 < 5 is true while the expression 2 > 5 is false. A function is a mapping from
an input type to an output type. If σ and τ are types then σ → τ is the type
whose instances are functions from instances of σ to instances of τ . The type
bool → bool is the type of functions mapping a truth value to a truth value.
A structure is an object that assigns values to symbolic “slots”. For example,
a pair of u and v will be written as 〈first← u; second← v〉. If p is the pair
〈first← u; second← v〉 then p.first equals u and p.second equals v. If τ and
σ are types then we write first :τ ; second :σ for the type whose instances are pairs
whose first component is a τ and whose second component is a σ. Finally we
have the type type where the instances of the type type are themselves types.
This allows us to define structures with slots containing types. For example, the
structure type α :type; f :α→ α is the type of structures M which assign values
to the symbols α and f and where M.α is a type and M.f is a function of type
M.α→M.α.

The first part of this book develops the notions of type, truth value, func-
tion, structure, structure isomorphism and the principle of substitution of iso-
morphics.
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Chapter 1

Boolean Logic

As a foundation for mathematics, Boolean type theory is defined by inference
rules. These inference rules formally define a general notion of a mathematical
proof. As in high school geometry, a proof in mathemamtics generally is a se-
quence of lines where each line is derivable from previous lines by an application
of an inference rule. The inference rules defining Boolean type theory are writ-
ten in red in figures. For example figure 1.1 gives rules for introducing types
and variable declarations. Figure 1.2 gives the inference rules of Boolean logic.

Boolean type theory involves types, truth values, functions and structures.
This chapter introduces types and truth values.

1.1 Types, Sequents and Inference Rules

An expression of the form e : τ states that the expression e has type τ . For
example, using Z to represent the type of integers, we have that x :Z states that
the variable x has type integer. If σ and τ are types then σ → τ is the type of
functions from σ to τ . For example f :Z→ Z says that f is a function mapping
integers to integers. A sequent is an expression of the form Σ ` Φ where the
symbol ` can be read as “implies”. For example we might have the following
where Z is the type of integers.

x :Z; f :Z→ Z ` f(x) :Z

This says that if x is an integer, and f is a function from integers to integers,
then f(x) is an integer. In general Σ ` Θ can be read as “if Σ then Θ”.

Boolean type theory consists of inference rules. These inference rules define
both the notion of well-formedness and the notion of proof. For example, the
following is a special case of a rule for constructing well formed terms.

Σ ` e :Z
Σ ` f :Z→ Z

Σ ` f(e) :Z

5
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In general an inference rule consists of a series of sequents above the line
called antecedents and a series of sequents below the line called conclusions.
A rule states that if we can derive each antecedent sequent then we can also
derive each conclusion sequent. A rule with two conclusions is equivalent to
two rules — one rule for each conclusion where both rules have the same set of
antecedents.

The above rule states that if, in the context Σ, one can derive that e is an
integer, and also that f is a function from integers to integers, then one can
derive that f(e) is an integer.

1.2 Type Variables

The following sequent avoids the use of the pre-defined type INT by declaring
a type variable.

α :type; x :α; f :α→ α ` f(x) :α

This sequent asserts that if α is a type, x is an α, and f is a function from α
to α, then f(x) is also an α. In this sequent each of α, x and f are variables.
Each variables is declared to be of a certain type. The variable α is called a
type variable and is declared to range over types. The variable x ranges over
instances of the type α and the variable f ranges over functions from α to α.

Here the symbol type is itself being used as a type — it is the type of
the variable α. We are tempted to write type : type. Unfortunately this
assertion leads to a form of Russell’s paradox — the inference system becomes
inconsistent. To avoid paradoxes we write type0 : type1 and more generally
typei :typej for j > i. All occurrences of the symbol type must be subscripted
and we must rewrite the above sequent as, for example, the following.

α :type0; x :α; f :α→ α ` f(x) :α

The type type0 is an instance of the type type1; type1 is an instance of
type2; and so on. We take type0 to contain only finite types. An inference
rule expressing the finiteness of types in type0 is given in section 3.4.

1.3 Rules for Declaring Variables

Figure 1.1 gives rules for declaring variables. In the base case rule we use ε to
denote the empty context. A derivation is a sequence of numbered lines where
each line is derived from previous lines using an inference rule. For example, we
have the following.

1 ε ` type1 :type2 Base Case Rule

2 ε; α :type1 ` α :type1 type var. declaration from 1

3 ε; α :type1; x :α ` x :α term var. declaration from 2

4 ε; α :type1; x :α ` α :type1 judgement promotion from 3,2

5 ε; α :type1; x :α; y :α ` y :α term var. declaration from 4
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Base Case Rule:

j > i

ε ` typei :typej

Variable Declaration:

Σ ` τ :typei
x is a variable not in Σ

Σ ; x :τ ` x :τ

Judgement Promotion:

Σ ` Φ
Σ ; Ψ ` Ψ

Σ ; Ψ ` Φ

Type Promotion:

Σ ` τ : typei
j > i

Σ ` τ :typej

Figure 1.1: Declaring Variables.

1.4 Rules for Boolean Logic

The type bool is the type of well formed statements. Expressions of type bool
are called formulas. Formulas have truth values — if we assign a meaning
to all the variables declared in Σ consistent with their declared types then
every formula constructed from those variables has a well defined truth value.
Inference rules for Boolean logic are given in figure 1.2. The following derivation
is an example of the application of these rules. The empty context ε is not shown.

1 ` bool :type1 boolean type formation

2 P :bool ` P :bool term var. declaration from 1

3 P :bool ` ¬P :bool negation formation from 2

4 P :bool; P ` P assumption formation from 2

5 P :bool; P ` P ∨ ¬P disj. deriv. from 4,3

6 P :bool; ¬P ` ¬P assumption formation from 3

7 P :bool; ¬P ` ¬P ∨ P disj deriv. from 6,2

8 P :bool; ¬P ` P ∨ ¬P disj symmetry from 7

9 P :bool ` P ∨ ¬P case analysis from 5,8

In some cases a derivation will start with one or more unjustified lines as in
the following. Judgement promotion steps are not shown.
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Boolean Type Formation:

ε ` bool :type0

Assumption Formation:

Σ ` Φ:bool

Σ ; Φ ` Φ

Disjunction Formation:

Σ ` Φ:bool
Σ ` Ψ:bool

Σ ` (Φ ∨Ψ):bool

Disjunction Derivation:

Σ ` Φ:bool
Σ ` Ψ:bool
Σ ` Φ

Σ ` Φ ∨Ψ

Disjunction Symmetry:

Σ ` Ψ ∨ Φ

Σ ` Φ ∨Ψ

Conjunction Derivation:

Σ ` ¬Φ
Σ ` ¬Ψ

Σ ` ¬(Φ ∨Ψ)

Negation Formation:

Σ ` Φ:bool

Σ ` ¬Φ:bool

Double Negation:

Σ ` Φ:bool
Σ ` Φ

Σ ` ¬¬Φ

Case Analysis:

Σ ; Φ ` Ψ
Σ ; ¬Φ ` Ψ

Σ ` Ψ

Cut:

Σ ` ¬Φ
Σ ` Φ ∨Ψ

Σ ` Ψ

Figure 1.2: Inference Rules for Boolean Logic. Here we take ∨ (or) and ¬ (not)
to be primitive and treat Φ ∧ Ψ (and) as an abbreviation for ¬(¬Φ ∨ ¬Ψ); Φ ⇒ Ψ
(implies) as an abbreviation for ¬Φ∨Ψ and Φ⇔ Ψ (if and only if) as an abbreviation
for (Φ⇒ Ψ) ∧ (Ψ⇒ Φ).
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1 Σ ` Φ:bool hypothesis

2 Σ ` Ψ:bool hypothesis

3 Σ; Φ ` Ψ hypothesis

4 Σ; Φ ` ¬Φ:bool negation formation from 1

5 Σ; Φ ` Ψ ∨ ¬Φ disjunction derivation from 3,4

6 Σ; Φ ` ¬Φ ∨Ψ disjunction symmetry from 5

7 Σ ` ¬Φ:bool negation formation from 1

8 Σ; ¬Φ ` ¬Φ assumption formation from 7

9 Σ; ¬Φ ` ¬Φ ∨Ψ disjunction derivation from 8,2

10 Σ ` ¬Φ ∨Ψ case analysis from 6,9

11 Σ ` Φ⇒ Ψ same as 10

This derivation justifies the following derived rule.

Implication Derivation:

Σ ` Φ:bool
Σ ` Ψ:bool
Σ; Φ ` Ψ

Σ ` Φ⇒ Ψ

Problem 1.1: Derive the following rule from the fact that impli-
cation is an abbreviaiton in terms of disjunction and negation, the
double negation rule and the cut rule.

Modus Ponens:

Σ ` Φ⇒ Ψ
Σ ` Φ

Σ ` Ψ

Problem 1.2: Use the implication derivation rule and the cut rule
to derive the following contrapositive rule.

Contrapositive:

Σ ` Φ:bool
Σ ` Ψ:bool
Σ; Φ ` Ψ

Σ; ¬Ψ ` ¬Φ

Problem 1.3: Use the contrapositive rule and the case analysis
rule to derive the following contradiction rule.
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Contradiction:

Σ ` Φ:bool
Σ ` Ψ:bool
Σ; Φ ` Ψ
Σ; Φ ` ¬Ψ

Σ ` ¬Φ



Chapter 2

Functions and
Quantification

Boolean type theory involves types, truth values, functions and structures. The
previous chapter introduced types and truth values (Boolean expressions). This
chapter introduces functions, absolute equality and universal and existential
quantification.

2.1 Functions

Figure 2.1 gives rules for forming function types and application terms. In this
section we consider only the two rules of function type formation and function
variable. The following derivation is an example of the application of these two
rules. This derivation omits some steps — see the comments in the next section.

1 α :type1 ` α :type1 type var. declaration

2 α :type1 ` (α→ α) :type1 function type form. from 1

3 α :type1; f :α→ α ` f :α→ α var. declaration from 2

4 α :type1; f :α→ α; x :α ` x :α var. declaration from 1

5 α :type1; f :α→ α; x :α ` f(x) :α function variable from 4,3

2.2 Abbreviated Derivations

It is not practical to write every step in derivations when we require that every
step be justified from previous steps by a single rule of inference. In practice
we give derivations as a sequence of lines where each line is justified by listing
previous lines (or previously proved theorems) from which the new line can be
derived in a straightforward but perhaps tedious way. The derivation in the
preceding section can be given as follows where we have deleted references to
particular rules of Boolean type theory.

11
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1 α :type1 ` α :type1

2 α :type1 ` (α→ α) :type1 1

3 α :type1; f :α→ α ` f :α→ α 2

4 α :type1; f :α→ α; x :α ` x :α 1

5 α :type1; f :α→ α; x :α ` f(x) :α 4,3

Given that some experience has been established with the basic rules in the
above derivation future derivations can be more abbreviated. For example we
might write the following derivation.

1 Σ;x :σ; f :σ → σ; g :σ → τ ` f(x) :σ

2 Σ;x :σ; f :σ → σ; g :σ → τ ` f(f(x)) :σ 1

3 Σ;x :σ; f :σ → σ; g :σ → τ ` f(f(f(x))) :σ 2

4 Σ;x :σ; f :σ → σ; g :σ → τ ` g(f(f(f(x)))) :τ 3

The judgement as to whether a given step is straightforward is subjective.
When giving a proof in a published paper the author must anticipate the reader’s
notion of straightforwardness. When giving derivations on problem sets or ex-
ams one must try to predict the grader’s notion of straightforwardness. A
problem set or exam that asks a student to give a proof (a derivation) should,
in part at least, test the students ability to give the proof at an appropriate
level of detail.

2.3 Variable Substitutions

The second two rules in figure 2.1 involve lambda expressions. A lambda ex-
pression is a way of naming a particular function. For example the expression
(λ x : R x + x), where R is the type of real numbers, denotes the function f
from real numbers to real numbers satisfying f(x) = x + x. More generally
(λ x : τ e[x]) denotes the function f such that for any x of type τ we have
f(x) = e[x].

To formally define the inference rules for lambda expressions we need to
formally explain the notation e[x] and e[s]. This involves formally describing
the notions of free and bound variables and variable substitution. Although
we have not yet introduced universal and existential quantifiers, the notions of
free and bound variable are perhaps most naturally discussed in terms of these
quantifiers. The formula ∀x : τ Φ[x] expresses the statement that for all x of
type τ we have that Φ[x] holds where Φ[x] is a Boolean expression (a formula)
involving the variable x. The formula ∃x : τ Φ[x] expresses the statement that
there exists an x of type τ such that Φ[x] holds.

The meaning of an expression depends on the meaning of its free variables.
For example, let x and y be variables ranging over natural numbers. The formula
x = y is true for some assignments of values to x and y and false for other
assignments. But, given an asignment of values to both x and y, the formula
x = y has a well defined truth value. Now consider a formula of the form
∃x : τ Φ[x, y]. In this formula y is a free variable — the truth of the formula
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can depend on the value of y. For example consider ∃x :N x < y where N is
type of natural numbers (non-negative integers). This formula is true when y
is greater than zero but false when y is zero. However, x, unlike y, is not a free
variable of the formula ∃x : τ Φ[x, y] — to determine the value of the formula
we need only specify the value of y. The occurance of x in this formula is said
to be bound. More precisely, an occurance of a variable x in an expression e is
said to be bound if that occurance occurs inside a quantification over x.

If e and u are expressions and x is a variable we write e[x ← u] to denote
the expression which results from replacing all free occurrences of x in e with u
with renaming of bound variables in e to avoid the capture of free variables in
u. To see the need for the “renaming” clause consider the following.

(∃x :Z y = 2 ∗ x)[y ← 3 ∗ x]

This is the same as the following.

(∃z :Z y = 2 ∗ z)[y ← 3 ∗ x]

This is the renaming step. We have renamed the bound variable x to z. This
does not change the meaning of the existential formula. This renaming avoids
“capturing” x when the substitution is done. The results of the substitution is
then the following.

∃z :Z 3 ∗ x = 2 ∗ z

Without the renaming we would have gotten ∃x :Z 3 ∗ x = 2 ∗ x which is not
what we want.

Problem 2.1: Give the result of the subsitution (∀x :τ x = y)[y ←
x].

We will adopt the convention that when an expression e is first written as
e[x] and then later written as e[u] the latter occurrence is just an abbreviation
for the substitution e[x← u].

Lambda expressions also bind variables. Consider (λ x :N x + y). This is
the function fy such that fy(x) = x+y. The meaning of this lambda expression
depends on the value of y (which is a free variable of the expression). But we do
not need to specify any particular value for x in determining the meaning of the
lambda expression (λ x :N x+ y) — the function fy denoted by this expression
is determined by the value of y. In general a lambda expression (λ x : τ e[x])
quantifies over the variable x so that all occurrances of x in e[x] are bound by
the lambda expression.

Problem 2.2: Give the result of the subsitution (λx :N x+ y)[y ←
x].
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2.4 Functions of More than One Argument

Functions of more than one argument can be modeled by Currying. More specif-
ically, consider a function f of two arguments and consider the term f(x, y).
Rather than use functions of two arguments we can define a function f ′ such
that f ′(x) is a function which maps y to f(x, y). We then have that f(x, y)
can be written as f ′(x)(y). In general a function f taking two arguments where
the first has type τ1 and the second has type τ2, and where f produces a value
of type σ, can be represented by a function f ′ : τ1 → (τ2 → σ). Functions
of three or more arguments can be handles similarly. We will sometimes write
τ1 × τ2 → σ as an alternate notation for τ1 → (τ2 → σ) and f(x, y) as an
alternate notation for f(x)(y). Using these notations we have the following.

α :type1; β :type1; x :α; f :α→ α; g :α× α→ β ` g(x, f(x)) :β

We will also use an abbreviated notion for lambda expressions of more than
one argument. The expression (λ (x : σ, y : τ) e[x, y]) will be used as an
abbreviation for (λ x :σ (λ y :τ e[x, y])).

2.5 Absolute Equality

The inference rule of beta reduction in figure 2.1 derives an equation. Inference
rules for equality are given in figure 2.2. Later chapters will develop structure
types and the notion of isomorphism. For example, we will be able to write
the type Graph and there will be an associated notion of isomorphism for
graphs. We will write G1 =Graph G2 to indicate that the graphs G1 and G2 are
isomorphic as graphs. In general x =τ y will mean that x and y are isomorphic
as instances of τ . Equations of the form x =τ y will be called type-relative
equalities. Type-relative equality is developed in chapter 3

The equalities in figures 2.1 and 2.2 are called absolute equalities in con-
trast to type-relative equalities. As explained in chapter 3, absolute equalities
violate abstraction barriers. For this reason absolute equalities are not Boolean
expressions — in Boolean type theory it is essential that Boolean expressions
not violate abstraction barriers. However, non-Boolean judgements, such as a
type judgement e :Z, or an absolute equation x = 5, play an important role in
Boolean type theory in spite of their violation of abstraction barriers.

2.6 Rules for Quantification

Figure 2.3 gives the fundamental rules for the quantifer ∀. We treat an existen-
tial formula ∃x :τ Φ[x] as an abbreviation for ¬∀x :τ ¬Φ[x]. We will also write
∀x :τ, y :σ Φ[x, y] as an abbreviation for ∀x :τ ∀y :σ Φ[x, y].

It turns out that it is technically convenient to express universally quantified
formulas in terms of predicates. This simplifies the inference rules. Rather than
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Function Type Formation:

Σ ` τ :typei
Σ ` σ :typei

Σ ` (τ → σ) :typei

Function Variable:

Σ ` f : (τ → σ)
Σ ` e :τ

Σ ` f(e) :σ

Function Instance Formation:

Σ ` τ :typei
Σ;x :σ ` e[x] :τ

Σ ` (λx :σ e[x]) : (σ → τ)

Beta Reduction:

Σ ` (λx :σ e[x]) :σ → τ
Σ ` s :σ

Σ ` (λx :σ e[x])(s) = e[s]

Figure 2.1: Functions. Type formation rules, instance formation rules, and
variable rules are given for many types. Although the variable rule allows f to
be any expression, it is particularly useful when f is a variable of type σ → τ .
The beta reduction rule derives an absolute equality. The inference rules for
absolute equality are given in figure 2.2.

Reflexivity of Equality:

Σ ` e :τ

Σ ` e = e

Symmetry of Equality:

Σ ` s = w

Σ ` w = s

Transitivity of Equality:

Σ ` s = w
Σ ` w = t

Σ ` s = t

Absolute Function Extensionality:

Σ ` f :σ → τ
Σ ` g :σ → τ
Σ;x :σ ` f(x) = g(x)

Σ ` f = g

Absolute Substitution:

Σ ` s = w
Σ ` Θ[s]

Σ ` Θ[w]

Figure 2.2: Absolute Equality. Absolute equality implies absolute substituability.
See chapter 3 for a discussion of the relationship between absolute equality and type-
relative equality.



16 CHAPTER 2. FUNCTIONS AND QUANTIFICATION

Forall Formula Formation:

Σ ; ` P :τ → bool

Σ ` (∀τ P ) :bool

Forall Utilization:

Σ ` (∀τ P )
Σ ` e :τ

Σ ` P (e)

Forall Derivation:

Σ ; ` P :τ → bool
Σ; x :τ ` P (x)

Σ ` (∀τ P )

Axiom of Choice:

Σ ` ∀x :τ ∃y :σ Φ[x, y]
x does not occur free in σ

Σ ` ∃f :τ → σ ∀x :τ Φ[x, f(x)]

Figure 2.3: Rules for Quantification. We take ∀x : τΦ[x] to be an abbreviation
for (∀τ(λx : τ Φ[x])). We use universal quantification as basic and treat the formula
∃x :τ Φ[x] as an abbreviation for ¬∀x :τ ¬Φ[x].

write ∀x : τ Φ[x] we write (∀τ(λx : τΦ[x])). This latter expression has the form
(∀τP ) where P is a predicate on τ , i.e., P has type τ → bool. The inference
rules are written in using predicates. These “simplified” rules have the property
that variables are bound by the lambda quantifiers inside predicates rather than
the universal and existential quantifiers of Boolean formulas.

Problem 2.3: Derive the following inference rules from those given
in figure 2.3. In the existential utilization the second and third
antecedent together imply that x does not occur in Ψ.

Existential Derivation:

Σ ; x :τ ` Φ[x] :bool
Σ ` e :τ
Σ ` Φ[e]

Σ ` (∃x :τ Φ[x])

Existential Utilization:

Σ ` ∃x :τ Φ[x]
Σ ; x :τ ; Φ[x] ` Ψ
Σ ` Ψ:bool

Σ ` Ψ



Chapter 3

Type-Relative Equality

One of our main objective is to enforce the abstraction barriers imposed by types
— well formed statements should not be able to distinguish isomorphic imple-
mentations. It turns out that preserving abstraction barriers requires careful
design of the inference rules. Consider the following problematic (and ill-formed)
predicate on graphs.

(λG :Graph ∃n :G.node n = 5) : Graph→ bool is ill-formed

If we can ask whether a general graph has a node equal to the number 5 then we
can distinguish isomorphic graphs. The equation n = 5 violates the abstraction
barrier. The following predicate is similarly problematic (and ill-formed).

(λG :Graph ∃n :G.node n :Z) : Graph→ bool is ill-formed

These predicates are ill-formed because absolute equalities u = w and type
judgements e : σ are not Boolean expressions. In Boolean type theory it is
essential that Boolean expressions not violate abstraction barriers.

In addition to absolute equalities, which violate abstraction barriers and are
not Boolean expressions, it is important to also have equalities that respect
abstraction barriers. This can be done by making equality type-relative. We
write s =τ w to mean that s is equal to w when s and w are considered as
elements of the type τ . If we have declared a type variable α : typei then we
can write equalities x =α y between instances x and y of type α. This allows us
to write equalities between nodes in a given graph. Equalities between nodes of
a given graph do not violate the graph abstraction barrier. Also, the equation
G =Graph G

′ states that G and G′ are isomorphic as graphs. This equation also
respects the graph abstraction barrier. Type-relative equalities are well formed
Boolean expressions.

This chapter also introduces subtypes. Subtypes play an important role in
Boolean type theory. For example, a standard way of constructing the real
numbers is to implement the type of real numbers as a subtype of Q → bool
(Dedekind cuts) where Q is the type of rationals. It is convenient to introduce

17
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Subtype Type Formation:

Σ ` τ :typei
Σ ` P :τ → bool

Σ ` TheSubtype(τ, P ) :typei

Subtype Variable:

Σ ` e :TheSubtype(τ, P )

Σ ` e :τ
Σ ` P (e)

Subtype Instance Formation:

Σ ` e :τ
Σ ` P :τ → bool
Σ ` P (e)

Σ ` e :TheSubtype(τ, P )

Figure 3.1: Rules for Subtypes.

subtypes before giving the rules for type-relative equality — using subtypes
we can define the type Bijection[σ, τ ] which is used in the inference rules for
type-relative equality at the type typei.

This chapter also introduces definite description of the form The(x :τ Φ[x])
which the “the” x of type τ satisfying the condition Φ[x]. Definite descriptions
are straightforward and convenient.

3.1 Subtypes

If τ is a type and P is a predicate on τ , i.e., a function of type τ → bool, then we
write TheSubtype(τ, P ) for the type whose instances are those instances x of τ
such that P (x) is true and where the equivalence relation on TheSubtype(τ, P )
is just the restriction of the equivalence relation on τ to the instances of the
subtype. Rules for subtypes are given in figure 3.1.

The following abbreviation is often convenient.

TheSubtype (x :τ | Φ[x]) ≡ TheSubtype (τ, (λx :τ | Φ[x] :bool))

As an example of a subtype we introduce the following notion of a bijection.

Bijection[α, β] ≡ TheSubtype (f :α→ β | ∀ y :β ∃! x :α y =β f(x))

∃!x :τ Φ[x] ≡ (∃x :τ Φ[x]) ∧ (∀x :τ, y :τ (Φ[x] ∧ Φ[y]⇒ x =τ y))

We can then write a variable declaration such as f :Bijection[α, β].

Problem 3.1: An injection from σ to τ is a function f : σ → τ
such that distinct inputs (as defined by =σ) yield distinct outputs
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Relative Equality is Boolean:

Σ ` s :σ
Σ ` w :σ

Σ ` (s =σ w) :bool

Reflexivity:

Σ ` e :τ

Σ ` e =τ e

Symmetry:

Σ ` e =τ w

Σ ` w =τ e

Transitivity:

Σ ` e =τ w
Σ ` w =τ s

Σ ` e =τ s

Equality at typei:

Σ ` τ :typei
Σ ` σ :typei
Σ ` ∃ Bijection[τ, σ]

Σ ` σ =typei τ

Equality at Function Types:

Σ ` f :σ → τ
Σ ` g :σ → τ
Σ ` ∀x :σ f(x) =τ g(x)

Σ ` f =σ→τ g

Equality at Subtypes:

Σ ` s :TheSubtype(τ, P )
Σ ` w :TheSubtype(τ, P )
Σ ` s =τ w

Σ ` s =TheSubtype(τ, P ) w

Substitution:

Σ ` f :σ → τ
Σ ` s =σ w

Σ ` f(s) =τ f(w)

Figure 3.2: Type-Relative Equality. Equalities between Booleans can be derived
from the reflexivity rule. Negations of equalities are proved using proof by contradic-
tion.



20 CHAPTER 3. TYPE-RELATIVE EQUALITY

(as defined by =τ ). Assuming that σ and τ are well formed types,
give a well-formed expression for the type Injection[σ, τ ]. Hint: you
have to use a subtype.

3.2 Type-Relative Equality

The inference rules for type-relative equality are shown in figure 3.2. The fol-
lowing series of problems give important properties of type-relative equality. It
is convenient at this point to introduce the Boolean constants True and False
as follows.

True ≡ ∃P :bool P

False ≡ ∀P :bool P

Problem 3.2: Give a derivations of ` True and ` ¬False.

Problem 3.3: Give a derivations of ` True =bool True and
` False =bool False.

Problem 3.4: Give a derivation of ` True 6=bool False. (Hint:
Use proof by contradiction and substitution).

Problem 3.5: Given a derivation of ` ∀P :bool (P =bool True)∨
(P =bool False).

Problem 3.6: Derive the following inference rule.

Disequation Symmetry:

Σ ` e 6=σ w

Σ ` w 6=σ e

The substitution rule is nontrivial. The formula G =Graph G′ does not
imply that G nd G′ are the same thing — G and G′ are merely isomorphic as
graphs. The substitution rules states that no well-formed function (or predicate)
defined on an arbitrary graph can distinguish between isomorphic graphs. This
is related to the meaning of the function type σ → τ . All instances of this type
must respect the equivalence relations =σ and =τ .

Problem 3.7: Use the substitution rule and lambda expressions to
derive the following variant of the substitution rule.
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Substitution Variant:

Σ ` τ :type
Σ; x :σ ` e[x] :τ
Σ ` s =σ w

Σ ` e[s] =τ e[w]

Problem 3.8: Derive the substitution rule in figure 3.2 form the
above substitution variant rule.

Problem 3.9: Derive the following rule.

Disequation Derivation:

Σ ` P :σ → bool
Σ ` P (e)
Σ ` ¬P (w)

Σ ` e 6=σ w

The rule for equality at typei states that two types are equal (isomorphic as
types) if they have the same cardinality (number of elements). The substitution
rule then implies that no predicate on types (which must be well formed for
an arbitrary input type) cannot distinguish between two types of the same
cardinality. For an arbitrary type declaration α :typei the type α has no visible
structure other than the number of distinct instances.

Problem 3.10: An equivalence relation is defined by reflexivity
(everything is equivalent to itself) transitivity and symmetry. A
partition of a type σ is a collection of subsets of σ (or predicates on
σ) such that every element of σ is contained in exactly one of those
subsets.

a. Consider P : σ × σ → bool. Give a well typed Boolean
expression involving P which is true if and only if P is an euivalence
relation on σ.

b. Consider Q : (σ → bool)→ bool. Give a well typed Boolean
expression involving Q which is true if and only if Q is a partition
of σ.

3.3 Definite Descriptions

If we can prove that there exists exactly one object with a given property then
it is convenient to have a term denoting that object. For this purpose we
introduce definite description terms of the form The(τ, P ) where P :τ → bool.
The inference rules for definite description terms are given in figure 3.3.
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Definite Description Formation:

Σ ` P :σ → bool
Σ ` ∃!x :τ P (x)

Σ ` The(τ, P ) :τ

Definite Description Utilization:

Σ ` The(τ, P ) :τ

Σ ` P (The(τ, P ))

Figure 3.3: Rules for Definite Descriptions. We will write The(x :τ Φ[x]) as an
abbreviation for The(τ, (λx : τ Φ[x])). We will also write The(τ) as an abbreviation
for The(x :τ True).

type0 Induction:

Σ ` P :type0 → bool
Σ ` P (EmptyType)
Σ; α :type0; P (α) ` P (SuccType[α])

Σ ` ∀α :type0 P (α)

Figure 3.4: Induction Rule for type0

Problem 3.11: Give an expression for a function if : bool×α×α→
α with the property that if(Φ,x,y) equals x if Φ is true and y
otherwise.

3.4 The Induction Rule for type0

Figure 3.4 gives an inference rule allowing us to infer that types in type0 are
finite. The inference rule is analogous to the induction rule for natural num-
bers and in fact the natural numbers are constructed from the type type0 in
chapter 7. The rule involves the following notations.

σ\x ≡ TheSubtype(y :σ y 6=σ x)

EmptyType ≡ The(α :type0 | ¬∃α)

SuccType[α] ≡ The(β :type0 ∃x :β ∃Bijection[α, β\x])

We omit the proof that the above definite descriptions are well formed.

Problem 3.12: Is the predicte (λG : Graph ∃n :G.node n : σ) a
well formed predicate on graphs? Explain your answer.



Chapter 4

Structures

For a well formed context Γ, i.e., a context Γ such that Γ ` True, we will write
Γ for the type of structures which assign values to the variables declared in Γ
in a way that satisfies the declarations and formulas in Γ. For example, we can
define the type finite DiGraph as follows.

DiGraph ≡ node :type0; edge : node× node→ bool

The type of finite undirected graphs can be defined as follows.

graph ≡ node :type0; edge : node× node→ bool; Φ

Φ ≡ ∀n :node ∀m :node edge(n,m)⇒ edge(m,n)

If G is a structure of type Γ and x is a variable declared in Γ, then we write
G.x for the value that G assigns to x. The inference rules for structures will
allow us to derive the following.

G :DiGraph ` (∀n :G.node ∀m :G.node G.edge(n,m)⇒ G.edge(m.n)) : bool

This sequent says that a certain formula involving G.node and G.edge is well
formed, i.e., is an expression of type bool.

We can construct a structure object of type Γ by specifying a value for each
variable declared in Γ. For example we can define the complete graph on a type
α as follows.

CompleteGraph[α] ≡ 〈node← α; edge← λ(n :α, m :α) True〉

As another example we define the natural number context ΓN to be the
following sequence of variable declarations and assumptions.

23
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N :type1; 0 :N ; s : N → N ;

¬∃ x :N 0 =N s(x);

∀x :N, y :N s(x) =N s(y)⇒ (x =N y);

∀P : (N → bool)
P (0) ∧ (∀x :N P (x)⇒ P (s(x)))
⇒ ∀x :N P (x)

We can define the natural numbers to be a structure satisfying these axioms,
i.e., a structure N such that ` N :ΓN

4.1 Forming Structure Types

The inference rules for structure type formation are given in figure 4.1. We first
focus on the empty structure rule and structure type formation rules A and B.
These antecedents are important only in the presence of the constructs intro-
duced in the appendices. The more complex rule of Structure Type Formation
C is discussed below.

The rules of structure type formation A and B mirror corresponding rules
for constructing well formed contexts. These rules can be used to construct the
following (abbreviated) derivation.

1 ` ε :type0 empty structure

2 ` ε :type1 type promotion from 1

3 ` node : type0 :type1 struct. type form. A from 2

4 ` node : type0; edge :node× node→ bool :type1 struct. type form. A from 3

5 ` node : type0; edge :node× node→ bool; Φ :type1 struct. type form. B from 4

Problem 4.1: The natural number context ΓN can written be as
follows where AN is a Boolean expression stating the axioms of the
natural numbers.

N :type1; 0 :N ; S :N → N ; AN

Give a derivation of ` ΓN :type2.

We now consider the rule of structure type formation C. The structure types
that have been considered so far are closed in the sense that they do not contain
free variables. In particular, if Γ ` True then every variable occurring in Γ
must be declared in Γ and this implies that there are no free variables in the
type Γ. This should be contrasted with a structure type such as PairOf [α, β]
which is type of pairs whose first component is an instance of the α and whose
second component is an instance of β. Here α and β are type variables and
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Structure Type Formation A:

` ε :type0

Structure Type Formation B:

` Γ :typei
Γ ` σ :typei
x is not declared in Γ

` Γ; x :σ :typei

Structure Type Formation C:

` Γ :typei
Γ ` Φ:bool

` Γ; Φ :typei

Structure Type Formation D:

` ∆; Γ :typei
Σ ` D :∆

Σ ` Γ∆(D) :typei

Figure 4.1: Structure type formation.

the meaning of the type PairOf [α, β] depends on the meaning assigned to the
free type variables α and β. There are no free variables of the type Graph —
the meaning of the type Graph does not depend on the meaning of any free
type variables. The rule of structure type formation C allows us to construct
structure types such as PairOf [α, β] which contain free type variables. For any
type expressions σ and τ we will use the rule of type formation C to construct a
representation of the type PairOf [σ, τ ]. We first consider the following context.

α :type1; β :type1; first :α; second :β

We can write this context as follows.

∆; Γ

∆ ≡ α :type1; β :type1

Γ ≡ first :α; second :β

Using the inference rules of structure formation A and B we can derive the
following for these particular ∆ and Γ

` ∆; Γ :type2

Now we will consider a context Σ and expressions σ and τ such that we have
the following sequents.

Σ ` σ :type1

Σ ` τ :type1



26 CHAPTER 4. STRUCTURES

Using the inference rules of structure formation in figure 4.2, discussed below,
we can derive the following sequent.

Σ ` 〈α← σ, β ← τ〉 :∆

Using the inference rule of structure type formation C we can then derive
the following sequent.

Σ ` first :α; second :β ∆(〈α← σ, β ← τ〉) :type2

The structure type first :α; second :β ∆(〈α← σ, β ← τ〉) is our representation
of the type PairOf [σ, τ ]. For a general structure type of the form Γ∆(D) we
can think of D as a substitution — it assigns values to the free variables of
Γ. One might think that we could simply apply the substitution and write, for
example, the type PairOf [σ, τ ] as first :σ; second :τ. But this is problematic if τ
contains first as a free variable. In general we cannot apply the substitution
implicit in the type Γ∆(D) because we cannot rename the bound variables of Γ
— the structure slot names — to avoid the capture of free variables in D.

As another example we can consider multisets (also known as bags). A
multiset (or bag) is a set in which a given item can occur more than once. We
can formalize the type BagOf [σ] as follows.

BagOf [σ] ≡ I :type0; f :I → α α :type1
(〈α← σ〉)

Chapter 5 will show that two bags of type BagOf [σ] are equal (isomorphic) if
for each x of type σ the two bags contain x the same number of times. The
type BagOf [σ] is perhaps the simplest nontrivial structure type involving both
a free type variable and a bound type variable.

Another example similar to bags is sequences. The type SequenceOf [σ]
can be defined as follows.

SequenceOf [σ] ≡ I :type0; ≤ :TotalOrderOn[I]; f :I → α α :type1
(〈α← σ〉)

Here the type TotalOrderOn[σ] is the type TheSubtype(R :σ×σ → bool | A)
where A is a Boolean expression stating that R is a total order on σ. Two se-
quences are equal if there is a bijection between their index sets which preserves
both ≤ and f .

4.2 Forming Structures

For the rules in figure 4.2 we adopt the convention that Γ is actually an abbre-
viation for Γε(〈〉). Under this convention we get the following special case of the
structure variable rule by taking ∆ to be ε and D to be 〈〉.
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Structure Variable:

Σ ` G :Γ∆(D)
∆; Γ ` Θ

Σ ` V∆;Γ JΘKD;G

Structure Instance Formation:

` ∆; Γ :typei
Σ ` V∆;Γ JΘKD;G ∀ Θ ∈ ∆; Γ

Σ ` G :Γ∆(D)

Structure Slot Reference:

Σ ` e1 :τ1 · · · Σ ` en :τn

Σ ` 〈x1 ← e1; · · · xn ← en〉 .xi = ei

Figure 4.2: Structure variable and instance formation rules. The struc-
ture type Γ is here taken to be an abbreviation for Γε(〈〉) so that we need only
consider structure types of the general form Γ∆(D). See the text for an expla-
nation of the notation V∆;Γ JΘKD;G.

Simple Structure Variable:

Σ ` G :Γ

Γ ` Θ

Σ ` VΓ JΘKG

In this rule G may be a variable declared in Σ to be of type Γ, hence the
name “variable rule”. For G a structure of type Γ we define VΓ JΘKG, which
we read as “the value of Θ in the structure G”, to be the following substitution
where z1, . . ., zn are all variables declared in Γ.

VΓ JΘKG ≡ Θ[z1 ← G.z1, . . . , zn ← G.zn]

For example let Γ be the context node : type0; edge : node × node → bool.
For G :Γ we have the following.

VΓ J∃ x :node edge(x, x)KG ≡ ∃ x :G.node G.edge(x, x)

The simple structure variable rule can be read as saying that if Γ implies Θ,
and G is a model of Γ in the sense that G assigns values to variables a way that
satisfies Γ, then Θ is true in G in the sense that Θ is true under the variable
values assigned by G.

As an example consider the natural number context ΓN defined at the be-
ginning of the chapter. We can instantiate the simple structure variable rule
with the particular natural number context ΓN to get the following rule.
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Natural Number Rule:

ΓN ` Θ
Σ ` N :ΓN

Σ ` VΓN
JΘKN

In this rule we have that N is an implementation of the natural numbers
— it specifies a type of numbers and a meaning for the constant 0 and the
successor function s. The rule says that any statement that is provable from
the context ΓN , i.e., provable from the axioms of arithmetic, is true for the
particular implementation N .

In the general structure variable rule in figure 4.1 we use the following ab-
breviation where u1, . . ., un are the variables declared in ∆ and z1, . . ., zm are
the variables declared in Γ.

V∆;Γ JΘKD;G ≡ Θ[u1 ← D.u1; , . . . un ← D.un; z1 ← G.z1; , . . . , zn ← G.zm]

Now we consider the structure formation rule. If we take ∆ to be the empty
context then the structure formation rule reduces to the following somewhat
simpler rule our convention that Γ is an abbreviation for Γε(〈〉).

Simple Structure Formation:

` Γ :typei
Γ declares y1, . . . , ym
G is 〈y1 ← s1; · · · ; ym ← sm〉
Σ ` VΓ JΘKG ∀ Θ ∈ Γ

Σ ` G :Γ

The last antecedent of this structure formation rule abbreviates a separate
antecedent for each declaration and assumption in Γ. A use of this rule will
typically have a large number of antecedents.

Problem 4.2: Give a derivation using the simple structure forma-
tion rule of the following sequent.

α :type0 ` CompleteGraph[α] :graph

The general structure formation rule is a straightforward generalization of
the simple structure formation rule. The slot reference rules derives an absolute
equality and should be self explanatory.

Problem 4.3: Let Σ be the context α : type1; f : α → α and
let M be an expression such that ` M : Σ. Give the result of the
subsitution VΣ J∀x :α f(x) =α xKM .
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Isomorphism

Equality at structure types is called isomorphism. As an example of isomor-
phism consider the type of finite directed graphs which we have defined as
follows.

DiGraph ≡ node :type0; edge : (node× node)→ bool

Two directed graphs G and H are isomorphic if there exists a bijection f from
the nodes of G — the instances of the type G.node — to the nodes of H — the
instances of the type H.nodes — such that for any two nodes n and m of G we
have that there is an edge from f(n) to f(m) in H if and only if there exists an
edge from n to m in G.

As another example we can consider hypergraphs. A hypergraph consists
of a type specifying the nodes together with a set of hyperedges where each
hyperedge is itself a set of nodes (rather than a pair of nodes). In Boolean
type theory sets are represented by predicates. Hence the type of a hyperedge is
node→ bool and a set of hypedges is represented by a predicate on hyperedges
— a set of hypedges has type (node → bool) → bool. The type of finite
hypergraphs can be represented as follows.

HyperGraph ≡ node :type0; edge : (node→ bool)→ bool

It is useful to compare the structure type for a hypergraph with the structure
type for a directed graph.

Two hypergraphs G and H are isomorphic if there exists a bijection f from
the nodes of G to the nodes of H such that for any predicate P on the nodes of G
we have that P is an edge of G if and only if the corresponding predicate on the
nodes of H, as defined by the bijection f , is a an edge of H. If P is a predicate on
the nodes of G (defining a subset of the nodes of G) the corresponding predicate
P ′ on the nodes of H is defined by the following condition.

∀ x :G.node P ′(f(x))⇔ P (x)

As a third example, consider the following structure type which we will call
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a successor structure.

SStruct ≡ member :type1; s :member→ member

If M is a successor structure then M.member is a type and the instances of
M.member will be called the members of M . In this case we allow an infinite
number of members. Here we have that two successor structures M ad N are
isomorphic if there exists a bijection f from the members of M to the members
of N such that for any member x of M we have that f(M.s(x)) =H.member

N.s(f(x)). This can be phrased as saying that the input-output pairs of the
function M.s correspond, under the identification defined by the bijection f , to
the input-output pairs of the function N.s.

As a fourth example we consider “magmas” which can be defined as follows.

Magma ≡ member :type1; h :member×member→ member

Two magmas M and N are isomorphic if there exists a bijection f from the
members of M to the members of N such that for any members x and y of
M we have that f(M.h(x, y)) = N.h(f(x), f(y)). This can again be phrased
as saying that the input-output triples of the function M.h correspond, under
the identification defined by the bijection f , to the input-output triples of the
function N.h.

5.1 Isomorphism for Simple Structure Types

A type expression is simple over a given set of type variables if it is either the
type bool, one of the given type variables, or a function type σ → τ where σ and
τ are recursively simple. Equivalently, we can define a simple type expression
by the following grammar where α ranges over the given set of type variables.

τ ::= α | bool | τ → τ

Note that σ × γ → τ is an abbreviation for σ → (γ → τ) and is therefore a
simple type expression provided that σ, γ, and τ are simple.

A context Γ will be called simple if every variable declaration in Γ is either
a type variable declaration of the form α : typei or has the form x : τ where
τ is a simple type expression over the type variables declared earlier in Γ. For
example the following context is simple.

α :type1; β :type1; f : (α→ β)→ (β → α)

A structure type is simple if it is of the form Γ where Γ is a simple context.

Consider a simple context Γ and a structure M :Γ. The structure M assigns
a meaning to each of the variables declared in Γ and, in particular, it assigns
a meaning to the type variables declared in Γ. Given a meaning for the type
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variables we can assign a meaning to each simple type expression defined by the
following equations.

VΓ JαKM = M.α

VΓ JboolKM = bool

VΓ Jσ → τKM = VΓ JσKM → VΓ JτKM

Recall that we have define VΓ JeKM to be the result of substituting M.x for
each variable x declared in Γ. The above equations follow from the nature of
syntactic substitution. However, we can also think of them as equations about
the “meaning” of the type expressions under the interpretations of the type
variables specified by M .

Now consider a simple context Γ and two structures M : Γ and N : Γ. Sup-
pose that for each type variable α declared in Γ we are given a bijection fα
between the types M.α and N.α. We will call this a system of type variable
correspondences between the structures M and N . Given such a system, and
any simple type τ over the type variables declared in Γ, we now define a bi-
jection fγ from the types VΓ JτKM to the type VΓ JτKN . These bijections are
define by recursion on type expressions using the following equations.

∀ P :bool fbool(P ) = P

∀ x :M.α fα(x) is given for α declared n Γ

∀ h :VΓ Jσ → τKM fσ→τ (h) = The

 g :VΓ Jσ → τKN
∀x :VΓ JσKM
g(fσ(x)) =VΓJτKN fτ (h(x))


The last equation defining fσ→τ (h) can be drawn as the following “commutative

diagram”.

VΓ JσKM h→ VΓ JτKM

fσ ↓ ↓ fτ

VΓ JσKN
→
g VΓ JτKN

Because fσ is a bijection, and hence invertible, this diagram defines g. Con-
versely, because fτ is invertible g determines h. So the function fσ→τ which
maps h to g is also a bijection as desired.

For simple structure types we now define M =Γ N to mean that there exists
a system of type variable correspondences between M and N such that for all
declarations h :τ in Γ with τ a function type we have N.h =VΓJτKN fτ (M.h).



32 CHAPTER 5. ISOMORPHISM

Problem 5.1: Consider the contest Σ ≡ α : type1; • : α × α →
α and consider two structures N,N : Σ such that there exists a
bijection fα from N.α to M.α such that for x, y : N.α we have
fα(x(N.•)y) = fα(x)(M.•)fα(y). Use the fact that α × α → α
abbreviates α→ (α→ α) to show that N =Σ M . More specifically,
show that fα→(α→α)(N.f) =M.α→(M.α→M.α) M.f .

5.2 Isomorphism for Semi-Simple Structure Types

Section 4.1 defined the type BagOf [σ] as follows.

BagOf [σ] ≡ I :type0; h :I → α α :type1
(〈α← σ〉)

This is an instance of the general structure type Γ∆(D). Types of this general
form must satisfy the condition that ∆; Γ is a well-formed context and that D
is a structure of type ∆. A semi-simple structure type is a type of the form
Γ∆(D) where the context ∆; Γ is simple. Note that this definition places no
restrictions on the complexity of D. For any well-formed (arbitrarily complex)
type expression σ, the type BagOf [σ] is a semi-simple type expression.

A fundamental property of type-relative equality is that objects which are
equal at type τ cannot be distinguished by well-formed predicates of type τ →
bool. We will now consider the question of when two objects of type BagOf [σ]
are distinguishable.

For a bag B :BagOf [σ] we will call instances of the type B.I “indices” and
for x :σ we define the count of x in B to be the number of indices i : (B.I) such
that (B.h)(i) =σ x. We say that two bags B :BagOf [σ] and C :BagOf [σ] define
the same counts if for every x : σ we have that the count of x in B equals the
count of x in C. We will first show that if bags B :BagOf [σ] and C :BagOf [σ]
define different counts on the elements of σ then B and C can be distinguished
by well formed predicates on BagOf [σ].

To show that bags defining different counts can be distinguished, consider
the following predicate on the type BagOf [σ] where x is an instance of σ.

λ M :BagOf [σ] ∃i, j :M.I i 6=M.I j ∧ (M.h)(i) =σ x ∧ (M.h)(j) =σ x

This predicate is true of a bag M if and only if M contains x at least twice.
There is one such predicate for each instance x of σ. Hence if there exists an
instance x of σ such that B contains x at least twice but C does not contain x
at least twice then B and C can be distinguished. A similar predicate can be
constructed for containing x at least n times for any n. Hence if any count is
different on any instance of σ the bags can be distinguished.

We now claim that if B :BagOf [σ] and C :BagOf [σ] define the same counts
on the elements of σ then they cannot be distinguished by well formed predicates
on BagOf [σ]. For an instance M of the type BagOf [σ] the choice of the index
type M.I is arbitrary. Two bags A and B of type BagOf [σ] are isomorphic as
instances of BagOf [σ] if there exists a bijection f from the index type A.I to



5.2. ISOMORPHISM FOR SEMI-SIMPLE STRUCTURE TYPES 33

the index type B.I such for any index i :A.I we have (B.h)(f(i)) =σ (A.h)(i).
It is not difficult to show that this definition is equivalent to the statement that
A and B define the same counts.

We now consider semi-simple structure types in general. A semi-simple
structure type has the form Γ∆(D) where ∆; Γ is a simple context. We consider
the simple types that can be constructed from the type variables declared in
both ∆ and Γ. An instance G of type Γ∆(D) assigns a meaning to each such
simple type as defined by the following equations.

V∆;Γ JβKD;G = D.β for β declared in ∆

V∆;Γ JαKD;G = G.α for α declared in Γ

V∆;Γ JboolKD;G = bool

V∆;Γ Jσ → τKD;G = V∆,Γ JσKD;G→ V∆;Γ JτKD;G

Consider two instances M ad N of type Γ∆(D). We define a system of cor-
respondences between M and N to consist of a bijection between the types
M.α and N.α for each type variable α with α : typei in Γ. We do not assign
correspondences for the type variables declared in ∆. Given a system of cor-
respondences from an instance M : Γ∆(D) to N : Γ∆(D), and a simple type τ
over the type variables declared in ∆ and Γ, we can define a bijection fτ from
V∆;Γ JτKD;M to V∆;Γ JτKD;M by the following equations.

∀ P :bool fbool(P ) = P

∀ x :D.β fβ(x) =D.β x for β :typei in ∆

∀ x :M.α fα(x) is given for α :typei in Γ

∀ h :VΓ Jσ → τKM fσ→τ (h) = The

 g :VΓ Jσ → τKN
∀x :VΓ JσKM
g(fσ(x)) =VΓJτKN fτ (h(x))


In the equations, as in the equations for simple structure types, the bijection
fτ is indexed by the type expression τ rather than the meaning of τ in any
particular structure.

Two structures M : Γ∆(D) and M : Γ∆(D) are isomorphic as instances of
Γ∆(D) if there exists a system of bijections from M to N such that for all
declaration h :τ in Γ with τ a function type we have N.h =V∆;ΓJτKD;N fτ (M.h).

Problem 5.2: Consider the structure type PairOf [σ, τ ] which was
defined section 4.1 as follows.

PairOf [σ, τ ] ≡ first :α; second :β ∆(〈α← σ, β ← τ〉)

∆ ≡ α :type1; β :type1



34 CHAPTER 5. ISOMORPHISM

This is a semi-simple structure type Γ∆(D) where Γ does not de-
clare any type variables. Now consider p : PairOf [σ, τ ] and q :
PairOf [σ, τ ]. Using the general definition of equivalence at semi-
simple structure types show that p =PairOf [σ,τ ] q if and only if
p.first =σ q.first and p.second =τ q.second.

5.3 General Isomorphism

In general structures are first class objects — they can themselves be contained
in the slots of structures, be passed as arguments to functions and returned as
values from functions. For example, we might define a colored graph as follows.

ColoredGraph ≡ G :Graph; color :typei; c : (G.node→ color)

Two colored graphs M1 and M2 are isomorphic if there exists a bijection fN
betwen the nodes of M1.G and the nodes of M2.G and also a bijection fC
between the colors M1.C and M2.C such that these two bijections identify M1

and M2. More formally the bijections must be such that for every pair of nodes
n and m of M1.G we have that there exists an edge from n to m in M1.G if and
only if there exists an edge from fN (n) to fN (m) in M2.G and, also, for every
node n of M1.G we have that fC(M1.c(n)) =M2.color M2.c(fN (n)). In many
cases, such as the above colored graph example, the notion of isomorphism seems
intuitively clear.

Problem 5.3: A hypergraph is a finite type (set) of “nodes” to-
gether with a set of hyper-edges where each hyper-edge is a subset
of the set of nodes. Give a structure type for the type “hypergraph”.

Problem 5.4: For two hypergraphs G1 and G2 give a Boolean
expression expressing the condition that G1 is isomorphic to G2.
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Voldemort’s Theorem

Voldemort’s theorem states that certain objects cannot be named. If a circle
is defined in a coordinate-free way, there is no way to name a point on the
circle — any two points satisfy exactly the same coordinate-free properties. A
similar statements holds for the four corners of a square, or the points on a
coordinate-free (affine) plane. Voldemort’s theorem says that if there exists a
symmetry carrying x to y then no property can name x (without also naming
y). While this may seem obvious, it is perhaps less obvious that the concept
of symmetry can be defined for all mathematical objects — we can associate a
notion of symmetry with every mathematical type.

Consider the directed graph G1 shown below.

G1 :
A → B
↑ ↓
D ← C

This graph is clearly isomorphic to the directed graph G2 shown below.

G2 :
X → Y
↑ ↓
W ← Z

However, the isomorphism is not unique. We can identify the node A with
any of the nodes X, Y , Z or W . For example, if A goes to Z then B goes to
W , C goes to X and D goes to Y .

Although any structure is isomorphic to itself, there can exist different iso-
morphisms between an object and itself. An isomorphism between an object
and itself is called a symmetry of that object. The graph G1 has four symmetries
— we can construct an isomorphisms of G1 with itself by mapping node A to
any one of the four nodes and then mapping the remaining nodes around the
loop. For example, we can map A to C, B to D, C to A and D to B.

An isomorphism between two objects is a system of bijections between the
types of those objects. An isomorphism of an object with itself is a system of
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bijections from types to themselves — it is a system of permutations. Like the
notion of isomorphism, the notion of symmetry is fundamental to mathematics
in general.

In developing a general notion of symmetry it will be useful to use the follow-
ing “dependent pair” type PairOf [σ, τ [·]] which generalizes the type PairOf [σ, τ ]
defined in section 4.1.

PairOf [σ, τ [·]] ≡ First :α; Second :F (First)∆(D)

∆ ≡ α :type1;F :α→ type1

D ≡ 〈α← σ; F ← λ M :σ τ [M ]〉

Here we will write 〈G, x〉 as an abbreviation for 〈First← G; Second← x〉.
For G :σ and x :τ [G] we have that 〈G, x〉 :PairOf [σ, τ [·]]. We have

〈G, x〉 =PairOf [σ,τ [·]] 〈G, y〉

if there is σ-symmetry of G which yields an identification of x and y (we say
that symmetry “carries” x to y).

In the symmetric graph G1 above we cannot name any particular node of
the graph using graph-theoretic properties. We say that the type G1.α has no
canonical instance. More generally we define the non-existence of a canonical
instance of a type τ [G] as follows.

Definition 1. We say that there is no canonical instance of a type τ [G] for
G :σ in context Σ if Σ ` σ :type1, Σ;M :σ ` τ [M ] :type1, Σ ` G :σ and

Σ `
∀x :τ [G]
∃y :τ [G] y 6=τ [G] x ∧
〈G, y〉 =PairOf [σ,τ [·]] 〈G, x〉

Theorem 1 (Voldemort’s theorem). (Assuming the inference rules are consis-
tent ...) If there is no canonical instance of τ [G] for G :σ in context Σ then no
instance of τ [G] can be named by σ-theoretic properties: there is no expression
e[M ] satisfying Σ; M :σ ` e[M ] :τ [M ].

Proof. Suppose Σ;M : σ ` e[M ] : τ [M ]. Since there is no canonical instance
of τ [G] there must exist x : τ [G] with x 6=τ [G] e[G] but 〈G, x〉 =PairOf[σ,τ [·]]
〈G, e[G]〉. Now consider P ≡ 〈〈G, e[G]〉 , e[G]〉 and Q ≡ 〈〈G, x〉 , e[G]〉. We
have P,Q : PairOf [PairOf [σ, τ [·]], τ [·.First]]. The objects P and Q are not
isomorphic as instances of this type because P.First.Second =τ [G] P.Second
but Q.First.Second 6=τ [G] Q.Second. But we have the following.

Σ;R :PairOf[σ, τ [·]] ` 〈R, e[R.First]〉 :PairOf [PairOf [σ, τ [·]], τ [·.First]]

The rule of substitution of isomorphics allows us to infer that P and Q are
isomorphic by substituting 〈G, e[G]〉 and 〈G, x〉 respectively for R in the sequent
above. We now have a contradiction.
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Some Mathematics
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Chapter 7

Sets and Numbers

Part I of this book develops a formal notion of well-formed expressions and
formal derivations (proofs). Part II develops some mathematical content with
a focus on concepts relevant to statics and machine learning. We start by
constructing the numbers — the integers, rationals, reals and complex numbers.
We then superficially introduce groups, rings and fields as important examples
of structure types. We spend considerable time on the concept of a vector
space and its properties and develop coordinate-free linear algebra and vector
calculus. We give a superficial introduction to measure theory (probability
theory) and a coordinate-free treatment of the covariance matrix (and second
moment) of a probability distribution on a vector space. A variety of other
topics are discussed, all with an emphasis on coordinate-free treatments.

In developing some actual mathematical content we convert from formal no-
tation to English. Although definitions and proofs are given in English, the
English terms and statements are intended to have clear and unambiguous
translations into the formal notation presented in Part I. In some cases the
translation into formal notation is explicitly discussed. But in most cases it
is left implicit. Even when working with English definitions and statements,
however, the formal notation plays a role in determining well-formedness — an
English expression is well formed if there exists a straightforward translation
into well-formed formal notation. The formal notation is also important in pro-
viding an explicit treatment of the concept of isomorphism which occurs in all
branches of mathematics.

We start with a discussion of the English use of the term “set” and the rela-
tionship between sets and types.

7.1 Sets

The term “set” is ubiquitous in English mathematical texts. As of this writing
the Wikipedia page on groups introduces groups with the following statement.
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In mathematics, a group is an algebraic structure consisting of a
set together with an operation that combines any two of its elements
to form a third element. To qualify as a group, the set and the
operation must satisfy . . .

This can be written in formal notion as follows where “the set” is the type
α, “the operation” is the function •, and the group axioms are written together
as a (large) Boolean expression A (the axioms are given explicitly below).

Group ≡ α :type1; • :α× α→ α; A

The term “set” is used in two different ways in English presentations of
mathematics. In the above English description the term set refers to any type
in type1. If we say “a foo-space consists of a set F together with ...” then
the expression x ∈ S should be translated as a type declaration x : F . Re-
call that type declarations are not Boolean expressions. For a group variable
declared with G :Group an English expression of the form “if x ∈ G ...” is ill-
formed. Allowing type declarations to be treated as Boolean expressions leads
to contradictions — see the discussion at the beginning of chapter 3.

While the types in type1 are called sets, the types in type2 are called
classes. Classes are too large to be sets. For example, we have Group : type2

and we say that the type Group is a class. English mathematics almost never
discussed type3, although the type Category is too large to be a class and we
have Category :type3. We will not discuss categories here.
The second use of the term “set” is given in the following statement of the
induction principle for the natural number.

For any set of natural numbers S we have that if S contains zero
and is closed under successor — if for x ∈ S we have x + 1 ∈ S —
then S contains all natural numbers.

The phrase “set of” or “subset of” indicates a predicate rather than a type.
The above statement implicitly declares S to be a predicate of type N → bool.
In this case the expression x ∈ S represents the predicate application S(x) and
is a well-formed Boolean expression provided that we have x :N . In this case
we can form statements of the form “If x ∈ S ...”.

While most of the definitions and proofs given in part II of this book are given
in English, occasionally it is instructive to also give formal (machine readable)
versions of definitions. Formal notation is often more readable if predicates
are written in set notation. We will sometimes use the following set-theoretic
notation as an alternative to predicate notation.

SetOf [σ] ≡ σ → bool

x ∈ S ≡ S(x)

{x :σ | Φ[x]} ≡ λx :σ Φ[x]

For a set S = {x : σ | Φ[x]} we write ∀x ∈ S Ψ[x] for ∀x : σ x ∈ S ⇒ Ψ[x].
Similarly, ∃x ∈ S Ψ[x] abbreviates ∃x : σ x ∈ S ∧ Ψ[x] and Σ;x ∈ S ` Θ[x]
where x is not declared in Σ abbreviates Σ;x :σ;x ∈ S ` Θ[x].
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7.2 Defining Numbers

The first step in mathematics is to develop the numbers — the natural num-
bers, the integers, the rationals, the reals, and the complex numbers. The
numbers serve as a case study in mathematical construction. There are two
approaches to defining particular structures such as the natural numbers or the
real numbers — an axiomatic approach and a model approach. An axiomatic
approach to the natural numbers is given in the definition of the context ΓN
at the beginning of chapter 4. This context includes axioms for the natural
numbers. These axioms have only one model (up to isomorphism) — the struc-
ture of the natural numbers. In the model oriented approach developed here
we first implement each kind of number. The natural numbers are implemented
as the equivalence classes of types in type0. The integers are implemented as
equivalence classes of formal differences of natural numbers. The rationals are
implemented as equivalence classes of formal ratios of integers, and the real are
implemented as Dedekind cuts in the rationals. In the model-oriented approach,
where one first builds an implementation, it is important for formally represent
the fact that different implementations are possible and that the choice of im-
plementation is arbitrary. It is possible to formally distinguishing between a
particular implementation of the real numbers and the abstract real numbers
which are independent of any choice of implementation. We will let R̃ denote
the implementation of the reals and define the abstract reals R as follows.

R ≡ The
(
G :Γ G =Γ R̃

)
Γ ≡ R :type1; +:R× R→ R; × :R× R→ R

Here the implementation R̃ serves only to specifying the abstract structure
R up to isomorphism. The naturals, integers and rationals are handled similarly.

7.3 The Natural Numbers

We implement the natural numbers as the isomorphism classes of types in type0

where addition is defined by disjoint union and multiplication is defined by
taking pair types (Cartesian products). We define the implementation structure

Ñ to be the following.
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N ← type0

+ ←


λ(α :type0, β :type0)

The


γ :type0

∃P :γ → bool
TheSubtype(x :γ | P (x)) =type0

α
∧ TheSubtype(x :γ | ¬P (x)) =type0

β




Multiplication can be defined in terms of Cartesian product as follows (but

multiplication need not be included in the structure).

×Ñ ≡ λ(α :type0, β :type0)PairOf(α, β)

Note that we have ×Ñ :type0 × type0 → type0.

The structure Ñ is a particular implementation of the natural numbers. To
hide the implementation we define the natural number structure N as follows.

N ≡ The
(
G :Γ G =Γ Ñ

)
Γ ≡ N :type1; +:N ×N → N

Note that we can derive Ñ .N = type0 (with absolute equality) but N .N can
be any type in type1 that can be placed in one-to-one correspondence with the
equivalence classes of type0.

By abuse of notation we will often use N as an abbreviation for the type
N .N . For example n :N abbreviates n :N .N and N → N abbreviates N .N →
N .N . Confusion is avoided by the fact that structures and types appear in
disjoint contexts.

Although we omit the details here, the isomorphism between N and Ñ is
unique. The uniqueness of the isomorphism implies that the multiplication op-
erator Ñ defines a multiplication operator on N . Also, since the isomorphism is
unique, we can define 0N to be the element of N identified with the isomorphism
class of the empty type in Ñ .

For α :type0 we will write |α| (the cardinality of α) for the natural number

corresponding to α under the unique isomorphism between N and Ñ .

7.4 The Integers

We implement integers as equivalence classes of formal differences of natural
numbers. By “formal difference” we simply mean a pair of natural numbers
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(n,m) which we think of as representing the difference n −m where we allow
m > n.

FDiff ≡ Pairof(N ,N )

We define an equivalence relation on formal differences by noting that n−m =
n′−m′ if and only if n+m′ = n′+m. This can be written formally as follows.

∼Z̃ ≡
λ(x :FDiff, y :FDiff)
x.first +N y.second =N y.first +N x.second

We now define a function mapping a formal difference to its equivalence
class.

ClassOfZ̃ ≡ λx :FDiff {y :FDiff | y ∼Z̃ x}

We now define the structure Z̃ as follows.

Z ← TheSubtype(P :FDiff → bool | ∃d :FDiff P =FDiff→bool ClassOfZ̃(d))

+ ← The


f :Z × Z → Z
∀d1, d2 :FDiff
f
(
ClassOfZ̃(d1),ClassOfZ̃(d2)

)
=Z ClassOfZ̃

(
Pair

(
d1.first +N d2.first,
d1.second +N d2.second

))


We can define multiplication on Z̃ as follows where, by abuse of notation,
we use Z̃ as an abbreviation for the type Z̃.Z.

×Z̃ ≡ The


f : Z̃ × Z̃ → Z̃
∀d1, d2 :FDiff
f
(
ClassOfZ̃(d1),ClassOfZ̃(d2)

)
=Z ClassOfZ̃

(
Pair

(
d1.first ×N d2.first +N d1.second ×N d2.second,
d1.first ×N d2.second +N d1.second ×N d2.first

))


Of course other implementations of the integers are possible. As with the
natural numbers, we can suppress the implementation by defining the integers
Z to be the structure isomorphic to Z̃.

Z ≡ The
(
G :Γ G =Γ Z̃

)
Γ ≡ Z :type1; +:Z × Z → Z

As with the natural numbers, the isomorphism between Z and Z̃ is unique.
Since the isomorphism is unique, multiplication on Z̃ defines multiplication on
Z. Again, by abuse of notation we will often write Z as an abbreviation for the
type Z.Z.
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7.5 The Rationals

We implement rationals as equivalence classes of formal ratios of integers. By
“formal ratio” we simply mean a pair of integers (n,m) with m 6= 0 where think
of this pair as representing the ratio n/m. Such formal ratios are commonly
called fractions.

Frac ≡ TheSubtype (p :PairOf (Z,Z) | p.second 6=Z 0Z)

We define an equivalence relation on fractions as follows.

∼Q̃ ≡
λ(x :Frac, y :Frac)
x.first ×Z y.second =Z y.first ×Z x.second

We now define a function mapping a fraction to its equivalence class.

ClassOfQ̃ ≡ λx :Frac {y :Frac | y ∼Q̃ x}

We now define the structure Q̃ as follows.

Q ← TheSubtype(P :Frac→ bool | ∃d :Frac P =Frac→bool ClassOfQ̃(d))

+ ← The


f :Q×Q→ Q
∀d1, d2 :Frac
f
(
ClassOfQ̃(d1),ClassOfQ̃(d2)

)
=Q ClassOfQ̃

Pair

 d1.first ×Z d2.second
+N d1.second ×Z d2.first,
d1.second ×Z d2.second





× ← The


f :Q×Q→ Q
∀d1, d2 :Frac
f
(
ClassOfQ̃(d1),ClassOfQ̃(d2)

)
=Q ClassOfQ̃

(
Pair

(
d1.first ×Z d2.first,
d1.second ×Z d2.second

))


Of course other implementations of the rationals are possible. Again we
suppress the implementation by defining the rationals Q to be the structure
isomorphic to Q̃.

Q ≡ The
(
G :Γ G =Γ Q̃

)
Γ ≡ Q :type1; +:Q×Q→ Q; × :Q×Q→ Q

Again the isomorphism between Q and Q̃ is unique. We note, however,
that for the rationals we have to include multiplication in the structure type
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defining the isomorphism. If we use only addition then the isomorphism is not
unique. Any function which multiplies every rational by fixed nonzero rational
q defines a “symmetry of scale” for the rationals under addition. A symmetry
is an isomorphism of a structure with itself. Without a unique isomorphism
between Q and Q̃, a multiplication operator on Q̃ would not define a unique
multiplication operator on Q.

7.6 The Reals

We implement real numbers as Dedekind cuts. To define Dedekind cuts we
first need to define the standard ordering on the natural numbers, integers and
rationals. For natural numbers x and y we can define x ≤ y to mean that there
exists a natural number z such that x+ z = y. For formal differences of natural
numbers (the implementation of integers) we can say that n −m ≤ n′ −m′ if
n + m′ ≤ n′ + m. For rational numbers we can that n/m ≤ n′/m′ if m > 0
and m′ > 0 and nm′ ≤ n′m (every rational has a representation with a positive
denominator).

A Dedekind cut is any subset of the rationals which is not empty, does not
contain all rationals, does not contain a maximum element, and is downward
closed — if it contain q and q;≤ q then it contains q′. A real number x (such
as π or

√
2) is represented by the set of rationals q < x which forms a Dedekind

cut. Conversely, any Dedekind cut α represents the unique real number which
is the infemum of the set of reals x such that q < x for any q ∈ α (the infemum
of the set of upper bounds on α).

The formal definition of a Dedekind cut is given below where a subset of
the rationals is represented by a predicate P : Q → bool. For a predicate
P : τ → bool we will sometimes write a variable declaration x ∈ P as an
abbreviation for x :TheSubtype(τ, P ). We will sometimes omit subscripts from
operators when the intended operator is clear from context.

DCut ≡ TheSubtype


S :SetOf [Q] |
∃q ∈ S
∧ ∃q :Q q 6∈ S
∧ ¬∃q ∈ S ∀q′ ∈ S q′ ≤ q
∧ ∀q ∈ P ∀q′ ∈ Q q′ ≤ q ⇒ q′ ∈ Q


We define addition on Dedekind cuts, +R̃ :DCut×DCut→ DCut, as follows.

+R̂ ≡
λ(P :DCut, P ′ :DCut)
λq :Q
∃r ∈ P ∃s ∈ P ′ q < (r + s)

Defining multiplication is somewhat more awkward. We start by defining a
form of multiplication which is correct if both arguments are non-negative.
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×R̂ ≡
λ(P :DCut, P ′ :DCut)
λq :Q
∃r ∈ P ∃s ∈ P ′ q < (r × s)

To define multiplication for general arguments (possibly negative) we need
more terminology. We start by defining zero and the order relation Dedekind
cuts.

0R̃ = λq :Q q < 0

≤R̃ = λ(P :DCut, P ′ :DCut) ∀ q ∈ P P ′(q)

Next we define a function which maps a Dedekind cut representing real
number x to a Dedekind cut representing −x.

Negative ≡
λP :DCut
λq :Q
∃r :Q q < r ∧ ∀ w ∈ P r < −w

We now introduce a general notion of conditional expression.

Ifα ≡
λ(P :bool, x :α, y :α)

The(z :α (P ⇒ z =α x) ∧ ¬(P ⇒ z =α y))

We can then define an absolute value operator as follows.

Abs ≡ λP :DCut
If(∃q ∈ P q > 0, q, Negative(q))

Finally we can define the Dedekind cut structure R̃ as follows.

R ← DCut

+ ← +R̃

× ← λ(x :R, y :R) If

 (x ≥ 0 ∧ y ≥ 0) ∨ (x ≤ 0 ∧ y ≤ 0),
Abs(x)×R̃ Abs(y),
Negative(Abs(x)×R̃ Abs(y))


Again R̃ is a particular implementation of the real numbers and other im-

plementations are possible. Again, to abstract away from the implementation
we define the real number structure R as follows.

R ≡ The
(
G :Γ G =Γ R̃

)
Γ ≡ R :type1; +:R× R→ R; × :R× R→ R
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7.7 The Complex Numbers
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Chapter 8

Groups and Fields

There are two reasons for discussing groups and fields at this point. First,
groups and fields are prominent examples of structure types. The preceding
chapter on numbers constructed particular structures such as the integers and
reals. While constructing particular structures is important, defining types of
structures is also important and groups and fields provide a case study in types
of structures. But the particular structure types of Groups and Fields also play
a special role in mathematics. Every structure type Γ in mathematics associates
each structure G : Γ with a group — the symmetry group of G. For G : Γ the
Γ symmetry group of G is the set of Γ-isomorphisms of G with itself. This is
discussed in more detail below. Fields play a special role in defining “linearity”,
a concept central to much of mathematics.

8.1 Groups and Abelian Groups

We now define a group (in English) to be a set G together with a function •
mapping two elements of G to an element of G where • satisfies the following
conditions.

Associativity: For all group elements a, b and c we have (a • b) • c =
a • (b • c).

Identity element: There exists a group element e, called the identity
element, such that for group element a we have e • a = a • e = a.

Inverse element: For each group element a there exists a group element
b, called the inverse of a, such that a • b = b • a = e.

We note that the identity element is unique — for any identity elements e
and e′ we have that e = e • e′ = e′. Hence the phrase “the identity element” is
well-formed. We also have that inverses are unique — for any inverses b and b′

49
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of a we have b • a = e = b′ • a and hence we have the following.

(b • a) • b = (b′ • a) • b
= b′ • (a • b)
= b′ • e
= b′

= b • (a • b)
= b

Hence the phase “The inverse of a” is well formed. The inverse of a is
generally written as a−1.

A group is called Abelian if the group operation is also commutative —
x•y = y •x. For an Abelian group it is traditional to write the group operation
as + rather than •.

8.2 Permutation Groups and Representation

A permutation of a set S is a bijection from S to S. We can translate this into
formal notation as

Permutation[σ] ≡ Bijection[σ, σ].

A permutation group is a subset G of the permutations of a set S where G is
closed under functional composition and inverse. We can formalize this as

PermGroup ≡ α :type1;G :Permutation[α]→ bool; A

whereA is a boolean expression stating that for f, g :Permutation[α] if f, g ∈ G
(if G(f) and G(g)) then f ◦ g ∈ G and if f ∈ G then the inverse function f−1

is in G.
Although a permutation group is not literally (formally) a group, given a

permutation group P we can define the group G[P ] as

G[P ] ≡ 〈α← TheSubtype(Permutation[P.α], P.G); • ← The(F :α× α→ α | A)〉

where A states that F is function composition — that for x : P.α we have
F (f, g)(x) =P.α f(g(x)). It is then possible to derive the following.

P :PermGroup ` G[P ] :Group

A fundamental fact about groups is the following representation theorem
which we will state in formal notation.

` ∀G :Group ∃P :PermGroup G =Group G[P ]

To prove this theorem er consider an arbitrary group G and consider the
map from G to permutations of G defined by the following λ-expressions
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B[G] ≡ λx :G.α λy :G.α x(G.•)y

B[G] is function from the elements of G to a corresponding permutations of
the elements G. We can let P [G] be the set of permutations which correspond
to some element of G.

P [G] =

〈
α← G.α;
G← {f :Permutation[G.α] | ∃x :G.α f =Permutation[G.α] B[G](x)}

〉
We can then derive the following.

G :Group ` P [G] :PermGroup

` ∀G :Group G =Group G[P [G]]

8.3 Fields
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Chapter 9

Vector Spaces

9.1 Basic Definition

Vector spaces and linear algebra play a central role in many areas of mathemat-
ics. In English one usually defines a vector space V over a field F to consist of
a set of vectors plus two operations — vector addition mapping two vectors to
a vector, and scalar multiplication mapping a scalar and a vector to a vector,
and where these operations satisfy the axioms of a vector space given below. In
formalizing this as a machine readable type expression we take the field F to
be a free variables of the type and write the axioms as A (as usual).

VectorSpace[F ] ≡ α :type1; +:α× α→ α; • :F.α× α→ α; A F :Field(〈F ← F 〉)

If V is a vector space over field F then the instances of V.α are called vectors
and we generally write x ∈ V or x : V as abbreviations for x : V.α. The field
is typically either the real numbers or the complex numbers and the elements
of the field will be called scalars. The symbol + will be used for both vector
addition and scalar addition where we rely on context to distinguish which kind
of addition is being used. We will typically use late alphabet letters such as x,
y and z for vectors and early alphabet letters such as a, b and c for scalars. We
will the scalar product of a scalar a and a vector x as ax. The vector space
axioms are the following.

1. The vectors under vector addition form an Abelian group.

2. Associativity of scalar multiplication: a(bx) = (ab)x.

3. Distributivity over scalar sums: (a+ b)x = ax+ bx.

4. Distributivity over vector sums: a(x+ y) = ax+ ay

5. Scalar multiplicative identity: 1x = x where 1 is the multiplicative identity
of F .

53
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Since the vectors under vector addition form a group the vectors contain a
unique additive identity element which we write as 0. Of course the field F also
has an additive identity element 0. We rely on context to distinguish the scalar
0 from the vector 0. To show that 0x = 0 it suffices to show that y + 0x = y.
This can be done as follows where we write −x for the inverse of x in the group
of vectors under vector addition.

y + 0x = (y + 0x) + (x+−x)

= (y +−x) + (1x+ 0x)

= y +−x+ (1 + 0)x

= y +−x+ 1x

= y +−x+ x

= y

Given that 0x = 0 we can then show that (−1)x = −x. It suffices to show that
x+ (−1)x = 0. This can be done as follows.

x+ (−1)x = 1x+ (−1)x = (1 + (−1))x = 0x = 0

We will write x− y for x+ (−y).

9.2 Basis of a Vector Space

A finite basis for a vector space V is a finite sequence 〈e1, . . . , ed〉 where ei is a
vector in V such that we have the following properties.

• The basis vectors span the vector space — for any vector x there exist
scalars a1, . . . ad such that x = a1e1 + · · · aded.

• No basis element can be written as a linear combination of other basis
elements — for any scalar values a1, . . . an such that some ai 6= 0 we have
that a1e1 + · · · aded 6= 0.

Note that if ai 6= 0 but a1e1+· · · aded = 0 then we have ei = −(1/ai)
∑
j 6=i ajej .

Hence the last condition is equivalent to the statement that no basis element
can be written as a linear combination of other basis elements.

Theorem 2. For any vector space V and basis 〈e1, . . . ed〉 for V we have that
any sequence 〈u1, . . . , ud〉 of d linear independent vectors also spans V and hence
forms a basis for V .

Proof. Since e1, . . . en spans V we must have u1 = a1e1 + · · · aded. Since u1 . . .,
ud are linearly independent we must have u1 6= 0. Hence there is some ai 6= 0
and we have

ei = (1/ai)(u1 −
∑
j 6=i

ajej)
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Hence any linear combination of the vectors e1, . . ., ed can be converted to a lin-
ear combination of ej for j 6= i and u1. So the vectors 〈e1, . . . , ei−1, u1, ei+1, . . . , ed〉
span V . More generally, if 〈e1, . . . , en, u1, . . . , um〉 spans V and um+1 is linearly
independent of u1, . . ., um then we must have um+1 = a1e1 + · · · anen + b1u1 +
· · · bmum with some ai 6= 0. This implies that

ei = (1/ai)(um+1 −
∑
j 6=i

ajej −
∑
j

bjuj)

But this implies that ej for j 6= i together with u1, . . ., um+1 span V . We can
continue to replace vectors ei by vectors uj until no vectors ei remain. Hence
the vectors u1, . . ., ud span V .

A vector space V will be said to be finite dimensional if there exists a finite
basis for V . The above theorem implies that all bases of a finite dimensional
vector space have the same length. Hence we can talk about the dimension of
a finite dimensional vector space.

9.3 Basis-Relative Coordinates

Consider a basis B = 〈e1, . . . , ed〉 for a d-dimensional vector space V . By the
definition of a basis we have that e1, . . ., ed span V and hence for any vector
x we have that there exists a1, . . ., ad such that x = a1e1 + · · · aded. We now
note that the weights a1, . . . ad are unique. To see this suppose that we have
the following.

x = a1e1 + · · · aded
x = b1e1 + · · · bded

By subtracting these two equations we get the following.

0 = (a1 − b1)e1 + · · ·+ (ad − bd)ed

But by the linear independence property of a basis we must then have each
weight in this combination is zero. Hence we have ai = bi for all i.

Since the coefficients ai are unique for a given basis B we can define aB1 (x),
. . ., aBd (x) to be the unique scalars such that x = aB1 (x)e1 + · · ·+ aBd (x)ed. The
scalars

〈
aB1 (x), . . . , aBd (x)

〉
will be called the coordinates of x relative to the

basis B. We note that the coordinates of a sum of two vectors are obtained by
adding the coordinate values. More specifically we have that if

x = a1e1 + · · ·+ aded

y = b1e1 + · · ·+ bded

then

x+ y = (a1 + b1)e1 + · · ·+ (ad + bd)ed.
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This can be written as follows.

aBi (x+ y) = aBi (x) + aBi (y).

Similarly we have
aBi (cx) = caBi (x)

It is very important to keep in mind that a different choice of basis vectors
leads to a different “coordinate system” — the coordinates of a vector relative
to one basis are different from the coordinates relative to a different basis. In
a d-dimensional vector space, any linearly independent tuple of vectors e1, . . .,
ed forms a basis. In this basis the coordinates of ei are 〈0, 0, . . . , 0, 1, 0, . . . , 0〉
where the 1 occurs at position i. In particular, the coordinates of the vector
e1 in this basis are 〈1, 0, 0, . . . , 0〉. Any nonzero vector can be given as the first
vector in some basis. Hence any nonzero vector can be assigned the coordinates
〈1, 0, 0, . . . , 0〉.

9.4 Voldemort in Vector Space

Here we will show that it is not possible to name a basis (or a coordinate system)
for a vector space. To do this we must analyze the notion of isomorphism and
symmetry for vector spaces.

Consider the following simple structure type which we will call a binary
operation or Binop.

Binop ≡ α :type1; f :α× α→ α

For two binary operations F,G : Binop we have F =Binop G if there exists
a bijection g from F.α to G.α which identifies F.f with G.f . It is possible to
show that the definition of identification given in chapter 5 corresponds to the
requirement that the bijection g be such that for all x, y :F.α we have

g((F.f)(x, y)) = (G.f)(g(x), g(y)).

Now consider the type VectorSpace[F ].

VectorSpace[F ] ≡ α :type1; +:α× α→ α; • :F.α× α→ α; A F :Field(〈F ← F 〉)

For two vector spaces V,W :VectorSpace[F ] we have V =VectorSpace[F ] W if
there exists a bijection B from the vector type V.α to the vector type W.α that
identifies V.+ with W.+ and V.• with W.•. The condition that B identifies V.+
with W.+ is that for any x, y :V.α we have

g(x (V.+) y) = g(x) (W.+) g(y)

The condition that B identifies V.• with W.• is that for any a :F.αand x :V.α
we have

g(a(V.•)x) = a(W.•) g(x)
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These two conditions can be written using context to distinguish the various
sum and product operations as follows.

g(x+ y) = g(x) + g(y)

g(ax) = ag(x)

This is the normal definition of linear map g from a vector space V to a vector
space W . We then get the following.

Two vectors spaces over a field F are isomorphic if there exists a
linear bijection between them. A symmetry of a vector space is
linear bijection from that space to itself.

We first note that any two d-dimensional vector spaces over F are isomorphic.
To see this let B = 〈e1, . . . , ed〉 be a basis for a vector space V and let B =
〈e′1, . . . , e′d〉 be a basis for a vector space W . We can then define a linear bijection
from V to W by the following equation.

g(a1e1 + · · ·+ aded) = a1e
′
1 + · · ·+ ade

′
d

In other words, for x :V we define g(x) to be the vector y in W such that the
coordinates of x under basis B equal the coordinates of y under basis B′.

Now consider any two bases B = 〈e1, . . . , en〉 and B′ = 〈e′1, . . . , e′d〉 for a
single vector space V . Define a mapping V from V to V by the following
equation.

g(a1e1 + · · ·+ aded) = a1e
′
1 + · · ·+ ade

′
d

The function g maps a point with coordinates a1, . . . ad under basis B to the
point with those same coordinates in basis B′. Although the coordinates are the
same, the points are different because the basis vectors (the coordinate systems)
are different. This mapping is a symmetry of the vector space — it is a linear
bijection from the space to itself. Furthermore, this symmetry maps the vector
ei to the vector e′i. This symmetry “carries” the basis B to the basis B′. Hence
the type BasisFor[V ] where V is a vector space has no canonical instance —
all choices of a basis are equivalent. By Voldemort’s theorem there is no way to
name a basis (a coordinate system) for a vector space.
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Chapter 10

Inner Products and the
Gram-Schmidt Procedure

We now consider a vector space V over the reals. The inner product of two
vectors is defined in high school classes in terms of the coordinates of those
vectors. Given a basis (coordinate system) B We can define the inner product
(or dot product) of two vectors x and y, which we will write as xDB y, as
follows.

xDB y = aB1 (x)aB1 (y) + · · · aBd (x)aBd (y)

This is just the normal coordinate-wise notion of inner product where 〈a1, . . . , ad〉·
〈b1, . . . , bd〉 = a1b1+· · · adbd. The inner product operation DB is a function from
two vectors to a scalar, we have DB :V × V → R. It is important to note how-
ever that different coordinate systems yield different inner product functions —
if the basis vectors get half as large, the coordinates get twice as big. If the
coordinates get twice as big the inner products get four times as big (for the
same pairs of vectors). So for two different bases B and B′ we have that DB is
different in general from DB′ .

We say that A is a bilinear function on V if A :V × V → R and A is linear
in each of its two arguments. Namely we have the following.

A(x, ay + z) = aA(x, y) +A(x, z)

A(ax+ y, z) = aA(x, z) +A(y, z)

For a bilinear function A we will (for now) write A(x, y) as yAx. In chapter 12
we will convert to a more standard “matrix notation” and write this as yᵀAx.
But the “transpose” of a vector is meaningless here and we will avoid that
notation for now. In this notation the bilinearity of A can then be written as
follows.

(ay + z)Ax = a(yAx) + zAx

zA(ax+ y)) = azAx+ yAx
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We now define a general notion of inner product. An inner product D on
V is any symmetric, positive definite bilinear function on V . The symmetry
property is that for any vectors x and y we have xDy = yDx and the positive-
definite property is that for any non-zero vector x we have xDx > 0. It is easy
to check that for any basis B the inner product operation DB satisfies these
conditions. For any vector x and inner peoduct D we write ||x||D (the norm of
x under inner product D) for

√
xDx.

10.1 The Cauchy-Schwarz Inequality

Or first observation about inner products is the Cauchy-Schwartz inequality
which states that for any inner product D on a vector space and any two vectors
x and y we have

xDy ≤ ||x||D||y||D.
We can prove the Cauchy-Schwartz inequality for an arbitrary inner product on
an arbitrary vector space by first defining ỹ to be the unit vector y/||y||D. We
then define x|| to be the vector (xDỹ)ỹ and x⊥ to be x − x||. We then have
x = x⊥ + x||. Furthermore we have the following.

x⊥Dx|| = (x− x||)Dx||
= xDx|| − x||Dx||
= (xDỹ)2 − (xDỹ)2

= 0

We then have the following.

||x||2D = (x⊥ + x||)D(x⊥ + x||)

= ||x⊥||2D + ||x||||2D
≤ ||x||||2D
= (xDỹ)2

= (xDy)2/||y||2D

The last line is equivalent to the Cauchy-Schwarz inequality.

10.2 The Gram-Schmidt Procedure

Now consider a fixed but arbitrary inner product D on V . A basis B =
〈e1, . . . , ed〉 will be called orthonormal under D if eiDei = 1 for all i and
eiDej = 0 for i 6= j. We now observe that if B is an orthonormal basis under
D the standard coordinate inner product DB defined in terms of B-coordinates
equals (as a function) the inner product D. To see this we can use bilinearity
and orthonormality to prove the following for D.

(a1e1 + · · ·+ aded)D(b1e1 + · · ·+ bded) = a1b1 + · · · adbd
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Given an arbitrary inner product D and any basis B = 〈e1, . . . , ed〉 one can
use the Gram-Schmidt process to convert B to a basis B′ = 〈e′1, . . . , e′d〉 that
is orthonormal for D. More specifically we define e′1, . . . , e

′
d using the following

Gram-Schmidt procedure:

e′1 = e1/||e1||D

ei+1,⊥ = ei+1 −
i∑

j=1

ei+1De
′
j

e′i+1 = ei+1,⊥/||ei+1,⊥||D

By calculations similar to those used in proving the Cauchy-Schwartz inequality
we can show that e′1, . . . , e

′
d is an orthonormal basis. This shows that for any

inner product operation D there exists a basis B such that D = DB . Every
inner product operation is the standard coordinate-wise inner product in an
appropriately chosen coordinate system.

10.3 Voldemort Challenges Inner Products

Of course for a given inner product D there exists a choice of d linear indepen-
dent vectors which are not orthonormal under D. However, for any basis B,
even those far from orthonormal under D, the basis B is always orthonormal
under the inner product DB defined in terms of B coordinates. Every basis is
orthonormal in its own coordinate system.

Now consider any two inner product operationsD andD′ on V . By the above
observations we have D = DB and D′ = DB′ for some coordinate systems B
and B′. We showed in section 9.4 that for any two bases B and B′ there exists a
symmetry of the vector space V carrying B to B′. This same symmetry carries
D to D′. Hence there is no canonical instance of the type InnerProduct[V ].
By Voldemort’s theorem, there is then no way to name any particular inner
product operation for V .
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Chapter 11

Gradients and the Dual
Space

11.1 A Coordinate-Free Definition of Gradient
and Dual Vector

Consider a vector space V over a field F and consider an arbitrary (possibly
nonlinear) function f : V → F The function f is often called a scalar field —
it assigns a scalar value to each point (each vector). A vector field assigns a
vector value to each point. If the scalar field f is smooth then in very small
neighborhoods of a vector x the function f is approximately linear and we have
the following where g :V → F is linear.

f(x+ ∆x) ≈ f(x) + g(∆x)

Here both x and ∆x are vectors and the linear function g represents the gra-
dient of the function f . There is no canonical way to write g(∆x) as (∇f)D∆x
where ∇f is a gradient vector and D is an inner product operation because
there is no canonical inner product (no inner product can be named). Instead,
the gradient g is a vector in a different vector space — the dual space V ∗. The
dual space V ∗ is simply defined to be the set of linear functions g :V → F .

We can now define the gradient of a smooth scalar field f as follows.

(∇xf(x)) (∆x) = lim
ε→0

f(x+ ε∆x)− f(x)

ε

Note that if we double the vector ∆x the value of the right hand side of the
above expression doubles. The value should be linear in the vector ∆x. We say
that f is differentiable if the above limit always exists and there exists a g in
V ∗ such that (∇xf(x)) (∆x) = g(∆x) for all ∆x. If f(x) is differentiable in x
then ∇xf(x) is a dual vector. This definition does not require coordinates and
uses only the concepts available in a vector space.
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The notation ∇x f(x) is a special case of the more general notion ∇x e[x]
where e[x] is an expression involving the variable x and possibly other variables
as well. Hence the subscript in ∇x is important — we have that ∇x e[x, y]
is different from ∇y e[x, y]. It is useful to consider the following more formal
definition.

∇x e[x, y] ≡ λ ∆x :V lim
ε→0

e[x+ ε∆x, y]− e[x, y]

ε

We have that x remains a free variable of ∇x e[x, y]. For example, we will show
in chapter 12 that ∇x xᵀAx equals (A+Aᵀ)x.

We now show that the dual space V ∗ itself forms a vector space with the
same dimension as V . For h, g :V ∗ we define h + g to be the function defined
by (h + g)(x) = h(x) + g(x). One can check that if h is linear and g is linear
then h + g is linear. Similarly for a :F and g :V ∗ we define the function ag by
(ag)(x) = a(g(x)). One can then show that the set of linear functions from V to
F itself forms a vector space under this vector addition and scalar multiplication.

Recall that for a basis B = 〈e1, . . . , ed〉 and a vector x we defined aBi (x)
to be the ith coordinate of x in the coordinate system defined by B. For the
coordinate maps aBi we have aBi (x+ y) = aBi (x) + aBi (y) and aBi (cx) = caBi (x).
Hence the mapping aBi from V to F is linear and we have aBi : V ∗. It turns
out that the coordinate maps aB1 , . . . , a

B
d form a basis of V ∗ and hence the dual

space V ∗ has the same dimension as V . To show this we must also show that
these functions are linearly independent and span V ∗. To show that they are
linearly independent we simply note that for each coordinate function aBi we
have that aBi (ei) = 1 while aBj (ei) = 0 for all j 6= i. Hence the function aBi
cannot be expressed as a linear combination of aBj for j 6= i. To show that the
coordinate functions span V ∗ we consider an arbitrary g :V ∗. For an arbitrary
g we have the following.

g(x) = g(aB1 (x)e1 + · · ·+ aBd (x)ed)

= aB1 (x)g(e1) + · · · aBd (x)g(ed)

= g(e1)aB1 (x) + · · · g(ed)a
B
d (x)

g = g(e1)aB1 + · · ·+ g(ed)a
B
b

We then have that in the coordinate system defined by B the coordinates of
g : V ∗ are 〈g(e1), . . . , g(ed)〉 and the coordinates of x are

〈
aB1 (x), . . . , aBd (x)

〉
and g(x) = g(e1)aB1 (x) + · · · + g(ed)a

B
d (x). This last equation states that for

any basis B we have that g(x) can be written as the “inner product” of the
coordinates for g and the coordinates for x.

Note that if we double the length of every basis vector then the coordinates
of the vectors get half as big while the coordinates of the dual vectors get twice
as big but the “inner product” g(x) retains its coordinate-free value. Vector
coordinates are called contravariant coordinates (these coordinates get smaller
when the basis vectors get bigger) and dual vector coordinates are called co-
variant coordinates (these coordinates get bigger when the basis vectors get
bigger).
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11.2 Voldemort Challenges Gradients

We now show that in dimension greater than one we cannot associate a dual
vector in V ∗ with any particular direction in V . Note that if the vector space
is one dimensional then there is only one direction V — we need at least two
dimensions before no direction can be named. To simplify the discussion we
consider finite dimensional vector spaces, but the claim holds in infinite dimen-
sion as well. For a finite dimensional vector space V of dimension greater than
one and a dual vector g : V ∗ define the type AscentVector[V, g] to be sub-
type of the vectors x such that g(x) = 1. For any direction ∆x we have that
(1/g(∆x))∆x is an ascent vector for g in the same direction as ∆x. Now con-
sider any dual vector g and any ascent vector ∆x for g. One can show that
there exists a basis B∆x for V in which e1 = x and g(ej) = 0 for j > 1. In this
basis the coordinates of g and the coordinates of x are both 〈1, 0, 0, . . . , 0〉. Now
consider any two ascent vectors ∆x and ∆x′ for g and consider the two bases
B∆x and B∆x′ . These two coordinates systems define a symmetry of V by map-
ping objects to their coordinates in B∆x and then mapping those coordinates
back to objects using coordinate system B∆x′ . This symmetry maps g to itself
— both coordinate systems assign the coordinates 〈1, 0, 0, . . . , 0〉 to g. But the
symmetry carries ∆x to ∆x′. Hence all ascent vectors are symmetric images of
each other and by Voldemort’s theorem no ascent direction can be named. One
can similarly show that, although V and V ∗ have the same dimension and are
therefore isomorphic, there is no canonical isomorphism between V and V ∗ —
if such an isomorphism could be named then we could name an ascent direction
for a dual vector g.

We can also construct the dual of the dual (V ∗)∗. Since this is the dual of
V ∗ it must have the same dimension V ∗ and which equals the dimension of V .
The vectors in (V ∗)∗ are the linear functions from V ∗ to F . Note that for x :V
we can define the mapping fx : V ∗ → F by fx(g) = g(x). It turns out that
this mapping from V to (V ∗)∗ is a linear bijection. Hence we can name a linear
bijection between V and (V ∗)∗ — there is a canonical (or natural) isomorphism
between V and (V ∗)∗.
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Chapter 12

Coordinate-Free Linear
Algebra

In chapter 10 we introduced the notation xDy for applying a bilinear function
D to two vectors x and y. Bilinear functions are often represented by matrices
— arrays of numbers. The expression xDy is reminiscent of matrix notation.
We will develop linear algebra in parallel to matrix algebra but without the use
of coordinate systems or arrays and where bilinear functions take the place of
matrices.

12.1 Right Facing and Left Facing Vectors

In standard matrix algebra we typically have that a vector x is, by default, a
“column vector” while xᵀ is a “row vector”. This terminology is meaningless
here has vectors are viewed as abstract points rather than as tuples of num-
bers. However, linear algebra requires marking vectors as “left facing” or “right
facing”. A left-facing vector combines with terms to the left and a right-facing
vector combines with terms to the right. We will interpret a vector variable x
without a transpose sign is left-facing while xᵀ as being right facing. If ω is
a dual vector and x is a vector then ωᵀx and xᵀω both denote the result of
applying the function ω to the vector x. On the other hand ωxᵀ is a bilinear
function which takes a vector to the left and a dual vector to the right and we
have yᵀ(ωxᵀ)γ = (yᵀω)(xᵀγ).

Dirac’s Bra-ket notation is perhaps more intuitive than the transpose no-
tation. In the bra-ket notation we write |x> for x and <x| for xᵀ and xᵀAy
is written as <x|A|y>. Here <x| is called a “bra” and |y> is called “ket” and
together they form a bracket. But the bra-ket notation also merely indicates
which direction (right or left) a vector combines with other terms. Here we
will continue to use the transpose notation because of its similarity to matrix
notation.
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12.2 Bilinear Functions Replace Matrices

Each of the arguments of a bilinear function can be either vectors or dual vectors.
This gives the following four types of bilinear functions.

1. V × V → F = V → V ∗

2. V × V ∗ → F = V → V
3. V ∗ × V → F = V ∗ → V ∗

4. V ∗ × V ∗ → F = V ∗ → V

Consider A : V × V → F . The type V × V → F is the same as the type
V → (V → F ) which (for bilinear functions) is the same as V → V ∗ as listed
above. For A :V × V → F and for x :V we can let Ax denote the vector in V ∗

mapping y to yᵀAx. This is consistent with thinking of A as a abstract matrix
where Ax denotes a vector. Now consider B : V × V ∗ → F . This is the same
as V → (V ∗ → F ) and V is naturally isomorphic to V ∗ → F we can think of
this type as V → V . Now consider A :V → V ∗ (type 1. above) and B :V → V
(type 2. above). We can define AB to be the composition of the functions A
and B which we can write as (AB)x = A(Bx). We then have that AB has
type V → V ∗ which is the same as V × V → F . This corresponds to matrix
multiplication in matrix algebra. However, in coordinate-free linear algebra the
product AB of two bilinear functions is only well defined when the output type
of B (which is either V or V ∗) matches the input type of A where the types are
defined by the right hand column of the above table. This is equivalent to the
statement that AB is defined when the right argument of A has type dual to
the left argument of B.

12.3 Transpose and Inverse

If A is a bilinear function then we will write Aᵀ for the bilinear function A
but taking its arguments in the reverse order. The bilinear function Aᵀ can be
defined by the equation xᵀ(Aᵀ)y = yᵀAx. We have noted that a product AB of
bilinear functions A and B is defined if the right argument of A is compatible
with the left argument of B (the two argument types must be dual of each
other). Note that if AB is defined then BᵀAᵀ is also defined and we have
(AB)ᵀ = BᵀAᵀ. Note that the transpose operation does not change the type of
bilinear functions of types (1) and (4) above but switched types (2) and (3). So
types (2) and (3) are equivalent — we can go from one to the other using the
transpose operation.

We say that the bilinear function A is full rank if the map from x to Ax is
a bijection between vector spaces where we view the type of A as being given
by the second column in the above table (when we view A as a linear function
between vector spaces). If A is full rank then we can define A−1 to be the
inverse function and we then have that A−1A is the identity function on the
vector space which is the right type of A. We also have that AAᵀ is the identity



12.4. COMPUTING AGRADIENT—CALCULATIONWITHOUT COORDINATES69

function on the left type of A. Note that the inverse operation does not change
the type of bilinear functions of type (2) or (3) but switches types (1) and (2).

Problem 12.1: Show that if D is an inner product on V then
D :V → V ∗ is full rank. More specifically, show that it is a bijection
— that if Dx = Dy then x = y.

We note that an inner product operation D is required to be positive definite
and this implies thatD is full rank — an inner productD on V defines a bijection
from V to V ∗. Hence, for any inner product D we have that D−1 is well defined
and we have D−1 :V ∗ → V which is equivalent to D−1 :V ∗×V ∗ → F . We then
have that if D is a an inner product on V then D−1 is an inner product on V ∗.
So an inner product on V provides the same information as an inner product
on V ∗.

12.4 Computing a Gradient — Calculation With-
out Coordinates

We have now defined the operations underlying linear algebra. These operations
satisfy associativity for products and distributivity of multiplacation over addi-
tion. For example, we have (AB)C = A(BC) and AB+AC = A(B+C). These
algebraic manipulations allow calculation. As an example, we now calculate the
gradient ∇x xᵀAx.

(∇x xᵀAx)(∆x) = ∆xᵀ(∇x xᵀAx)

= lim
ε→0

(x+ ε∆x)ᵀA(x+ ε∆x)− xᵀAx
ε

= lim
ε→0

∆xᵀAx+ xᵀA∆x+ ε∆xᵀA∆x

= ∆xᵀAx+ xᵀA∆x

= ∆xᵀAx+ ∆xᵀAᵀx

= ∆xᵀ(Ax+Aᵀx)

∇x xᵀAx = Ax+Aᵀx

We can also (more easily) show the following which exhibits the significance of
the subscript x in the notation ∇x.
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∇x xᵀAy = Ay

∇y xᵀAy = Aᵀx

We can see that linear algebra, with variables over vectors, supports calcu-
lation in much the same way as ordinary algebra with variables over scalars.

Problem 12.2: Compute the gradient∇xf(x) where f(x) = (xTAy)(zᵀBx).

Problem 12.3: Compute ∇x sin(xᵀAx).

Problem 12.4: Consider a vector space V over the reals and func-
tions f :R → R and g : V → R. Use the definition of ∇x to show
that ∇xf(g(x)) = ḟ(g(x))∇xg(x) where ḟ of f is the first derivative
of f . This is a form of the chain rule for differentiation.

12.5 Differentiating Vector Fields

Consider two vector spaces V and W and a function F :V →W so that for x :V
we have F (x) :W but where F (x) may be nonlinear in x. For example, if x is a
point in physical space then F (x) might be the gravitational field at x. We can
define ∇xF (x) using the same equation as before.

∇xF (x) = λ ∆x :V lim
ε→0

F (x+ ε∆x)− F (x)

ε

Here, however, F (x) is a vector rather than a scalar. We then have that ∇xF (x)
is a linear mapping from vectors to vectors, or equivalently, a bilinear function
on scalars (as in the table at the start of chapter 12). Again we have that in
general x remains a free variable of ∇xF (x).

In the case of where f(x) is a scalar we have that ∇xf(x) is a vector and
vectors by default interact to the left so that we have

(∇xf(x))(∆x) = ∆xᵀ(∇xf(x)).

In the case where F (x) is a vector we adopt the convention that ∇xF (x) takes
its argument on the right and we have

yᵀ [(∇xF (x))(∆x)] = yᵀ [∇xF (x)] ∆x.

Problem 12.5: Consider three vector spaces V , W and H all
over a field F . Consider (nonlinear) functions F : W → H and
G :V →W . Use the definition of ∇x to derive the general chain rule
∇xF (G(x)) = ((∇yF (y))[y ← G(x)])∇xG(x).

12.6 Tensors



Chapter 13

Coordinate-Free
Optimization

Consider a vector space V over the reals and a differentiable funcion f :V → R.
If there exists a unique minimum of this function then we define argminx f(x)
to be the unique x∗ such that for any vector y 6= x∗ we have f(y) > f(x∗). It
is also interesting to consider the case where the minimum is not unique, but
for the sake of simplicity we will assume a unique minimizing point. We can
use the gradient of f in a variety of ways in constructing algorithms for finding
the minimum x∗. The optimization problem, and the gradient of f , are defined
without reference to any coordinate system or inner product. We now consider
some approaches to the optimization problem and consider the question of which
approaches are defined purely in terms of the vector space structure and which
require a (perhaps arbitrary) inner product.

13.1 Convexity

A (nonlinear) function f :V → R is called convex if for any two vectors x, y :V
and real number λ ∈ [0, 1] we have the following.

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Note that the definition of convexity does not assume any coordinate system or
inner product. If f is convex then any local minimum of f is a global minimum
of f .

13.2 The KKT Conditions

Given that f is differentiable, and that a unique minimizer x∗ exists, we must
have ∇xf(x) is zero (the zero vector in V ∗) at the point x∗. The simplest
approach to finding x∗ is to solve the equation ∇x(f(x)) = 0. In a given

71



72 CHAPTER 13. COORDINATE-FREE OPTIMIZATION

coordinate system this can be written as d constraints in d unknown coordinates.
However, the equation ∇x(f(x)) = 0 is coordinate free and can sometimes
be solved in a coordinate free way using coordinate-free linear algebra. For
example, if f(x) = a+ ωᵀx+ xᵀAx then x∗ = (A+Aᵀ)−1ω. No inner product
or coordinate system is involved here.

The Karesh-Kuhn-Tucker (KKT) conditions handle the case of constrained
optimization. Here we are interested in minimizing f(x) subject to a system
of constraints of the form g1(x) ≤ 0, g2(x) ≤ 0, . . . , gk(x) ≤ 0 where each gi
is differentiable. We sat that a vector x satisfies the KKT conditions if there
exists real numbers λ1, λ2, . . ., λk with λi ≥ 0 such that λi = 0 if gi(x) < 0
(complementary slackness) and we have the following.

∇xf(x) + λ1∇xg1(x) + · · ·+ λk∇xgk(x) = 0

Note that every term in this sum is a dual vector. The KKT conditions are
stated purely in terms of vector space structure and do not assume any coordi-
nate system or inner product. One can show that any solution to the constrained
optimization problem must satisfy the KKT conditions. If f and each gi are
convex then any solution to the KKT conditions is a global optimum.

13.3 Gradient Descent

Gradient descent is a widely used algorithm for finding the minimizer x∗ =
argminx f(x). In gradient descent we compute a sequence of points x0, x1, x2,
. . . by “following the gradient” of f . Unfortunately, we showed in chapter 11 that
the gradient vector ∇xf(x), which is a dual vector, does not allow us to name
any particular update direction for constructing xt+1 from xt. The situation is
different, however, if we are given an inner product D on V . Note that D−1 has
type V ∗ × V ∗ → R which is the same as V ∗ → V . Given an inner product D
we can define the gradient descent algorithm by the following update equation
where x0 is selected in some unspecified way.

xt+1 = xt − ηtD−1(∇x f(x))

Note that in a coordinate system defined by an orthonormal basis for D, we
have that D has the coordinates of the identity matrix. But the above update
equation is meaningful independent of any choice of any coordinates. Here
ηt > 0 is a learning rate and one typically requires that

∑
t ηt = ∞ but

∑
t η

2
t

is finite in which case we have that if f is strictly convex then limt→∞ xt = x∗.
This convergence of xt to x∗ is independent of the choice of D. However, the
rate of convergence of xt to x∗ depends on the choice of D.

13.4 Newton’s Method

Although there is no canonical inner product for a vector space V , given a
strictly convex scalar field f we can name an appropriate inner product to use



13.4. NEWTON’S METHOD 73

in gradient descent on f . In particular, if f is strictly convex then the Hessian
of f — the second derivative of f — defines an inner product on V . We now
define the second derivative of f .

Note that if f(x) is a scalar field then ∇xf(x) is a vector field. For example,
we have that xᵀAx is a nonlinear scalar field. In this case we have

∇x xᵀAx = (A+Aᵀ)x

and hence ∇x xᵀAx is a vector field. Since, in general, ∇xf(x) is a vector field,
we can differentiate it again and write ∇x∇xf(x). We can use the definition of
the gradient of a vector field to derive the following.

∇x∇x xᵀAx = ∇x [(A+Aᵀ)x]

= A+Aᵀ

The second derivative ∇x∇xf(x) is called the Hessian of f and we will abbrevi-
ate this as Hf [x] (note that in general x remains a free variable of ∇x∇xf(x)).
We can write the second order Taylor expansion of a scalar field f(x) as follows.

f(x+ ∆x) ≈ f(x) + (∇xf(x))ᵀ∆x+
1

2
∆xᵀHf [x]∆x

Note that the second order Taylor expansion is defined independent of any
choice of coordinates or choice of inner product. For a scalar field f(x) we have
that the Hessian Hf = ∇x∇xf(x) has type V × V → R. It can also be shown
that H is symmetric. A doubly differentiable scalar field f(x) is called strictly
convex if Hf is positive definite. Note that we have that Hf is positive definite
if and only if for all ∆x 6= 0 the second order term in the second order Taylor
expansion of f is positive. We now have that if f is strictly convex then Hf is
an inner product on V .

Now again consider the problem of minimizing a scalar field f(x). Let Gf [x]
abbreviate ∇xf(x) — Gf [x] is the gradient of f at the point x. We can write
the first order Taylor expansion of Gf [x] as follows.

Gf [x+ ∆x] ≈ Gf [x] +Hf [x]∆x

At the minimum x∗ we must have Gf [x∗] = 0. The above approximate expres-
sion for Gf (x+ ∆x) can be solved for x∗ as follows.

Gf [x] +Hf [x]∆x = 0

∆x = −Hf [x]−1Gf [x]

x∗ ≈ x−Hf [x]−1Gf [x]

Newton’s method algorithm initializes x0 in some unspecified way and then
repeats the following update.

xt+1 = xt −Hf [xt]
−1Gf [xt]
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When x0 is far from x∗ this update is not guaranteed to converge. We can
ensure convergence by converting this to a form of gradient descent with an
appropriate learning rate ηt.

xt+1 = xt − ηtHf [xt]
−1Gf [xt]

This is analogous inner-product gradient descent but where the inner product
used in computing xt+1 is taken to be Hf (xt). This is sometimes referred to
as second order gradient descent. Methods exploiting Hf are generally called
second order methods. Second order methods generally require fewer iterations,
although computing Hf with respect to a particular coordinate system can be
expensive in high dimension.

Problem 13.1: Let V be a vector space and consider a nonlinear
function f : V → R of the form f(x) = a+ uTx+ xTMx with a :R,
u : V ∗ and M a full-rank bilinear function M : V × V → R. We
consider applying Newton’s method to minimize f starting at the
point x0. Give the Newton method update for computing xi+1 from
xi in terms of a, u and M . (Note that M need not be symmetric.)
How quickly will Newton’s method converge in this case?

13.5 Convex Duality



Chapter 14

Coordinate-Free Least
Squares Regression

14.1 Classical Regression

We now consider a vector space V over the reals and a sequence of pairs 〈x1, y1〉,
. . ., 〈xN , yN 〉 with xi : V and yi a real number. We are interested in fitting a
linear function to these points. In particular we want to find a “weight vector”
ω :V ∗ such that ωᵀxi is near yi. Some formulation of regression include a bias
term so that the predictor of yi has the form ωᵀxi + b. However, it is always
possible to include a constant feature in xi so that the bias term b is simply one
of the coordinates of omega. We then have that predictors of the form ωᵀxi
suffice. In this case the problem we are interested in solving can be written as
follows.

ω∗ = argmin
ω

N∑
i=1

(ωᵀxi − yi)2

We will assume here that the minimum is unique and that the argmin is well
defined. This is the classical least squares regression problem. Note that ω∗

is defined without any reference to a coordinate system or an inner product
operator. So it should be possible give an expression for ω∗ which also does not
involve any coordinate system or inner product.

To solve this problem we note that
∑N
i=1 (ωᵀxi − yi)2 is scalar field as a

function of the vector ω. We can find the minimum by setting the gradient to
zero. Using the definition of gradient one can prove that for g :R → R and
f :V → R we have the following where g′(z) is the derivative of g at the scalar
value z.

∇xg(f(x)) = g′(f(x))∇xf(x)

This is a generalization of the chain rule of differentiation. Applying this rule
to (ωᵀxi − yi)2 gives the following.

∇ω(ωᵀxi − yi)2 = 2(ωᵀxi − yi)xi
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We can now solve for ω∗ as follows.

0 = ∇ω
∑
i

(ωᵀxi − yi)2

=
∑
i

2(ωᵀxi − yi)xi

0 =
∑
i

xi(x
ᵀ
i ω − yi)(∑

i

xix
ᵀ
i

)
ω =

∑
i

yixi

ω∗ =

(∑
i

xix
ᵀ
i

)−1(∑
i

yixi

)

This expression for ω∗ indeed does not make use of any coordinate system or
inner product operation.

14.2 Ridge Regression

If the data points 〈x1, y1〉, . . . , 〈xN , yn〉 are such that x1, . . ., xN are linearly
independent then we can select a basis in which each xi is a basis vector. In this
case there trivially exists ω :V ∗ such that ωᵀxi = yi for all data points 〈xi, yi〉.
But in this case there is no reason to believe that least square regression will
produce a predictor that is of value on a new input point xi. In this case it is
better to impose a prior bias on the weight vectors ω and prefer those weight
vectors ω that are a-priori favored. This can be done by introducing a inner
product operation D on V and consider the following optimization problem.

ω∗ = argmin
ω

∑
i

1

2
(ωᵀxi − yi)2 +

1

2
λωᵀD−1ω

Here we prefer vectors ω : V ∗ with small size as determined by the inner pro-
duction D. This is called ridge-regression and the choice of the inner product
D corresponds to the choice of an a-prior bias on weight vectors. We can solve
the ridge-regression optimization problem as follows.
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0 = ∇ω
∑
i

1

2
(ωᵀxi − yi)2 +

1

2
λωᵀD−1ω

=
∑
i

(ωᵀxi − yi)xi + λD−1ω

=
∑
i

xi(x
ᵀ
i ω − yi) + λD−1ω

(∑
i

yixi

)
=

(∑
i

xix
ᵀ
i + λD−1

)
ω

ω =

(∑
i

xix
ᵀ
i + λD−1

)−1(∑
i

yixi

)

In summary, while least squares regression is defined independent of any
choice of inner product on the vector space, ridge regression requires a choice
of inner product to define an a-priori bias on the weight vectors ω.

14.3 Voldemort Challenges Regression

Problem 14.1: Voldemort’s no free lunch theorem for linear
regression. Let V be a d-dimensional vector space and let 〈x1, y1〉,
. . ., 〈xn, yn〉 be pairs with xi ∈ V and yi ∈ R. Prove that for n < d
it is not possible to name any nonzero linear function from V to R
(any nonzero dual vector) in terms of the structure of V and the
given pairs.
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Chapter 15

A Coordinate-Free Central
Limit Theorem

To state the central limit theorem on a vector space we will need to be able
to express integrals on a vector space and probability distributions on a vector
space. A rigorous treatment of these concepts in beyond the scope of this book.
However, it worth noting that the central limit theorem can be stated for a
vector space without assuming any given inner product operation. Here we
present this fact in an very informal and intuitive way.

Consider a probability distribution (formally a finite measure) π on a d-
dimensional vector space V over the reals. For a function f(x) of a vector
space x we will write Ex∼π[f(x)] for the expectation of f(x) when drawing x
according to the distribution π. Assuming that π has a first moment there exists
an expected (or mean) vector µ = Ex∼π[x]. We can estimate µ by computing
an empirical average µ̂ = 1

n

∑n
i=1 xi where each xi is drawn independently from

distribution π. Because each xi is a random variable, the mean estimate µ̂ is
also a random variable. The central limit theorem says that as n goes to infinity
the distribution of µ̂ approaches that of a multivariate Gaussian distribution.

Note that the distribution of the mean estimate µ̂ is determined by the dis-
tribution π,the vector space V , and the sample size n. It must therefore be
independent of any arbitrary choice of coordinate system or an inner product
for V . The challenge here is to state the central limit theorem without intro-
ducing arbitrary coordinates or an arbitrary inner product operation. Our first
observation is that if the distribution π has finite second moment we can define
the a bilinear function analogous to the covariance matrix as follows.

Σ = Ex∼π [(x− µ)(x− µ)ᵀ]

We then have that Σ has type V ∗×V ∗ → R and we have the following for dual
vectors α and β.

αᵀΣβ = E[(αᵀx− E[αᵀx])(βᵀx− E[βᵀx])]
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This equation says that αtΣβ equals the covariance of the random variables αᵀx
and the random variable βᵀx (hence the term covariance matrix). In particular
we have that αᵀΣα is the variance of the random variable αᵀx. Note that no
coordinates are involved in these concepts.

It is easy to see that the bilinear function Σ is symmetric and positive
semidefinite meaning that αᵀΣα ≥ 0. We will now assume that Σ is positive
definite which will be true unless the distribution π is restricted to a subspace
of V of dimension less than d. When Σ is positive definite we have that Σ−1 is
an inner product on V .

We now argue informally that an inner product D on V naturally assigns
volume (measure) to regions (subsets) of V . A measure ν assigns a weight ν(S)
to each measurable subset S of V . A measure ν on V will be called uniform
if for any (measurable) subset S of V and vector x we have ν(S + x) = ν(S)
where S + x is the set of vectors of the form y + x for y ∈ S. It can be shown
that any two uniform measures ν and ν′ on V are related by a constant —
there exists c such that for all S we have ν′(S) = cν(S). Now consider a basis
B = 〈e1, . . . , ed〉 which is orthonormal for D. Define the unit box for this basis
to be the set of vectors x where each coordinate relative to this basis is in (0, 1)
— the set of vectors x with 0 ≤ aBi (x) ≤ 1. We can define νD to be the unique
uniform measure on V such that a unit D-box has measure 1. The measure νD
depends only on the inner product D and not on the choice of basis used to
define the D-box.

If ν is a measure assigning volume to subsets of V , and f(x) is a function
from V to the reals, and S is a region of (subset of) V then it is possible to
define the integral

∫
S
f(x)ν(dx) which is the integral over the region S of the

function f(x). This integral can be defined as the limit, as we partition V into
finer and finer grids, of the sum over all the grid cells of the size of the cell times
f(x) where x is a vector in the cell (the Riemann integral). Here the notation
ν(dx) is meant to express the size of very small grid cell dx under the measure
ν. A formal definition of integrals is beyond the scope of this book.

We can now express the central limit theorem as follows. For any distribution
π on V with finite second moments, and for any measurable subset S of V , we
have the following.

lim
n→∞

Px1,...,xn∼π
[√
n(µ̂− µ) ∈ S

]
=

∫
S

(2π)−d/2e−
1
2 (µ̂−µ)ᵀΣ−1(µ̂−µ)νΣ−1(dx)

This notation is now free of any choice of coordinates or choice of ambient inner
product.

In practice calculations are usually made relative to some given (perhaps
arbitrary) coordinate system imposing some (perhaps arbitrary) inner product
D. We can perform calculations in the ambient coordinate system by noting
the following relation ship between two measures νD and νD′ .

νD′(dx) =
√
|D−1D′| νD(dx)

Note that D−1D′ has type V → V and we can define the “determinant” |D−1D′|
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to be the product of the eigenvalues of this mapping. Eigenvectors and eigen-
values are discussed the chapter 16. In particular we have the following.

νΣ−1(dx) =
√
|D−1Σ−1| νD(dx)

If D is the inner product of the ambient coordinate system then the coordinates
of D as a matrix in the ambient coordinate system are those of identity matrix
and the central limit theorem takes on the traditional form involving the leading
factor of 1/

√
|Σ| in the leading constant of the Gaussian distribution.
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Chapter 16

Principle Component
Analysis (PCA)

16.1 Problem Statement

In PCA we are interested in dimensionality reduction. We want to map vectors
in a d-dimensional space into vectors in a k-dimensional vector space with k < d
and often where k is much smaller than d. Dimensionality reduction can be used
in wide variety of applications where it is more convenient to work with lower
dimensional vectors. One example is the ridge regression algorithm described in
chapter 14. Ridge regression, and regularization in general, is important when
the dimension of the space is comparable to, or larger than, the sample size.
In such cases an alternative to regularization is to reduce the dimension of the
space and then perform unregularized (normal) regression.

To define PCA we assume a set of vectors x1, . . ., xN . We will assume that
these are drawn IID from some probability distribution on vectors. We define
the following.

µ = E [x]

µ̂ =
1

n

n∑
i=1

xi

Σ = E [(x− µ)(x− µ)ᵀ]

Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)ᵀ

In PCA we often have n << d which implies that the bilinear function Σ̂ is not
full rank and hence does not have an inverse. This can be contrasted with the
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central limit theorem in chapter 15 where we hold d fixed and take the limit as
n → ∞. The reason for using 1/(n − 1) rather than 1/n in the definition of Σ̂
is given by the following calculation (note that we are not using coordinates).

E
[
Σ̂
]

=
1

n− 1
E

[∑
i

(xi − µ̂)(xi − µ̂)ᵀ

]

=
1

n− 1
E

[∑
i

((xi − µ)− (µ̂− µ))((xi − µ)− (µ̂− µ))ᵀ

]

=
1

n− 1


E [
∑
i(xi − µ)(xi − µ)ᵀ]

−E [
∑
i(µ̂− µ)(xi − µ)ᵀ]

−E [
∑
i(xi − µ)(µ̂− µ)ᵀ]

+E [(µ̂− µ)(µ̂− µ)ᵀ]


=

1

n− 1
(nΣ− Σ− Σ + Σ)

= Σ

A linear subspace W of V is defined to be a subset of V closed under scaling
and vector addition. Note that any linear subspace of V must contain the zero
vector. A linear subspace W can be visualized as a kind of hyperplane in V
passing through the origin (the zero vector). Given the inner product D on V
we can define the projection of a point x into a linear subspace W , which we
will denote as x 7→D W , as follows.

x 7→D W = argmin
y∈W

||x− y||D

16.2 Problem Solution

The objective in PCA is to find a k-dimensional linear subspace W minimizing
the sum of the squared distance of from xi − µ̂ to the nearest point in W . To
simplify the notation we now write ∆xi for xi − µ̂ and define W ∗ as follows.

W ∗ = argmin
W

∑
i

|| ∆xi − (∆xi 7→D W ) ||2D

For orthonormal vectors e1, . . . ek (relative to D) let W (e1, . . . , ek) be the
linear subspace spanned by e1, . . ., ek. One can then show the following.

∆x 7→D W (e1, . . . , ek) = (∆xᵀDe1)e1 + · · ·+ (∆xᵀDek)ek

The optimization problem defining W ∗ can then be recast as follows where e1,
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. . . ek are constrained to be orthonormal.

e∗1, . . . e
∗
k = argmin

e1,...,ek

∑
i

||∆xi −∆xi 7→D W (e1, . . . , ek)||2D

= argmin
e1,...,ek

∑
i

||∆xi||2D − ||∆xi 7→D W (e1, . . . , ek)||2D

= argmax
e1,...,ek

∑
i

||∆xi 7→D W (e1, . . . , ek)||2D

= argmax
e1,...,ek

n∑
i=1

k∑
j=1

(∆xᵀiDej)
2

In other words, we want to maximize the sum of the norm squared of the
projections of the points ∆xi into the subspace W (e1, . . . , ek). We can rewrite
this maximization problem as follows.

e∗1, . . . e
∗
k = argmax

e1,...,ek

n∑
i=1

k∑
j=1

(∆xᵀiDej)
2

= argmax
e1,...,ek

k∑
j=1

n∑
i=1

(eᵀjD∆xi)(∆x
ᵀ
iDej)

= argmax
e1,...,ek

k∑
j=1

eᵀjD

(
n∑
i=1

∆xi∆x
ᵀ
i

)
Dej

= argmax
e1,...,ek

k∑
j=1

eᵀjDΣ̂Dej

We now consider the case of k = 1 — the case of reduction to a single dimen-
sion. In this case we can solve for e1 using the KKT conditions where we set
the gradient of the object eᵀ1DΣ̂De1 to λ times the gradient of the constraint
||e1||2D = 1 giving the following.

DΣ̂De1 = λDe1

The inner product D is full rank and hence we can multiply both sides by D−1

yielding the following.

Σ̂De1 = λe1

Note that Σ̂D has type V → V . The above condition states that e1 is an
eigenvector of this map with eigenvalue λ. In a coordinate system where D has
the coordinates of the identity matrix we are requiring that the coordinates of
e1 form an eigenvector of the covariance matrix Σ̂.

We now show that since Σ̂ is symmetric and positive semidefinite we have
that eigenvectors of Σ̂D with distinct eigenvalues are orthogonal under D. This
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can be shown as follows where e1 and e2 are eigenvectors of Σ̂D with eigenvalues
λ1 and λ2 respectively.

eᵀ1DΣ̂De2 = eᵀ1D(λ2e2)

= λ2e
ᵀ
1De2

= eᵀ2DΣ̂De1

= eᵀ2D(λ1e1)

= λ1e
ᵀ
1De2

Now if λ1 6= λ2 then we must have eᵀ1De2 = 0. It can be shown that the solution
to the PCA optimization problem is to take e1, . . ., ek to be the k eigenvectors
of Σ̂D with the largest eigenvalues.

Problem 16.1: Let V be a vector space and let D :V ×V → R be a
symmetric and positive definite abstract matrix. Let Σ : V ∗×V ∗ →
R also be symmetric and positive definite. Typically D is an inner
product and Σ is a covariance matrix. Positive definite symmetric
operators (as opposed to positive seimidefinite operators) are always
full rank and hence always invertable (you do not have to prove this).
Let u :V ∗ and v :V ∗ be eigenvectors of DΣ with distinct eigenvalues.
In other words we have the following where λ1 6= λ2.

DΣu = λ1u

DΣv = λ2v

Show that u and v are orthogonal as measured by D−1, i.e., show
uTD−1v = 0.

Problem 16.2: Let D1 and D2 be two different inner product
operations on the same vector space V . Define an abstract matrix
of type V → V in terms of D1 and D2 and describe how this might
be used for dimentionality reduction.

16.3 Voldemort Challenges Dimensionality Re-
duction

Problem 16.3: Voldemort challenges inner products again.
Let V be a d-dimensional vector space and let x1, . . ., xn be vectors in
V . Prove that for n < d it is not possible to name any inner product
D on V in terms of the vectors x1, . . ., xn. More specifically, show
that n < d and for any inner product D on V there exists an distinct
inner product D′ which behaves identically to D on the points x1,
. . ., xn. Explain why Voldemort’s theorem then implies that no such
inner product can be named.
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Problem 16.4: Voldemort’s no free lunch theorem for di-
mensionality reduction. Let V be a d-dimensional vector space
and let x1, . . ., xn be vectors in V . Prove that for n < d it is
not possible to name any nonzero linear map from V to the space
W (x1, . . . , xn) of vectors spanned by x1, . . ., xn.
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Chapter 17

Canonical Correlation
Analysis (CCA)

Canonical correlation analysis is a dimensionality reduction method similar to
principal component analysis (PCA) but which does not involve a notion of dis-
tortion defined independent of the probability distribution on vectors. Rather
than assume a probability distribution on a vector space we assume a distribu-
tion on pairs (x, y) where x and y are vectors in different vector spaces. We
want to find a low dimensional representational of x which carries as much
information about y as possible.

17.1 Problem Statement

For any two real-valued random variables x and y we define the correlation ρx,y
as follows.

ρx,y =
E [(x− x)(y − y)]

σxσy

x = E [x]

y = E [y]

σx =
√

E [(x− x)2]

σy =
√

E [(y − y)2]

Note that ρx,y is invariant to scaling x — if we define x′ = αx for α > 0 then
we get E [x′y] = αE [xy] and σx′ = ασx and hence ρx′,y = ρx,y. By a form of
the Cauchy-Schwarz inequality we have |E [(x− x)(y − y)]| ≤ σxσy and we have
ρx,y ∈ [−1, 1].
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Now let V and W be vector spaces and let P be a distribution on V ×W .
In other words, P is a probability distribution on pairs (x, y) with x ∈ V and
y ∈ W . For fixed vectors u ∈ V ∗ and v ∈ W ∗ we have that uTx and vT y are
real valued random variables and we can consider their correlation ρ(uT x),(vT y).
It is possible to show that this correlation can be expressed as follows.

ρu,v =
E
[
uT (x− x)(y − y)T v

]√
E [uT (x− x)(x− x)Tu] E [vT (y − y)(y − y)T v]

=
uTΣVW v√

uTΣV V u vTΣWW v

ΣVW = E
[
(x− x)(y − y)T

]
ΣV V = E

[
(x− x)(x− x)T

]
ΣWW = E

[
(y − y)(y − y)T

]
Canonical correlation analysis computes a sequence of pairs (u1, v1), . . .,

(uk, vk) with ui ∈ V ∗ and vi ∈W ∗ are the solution to the following optimization
problem.

Maximize ρui,vi subject to:

ui ∈ V ∗, vi ∈W ∗

uTi ΣV V ui = 1, vTi ΣWW vi = 1

uTi ΣV V uj = 0, vTi ΣWW vj = 0 for all j < i

17.2 Problem Solution

We can then represent x ∈ V by the vector (uT1 x, u
T
2 x, . . . , u

T
k x) ∈ Rk. This

reduces dimension when k is smaller than the dimension of V .
We now consider the optimization problem defining (u1, v1). In this case we

want to simply maximize ρu,v. We first consider the problem of optimizing v
given u which is the following optimization problem.

For u ∈ V ∗ fixed, maximize uTΣVW v for v ∈ W ∗ such that
vTΣWW v = 1.

Setting the gradient of the objective function equal to λ times the gradient of
the constraint gives the following.

ΣWV u = 2λΣWW v

v =
1

2λ
Σ−1
WWΣWV u
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Applying the constraint that vTΣWW v = 1 gives the following optimal value
v∗(u) as a function of u.

v∗(u) =
Σ−1
WWΣWV u√

uTΣVWΣ−1
WWΣWWΣ−1

WWΣWV u

=
Σ−1
WWΣWV u√

uTΣVWΣ−1
WWΣWV u

Plugging this back into the original objective function gives the following
optimization problem for u.

Maximize uTΣVW v
∗(u) for u ∈ V ∗ such that uTΣV V u = 1.

uTΣVW v
∗(u) =

utΣVWΣ−1
WWΣWV u√

uTΣVWΣ−1
WWΣWV u

=
√
uTΣVWΣ−1

WWΣWV u

Again we can take the gradient of the objective function and set it equal to
a constant times the gradient of the constraint. This gives the following.

1

2

(
uTΣVWΣ−1

WWΣWV u
)−1/2

2ΣVWΣ−1
WWΣWV u = 2λΣV V u

Σ−1
V V ΣVWΣ−1

WWΣWV u = λ′u

In other words u must be an eigenvector of Σ−1
V V ΣVWΣ−1

WWΣWV : V ∗ → V ∗.
Furthermore we can show λ′ ≥ 0 as follows where we use the fact that the inverse
of a symmetric positive semi-definite abstract matrix is also positive semidefinite
and hence Σ−1

WW is positive semidefinite.

Σ−1
V V ΣVWΣ−1

WWΣWV u = λ′u

ΣVWΣ−1
WWΣWV u = λ′ΣV V u

uTΣVWΣ−1
WWΣWV u = λ′uTΣWWu

λ′ =
(ΣWV u)

T
Σ−1
WW (ΣWV u)

uTΣV V u

≥ 0
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ρu,v∗(u) =
uTΣVW

(
Σ−1
WWΣWV u

)√
uTΣV V u

√(
uTΣVWΣ−1

WW

)
ΣWW

(
Σ−1
WWΣWV u

)

=

√
uTΣVWΣ−1

WWΣWV u√
uTΣV V u

=

√
uTΣV V

(
Σ−1
V V ΣVWΣ−1

WWΣWV u
)√

uTΣV V u

=

√
uTΣV V (λ′u)√
uTΣV V u

=
√
λ′

In other words, for u an eigenvector of Σ−1
V V ΣVWΣ−1

WWΣWV we have that the
correlation ρu,v∗(u) is equal to the square root of the eigenvalue λ′. So we
can take (u1, v1) to be the pair (u, v∗(u)) where u is the eigenvector of largest
eigenvalue. Furthermore, the abstract matrix Σ−1

V V ΣVWΣ−1
WWΣWV is of the

form DM : V ∗ → V ∗ where D : V × V → R is the inner product Σ−1
V V on V

and M :V ∗ × V ∗ → R is the symmetric abstract matrix ΣVWΣ−1
WWΣWV . The

eigenvectors u :V ∗ of DM are orthogonal as measured by D−1 which is ΣV V in
this case. So if we take u2 to be the second strongest eigenvector of DM then
we get uT2 ΣV V u1 = 0 as required. More generally we can take u1, . . ., uk to be
the k strongest eigenvectors of Σ−1

V V ΣVWΣ−1
WWΣWV .

Problem 17.1: Consider two vector spaces V and W and a prob-
ability distribution on pairs (x, y) with x ∈ V and y ∈ W with
E [x] = 0 and E [y] = 0. Consider the following generalized matrices.

ΣV V = E
[
xx>

]
ΣWW = E

[
yy>

]
ΣVW = Σ>W,V = E

[
xy>

]
a. Give types for each of these abstract matrices both as bilinear
functions on the reals and as functions between vector spaces.

b. Give the type of ΣV,WΣ−1
WWΣWV .

c. Use these abstract matrices to define two different inner prod-
ucts on V and describe how this relates to problem 16.2 and to CCA.
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17.3 Voldemort Challenges CCA

In practice we do not have access to the true expectations and must work with
a finite sample 〈x1, y1〉, . . ., 〈xn, yn〉. In the case where n < d Voldemort can
defeat CCA — there is no way to name even a single feature defined on all of
V or all of W without introducing some other object, such as an inner product,
to break the symmetries in the vector spaces.
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Chapter 18

Kernels and Hilbert Spaces

Kernel methods provide “nonlinear” generalizations of algorithms using ambient
inner products. For example, we have kernelized gradient descent (in a function
space), kernelized ridge regression and kernelized PCA. Other algorithms, not
discussed here, can also be kernelized. For example we have kernelized support
vector machines and kernelized independent component analysis. A kernel, as
we will see below, is a special kind of similarity function representing an inner
product.

18.1 Function Spaces and F(K)

In many cases we are interested in a space of functions f :X → R where X is an
arbitrary “input space”. This is particularly true in machine learning where we
often want to take a set of input-output pairs 〈x1, y1〉, . . .,〈xN , yN 〉 with xi :X
and yi :R and generalizing the given pairs to a function f :X → R. We define
the type FunSpace as follows.

FunSpace ≡ X :type1; F :SetOf(X → R); A

The axioms A state that F is closed under addition and scaling:

• The family F is closed under function addition — for f ∈ F and g ∈ F
then we have f+g ∈ F where f+g is the function defined by (f+g)(x) =
f(x) + g(x).

• The family F is closed under scaling — for f ∈ F and a constant a :R we
have af ∈ F where af is the function defined by (af)(x) = af(x).

One can show that a function space under function addition and scaling
forms a vector space. For a function space F we will write V (F) for the vector
space consisting of the functions in F under function addition and function
scaling. Function space have more structure than vector spaces in the sense
that we can have distinct (non-isomorphic) function spaces F1 and F2 such

95
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that the vector spaces V (F1) is isomorphic (as a vector space) to V (F2). For
example F1 and F2 can both one-dimensional (as a vector space) but where F1

contains only constant functions while F2 contains no constant functions.
For a given input space X we define a similarity function on X to be any

K : X × X → R with K(x1, x2) ≥ 0. Given an input space X , a similarity
function K :X × X → R, and an input x :X we define Kx :X → R to be the
function defined by Kx(y) = K(x, y). We define F(K) to be the function space

containing all functions of the form
∑N
i=1 αiKxi

with αi :R. For any similarity
function K we have that F(K) is a function space (and hence a vector space).

For f =
∑N
i=1 αiKxi we have that f(x) =

∑N
i=1 αiK(xi, x).

In machine learning applications one often wants to take a set of input-output
pairs 〈x1, y1〉, . . .,〈xN , yN 〉 with xi :X and yi :R and generalizing the given pairs
to a function f :X → R. It seems natural to consider a similarity function K
and generalize to a function of the form f(x) =

∑N
i=1 αiK(xi, x) where the xi

are the inputs appearing in the training data. One them makes a prediction
based on the similarity of a new input to inputs in the training data. However,
it is not clear how to set the coefficients αi. In the following sections we define
a special kind of similarity function, a kernel, such that K(x1, x2) represents an
inner product in a vector space. When the kernel represents an inner product
we can apply standard vector space algorithms, such as ridge regression, which
exploit an inner product operation.

18.2 Hilbert Spaces and `2

An inner product space is a vector space together with an inner product on that
space. A Hilbert space is a complete inner product space — an inner product
space such that every Cauchy sequence of vectors has a limit. To explain the
completeness requirement more fully we first define the concept of an epsilon
ball. For a Hilbert space H with inner product D and for a vector x :H we will
write ||x|| for

√
xᵀDx and for a real number ε > 0 we define the ε-ball around

x, denoted Bε(x) to be the set of vectors y :H with ||x − y|| ≤ ε. A Cauchy
sequence in H is an infinite sequence x1, x2, x3, . . . such that for all ε > 0 there
exists k such that the ball Bε(xk) contains all vectors xj for j > k.

Problem 18.1: Show that all finite dimensional vector spaces are
complete. Hint: pick an orthonormal coordinate system and use the
fact that the ith coordinate of a Cauchy sequence of vectors is a
Cauchy sequence of reals. Use the fact that every Cauchy sequence
of reals has a limit.

The above problem shows that the distinction between an inner product
space and a Hilbert space is only meaningful in infinite dimension. For this
reason one generally only considers infinite dimensional Hilbert spaces — a
finite dimensional Hilbert space should be called an inner product space.

As an example of a Hilbert space we consider the set `2 of all infinite se-
quences x1, x2, . . . with xi of real number which are square-summable in the
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sense that
∑∞
i=1(xi)2 < ∞. We can add sequences and multiply a sequence

by a scalar in the obvious way and these operations on the square-summable
sequences form a vector space. We define an inner product D2 on sequences in
`2 by the following equation.

xᵀD2y =
〈
x1, x2, . . .

〉
D2

〈
y1, y2, . . .

〉
= x1y1 + x2y2 + · · ·

We can show that the infinite sum on the right hand side is well defined as
follows where we write ||x||22 for

∑∞
i=1(xi)2.

∑
i

|xiyi| ≤
∑
i

(xi)2 + (yi)2

= ||x||22 + ||y||22
< ∞

It is straightforward to check that D2 is bilinear, symmetric and positive definite
and hence is an inner product. Since we have that D2 is an inner product on a
vector space we immediately have the Cauchy-Schwarz inequality.

xᵀD2y ≤ ||x||2 ||y||2

Problem 18.2: Show that `2 is complete — that every Cauchy
sequence has a limit. Hint: Show that if x1, x2, x3, . . . is a Cauchy
sequence of elements of `2 then for each coordinate j we have that
xj1, x

j
2, x

j
3, . . . is a Cauchy sequence of reals.

Problem 18.3: Give an example of an infinite dimensional vector
space, and an inner product on that space, which is not complete.
Hint: Consider the subspace of `2 consisting of the eventually zero
sequences — the sequences x1, x2, x3, . . . such that there exists a k
for which xj = 0 for all j > k. Give an example of a Cauchy sequence
of vectors in this subspace whose limit is not in this subspace.

Now consider a Hilbert space H for which no finite basis exists. A countable
basis for H is an infinite sequence e1, e2, e3, . . . such that any finite prefix e1,
. . . , ek is linearly independent and the infinite sequence spans the space in the
sense that for any vector x in H there exists real coefficients a1, a2, a3, . . . such
that x =

∑
i aiei, or more rigorously, that the vector sequence x̂1, x̂2, x̂3, . . .

defined by x̂n =
∑n
i=1 aiei is a Cauchy sequence converging to x. The space `2

has the obvious countable basis.
A Hilbert space for which there exists a countable basis is called separa-

ble. For a finite dimensional vector space V with dimension d we have that
V is isomorphic to Rd — the vector space whose elements are d-tuples of real
numbers. Similarly every separable Hilbert space is isomorphic to `2. One can
show this by running an infinite version of the Gram-Schmidt procedure. In
particular let H be a Hilbert space and let e1, e2, e3, . . . be a countable basis
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for H. We can construct an orthonormal basis e′1, e′2, e′3 . . . by first letting
e′1 be the normalization of e1 and then computing e′j+1 to be the normaliza-

tion of ej+1 −
∑j
i=1 e

ᵀ
j+1De

′
i. For an orthonormal basis B = e1, e2, . . . one

can show show that any vector x has unique coordinates a1, a2, . . . such that
x =

∑∞
i=1 aiei. The mapping from x to its coordinates under an orthonormal

basis defines an isomorphism from H to `2.

18.3 Kernels

We now consider an arbitrary input space (type) X and a function K : X ×
X → R. We call K a Kernel on X if there exists a Hilbert space H and a
function (a feature map) Φ : X → H such that for any x1, x2 : X we have
K(x1, x2) = Φ(x1)ᵀ(H.D)Φ(x2) where H.D is the inner product of H. If the
Hilbert space H can be taken to be separable then we say that K is a separable
kernel.

Problem 18.4: Use the inference rule of substitution of isomorphics
to argue that K is a separable kernel if and only if there exists a
feature map Φ:X → `2 such that for x1, x2 :X we have K(x1, x2) =
Φ(x1)ᵀD2Φ(x2).

We will now give methods for constructing separable kernel functions. We
will prove the following.

1. If V is a finite dimensional vector space over the reals and D is an inner
product on V then D :V × V → R is a separable kernel on V .

proof: Here we are taking the input space to be the vector space and we
can take the feature map to be the identity map.

2. If K1 is a separable kernel on an input space Y then for f :X → Y the
kernel K2 defined by K2(x1, x2) = K1(f(x1), f(x2)) is a separable kernel
on X .

proof: Let Φ1 :Y → `2 be a feature map for K1. We can define a feature
map Φ2 for K2 by Φi2(x) = Φi1(f(x)).

3. For f :X → R we have that K(x1, x2) = f(x1)f(x2) is a separable kernel
on X .

proof: We can define a feature map Φ:X → R by taking the first feature
Φ1(x) = f(x) and for features j > 1 we take Φj(x) = 0.

4. For any separable kernel K1 on X and real number a > 0 we have that
K2(x1, x2) = aK1(x1, x2) is a separable kernel on X
Proof: If Φ is a feature map for K1 then aΦ is a feature map for K2.
Note that a > 0 is required for K2 to be positive definite.



18.3. KERNELS 99

5. For any separable kernels K1 and K2 on X we have that K3(x1, x2) =
K1(x1, x2) +K2(x1, x2) is a separable kernel on X .

Proof. Let Φ1 :X → `2 and Φ2 :X → `2 be feature maps for K1 and K2.
For an input x : X we then have features of the form Φi1(x) and Φj2(x).
This is a countable number of features and hence the collection of all these
features can be represented by a single map Φ3 :X → R.

6. For any separable kernels K1 and K2 on X we have that K3(x1, x2) =
K1(x1, x2)K2(x1, x2) is a separable kernel on X .

proof: Let Φ1 :X → `2 and Φ2 :X → `2 be feature maps for K1 and K2

respectively. We then have the following.

K1(x1, x2)K2(x1, x2) =

( ∞∑
i=1

Φi1(x1)Φi1(x2)

)( ∞∑
i=1

Φj2(x1)Φj2(x2)

)

=
∑
i,j

(
Φi1(x1)Φi1(x2)

) (
Φj2(x1)Φj2(x2)

)
=

∑
i,j

(
Φi1(x1)Φj2(x1)

) (
Φi1(x2)Φj2(x2)

)

We can then take the feature map Φ3 for K3 to be defined by Φi,j3 (x) =

Φi1(x)Φj2(x). Note that Φ3 has a countable set of features. We omit the
proof that the features in Φ3(x) are square-summable.

7. For an infinite sequence K1, K2, . . . of separable kernels on X such that for
any x :X we have that

∑∞
i=1 Ki(x, x) is finite we have that K(x1, x2) =∑∞

1=1Ki(x1, x2) is a separable kernel.

proof: Let Φi :X → `2 be a feature map for Ki. We can define a feature
map for K by Φi,j(x) = Φji (x). Again note that Φ has a countable number
of features. We omit the proof that the condition

∑
kKk(x, x) < ∞

implies that the features of Φ(x) are square-summable.

For any vector space V and inner product Σ on V ∗ we consider the Gaussian
kernel on V with covariance Σ defined as follows.

K(x1, x2) = e−
1
2 (x1−x2)ᵀΣ−1(x1−x2)

We now show that the Gaussian kernel is a separable kernel. First we observe
the following.

K(x1, x2) =
(
e−

1
2x

ᵀ
1 Σ−1x1e−

1
2x

ᵀ
2 Σ−1x2

) (
ex

ᵀ
1 Σ−1x2

)
The left hand term is a separable kernel as it only involves a single feature
(kernel formation rule 3). Since a product of separable kernels is a separable
kernel (formation rule 6), it suffices to show that the right hand term is a
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separable kernel. We consider the power series for the exponential function.
Each term in this series has the form ajK(x1, x2)j with aj > 0. Each term in
the series is then a finite product of separable kernels multiplied by a positive
constant and is therefore a separable kernel. Finally we have that an infinite
sum of separable kernels is a separable kernel provided that the sum always
converges which it does in this case.

18.4 Reproducing Kernel Hilbert Space (RKHS)

We now define the notion of a reproducing kernel Hilbert space (RKHS) and
show that if K is a separable kernel then the completion of the function space
F(K) is an RKHS. Let Φ :X → `2 be a feature map for a separable kernel K
on an input space X . For ω ∈ `2 we define fω :X → R by fω(x) = ωᵀD2Φ(x).
Note that fΦ(x) = Kx. More explicitly we have fΦ(x1)(x2) = Φ(x1)ᵀD2Φ(x2) =
K(x1, x2) = Kx1

(x2). For f ∈ F(K) we define ω(f) as follows.

ω(f) = argmin
fω=f

||ω||22

We first show that this definition yields the following.

ω(Kx) = Φ(x)

To see this suppose ω(Kx) 6= Φ(x) and consider ω⊥ = ω(Kx)− Φ(x). We then
have that fω(Kx) = Kx = fΦ(x) which implies that fω⊥ is the zero function. In
particular we have that fω⊥(x) = 0 which implies that ω⊥ is orthogonal to Φ(x).
We now have ω(Kx) = ω⊥ + Φ(x) and hence ||ω(Kx)||22 = ||ω⊥||22 + ||Φ(x)||22 >
||Φ(x)||22 and we have a contradiction. A similar argument can be used to show
the following.

ω

(
N∑
i=1

αiKxi

)
=

n∑
i=1

αiΦ(xi)

This shows that for f in F(D) we have that ω(f) is well defined — the op-
timization problem defining ω(f) has a unique minimum. We now define the
inner product DK of two function f and g in F(K) as follows.

fᵀDKg = ω(f)ᵀD2ω(g)

The inner product of functions is traditionally written as 〈f, g〉 but we will
continue to write it in terms of the inner product operation DK . We now have
the following.

Kᵀ
x1
DKKx2 = Φ(x1)ᵀD2Φ(x2) = K(x1, x2)

(
N∑
i=1

αiKxi

)
DK

 M∑
j=1

αjKxj

 =
∑
i,j

αiαjK(xi, xj)
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This second equation implies that, for f and g in F(K), the inner product
fᵀDKg depends only on the Kernel K and is independent of the choice of the
feature map Φ. The first equation above is called the reproducing property of
an RKHS — the inner product on the function space reproduces the kernel on
the input space. The following equation is the evaluation property.

fᵀDKKx = ω(f)ᵀD2Φ(x) = f(x)

This shows that Kx can be viewed as a kind of generalized Dirac delta function
for which we have 〈f, δx〉 =

∫∞
−∞ f(y)δx(y)dy = f(x).

Since we now have an inner product defined on the functions in F(K) we have
a well defined notion of a Cauchy sequence of functions and can complete the
space by taking limits of Cauchy sequences. Given a feature map we construct
the limit of a function sequence f1, f2, . . . by considering the feature vector
sequence ω(f1), ω(f2), . . . and taking the function limit to be fω where ω is the
feature vector limit. The complete function space can be defined as the set of
functions of the form fω for ω ∈ `2. A separable RKHS can be defined to be a
Hilbert space of functions which can be written as the completion of F(K) for
some separable kernel K.

An RKHS can also be defined as a Hilbert space H of functions from an
input space X to the reals (or complex numbers) such that for each input x the
map Lx :H → R defined by Lx(f) = f(x) is continuous. It turns out that in
this case one can construct a kernel K such that H is the completion of F(K).

18.5 Fourier Analysis and Feature Maps

18.6 Symmetry (and Voldemort) in Hilbert Space
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Chapter 19

Banach Spaces

19.1 A Norm on a Vector Space

Consider a vector space V over the reals. A norm on V is a function N :V → R
satisfying the following conditions for x, y :V .

• Positivity: N(x) ≥ 0 and N(x) = 0 if and only if x = 0.

• Scale Invariance: For a :R we have

N(ax) = |a|N(x)

• Sub-Additivity or Triangle Inequality:

N(x+ y) ≤ N(x) +N(y)

It is worth noting that N(x) ≥ 0 follows from N(0) = 0, scale invariance,
and the triangle inequality. More specifically, given N(0) = 0 we have 0 =
N(x− x) ≤ N(x) +N(x) = 2N(x).

19.2 Banach Spaces

A Banach space is a complete normed vector space — a vector space together
with a norm on that space such that every Cauchy sequence has a limit. Here a
Cauchy sequence is defined to be an infinite sequence of vectors x1, x2, x3, . . .
such that for every real number ε > 0 there exists k such that for all j > k we
have xj ∈ Bε(xk) where Bε(x) is defined by the norm N as follows.

Bε(x) = {y :V | N(y − x) ≤ ε}

For any Hilbert space H with inner product D we have that N(x) =
√
xᵀDx

is a norm on H and the vectors of H under this norm form a Banach space.

103
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Recall that a Hilbert space is separable if there exists a countable basis. All
separable Hilbert spaces are isomorphic to `2 — up to isomorphism there is only
one separable Hilbert Space. The situation is different for Banach spaces. For
p > 0 we can define `p to be the set of infinite sequences of real number x1, x2,
. . . such that

∑∞
i=1 |xi|p <∞. It is possible to show that the p-norm defined by

Lp(x) =

( ∞∑
i=1

xpi

)1/p

is a norm on `p and that `p under this norm is complete. It is possible to show
that the resulting Banach space `1 is not isomorphic to the Banach space `2 and
in fact there are many (non-isomorphic) separable Banach spaces.

We can similarly define Lp to be the set of functions f :R → R such that∫∞
−∞ |f(x)|pdx <∞. We can then define the norm Lp on Lp as follows.

Lp(f) =

(∫ ∞
−∞
|f(x)|pdx

) 1
p

It can be shown that Lp under this norm is complete and hence forms a Banach
space.

19.3 Dual Norms

Consider a normed vector space V with norm N . The dual norm N∗ is defined
as follows on a dual vector ω in V ∗.

N∗(ω) = sup
N(x)=1

ωᵀx

We will now that the dual norm is a norm.

19.4 p-q Norms

Given a basis B = 〈we1, . . . , ed〉 and a real number p > 0 define ||x||p by

||x||p =
(∑d

i=1(aBi (x)p
)1/p

. We will work in a fixed basis and write

The dual norm N∗p (ω) can be computed as follows. We maximize
∑
i ωixi

subject to the constraint
∑
i x

p
i = 1. Setting the gradient of the objective equal

to λ times the gradient of the constraint yields the following.

ωi = λpxp−1
i

xi =

(
1

λp

) 1
p−1

ω
1

p−1

i

= λ′ω
1

p−1

i
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We can now solve for λ′ by substituting this back into the constraint
∑
i x

p
i =

1

∑
i

(
λ′ω

1
p−1

i

)p
= 1

λ′ =

(∑
i

ω
p

p−1

i

)− 1
p

We can now compute the dual norm of ω as follows.

N∗p (ω) =
∑
i

ωixi

=
∑
i

ωiλ
′ω

1
p−1

i

= λ′
∑
i

ω
p

p−1

i

=

(∑
i

ω
p

p−1

i

)− 1
p
(∑

i

ω
p

p−1

i

)

=

(∑
i

ω
p

p−1

i

) p−1
p

= Nq(ω) for q =
p

p− 1
or equivalently

1

p
+

1

q
= 1

19.5 Voldemort in Banach Space
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Chapter 20

Fisher Information

Consider a vector space V and a doubly differentiable map P from V to probabil-
ity distributions on a space Y. For Θ ∈ V We will write PΘ for the distribution
that P associates with Θ. For convenience we will assume that Y is countable
but all the results here can be extended to the case where Y is continuous and
PΘ is atomless (no point in Y ever has probability greater than zero).

We define the Fisher information “matrix” (bilinear function) as follows.

I[Θ] = (∇Ψ∇ΨKL(PΘ, PΨ)) [Ψ← Θ]

KL(PΘ, PΨ) =
∑
y

PΘ(y) ln
PΘ(y)

PΨ(y)

=

(∑
y

PΘ(y) ln
1

PΨ(y)

)
−H(PΘ)

∇ΨKL(PΘ, PΨ) =
∑
y

−PΘ(y)∇ψ lnPΨ(y)

= −
∑
y

PΘ(y)
1

PΨ(y)
∇ΨPΨ(y)

(∇ΨKL(PΘ, PΨ)) [Ψ← Θ] = −
∑
y

PΘ(y)

PΘ(y)
(∇ΘPΘ(y))

= −∇Θ

∑
y

PΘ(y) = −∇Θ1 = 0

∇Ψ∇ΨKL(PΘ, PΨ) =
∑
y

PΘ(y)

(
1

PΨ(y)2
(∇ΨPΨ(y)) (∇ΨPΨ(y))− 1

PΨ(y)
∇Ψ∇ΨPΨ(y)

)
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∇Ψ∇ΨKL(PΘ, PΨ)[Ψ← Θ] =
∑
y

PΘ(y)

(
1

PΘ(y)2
(∇ΨPΘ(y)) (∇ΘPΘ(y))

)

I[Θ] = Ey∼PΘ
[(∇Θ lnPΘ(y)) (∇Θ lnPΘ(y))

ᵀ
]



Chapter 21

Manifolds

21.1 Topological Manifolds

The type of topological spaces can be defined as follows.

TopSpace ≡ α :type1; O :SetOf(SetOf(α)); A

The sets in O are called the open sets. The conditions A state that any finite
intersection of open sets is also open and that any (possibly uncountably infinite)
union of open sets is open.

For any d-dimensional vector space V we can associate V with a topology
by considering the open boxes defined as follows where e1, . . . ed forms basis of
V .

Box(x, e1, . . . , ed) = {y | y = x+ a1e1 + · · ·+ anen with 0 < ai < 1}

We can then take the topology of V to be generated by all such boxes over all
choices of the basis vectors. More specifically, we take the collection of open
sets to be the least collection containing these boxes and that is closed under
finite intersections and arbitrary unions.

For any Banach space B we can construct a topology (a family of open sets)
on B by consider the open balls of the form

Bε(x) = {y | N(x− y) < ε}

We can get a topology by closing under finite intersection and arbitrary union.
For a finite dimensional space the topology is independent of the choice of the
norm — any finite dimensional vector space can be assigned a topology

Open sets containing a point x are often called neighborhoods of x. A point
x is called a limit point of a set S if every neighborhood of x intersects S. For
any set S we define the closure of S, denoted S, to be S plus all limit points of
S. One can prove that in an arbitrary topological space and an arbitrary subset
S of that space we have that the complement of S is open. To see this we note
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that for y 6∈ S there must exist a neighborhood Uy of y which does not intersect
S. We also have that Uy also does not contain any limit points of S because for
x ∈ Uy we have that Uy is a neighborhood of x not intersecting S so x is also
not a limit point of S. The complement of S is then the union of all such open
sets Uy for y in th complement of S.

For any topological space X and subset S of X we can consider the family
of subsets of S of the form S ∪U where U is an open set of X. It is possible to
that this collection of subsets of S is closed under finite intersection and union
and hence forms a topology on S called the subset topology.

An open interval in R under the subset topology is isomorphic (as a topo-
logical space) to the entire set of reals R. Similarly, an open ball in a finite
dimensional vector space is isomorphic (as a topological space) to the entire
vector space.

A topological space is called a d-manifold if for every point x there exists a
neighborhood U of x such that U under the subset topology is isomorphic (as
a topological space) to an open ball in a d-dimensional vector space (which is
isomorphic to the entire d-dimensional vector space).

A topological space is called compact if every open cover (every collection
of open sets whose union is all of X) has a finite subcover.

For two topological space X and Y and a function f :X → Y , we say that f
is continuous if for every point x of X and every neighborhood U of f(x) there
exists a neighborhood V of x such that f(V ) ⊆ U .

For any topological space X and points x and y in X we define a path from
x to y to be a continuous function f : [0, 1]→ X with f(0) = x and f(1) = y. A
loop is a path from a point x to itself.

Jordan Curve theorem.
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