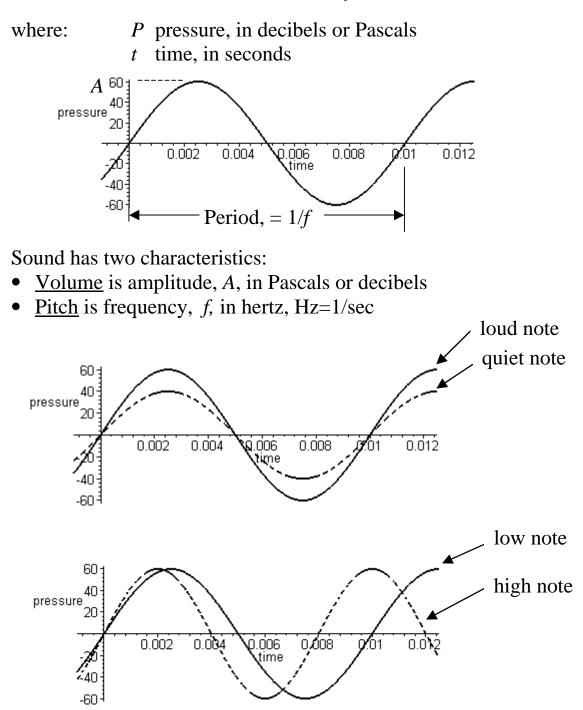


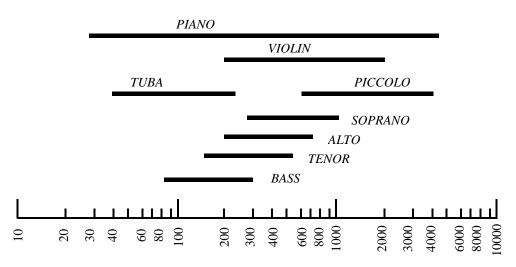
Mathematical Harmonies

Music is periodic variation in air pressure.

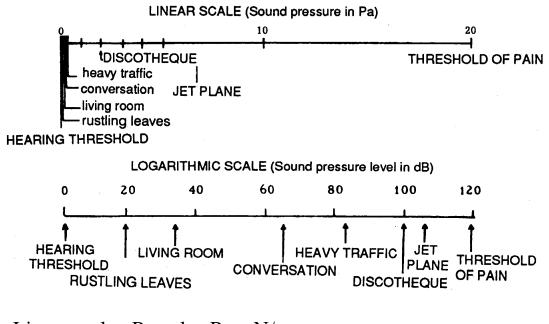
 $P = A \sin(2\pi f t)$



Slide 1



Frequency ranges of various instruments, in Hz. Audible frequencies range from 20 Hz to 20,000 Hz.



Linear scale: Pascals, Pa = N/m

Logarithmic scale: decibels, dB

$$p_{dB} = 20 * \log \frac{p_{Pa}}{2 \times 10^{-5}}$$

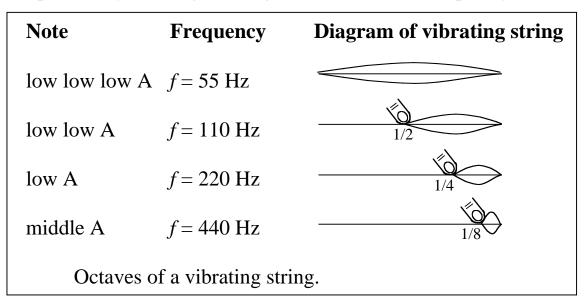
Frequency of a vibrating string:

$$frequency = \frac{1}{2*length} \sqrt{\frac{tension}{thickness}}$$

We can change frequency in three ways:

1. Tighten the string:	↑ tension	↑ frequency
2. Use a thicker string:	\uparrow line density	\downarrow frequency
3. Use fingers on frets:	\downarrow length	↑ frequency

Specifically, halving the length will double the frequency.



This sequence: 55, 110, 220, 440, És a geometric sequence.

A geometric sequence is a sequence where the previous term is multiplied by a constant. In this case, the constant is two.

Example: 2, 4, 8, 16, 32, É

The frequencies of octaves form a geometric sequence.

Note	Frequency	Harmonic	Diagram of string
low low low A	f = 55 Hz	fundamental	
low low A	f = 110 Hz	second	
low E	<i>f</i> = 165 Hz	third	
low A	f = 220 Hz	fourth	
middle C [#]	<i>f</i> = 275 Hz	fifth	
middle E	f = 330 Hz	sixth	
approx. middle G	<i>f</i> = 385 Hz	seventh	N
middle A	f = 440 Hz	eighth	

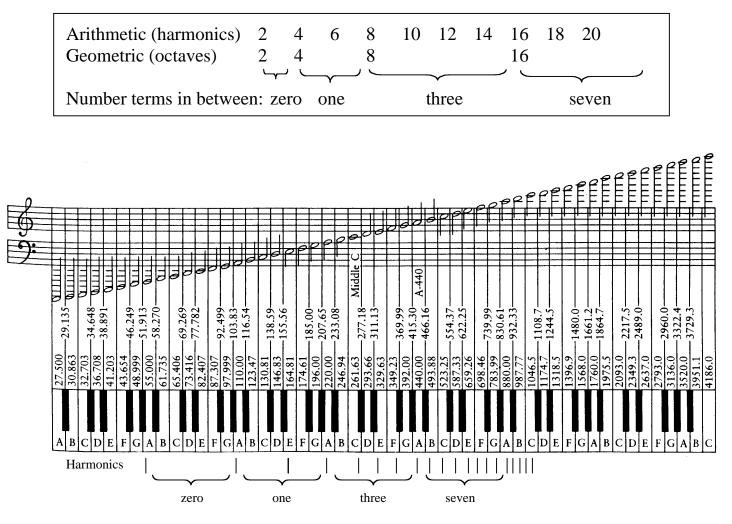
A string vibrates in many modes, called harmonics.

The sequence: 55, 110, 165, 220, 275, És an arithmetic sequence.

An arithmetic sequence is a sequence where a constant is added to the previous term. In this case, the constant is 55.

Example: 2, 4, 6, 8, 10, É

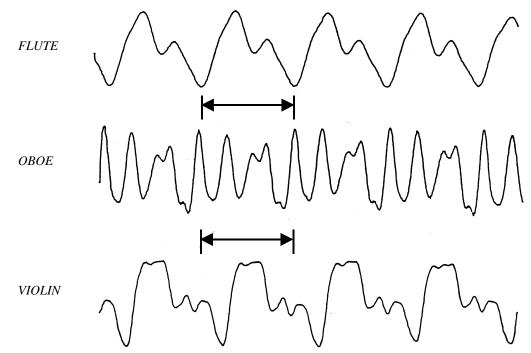
The frequencies of octaves form a geometric sequence. The frequencies of harmonics form an arithmetic sequence. Let us overlay an arithmetic sequence (harmonics) on a geometric sequence (the octaves):



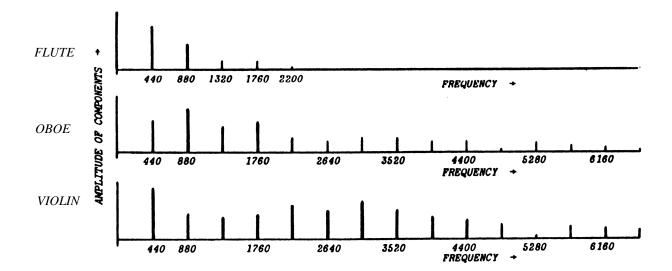
Harmonics of low low A

Harmonics of Instruments

Pressure variations with time of a flute, oboe, and violin.

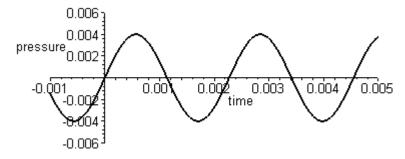


Amplitudes of the harmonics of a flute, oboe, and violin playing middle A.

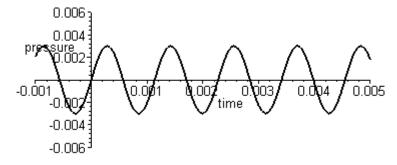


Build the pressure signature of a flute:

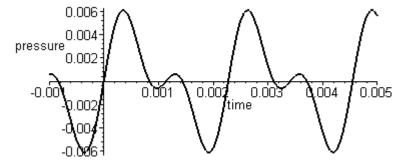
Fundamental: 440 Hz, 0.004 Pa = 46 dB



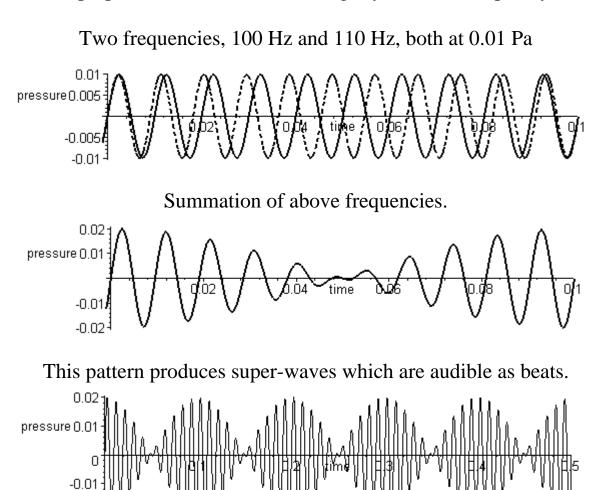
Second Harmonic: 880 Hz, 0.003 Pa = 43.5 dB



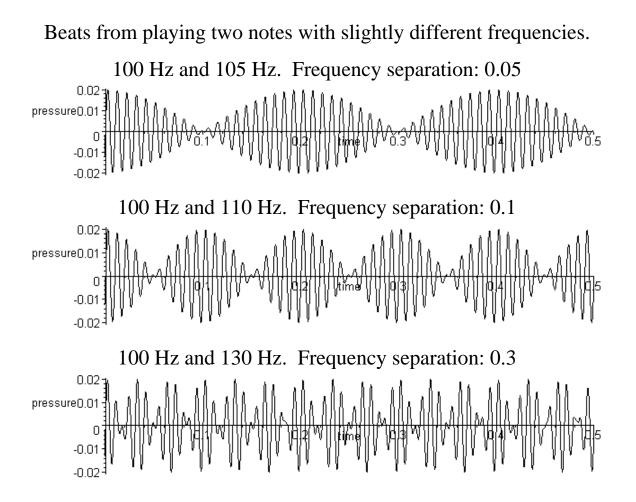
Sum of fundamental and second harmonic.



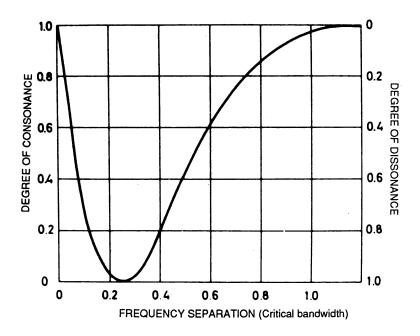
Superposition of two waves of slightly different frequency.

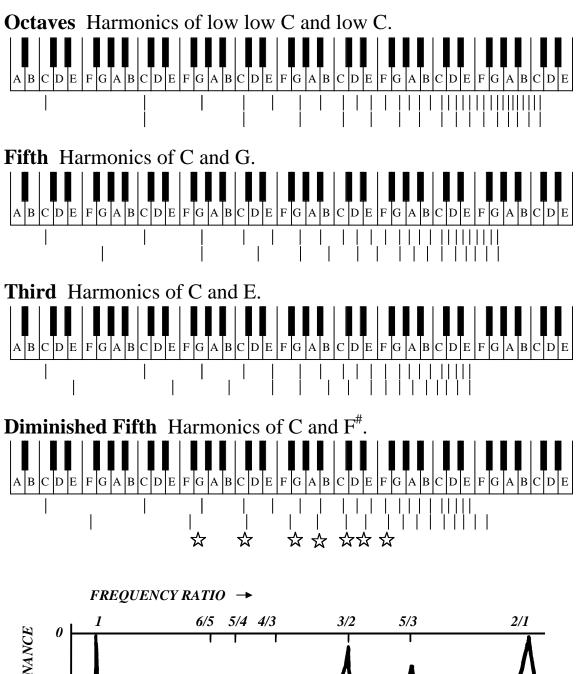


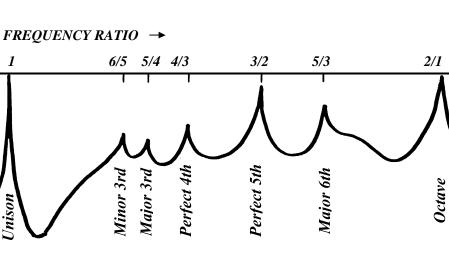
-0.02



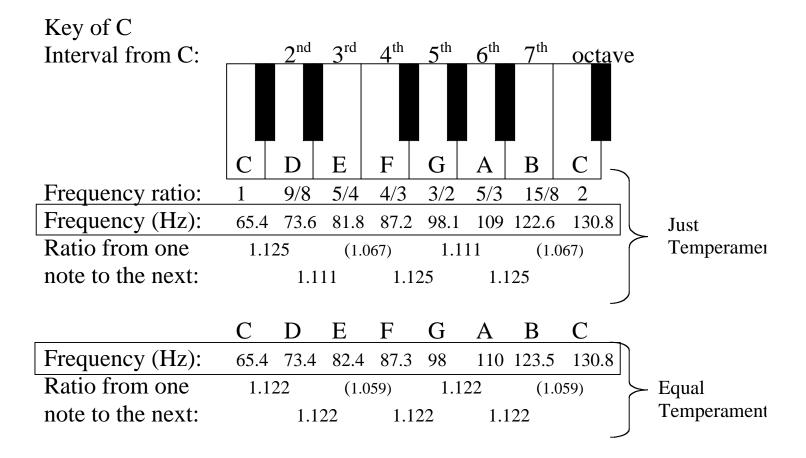
Conclusion: Frequencies close to each other create beats and sound bad (dissonance)







Just and Equal Temperament



Calculating Equal Temperament:

• There are 12 half steps in an octave, and an octave $\tilde{\Theta}$ frequency ratio is 2.

So the frequency ratio of each half step is:

• There are 6 whole steps in an octave

So the frequency ratio of each whole step is:

$$\sqrt[12]{2} = 1.059$$

 $\sqrt[6]{2} = 1.122$