Mathematical Harmonies

Music is periodic variation in air pressure.

$$
P=A \sin (2 \pi f t)
$$

where:

$$
P \text { pressure, in decibels or Pascals }
$$ t time, in seconds

Sound has two characteristics:

- Volume is amplitude, A, in Pascals or decibels
- Pitch is frequency, f, in hertz, $\mathrm{Hz}=1 / \mathrm{sec}$

Frequency ranges of various instruments, in Hz. Audible frequencies range from 20 Hz to $20,000 \mathrm{~Hz}$.

LINEAR SCALE (Sound pressure in Pa)

LOGARITHMIC SCALE (Sound pressure level in dB)

Linear scale: Pascals, $\mathrm{Pa}=\mathrm{N} / \mathrm{m}$
Logarithmic scale: decibels, dB

$$
p_{d B}=20 * \log \frac{p_{P a}}{2 \times 10^{-5}}
$$

Frequency of a vibrating string:

$$
\text { frequency }=\frac{1}{2 * \text { length }} \sqrt{\frac{\text { tension }}{\text { thickness }}}
$$

We can change frequency in three ways:

1. Tighten the string:	\uparrow tension	\uparrow frequency
2. Use a thicker string:	\uparrow line density	\downarrow frequency
3. Use fingers on frets:	\downarrow length	\uparrow frequency

Specifically, halving the length will double the frequency.

Note	Frequency	Diagram of vibrating string
low low low A	$f=55 \mathrm{~Hz}$	
low low A	$f=110 \mathrm{~Hz}$	
low A	$f=220 \mathrm{~Hz}$	
middle A	$f=440 \mathrm{~Hz}$	

This sequence: $55,110,220,440$, is a geometric sequence.
A geometric sequence is a sequence where the previous term is multiplied by a constant. In this case, the constant is two.

Example: 2, 4, 8, 16, 32,
The frequencies of octaves form a geometric sequence.

A string vibrates in many modes, called harmonics.

Note	Frequency	Harmonic	Diagram of string
low low low A	$f=55 \mathrm{~Hz}$	fundamental	
low low A	$f=110 \mathrm{~Hz}$	second	
low E	$f=165 \mathrm{~Hz}$	third	
low A	$f=220 \mathrm{~Hz}$	fourth	
middle $\mathrm{C}^{\#}$	$f=275 \mathrm{~Hz}$	fifth	
middle E	$f=330 \mathrm{~Hz}$	sixth	
approx. middle G	$f=385 \mathrm{~Hz}$	seventh	
middle A	$f=440 \mathrm{~Hz}$	eighth	

The sequence: $55,110,165,220,275$, is an arithmetic sequence.

An arithmetic sequence is a sequence where a constant is added to the previous term. In this case, the constant is 55.

Example: 2, 4, 6, 8, 10,
The frequencies of octaves form a geometric sequence. The frequencies of harmonics form an arithmetic sequence.

Let us overlay an arithmetic sequence (harmonics) on a geometric sequence (the octaves):

Harmonics of low low low A

Harmonics of Instruments

Pressure variations with time of a flute, oboe, and violin.

Amplitudes of the harmonics of a flute, oboe, and violin playing middle A.

Build the pressure signature of a flute:

Fundamental: $440 \mathrm{~Hz}, 0.004 \mathrm{~Pa}=46 \mathrm{~dB}$

Second Harmonic: $880 \mathrm{~Hz}, 0.003 \mathrm{~Pa}=43.5 \mathrm{~dB}$

Sum of fundamental and second harmonic.

Superposition of two waves of slightly different frequency.

Two frequencies, 100 Hz and 110 Hz , both at 0.01 Pa

Summation of above frequencies.

This pattern produces super-waves which are audible as beats.

Beats from playing two notes with slightly different frequencies.
100 Hz and 105 Hz . Frequency separation: 0.05

100 Hz and 110 Hz . Frequency separation: 0.1

100 Hz and 130 Hz . Frequency separation: 0.3

Conclusion:

Frequencies close to each other create beats and sound bad (dissonance)

Octaves Harmonics of low low C and low C.

Fifth Harmonics of C and G.

Third Harmonics of C and E .

Diminished Fifth Harmonics of C and $\mathrm{F}^{\#}$.

FREQUENCY RATIO \rightarrow

Just and Equal Temperament

Key of C

Calculating Equal Temperament:

- There are 12 half steps in an octave, and an octaves frequency ratio is 2 .

So the frequency ratio of each half step is:

$$
\sqrt[12]{2}=1.059
$$

- There are 6 whole steps in an octave

So the frequency ratio of each whole step is:

$$
\sqrt[6]{2}=1.122
$$

