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Early History

In 1954, within a few years after computers
were first up and running, Martin Davis
programmed the Presburger decision procedure
for a vacuum-tube computer at the Institute
for Advanced Studies in Princeton. That
procedure, as is now known, has worse than
exponential runtime, and according to Davis’s
recollections, “its great triumph was to prove
the sum of two even numbers is even.”
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Mojzesz Presburger, 1904-1943

The young Presburger. He was
a student of Alfred Tarksi, but
died in the prime of life in a
Nazi death camp. Not,
however, before inventing
Presburger arithmetic and
giving a decision procedure for
it.
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Bertrand Russell was born too soon

I The same impulse that led Russell to write Principia
Mathematica has led to the creation of general-purpose
systems such as Automath, Coq, Isabelle, Mizar, and
HOL-Light.

I Also Johan Belinfante has been using Otter to formalize set
theory with a similar purpose.

I These applications of computers to the foundations of
mathematics will not be discussed here.
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What this talk is not about

I Use of logic as a language for computers to check
mathematics, e.g. proofs of the Prime Number Theorem,
Kepler’s conjecture, or even Gödel’s incompleteness theorem.

I Use of logic in computer design

I Use of computers to find (counter) models

I Model-checking to prove the correctness of hardware or
software

I Theorem-proving to prove the correctness of hardware,
software, or security protocols
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Computerizing the metatheory

The applications of computers to mathematical logic that I will
discuss fall under this framework:

I a formal system of logic, represented by formulas

I a proof predicate or a provability predicate, and/or other
metamathematical predicates

I a metatheory for reasoning about these things

I a theorem prover implementing the metatheory
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Generality of this work

I Does not depend on a particular prover.

I The work reported was mostly done with Otter.

I It also works with Prover9.

I It will work with any prover that offers sufficient control over
the basic search algorithms.

I It will still work fifty years from now with whatever provers are
then in fashion.

I Maybe by then, it will be trivial for those provers.
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Notation for implication

“A implies B” can be written as

I A → B

I A⊃B

I CAB (Polish notation, no parentheses)

I i(A,B) (suitable for theorem-proving)

I Example: CACBA is i(A, i(B,A)) or A⊃(B⊃A).
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Notation for other connectives

Negation is written ∼ or ¬, usually in prefix notation.
 Lukasiewiczis credited with inventing “Polish notation” (named
after his nationality).
He used C for implication, A for disjunction, K for conjunction,
and N for negation.
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Various Axiomatizations
Detachment and substitution
Using resolution logic for a metalanguage
Deriving Church from L1-L3
Single Axioms
Strategy in resolution-based theorem provers

 Lukasiewicz’s L1-L3

 Lukasiewicz’s system L1-L3

i(i(x, y), i(i(y, z), i(x, z))) L1
i(i(n(x), x), x) L2
i(x, (i(n(x), y))) L3
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Frege’s system

i(x, i(y, x)) F1
i(i(x, i(y, z)), i(i(x, y), i(x, z))) F2
i(i(x, i(y, z)), i(y, i(x, z))) F3
i(i(x, y), i(n(y), n(x))) F4
i(n(n(x)), x) F5
i(x, n(n(x))) F6
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Church’s system

i(x, i(y, x)) C1
i(i(x, i(y, z)), i(i(x, y), i(x, z))) C2
i(i(n(x), n(y)), i(y, x)) C3
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Hilbert’s system

i(x, i(y, x)) H1
i(i(x, i(y, z)), i(y, i(x, z))) H2
i(i(y, z), i(i(x, y), i(x, z))) H3
i(x, i(n(x), y)) H4
i(i(x, y), i(i(n(x), y), y)) H5
i(i(x, (i, x, y)), i(x, y)) H6
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Detachment and substitution

I modus ponens
From A and i(A,B), infer B.

I substitution
From B infer Bσ, where σ is a substitution, that is, a
function from variables to terms.

I detachment
From A and i(B,C), where substitution σ makes Aσ = Bσ,
infer Cσ.
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Example of Detachment

i(i(n(x), x), x)) the major premise i(B,C)
i(n(n(x), n(x)) the minor premise A
Rename variables in minor premise i(n(n(y), n(y))
Unify B, which is i(n(x), x), with A. The result is the substitution
x : n(y). Conclusion n(y). We can rename the variable to x again
if we like.
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Relations between MP, Substitution, and detachment

I Modus ponens is a special case of detachment (with the
identity substitution)

I Once i(x, x) has been deduced, substitution is also a special
case of detachment.

 Lukasiewicz used the rules of detachment and substitution.
Meredith later introduced the rule of condensed detachment, which
is detachment with the further requirement that σ be the most
general unifier of A and B, rather than just some unifier.
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Scott’s Challenge of 1990

A “thesis” is a formula deduced from L1-L3.
Scott listed 68 theses of  Lukasiewicz, which included all the axiom
systems above, and challenged Wos to find proofs of them from
L1-L3 using substitution and detachment, by means of automated
deduction.

I That was difficult at the time.

I What constitutes “cheating”? Using any information that
depends on knowing a proof already.

I Today this challenge can be met without any cheating.
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Using resolution logic for a metalanguage

P (x) means “x is provable”. Example: we write

P (i(i(x, y), i(i(y, z), i(x, z))))

to indicate that L1 is provable. The rule of detachment is
axiomatized thus:

−P (x) | − P (i(x, y)) | P (y)

Here the vertical bar is disjunction (separating literals of a clause)
and −P (x) is the negated literal P (x).
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Resolution and condensed detachment

I If one has deduced P (t) and P (q, r) for some terms t, q, and
r, then resolution (technically hyperresolution) will try to
unify t and q, and if it succeeds with most general unifier σ, it
will deduce P (rσ).
Thus hyperresolution steps correspond to condensed
detachment at the object level.

I However, pure substitution steps can also occur, for example
if we try to derive an instance of an axiom. Thus the proofs
produced by a theorem prover using this approach will contain
condensed detachment steps, and pure substitution steps.
This “P-predicate” approach is basic to the application of
resolution theorem-proving to particular systems of logic.
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Resolution and Detachment

I A resolution inference: From

−P (x) | − P (i(x, y)) | P (y)

and P (i(i(n(x), x), x) and P (i(n(n(x), n(x))) infer

P (n(x))

I This corresponds to a detachment inference at the object
level: from i(i(n(x), x), x) and i(n(n(x), n(x)) infer n(x).

I By searching for resolution proofs at the meta-level we can
find detachment-and-substitution proofs at the object level.
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Deriving Church from L1-L3
Here is how we express the problem in a file for a theorem-prover.
Recall that the goal is to derive P (i(x, i(y, x)) and two other
formulas. The variables are implicitly universally quantified.
Theorem provers always work by searching for a contradiction, so
we have to negate this goal, which means that P becomes not P ,
written −P , and the conjunction becomes a disjunction (written
with vertical bar). Then we Skolemize, so the existentially
quantified variables x, y are replaced by constants a, b. Then the
final form of the negated goal is

-P(i(a,(i(b,a)))) % C1
| -P(i(i(a,i(b,c)),i(i(a,b),i(a,c)))) % C2
| -P(i(i(n(a),n(b)),i(b,a))). % C3
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Deriving Church from L1-L3

Now we put the negated goal together with the axioms. The prover
is supposed to derive a contradiction from the following clauses:

I P(i(i(x,y),i(i(y,z),i(x,z)))). % L1
P(i(i(n(x),x),x)). % L2
P(i(x,(i(n(x),y)))). % L3
-P(x) | -P(i(x,y)) | P(y). % condensed detachment
-P(i(a,(i(b,a)))) % C1
| -P(i(i(a,i(b,c)),i(i(a,b),i(a,c)))) % C2
| -P(i(i(n(a),n(b)),i(b,a))). % C3

I Go ahead, try to do it with pencil and paper.
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How hard can it be?

Is it easy or difficult to derive C1-C3 from L1-L3 yourself with
pencil and paper?
Remember, a natural-deduction proof is not the same as a
detachment-and-substitution proof! We are not claiming that it is
an impossible thing to do; after all,  Lukasiewicz gave this proof,
and similar ones for the other axiom systems mentioned above. We
are making the much weaker claim that it is not a trivial thing to
do.
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A computer-generated proof of Church from Lukas

16 [3,3] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).
17 [3,4] P(i(i(x,y),i(i(n(x),x),y))).
19 [3,5] P(i(i(i(n(x),y),z),i(x,z))).
20 [5,4] P(i(n(i(i(n(x),x),x)),y)).
24 [16,16] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).
29 [16,19] P(i(i(x,n(y)),i(y,i(x,z)))).
31 [19,5] P(i(x,i(n(i(n(x),y)),z))).
32 [19,4] P(i(x,x)).
39 [3,29] P(i(i(i(x,i(y,z)),u),i(i(y,n(x)),u))).
45 [3,24] P(i(i(i(i(x,y),i(z,i(x,u))),v),i(i(z,i(y,u)),v))).
46 [24,17] P(i(i(x,i(n(y),y)),i(i(y,z),i(x,z)))).

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Various Axiomatizations
Detachment and substitution
Using resolution logic for a metalanguage
Deriving Church from L1-L3
Single Axioms
Strategy in resolution-based theorem provers

A computer-generated proof of Church from Lukas

59 [3,31] P(i(i(i(n(i(n(x),y)),z),u),i(x,u))).
67 [39,46] P(i(i(n(x),n(y)),i(i(x,z),i(y,z)))).
71 [19,67] P(i(x,i(i(x,y),i(z,y)))).
76 [67,20] P(i(i(i(i(n(x),x),x),y),i(z,y))).
84 [3,71] P(i(i(i(i(x,y),i(z,y)),u),i(x,u))).
93 [84,84] P(i(i(x,y),i(x,i(z,i(u,y))))).
100 [84,19] P(i(n(x),i(x,i(y,z)))).
108 [3,100] P(i(i(i(x,i(y,z)),u),i(n(x),u))).
129 [3,108] P(i(i(i(n(x),y),z),i(i(i(x,i(u,v)),y),z))).
132 [108,46] P(i(n(x),i(i(y,z),i(x,z)))).
141 [3,132] P(i(i(i(i(x,y),i(z,y)),u),i(n(z),u))).
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A computer-generated proof of Church from Lukas

149 [141,59] P(i(n(x),i(y,i(x,z)))).
155 [46,149] P(i(i(i(x,y),z),i(n(x),z))).
183 [93,32] P(i(x,i(y,i(z,x)))).
188 [46,183] P(i(i(i(x,y),z),i(y,z))).
192 [3,183] P(i(i(i(x,i(y,z)),u),i(z,u))).
207 [192,4] P(i(x,i(y,x))). %C1
280 [155,188] P(i(n(i(x,y)),i(y,z))).
296 [16,76] P(i(i(x,i(n(y),y)),i(z,i(x,y)))).
316 [39,296] P(i(i(n(x),n(y)),i(z,i(y,x)))).
517 [129,4] P(i(i(i(x,i(y,z)),x),x)).
531 [16,517] P(i(i(x,i(x,i(y,z))),i(x,i(y,z)))).

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Various Axiomatizations
Detachment and substitution
Using resolution logic for a metalanguage
Deriving Church from L1-L3
Single Axioms
Strategy in resolution-based theorem provers

A computer-generated proof of Church from Lukas

542 [45,531] P(i(i(i(x,y),i(y,z)),i(i(x,y),i(x,z)))).
549 [531,316] P(i(i(n(x),n(y)),i(y,x))). % C3
580 [188,542] P(i(i(x,y),i(i(z,x),i(z,y)))).
607 [580,580] P(i(i(x,i(y,z)),i(x,i(i(u,y),i(u,z))))).
776 [607,280] P(i(n(i(x,y)),i(i(z,y),i(z,u)))).
796 [4,776] P(i(i(x,i(x,y)),i(x,y))).
808 [580,796] P(i(i(x,i(y,i(y,z))),i(x,i(y,z)))).
880 [45,808] P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))). % C2
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Features of this kind of problem

Here are some things that make this subject amenable to
automated deduction:

I There are few axioms, so we have a chance of not getting
swamped by deriving thousands of irrelevant conclusions.

I Not much background knowledge is required, so we won’t
require a huge database of known facts.

I Not many variables are required, so we won’t get swamped by
too many variables (as happens sometimes in elementary
geometry, for example)
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Jan  Lukasiewicz, wedding photo 1929
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Jan  Lukasiewicz
 Lukasiewicz’ book was in press
in 1939. The press, his home,
all his books and all copies of
his manuscripts were bombed
and burnt. In July, 1944 he left
Poland for Germany, in the
middle of the Allied invasion,
possibly afraid of reprisals
against his wife, who (although
Polish) was a German
sympathizer. He lived out his
life in exile in Dublin. Here he
is as professor in Dublin.

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Various Axiomatizations
Detachment and substitution
Using resolution logic for a metalanguage
Deriving Church from L1-L3
Single Axioms
Strategy in resolution-based theorem provers

Meredith’s single axiom (1953)

i(i(i(i(i(x, y), i(n(z), n(u))), z), v), i(i(v, x), i(u, x)))

Suppose one tries to verify that this is a single axiom “from
scratch” by deriving, for example, C1-C3 from it. In 1992 the state
of the art was that 236 hours of computer time would get you C3,
but not C1 and C2.

Of course, you can put in as hints the formulas of Meredith’s
known proof, and get a prover to “find” the known proof. If you
still think propositional logic is trivial, try duplicating Meredith’s
feat, and find a proof. (His proof has 41 steps.)

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Various Axiomatizations
Detachment and substitution
Using resolution logic for a metalanguage
Deriving Church from L1-L3
Single Axioms
Strategy in resolution-based theorem provers

Meredith’s single axiom (1953)

i(i(i(i(i(x, y), i(n(z), n(u))), z), v), i(i(v, x), i(u, x)))

Suppose one tries to verify that this is a single axiom “from
scratch” by deriving, for example, C1-C3 from it. In 1992 the state
of the art was that 236 hours of computer time would get you C3,
but not C1 and C2.
Of course, you can put in as hints the formulas of Meredith’s
known proof, and get a prover to “find” the known proof. If you
still think propositional logic is trivial, try duplicating Meredith’s
feat, and find a proof. (His proof has 41 steps.)
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Meredith’s single axiom (2008 update)

In 2008, I suggested to Wos that he try to prove some known
axiom system for propositional logic from Meredith’s single axiom
without “cheating” in any way; that is, without using any
information that ultimately derives from Meredith’s proof.
Using a recently invented technique, the “subformula strategy”,
one is able to find a proof of length 183, and one only has to wait
9900 seconds (almost three hours) for the proof to be found. No
information about Meredith’s proof is used.
This time and proof length can be improved upon, still without
using any information about Meredith’s proof; one can find a 135
step proof in less than 23 minutes by some slight refinements of
the technique. Once any proof at all is in hand, there are
well-known techniques to get a shorter proof.
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How some theorem-provers work
Create a list called sos (set of support) of clauses, containing all or
some of the input.
While list sos is not empty, do the following:

I Select a clause A to be the “given clause”, and remove it
from sos.

I for each clause B not on sos, if a new clause C can be
inferred from A and B, do so.

I Possibly reject C as not fruitful, or mark it as possibly fruitful
(to make it be selected sooner)

I If C is a unit clause (only one literal) check for a one-step
contradiction (“unit conflict”)

I If C is not rejected, add it to sos.
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Where artistry comes in

I Select the next given clause

I Grounds for rejection

I Ways to recognize fruitful formulas
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Weights

Sometimes the given clause is chosen to have smallest weight
among clauses on sos. By default, weight is the total number of
symbols, but (depending on the prover) you have ways to control
that.
One can cause a clause to be rejected by giving it weight more
than max weight. One can cause it to be preferred by giving it a
low weight.
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Using weights to reject unwanted terms

As an example of the use of weights, we can reject all double
negations by using n(n(x)) = junk, along with n(junk) = junk
and i(x, junk) = junk and (junk, x) = junk, and then give
junk a weight larger than max weight. Any double negation that
is deduced will be immediately discarded.
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Resonators

We say that two formulas resonate if they have the same form,
when any variable matches any other variable. Thus i(x, i(x, x))
resonates with i(y, i(x, x)).
To use a formula B as a resonator, we specify that any formula
that resonates with B will have a low weight.
As an example of the use of resonators, we could put in all the
steps of a known proof (say for example Meredith’s 1953 proof) as
resonators, specifying a low weight, and then specify that any
formulas heavier than that weight should be rejected. This forces
the prover to “find” the given proof.
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The Subformula Strategy
This strategy consists in using all the subformulas of the goal, or of
the axioms, or of some other theorems or axiom systems in the
same logic, as resonators. This amazingly simple strategy was not
discovered in 1970, 1980, 1900, or 2003, but in 2008.
It is this simple technique that enables automated deduction today
to reach the levels of deductive power of Meredith and
 Lukasiewicz. In particular, this was the technique used to derive
Church’s 3-base from Meredith’s single axiom in three hours, just
using the subformulas of the single axiom as resonators.
The improvements mentioned came from using the subformulas of
other known axiom systems as resonators as well.
It is worth noting that the change since 1992 is not accounted for
by faster computers or larger memory. This could have been done
in 1992 if somebody had thought of the subformula strategy then!
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 Lukasiewicz’s single axiom (1930’s)

(i(i(i(x, y), i(i(i(n(z), n(u)), v), z)), i(w, i(i(z, x), i(u, x)))))

 Lukasiewicz’s 23-symbol single axiom seems to be easier than
Meredith’s 21-symbol axiom: the same resonators yield a 94-step
proof of L1-L3 in less than one minute.
Incidentally,  Lukasiewicz never published a proof of a known axiom
system from this axiom–the first published proof was found in
1999. Now, when no proof was previously published, you can’t
exactly have “cheated”, but the proof did rely on information from
many other deductions. But with the subformula strategy, all you
need is the axiom itself.
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Many other logical systems can be investigated by these same
methods. See Dolph Ulrich’s web pages:
Ulrich’s home page
and his survey article in the special issue of the Journal of
Automated Reasoning, 2001, for more information and references.
We will look at only a few examples.
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Intuitionistic Propositional Logic

I More interesting and subtle than classical logic

I Far less obvious that there is a decision procedure.

I Unlike in the classical case, disjunction and conjunction are
not definable in terms of implication and negation.

I Still one considers interesting fragments.
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Hilbert’s 4-base, 1922

i(i(p, i(p, q)), i(p, q)) H1
i(i(q, r), i(i(p, q), i(p, r))) H2
i(i(p, i(q, r)), i(q, i(p, r))) H3
i(p, i(q, p)) H5
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Hilbert’s 3-base, 1930

i(i(p, i(p, q)), i(p, q)) H1
i(i(p, q), i(i(q, r), i(p, r))) H6
i(p, i(q, p)) H5
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 Lukasiewicz’s 2-base

i(i(p, i(q, r)), i(i(p, q), i(p, r))) C2
i(p, i(q, p)) H5
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Meredith’s 2-base

i(i(p, q), i(i(p, i(q, r)), i(p, r))) M1
i(p, i(q, p)) H5
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Exercise: From each base, derive the others

In July, 2008, I used Otter with the subformula strategy and the
“recursive tail strategy” to derive each of these bases from the
others. It was straightforward. (I am not claiming any originality
here, this may have been done before.)
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Meredith’s two single axioms

i(i(i(p, q), r), i(s, i(i(q, i(r, t)), i(q, t)))) 1953
i(t, i(i(p, q), i(i(i(s, p), i(q, r)), i(p, r)))) 1963

I In 2008, it is easy to check (by machine) that these are single
axioms and to derive them from the other bases for this logic.

I This was first done by machine in 2003, but then it was not so
easy.

I See Chapter 4 of Automated Reasoning and the Discovery of
Missing and Elegant Proofs, by Wos and Pieper.
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Ulrich has ten more single axioms!

I Dolph (Ted) Ulrich has ten more single axioms of this
calculus, five of which he published in 1999, and five he has
discovered since then.

I He also has 36 candidates that might or might not be
17-symbol single axioms

I and four 15-symbol candidates, which he conjectures are not
single axioms.

See Ulrich’s home page at
http://web.ics.purdue.edu/ dulrich/Home-page.htm
Logicians are currently working on these systems, which I copied
from the yellowed pages of the Appendix of Prior’s Formal Logic.
(Anyone interested in these things should get a copy of that book.)
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Axiomatizing the CN fragment of intuitionistic logic

In addition to the axioms for implication the following system was
given by Kolmogorov (1925).

i(i(x, n(x)), n(x)))
i(x, i(n(x), y))
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Full intuitionistic logic
Using a for disjunction and k for conjunction we have the following
system from Horn (1962)

i(x, i(x, y))
i(i(x, i(y, z)), i(i(x, y), i(x, z)))
i(k(x, y), x)
i(k(x, y), y)
i(i(x, y), i(i(x, z), i(x, k(y, z))))
i(x, a(x, y))
i(y, a(x, y))
i(i(x, z), i(i(y, z), i(a(x, y), z)))
i(i(x, n(y), i(y, n(x)))
i(n(x), i(x, y))
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A variant of Horn’s system

Horn’s system is “separable”, i.e. each theorem can be proved
without using any logical connectives not in the theorem.
Other authors have used an axiom system in which, instead of
Horn’s axiom

i(i(x, n(y), i(y, n(x)))

we take
i(i(x, n(x)), n(x))

The other nine axioms are not changed.

It takes more than three
hours to find a 20-step proof of Horn’s axiom. The proof involves
conjunction, as well as implication and negation.
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A new metatheorem

Wos and I tried to find a proof of Horn’s axiom from just the four
axioms mentioning only implication and negation. This succeeds in
less than a minute.
Conclusion: the variant axiom system is also separable, i.e. each
theorem can be proved without using any logical connectives not in
the theorem.
This is a new metatheorem (as far as we know).
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Heyting’s theses

I Heyting’s 1930 paper (not his book) lists more than fifty
intuitionistically valid propositional formulas.

I Heyting does not provide complete proofs. Moreover, his
system of axioms and rules has more rules than modus ponens
and substitution.

I In August, 2008, I tried to use Otter to derive these theorems
from Horn’s axioms. After deleting those theses that are
instances of Horn’s axioms, there are 51 theses to prove.
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Automated deduction of Heyting’s theses

I Result: Using the subformula strategy to give preference to
subformulas of the goals and axioms, we proved 24 of the 51
formulas, with most of those theorems proved in the first
minute.

I By using the steps of those proofs as resonators, and adjusting
Otter’s parameters, Wos and I proved 36 of the 51.

I Iterating this process, and changing to hints instead of
resonators, we so far proved all but two of these theses. This
is work in progress.

I Some of the proofs we found are quite long. One is 93 steps;
several are of level 15 or more.
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Single axioms for Intuitionistic Propositional Calculus
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I Tarski (1930) states that any CN system containing CpCqp
and CpCqCCpCqrr has a single axiom; the proof may be in
Leśniewski (1929).

I Rezus (1982) gave methods to produce such axioms explicitly,
but the axioms so produced are long (e.g. 66 symbols for the
CN fragment of intuitionistic logic)

I If anyone has produced a shorter single axiom for the CN
fragment of intuitionistic logic, I do not know about it.

I Rezus also shows in principle how to construct proofs.
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Discarding double negations

I Double negations are formulas of the form n(n(x)).

I It is often a useful strategy to discard double negations.

I n(n(x)) = junk.

I But could we be missing proofs this way?
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Double Negation Elimination

I A theory T with double-negation-free axioms is said to admit
double negation elimination if whenever T proves a theorem
without double negations, then it has a proof without double
negations.

I Beeson, Wos, and Veroff proved that all common axiom
systems admit double-negation elimination.

I Classical logic, intuitionistic logic, and multi-valued logic.
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Role of computers in the proof of double-negation
elimination

I We gave general conditions on a theory T that should be
satisfied.

I Those involved the provability in T of certain axioms.

I We used a theorem-prover to prove lemmas of the form, a
given theory T proves a given theorem by condensed
detachment.

I We published in Studia Logica on the logical merits of the
result, and half the proofs were computer-generated.
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The pushback lemma

I A key lemma says that a proof by detachment and
substitution from axioms T can be converted to a proof by
modus ponens only from substitution instances of the axioms.

I The substitutions are “pushed back” to the beginning of the
proof.
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An example

i(i(n(x), n(i(i(n(y), n(z)), n(z)))),
n(i(i(n(i(n(x), y)), n(i(n(x), z))), n(i(n(x), z)))))

This formula is provable in many-valued propositional logic, and is
itself double-negation free.
(Why it is interesting is not relevant to our story.)
By our theorem it should have a double-negation free proof, but
Wos had been unable to find one.
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The 200 kilobyte proof
I Wos provided a proof of 45 condensed-detachment steps, 16

of whose lines involved a double negation.

I Beeson used this proof as input to a computer program
implementing the algorithms implicit in the proof of our
elimination theorem.

I Output: a double-negation-free proof by modus ponens of the
example, from substitution instances of A1– A4.

I The proof was 796 lines, and many of its lines involved
thousands of symbols. The input proof takes about 3.5
kilobytes, the output proof about 200 kilobytes.

I Now we know what the “condensed” means in “condensed
detachment”!

I Proof was shortened by McCune and Wos to 37 steps.
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Semantics of many-valued logic

Truth values are real numbers in [0, 1]. Negation and implication
are interpreted by the following functions from [0, 1] to [0, 1]:

c(x, y) = min(1, 1− x + y)
n(x) = 1− x

Writing J p K for the truth value of p, we have by definition

Jn(p) K = n(J p K)
J i(p, q) K = c(J p K, J q K)
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 Lukasiewicz’s A1-A5

Lukasiewicz defined the many-valued sentential calculus Lℵ0 and
gave the following axioms.

i(x, i(y, x)) A1
i(i(x, y), i(i(y, z), i(x, z))) A2
i(i(i(x, y), y), i(i(y, x), x) A3
i((i(x, y), i(y, x)), i(y, x)) A4
i(i(n(x), n(y)), i(y, x)) A5
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Completeness theorem

I A subset I of [0, 1] closed under c and n can serve as a set of
truth values for MV .

I At one extreme we can take I = {0, 1}, recovering two-valued
logic, and at the other extreme we can take I = [0, 1].

I Fix an infinite set I of truth values. A sentence of MV is
defined to be valid for I if its truth value is always 1,
regardless of the truth values assigned to its variables.

I The completeness theorem is that φ is derivable from
A1−A5 if and only if φ is valid for I.

This result was conjectured by  Lukasiewicz and later proved by his
student Wajsberg, according to Tarski; but Wajsberg never
published his proof.
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Mordechai Wajsberg

Wajsberg was fortunate to be a
student of  Lukasiewicz , but
had the misfortune to be a
Polish Jew at the wrong point
in history, and he perished in
the Holocaust. He was last
seen on the train to Treblinka
(a Nazi death camp) in 1943.
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Rose and Rosser

The first published proof of the
completeness theorem is by
Rose and Rosser (1958).

J. Barkley Rosser (1950)
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Dependence of A4

The fact that A4 can be derived from A1-A3 and A5 was proved
independently by Meredith and Chang. Their proofs appeared on
adjacent pages in the same journal in 1958.
In 1992 this proof was too hard to find automatically (without
cheating). McCune and Wos reported failure at CADE-11 that
summer (although they reported many successes as well).
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Success using the tail strategy

I Shortly after the failure reported in 1992, Wos succeeded in
finding a no-cheating proof of the dependence of A4.

I The method was the “recursive tail strategy”, which consists
in favoring formulas i(x, y) with short “tails” y.

I This is done by counting the “head” x double when
computing the weight.

I A good strategy helps more than Moore’s law
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Disjunction and Conjunction in MV logic

Multi-valued logic, like its cousin linear logic, has two disjunctions
A and B and two conjunctions K and L, definable in different
ways in terms of implication and negation. Rose and Rosser say
([?], pp. 11–12):

With both A and B serving as disjunctions and both K
and L serving as conjunctions, one can write a number of
possible distributive laws. Some are not valid, and of the
valid ones we have been able to prove only two from the
axiom schemes A1-A4.
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Distributive laws in MV logic

There were two valid distributive laws that Rose and Rosser could
not prove. One of them was

CKpAqrAKpqKpr

It is a simple exercise to show that this formula is semantically
valid.
When translated into the CN fragment, this distributive law
becomes quite a long formula:

CNCCNpNCCqrrNCCqrrCCNCCNpNqNqNCCNpNrNrNCCNpNrNr
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Fitelson and Harris

I Fitelson and Harris used Otter to find a
condensed-detachment proof of this distributive law from
A1-A3 and A5.

I Their method involved equality between formulas as well as
condensed detachment.

I This technique was invented by Wos and McCune.

I Veroff helped convert this bidirectional proof into a forward
proof with equality.

I McCune has an algorithm to convert proofs with equality to
condensed detachment.
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Fitelson and Harris, continued

I Result: a condensed-detachment proof,
almost 100 steps long.

I Later shortened by Wos by discarding
double negations etc. to 85 steps

I Fitelson and Harris published the 85-step
proof, the world’s first.

Branden Fitelson

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Semantics of many-valued logic
 Lukasiewicz’s A1-A5
Dependence of A4
Distributive Laws

Fitelson and Harris, continued

I Result: a condensed-detachment proof,
almost 100 steps long.

I Later shortened by Wos by discarding
double negations etc. to 85 steps

I Fitelson and Harris published the 85-step
proof, the world’s first.

Branden Fitelson

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Semantics of many-valued logic
 Lukasiewicz’s A1-A5
Dependence of A4
Distributive Laws

Fitelson and Harris, continued

I Result: a condensed-detachment proof,
almost 100 steps long.

I Later shortened by Wos by discarding
double negations etc. to 85 steps

I Fitelson and Harris published the 85-step
proof, the world’s first.

Branden Fitelson

Michael Beeson Logic and Computers



Introduction
Classical Propositional Logic

Intuitionistic Propositional Logic
Double Negation Elimination

Many-Valued Propositional Logic
Modal Logic

Conclusion

Semantics of many-valued logic
 Lukasiewicz’s A1-A5
Dependence of A4
Distributive Laws

Harris’s even-shorter proof
That, however, is not the end of the story. Harris decided to think
about the problem, not in the CN fragment, but in the original
language.

I Harris found a substitution and detachment proof by hand.

I Using resonance and hints based on Harris’s hand-constructed
proof, Fitelson and Harris found a 61-step proof, which they
say they find “more intuitive and explanatory than the CN
fragment proof.”

I Although this time, the machine proof came first, the human
proof is allegedly better.

I But they they never tried (or never reported on) using
automated deduction in the full language including K and A,
which was what Harris used for his hand proof.
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Modal Logic

Modal logic is a term for a class of systems formed from one or
another sentential logic (or first-order logic for that matter) by
adding the “necessity operator” �. All such systems have the
formula formation rule that if A is a formula, so is �A, and the
inference rule, from A infer �A.
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Resolution-based metatheory

To use a resolution language as the metalanguage for modal logic,
we simply write l(A) for �A, and the inference rule becomes

-P(x) | P(l(x)).

This rule is known as RN, the rule of necessitation.
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Various axiomatizations

In modal logic, there is usually a “possibility operator” ♦, which in
most logics can be defined by

♦A := ¬�¬A.

Two modal axioms of interest are

�(p⊃q)⊃(�p⊃�q) (K)
�p⊃p (T )

The theory CKT (classical modal sentential logic) consists of
axioms K and T, the rule RN, and some base for classical logic; for
definiteness we take L1-L3.
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Triviality in classical modal logic

A modal logic including T is called “trivial” if it proves A⊃�A.
The following are examples of principles that, when added to CKT,
produce a trivial logic:

p⊃♦�p (W )
�(♦p⊃♦q)⊃�(p⊃q) (F )

These two triviality results are due to Williamson and Fine,
respectively. Fine also proved a triviality result for the theory CKF,
which does not include T. Namely, CKF proves

�(p ↔ ♦p)
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Triviality in non-classical modal logics

Fitelson investigated whether, in this result of Fine, one can
weaken classical logic. (Fine’s proof definitely uses classical logic.)
Using Otter, he was able to show that Fine’s triviality result still
holds if CKF is replaced by XKF, where X is either intuitionistic
logic, or three-valued logic (either  Lukasiewicz’s three-valued logic
or Kleene’s).
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Triviality in non-classical modal logics
Examining the proofs, Fitelson found the following four axioms:

i(i(p, q), i(i(r, p), i(r, q)))
i(i(p, q), i(n(q), n(p)))

i(i(i(p, q), r), i(i(q, p), r))
i(i(i(p, q), r), i(q, r))

These four axioms suffice to prove �(p ↔ ♦p), or as it would be
expressed formally, to prove both l(i(p, n(l(n(p))))) and
l(i(n(l(n(p))), p)).
In other words, the triviality theorem works for XKF, where X is
the above four axioms; and that implies all the other
generalizations of Fine’s result.
These are new results, found with the aid of computers.
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Areas we don’t have time to discuss

I Combinatory logic(s) (fixed point properties)

I Combinatory logic as a first-order way to do lambda calculus

I Combinatory logic as a way to define the quantifiers, allowing
us to formalize the metatheory of first-order logic.

I Equivalential calculus (another invention of  Lukasiewicz)

I Relevance logics

I Provability logics

I Use of model-finding programs for unprovability results

I Use of quantifier-elimination in the reals to formalize
semantics
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Open problems involving proofs in sentential calculi

I There was a list of open problems in Ulrich’s 2001 article, and
an update about progress on those problems since then can be
found on his website. Many of these have to do with single
axioms for various theories; how short these can or cannot be,
and whether various specific formulas are or are not single
axioms.

I There has been a lot of work with shortening the length of
proofs; we could also pay more attention to the number of
variables and the size (total number of symbols).

I More work needs to be done on equality reasoning and its
relation to sentential calculi.
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More open problems in sentential calculi

I Can we work with systems containing four or more
connectives?

I Can we work with systems not based entirely on condensed
detachment? For example, sequent calculi, tableaux calculi,
natural deduction calculi.

I Negative results are often harder than positive ones: for
example, is there a finite axiomatization of the 2-variable
fragment of intuitionistic propositional calculus? (asked by
MacKay).
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Open problems in formalized metamathematics

I Proving metatheorems formally. There is no problem doing
mathematical induction in first-order systems if we specify the
instances of induction that are required, e.g. to prove the
deduction theorem or the soundness of the double-negation
interpretation or, in the future, more complicated
interpretations.

I Formalized semantics. More can be done using qepcad.
Formalized Kripke semantics?

I What is the exact relationship between Gentzen’s
cut-elimination theorem and Knuth-Bendix completion?
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A research program

I Connect the work in automated deduction to the work of the
proof-checking community.

I When formalizing a proof (to verify its correctness), a
theorem-prover should fill in the small steps.

I As a first project: Formalize the metatheory of various
sentential logics in Mizar, and write a program that translates
Otter output (of a proof that some formula A is provable in a
logic T) into a Mizar-checkable proof that A is provable in T.
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I When formalizing a proof (to verify its correctness), a
theorem-prover should fill in the small steps.

I As a first project: Formalize the metatheory of various
sentential logics in Mizar, and write a program that translates
Otter output (of a proof that some formula A is provable in a
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Summary

I The method: formalize the metatheory of some logic using
clauses, and then use a theorem-prover to find proofs in that
logic.

I You may need to invent new strategies for discarding or
favoring certain formulas.

I Strategy is more important than raw computer power.

I With today’s computers and today’s strategies, this method is
as good as the great logicians of the twentieth century at
finding proofs.

I Some open problems have been settled, and some past results
improved.

I There is a lot of room for future work in this area.
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