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Outline
I Probability methods (10 lectures, Dr R.J. Gibbens)

I Probability generating functions (2 lectures)
I Inequalities and limit theorems (3 lectures)
I Stochastic processes (5 lectures)

I Fourier and related methods (6 lectures, Professor J. Daugman)
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Reference books (Probability methods)
I (*) Ross, Sheldon M.

Probability Models for Computer Science.
Harcourt/Academic Press, 2002

I Mitzenmacher, Michael & Upfal, Eli.
Probability and Computing: Randomized Algorithms and
Probabilistic Analysis.
Cambridge University Press, 2005
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Some notation
RV random variable
IID independent, identically distributed

PGF probability generating function GX (z)
MGF moment generating function MX (t)

X ∼ U(0,1) RV X has the distribution U(0,1), etc
I(A) indicator function of the event A
P(A) probability that event A occurs
E(X ) expected value of RV X
E(X n) nth moment of RV X , for n = 1,2, . . .
FX (x) distribution function, FX (x) = P(X ≤ x)
fX (x) density of RV X given, when it exists, by F ′X (x)

MM4CS 2016/17 (4)



Case studies
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Case studies
We will consider three short cases studies where probability plays a
pivitol role:

1. Birthday problem (birthday attack)
I cryptographic attacks

2. Probabilistic classification (naive Bayes classifier)
I email spam filtering

3. Gambler’s ruin problem (cryptocurrency)
I Bitcoin

We will use the first two to help us recall elementary probability theory
(and establish our notation) and defer the third until we have studied
the theory of random walks.
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The birthday problem
Consider the problem of computing the probability, p(n), that in a
party of n people at least two people share a birthday (that is, the
same day and month but not necessarily same year).

It is easiest to first work out 1−p(n) = q(n), say,
where q(n) = P(none of the n people share a birthday) then

q(n) =
(

364
365

)(
363
365

)
· · ·
(

365−n+1
365

)
=

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− n−1
365

)
=

n−1

∏
k=1

(
1− k

365

)
.

Surprisingly, n = 23 people suffice to make p(n) greater than 50%.
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Graph of p(n) = 1−q(n) vs n
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Assumptions
We should record some of our assumptions behind the calculation
of p(n).

1. Ignore leap days (29 Feb)
2. Each birthday is equally likely
3. People are selected independently and without regard to their

birthday to attend the party (ignore twins, etc)
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Examples: coincidences on the football field
Ian Stewart writing in Scientific American illustrates the birthday
problem with an interesting example.

In a football match there are 23 people (two teams of 11 plus the
referee) and on 19 April 1997 out of 10 UK Premier Division games
there were 6 games with birthday coincidences and 4 games without.

Ian Stewart
What a coincidence!
Mathematical Recreations, Scientific American, Jun 1998, 95–96.
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Examples: cryptographic hash functions
A hash function y = f (x) used in cryptographic applications is usually
required to have the following two properties (amongst others):

1. one-way function: computationally intractable to find an x
given y .

2. collision-resistant: computationally intractable to find distinct x1
and x2 such that f (x1) = f (x2).
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Probability of same birthday as you
Note that in calculating p(n) we are not specifying which birthday (for
example, your own) matches. For the case of finding a match to your
own birthday amongst a party of n other people we would calculate

1−
(

364
365

)n

.
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General birthday problem
Suppose we have a random sample X1,X2, . . . ,Xn of size n where Xi
are IID with Xi ∼ U(1,d) and let p(n,d) be the probability that there
are at least two outcomes that coincide.

Then

p(n,d) =

{
1−∏

n−1
k=1

(
1− k

d

)
n ≤ d

1 n > d .

The usual birthday problem is the special case when d = 365.
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Approximations
One useful approximation is to note that for small x > 0
then 1−x ≈ e−x . Hence for n ≤ d

p(n,d) = 1−
n−1

∏
k=1

(
1− k

d

)
≈ 1−

n−1

∏
k=1

e−
k
d

= 1−e−(∑
n−1
k=1 k)/d

= 1−e−n(n−1)/(2d) .

We can further approximate the last expression as

p(n,d)≈ 1−e−n2/(2d) .
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Inverse birthday problem
Using the last approximation

p(n,d)≈ 1−e−n2/(2d)

we can invert the birthday problem to find n = n(p,d), say, such
that p(n,d)≈ p so then

e−n(p,d)2/(2d) ≈ 1−p

−n(p,d)2

2d
≈ log(1−p)

n(p,d)2 ≈ 2d log
(

1
1−p

)
n(p,d)≈

√
2d log

(
1

1−p

)
.

In the special case of d = 365 and p = 1/2 this gives the
approximation n(0.5,365)≈

√
2×365× log(2)≈ 22.49.
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Expected waiting times for a collision/match
Let Wd be the random variable specifiying the number of iterations
when you choose one of d values independently and uniformly at
random (with replacement) and stop when any value is selected a
second time (that is, a “collision” or “match” occurs).

It is possible to show that

E(Wd )≈
√

πd
2

.

Thus in the special case of the birthday problem where d = 365 we

have that E(W365)≈
√

π×365
2 ≈ 23.94.

In the case that we have a cryptographic hash function with 160-bit
outputs (d = 2160) then E(W2160)≈ 1.25×280. This level of reduction
leads to so-called “birthday attacks”. (See the IB course Security I for
further background discussion.)
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Further results
This table (see ref below) gives the minimum number of people, nk ,
such that the probability is > 1/2 of k or more matches with d = 365.

k 2 3 4 5 6 7 8 9 10
nk 23 88 187 313 460 623 798 985 1181
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Persi Diaconis and Frederick Mosteller
Methods for studying coincidences.
Journal of American Statistical Association, Vol 84, No 408, Dec
1989, 853–861.
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Email spam filtering
Suppose that an email falls into exactly one of two classes (spam or
ham) and that various features F1,F2, . . . ,Fn of an email message can
be measured. Such features could be the presence or absence of
particular words or groups of words, etc, etc.

We would like to determine P(C |F1,F2, . . . ,Fn) the probability that an
email message falls into a class C given the measured
features F1,F2, . . . ,Fn.

We can use Bayes’ theorem to help us.
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Bayes’ theorem for emails
We have that

P(C |F1,F2, . . . ,Fn) =
P(C)P(F1,F2, . . . ,Fn |C)

P(F1,F2, . . . ,Fn)

which can be expressed in words as

posterior probability =
prior probability× likelihood

evidence
.
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Naive Bayes classifier
In the naive Bayes classifier we make the assumption of conditional
independence across features. So that

P(F1,F2, . . . ,Fn |C) =
n

∏
i=1

P(Fi |C)

and then

P(C |F1,F2, . . . ,Fn) =
P(C)∏

n
i=1P(Fi |C)

P(F1,F2, . . . ,Fn)

∝ P(C)
n

∏
i=1

P(Fi |C) .

Note that here we are referring to conditional independence in the
sense of independence relative to the conditional joint probability
distribution.
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Decision rule for naive Bayes classifier
We then use the following decision rule to classify an email with
observed features F1,F2, . . . ,Fn as spam if

P(C = spam)
n

∏
i=1

P(Fi |C = spam)> P(C = ham)
n

∏
i=1

P(Fi |C = ham) .

This decision rule is known as the maximum a posteriori (MAP) rule.

A training set of manually classified emails is needed to estimate the
values of P(C) and P(Fi |C).
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Probability generating functions
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Probability generating functions (PGF)
A very common situation is when a RV, X , can take only non-negative
integer values. For example, X may count the number of random
events to occur in a fixed period of time. The probability mass
function, P(X = k), is given by a sequence of values p0,p1,p2, . . .
where

pk = P(X = k)≥ 0 ∀k ∈ {0,1,2, . . .} and
∞

∑
k=0

pk = 1 .

This sequence of terms can be “wrapped together” to define a
function called the probability generating function (PGF) as follows.

Definition (Probability generating function)
The probability generating function, GX (z), of a (non-negative
integer-valued) RV X is defined as

GX (z) =
∞

∑
k=0

pk zk

for all real values of z for which the sum converges.
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Elementary properties of the PGF
1. GX (z) = ∑

∞

k=0 pk zk so

GX (0) = p0 and GX (1) =
∞

∑
k=0

pk 1k =
∞

∑
k=0

pk = 1 .

2. If g(t) = z t then

GX (z) =
∞

∑
k=0

pk zk =
∞

∑
k=0

g(k)P(X = k) = E(g(X )) = E(zX ) .

3. The PGF is defined for all |z| ≤ 1 since
∞

∑
k=0
|pk zk | ≤

∞

∑
k=0

pk = 1 .

4. Importantly, the PGF characterizes the distribution of a RV in the
sense that

GX (z) = GY (z) ∀z
if and only if

P(X = k) = P(Y = k) ∀k ∈ {0,1,2, . . .} .
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Examples of PGFs

Example (Bernoulli distribution)

GX (z) = q+pz where q = 1−p .

E.g. p = 0.6,q = 1−p = 0.4
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Example (Binomial distribution, Bin(n,p))

GX (z) =
n

∑
k=0

(
n
k

)
pk (q)n−k zk = (q+pz)n where q = 1−p .

E.g. p = 0.6,q = 1−p = 0.4 and n = 6
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Example (Geometric distribution, Geo(p))

GX (z)=
∞

∑
k=1

pqk−1zk =pz
∞

∑
k=0

(qz)k =
pz

1−qz
if |z|< q−1 and q = 1−p .

E.g. p = 0.6,q = 1−p = 0.4

1 2 3 4 5 6
0.0

0.2

0.4

0.6

k

P(
X

=
k)

0.0 0.5 1.0 1.5 2.0
0.0

2.0

4.0

6.0

8.0

10.0

z

G
X
(z
)

MM4CS 2016/17 (27)



Example (Discrete uniform distribution, U(1,n))

GX (z) =
n

∑
k=1

zk 1
n
=

z
n

n−1

∑
k=0

zk =

{
z
n
(1−zn)
(1−z) z 6= 1

1 z = 1
.

E.g. n = 6 and so P(X = k) = 1/6≈ 0.167 for k = 1, . . . ,6
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Example (Poisson distribution, Pois(λ ))

GX (z) =
∞

∑
k=0

λ k e−λ

k !
zk = eλze−λ = eλ (z−1) .

E.g. λ = 5
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Derivatives of the PGF
We can derive a very useful property of the PGF by considering the
derivative, G′X (z), with respect to z. Assume we can interchange the
order of differentiation and summation, so that

G′X (z) =
d
dz

(
∞

∑
k=0

zkP(X = k)

)

=
∞

∑
k=0

d
dz

(
zk
)
P(X = k)

=
∞

∑
k=0

kzk−1P(X = k)

then putting z = 1 we have that

G′X (1) =
∞

∑
k=0

kP(X = k) = E(X )

the expectation of the RV X .
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Further derivatives of the PGF
Taking the second derivative gives

G′′X (z) =
∞

∑
k=0

k(k −1)zk−2P(X = k) .

So that,

G′′X (1) =
∞

∑
k=0

k(k −1)P(X = k) = E(X (X −1))

Generally, we have the following result.

Theorem
If the RV X has PGF GX (z) then the r th derivative of the PGF,
written G(r)

X (z), evaluated at z = 1 is such that

G(r)
X (1) = E(X (X −1) · · ·(X − r +1)) .
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Using the PGF to calculate E(X ) and Var(X )
We have that

E(X ) = G′X (1)

and

Var(X ) = E(X 2)− (E(X ))2

= [E(X (X −1))+E(X )]− (E(X ))2

= G′′X (1)+G′X (1)−G′X (1)
2 .

For example, if X is a RV with the Pois(λ ) distribution
then GX (z) = eλ (z−1). Thus, G′X (z) = λeλ (z−1), G′′X (z) = λ 2eλ (z−1)

and so G′X (1) = λ and G′′X (1) = λ 2. So, finally,

E(X ) = λ and Var(X ) = λ
2 +λ −λ

2 = λ .
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Sums of independent random variables
The following theorem shows how PGFs can be used to find the PGF
of the sum of independent RVs.

Theorem
If X and Y are independent RVs with PGFs GX (z) and GY (z)
respectively then

GX+Y (z) = GX (z)GY (z) .

Proof.
Using the independence of X and Y we have that

GX+Y (z) = E(zX+Y )

= E(zX zY )

= E(zX )E(zY )

= GX (z)GY (z)
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PGF example: Poisson RVs
For example, suppose that X and Y are independent RVs
with X ∼ Pois(λ1) and Y ∼ Pois(λ2), respectively.
Then

GX+Y (z) = GX (z)GY (z)

= eλ1(z−1)eλ2(z−1)

= e(λ1+λ2)(z−1) .

Hence X +Y ∼ Pois(λ1 +λ2) is again a Poisson RV but with the
parameter λ1 +λ2.
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PGF example: Uniform RVs
Consider the case of two fair dice with IID
outcomes X and Y , respectively, so that X ∼ U(1,6)
and Y ∼ U(1,6). Let the total score be T = X +Y
and consider the PGF of T given
by GT (z) = GX (z)GY (z). Then

GT (z) =
∞

∑
k=0

pk zk =
1
6
(z +z2 + · · ·+z6)

1
6
(z +z2 + · · ·+z6)

=
1

36

[
z2 +2z3 +3z4 +4z5 +5z6 +6z7+

5z8 +4z9 +3z10 +2z11 +z12
]
.

k
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Limits and inequalities
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Limits and inequalities
We are familiar with limits of real numbers. For example, if xn = 1/n
for n = 1,2, . . . then limn→∞ xn = 0 whereas if xn = (−1)n no such limit
exists. Behaviour in the long-run or on average is an important
characteristic of everyday life.

We will be concerned with these notions of limiting behaviour when
the real numbers xn are replaced by random variables Xn. As we
shall see there are several distinct notions of convergence that can be
considered.

To study these forms of convergence and the limiting theorems that
emerge we shall also gather a very useful collection of concepts and
tools for the probabilistic analysis of models, algorithms and systems.
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Probabilistic inequalities
To help assess how close RVs are to each other it is useful to have
methods that provide upper bounds on probabilities of the form

P(X ≥ a)

for fixed constants a.

We shall consider several such bounds and related inequalities.

I Markov’s inequality
I Chebyshev’s inequality
I Chernoff’s inequality

We will use I(A) for the indicator RV which is 1 if A occurs and 0
otherwise. Observe that we have for such indicator RVs that

E(I(A)) = P(A)

since
E(I(A)) = 0×P(Ac)+1×P(A) = P(A) .
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Theorem (Markov’s inequality)
If E(X )< ∞ then for any a > 0,

P(|X | ≥ a)≤ E(|X |)
a

.

Proof.
We have that

I(|X | ≥ a) =

{
1 |X | ≥ a
0 otherwise .

Clearly,
|X | ≥ aI(|X | ≥ a)

hence
E(|X |)≥ E(aI(|X | ≥ a)) = aP(|X | ≥ a)

which yields the result.
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Theorem (Chebyshev’s inequality)
Let X be a RV with mean µ = E(X ) and finite variance σ2 = Var(X )
then for all a > 0

P(|X −µ| ≥ a)≤ σ2

a2 .

Proof.
Put Y = (X −µ)2 ≥ 0 then E(Y ) = E((X −µ)2) = Var(X ) = σ2. So, by
Markov’s inequality, for all b > 0

P((X −µ)2 ≥ b) = P(Y ≥ b)≤ E(Y )

b
=

σ2

b
.

Now put b = a2 and noting that P((X −µ)2 ≥ a2) = P(|X −µ| ≥ a) we
have that

P(|X −µ| ≥ a)≤ σ2

a2 .
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Moment generating function

Definition
The moment generating function (MGF) of a RV X , written MX (t), is
given by

MX (t) = E(etX )

and is defined for those values of t ∈ R for which this expectation
exists.

Using the power series ex = 1+x +x2/2!+x3/3!+ · · · we see that

MX (t) = E(etX ) = 1+E(X )t +E(X 2)t2/2!+E(X 3)t3/3!+ · · ·

and so the nth moment of X , E(X n), is given by the coefficient of tn/n!
in the power series expansion of the MGF MX (t).

Note that for every RV, X , we have that MX (0) = 1 since

MX (0) = E(e0X ) = E(1) = 1 .
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Elementary properties of the MGF

1. If X has MGF MX (t) then Y = aX +b has
MGF MY (t) = ebtMX (at).

2. If X and Y are independent then X +Y has
MGF MX+Y (t) = MX (t)MY (t).

3. E(X n) = M(n)
X (0) where M(n)

X is the nth derivative of MX .
4. If X is a discrete RV taking values 0,1,2, . . . with

PGF GX (z) = E(zX ) then MX (t) = GX (et).
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Fundamental properties of the MGF
We will use without proof the following results.

1. Uniqueness: to each MGF there corresponds a unique
distribution function having that MGF.
In fact, if X and Y are RVs with the same MGF in some
region −a < t < a where a > 0 then X and Y have the same
distribution.

2. Continuity: if distribution functions Fn(x) converge pointwise to a
distribution function F (x), the corresponding MGFs (where they
exist) converge to the MGF of F (x). Conversely, if a sequence of
MGFs Mn(t) converge to M(t) which is continuous at t = 0,
then M(t) is a MGF, and the corresponding distribution
functions Fn(x) converge to the distribution function determined
by M(t).
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Example: exponential distribution
If X has an exponential distribution with parameter λ > 0
then fX (x) = λe−λx for 0 < x < ∞. Hence, for t fixed and for t < λ ,

MX (t) =
∫

∞

0
etx

λe−λxdx =
∫

∞

0
λe−(λ−t)xdx

=

[
− λ

(λ − t)
e−(λ−t)x

]∞

0
=

λ

λ − t
.

For t < λ

λ

(λ − t)
=

1
1− t/λ

=

(
1− t

λ

)−1

= 1+
t
λ
+

t2

λ 2 + · · ·

and hence E(X ) = 1/λ and E(X 2) = 2/λ 2 so that

Var(X ) = E(X 2)− (E(X ))2 = 1/λ
2 .
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Example: normal distribution
Consider a normal RV X ∼ N(µ,σ2) then fX (x) = 1

σ
√

2π
e−(x−µ)2/2σ2

so that

MX (t) =
∫

∞

−∞

etx 1
σ
√

2π
e−(x−µ)2/2σ2

dx

=
1

σ
√

2π

∫
∞

−∞

e−(−2txσ2+(x−µ)2)/2σ2
dx .

So, by ‘completing the square’,

MX (t) = eµt+σ2t2/2
{

1
σ
√

2π

∫
∞

−∞

e−(x−(µ+tσ2))2/2σ2
dx
}

= eµt+σ2t2/2 .
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Example: uniform distribution
Consider a uniform RV X ∼ U(a,b) for a < b. Then

fX (x) =

{
1

b−a a < x < b
0 otherwise .

Hence, for t 6= 0,

MX (t) =
∫ b

a

etx

b−a
dx

=

[
etx

(b−a)t

]b

a

=
ebt −eat

(b−a)t
.

and MX (0) = 1.

MM4CS 2016/17 (46)



Theorem (Chernoff’s bound)
Suppose that X has MGF MX (t) and a ∈ R then for all t > 0

P(X ≥ a)≤ e−taMX (t) .

Proof.
Using Markov’s inequality and noting that for t > 0 then etx is a
non-decreasing function of x we have that

P(X ≥ a) = P(etX ≥ eta)

≤ E(etX )

eta

= e−taMX (t)

Note that the above bound holds for all t > 0 so we can select the
best such bound by choosing t > 0 to minimize e−taMX (t).
In fact, the upper bound also holds trivially if t = 0 since the RHS is 1.
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Notions of convergence: Xn→ X as n→ ∞

For a sequence of RVs (Xn)n≥1, we shall define two distinct notions of
convergence to some RV X as n→ ∞.

Definition (Convergence in distribution)
Xn

D−→ X if FXn(x)→ FX (x) for all points x at which FX is continuous.

Definition (Convergence in probability)
Xn

P−→ X if P(|Xn−X |> ε)→ 0 for all ε > 0.

There are further inter-related notions of convergence but two will
suffice for our purposes.
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Theorem
If Xn

P−→ X then Xn
D−→ X.

Proof

We prove this theorem as follows. Fix, ε > 0 then

FXn(x) = P(Xn ≤ x ∩X > x + ε)+P(Xn ≤ x ∩X ≤ x + ε)

since X > x + ε and X ≤ x + ε form a partition. But if Xn ≤ x
and X > x + ε then |Xn−X |> ε

and {Xn ≤ x ∩X ≤ x + ε} ⊂ {X ≤ x + ε}. Therefore,

FXn(x)≤ P(|Xn−X |> ε)+FX (x + ε) .

Similarly,

FX (x − ε) = P(X ≤ x − ε ∩Xn > x)+P(X ≤ x − ε ∩Xn ≤ x)
≤ P(|Xn−X |> ε)+FXn(x) .
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Proof, ctd
The proof is completed by noting that together these inequalities
show that

FX (x − ε)−P(|Xn−X |> ε)≤ FXn(x)≤ P(|Xn−X |> ε)+FX (x + ε) .

But Xn
P−→ X implies that P(|Xn−X |> ε)→ 0. So, as n→ ∞, FXn(x) is

‘squeezed’ between FX (x − ε) and FX (x + ε).

Hence, if FX is continuous at x , FXn(x)→ FX (x) and so Xn
D−→ X .

Remarks

1. Note that the converse does not hold in general. An exercise on
the problem sheet provides a counterexample.

2. Another exercise on the problem sheet shows an important and
useful special case where the converse does hold.
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Limit theorems
Given a sequence of RVs (Xn)n≥1, let

Sn = X1 +X2 + · · ·+Xn and X n = Sn/n .

What happens to the sample mean, X n, for large n?

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ (and finite

variance σ2) then X n
P−→ µ.

Note that convergence to µ in the WLLN actually means convergence
to a degenerate RV, X , with P(X = µ) = 1.

Aside: this is referred to as the weak law of large numbers since
under more restrictive assumptions it holds for a stronger form of
convergence known as almost sure convergence. Under the strong
law of large numbers (SLLN) with almost sure convergence we would
have that P(X n→ µ) = 1.
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WLLN

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ and finite

variance σ2 then X n
P−→ µ.

Proof.
Recall that E(X n) = µ and Var(X n) = σ2/n. Hence, by Chebyshev’s
inequality applied to X n for all ε > 0

0≤ P(|X n−µ|> ε)≤ σ2/n
ε2 =

σ2

nε2

and so, letting n→ ∞,

P(|X n−µ|> ε)→ 0

hence X n
P−→ µ as required.

MM4CS 2016/17 (52)



Applications: estimating probabilities
Suppose we wish to estimate the probability, p, that we succeed when
we play some game or perform some experiment. For i = 1, . . . ,n, let

Xi = I({i thgame is success}) .

So X n = m/n if we succeed m times in n attempts.
We have that µ = E(Xi) = P(Xi = 1) = p so then

X n
P−→ µ

that is
m/n P−→ p

by the WLLN.
Thus we have shown the important result that the empirical estimate
of the probability of some event by its observed sample frequency
converges in probability to the correct but usually unknown value as
the number of samples grows.
This result forms the basis of all simulation methods.
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Monte Carlo simulation and randomized
algorithms

Suppose we wish to estimate the value of π. One way to proceed is
to perform the following experiment. Select a point (X ,Y ) ∈ [−1,1]2

with X and Y chosen independently and uniformly in [−1,1]. Now
consider those points within unit distance of the origin then

P((X ,Y ) lies in unit circle) = P(X 2 +Y 2 ≤ 1) =
area of circle

area of square
=

π

4
.

Suppose we have access to a stream of random
variables Ui ∼ U(0,1) then 2Ui −1∼ U(−1,1). Now
set Xi = 2U2i−1−1, Yi = 2U2i −1 and Hi = I({X 2

i +Y 2
i ≤ 1}) so that

E(Hi) = P(X 2
i +Y 2

i ≤ 1) =
π

4
.

Hence by the WLLN the proportion of points (Xi ,Yi) falling within the
unit circle converges in probability to π/4. Furthermore, the CLT can
be used to form confidence intervals.
This a simple example of a randomized algorithm to solve a
deterministic problem.
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Central limit theorem

Theorem (Central limit theorem/CLT)
Let (Xn)n≥1 be a sequence of IID RVs with mean µ, variance σ2 and
whose moment generating function exists in some interval −a < t < a
with a > 0. Then, as n→ ∞

Zn =
X n−µ

σ/
√

n
D−→ Z

where Z ∼ N(0,1).

We will now prove this extremely useful result using an approach
based on the properties of moment generating functions.
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Proof of CLT
Set Yi = (Xi −µ)/σ then E(Yi) = 0 and E(Y 2

i ) = Var(Yi) = 1 so

MYi (t) = 1+
t2

2
+o(t2)

where o(t2) refers to terms of higher order than t2 which will therefore
tend to 0 faster than t2 as t → 0. Also,

Zn =
X n−µ

σ/
√

n
=

1√
n

n

∑
i=1

Yi .

Hence,

MZn(t) =
(

MYi

(
t√
n

))n

=

(
1+

t2

2n
+o

(
t2

n

))n

→ et2/2 as n→ ∞ .

But et2/2 is the MGF of the N(0,1) distribution so, together with the
continuity property, Zn

D−→ Z ∼ N(0,1) and the CLT holds.
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CLT example
Suppose X1,X2, . . . ,Xn are the IID RVs showing the n sample
outcomes of a 6-sided die with common distribution

P(Xi = j) = pj , j = 1,2, . . . ,6

Set Sn = X1 +X2 + · · ·+Xn, the total score obtained, and consider the
two cases
I symmetric: (pj) = (1/6,1/6,1/6,1/6,1/6,1/6) so

that µ = E(Xi) = 3.5 and σ2 = Var(Xi)≈ 2.9
I asymmetric: (pj) = (0.2,0.1,0.0,0.0,0.3,0.4) so

that µ = E(Xi) = 4.3 and σ2 = Var(Xi)≈ 4.0
for varying sample sizes n = 5,10,15 and 20.

The CLT tells us that for large n, Sn is approximately distributed
as N(nµ,nσ2) where µ and σ2 are the mean and variance,
respectively, of Xi .
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CLT example: symmetric
10,000 replications

score

D
en
sit
y

0.00
0.02
0.04
0.06
0.08
0.10

0 20 40 60 80 100 120

n=5
0.00
0.02
0.04
0.06
0.08
0.10

n=10
0.00
0.02
0.04
0.06
0.08
0.10

n=15
0.00
0.02
0.04
0.06
0.08
0.10

n=20
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CLT example: asymmetric
10,000 replications

score

D
en
sit
y

0.00
0.05
0.10

0 20 40 60 80 100 120

n=5
0.00
0.05
0.10

n=10
0.00
0.05
0.10

n=15
0.00
0.05
0.10

n=20

MM4CS 2016/17 (59)



Confidence intervals I
One of the major statistical applications of the CLT is to the
construction of confidence intervals. The CLT shows that

Zn =
X n−µ

σ/
√

n

is asymptotically distributed as N(0,1). If, the true value of σ2 is
unknown we may estimate it by the sample variance given by

S2 =
1

n−1

n

∑
i=1

(Xi −X n)
2 .

For instance, it can be shown that E(S2) = σ2 and then

X n−µ

S/
√

n

is approximately distributed as N(0,1) for large n.
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Confidence intervals II
Define zα so that P(Z > zα) = α where Z ∼ N(0,1) and so

P(−zα/2 < Z < zα/2) = 1−α .

Hence,

P

(
−zα/2 <

X n−µ

S/
√

n
< zα/2

)
≈ 1−α

P
(

X n−zα/2
S√
n
< µ < X n +zα/2

S√
n

)
≈ 1−α .

The interval between the pair of end points X n±zα/2S/
√

n is thus an
(approximate) 100(1−α) percent confidence interval for the unknown
parameter µ.
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Confidence intervals: example
Consider a collection of n IID RVs, Xi , with common
distribution Xi ∼ Pois(λ ). Hence,

P(Xi = j) =
λ je−λ

j!
j = 0,1, . . .

with mean E(Xi) = λ .
Then a 95% confidence interval for the (unknown) mean value λ is
given by

X n±1.96S/
√

n

where z0.025 = 1.96.
Alternatively, to obtain 99% confidence intervals replace 1.96
by z0.005 = 2.58 for a confidence interval X n±2.58S/

√
n.

α α/2 zα/2 100(1−α)%
0.05 0.025 1.96 95%
0.01 0.005 2.58 99%
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95% confidence intervals
Illustration with λ = 25 and α = 5%

100 runs, n= 10

confidence interval

15 20 25 30 35

100 runs, n= 40

confidence interval

15 20 25 30 35
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Stochastic processes
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Random walks
Consider a sequence Y1,Y2, . . . of IID RVs with P(Yi = 1) = p
and P(Yi =−1) = 1−p with p ∈ [0,1].

Definition (Simple random walk)
The simple random walk is a sequence of RVs {Xn |n ∈ {1,2, . . .}}
defined by

Xn = X0 +Y1 +Y2 + · · ·+Yn

where X0 ∈ R is the starting value.

Definition (Simple symmetric random walk)
A simple symmetric random walk is a simple random walk with the
choice p = 1/2.

n

Xn

0

X0

1 2 3 4 5 6 7 8 9

E.g. X0 = 2 & (Y1 ,Y2 , . . . ,Y9 , . . .) = (1,−1,−1,−1,−1,1,1,1,−1, . . .)
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Examples
Practical examples of random walks abound
across the physical sciences (motion of atomic
particles) and the non-physical sciences
(epidemics, gambling, asset prices, PageRank,
cryptocurrencies (Bitcoin)).

The following is a simple model for the operation of a casino.
Suppose that a gambler enters with a capital of £X0. At each stage
the gambler places a stake of £1 and with probability p wins the
gamble otherwise the stake is lost. If the gambler wins the stake is
returned together with an additional sum of £1.
Thus at each stage the gambler’s capital increases by £1 with
probability p or decreases by £1 with probability 1−p.
The gambler’s capital Xn at stage n thus follows a simple random
walk except that the gambler is bankrupt if Xn reaches £0 and then
can not continue to any further stages.
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The Gambler’s ruin problem
We now consider a variant of the simple random walk. Consider two
players A and B with a joint capital between them of £N. Suppose
that initially A has X0 = £a (0≤ a≤ N).
At each time step player B gives A £1 with probability p and with
probability q = (1−p) player A gives £1 to B instead. The outcomes
at each time step are independent and fix p ∈ (0,1).
The game ends at the first time Ta if either XTa = £0 or XTa = £N for
some Ta ∈ {0,1, . . .}.
We can think of A’s wealth, Xn, at time n as a simple random walk on
the states {0,1, . . . ,N} with absorbing barriers at 0 and N.
Define the probability of ruin, ρa, for gambler A as

ρa = P(A is ruined) = P(B wins) for 0≤ a≤ N .

n

Xn

0

N = 5

X0 = 2

1 2 3 4 5 6 7 8 9

E.g. N = 5, X0 = a = 2 & (Y1,Y2,Y3,Y4) = (1,−1,−1,−1)

T2 = 4 & XT2 = X4 = 0
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Solution of the Gambler’s ruin problem
Theorem
The probability of ruin when A starts with an initial capital of £a is
given by

ρa =


(

q
p

)a
−
(

q
p

)N

1−
(

q
p

)N if p 6= q

1− a
N if p = q = 1/2 .

For illustration here is a set of graphs of ρa for N = 100 and three
possible choices of p.

a

ρa

10 20 30 40 50 60 70 80 90 1000

1

0.75

0.5

0.25

p = 0.49

p = 0.5

p = 0.51
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Proof
It will be convenient to work with

αa = P(A wins |X0 = a) = 1−P(A is ruined |X0 = a) = 1−ρa

and set θ = q/p (recall that p 6= 0) and so θ = 1 if and only if p = 0.5.

Consider what happens at the first time step then for 0 < a < N

αa = P(A wins∩Y1 =+1 |X0 = a)+P(A wins∩Y1 =−1 |X0 = a)
= pP(A wins |X0 = a+1)+qP(A wins |X0 = a−1)
= pαa+1 +qαa−1 .

We now proceed to solve this set of difference equations with the
boundary conditions α0 = 0 and αN = 1.
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Proof, ctd
Since p+q = 1 we can rewrite the difference equations as

αa = (p+q)αa = pαa+1 +qαa−1

p(αa+1−αa) = q(αa−αa−1)

αa+1−αa = θ(αa−αa−1)

= θ
2(αa−1−αa−2)

= · · ·
= θ

a(α1−α0) = θ
a
α1

using in the last step the boundary condition that α0 = 0.

Now consider

αa = αa−α0 =
a

∑
i=1

(αi −αi−1) =
a

∑
i=1

θ
i−1

α1 .
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Proof, ctd
But

a

∑
i=1

θ
i−1 = (1+θ +θ

2 + · · ·+θ
a−1) =

{
1−θa

1−θ
θ 6= 1

a θ = 1

and so using αN = 1 gives

αN = 1 =
N

∑
i=1

θ
i−1

α1 =

{
(1−θN )α1

1−θ
θ 6= 1

Nα1 θ = 1

and so for 0 < a < N

αa =

{
1−θa

1−θN θ 6= 1
a
N θ = 1 .

and the theorem holds after the substitutions θ = q/p and ρa = 1−αa.
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Mean duration time
Set Ta as the time to be absorbed at either 0 or N starting from the
initial state a and write µa = E(Ta).

Then conditioning on the first step as before leads to the difference
equations

µa = 1+pµa+1 +qµa−1 for 0 < a < N

and boundary conditions µ0 = µN = 0.

It can be shown that the solution µa is given by

µa =


1

p−q

(
N

(
q
p

)a
−1(

q
p

)N
−1
−a

)
if p 6= q

a(N−a) if p = q = 1/2 .

We skip the derivation here but an exercise on the problem sheet
invites you to check that this solution obeys the stated difference
equations.
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Case study: Bitcoin
Bitcoin is based around a proof-of-work mechanism which uses a
decentralised peer-to-peer network of workers (known as miners) to
ensure (with high probability) that bitcoins are not double-spent. In
order to achieve double spending of a bitcoin the attacker would need
to create a longer block chain than the honest chain.
Suppose that the honest workers can produce blocks on average
every T/p time units while the attacker can do so on average
every T/q time units with q = 1−p < p. If the (honest) seller waits for
a given number n of blocks to be created then this would take on
average nT/p time units. Thus the average number of blocks that the
attacker could create, m, would be such that nT/p = mT/q.
Thus m = nq/p independent of T .
If q > p then surely the attacker can always catch up the honest
workers however large a head start, n, is considered. What is the
chance that the attacker could still catch up the honest chain
when q < p?

Satoshi Nakamato
Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2008.
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Bitcoin analysis using Gambler’s ruin problem
The Bitcoin white paper proposes the simple probabilistic model that
the random number of blocks, X , that the attacker could produce as
the honest workers produce their fixed number, n, of blocks has a
Poisson distribution with mean λ = nq/p. Thus,

P(X = k) =
λ k e−λ

k !

for k = 0,1, . . ..
What is the chance that the attacker could then overtake the honest
workers? This is precisely the Gambler’s ruin problem starting from
initial assets of n−k with θ = q/p < 1 and in the limit that the total
wealth N→ ∞.
Recalling our expression for the ruin probabilities we have that

P(attacker catches up | k blocks) =

{
(q/p)n−k k ≤ n
1 k > n .
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Bitcoin: calculations
Hence, using the law of total probability,

P(attacker catches up) =
∞

∑
k=0

P(X = k)P(attacker catches up | k blocks)

=
n

∑
k=0

P(X = k)(q/p)n−k +
∞

∑
k=n+1

P(X = k)

=
n

∑
k=0

P(X = k)(q/p)n−k +

(
1−

n

∑
k=0

P(X = k)

)

= 1−
n

∑
k=0

P(X = k)
(

1− (q/p)n−k
)

= 1−
n

∑
k=0

λ k e−λ

k !

(
1− (q/p)n−k

)
where λ = nq/p is the mean number of blocks that an attacker can
produce while the honest workers produce n blocks.
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Some illustrative computations: try these yourself!
The Bitcoin white paper (section 11) provides a C program to
compute this probability for fixed q = 1−p and n. Observe that the
probability of catching up the honest workers drops off rapidly with n.
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Bitcoin analysis using
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Markov chains

Definition (Markov chain)
Suppose that (Xn) n ≥ 0 is a sequence of discrete random variables
taking values in some countable state space S. The sequence (Xn) is
a Markov chain (MC) if

P(Xn = xn |Xn−1 = xn−1, . . . ,X1 = x1,X0 = x0) = P(Xn = xn |Xn−1 = xn−1)

for all n ≥ 1 and for all x0,x1, . . . ,xn ∈ S.

Since, S is countable we can always choose to label the possible
values of Xn by integers and say that when Xn = i the Markov chain is
in the “i th state at the nth step” or “visits i at time n”.

Occasionally, we shall restrict our results to the case of finite state
spaces.
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Transition probabilities
The dynamics of the Markov chain are governed by the transition
probabilites P(Xn = j |Xn−1 = i).

Definition (time-homogeneous MC)
A Markov chain (Xn) is time-homogeneous if

P(Xn = j |Xn−1 = i) = P(X1 = j |X0 = i)

for all n ≥ 1 and states i , j ∈ S.

I We shall assume that our MCs are time-homogeneous unless
explicitly stated otherwise.
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Transition matrix

Definition (Transition matrix)
The transition matrix, P, of a MC (Xn) is given by P = (pij) where for
all i , j ∈ S

pij = P(Xn = j |Xn−1 = i) .

I Note that P is a stochastic matrix, that is, it has non-negative
entries (pij ≥ 0) and the row sums all equal one (∑j pij = 1).

I The transition matrix completely characterizes the dynamics of
the MC.
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Example
Suppose the states of the MC are S = {1,2,3} and that the transition
matrix is given by

P =

1/3 1/3 1/3
1/2 0 1/2
2/3 0 1/3

 .

I Thus, in state 1 we are equally likely to be in any of the three
states at the next step.

I In state 2, we can move with equal probabilities to 1 or 3 at the
next step.

I Finally in state 3, we either move to state 1 with probability 2/3 or
remain in state 3 at the next step.

1

3

2
1
3

1
3

1
3 1

2

1
22

3

1
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n-step transition matrix

Definition (n-step transition matrix)
For n ≥ 0 the n-step transition matrix is P(n) = (p(n)

ij ) where

p(n)
ij = P(Xn = j |X0 = i) .

Thus P(1) = P and we also set P(0) = I|S|, the |S|× |S|-identity matrix.
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Chapman-Kolmogorov equations
Theorem (Chapman-Kolmogorov)
For all states i , j and for all steps m,n

p(m+n)
ij = ∑

k∈S
p(m)

ik p(n)
kj .

Hence, P(m+n) = P(m)P(n) and P(n) = Pn, the nth power of P.

Proof.

p(m+n)
ij = P(Xm+n = j |X0 = i) = ∑

k∈S
P(Xm+n = j ,Xm = k |X0 = i)

= ∑
k∈S

P(Xm+n = j |Xm = k ,X0 = i)P(Xm = k |X0 = i)

= ∑
k∈S

P(Xm+n = j |Xm = k)P(Xm = k |X0 = i)

= ∑
k∈S

p(n)
kj p(m)

ik
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The Chapman-Kolmorgorov equations tell us how the long-term
evolution of the MC depends on the short-term evolution specified by
the transition matrix.
If we let λ

(n)
i = P(Xn = i) be the elements of a row vector λ (n)

specifying the distribution of the MC at the nth time step then the
follow holds.

Lemma
If m,n are non-negative integers then λ (m+n) = λ (m)P(n) and so, in
particular, if m = 0

λ
(n) = λ

(0)P(n)

where λ (0) is the initial distribution λ
(0)
i = P(X0 = i) of the MC.

Proof.

λ
(m+n)
j = P(Xm+n = j) = ∑

i
P(Xm+n = j |Xm = i)P(Xm = i)

= ∑
i

λ
(m)
i p(n)

ij =
(

λ
(m)P(n)

)
j
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Classification of states

Definition (Accessibility)
If, for some n ≥ 0, p(n)

ij > 0 then we say that state j is accessible from
state i , written i  j .
If i  j and j  i then we say that i and j communicate, written i! j .
Observe that the relation communicates! is
I reflexive
I symmetric
I transitive

and hence is an equivalence relation. The corresponding equivalence
classes partition the state space into subsets of states, called
communicating classes.
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Irreducibility
I A communicating class, C, that once entered can not be left is

called closed, that is pij = 0 for all i ∈ C, j 6∈ C.
I A closed communicating class consisting of a single state is

called absorbing.
I When the state space forms a single communicating class, the

MC is called irreducible and is called reducible otherwise.
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Example (5 states)

P =


0 1

2
1
2 0 0

1
2 0 1

2 0 0
1
2

1
2 0 0 0

0 0 3
4 0 1

4
0 0 0 0 1


1

2 3 4 5

1
2

1
2

1
2

1
2

1
21

2

3
4

1
4

1

I State space is reducible into three classes
I Classes: {1,2,3}, {4} and {5}
I {1,2,3} and {5} are closed; {5} is absorbing.
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Recurrence and transience of MCs
Write for n ≥ 1

f (n)ij = P(Xn = j ,Xn−1 6= j , . . . ,X1 6= j |X0 = i)

so that f (n)ij is the probability starting in state i that we visit state j for
the first time at time n. Also, let

fij = ∑
n≥1

f (n)ij

the probability that we ever visit state j , starting in state i .

Definition
I If fii < 1 then state i is transient
I If fii = 1 then state i is recurrent.
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Recurrence and transience, ctd
I Observe that if we return to a state i at some time n then the

evolution of the MC is independent of the path before time n.
Hence, the probability that we will return at least N times is f N

ii .
I Now, if i is recurrent f N

ii = 1 for all N and we are sure to return to
state i infinitely often.

I Conversely, if state i is transient then f N
ii → 0 as N→ ∞ and so

there is zero probability of returning infinitely often.

Solidarity property
It may be shown that all states within a communicating class share
the property of either all being transient or all being recurrent. It is
usual to refer to a communicating class as being either a transient or
recurrent class.
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Recurrent classes are closed

Theorem
Suppose that C is a recurrent class then C is closed.

Proof.
Let C be a class that is not closed. Then there exists some
states i ∈ C and j 6∈ C such that pij > 0. Thus j 6 i as j 6∈ C and so

P(Xn 6= i for all n ≥ 1 |X0 = i)≥ P(X1 = j |X0 = i) = pij > 0

which contradicts that i is recurrent.
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Mean recurrence time
First, let

Ti = min{n ≥ 1 : Xn = i}

be the time of the first visit to state i and set Ti = ∞ if no such visit
ever occurs.

Thus, P(Ti = ∞|X0 = i)> 0 if and only if i is transient in which
case E(Ti |X0 = i) = ∞.

Definition (Mean recurrence time)
The mean recurrent time, µi , of a state i is defined as

µi = E(Ti |X0 = i) =

{
∑n nf (n)ii if i is recurrent
∞ if i is transient .

I Note that µi may still be infinite when i is recurrent.
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Positive and null recurrence

Definition
A recurrent state i is
I positive recurrent if µi < ∞ and
I null recurrent if µi = ∞.
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Finite state Markov Chains
The state space S is a countable set. When S is also finite there are
several useful simplifications that occur.

Theorem
If S is finite then

1. there is always at least one recurrent state
2. all recurrent states are positive recurrent.

Proof.
Omitted.
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Example (5 states), ctd

1

2 3 4 5

1
2

1
2

1
2

1
2

1
21

2

3
4

1
4

1

Recall that
I State space is reducible into three classes
I Classes: {1,2,3}, {4} and {5}
I {1,2,3} and {5} are closed; {5} is absorbing.

Furthermore
I Classes {1,2,3} and {5} are positive recurrent
I Class {4} is transient.

Later we will consider an example with a null recurrent class but
where the state space is necessarily countably infinite.
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Stationary distributions

Definition
The vector π = (πj ; j ∈ S) is a stationary distribution for the MC with
transition matrix P if

1. πj ≥ 0 for all j ∈ S and ∑j∈S πj = 1
2. π = πP, or equivalently, πj = ∑i∈S πipij .

Such a distribution is stationary in the sense
that πP2 = (πP)P = πP = π and for all n ≥ 0

πPn = π .

Thus if X0 has distribution π then Xn has distribution π for all n ≥ 0.
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Existence of a stationary distribution

Theorem

1. An irreducible Markov Chain has a stationary distribution π if and
only if all states are positive recurrent.

2. If this is the case then π is the unique stationary distribution and
it is given by

πi =
1
µi

where µi is the mean recurrence time of state i ∈ S.

Intuition
Suppose the current distribution for a MC is given by a stationary
distribution π and consider the evolution of the MC for a further period
of T steps (with T large). Since π is stationary the probability of being
in any state i remains πi , so we will make around T πi visits to i .
Consequently, the mean recurrence time of state i would
be T/(T πi) = 1/πi .
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Stationary distributions for 2-state MCs
Consider the MC with transition matrix

P =

(
1−α α

β 1−β

)
with 0≤ α,β ≤ 1.

1 2
α

1−α

β

1−β

Now if α = β = 0 then the state state is reducible and P = I2, the 2×2
identity matrix, and so any distribution on 2 states, π, is stationary
with π = πP = πI2 = π. Thus, we have non-uniqueness of stationary
distributions if the state space is reducible.

1 21 1

MM4CS 2016/17 (96)



Stationary distributions for 2-state MCs, ctd
Now suppose α +β > 0 and write π = (π1,π2) with π1,π2 ≥ 0
and π1 +π2 = 1. Hence π2 = 1−π1 and the stationary equations
become (

π1 1−π1
)
=
(
π1 1−π1

)(1−α α

β 1−β

)
Thus

π1 = π1(1−α)+(1−π1)β

π1(α +β ) = β

π1 =
β

α +β

and π = ( β

α+β
, α

α+β
) is the unique stationary distribution.

Note that the case α +β > 0 includes the possibilities that
either α = 0 or β = 0 (but not both) in which case the state space is
again reducible.
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Periodicity
Let di be the greatest common divisor of {n : p(n)

ii > 0}.

Definition
I If di = 1 then i is aperiodic.
I If di > 1 then i is periodic with period di .

Remark
It may be shown that the period is a class property, that is, if C is a
communicatiing class and i , j ∈ C then di = dj .
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Limiting behaviour as n→ ∞

Theorem
For an irreducible, aperiodic Markov Chain

lim
n→∞

p(n)
ij =

1
µj

for all states i , j ∈ S.

Proof.
Omitted.

MM4CS 2016/17 (99)



Markov’s example
Markov was led to the notion of a Markov chain by studying the
patterns of vowels and consonants in text. In his original example he
estimated a transition matrix for the states {vowel,consonant} as

P =

(
0.128 0.872
0.663 0.337

)
.

Taking successive powers of P we find

P2 =

(
0.595 0.405
0.308 0.692

)
P3 =

(
0.345 0.655
0.498 0.502

)
P4 =

(
0.478 0.522
0.397 0.603

)
.

As n→ ∞, all rows become identical in the limit

Pn→
(

0.432 0.568
0.432 0.568

)
.

Check that π = (0.432,0.568) is a stationary distribution (that
is, π = πP) using the earlier 2-state example with α = 0.872
and β = 0.663.

Furthermore, the mean recurrence times for the two states
are 1/0.432≈ 2.315 and 1/0.568≈ 1.761.
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Remark on aperiodicity
What happens if we do not have aperiodicity?

Consider the 2-state example with α = β = 1 then the MC just
deterministically alternates between the two states and the period
is 2. We can see that

p(n)
11 = p(n)

22 =

{
1 if n is even
0 if n is odd

and so the limits limn→∞ p(n)
ij do not exist.

1 2
α = 1

β = 1
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Random walks revisited
Recall the simple random walk starting at the origin (that is, X0 = 0)
given by

Xn = Y1 +Y2 + · · ·+Yn

where Y1,Y2, . . . are IID RVs with P(Yi = 1) = p
and P(Yi =−1) = 1−p for p ∈ [0,1]. Note here that the state space is
countably infinite, namely the set of integers Z.

Intutitively, if p > 1
2 the MC will drift to the right and so eventually will

never return to the origin and every state is transient. Likewise,
if p < 1

2 the drift will be to the left and again every state is transient.

0 1 2−1−2 · · ·· · ·
p

1−p

p

1−p 1−p

p

1−p

p

1−p

p

1−p

p
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Random walks revisited, ctd
Again intuitively, if p = 1

2 then the origin is a recurrent state. Is it
positive recurrent or null recurrent?

We know that if it is positive recurrent then there would be a unique
stationary distribution, π, since the MC is also clearly irreducible in
this case.

However such a distribution would statisfy π = πP which gives for all i
that

πi =
1
2

πi−1 +
1
2

πi+1

and so πi is constant which contradicts that π = (πi : i ∈ Z) is a
distribution with ∑i∈Z πi = 1.

Thus, the simple symmetric random walk is null recurrent.

The problem sheet explores a related example where the random
walk has states {0,1,2, . . .} but p00 = p so there is a self-loop at the
origin. In this example for a certain range of p values the random
walk is positive recurrent and has a unique stationary distribution.
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Time-reversibility
Suppose now that (Xn :−∞ < n < ∞) is an irreducible, positive
recurrent MC with transition matrix P and unique stationary
distribution π. Suppose also that Xn has the distribution π for
all −∞ < n < ∞. Now define the reversed chain by

Yn = X−n for −∞ < n < ∞

Then (Yn) is also a MC and Yn has the distribution π.

Definition (Reversibility)
A MC (Xn) is reversible if the transition matrices of (Xn) and (Yn) are
equal.
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Theorem
A MC (Xn) is reversible if and only if

πipij = πjpji for all i , j ∈ S .

Proof.
Consider the transition probabilities qij , say, of the MC (Yn) then

qij = P(Yn+1 = j |Yn = i)
= P(X−n−1 = j |X−n = i)
= P(Xm = i |Xm−1 = j)P(Xm−1 = j)/P(Xm = i) where m =−n
= pjiπj/πi .

Hence, pij = qij if and only if πipij = πjpji .
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Theorem
For an irreducible chain, if there exists a vector π such that

1. 0≤ πi ≤ 1 and ∑i π = 1
2. πipij = πjpji for all i , j ∈ S

then the MC is reversible with stationary distribution π.

Proof.
Suppose that π satisfies the conditions of the theorem then

∑
i

πipij = ∑
i

πjpji = πj ∑
i

pji = πj

and so π = πP and the distribution is stationary.
The conditions πipij = πjpji for all i , j ∈ S are known as the local
balance (or detailed balance) conditions.
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Ehrenfest model
Suppose we have two containers A and B containing a total of m
balls. At each time step a ball is chosen uniformly at random and
switched between containers. Let Xn be the number of balls in
container A after n units of time. Thus, (Xn) is a MC with transition
matrix given by

pi ,i+1 = 1− i
m

, pi ,i−1 =
i
m

.

Instead of solving the equations π = πP we look for solutions to

πipij = πjpji

which yields πi =
(m

i

)
(1

2 )
m, a binomial distribution with parameters m

and 1
2 .
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Random walk on an undirected graph
Consider a graph G consisting of a countable collection of
vertices i ∈ N and a finite collection of edges (i , j) ∈ E joining
(unordered) pairs of vertices. Assume also that G is connected.
A natural way to construct a MC on G uses a random walk through
the vertices. Let vi be the number of edges incident at vertex i . The
random walk then moves from vertex i by selecting one of the vi
edges with equal probability 1/vi . So the transition matrix, P, is

pij =

{
1
vi

if (i , j) is an edge
0 otherwise .
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Since G is connected, P is irreducible. The local balance conditions
for (i , j) ∈ E are

πipij = πjpji

πi
1
vi

= πj
1
vj

πi

πj
=

vi

vj
.

Hence,
πi ∝ vi

and the normalization condition ∑i∈N πi = 1 gives

πi =
vi

∑j∈N vj

and P is reversible.

MM4CS 2016/17 (109)



Ergodic results
Ergodic results refer to the limiting behaviour of time averages. In the
case of Markov Chains we shall consider the long-run proportion of
time spent in a given state.

Let Nk
j (n) be the number of visits to k starting from state j before

time n then consider the time average conditional on X0 = j

1
n
E(Nk

j (n)) =
1
n
E

(
n

∑
r=1

I(Xr = k)

)
=

1
n

n

∑
r=1

E(I(Xr = k)) =
1
n

n

∑
r=1

p(r)
jk

Now if the MC is irreducible and aperiodic we know
that limr→∞ p(r)

jk = 1
µk

for all states j ,k ∈ S and hence

1
n
E(Nk

j ) =
1
n

n

∑
r=1

p(r)
jk →

1
µk

.

Thus time averages also converge in the same way as limiting n-step
transition probabilities.
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Example: random surfing on web graphs
Consider a web graph, G = (V ,E), with vertices given by a finite
collection of web pages i ∈ V and (directed) edges given by (i , j) ∈ E
whenever there is a hyperlink from page i to page j .

Random walks through the web graph have received much attention
in the recent years.

Consider the following model, let Xn ∈ V be the location (that is, web
page visited) by the surfer at time n and suppose we choose Xn+1
uniformly from the, L(i), outgoing links from i , in the case
where L(i)> 0 and uniformly among all pages in V if L(i) = 0 (the
dangling page case).
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Pagerank: transition matrix
Hence, the transition matrix, P̂ij , say, has non-zero entries given by

p̂ij =

{
1

L(i) if L(i)> 0 and (i , j) ∈ E
1
|V | if L(i) = 0

Note that the resulting MC may not be irreducible and may be
periodic.

We need to find a variant of the MC that is irreducible, aperiodic and
positive recurrent so that we can proceed to determine a unique
stationary distribution and exploit the limiting probabilities.

Recall that irreducible finite state MCs are always positive recurrent.

For our web graph model V , the set of web pages, is finite (though
very large) so it will be sufficient to ensure that the MC is just
irreducible and aperiodic.
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Easily bored web surfer model
We will make a further adjustment to ensure irreducibility and
aperiodicity as follows.

For 0 < α ≤ 1 set

pij = (1−α)p̂ij +α
1
|V |

.

We can interpret this as an “easily bored web surfer” model and see
that the transitions take the form of a mixture of two distributions.

With probability 1−α we follow the randomly chosen outgoing link
(unless the page is dangling in which case we move to a randomly
chosen page) while with probability α we jump to a random page
selected uniformly from the entire set of pages V .
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PageRank
Brin et al (1999) used this approach to define PageRank through the
limiting distribution of this Markov Chain, that is πi where the vector π

satisfies
π = πP

They report typical values for α of between 0.1 and 0.2.

The ergodic results now tells us that the random surfer in this model
spends a proportion πi of the time visiting page i — a notion in some
sense of the ‘importance’ of page i .

Thus, two pages i and j can be ranked according to the total order
defined by

i ≥ j if and only if πi ≥ πj .

Sergey Brin, Lawrence Page, Rajeev Motwani and Terry Winograd
The PageRank Citation Ranking: Bring Order to the Web
Technical Report, Computer Science Department, Stanford University.
(1999).
http://dbpubs.stanford.edu:8090/pub/1999-66
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Computing PageRank: the power method
We seek a solution to the system of equations

π = πP

that is, we are looking for an eigenvector of P (with corresponding
eigenvalue of one). Google’s computation of PageRank is one of the
world’s largest matrix computations.

The power method starts from some initial distribution π(0),
updating π(k−1) by the iteration

π
(k) = π

(k−1)P = · · ·= π
(0)Pk

Advanced methods from linear algebra can be used to speed up
convergence of the power method and there has been much study of
related MCs to include web browser back buttons and many other
properties as well as alternative notions of the ‘importance’ of a web
page.

The power method lends itself well to large-scale parallel computation
using the MapReduce approach.
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Hidden Markov Models
An extension of Markov Chains is provided by Hidden Markov Models
(HMM) where a statistical model of observed data is constructed from
an underlying but usually hidden Markov Chain.

Such models have proved very popular in a wide variety of fields
including
I speech and optical character recognition
I natural language processing
I bioinformatics and genomics.

We shall not consider these applications in any detail but simply
introduce the basic ideas and questions that Hidden Markov Models
address.
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A Markov model with hidden states
Suppose we have a MC with transition matrix P but that the states i of
the chain are not directly observable. Instead, we suppose that on
visiting any state i at time n there is a randomly chosen output value
or token, Yn, that is observable.

The probability of observing the output token t when in state i is given
by some distribution bi , depending on the state i that is visited.

Thus,
P(Yn = t |Xn = i) = (bi)t

where (bi)t is the t th component of the distribution bi .

For an excellent introduction to HMM, see:

Lawence R. Rabiner
A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition
Proceedings of the IEEE, Vol 77, No 2, February (1988).
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Three central questions
There are many variants of this basic setup but three central
problems are usually addressed.

Definition (Evaluation problem)
Given a sequence y1,y2, . . . ,yn of observed output tokens and the
parameters of the HMM (namely, P, bi and the distribution for the
initial state X0) how do we compute

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn |HMM parameters)

that is, the probability of the observed sequence given the model?

Such problems are solved in practice by the forward algorithm.
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A second problem that may occur in an application is the decoding
problem.

Definition (Decoding problem)
Given an observed sequence of output tokens y1,y2, . . . ,yn and the
full description of the HMM parameters, how do we find the best fitting
corresponding sequence of (hidden) states i1, i2, . . . , in of the MC?

Such problems are solved in practice by a dynamic programming
approach called the Viterbi algorithm.
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The third important problem is the learning problem.

Definition (Learning problem)
Given an observed sequence of output tokens y1,y2, . . . ,yn, how do
we adjust the parameters of the HMM to maximize

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn |HMM parameters)

The observed sequence used to adjust the model parameters is
called a training sequence. Learning problems are crucial in most
applications since they allow us to create the “best” models in real
observed processes.

Iterative procedures, known as the Baum-Welch method, are used to
solve this problem in practice.
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Applications of Markov Chains
These and other applications of Markov Chains are important topics
in a variety of Part II courses, including
I Artificial Intelligence II
I Bioinformatics
I Computer Systems Modelling
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Properties of discrete RVs
RV, X Parameters Im(X) P(X = k) E(X) Var(X) GX (z)

Bernoulli p ∈ [0,1] {0,1} (1−p) if k = 0 or p if k = 1 p p(1−p) (1−p+pz)
Bin(n,p) n ∈ {1,2, . . .} {0,1, . . . ,n}

(n
k
)
pk (1−p)n−k np np(1−p) (1−p+pz)n

p ∈ [0,1]

Geo(p) 0 < p ≤ 1 {1,2, . . .} p(1−p)k−1 1
p

1−p
p2

pz
1−(1−p)z

U(1,n) n ∈ {1,2, . . .} {1,2, . . . ,n} 1
n

n+1
2

n2−1
12

z(1−zn)
n(1−z)

Pois(λ) λ > 0 {0,1, . . .} λk e−λ

k! λ λ eλ(z−1)
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Properties of continuous RVs

RV, X Parameters Im(X ) fX (x) E(X ) Var(X )

U(a,b) a,b ∈ R (a,b) 1
b−a

a+b
2

(b−a)2

12
a < b

Exp(λ ) λ > 0 R+ λe−λx 1
λ

1
λ 2

N(µ,σ2) µ ∈ R R 1√
2πσ2 e−(x−µ)2/(2σ2) µ σ2

σ2 > 0
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