
Lecture 1: Motivation and Overview

Mathematical Methods in Machine Learning

Wojciech Czaja

UMD, Spring 2016

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 1: Motivation and Overview

Outline

1 Lecture 1: Motivation and Overview

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 1: Motivation and Overview

Introduction

There is an abundance of available data. This data is often large,
high-dimensional, noisy, and complex, e.g., geospatial imagery.
Typical problems associated with such data are to cluster,
classify, or segment it; and to detect anomalies or embedded
targets. Regression and dimensionality reduction are other types
of typical examples of problems that we want to deal with.
Our proposed approach to deal with these problems is by
combining techniques from harmonic analysis and machine
learning:

Harmonic Analysis is the branch of mathematics that studies the
representation of functions and signals.
Machine Learning is the branch of computer science concerned
with algorithms that allow machines to infer rules from data.
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Machine Learning

Machine learning has many different faces. We are interested in
these aspects of machine learning which are related to
representation theory. However, machine learning has been
combined with other areas of mathematics.

Statistical machine learning.
Topological machine learning.
Computer science.
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Machine Learning
Another way to classify machine learning is by the type of tasks it
deals with, depending on the nature of the learning (training or
feedback) available to a learning system.

Supervised learning: The computer is presented with example
inputs and their desired outputs, given by a ”teacher”, and the
goal is to learn a general rule that maps inputs to outputs.
Semisupervised learning: Between supervised and
unsupervised learning is semi-supervised learning, where the
teacher gives an incomplete training signal: a training set with
some (often many) of the target outputs missing.
Unsupervised learning: No labels are given to the learning
algorithm, leaving it on its own to find structure in its input.
Unsupervised learning can be a goal in itself (discovering hidden
patterns in data) or a means towards an end (feature learning).
Reinforcement learning: An area of machine learning inspired
by behaviorist psychology, concerned with how software agents
ought to take actions in an environment so as to maximize some
notion of cumulative reward.
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Motivation for Machine Learning - Big Data

“Big Data” refers to the exponential growth data, with many
challenging tasks of analyzing and efficiently finding the important
information that is given in this complex setting.

The roots of big data are in the data storage, database
management, and data analytics for, both, commercial and
non-profit applications.
The integration of many large datasets is a primary source of big
data problems present in the modern scientific and research
environment, as is evident in applications ranging from ‘omics’
data analysis for cancer research, to studies of social networks.
Another source of big data problems are large and
heterogeneous dynamic data sets, such as those arising in the
context of climate change analysis, or for the analysis of network
traffic patterns.
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Big Data Characteristics

In view of the above, big data can be identified by the following:
volume;
heterogeneity;
dynamics.

In addition to the above major characteristics, we can add: ambiguity,
complexity, noise, variability, etc.
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Big Data Example 1

Large Eddy simulation (LES) around an Eppler foil at Re=10,000. A
series of high fieldity LES of the flow around Eppler airfoils has been
conducted to generate a comprehensive data base. Reynolds
numbers vary from 10,000 to 120,000 and the angle of attach varies
from 0 to 20 degrees.
Courtesy of Prof. Elias Balaras (GWU), via US Air Force contract FA9550-12-C-058 (2012): Learning from Massive Data Sets Generated
by Physics Based Simulations
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Big Data Example 2

A simplified case of the previous LES for a 3-dimensional flow over a
dimpled plate.
Courtesy of Prof. Elias Balaras (GWU), via US Air Force contract FA9550-12-C-058 (2012): Learning from Massive Data Sets Generated
by Physics Based Simulations
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Big Data Example Estimation

Let us provide a small numerical estimation:
2,000 x 1,000 x 1,000 = 2 x 109 grid points;
Each grid point characterized by 3 spatial coordinates and 3
velocity components, pressure, plus possibly some other
parameters;
Flow simulation for 200 time steps;
One way to look at it: 2 x 109 points in a space of dimension
1,400;
As an example, think of computing PCA for M points in N
dimensional space. The cost is O(MN2) + O(N3);
In our case this results in a problem with complexity on the order
of 4 x 1015 = 4 petaFLOPs;
Lawrence Livermore National Laboratory’s IBM Sequoia reaches
16 petaFLOPS (16 x 1015 floating point operations per second) -
it was considered to be the fastest computer in 2012, it runs 1.57
million PowerPC cores, costs approx. 250M USD.
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Another Big Data Example

Consider the human genome. First estimates pointed at 100,000
genes. Nowadays this number has been scaled down to
appprox. 45,000.
There are many ways of representing genes. One of the more
popular is by means of base pairs: approx. three billion DNA
base pairs represent human genome.
Alternatively, we could consider gene expressions (think of it as a
function). There are many ways of assembling such expressions,
and they are different for different individuals. Hence resulting in
a much larger data set.
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HA and Big Data to-date

Harmonic analysis ideas have been used in many problems dealing
with large and heterogeneous data. Some relevant examples include:

Multiscale methods
Compressive sensing
Sparse representations
Geometric and graph-based methods
Scattering transforms

Among those listed, multiscale methods are historically the oldest
(though not old) class of approaches. They have been successfully
used in image compression applications. We can view the JPEG
2000 as a prototypical “dimension reduction” attempt for a large data
class.
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Multiscale representations

Multiscale representation (Multiresolution analysis (MRA),
pyramid algorithms) can be described as a class of design
methods in representation theory, where the input is subject to
repeated transformation (filtering) in order to extract features
associated with different scales.
In image processing and computer graphics the concept of
multiscale representations can be traced back to P. Burt and E.
Adelson, and J. Crowley.
In mathematics, it is associated with wavelet theory and MRA as
introduced by Y. Meyer and S. Mallat.
S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE TPAMI, 1989, Vol. 11, pp. 674–693.

Multiscale representations found many applications to image
processing and remote sensing: compression, feature detection,
segmentation, classification, but also in registration and image
fusion.
G. Pajares and J. Cruz, “A wavelet-based image fusion tutorial”, Pattern Recognition, 2004, Vol. 37(9), pp. 1855–1872.
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Filters

In signal processing, a filter is typically understood as a device
or a process that removes from a given signal an unwanted
component or feature.
Originally, electronic filters were entirely analog and passive
and consisted of resistance, inductance and capacitance.
Nowadays, digital filters are much more common. They operate
on signals represented in digital form. The essence of a digital
filter is that it directly implements a mathematical algorithm,
corresponding to the desired filter transfer function.
In practice, a digital filter system often contains an
analog-to-digital and a digital-to-analog converter together with a
microprocessor and some peripheral components (such as
memory to store data). In this talk we shall consider digital
filtering as a signal transform, i.e., a mathematical procedure.
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Filter characteristics

Digital filters can be discrete or continuous.
Digital filters may be linear or nonlinear.
Digital filters may be time-independent or may depend on time.
Digital filters may depend of the Fourier transform, the Laplace
transform, a state-space representation, or any other representation
system.

The filter should have a specific impulse response.
The filter should be causal.
The filter should be stable.
The computational complexity of the filter should be low.
The filter should be hardware or software implementable.
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Example of a filter design

Let {x(n),n ∈ Z} denote the input signal and let {y(n),n ∈ Z} denote
the output. A filter F is a transformation:

F : x 7→ y .

If we assume that the principle of superposition holds, i.e., that the
filter is linear, then combining any two inputs x1 and x2 (with individual
outputs y1 and y2, resp.) as αx1 +βx2, results in an output of the form:

F : αx1 + βx2 7→ αy1 + βy2.

If, in addition, we assume that our filter is time-independent, then the
behavior of the filter does not change with time, i.e., a delayed version
of any input xd (n) = x(n − d), results in an output with a
corresponding delay yd (n) = y(n − d):

F : xd 7→ yd .
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Example of a filter design, cont’d

Let δ denote the unit impulse at the origin (δ(0) = 1 and δ(n) = 0 for
n 6= 0). Let h denote the response of δ (F (δ) = h).
Under the above assumptions, we can now assert that the output of a
general input signal:

x(n) =
∑
k∈Z

x(k)δ(n − k)

takes the form of:

F (x) =
∑
k∈Z

x(k)h(n − k) = x ? h(n).

This is a convolution.
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Example: Gaussian filter

Gaussian filter is a filter whose impulse response is a Gaussian
function, or an approximation to it.
Mathematically, a Gaussian filter modifies the input signal by
convolution with a Gaussian function; this transformation is also
known as the Weierstrass transform.

Source of imagery: Wikipedia
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FIlter Banks

A filter bank is an array (collection) of band-pass filters that splits the
input signal into multiple components, each one carrying a single
frequency sub-band of the original signal.
A complete filter bank consist of the analysis and synthesis side. The
analysis filter bank divides an input signal to different subbands with
different frequency spectrums. The synthesis part reassembles the
different subband signals and generates a reconstruction signal.

F : x 7→ H1(x), . . . ,Hn(x) 7→ G1(H1(x)), . . .Gn(Hn(x)) = F (x)

In filter bank design one often makes use of properties of decimation
(downsampling) and interpolation (expansion).
The filter bank has perfect reconstruction if F (x) = x for all input
signals x . Equivalently, imperfect reconstruction means that the
synthesis bank is the left inverse of the analysis bank, GH = Id .
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Orthogonality and Conjugate Quadrature FIlters

Filter F = (G,H) is orthogonal if the transformation it generates
is orthogonal, i.e., FF T = F T F = Id .
A finitely supported filter F is a Conjugate Quadrature Filter is
a filter that satisfies for every m ∈ Z

2
∑
n∈Z

FnFn+2m = δ(m).

Orthogonal Conjugate Quadrature FIlters are, in mathematical
nomenclature, MRA wavelets.
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Wavelets

We say that a function ψ ∈ L2(R) is an orthonormal wavelet if it can
be used to define a basis, that is a complete orthonormal system, for
the Hilbert space L2(R), of the form

ψj,k (x) = 2j/2ψ(2jx − k),

where j , k ∈ Z. We call these operations dyadic dilations and
translations.
Wavelet transform is an operation of convolving input signals with
the elements of the wavelet basis.
Wavelet transforms can be discrete or continuous. We shall focus on
the latter one.
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Discrete wavelet transform

The first DWT was discovered by Hungarian mathematician
Alfréd Haar in 1909. We now know it as the Haar wavelet ψ s.t.:

ψ(x) =


1 x ∈ [0,0.5)
−1 x ∈ [0.5,1)
0 otherwise

Alfréd Haar, “Zur Theorie der orthogonalen Funktionensysteme”:

Ph.D. Thesis at Georg-August-Universitaet Goettingen 1909; published in Mathematische Annalen 69 (3), pp. 331–371.

The concept of wavelets (derived from a French word ondelette,
meaning ”small wave”) was introduced by Morlet and Grossmann
in the early 1980s. The theory was then developed by Y. Meyer.
The most commonly used set of discrete wavelet transforms was
formulated by the Belgian mathematician Ingrid Daubechies in
1988.
I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Purr Appl. Math.. vol. 41 (1988), pp. 909–996.
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DWT as a filter bank

Example of the analysis stage of 1D DWT up to level 3 decomposition
with low-pass filter (g) and high-pass filter (h). The synthesis stage is
symmetric and is automatically derived from the OCQF conditions.

Source of imagery: Wikipedia
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Advantages of wavelets

The major advantage of wavelets over Fourier techniques in general
is that wavelets are localized in both time and frequency whereas the
standard Fourier transform is only localized in frequency.
The following is an illustration of the frequency domain decomposition
corresponding to the above DWT.

Source of imagery: Wikipedia
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Limitations of traditional wavelet representations

Wavelets provide optimal representations for 1-dimensional
signals in the sense of measuring asymptotic error with N largest
coefficients in wavelet expansion, and are superior to
Fourier-type representations.
However, in dimensions higher than 1, wavelets are known to be
suboptimal for representing objects with curvilinear singularities
(edges), even though they outperform Fourier methods.
D. Donoho et al., “Data compression and harmonic analysis”, IEEE TIT, 1998, Vol. 44, pp. 2435–2476.

A number of techniques have been proposed since the
introduction of wavelets to address this issue, and to find better
description of geometric features in images.
L. Jacques et al., “A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity”,

Signal Processing, 2011, Vol. 91, pp. 2699–2730.

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 1: Motivation and Overview

Sumary

We have generally described the area of machine learning that
will be of interest to us in this lecture.
We have motivated the need for machine learning using the
concept of Big Data.
We have given a brief overview of traditional multiscale/wavelet
techniques used for data compression.
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