Mathematical Methods

 in OrigamiUniversity of Tokyo, Komaba
Day 2 Slides, Dec. 17, 2015
Thomas C. Hull, Western New England University

Folding Exercise

Mackawa's Theorem: Let v be a vertex in a flat origami crease pattern. Let M and V be the number of mountain and valley creases at v, respectively. Then $\mathrm{M}-\mathrm{V}= \pm 2$.

Proof: Fold our vertex flat and cut it off, to reveal a polygonal cross-section.

Mackawa's Theorem: Let v be a vertex in a flat origami crease pattern. Let M and V be the number of mountain and valley creases at v, respectively. Then $\mathrm{M}-\mathrm{V}= \pm 2$.

Proof: Imagine a monorail train traveling clockwise around the cross-section.

Mackawa's Theorem: Let v be a vertex in a flat origami crease pattern. Let M and V be the number of mountain and valley creases at v, respectively. Then $\mathrm{M}-\mathrm{V}= \pm 2$.

Proof: Imagine a monorail train traveling clockwise around the cross-section.
Every time it comes to a $M \rightarrow$ rotates by 180° Every time it comes to a $V \rightarrow$ rotates by -180°

Mackawa's Theorem: Let v be a vertex in a flat origami crease pattern. Let M and V be the number of mountain and valley creases at v, respectively. Then $M-V= \pm 2$.

Proof: So we have...

$$
180 M-180 V=360^{\circ} \text { (one full circle turn) }
$$

So $M-V=2$.

Corollary: Every vertex in a flat origami crease pattern has even degree!
(That is, an even number of creases.)
Proof: number of creases $=M+V$

$$
\begin{aligned}
& =M-V+V+V \\
& = \pm 2+2 V \\
& =2(V \pm 1)=\text { an even number! }
\end{aligned}
$$

Corollary: Every flat origami crease pattern is two-face colorable!

Corollary: Every flat origami crease pattern is two-face colorable!
A more rigorous proof:
Pick any face f of the crease pattern, and let f^{\prime} be any other face. Let $\mu: C \rightarrow\{-\pi, \pi\}$ be our MV-assignment. Draw any curve γ from a point in f to a point in f^{\prime} that crosses the creases (in order) l_{1}, \ldots, l_{k}. Now let

$$
Q\left(f^{\prime}\right)=\frac{1}{\pi} \sum_{i=1}^{k} \mu\left(l_{i}\right) \bmod 2
$$

(This just = 0 if γ crosses an even \# of creases and $=1$ if it crosses an odd \# of creases.)

Corollary: Every flat origami crease pattern is two-face colorable!
A more rigorous proof:
Pick any face f of the crease pattern, and let f^{\prime} be any other face. Let $\mu: C \rightarrow\{-\pi, \pi\}$ be our MV-assignment. Draw any curve γ from a point in f to a point in f^{\prime} that crosses the creases (in order) l_{1}, \ldots, l_{k}. Now let

$$
Q\left(f^{\prime}\right)=\frac{1}{\pi} \sum_{i=1}^{k} \mu\left(l_{i}\right) \quad \bmod 2
$$

Then our two coloring is:
Color face f^{\prime} grey if $Q\left(f^{\prime}\right)=0$ and white if $Q\left(f^{\prime}\right)=1$

Kawasaki's Theorem: Let v be a vertex in an origami crease pattern. Then v folds flat if and only if the sum of the alternate angles about v is 180°.

Proof of $=$:

So... $\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}=0$
add to this $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=360^{\circ}$ and you get $2 \alpha_{1}+2 \alpha_{3}=360^{\circ}$ or $\alpha_{1}+\alpha_{3}=180^{\circ}$

Kawasaki's Theorem: Let v be a vertex in an origami crease pattern. Then v folds flat if and only if the sum of the alternate angles about v is 180°.

Note that every folded crease is reflecting

Proof of \Rightarrow :

 part of the paper.

Let $R\left(l_{i}\right)=$ reflecting the plane about I_{i}.
Then $R\left(I_{1}\right) R\left(I_{2}\right) R\left(I_{3}\right) R\left(I_{4}\right)=I$.
The product of 2 reflections is a rotation by twice the angle in between them...

$$
\begin{gathered}
\text { So... } \quad 2 \alpha_{1}+2 \alpha_{3}=360^{\circ} \\
\text { or } \alpha_{1}+\alpha_{3}=180^{\circ}
\end{gathered}
$$

Flat vertex folds

- Kawasaki's Theorem: A collection of creases meeting at a vertex are flatfoldable if and only if the sum of the alternate angles around the vertex is π.

Proof of \Leftarrow : Cut along one crease and make the others alternate MVMVMV...

since $\mathbf{a}_{1}-\mathbf{a}_{2}+\mathbf{a}_{3}-\mathbf{a}_{4}+\ldots-\mathbf{a}_{2 n}=0$, the cut edges will line up after we fold the creases. So glue them back together! Uh ... unless there's stuff in the way...

Flat vertex folds

- Kawasaki's Theorem: A collection of creases meeting at a vertex are flatfoldable if and only if the sum of the alternate angles around the vertex is π.

Proof of \Leftarrow : Cut along one crease and make the others alternate MVMVMV...

If layers of paper are in the way, then reverse the right-most crease and then glue. ©

Generalizing ... can cause problems

- Kawasaki's Theorem (sufficiency part) does not generalize to larger crease patterns.

Determining if a given crease pattern is flat-foldable is NP-hard (Bern \& Hayes, 1996)

Generalizing ... can be cool

- Justin's Theorem: Given any flat origami model, let R be a simple, closed, vertex-avoiding curve drawn on the crease pattern that crosses creases c_{1}, $c_{2}, c_{3}, \ldots, c_{2 n}$, in order. Let $a_{1}, a_{2}, \ldots, a_{2 n}$ be the angles between these crease lines (determined consistently), and let M and V be the number of mountain and valley creases among $\mathrm{c}_{1}, \ldots, \mathrm{c}_{2 \mathrm{n}}$. Then
$a_{1}+a_{3}+\ldots+a_{2 n-1}=a_{2}+a_{4}+\ldots+a_{2 n}=\frac{M-V}{2} \pi(\bmod 2 \pi)$
- Example: The Flapping Bird Here $a_{1}+a_{3}+\ldots+a_{9}=180^{\circ}$
and so $\frac{M-V}{2}=1(\bmod 2)$

For the flapping bird, we have $\mathrm{M}=8, \mathrm{~V}=2$ for this curve, so $\mathrm{M}-\mathrm{V}=6$, which works.

Generalizing ... to Folding Vertex Cones!

- If cone angle $\mathrm{A} \leq 2 \pi$, then Kawasaki holds with $a_{1}+a_{3}+\ldots+a_{2 n-1}=$ $a_{2}+a_{4}+\ldots+a_{2 n}=A / 2$ and Maekawa still hods.

- If cone angle $A>2 \pi$, then both Kawasaki and Maekawa can fail!

Generalizing ... to Folding Vertex Cones!

- Let C_{A} denote a cone with cone angle A .

- Consider a flat vertex fold to be a mapping between two cones.

$$
\mu: \mathrm{C}_{\mathrm{A}} \longrightarrow \mathrm{C}_{\mathrm{B}}
$$

- If $A=2 \pi$, then this is just folding paper into a cone.

- μ can be one of two types, determined by the alternating sum of the angles: If $a_{1}-a_{2}+a_{3}-\ldots-a_{2 n}=0$ then the image of μ is a sector of a disc. (μ is a pointy map)
If $a_{1}-a_{2}+a_{3}-\ldots-a_{2 n}=B$ then the image of μ is another cone with cone angle $B<A$. (μ is a cone map, or a folded disc)

Justin's Theorem tells us that $\mathrm{M}-\mathrm{V}$ also captures this information, depending on whether $(\mathrm{M}-\mathrm{V}) / 2=0$ or $1(\bmod 2)$ around a closed curve about the vertex.

Generalizing ... to Folding Vertex Cones!

- Let C_{A} denote a cone with cone angle A .

- Consider a flat vertex fold to be a mapping between two cones.

$$
\mu: \mathrm{C}_{\mathrm{A}} \longrightarrow \mathrm{C}_{\mathrm{B}}
$$

- If $\mathrm{A}=2 \pi$, then this is just folding paper into a cone.

- μ can be one of two types, pointy map or cone map.
- So folding hyperbolic paper to a flat disk is not really violating Maekawa or Kawasaki, it's just a map from one cone (disc) to another.

Generalizing ... to Folding Cones?

- What if we consider "cone folds" with many vertices in the crease pattern?
- For example, should the the following tessellation be considered a "flat origami"?
- If so, how far do we go?

Generalizing pointy and cone maps?

- Given a multiple-vertex flat fold μ : $\mathrm{C}_{2 \pi} \longrightarrow \mathrm{C}_{2 \pi}$ Let R be a simple, closed, vertex-avoiding curve drawn in the crease pattern.

Square Twist:

Along $R, \frac{M-V}{2}=0(\bmod 2)$
This behaves like a cone/disc map.

Crane: Along R, $\mathrm{M}=13, \mathrm{~V}=3$ Along $R, \frac{M-V}{2}=1(\bmod 2)$

This behaves like a pointy map.

But wait ... how do we define flat origami?

A crease pattern is a plane graph embedding $G=(V, E, F)$ on a closed region P (which we may assume is simply connected).

A flat origami is a crease pattern (P, G) together with

- a map $\mu: \mathrm{P} \longrightarrow \mathrm{S}$ where S is a zero-curvature surface (the fold map)
\cdot a map $L: F \longrightarrow \mathbb{N}$ indicating the layer order of the faces (open polygons)
- a map eg : $\mathrm{E} \longrightarrow \mathbb{N} \times \mathbb{N}$ indicating the layers each edge straddles (the glueing map),
such that
(i) μ is continuous and $\mu \mid f$ is an isometry for each f in F.
(ii) The image $\mu(P)$ together with L and eg do not force Justin's crossing conditions:

But wait ... how do we define flat origami?

- Example: Our impossible, 2-vertex fold from before:

Why can't this fold flat?

Let's look at μ with a possible layering assignment:

But wait ... how do we define flat origami?

- Example: Our impossible, 2-vertex fold from before:

Why can't this fold flat?

Let's look at μ with a possible layering assignment:

Other layering orders are possible, but all will force a non-crossing condition to be violated at some edge.

Another Activity

Make these creases. How many ways can it fold flat?
That is, how many different MV assignments can you make?

What about other vertices of degree 4?

Degree 4 flat vertex folds

$$
C(v)=4 \quad C(v)=6 \quad C(v)=8
$$

where $C(v)=$ the number of valid MV assignments the vertex v can have.
Think of v as a vector of angles, $v=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}\right)$

Degree 4 flat vertex folds

$$
C(v)=4 \quad C(v)=6 \quad C(v)=8
$$

Theorem: For any flat-foldable vertex $v=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}\right)$,

$$
2^{n} \leq C\left(\alpha_{1}, \ldots \alpha_{2 n}\right) \leq 2\binom{2 n}{n-1}
$$

$$
2^{n} \leq C\left(\alpha_{1}, \ldots \alpha_{2 n}\right) \leq 2\binom{2 n}{n-1}
$$

Question: What values can $C\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}\right)$ attain between these bounds?
$C\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in\{4,6,8\}$
$C\left(\alpha_{1}, \ldots, \alpha_{\sigma}\right) \in\{8,12,16,18,20,24,30\}$
$C\left(\alpha_{1}, \ldots, \alpha_{8}\right) \in\{16,24,32,36,40,48,54,60,70$, $72,80,90,112\}$

How do we compute these numbers? With recursion!

Equal angles in a row, surrounded by larger angles.

5 equal angles use 6 creases needing 3 Ms and 3 Vs .
Here we have $\binom{6}{3}$ ways to fold those angles flat.

\qquad

In general, suppose we have a sequence of k equal angles in a row: $\alpha_{i}=\alpha_{i+1}=\ldots=\alpha_{i+k-1}, \alpha_{i-1}>\alpha_{i}, \alpha_{i+k}>\alpha_{i+k-1}$
Then if k is odd we have

$$
C\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)=\binom{k+1}{\frac{k+1}{2}} C\left(\alpha_{1}, \ldots, \alpha_{i-2}, \alpha_{i-1}-\alpha_{i}+\alpha_{i+k}, \alpha_{i+k+1}, \ldots, \alpha_{2 n}\right)
$$

and if k is even then

$$
C\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)=\binom{k+1}{\frac{k}{2}} C\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+k}, \ldots, \alpha_{2 n}\right)
$$

Let $A_{n}=$ the number of different values that $C\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)$ can attain.

$$
\begin{aligned}
& A_{n}: 1,3,7,13,24,39,62,97,147,215,312,440, \\
& \quad 617,8511161, \ldots
\end{aligned}
$$

sequence A156209

This sequence is nit in the Online Encyclopedia of Integer Sequences.

Finding a closed formula for A_{n} might be hopeless, since we don't know the prime factorizations of
$\binom{2 n}{n}$
and

$$
\binom{2 n+1}{n}
$$

Recursive Tree for $C\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)$

Recursive Tree for $C\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)$

Recursive Tree for $C\left(\alpha_{1}, \ldots, \alpha_{2 n}\right)$

Another counting question

- Some physicists and physical chemists are very interested in polymer membrane folding.

Source: IBM Almaden Research Center

- Key question: Given a regular lattice in the plane, how many different flat-foldable crease patterns can you make using only the lattice for crease lines?

Another counting question

- Key question: Given a regular lattice in the plane, how many different flat-foldable crease patterns can you make using only the lattice for crease lines?

Another counting question

- Activity: Let's fold a hexagon twist!

Another counting question

- Activity: Let's fold a hexagon twist!

Another counting question

- Activity: Let's fold a hexagon twist!

Another counting question

- Grünbaum coloring of the triangle lattice

Another counting question

- Grünbaum coloring of the triangle lattice

Another counting question

- Grünbaum coloring of the triangle lattice

Every triangle must have all three colors around it. This coloring shown is the canonical Grünbaum coloring.

Another counting question

- Bijection!!!! (due to Philippe Di Francesco)

How? Take a flat-folded crease pattern of the triangle lattice. Overlay the canonical Grünbaum coloring on the folded lattice. Then unfold it, and let the colors follow the creases.

When unfolding, triangles are preserved, so it'll still be a valid Grünbaum.

Another counting question

- But what about the other direction? (Do Grünbaum colorings determine a unique flatfoldable crease pattern of the triangle lattice???)
- Activity! Find the Grünbaum coloring of the triangle lattice that generates the hexagon twist you made. Start with the following canonical coloring in the center hexagon:

Another counting question

- But what about the other direction? (Do Grünbaum colorings determine a unique flatfoldable crease pattern of the triangle lattice???)
- Activity! Find the Grünbaum coloring of the triangle lattice that generates the hexagon twist you made. Start with the following canonical coloring in the center hexagon:

Another counting question

- With color?

Another counting question

- With color?

Another counting question

- So what?
- Grünbaum colorings of the triangle lattice $=3$-edge colorings of the hexagonal lattice. (by taking the dual)
- Physicists already proved that if a hexagonal lattice has L vertices (for L LARGE), then the number of proper 3-edge colorings of the lattice is

$$
\approx(1.20872 \ldots)^{L}
$$

where

$$
1.20872 \ldots=\sqrt{\frac{2^{2}}{1 \cdot 3} \frac{5^{2}}{4 \cdot 6} \frac{8^{2}}{7 \cdot 9} \cdots}
$$

Thus the number of ways one can fold a big triangle lattice with L triangles is $\approx(1.20872 \ldots)^{L}$

