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Folding Exercise

a point



Maekawa’s Theorem: Let v be a vertex in a flat 
origami crease pattern.  Let M and V be the 
number of mountain and valley creases at v, 
respectively.  Then  M–V = ±2.

Proof: Fold our vertex flat and cut it off, to reveal 
a polygonal cross-section.

cut a polygon



Maekawa’s Theorem: Let v be a vertex in a flat 
origami crease pattern.  Let M and V be the 
number of mountain and valley creases at v, 
respectively.  Then  M–V = ±2.

Proof: Imagine a monorail train traveling clockwise 
around the cross-section.



Maekawa’s Theorem: Let v be a vertex in a flat 
origami crease pattern.  Let M and V be the 
number of mountain and valley creases at v, 
respectively.  Then  M–V = ±2.

Proof: Imagine a monorail train traveling clockwise 
around the cross-section.!
Every time it comes to a M -> rotates by 180°!
Every time it comes to a  V -> rotates by -180°

+180°
-180°

+180°

+180°



Maekawa’s Theorem: Let v be a vertex in a flat 
origami crease pattern.  Let M and V be the 
number of mountain and valley creases at v, 
respectively.  Then  M–V = ±2.

Proof: So we have...!

    180 M - 180 V = 360° (one full circle turn)!

              So  M - V = 2.



Corollary: Every vertex in a flat origami crease 
pattern has even degree!!
(That is, an even number of creases.)

Proof:   number of creases = M + V!
= M - V + V + V!
=   ±2   + 2V!
= 2 (V ± 1) = an even number!



Corollary: Every flat origami crease pattern is 
two-face colorable!



Corollary: Every flat origami crease pattern is 
two-face colorable!!
A more rigorous proof:!
Pick any face    of the crease pattern, and let!
be any other face.  Let                   be our 
MV-assignment.  Draw any curve      from a point 
in      to a point in     that crosses the creases 
(in order)           .    Now let!

(This just = 0 if     crosses an even # of creases 
and = 1 if it crosses an odd # of creases.)



Corollary: Every flat origami crease pattern is 
two-face colorable!!
A more rigorous proof:!
Pick any face    of the crease pattern, and let!
be any other face.  Let                   be our 
MV-assignment.  Draw any curve      from a point 
in      to a point in     that crosses the creases 
(in order)           .    Now let!

Then our two coloring is:!
Color face      grey if             and white if         
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α3

α4

Kawasaki’s Theorem: Let v be a vertex in an origami crease 
pattern.  Then v folds flat if and only if the sum of the alternate 
angles about v is 180°.

Proof of ⇒: 

α1

So...  α1 – α2 + α3 – α4 = 0!
add to this α1 + α2 + α3 + α4 = 360°!

and you get 2α1 + 2α3 = 360°!
or α1 + α3 = 180°!

–α2

+α3

–α4
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Kawasaki’s Theorem: Let v be a vertex in an origami crease 
pattern.  Then v folds flat if and only if the sum of the alternate 
angles about v is 180°.

Proof of ⇒: 

So...    2α1 + 2α3 = 360°!
or α1 + α3 = 180°!

Note that every folded crease is reflecting!
part of the paper.!

Let R(li) = reflecting the plane about li.!
Then R(l1)R(l2)R(l3)R(l4) = I.!

The product of 2 reflections is a rotation!
by twice the angle in between them...



Flat vertex folds

• Kawasaki’s Theorem:  A collection of creases meeting at a vertex are flat-
foldable if and only if the sum of the alternate angles around the vertex is  π.

Proof of      :  Cut along one crease and make the others alternate MVMVMV… 
 
 
 
 
 
 
 
since α1 - α2 + α3 - α4 + … - α2n = 0, the cut edges will line up after we fold the 
creases.  So glue them back together!   Uh … unless there’s stuff in the way…

l1

l2

l3 l4

l5

l6
l7

l8

cut

l5glue back
together



Flat vertex folds

• Kawasaki’s Theorem:  A collection of creases meeting at a vertex are flat-
foldable if and only if the sum of the alternate angles around the vertex is  π.

Proof of      :  Cut along one crease and make the others alternate MVMVMV… 
 
 
 
 
 
 
 
If layers of paper are in the way, then reverse the right-most crease and then 
glue.  



Generalizing ... can cause problems

• Kawasaki’s Theorem (sufficiency part) does not generalize to larger crease 
patterns.

!"!#

!$

!

Determining if a given crease pattern is flat-foldable is NP-hard (Bern & Hayes, 1996)



Generalizing ... can be cool

• Justin’s Theorem:  Given any flat origami model, let R be a simple, closed, 
vertex-avoiding curve drawn on the crease pattern that crosses creases c1, 
c2, c3, ..., c2n, in order.  Let α1, α2, ..., α2n be the angles between these 
crease lines (determined consistently), and let M and V be the number of 
mountain and valley creases among c1, ..., c2n.  Then 
α1 + α3 + ... + α2n-1  =  α2 + α4 + ... + α2n  = –––––– π (mod 2π)   

• Example: The Flapping Bird 
Here α1 + α3 + ... + α9  = 180° 

and so –––––– = 1 (mod 2) 

For the flapping bird, we have M = 8, V = 2 for  
this curve, so M – V = 6, which works.   !"
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Generalizing ... to Folding Vertex Cones!

• If cone angle A ≤ 2π, then Kawasaki holds with 
α1 + α3 + ... + α2n-1 =  
α2 + α4 + ... + α2n = A / 2  
and Maekawa still hods.


• If cone angle A > 2π, then both Kawasaki and Maekawa can fail! 

Here α1 – α2 + α3 – ... – α2n = 2π and

M – V = 0.

Hyperbolic paper!



Generalizing ... to Folding Vertex Cones!

• Let CA denote a cone with cone angle A.


• Consider a flat vertex fold to be a mapping between two cones. 
                                       µ : CA       CB  


• If A = 2π, then this is just folding paper into a cone.


• µ can be one of two types, determined by the alternating sum of the angles:


If α1 – α2 + α3 – ... – α2n = 0 then the image of µ is a sector of a disc.

                                                                                             (µ is a pointy map)

If α1 – α2 + α3 – ... – α2n = B then the image of µ is another cone with cone 
angle B < A.  (µ is a cone map, or a folded disc)


Justin’s Theorem tells us that M – V also captures this information, depending on 
whether ( M – V )/2 = 0 or 1 (mod 2) around a closed curve about the vertex.


!



Generalizing ... to Folding Vertex Cones!

• Let CA denote a cone with cone angle A.


• Consider a flat vertex fold to be a mapping between two cones. 
                                       µ : CA       CB  


• If A = 2π, then this is just folding paper into a cone.


• µ can be one of two types, pointy map or cone map.


• So folding hyperbolic paper to a flat disk is not really violating Maekawa or 
Kawasaki, it’s just a map from one cone (disc) to another.


!



Generalizing ... to Folding Cones?

• What if we consider “cone folds” with many vertices in the crease pattern?


• For example, should the the following 
tessellation be considered a 
“flat origami”?


• If so, how far do we go?



Generalizing pointy and cone maps?

• Given a multiple-vertex flat fold µ : C2π      C2π  
Let R be a simple, closed, vertex-avoiding curve drawn in the crease pattern.


Along R, –––––– = 0 (mod 2)


This behaves like a cone/disc

 map.

M – V

2

Square Twist:

Along R, –––––– = 1 (mod 2)


This behaves like a pointy map.

M – V

2

Crane:  Along R, M=13,  V=3



But wait ... how do we  define   flat origami?

A crease pattern is a plane graph embedding G = (V, E, F) on a closed region 
P (which we may assume is simply connected). 
 
A flat origami is a crease pattern (P,G) together with  
• a map µ : P        S    where S is a zero-curvature surface (the fold map) 
• a map L : F               indicating the layer order of the faces (open polygons) 
• a map eg : E             x      indicating the layers each edge straddles (the 
glueing map), 
such that 
(i) µ is continuous and µ|f is an isometry for each f in F. 
(ii) The image µ(P) together with L and  eg  do not force Justin’s crossing 
conditions:



But wait ... how do we  define   flat origami?

• Example: Our impossible, 2-vertex fold from before: 

Why can’t this fold flat? 

Let’s look at µ with a possible layering assignment:

!

Out[124]=



But wait ... how do we  define   flat origami?

• Example: Our impossible, 2-vertex fold from before: 

Why can’t this fold flat? 

Let’s look at µ with a possible layering assignment:

!

Other layering orders are possible, but all will force a non-crossing condition to 

be violated at some edge.

Out[132]=



Another Activity 

Make these creases.!
How many ways can it fold 
flat?  !
That is, how many different 
MV assignments can you make?

What about other vertices of degree 4?



Degree 4 flat vertex folds

C(v) = 4 C(v) = 6 C(v) = 8

where C(v) = the number of valid MV assignments!
the vertex v can have.  !
Think of v as a vector of angles, v= (α1, α2, ..., α2n)  



Degree 4 flat vertex folds

C(v) = 4 C(v) = 6 C(v) = 8
Theorem:  For any flat-foldable vertex v= (α1, α2, ..., α2n),



Question:  What values can C(α1, α2, ..., α2n) attain 
between these bounds?!

C(α1, ... , α4) ∈ {4, 6, 8}!

C(α1, ... , α6) ∈ {8, 12, 16, 18, 20, 24, 30}!

C(α1, ... , α8) ∈ {16, 24, 32, 36, 40, 48, 54, 60, 70,!
    72, 80, 90, 112}



How do we compute these numbers?  !
With recursion!!
 

Equal angles in a row, surrounded by larger angles.!

5 equal angles use 6 creases needing 3Ms and 3Vs.!

Here we have        ways to fold those angles flat. 6!
3( )



In general, suppose we have a sequence of k equal 
angles in a row: αi = αi+1= ... = αi+k-1, αi-1> αi , αi+k> αi+k-1 !
Then if k is odd we have!

and if k is even then!
 !
 



(  )

Let An = the number of different values that!
C(α1, ... , α2n) can attain.!

An : 1, 3, 7, 13, 24, 39, 62, 97, 147, 215, 312, 440, !
     617, 851 1161, ...!

This sequence is not in the Online Encyclopedia of 
Integer Sequences.!

Finding a closed formula for An might be hopeless, 
since we don’t know the prime factorizations of!

            and             .

sequence A156209

2n!
n

2n+1!
n(  )



Recursive Tree for C(α1, ... , α2n)

2

4 6 8



Recursive Tree for C(α1, ... , α2n)

2

4 6 8

8 12 1618 20 24 30



Recursive Tree for C(α1, ... , α2n)

2

4 6 8

8 12 1620 24 30

16 24 3236 40 4854 6070 72 80 90 112

18



Another counting question

• Some physicists and physical  
chemists are very interested in  
polymer membrane folding. 

• Key question:  Given a regular lattice in the  
plane, how many different flat-foldable  
crease patterns can you make using  
only the lattice for crease lines?

Source: IBM Almaden Research Center



Another counting question

• Key question:  Given a regular lattice in the  
plane, how many different flat-foldable  
crease patterns can you make using  
only the lattice for crease lines?



Another counting question

• Activity:  Let’s fold a hexagon twist!
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Another counting question

• Grünbaum coloring of the triangle lattice
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Another counting question

• Grünbaum coloring of the triangle lattice 

Every triangle must have all three colors around it.  This coloring shown is the canonical 
Grünbaum coloring.

1 1 1 1
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Another counting question

• Bijection!!!!  (due to Philippe Di Francesco) 

How?  Take a flat-folded crease pattern of the triangle lattice.  
           Overlay the canonical Grünbaum coloring on the folded lattice. 
           Then unfold it, and let the colors follow the creases. 
 
           When unfolding, triangles are preserved, so it’ll still be a valid Grünbaum.

Different Grünbaum colorings

of the triangle lattice

Different flat-foldable 

crease patterns


of the triangle lattice



Another counting question

• But what about the other direction?  (Do Grünbaum colorings determine a unique flat-
foldable crease pattern of the triangle lattice???)


• Activity!   Find the Grünbaum coloring of the triangle lattice that generates the hexagon 
twist you made.  Start with the following canonical coloring in the center hexagon: 
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Another counting question

• But what about the other direction?  (Do Grünbaum colorings determine a unique flat-
foldable crease pattern of the triangle lattice???)


• Activity!   Find the Grünbaum coloring of the triangle lattice that generates the hexagon 
twist you made.  Start with the following canonical coloring in the center hexagon: 
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Another counting question

• With color? 
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Another counting question

• With color? 
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Another counting question

• So what?


• Grünbaum colorings of the triangle lattice = 3-edge colorings of the hexagonal lattice. 
(by taking the dual)


• Physicists already proved that if a hexagonal lattice has       vertices (for       LARGE), 
then the number of proper 3-edge colorings of the lattice is  

where 

Thus the number of ways one can fold a big triangle lattice with      triangles is


