MATHEMATICAL METHODS UNITS 3 \& 4

Trial examination 2

2016
Reading time: $\mathbf{1 5}$ minutes
Writing time: 2 hours

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
B	5	5	60

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 26 pages with a detachable sheet of miscellaneous formulas.
- Answer sheet for multiple-choice questions.

Instructions

- Detach the formula sheet.
- Write your name in the space provided above on this page.
- Write your name on your answer sheet for multiple-choice,
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book

Students are NOT permitted to bring mobile phones and/or any other unauthorized electronic devices into the examination room.

SECTION A

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct for the question.
A correct answer scores 1 , an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any questions.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

The range of the function $f:[-2,4] \rightarrow R, f(x)=(5-x)(x+1)$ is
A. $[-7,5]$
B. $(-\infty, 9]$
C. $[-7, \infty)$
D. $[-2,4]$
E. $[-7,9]$

Question 2

The function $f:\left[\frac{\pi}{6}, a\right] \rightarrow R, f(x)=2 \sin (3 x)$ will have an inverse if
A. $a \leq \frac{\pi}{3}$
B. $\quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$
C. $\quad a \geq \frac{\pi}{3}$
D. $\quad a \leq \frac{\pi}{3}$
E. $\quad \frac{\pi}{6}<x \leq \frac{\pi}{3}$

Question 3

The simultaneous linear equations $k x-4 y=3$ and $4 x-k y=7-k$ have an infinite set of solutions for
A. $k \in R \backslash\{-4,4\}$
B. $k=4$
C. $k \in R \backslash\{4\}$
D. $k=-4$
E. $k=-4$ and $k=4$

Question 4

If $x+a$ is a factor of $3 a^{3}-8 x^{2}-2 a x$ where $a \in R \backslash\{0\}$, then the value of a is
A. $\frac{10}{3}$
B. -2
C. $\frac{10}{3}$
D. 2
E. 3

Question 5

A cosine function f, has an amplitude of 3 and a period of 6 . The rule for f could be
A. $f(x)=3 \cos \left(\frac{\pi x}{6}\right)$
B. $f(x)=3 \cos \left(\frac{\pi x}{3}\right)$
C. $f(x)=6 \cos \left(\frac{\pi x}{2}\right)$
D. $f(x)=3 \cos (6 \pi x)$
E. $f(x)=3 \cos (3 \pi x)$

Question 6

The transformation $T: R^{2} \rightarrow R^{2}$ with rule
$T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{c}2 \\ -1\end{array}\right]$
maps the line with equation $2 x-y=5$ onto the line with equation.
A. $3 x+y=10$
B. $3 x-y=10$
C. $3 x+y=-10$
D. $-3 x+y=10$
E. $3 x-y=-10$

Question 7

Which one of the following functions satisfies the functional equation

$$
f(x-y)=\frac{f(x)}{f(y)}
$$

where x and y are non-zero real numbers?
A. $f(x)=\cos (x)$
B. $f(x)=x$
C. $f(x)=e^{2 x}$
D. $f(x)=\ln (x)$
E. $f(x)=\sqrt{x}$

Question 8

If $\log _{e}(x)=\log _{e}(x-2)+b$ then x is equal to
A. $\frac{e^{b}}{2-e^{b}}$
B. $\frac{2}{e^{b}-1}$
C. $\log _{e} \frac{x}{x-2}$
D. $\frac{2}{1-e^{b}}$
E. $\frac{2}{1-e^{-b}}$

Question 9

The graph of the quadratic function $y=f(x)$ is shown below.

Which one of the following statements is true?
A. $\quad f^{\prime}(b)<0$
B. $\quad f^{\prime}(-a)>0$
C. $\quad f(0)>0$
D. $\quad f(b)>0$
E. $\quad f^{\prime}(c)>0$

Question 10

If X is a random variable such that $\operatorname{Pr}(X>3)=m$ and $\operatorname{Pr}(X>7)=n$ then $\operatorname{Pr}(X<3 \mid X<7)$ is
A. $\frac{n-1}{m-1}$
B. $\frac{m}{n}$
C. $\frac{m}{m+n}$
D. $\frac{m-1}{n-1}$
E. $\frac{1}{m-n}$

Question 11

The graph of a quadratic function is shown below.

The average rate of change of y against x between $x=-a$ and $x=0$ is more than the instantaneous rate of change of y against x at
A. $x=-a$
B. $\quad x=0$
C. $x=\frac{a}{3}$ and $x=\frac{a}{2}$
D. $x=\frac{a}{2}$ and $x=a$
E. $x=a$

Question 12

Let $f: R \rightarrow R$ be a differentiable function.
Then for all $x \in R$, the derivative of $f\left(e^{2 x-1}\right)$ with respect to x is equal to
A. $\quad 2 e^{2 x-1} f^{\prime}(x)$
B. $\quad 2 e^{2 x-1} f^{\prime}\left(e^{2 x-1}\right)$
C. $2 f^{\prime}\left(e^{2 x-1}\right)$
D. $(2 x-1) e^{2 x-1}$
E. $f^{\prime}\left(e^{2 x}\right)$

Question 13

Part of the function $f(x)=\sin (2 x)$ is shown below. The area bounded by the graph of f, the x-axis and the lines $x=0$ and $\frac{\pi}{4}$ can be approximated by the area of the four shaded rectangles. The area of the rectangles is approximately equal to

A. $\frac{\pi}{16}$
B. $\quad 0.5917$
C. 3.02
D. 0.395
E. 0.188

Question 14

The random variable X has a normal distribution with mean 9 and standard deviation 3 . If Z has the standard normal distribution then the probability that X is greater than 15 is equal to
A. $\quad \operatorname{Pr}(Z>-2)$
B. $\quad 1-\operatorname{Pr}(Z<-2)$
C. $\operatorname{Pr}(Z<2)$
D. $1-\operatorname{Pr}(Z>2)$
E. $1-\operatorname{Pr}(Z<2)$

Question 15

Over a two-week period Kristy recorded the number of hours that she spent studying.

Number of hours spent each day studying	0	1	2	3	4	5
Proportion of days on which x hours were spent studying	$\frac{1}{14}$	$\frac{1}{14}$	$\frac{3}{14}$	$\frac{1}{14}$	$\frac{3}{14}$	$\frac{5}{14}$

During the two-week period the mean number of hours each day that Kristy spent studying was:
A. $\frac{13}{7}$
B. $\frac{25}{14}$
C. $\frac{23}{14}$
D. $\frac{13}{14}$
E. $\frac{47}{14}$

Question 16

It is known that $\int_{0}^{5} f(x) d x=7$. The value $\int_{2}^{7} f(x-2)+3 d x$
A. 12
B. 10
C. 22
D. 15
E. 18

Question 17

The continuous random variable X has a probability density function given by:

$$
f(x)= \begin{cases}\frac{3 \sqrt{x}}{2}, & \text { for } 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

The value of k such that $\operatorname{Pr}(X>k)=\frac{19}{27}$.
A. $\frac{3}{2}$
B. $\frac{4}{9}$
C. $\frac{1}{4}$
D. $\frac{9}{4}$
E. $\frac{2}{3}$

Question 18

If the average value of the function $y=x^{3}$ over the interval $[1, b]$ is 10 the value of b is
A. $41^{\frac{1}{4}}$
B. 0.025
C. $\quad 3.43$
D. 1
E. 3

Question 19

The graph of the function f with rule $y=f(x)$ is shown below:

The total area bounced by the curve $y=f(x)$, the x-axis on the interval $[-a, c]$ is given by:
A. $\int_{0}^{a} f(x) d x+\int_{0}^{c} f(x) d x$
B. $\int_{a}^{c} f(x) d x$
C. $\int_{-a}^{0} f(x) d x-\int_{0}^{c} f(x) d x$
D. $\quad \int_{0}^{c} f(x) d x-\int_{a}^{0} f(x) d x$
E. $\quad \int_{0}^{-a} f(x) d x+\int_{0}^{c} f(x) d x$

Question 20

Leonie regurlarly attends boxing classes at her gym. If she attends a boxing class on a particular day, the probability that she attends one the next day is 0.7 . If she does not attend a boxing class one day the probability that she attends one the next day is 0.9 . If she attends a boxing class on Monday the probability that she attends a boxing class on Wednesday is
A. 0.733
B. 0.76
C. 0.559
D. 0.21
E. 0.49

SECTION B

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (6 marks)
The graph of $f(x)=(x+1)(x-2)(x-3) ; 0 \leq x \leq 2$ is shown in the diagram below

The rectangle OABC is inscribed in the region bounded by the graph of $f(x)=(x+1)(x-2)(x-3)$, the x-axis and y-axis.
a. Show that the area, A of the rectangle can be written as

$$
A=a(a+1)(a-2)(a-3)
$$

1 mark
\qquad
\qquad
\qquad
\qquad
b. Determine an appropriate domain for A.
\qquad
\qquad
\qquad
\qquad
SECTION B - Question 1 - continued
c. Find the derivative of A.
\qquad
\qquad
\qquad
\qquad
d. Find the length and width for which the rectangle has a maximum area.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e. Determine the maximum possible area of the inscribed rectangle.
\qquad
\qquad
\qquad
\qquad

Question 2 (12 marks)
Consider the function $f(x)=\log _{e}(x+2)$.
a. Find the maximal domain of this function.
\qquad
\qquad
b. Find the rule and domain of the inverse function $y=f^{-1}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Determine the coordinates of the point(s) of intersection of $f(x)$ and $f^{-1}(x)$.

Give your answer correct to two decimal places.
\qquad
\qquad
\qquad
\qquad
d. Find correct to four decimal places, the area of the region bounded by the graphs of $f(x)$ and $f^{-1}(x)$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
e. Find the equation of the tangent to the graph of $y=f(x)$ that passes through the point with coordinates $(-1,0)$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
f. Find the area of the region bounded by $f(x), f^{-1}(x)$ and the tangent found in part e. Give your answer correct to four decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (14 marks)

Mel is designing a new ferris wheel to be the centre of attraction at a theme park. The circular ferris wheel will have a diameter of 40 metres and rise 50 metres above the ground at its highest point. Customers will enter the cabins of the ferris wheel from a platform 8 metres above ground level.

The height above ground level of a point, P on the floor of one of the cabins will be at its lowest point at the start of the ride. The height, h metres of the point, P, at after \boldsymbol{t} minutes is given by the equation:

$$
h(t)=b+a \sin c(t+d)
$$

a. Show that the value of the amplitude, a is 20 .
\qquad
\qquad
\qquad
b. Show that the value of b is 30 .
\qquad
\qquad
\qquad
\qquad
SECTION B - Question 3 - continued
TURN OVER

The wheel will rotate clockwise at a constant speed and not stop at any time during the 18 minutes the ride lasts. It takes 40 seconds for point, P to complete one full rotation.
c. Show that the value of c is 3π.

2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. Initially point, P is at its lowest point above the ground.

Show that $d=\frac{1}{2}$.
2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e. How many times during the $\mathbf{1 8}$ minute ride will point, P reach the maximum height?

1 mark
\qquad
\qquad
\qquad
\qquad
f. Find correct to two decimal places the time when P first reaches a height of at least 40 metres above ground level.

2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
g. Find the average rate of change of the height of the point, P over the interval $\left[0, \frac{1}{6}\right]$.

Give your answer correct to two decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
h. Mel will feel sick if the rate of change of the height of the point, P is greater than $100 \mathrm{~m} / \mathrm{s}$ for more than 12 seconds at any time. Explain whether Mel feel sick on the ferris wheel.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SECTION B - continued

Question 4 (8 marks)

BK is a viral infection that causes flu like symptoms. The virus is contagious and can be spread from person to person.

The number of new BK cases (M) after t days in an isolated population of 2800 people previously unexposed to the virus can be modelled by

$$
M=\frac{a t}{2 t+3}, 0 \leq t \leq 10
$$

where a is a positive constant.
a. After two days, 1600 people previously unexposed to the virus will have BK.

Show that $a=5600$.
\qquad
\qquad
\qquad
\qquad

The number of new BK cases (N) after t days in an isolated population of 2800 people previously exposed to the virus can be modelled by:

$$
N=\frac{b t}{t+2}, 0 \leq t \leq 10
$$

where b is a positive constant.
b. After five days, 2000 people previously exposed to the virus will have BK.

Show that $b=2800$.
\qquad
\qquad
\qquad
\qquad
c. The difference (D) in new BK cases between those previously unexposed and those previously exposed is given by

$$
D=\frac{c t}{(2 t+3)(t+2)}
$$

Show that the value of c is 2800 .
\qquad
d. Write a rule for the rate at which the difference in new BK cases between those previously unexposed and those exposed to the virus is changing with time.
\qquad
\qquad
\qquad
\qquad
e. Hence find the maximum difference in new BK cases between those previously unexposed and those exposed to the virus.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (20 marks)

On any one day thousands of passengers wait for planes at Melbourne Airport. Planes with a particular company flying out of Melbourne can leave on time or be late. The probability that a plane leaves on time is $\frac{3}{5}$.
a. A random sample of 20 passengers is taken.

Let X be the random variable that represents the number of passengers whose plane leaves on time.
i Find the $\operatorname{Pr}(X \geq 5)$ correct to four decimal places. 2 marks
\qquad
\qquad
\qquad
\qquad
ii Find the $\operatorname{Pr}(X \geq 10 \mid X \geq 5)$ correct to four decimal places.
\qquad
\qquad
\qquad
\qquad

For samples of 20 passengers, \hat{P} is the random variable of the distribution of sample proportions of people whose plane arrives on time.
iii Find the expected value and variance of \hat{P}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
iv Find the probability that the sample proportion lies within two standard deviation of $\frac{3}{5}$. Give you answer correct to three decimal places. Do not use a normal approximation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
v Find $\operatorname{Pr}\left(\left.\hat{P} \geq \frac{3}{4} \right\rvert\, \hat{P} \geq \frac{3}{5}\right)$ correct to four decimal places. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Assume that the number of minutes, T, that a plane is late by is a normally distributed random variable with a mean of 14 and a standard deviation of 4 .
The table below shows the number of minutes a plane may be late by and whether a passenger will consequently arrive on time or be late to their destination.

Number of minutes a plane is late by	Arrival at destination
More than 30 minutes	Late
Between 30 and 60 minutes	On time
Less than 15 minutes	Early

i Find correct to four decimal places the probability that a passenger arrives early to their destination.

1 mark

At 8 a.m. on a Monday morning there are 10 planes due to arrive at Melbourne Airport. The number of minutes each plane is late by is independent of each other.
ii Find correct to 4 decimal places the probability that 3 planes are less than 15 minutes late.

1 mark
\qquad
\qquad
\qquad
\qquad
\qquad
iii Find correct to 4 decimal places the probability that the first two planes are less than 15 minutes late and the rest are not.
\qquad
\qquad
\qquad
\qquad
\qquad
c. The number of minutes that Billie will be late to her destination due a plane being late is given by the probability density function:

$$
f(t)=\left\{\begin{array}{lr}
\frac{e^{-\frac{t}{5}}}{5}, & x>0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

i Find correct to 2 decimal places the probability that Billie is arrives at her destination more than 10 minutes late .
\qquad
\qquad
\qquad
\qquad
\qquad
ii Find the mean number of minutes that Billie arrives late to her destination.
\qquad
\qquad
iii Show that the median number of minutes that Billie arrives late her destination is exactly $\log _{e} 32$.
\qquad

Mathematical Methods Formulas

Mensuration

area of a trapezium:	$\frac{1}{2}(a+b) h$	volume of a pyramid:	$\frac{1}{3} A h$
curved surface area of a cylinder:	$2 \pi r h$	volume of a sphere:	$\frac{4}{3} \pi r^{3}$
volume of a cylinder:	$\pi r^{2} h$	area of a triangle:	$\frac{1}{2} b c \sin A$
volume of a cone:	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x) d x=\frac{1}{a} \sin (a x)+c$	
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$	quotient rule:
product rule:	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$		$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$			
mean	$\mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability Distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\Sigma x p(x)$	$\sigma^{2}=\Sigma(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$		mean	$E(\hat{P})=p$
standard deviation	$s d(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

MATHEMATICAL METHODS UNITS $3 \boldsymbol{\&} 4$

Trial examination 2

2016

MULTIPLE CHOICE QUESTIONS ANSWER SHEET

SHADE THE CORRECT RESPONSE

1	A	B	C	D	E
2	A	B	C	D	E
3	A	B	C	D	E
4	A	B	C	D	E
5	A	B	C	D	E
6	A	B	C	D	E
7	A	B	C	D	E
8	A	B	C	D	E
9	A	B	C	D	E
10	A	B	C	D	E
11	A	B	C	D	E
12	A	B	C	D	E
13	A	B	C	D	E
14	A	B	C	D	E
15	A	B	C	D	E
16	A	B	C	D	E
17	A	B	C	D	E
18	A	B	C	D	E
19	A	B	C	D	E
20	A	B	C	D	E

