

Student Name:

MATHEMATICAL METHODS UNITS 3 & 4

Trial examination 2

2016

Reading time: 15 minutes

Writing time: 2 hours

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of Number of questions		Number of
	questions	to be answered	marks
А	20	20	20
В	5	5	60

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 26 pages with a detachable sheet of miscellaneous formulas.
- Answer sheet for multiple-choice questions.

Instructions

- Detach the formula sheet.
- Write your name in the space provided above on this page.
- Write your name on your answer sheet for multiple-choice,
- All written responses must be in English.

At the end of the examination

• Place the answer sheet for multiple-choice questions inside the front cover of this book

Students are NOT permitted to bring mobile phones and/or any other unauthorized electronic devices into the examination room.

SECTION A

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple–choice questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any questions.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

The range of the function $f: [-2, 4] \rightarrow R, f(x) = (5-x)(x+1)$ is

- A. [-7, 5]
- **B.** (−∞, 9]
- **C.** [−7, ∞)
- **D.** [-2, 4]
- **E.** [-7, 9]

Question 2

The function $f:\left[\frac{\pi}{6},a\right] \rightarrow R$, $f(x) = 2\sin(3x)$ will have an inverse if A. $a \le \frac{\pi}{3}$ B. $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ C. $a \ge \frac{\pi}{3}$ D. $a \le \frac{\pi}{3}$

 $\mathbf{E.} \qquad \frac{\pi}{6} < x \le \frac{\pi}{3}$

SECTION A - continued

The simultaneous linear equations kx - 4y = 3 and 4x - ky = 7 - k have an **infinite set** of solutions for

A. $k \in R \setminus \{-4, 4\}$ B. k = 4C. $k \in R \setminus \{4\}$ D. k = -4E. k = -4 and k = 4

Question 4

If x + a is a factor of $3a^3 - 8x^2 - 2ax$ where $a \in R \setminus \{0\}$, then the value of a is

A.	$\frac{10}{3}$
B.	-2
C.	$\frac{10}{3}$
D.	2
E.	3

Question 5

A cosine function f, has an amplitude of 3 and a period of 6. The rule for f could be

- A. $f(x) = 3\cos\left(\frac{\pi x}{6}\right)$ B. $f(x) = 3\cos\left(\frac{\pi x}{3}\right)$ C. $f(x) = 6\cos\left(\frac{\pi x}{2}\right)$
- **D.** $f(x) = 3\cos(6\pi x)$
- $\mathbf{E.} \qquad f(x) = 3\cos(3\pi x)$

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with rule

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}-2&0\\0&3\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right] + \left[\begin{array}{c}2\\-1\end{array}\right]$$

maps the line with equation 2x - y = 5 onto the line with equation.

A.
$$3x + y = 10$$

B. $3x - y = 10$
C. $3x + y = -10$
D. $-3x + y = 10$
E. $3x - y = -10$

Question 7

Which one of the following functions satisfies the functional equation

$$f(x-y) = \frac{f(x)}{f(y)}$$

where *x* and *y* are non–zero real numbers?

- A. $f(x) = \cos(x)$
- **B.** f(x) = x
- $\mathbf{C.} \quad f(x) = e^{2x}$
- **D.** $f(x) = \ln(x)$
- **E.** $f(x) = \sqrt{x}$

Question 8

If $\log_e(x) = \log_e(x-2) + b$ then x is equal to

A.
$$\frac{e^{b}}{2-e^{b}}$$
B.
$$\frac{2}{e^{b}-1}$$
C.
$$\log_{e}\frac{x}{x-2}$$
D.
$$\frac{2}{1-e^{b}}$$
E.
$$\frac{2}{2}$$

 $\mathbf{E.} \quad \frac{2}{1-e^{-b}}$

SECTION A – continued

The graph of the quadratic function y = f(x) is shown below.

Which one of the following statements is true?

- A. f'(b) < 0
- **B.** f'(-a) > 0
- C. f(0) > 0
- **D.** f(b) > 0
- **E.** f'(c) > 0

Question 10

If X is a random variable such that Pr(X > 3) = m and Pr(X > 7) = n then Pr(X < 3 | X < 7) is

- A. $\frac{n-1}{m-1}$
- **B.** $\frac{m}{n}$
- C. $\frac{m}{m+n}$
- **D.** $\frac{m-1}{n-1}$
- E. $\frac{1}{m-n}$

The graph of a quadratic function is shown below.

The average rate of change of y against x between x = -a and x = 0 is more than the instantaneous rate of change of y against x at

A.
$$x = -a$$

B. $x = 0$
C. $x = \frac{a}{3}$ and $x = \frac{a}{2}$
D. $x = \frac{a}{2}$ and $x = a$
E. $x = a$

Question 12

Let $f : R \to R$ be a differentiable function.

Then for all $x \in R$, the derivative of $f(e^{2x-1})$ with respect to x is equal to

A.
$$2e^{2x-1}f'(x)$$

B. $2e^{2x-1}f'(e^{2x-1})$

C.
$$2f'(e^{2x-1})$$

D.
$$(2x-1)e^{2x-1}$$

$$\mathbf{E.} \qquad f'(e^{2x})$$

Part of the function $f(x) = \sin(2x)$ is shown below. The area bounded by the graph of *f*, the *x*-axis and the lines x = 0 and $\frac{\pi}{4}$ can be approximated by the area of the four shaded rectangles. The area of the rectangles is approximately equal to

- A. $\frac{\pi}{16}$
- **B.** 0.5917
- **C.** 3.02
- **D.** 0.395
- **E.** 0.188

Question 14

The random variable X has a normal distribution with mean 9 and standard deviation 3. If Z has the standard normal distribution then the probability that X is greater than 15 is equal to

- A. Pr(Z > -2)
- **B.** $1 \Pr(Z < -2)$
- C. $\Pr(Z < 2)$
- **D.** $1 \Pr(Z > 2)$
- **E.** $1 \Pr(Z < 2)$

SECTION A – continued TURN OVER

Over a two-week period Kristy recorded the number of hours that she spent studying.

Number of hours spent each day studying	0	1	2	3	4	5
Proportion of days on which <i>x</i> hours were spent studying	$\frac{1}{14}$	$\frac{1}{14}$	$\frac{3}{14}$	$\frac{1}{14}$	$\frac{3}{14}$	$\frac{5}{14}$

During the two-week period the mean number of hours each day that Kristy spent studying was:

A.	$\frac{13}{7}$
B.	$\frac{25}{14}$
C.	$\frac{23}{14}$
D.	$\frac{13}{14}$
E.	$\frac{47}{14}$

Question 16

It is k	own that $\int_{0}^{5} f(x) dx = 7$. The value $\int_{2}^{7} f(x-2) + 3 dx$
A.	12
B.	10
C.	22
D.	15
E.	18

The continuous random variable *X* has a probability density function given by:

$$f(x) = \begin{cases} \frac{3\sqrt{x}}{2}, & \text{for } 0 < x < 1\\ 0, & \text{elsewhere} \end{cases}$$

The value of k such that $Pr(X > k) = \frac{19}{27}$.

A.	$\frac{3}{2}$
B.	$\frac{4}{9}$
C.	$\frac{1}{4}$
D.	$\frac{9}{4}$
E.	$\frac{2}{3}$

Question 18

If the average value of the function $y = x^3$ over the interval [1,b] is 10 the value of b is

- **A.** $41^{\frac{1}{4}}$ **B.** 0.025
- **C.** 3.43
- **D.** 1
- **E.** 3

The graph of the function f with rule y = f(x) is shown below:

The total area bounced by the curve y = f(x), the *x*-axis on the interval $\left[-a,c\right]$ is given by:

- $\mathbf{A.} \qquad \int_0^a f(x) dx + \int_0^c f(x) dx$
- **B.** $\int_a^c f(x) dx$
- C. $\int_{-a}^{0} f(x) dx \int_{0}^{c} f(x) dx$
- $\mathbf{D.} \qquad \int_0^c f(x) dx \int_a^0 f(x) dx$

$$\mathbf{E.} \qquad \int_0^{-a} f(x) \, dx + \int_0^c f(x) \, dx$$

Question 20

Leonie regurlarly attends boxing classes at her gym. If she attends a boxing class on a particular day, the probability that she attends one the next day is 0.7. If she does not attend a boxing class one day the probability that she attends one the next day is 0.9. If she attends a boxing class on Monday the probability that she attends a boxing class on Wednesday is

- **A.** 0.733
- **B.** 0.76
- **C.** 0.559
- **D.** 0.21
- **E.** 0.49

END OF SECTION A

SECTION B

Answer **all** questions in the spaces provided. In all questions where a numerical answer is required, an exact value must be given unless otherwise specified. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (6 marks)

The graph of f(x) = (x+1)(x-2)(x-3); $0 \le x \le 2$ is shown in the diagram below

The rectangle OABC is inscribed in the region bounded by the graph of f(x) = (x+1)(x-2)(x-3), the *x*-axis and *y*-axis.

a. Show that the area, A of the rectangle can be written as A = a(a+1)(a-2)(a-3) 1 mark

b. Determine an appropriate domain for *A*.

SECTION B – Question 1 – continued TURN OVER

1 mark

c.	Find the derivative of A.	1 mark
d.	Find the length and width for which the rectangle has a maximum area.	2 marks
e.	Determine the maximum possible area of the inscribed rectangle.	1 mark

1 mark

Question 2 (12 marks)

Consider the function $f(x) = \log_e(x+2)$.

a. Find the maximal domain of this function.

b. Find the rule and domain of the inverse function $y = f^{-1}(x)$. 2 marks

c. Determine the coordinates of the point(s) of intersection of f(x) and $f^{-1}(x)$. Give your answer correct to two decimal places. 2 marks

d. Find correct to four decimal places, the area of the region bounded by the graphs of f(x) and $f^{-1}(x)$.

SECTION B – Question 2 – continued TURN OVER

Find the equation of the tangent to the graph of y = f(x) that passes through the point with e. coordinates (-1,0). 2 marks

f. Give your answer correct to four decimal places. 3 marks

SECTION B – continued

Question 3 (14 marks)

Mel is designing a new ferris wheel to be the centre of attraction at a theme park. The circular ferris wheel will have a diameter of 40 metres and rise 50 metres above the ground at its highest point. Customers will enter the cabins of the ferris wheel from a platform 8 metres above ground level.

The height above ground level of a point, P on the floor of one of the cabins will be at its lowest point at the start of the ride. The height, h metres of the point, P, at after **t** minutes is given by the equation:

$$h(t) = b + a\sin c(t+d)$$

a. Show that the value of the amplitude, *a* is 20.

b. Show that the value of b is 30.

SECTION B – Question 3 – continued TURN OVER

1 mark

1 mark

The wheel will rotate clockwise at a constant speed and not stop at any time during the 18 minutes the ride lasts. It takes 40 seconds for point, P to complete one full rotation.

c.	Show that the value of c is 3π .	2 marks
d.	Initially point, P is at its lowest point above the ground.	
	Show that $d = \frac{1}{2}$.	2 marks
e.	How many times during the 18 minute ride will point, <i>P</i> reach the maximum height	
		1 mark

SECTION B – Question 3 – continued

- f. Find correct to two decimal places the time when *P* first reaches a height of at least 40 metres above ground level. 2 marks

 g. Find the average rate of change of the height of the point, *P* over the interval $\begin{bmatrix} 0, \frac{1}{6} \end{bmatrix}$. Give your answer correct to two decimal places. 2 marks
- **h.** Mel will feel sick if the rate of change of the height of the point, *P* is greater than 100 m/s for more than 12 seconds at any time. Explain whether Mel feel sick on the ferris wheel.

3 marks

SECTION B – continued TURN OVER

Question 4 (8 marks)

BK is a viral infection that causes flu like symptoms. The virus is contagious and can be spread from person to person.

The number of new BK cases (M) after t days in an isolated population of 2800 people previously unexposed to the virus can be modelled by

$$M = \frac{at}{2t+3}, \ 0 \le t \le 10$$

where *a* is a positive constant.

a. After two days, 1600 people previously **unexposed** to the virus will have BK. Show that a = 5600.

1 mark

The number of new BK cases (N) after t days in an isolated population of 2800 people previously **exposed** to the virus can be modelled by:

$$N = \frac{bt}{t+2}, \ 0 \le t \le 10$$

where *b* is a positive constant.

b. After five days, 2000 people previously **exposed** to the virus will have BK. Show that b = 2800.

1 mark

SECTION B – Question 4 - continued

c. The difference (*D*) in new BK cases between those previously unexposed and those previously exposed is given by

$$D = \frac{ct}{(2t+3)(t+2)}$$

Show that the value of c is 2800.

3 marks

d. Write a rule for the rate at which the difference in new BK cases between those previously unexposed and those exposed to the virus is changing with time. 1 mark

e. Hence find the maximum difference in new BK cases between those previously unexposed and those exposed to the virus. 2 marks

Question 5 (20 marks)

On any one day thousands of passengers wait for planes at Melbourne Airport. Planes with a particular company flying out of Melbourne can leave on time or be late. The probability that a plane leaves on time is $\frac{3}{5}$.

- A random sample of 20 passengers is taken.
 Let X be the random variable that represents the number of passengers whose plane leaves on time.
 - i Find the $Pr(X \ge 5)$ correct to four decimal places.

ii Find the $Pr(X \ge 10 | X \ge 5)$ correct to four decimal places.

2 marks

2 marks

For samples of 20 passengers, \hat{P} is the random variable of the distribution of sample proportions of people whose plane arrives on time.

iii	Find the expected value and variance of \hat{P} .	3 marks	

SECTION B – Question 5 continued

iv Find the probability that the sample proportion lies within two standard deviation of $\frac{3}{5}$. Give you answer correct to three decimal places. Do not use a normal approximation.

3 marks

V	Find $\Pr\left(\hat{P} \ge \frac{3}{4} \mid \hat{P} \ge \frac{3}{5}\right)$ correct to four decimal places.	2 marks

b. Assume that the number of minutes, *T*, that a plane is late by is a normally distributed random variable with a mean of 14 and a standard deviation of 4.The table below shows the number of minutes a plane may be late by and whether a passenger will consequently arrive on time or be late to their destination.

Number of minutes a plane is late by	Arrival at destination
More than 30 minutes	Late
Between 30 and 60 minutes	On time
Less than 15 minutes	Early

i Find correct to four decimal places the probability that a passenger arrives early to their destination. 1 mark

At 8 a.m. on a Monday morning there are 10 planes due to arrive at Melbourne Airport. The number of minutes each plane is late by is independent of each other.

ii Find correct to 4 decimal places the probability that 3 planes are less than 15 minutes late. 1 mark

Find correct to 4 decimal places the probability that the first two planes are less than 15 minutes late and the rest are not.
 1 mark

c. The number of minutes that Billie will be late to her destination due a plane being late is given by the probability density function:

$$f(t) = \begin{cases} \frac{e^{-\frac{t}{5}}}{5}, & x > 0\\ 0, & \text{elsewhere} \end{cases}$$

i Find correct to 2 decimal places the probability that Billie is arrives at her destination more than10 minutes late . 1 mark

SECTION B – Question 5 continued

ii Find the mean number of minutes that Billie arrives late to her destination.

1 mark

iii Show that the median number of minutes that Billie arrives late her destination is exactly $\log_e 32$. 3 marks

END OF QUESTION AND ANSWER BOOK

Mathematical Methods Formulas

Mensuration

area of a trapezium:	$\frac{1}{2}(a+b)h$	volume of a pyramid:	$\frac{1}{3}Ah$
curved surface area of a cylinder:	$2\pi rh$	volume of a sphere:	$\frac{4}{3}\pi r^3$
volume of a cylinder:	$\pi r^2 h$	area of a triangle:	$\frac{1}{2}bc\sin A$
volume of a cone:	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$	$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}((ax+b)^n) = an(ax+b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx} (\log_e(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e(x) + c, x > 0$		
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$			
product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		

Probability

$\Pr(A) =$	$=1-\Pr(A')$	$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$		
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$				
mean	$\mu = \mathbf{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$	

Probability Distribution		Mean	Variance	
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \Sigma (x - \mu)^2 p(x)$	
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

Student Name:	

MATHEMATICAL METHODS UNITS 3 & 4

Trial examination 2

2016

MULTIPLE CHOICE QUESTIONS ANSWER SHEET

SHADE THE CORRECT RESPONSE

1	Α	B	С	D	Е
2	Α	В	С	D	Ε
3	Α	В	С	D	Ε
4	Α	В	С	D	Ε
5	Α	В	С	D	Ε
6	А	В	С	D	Е
7	Α	B	С	D	Ε
8	А	В	С	D	Ε
9	А	В	С	D	Ε
10	Α	B	С	D	Ε
11	Α	В	С	D	Ε
12	Α	B	С	D	Е
13	Α	В	С	D	Ε
14	Α	B	С	D	Е
15	Α	B	С	D	Е
16	Α	B	С	D	Е
17	Α	B	С	D	Е
18	Α	B	С	D	E
19	Α	B	С	D	Е
20	Α	B	С	D	E