View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Repository for Minnesota State University, Mankato

CO R N E RSTO N E Journal of Undergraduate Research

at Minnesota State University,
Mankato

2 MINNESOTA STATE UNIVERSITY Manksto

Volume 7 Article 19

2007

Mathematical Modeling and Simulation of
Multialleic Migration-Selection Models

Chad N. Vidden
Minnesota State University, Mankato

Follow this and additional works at: http://cornerstone.lib.mnsu.edu/jur

b Part of the Demography, Population, and Ecology Commons, and the Statistical Models

Commons

Recommended Citation

Vidden, Chad N. (2007) "Mathematical Modeling and Simulation of Multialleic Migration-Selection Models," Journal of
Undergraduate Research at Minnesota State University, Mankato: Vol. 7, Article 19.
Available at: http://cornerstone.lib.mnsu.edu/jur/vol7/iss1/19

This Article is brought to you for free and open access by the Undergraduate Research Center at Cornerstone: A Collection of Scholarly and Creative
Works for Minnesota State University, Mankato. It has been accepted for inclusion in Journal of Undergraduate Research at Minnesota State University,

Mankato by an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato.


https://core.ac.uk/display/214118170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur/vol7?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur/vol7/iss1/19?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/418?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/jur/vol7/iss1/19?utm_source=cornerstone.lib.mnsu.edu%2Fjur%2Fvol7%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

Student Agreement:

I am submitting my research article to be published in the JUR (The Journal of Undergraduate Research
at Minnesota State University, Mankato), an electronic journal of the Minnesota State University
Undergraduate Research Center.

I/We certify have followed the accepted standards of scientific, creative, and academic honesty and
ethics.

I understand that my article submission will be blind-reviewed by faculty reviewers who will recommend
acceptance for publication; acceptance with revisions; or reject for publication.

I understand that as author, I retain the right to present any part of the research in any form in other
publications.

The JUR has the right to reproduce and reprint published submissions for instructional or promotional
purposes.

For complete details, see Journal of Undergraduate Research at Minnesota State University, Mankato policies
page.

Mentor Agreement:

I have reviewed the submission, and I support its inclusion in the JUR (The Journal of Undergraduate
Research at Minnesota State University, Mankato). I understand that I will be acknowledged as the
faculty mentor for the student author(s). To the best of my knowledge, the student has followed the
accepted standards of scientific, creative, and academic honesty and ethics.


http://cornerstone.lib.mnsu.edu/jur/policies.html
http://cornerstone.lib.mnsu.edu/jur/policies.html

Vidden: Mathematical Modeling and Simulation of Multialleic Migration-Sel

MATHEMATICAL MODELING AND SIMULATION OF MULTIALLELIC
MIGRATION-SELECTION MODELS

Chad N. Vidden (Mathematics)
Namyong Lee, Faculty Mentor (Mathematics)

Abstract

Population ecology is concerned with the growth and decay of specific populations. This
field has a variety of applications ranging from evolution and survival at the environmental level
to the spread of infectious disease at the cellular and molecular levels. Many ecological
circumstances require the use of mathematical methods and reasoning in order to acquire better
knowledge of the issue at hand. This study considered and analyzed multiple different
mathematical models of population dynamics along with their purposes. This foundation was
then applied in order to explore the migration of populations from one isolated region to another
along with the relationships that those populations have. The following research paper presents
the theoretical base, analysis, and specific simulations of this study along with application. The
study resulted in a complete classification and analysis of an existing Ecological model with
migration added along with proven coexistence with a given migration-selection model.

Introduction

Ecology is an old discipline christened in 1866 by Ernst Haeckel [K]. This field is
formally defined as the study of the interrelationships of organisms with each other and with
their physical environment [V]. Essentially, Ecology is simply concerned with investigating the
way all living things interact and survive. This is a very broad science and as a result has a wide
range of application. Common examples of application include agriculture, fisheries, forestry,
medicine, and urban development.

There are multiple sub disciplines of Ecology, many of which require the use of
mathematical analysis and modeling. The specific subset of Ecology that this research is
concerned with is Population Ecology, also known as Autecology [K]. This field deals with the
dynamics and relationships of species populations with respect to an environment. Mathematical
modeling is an essential tool in this field. There are many models that exist in Population
Ecology in order to gain a better understanding of specific phenomenon. The main results that
are desired from these models are coexistence and survival. With this area of Ecology, one
concept that hasn’t been thoroughly explored is that of migration. This research considers this
idea of migration through multiple models along with analysis and simulation.

The goal of this study was to analyze and classify all cases of an existing migration-
selection model. Basic analysis of an existing Ecological model with migration applied was
utilized in order to reach this goal. The two key properties of coexistence and conditional
survival are attempted to be found and analyzed completely.
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Survey of Literature

In order for the results of this study to be interesting and significant, the concept of
migration had to be initially paired with another model of Population Ecology. The reason for
this is because it was discovered early on with this study that migration alone without a
relationship between the species of certain population produces trivial results. Many different
models were investigated, but the one that was chosen was the classic Lotka-Volterra
Competition model. The reason this model was chosen is because it is well explored and offers
interesting interaction between species. The Lotka-Volterra model was initially developed in
1932 [K] and as a result this model’s dynamics and characteristics are well known. Given this, it
is convenient to extend this model into something more complex. This section will introduce the
classic Lotka-Volterra model along with common analysis.

The Lotka-Volterra competition model is known as an interference or interspecific
competition model. That is, two species are assumed to diminish each other’s per capita growth
rate by direct interference [K]. In simplest terms, this type of competition involves two species
utilizing the same resource within an environment. The exact model is as follows,

dNy Ny N5
=rNi(1 — — 19—
It I 1l: kl X192 :[51 )
{ dN N. \ @
2 poNo(1 — 22 — gy ]
PP 2( ko i ko )

N; = population of species i

r; = intrinsic growth rate of species i

k; = carrying capacity of species i

aij = strength of effect of species j on species i

where ri, ki, and ajj are positive constants with N;(0) > 0 [V].
As with the analysis of any system of differential equations, we are concerned with the
critical points of system (1). That is, the conditions where

le dNQ

dt dt

are a topic of interest. These critical points along with their orientation determine the general
behavior of the system. Some simple algebraic manipulation shows that the points (0,0), (N1,0),
(0,N2), along with the solution to the following system

Ny =k; —a;aN ?)
No = ko — a9 N,

are all zeros of this competition model. Each linear equation of (2) is known as a zero growth
isocline. Figure 1 describes the behavior that each isocline induces.

http://cornerstone.lib.mnsu.edu/jur/vol7/iss1/19



Vidden: Mathematical Modeling and Simulation of Multialleic Migration-Sel

S
&

S e e Sl e

Figure 1: Zero growth isoclines with behavior

The above critical points determine the general behavior of this model. As a result, the
manipulation of the parameters of the two isoclines (2) creates all possible classifications of
behavior of this model. Considering this, there will be four classifications of this system. If one
simply considers the intercepts of each isocline, it is clear why there are four possibilities. Figure
2 shows all possible cases and Figure 3 describes the orientation of each.
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Figure 2: Classic competition model isocline intercept cases
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Figure 3: All possible orientations of classic competition model isoclines
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Since the classic Lotka-Volterra competition model is of two dimensions, it is natural to
analyze these four cases by plotting the phase portrait of each. Figure 4 contains all of these plots.
Case 1 and Case 2 represent a larger competition effect on one species and a smaller
competition effect on the other. That is, one species competes at a higher level for the needed
resources, resulting in dominance of the other species. Interpretation of the phase portraits for
these two cases shows that regardless of initial conditions, the weaker competitor will be
extinguished. Case 3 represents a large competition effect created by both species. This results in
saddle point behavior of this case which is illustrated in Figure 5. What this means is depending
on the initial populations of the given species, one will survive and the other will be extinguished.
It is also important to note that coexistence is possible in this case but is extremely rare.

This will also be referred to as a conditional coexistence case. Case 4 represents a low
competition rate for both species. This case ensures coexistence of both species regardless of
initial species population values. For this reason, Case 4 is considered to be the most significant
of all cases biologically speaking.
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Figure 4: Phase portraits of all cases generated with PPlane
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Figure 5: Saddle point behavior illustration

Methods

The first model that this study examines is the modified Lotka-Volterra competition
model with migration. The classic Lotka-Volterra competition model describes two different
species sharing one habitat. This modification of the classic model implements migration. That is,
multiple discrete patches of population are considered instead of one only. The basic case of
this modified model considers two species migrating between two different population patches at
a certain rate. Figure 6 is the conceptual diagram of the basic case of this model.

P 1 Pz

m

P; = patch i
N;j = population of species i in patch j
m = migration rates of individual species

Figure 6: Conceptual diagram of modified competition model with migration
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The system of differential equations of this model is as follows,

( dN11 ; ;
i (m12N12 — miui Ni1) + ria N1 (1 — ‘21111 - 0’11,21‘21311)
dNQl y r
7 = (moeNaz — mayNay) + 191 Ny (1 — ‘2_311 - CI21,11};:;11) @)
\ dNi
e (m11N11 — m12Nia) + r12N12(1 — 312 — a2.20922)
dNso o "
- (ma1N21 — m2aN22) + r2aNaa2 (1l — ‘2, — a22,122§;)
P; = patch i

N;; = population of species i in patch j

m = migration rates of individual species

ri; = intrinsic growth rate of species i in patch j

kij = carrying capacity of species i in patch j

ki = strength of effect of species N;; on species Ny ;

where mij, rij, kij, and aij« are positive constants with N;j(0) > 0. It is clear that this model consists
of the Classic Lotka-Volterra model paired with the concept of migration between population
patches

Analysis of the modified competition model with migration (3) is more complex than the
analysis of the classic competition model (1). Since the basic case of this modified model is of
four dimensions, the phase plane analysis that was previously explored cannot be used. Instead,
the different cases developed are tested and classified through the use of a simulation software
package called Berkeley Madonna. Berkeley Madonna is a general purpose differential equation
solver developed by the University of California at Berkeley. The code used for testing is
included in the appendix of this paper. Following is the analysis of this model.

As with the analysis of the classic competition model, the goal is to determine and
manipulate the critical points of this system of equations. That is, we are concerned with the
places where

dN1y _ dNo . dNy2 _ ANz _

0

dt dt dt dt

occurs. Through some basic algebraic manipulation, one can see that (0,0,0,0) is a critical point
along with the following isoclines described in Figure 7. Manipulation of the intercepts of these
four isoclines generates 16 different classifications of behavior. Each of case was then simulated
and tested thoroughly within the Berkeley Madonna software. Multiple tests considering
differing parameters were performed in order to ensure consistency. All were shown to result in
the same general outcome.
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Figure 7: Zero growth isoclines of modified competition model with migration

The strategy for testing each classification is as follows. First, certain initial conditions
were chosen and fixed for the following variables: mij, rij, and kij. The variable aij« was then
manipulated in order to examine the trends of each classification. The reason for this is because
the competition dcoefficients were found to be the only independent parameters for each
inequality. This strategy proved to be the simplest way to test each case. Once a classification
was generated, the initial population of each species was altered in order to test conditional
coexistence, unconditional coexistence, and species survival trends.

These tests produced the classification of one unconditional coexistence case and five
conditional coexistence cases leaving the remaining ten cases as being dominant by one species
or the other. Biologically, this is interpreted as being one situation in which both species
considered will survive together regardless of initial populations. As with the classic competition
model, this occurs when the competition coefficient is relatively small, but migration factors also
play a significant role. The five conditional coexistence cases display the unstable saddle point
behavior previously discussed. That is, coexistence is possible, but extremely rare. Most likely,
depending on the initial population values, one species will die out completely while the other
will survive. Lastly, there are ten cases in which one species is ensured to die off while the other
survives. The following table in Figure 8 describes each of these cases along with the
classification obtained.
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Figure 8: All 16 possible orientation cases of modified competition model isoclines

The second model analyzed with this study considers is a migration-selection model
developed by Thomas Nagylaki. This model is discussed in much of Nagylaki’s current research,
but a correct classification of each case has yet to be researched. The exact system is described as

follows [N2].
dPiy,
{Hk =g (mulu) + vBr( Y (rijPik) = > (rijlirPik) ) @
v I J ij

P;i.(t) = gene frequency of Allele A; in deme k at time ¢

my; = probability that an individual in deme k& migrates from deme [
v = selection factor

g = migration factor

rijk = viability of Alleles AiAj in deme k' (73k = 7jik)

Note:
Z mp =1 each k
l

rijk = Sik + 8;x  where s = dominance of individual Allele
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This model is described at the genetic level simply because its application lies with Population
Genetics, a sub discipline of Population Ecology.

As with the analysis of the modified competition model, the basic case was considered.
That is three species migrating two discrete population patches were explored. The reason three
species where chosen instead of two is a consequence of selection. Selection is only interesting
for three or greater species. If only two were implemented, only trivial results were produced.
Considering the basic case of three species and two patches, this is the resulting model.

f dpll

prak g (muPy) + ~Pu( Z(‘f‘ljlpjl) *Z('r'ijlpilpjl))
! J ij
dP,
= ad (muPu) + yPu( 3 (ropPjn) — ) (rinPaP) )
" ! J ij
AP
L =1— P — Py
d P,
dtlz =q) (muPy) + 7P Y (rijPp) — Y (rijpPaPjp))
! J ij
dPos
= QZ(’WMP%) + P Z(‘f‘zjzpjz) — Z(’f‘e:jzpazzpjz) )
! 7 =
dPs2
—1- Py P
p 12 — P

\

The strategy for analysis of this model was the same as the previous models. The null
points of this system were found and analyzed. Isoclines were considered along with the
intercepts they generated. Due to the complexity of this system, each individual case wasn’t able
to be classified. There proved to be too many parameters which didn’t allow for a simplification
of each case. That is, when the strategy applied to the modified competition model was used with
this migration-selection model, complete testing through simulation within Berkeley Madonna
was unsuccessful.

Even though this is true, some meaningful results were still found. Through simulation
and experimentation, coexistence with this model was shown to occur. One example of this is
displayed in the appendix. This coexistence displays the saddle point behavior seen in the
previous models. That is, this case of coexistence is quite unstable. Biologically this is
significant. This mathematically proves that under certain conditions all three alleles can stably
coexist within a migration-selection model.

Conclusions
This study provided some significant results with regards to Population Ecology and
migration. First, each case of the modified competition model with migration was successfully

analyzed and classified. This classification provides a complete knowledge of the dynamics and
behavior of this specific model. Analysis was also reinforced and confirmed through the use of

Published by Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato, 2007



Journal of Undergraduate Research at Minnesota State University, Mankato, Vol. 7 [2007], Art. 19

simulation and numerical experimentation. It was shown that unconditional coexistence is
possible and conditional coexistence also can occur.

The second set of results was produced through analysis of the migration selection model.
It was shown that coexistence for this model is possible, but complete classification of each case
was not accomplished. All of the coexistence cases found were found to be unstable and could be
considered as a conditional coexistence case. This is primarily a result of the complexity of this
model.

Discussions

The results found can be interpreted to have significant meaning. The first results drawn
show the compete classification of the modified competition model with migration. That is,
when considering a population model involving only interspecific competition and migration
there is a complete understanding of the dynamics involved. This is useful when one either wants
to predict the exact outcome or engineer a specific outcome of a population which fits this model.

The second analysis performed considered Nagylaki’s migration-selection model. Even
though a complete classification wasn’t reached, it was shown that coexistence is possible with
the basic case of three species and two discrete population patches. This is significant because
exact conditions were discovered that ensure coexistence. Again, if one wishes to engineer
coexistence of a population of genes which fits this model, it is shown to be possible.

These results are not only helpful when considering migration and competition or
migration and selection with certain ecological situations, but it also suggests that migration can
be paired and analyzed with other Ecological models. With Population Ecology, it isn’t useful to
simply consider one or even two models with a study. Often multiple models are combined to
include all biological phenomenons in order to develop a more accurate and significant system.
The results of this study show that migration can be combined with other models in order to offer
meaningful outcomes.

There are multiple areas to go from here when considering future study. Since only the
basic case for the modified competition with migration model and the migration selection model
were considered, more complex cases can be examined. For example, analysis can be extended
to n different populations or even n discrete population patches in either of these cases.
Combinations of these two can also be explored. Figure 9 and figure 10 displays these
possibilities. Also, as previously suggested, migration could be applied to multiple existing
Population Ecology models as desired. This depends on the specific Ecological situation
considered. Lastly, the complete classification of the migration-selection was not complete. In
order for the strategies used with this research to be successful, the migration-selection model
itself needs to be simplified. Otherwise, another analysis technique could be used in order to
accomplish this.
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N;; = population of species i in patch ]

m = migration rates of individual species
Figure 9: A given migration model Figure 10: A given migration model
considering n species considering n discrete population patches
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Appendix 1

Berkeley Madonna code:

Classic Lotka-Volterra Competition Model

METHOD RK4

STARTTIME =0
STOPTIME=100
DT =0.02

{competition model with 1 patch and 2 species}
d/dt(N1) = r1*N1* (1 - N1/k1 - a12*(N2/k1))
d/dt(N2) = r2*N2* (1 - N2/k2 - a21*(N1/k2))

{initial values of species N1 and N2}
init N1 = 50
init N2 =12

{growth rates}
r1=0.2
r2=0.15

{competition rates}
al2=0.1
a21=0.15

{carrying capacities}
k1l =30
k2 =20

Modified Competition Model with Migration

METHOD RK4

STARTTIME =0
STOPTIME=100
DT =0.02

{competition model with 2 patches and 2 species with species Nij, ith species jth patch}
d/dt(N11) = (Mm12*N12 - m11*N11) + r11*N11* (1 - N11/k11 - a1l_21*(N21/k11))
d/dt(N21) = (Mm22*N22 - m21*N21) + r21*N21* (1 - N21/k21 - a21_11*(N11/k21))

d/dt(N12) = (M11*N11 - m12*N12) + r12*N12* (1 - N12/k12 - al2_22*(N22/k12))
d/dt(N22) = (M21*N21 - m22*N22) + r22*N22* (1 - N22/k22 - a22_12*(N12/k22))

{initial values of species N11, N21, N12, and N22}
initN11=1.5
initN21=1.5

init N12 =1.5
init N22 = 1.5

{growth rates}
r11=0.1
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r21=0.1
ri2=0.1
r22=0.1

{competition rates}
all_21=0.5
a21_11=0.5
al2_22=0.5
a22_12=05

{carrying capacities}
k11 =1.5
k21 =1.5
k12 =1.5
k22 =15

{migration rates}
ml11=0.1
m21=0.1
ml1l2=0.1
m22=0.1

Migration-Selection Model

{ 3 Alleles, 2 patches model }
{ d/dt(p_i,K)=sum_{} m_k,j*p_i,j ) + rp_i,k*[sum_{}( r_ij,k*p_j,k ) - sum_{l,j}( r_lj,k*p_Lk*p_j,k )] }

method RK4 starttime=0 stoptime=30 dt=0.005

init p11=0.5
init p21=0.3
{p31=1-0.5-0.3}
init p12=0.1
init p22=0.2
{p23=1-0.1-0.2}

{ g=migration, r=selection factors }
r=50 g=1

{ migration - selection model }

d/dt(pll) = g*(m11*pll + m12*p12) + r*pll*( (rl1l*pll + r121*p21 + r131*p31) - mrl)
d/dt(p21) = g*(m11*p21 + m12*p22) + r*p21*( (r211*pll + r221*p21 + r231*p31) - mrl)
p3l=1-pll-p21

d/dt(p12) = g*(m21*pll + m22*p12) + r*pl2*( (r112*pl2 + r122*p22 + r132*p32) - mr2)
d/dt(p22) = g*(m21*p21 + m22*p22) + r*p22*( (r212*pl2 + r222*p22 + r232*p32) - mr2)
p32=1-pl12-p22

{ continued selection model }

mrl=(r111*pll + r211*p21 + r311*p31)*pll + (r121*pll + r221*p21 + r321*p31)*p21 + (r131*pll + r231*p21 +
r331*p31)*p31

mr2=(r112*p12 + r212*p22 + r312*p32)*p12 + (r122*pl2 + r222*p22 + r322*p32)*p22 + (r132*pl2 + r232*p22 +
r332*p32)*p32

{ migration probabilities by patch }
ml11=-0.5 m12=0.5
m21=0.5 m22=-0.5

{ rijk: viability of AiAjin deme k }

r111=s11+s11
r211=s21+s11
r311=s31+s11

r112=s12+s12
r212=s22+s12
r312=s32+s12

r121=s11+s21
r221=s21+s21
r321=s31+s21

r122=s12+s22
1222=522+s22
r322=s32+s22

r131=s11+s31
r231=s21+s31
r331=s31+s31

r132=s12+s32
r232=s22+s32
r332=s32+s32

{ dominance of individual alleles }
s11=1.5 s21=15 s31=1.6
s12=0.7 s22=0.7 s32=0.6
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Appendix 2

Example of coexistence with Migration-Selection model
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