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The superheating that usually occurs when a solid is melted by volumetric heating can

produce irregular solid–liquid interfaces. Such interfaces can be visualised in ice, where they are

sometimes known as Tyndall stars. This paper describes some of the experimental observations

of Tyndall stars and a mathematical model for the early stages of their evolution. The

modelling is complicated by the strong crystalline anisotropy, which results in an anisotropic

kinetic undercooling at the interface; it leads to an interesting class of free boundary problems

that treat the melt region as infinitesimally thin.

Key words: Free boundary problems, kinetic Wulff shapes, anisotropic kinetic undercooling,

co-dimension-two problems

1 Introduction

When a single crystal of pure, transparent ice is irradiated, the partial absorption of

transmitted radiation volumetrically heats the crystal, leading to internal melting and the

formation of small volumes of liquid. Remarkably, these volumes of water often take on

shapes that resemble six-fold symmetric flowers, stars, or snowflakes, as first documented

by Tyndall [30]. The internal melt figures that Tyndall observed now bear his name and

are often referred to as Tyndall stars, Tyndall figures, or liquid snowflakes. Examples of

such can be found in Figure 1.

Tyndall stars are predominantly found in very pure crystals of irradiated ice. The lack

of impurities and microscopic defects in such crystals limits the onset of liquid nuclei and

prevents the ice from simply melting away as it continually absorbs radiation. Instead,

the ice becomes superheated, whereby its temperature exceeds the equilibrium melting

temperature. It is this superheating that, through an interfacial instability, is suspected

† The research was carried out while the author was at the Department of Earth Sciences,
University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.
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Figure 1. An example of a Tyndall star that has been created by irradiating a pure crystal of ice
with light from a slide projector. The bright circle within the star is a vapour bubble that emerges
due to the density difference between water and ice. The viewing plane corresponds to the basal
plane of the melting ice crystal with the c-axis pointing orthogonally into and out of the page. This
image was created by the authors at the FoaLab in Oxford; for additional details, see Harvey [14].

of giving rise to the complex morphologies that are characteristic of Tyndall stars. The

six-fold symmetry that is apparent in Figure 1 is inherited from the anisotropy of the ice

crystal, which will be discussed in detail below.

From a scientific viewpoint, Tyndall stars offer a convenient route for studying the

dynamics of phase change and moving interfaces because both the solid and liquid

phases are transparent. Thus, in principle, these phases can be observed in real time with

visible light. Understanding of Tyndall stars may also have industrial implications in,

for example, resistance welding, whereby a metal is volumetrically heated by passing an

electrical current through it [2,21]. This leads to a superheated solid and the formation of

small inclusions of liquid metal. Due to the opacity of the metal, these inclusions cannot

be seen in real time and are often detected after the welding operation is over.

The evolution of Tyndall stars has been studied experimentally by Nakaya [24], who

found that the melts begin as cylindrical discs of water with thicknesses that are much

smaller than their radii. This thin aspect ratio is maintained during the evolution of a

Tyndall star, with growth in the radial direction being much faster than in the axial

direction. As the cylindrical disc increases in size, the circular interface can become

unstable, leading to the emergence of a high-wavenumber fingering pattern. In cases

where the radiation intensity was sufficiently high, further growth of the instability

resulted in the formation six large symmetric dendrites. In addition, Nakaya reported

that the Tyndall stars in a given ice crystal always have the same orientation. Further

experiments by Takeya [29] were able to provide quantitative data for the radial and axial

growth of Tyndall stars. Over the duration of a couple of minutes, the radius increased

to roughly 1.5 mm while the thickness grew linearly with time to about 0.3 mm. In some
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Figure 2. A schematic diagram of an ice crystal, which is composed of arrays of hexagonal
prisms. Shaded hexagonal faces form the molecularly smooth basal planes of the ice crystal and
the unshaded rectangular faces correspond to molecularly rough prism planes. The c-axis of the
ice crystal is orthogonal to the basal planes. The shaded circles give the approximate positions of
oxygen atoms. The rate of melting is much higher at prism planes than basal planes, resulting in
Tyndall stars that are relatively thin in directions along the c-axis.

cases, however, the axial growth of the melt was only temporary and eventually it stopped

altogether. Interestingly, Takeya reported that an interfacial instability only occurs when

the axial growth persists; in cases where the axial growth terminates, the melt remains

cylindrical.1 This observation is perhaps linked to those made by Mae [22], who found

that Tyndall stars retain their initial cylindrical shape unless they grow beyond a critical

thickness of 10 µm. Experimental [28] and theoretical [37] studies of solidification in

supercooled liquids, a situation that closely parallels melting into a superheated solid,

have also shown that a critical thickness must be surpassed in order for a morphological

instability to occur at the solid–liquid interface.

The anisotropic growth of a Tyndall star is closely related to the geometric configuration

of the melting ice crystal. Roughly speaking, the crystalline structure of ice can be imagined

as a collection of adjacent hexagonal prisms; see Figure 2. The hexagonal faces of the

prisms form the so-called basal planes of the crystal and the direction that is normal to

these planes defines the c-axis. The radial growth of Tyndall stars occurs within the basal

planes while the axial growth is aligned with the c-axis, therefore giving different Tyndall

stars the same orientation within an ice crystal. The molecularly smooth basal planes melt

at a much slower rate than the molecularly rough prism planes. As discussed in the context

of solidification [6], the accretion of material normal to a molecularly smooth surface,

such as a basal plane, occurs via an energetically activated process, whereas there is no

nucleation barrier at a molecularly rough surface. The fast-melting prism planes dominate

the shape of the Tyndall figure [25] and are responsible for the disparity between its axial

and radial dimensions.

1 The axial growth ceased for cases of low superheating with there being sufficient heat to melt
only a small part of the ice. There could be only limited scope for instability in such situations.
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The mathematical study of problems involving phase change is now a classical subject

for which there is extensive literature. Davis [10] gives a comprehensive treatment of the

mathematical theory of solidification, starting from the classical Stefan problem. Hu &

Argyropoulos [13] provide an overview of modelling and computational techniques that

are relevant to solidification and melting problems. The fluid mechanics of solidification are

reviewed in detail by Huppert [17]. Coriell et al. [8,9] examine the occurrence of multiple

similarity solutions, as well as their selection mechanisms, in models of solidification

and melting. The application of phase-field models to solidification problems has been

discussed by Boettinger et al. [4].

Mathematical models of phase change that account for the anisotropic nature of

the solid have been largely confined to the case of solidification and crystallisation.

Wettlaufer et al. [6, 23, 31, 33] examined two-dimensional crystallisation within the basal

plane by considering an interfacial velocity that depends on the angle between the free

boundary and a certain fixed direction. A suitable angular dependence was found to

give rise to the six-fold symmetry that is characteristic of snowflakes. It is important to

emphasise that in the studies of Wettlaufer et al., it is assumed that growth of the crystal

is in the geometric limit, whereby the interface velocity is only a function of the shape and

position of the interface. In particular, the velocity of the interface does not depend on

field variables that are affected by its motion. This is in contrast to non-geometric growth

models, which account for long-range diffusion of field variables and their coupling to the

interfacial velocity. In geometric models, the crystalline anisotropy enters directly through

the interface velocity. However, in non-geometric models, anisotropy enters through

physical parameters related to the interface, such as surface energy or the coefficient of

kinetic undercooling, the latter of which connects the temperature and velocity at the

interface. Anisotropic solidification outside of the geometric limit has been investigated

by a number of authors. Uehara & Sekerka [32] studied the formation of facets due to

strong anisotropy in the kinetic coefficient using a phase-field model. Particular attention

was paid to determining the relationship between the shape of the emerging crystal

and the mathematical properties of the anisotropic kinetic coefficient. Yokoyama &

Kuroda [35] employed the boundary-element method to study the hexagonal morphologies

of snow crystals predicted by a model with an anisotropic kinetic coefficient. Yokoyama &

Sekerka [36] explored the combined effects of anisotropic kinetic undercooling and surface

energy. Using numerical and asymptotic methods, they investigated the suppression of

corner formation between adjacent facets.

Considerable attention has focused for many years on the stability of the free boundary

in phase-change models. Linear stability analyses of models which treat the phase interface

as infinitesimally thin, such as in the pioneering study by Mullins & Sekerka [26] or in

Hele–Shaw and Muskat problems, indicate that a morphological instability can arise

when a melting boundary is driven by heat flow from a superheated solid region [20]. In

fact, without a regularising mechanism such as surface energy or kinetic undercooling, the

system is severely unstable and the model becomes ill-posed in the sense that disturbances

with arbitrarily large wavenumbers will grow arbitrarily fast in time. Such ill-posedness

can also be avoided by replacing the sharp, infinitesimally thin interface with a diffuse

mushy region consisting of two co-existing phases [2,20]. The theory of mushy regions in

volumetrically heated solids has been developed by Lacey et al. [18,19,21], who treated the
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mush as a collection of small liquid inclusions that grow within the solid. In these papers,

the growth of the inclusions is modelled using classical Stefan problems that account for

surface-energy effects and interfacial curvature, kinetic undercooling, and/or composition

in the case of alloys. The main purpose of those studies was to use homogenisation to

build an averaged model for the mushy region.

A sharp-interface model of Tyndall stars has been formulated and studied by Hennessy

[15]. The focus here was on two-dimensional evolution within the basal plane. The

morphology of the solid–liquid interface was studied using a combination of linear

stability theory and numerical simulations. Growth along the c-axis was not considered

and thus it was not possible to explore how this may influence the stability of the ice–water

interface.

In this paper, we consider the three-dimensional evolution of a Tyndall star or, perhaps

more accurately, a Tyndall figure, as we mostly discuss the earlier growth rather than

the later, star-like stage. Particular attention is paid to capturing the anisotropic growth

along the radial and axial directions. Our description of the problem is based on the

classical Stefan model but the inclusion of volumetric heating and anisotropic kinetic

undercooling makes it non-standard. An asymptotic analysis that exploits the axial and

radial length-scale separation is used to reduce the three-dimensional problem to a co-

dimension-2 free boundary problem whereby the melt is collapsed into a planar surface

with infinitesimal thickness. A local stability analysis of the reduced model is carried out as

a first step towards the study of the onset of fingering patterns at the ice–water interface.

An attempt is made to compare our theoretical results to the experimental observations

of Takeya [29]; however, this is not straightforward due to a lack of knowledge of key

quantities controlling the anisotropic growth. We then propose future experiments that

could produce novel quantitative insights into the growth kinetics.

In the next section, we present a mathematical model for a growing Tyndall figure

based on laboratory experiments. In Section 3, we carry out an asymptotic analysis of

this model that captures the anisotropic growth of the melt and investigates the stability

of the ice–water interface. We discuss our results and conclude the paper in Section 4.

2 Mathematical model

2.1 The physical problem

We suppose that a single crystal of ice held at its melting temperature is illuminated

at time t = 0. The direction of the incident light is taken to be parallel to the c-axis

of the crystal; see Figure 3. We assume that a rapid nucleation process occurs within

the ice upon exposure to light, leading to the creation of a single spherical melt figure.

Continued absorption of radiation by both the ice and the water will drive the melting

at the interface, which we aim to describe mathematically. Our model of this physical

scenario is based on equations governing the temperatures in the liquid and solid phases,

taking into account thermal diffusion and volumetric heat generation due to absorption

of radiation. The solid–liquid interface is assumed to be sharp and, therefore, we impose

appropriate boundary conditions on it.
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Figure 3. We study the growth of a Tyndall figure (depicted by the shaded region) in superheated
irradiated ice. We use Ωl and Ωs to denote regions of space occupied by liquid water and solid ice,
respectively. Here, t represents time. The ice–water interface is denoted by Γ (t) and has a normal
vector n and normal component of velocity v. The z-axis is parallel to the c-axis of the ice crystal
and r = (x2 + y2)1/2 is a radial coordinate that lies within the basal plane. The angle between the
c-axis and the normal vector n is given by ψ.

The field equation for the temperature Tj of phase j is given by

ρjcpj
∂Tj

∂t
= kj∇2Tj + qj , x ∈ Ωj(t), (2.1)

where t is time, position is x = (x, y, z), and Ωj(t) is the region of space occupied by

phase j. We let j = l and j = s for the liquid water and solid ice phases, respectively.

We assume that the z-axis and the (x, y) plane are aligned with the c-axis and basal

planes of the ice crystal, respectively. The values of the material constants, namely the

densities, ρj , specific heat capacities, cpj , and thermal conductivities, kj , differ between the

two phases. Although the difference in density between the phases is significant enough

to give rise to a vapour bubble inside the Tyndall figure, as shown in Figure 1, their

relative difference is small and we take the densities of the two phases to be the same

and equal to ρ, that is, ρl = ρs = ρ. The rates of volumetric heating, qj , are given by

the product of an absorption coefficient, µj , and the local intensity of incident light upon

the medium, I . With a sufficiently small piece of ice (or absorption coefficient), I can be

regarded as constant, making qj constant in each phase. We shall generally assume that

the initial temperatures coincide with the equilibrium melting temperature T0 at t = 0,

with a spherical Tyndall figure of radius a nucleating at the same instant. However, if

significant body heating occurs before nucleation, the initial temperatures will be much

greater than T0. This situation is discussed in Appendix B.

At the evolving interface Γ = Γ (t) between ice and water, we have the usual Stefan

condition

Lρv =

[
kj

∂Tj

∂n

]s

l

, x ∈ Γ (t), (2.2)

where L is the latent heat of fusion, assumed constant; v is the normal velocity, measured



Tyndall star initiation 621

towards the ice; ∂/∂n is the normal derivative, again in the direction into the ice; and [·]sl
denotes the change in a quantity across the interface, going from liquid water to solid ice,

see Figure 3.

We also assume that the normal velocity of the interface is proportional to the local

amount of superheating [10]. To account for the different melting rates of the basal and

prism planes, we take the constant of proportionality to be a function of the orientation

of the interface. Thus, we impose a kinetic condition, equivalent to anisotropic kinetic

undercooling in solidification [32, 35, 36], given by

v = Kf(ψ)(TI − T0), x ∈ Γ (t), (2.3)

where TI is the temperature at the interface,

TI = Ts = Tl, x ∈ Γ (t); (2.4)

K is a constant; f is a dimensionless function, which we refer to as the anisotropy

function; and ψ is the angle between normal vector at the free surface and the c-axis,

as measured relative to the positive x-axis, see Figure 3. Contributions to (2.3) from

the surface energy are not included, which we justify by assuming that after the rapid

nucleation phase, the radius of the melt is much larger than the capillary length given by

lcap = (γ/ρL)(T0/∆T ), where γ is the surface energy of an ice–water interface and ∆T

is the local amount of superheating. Takeya [29] measured superheatings on the order

of 0.1 K in his experiments that use photographic bulbs as the light source, giving a

capillary length of 270 nm; thus, neglecting surface energy seems reasonable given that

Tyndall figures typically have length scales on the order of hundreds of microns up to

millimetres. An important consequence of neglecting surface energy is that our model will

not capture the evolution of the melt into a Wulff shape, which is the equilibrium shape

arising from the minimisation of surface energy under constant-volume conditions [10].

However, based on the phase-field simulations by Uehara & Sekera [32], we might expect

the melt to grow into its “kinetic Wulff shape”, which, in essence, describes the asymptotic

shape that the interface would approach if it were to evolve solely due to anisotropic

undercooling under isothermal conditions, so that the normal velocity depends only upon

the orientation of the interface [32, 35, 36] (also see, below, Sections 3.1 and 3.2).

2.2 The anisotropy function

The anisotropy function f is used to model the orientation dependence of the interfacial

velocity arising from the crystalline structure of the ice. We assume that the value of f is

close to 1 when the velocity is parallel to the prism planes of the ice crystal and small when

the velocity is parallel to the basal planes. Mathematically, this corresponds to f ∼ 1 when

ψ = ±π/2, and f ∼ ϵ ≪ 1 when ψ = 0,±π, respectively. In physical terms, the parameter

ϵ can be thought of as the ratio of the melting velocity of basal planes to prism planes

for a fixed superheating TI − T0 > 0. Experimentally, determining a functional form for

f is possible by measuring the kinetic Wulff shape. However, acquiring the kinetic Wulff

shape is difficult in practice and, consequently, there is often uncertainty in the form of

f. Therefore, our analysis will rely on phenomenological expressions for the anisotropy
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Figure 4. Top (a): we consider three different anisotropy functions f that characterise the depend-
ence of the melting rate on the orientation of the solid–liquid interface: f(ψ) = (ϵ2 + sin2 ψ)1/2

(solid), f(ψ) = ϵ + sin2 ψ (dash–dotted), and f(ψ) = ϵ/(1 + ϵ − sin2 ψ) (dashed). Here, ψ measures
the angle between the c-axis and the vector normal to the interface; see Figure 3. Bottom (b): the
corresponding kinetic Wulff shapes associated with the three anisotropy functions f, which represent
the long-term shape the melt would acquire under isothermal conditions and growth due purely to
anisotropic kinetic undercooling. See text for further details. In both panels we have set ϵ = 0.1.

function. More specifically, we will consider in detail the function

f(ψ) = (ϵ2 + sin2 ψ)1/2, (2.5)

which is expected to produce smooth interfaces based on its corresponding kinetic Wulff

shape. In two dimensions, the kinetic Wulff shape is determined by the convex region

containing the origin traced out by the parametric curves

x = f′(ψ) cosψ + f(ψ) sinψ, (2.6a)

z = f′(ψ) sinψ − f(ψ) cosψ. (2.6b)

The anisotropy function (2.5) is shown along with its corresponding Wulff shape in

Figure 4. Additionally, we will present the key results that are obtained when

f(ψ) = ϵ+ sin2 ψ, (2.7)

and

f(ψ) =
ϵ

1 + ϵ− sin2 ψ
. (2.8)

Since sin2 ψ can be written in terms of sin 2ψ, the anisotropy function (2.7) is similar to

many of those found in the literature [32]. The anisotropy function in (2.8) has sharp

maxima at ψ = ±π/2 (see Figure 4(a)), making it comparable to theoretical expressions

for f that have been derived from models of surface diffusion [5,35]. Figure 4 shows that

the anisotropy functions (2.7) and (2.8) lead to the formation of corners in the kinetic
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Table 1. Parameter values for ice–water systems heated by light from an overhead projector.

These are based on experiments carried out in Oxford. The absorption coefficients are for

monochromatic infrared radiation with a wavelength of 980 nm. The intensity of radiation is

estimated from the power of the bulb and distance to the sample, further details are given in

the text

ρ 1,000 kg/m3

cps 2,050 J/(kg K)
cpl 4,181 J/(kg K)
ks 2 W/(m K)
kl 0.6 W/(m K)
L 3.33 × 105 J/kg
µs 15.3 1/m
µl 43.6 1/m
I0 300 W/m2

γ 0.033 J/m2

T0 273 K

Wulff shape. Surface energy is likely to become important on these small scales and may

lead to a smoothing of the corners. Capturing such dynamics is beyond the scope of our

current model, however.

2.3 Parameter values

The configuration that we study here is based on experiments involving ice–water systems

carried out in Oxford. Light from an overhead projector was used to irradiate a pure

ice crystal. A list of parameter values corresponding to these experiments is given in

Table 1. Although light from the overhead projector will have a broad spectrum, ice and

water are particularly strong absorbers of infrared radiation. Therefore, the absorption

coefficients in Table 1 are based on monochromatic infrared radiation with a wavelength

of 980 nm. The intensity of radiation has been calculated from the bulb power and

distance to the sample by assuming spherical emission; the complete details can be found

in Hennessy [15].

Determining values for the parameters K and ϵ is a challenging experimental task.

Using arguments from statistical mechanics, it is possible to write the velocities of the

planes [34], as well the coefficient K in (2.3) [11], in terms of elementary quantities

such as molecular distance and activation energy. However, these expressions introduce

additional unknown parameters into the model, making them of little practical use. The

combined uncertainty in the values for K and ϵ, as well as in the functional form of the

anisotropy function f, will make carrying out a quantitative comparison of our results

with experimental data difficult. That being said, qualitative comparisons are still possible,

and the analysis can be used as a tool for ruling out anisotropy functions.

2.4 Non-dimensionalisation

The model is non-dimensionalised by introducing suitable scales for time, distance, and

temperature. The time variable t is written in terms of the time scale of thermal diffusion
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in ice, ℓ2/κs, where κs = ks/(ρcps) is the thermal diffusivity of ice and ℓ is a characteristic

length scale defined below. The temperature scale is set by the amount of superheating

in the ice caused by volumetric heating, giving ∆T = qsℓ
2/ks. Finally, the length scale

ℓ is chosen to balance terms in the kinetic condition (2.3), implying that significant

growth parallel to the basal planes occurs on O(1) (dimensionless) time scales. This gives

ℓ3 = Kk2
s /(qsρcps). Using these scales, we write t = (ℓ2/κs)τ, x = ℓX , and Tj = T0+(∆T )θj .

The non-dimensional field equations can be written as

∂θs
∂τ

= ∇2θs + 1, X ∈ Ωs(τ), (2.9a)

ĉp
∂θl
∂τ

= k̂∇2θl + q̂, X ∈ Ωl(τ), (2.9b)

where ĉp = cpl/cps and k̂ = kl/ks are ratios of specific heat capacities and thermal

conductivities, respectively. The ratio of volumetric heating, q̂ = ql/qs, can be written in

terms of the absorption coefficients via q̂ = µl/µs. Initial conditions for the temperatures

are given by θs = θl = 0 at τ = 0.

At the ice–water interface, the Stefan and kinetic conditions, along with the continuity

of temperature, are given by

v = β−1

(
∂θs
∂n

− k̂
∂θl
∂n

)
, X ∈ Γ (τ), (2.9c)

v = θIf(ψ), X ∈ Γ (τ), (2.9d )

θI = θs = θl , , X ∈ Γ (τ), (2.9e)

respectively, where β = L/(cps∆T ) is the Stefan number. The initial ice–water interface is

taken to be the sphere with dimensionless radius α = a/ℓ given by |X | = α.

Far from a growing liquid inclusion, ∂θs/∂τ ∼ 1, so that we have

θs ∼ τ, |X | → ∞. (2.9f )

Note that (2.9f) requires that the Tyndall figure and associated length scales be small

compared with the region subject to the body heating.

Using the parameter values in Table 1, we find that k̂ ≃ 0.3, ĉp ≃ 2, and q̂ ≃ 3,

all of which can be treated as O(1) in size. Due to uncertainty in the value of the

parameter K , it is difficult to estimate the length scale ℓ, the characteristic temperature

rise ∆T , and the Stefan number β. Using instead the measured value of ∆T ∼ 0.1 K from

Takeya [29], the Stefan number is given by β ∼ 103. The length scale can be estimated

from ℓ = (∆Tks/qs)1/2 ∼ 6.7 mm and the time scale from ℓ2/κs ∼ 46 s, which seem

slightly large but reasonable.

The proceeding analysis will focus on the distinguished limit whereby ϵ = O(β−1).

This regime is considered so that we can examine the interplay of the kinetic anisotropic

effects; whether or not this balance occurs in practice depends upon the size of the rate

of the volumetric heating. Thus, we write β−1 = bϵ, where b = O(1). Furthermore, it

will be assumed that the (dimensionless) radius of the initial melt, α, satisfies α ≪ ϵ.

In dimensional terms, this inequality means that the initial radius should be less than
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1 µm, which is close to the limit where surface-energy effects become important. This

upper bound on the initial size of the radius, along with the anisotropic kinetic condition

(2.9e), ensures that the spherical Tyndall figure will first grow into a thin disc of melt

with radius that is much greater than its thickness, which is consistent with experimental

observations [29].

3 Analysis

The analysis begins in Section 3.1 with an examination of the small-time behaviour for

τ = O(α1/2). In dimensional terms, the small-time regime corresponds to times given by

t ∼ (a/ℓ)1/2(ℓ2/κs). Taking the dimensional radius of the initial melt to be of the order

of one micron, we find that t ∼ 0.5 seconds. In this regime, the volumetric heating and

the kinetic condition drive the melt into a thin shape with dimensions along the c-axis

that are much smaller than those in the basal plane. In Section 3.2, we consider the

dynamics when τ = O(1), corresponding to t ∼ 50 seconds. By exploiting the separation

of length scales that arises from the initial growth, a simplified model can be derived.

Using this model, the linear stability of the ice–water interface is examined in Section 3.3.

Our analysis will first focus on the dynamics that occur when the anisotropy function

(2.5) is used. We will then consider additional anisotropy functions in Section 3.4.

3.1 Early time

The analysis of the early-time behaviour proceeds by letting τ = α1/2τ̄, θj = α1/2θ̄j , where

α ≪ ϵ ≪ 1. We then consider the temperature field near and away from the melt, and

connect the solutions in the two regions using asymptotic matching.

In the region of solid away from the melt, i.e., for X ∼ O(1), the leading-order problem

in α is straightforward to solve and it gives θ̄s(X , t̄) = τ̄. To resolve the temperatures near

the melt, we let X = αX̄ . The leading-order problem in α in this inner region is given by

∇2θ̄s = 0, X̄ ∈ Ω̄s(τ̄), (3.1)

∇2θ̄l = 0, X̄ ∈ Ω̄l(τ̄) (3.2)

with the following conditions at the solid–liquid interface:

∂θ̄l
∂n

= k̂
∂θ̄s
∂n

, X̄ ∈ Γ̄ (τ̄), (3.3)

v̄ = θ̄If(ψ), X̄ ∈ Γ̄ (τ̄). (3.4)

By asymptotically matching the temperatures in the solid, we also have that θ̄s → τ̄ as

|X̄ | → ∞. The solutions for the temperature fields are given by θ̄l = θ̄s ≡ τ̄. The motion

of the interface, therefore, satisfies the equation

v̄ = τ̄f(ψ). (3.5)

To make further progress, we suppose that the rescaled positions of the ice–water
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interface are given by the zero level set of a function F , defined by

F = s̄(X̄ (τ̄)) − τ̄2/2 ≡ 0, (3.6)

where s̄ a function that is to be determined. The initial shape of the interface is encoded

in the function s̄; we require that s̄(X̄ (0)) ≡ 0 on the sphere |X̄ | = 1 when τ̄ = 0. We

emphasise here that s̄ also plays the role of a time variable; from (3.6) we see that s̄ = τ̄2/2.

In this formulation, the normal velocity at the interface can be written as v̄ = τ̄/|∇s̄| and,

therefore, the kinetic condition (3.5) becomes

|∇s̄|f(ψ) = 1. (3.7)

Closing the problem requires writing the angle ψ in terms of the function s̄. For clarity, we

now consider the two-dimensional problem by writing X̄ = (X̄, 0, Z̄ ). In this case, simple

trigonometry shows that the angle ψ satisfies sinψ = s̄X̄/(̄s
2
X̄

+ s̄2
Z̄
)1/2, where s̄X̄ = ∂s̄/∂X̄

and s̄Z̄ = ∂s̄/∂Z̄ . By writing f(ψ) = f̂(sinψ), the kinetic equation (3.7) becomes

(̄s2X̄ + s̄2Z̄ )1/2f̂
(
s̄X̄ (̄s2X̄ + s̄2Z̄ )−1/2

)
= 1. (3.8)

To see how the melt region evolves, we now focus on the anisotropy function given by

(2.5). In this case, the problem for s̄ is

(̄s2X̄ + s̄2Z̄ )1/2
[
ϵ2 + s̄2X̄ (̄s2X̄ + s̄2Z̄ )−1

]1/2
= 1 (3.9)

subject to the condition s̄(X̄0, Z̄0) ≡ 0 on the circle X̄2
0 + Z̄2

0 = 1 at time τ̄ = 0. The

solution to this problem can be found using Charpit’s equations, as detailed in Appendix

A. In essence, Charpit’s equations are a generalisation of the method of characteristics

for non-linear first-order hyperbolic problems. We proceed by parametrising the initial

data according to X̄ 0(ϕ) = (X̄0, Z̄0) = (cosϕ, sinϕ), s̄(X̄ 0(ϕ)) ≡ 0, with ϕ ∈ [0, 2π). Upon

applying the method, solution can be written implicitly and parametrically as

X̄ =

[
1 +

s̄(1 + ϵ2)

(ϵ2 + cos2 ϕ)1/2

]
cosϕ, Z̄ =

[
1 +

s̄ϵ2

(ϵ2 + cos2 ϕ)1/2

]
sinϕ. (3.10)

Thus, for a given value of s̄, which can be written in terms of time via s̄ = τ̄2/2, these

curves trace out the instantaneous positions of the solid–liquid interface as ϕ is varied

from 0 to 2π. Figure 5 shows the interface profiles predicted by (3.10) at various times

when ϵ = 0.1. The initially spherical melt first grows primarily in the radial direction,

keeping its thickness in the axial direction constant (top panel). By the time the axial

growth becomes appreciable, the radius of the melt has grown a substantial amount,

resulting in a liquid region with a small aspect ratio.

To aid in the physical interpretation of (3.10), we revert to the original non-

dimensionalisation by writing s̄ = s/α, X̄ = X/α, τ̄ = τ/α1/2 to obtain

X =

[
α+

s(1 + ϵ2)

(ϵ2 + cos2 ϕ)1/2

]
cosϕ, Z =

[
α+

sϵ2

(ϵ2 + cos2 ϕ)1/2

]
sinϕ, (3.11)
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Figure 5. The early-time evolution of a spherical melt figure when the anisotropy function is given
by (2.5) when ϵ = 0.1. These curves are given by the solution in (3.10). The arrows indicates the
direction of time. The top panels shows the solid–liquid interface at equally spaced values of s̄ given
by s̄ = 0, 0.33, 0.66, and 1, corresponding to rescaled dimensionless times given by τ̄ = (2s̄)1/2 = 0,
0.82, 1.15, and 1.41, respectively. Similarly, the bottom panel shows the interface for values of s̄
given by s̄ = 0, 1.42, 2.86, 4.29, 5.71, 7.14, and 8.57, corresponding to τ̄ = 0, 1.69, 2.39, 2.93, 3.38,
3.78, and 4.14. The interface remains smooth for all time and evolves into the kinetic Wulff shape
shown in Figure 4.

where s = τ2/2. In the very early stages of development, so that s is of order α, then for

parts of the interface given by | cosϕ| ≫ ϵ,

Z ∼ α sinϕ, X ∼
(
α+

s

| cosϕ|

)
cosϕ ∼ ±s + α cosϕ, (3.12)

while for | cosϕ| = O(ϵ), say ϕ = ±π/2 ∓ ψ with ψ = O(ϵ),

Z ∼ ±α, X ∼ ±
(
α± s

ϵ2 + ψ2

)
ψ ∼ ±ψs

(ϵ2 + ψ2)1/2
. (3.13)

Thus, the interface takes the form, approximately, of two circular arcs, each of radius α

and centred on (X,Z) = (±s, 0), linked by horizontal lines.

In the later stages, s ≫ α/ϵ,

Z ∼ ϵ2s

(ϵ2 + cos2 ϕ)1/2
sinϕ, X ∼ s(1 + ϵ2)

(ϵ2 + cos2 ϕ)1/2
cosϕ, (3.14)

and
X2

1 + ϵ2
+

Z2

ϵ2
∼ s2

ϵ2 + cos2 ϕ
[(1 + ϵ2) cos2 ϕ+ ϵ2 sin2 ϕ] = s2, (3.15)

so the interface is then approximately elliptical. The longer-term interface profile, defined

by the large-time limit of the small-time model, and given by (3.14) for this choice of f, is,

in fact, equivalent to the corresponding kinetic Wulff shape that can be computed from

(2.6). Note that the half thickness of the melt, given by the maximum value of Z , grows
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R

Z

S(τ)

h(R, τ)O(ϵ)

(ii)

(iii)

(i)
O(ϵ2)

O(ϵ2)

Figure 6. A schematic diagram showing the three asymptotic regions in the τ = O(1) problem.
By constructing local solutions in regions (i) and (ii), it is possible to derive effective boundary
conditions that lead to a self-contained problem in region (iii) by asymptotic matching.

in time as Z(ϕ = π/2) = ϵτ2/2. The maximum value of X, corresponding to the rim of

the melt, grows as X(ϕ = 0) ∼ τ2/2. We see that for s ≫ α, the influence of the initial

interface has been lost.

3.2 Order-one time

We now consider the dynamics that occur on O(1) time scales. The initial condition in

this time regime takes the form of a matching requirement, as τ → 0, with the fully

developed early-time shape given by (3.15). The analysis in two and three dimensions is

sufficiently similar for us to proceed directly to problems with axial symmetry. Thus, we

define a radial coordinate R = (X2+Y 2)1/2. We also assume the system remains symmetric

about the Z = 0 plane and, thus, we only consider the problem in the upper-half space

given by Z > 0. The position of the solid–liquid interface is written as Z = h(R, τ); the

corresponding position of the rim is R = S(τ) so that h(S(τ), τ) ≡ 0. The angle ψ appearing

in the anisotropy function f satisfies

sinψ =
∂h/∂R

(1 + (∂h/∂R)2)1/2
. (3.16)

From matching into the early-time regime and using (3.15), we expect that

h(R) ∼ ϵ(S2 − R2)1/2 (3.17)

as τ ∼ 0.

In principle, the dynamics in the O(1) time regime can be studied by solving (2.9)

directly. However, the thin aspect ratio of the melt, with Z ∼ O(ϵ) and X,Y ∼ O(1),

motivates seeking a solution via matched asymptotic expansions, and this is the approach

we take. There are three distinct regions that need to be considered: (i) near the melt but

away from the rim, (ii) near the melt and near the rim, and (iii) away from the melt.

A schematic diagram of these regions is shown in Figure 6. Our approach is to obtain

local solutions in regions (i) and (ii) which can then be used to derive effective boundary

conditions for the problem in region (iii) by asymptotic matching.
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3.2.1 Analysis near the melt and away from the rim

In region (i) near the melt but away from the rim, R ≪ S(τ), we rescale the axial

coordinate according to Z = ϵZ̃ . In addition, the position of the interface is written as

h(R, τ) = ϵh̃(R, τ) and the temperatures in this region are denoted by Θ̃j , j = l, s. Under

this scaling, the anisotropy function (2.5) can be written as f(ψ) ∼ ϵ[1+ (∂h̃/∂R)2]1/2. The

governing equations in this region are given by

ϵ2
∂Θ̃s

∂τ
=
ϵ2

R

∂

∂R

(
R

∂Θ̃s

∂R

)
+

∂2Θ̃s

∂Z̃2
+ ϵ2, Z̃ > h̃(R, τ), (3.18a)

ϵ2ĉp
∂Θ̃l

∂τ
=
ϵ2k̂

R

∂

∂R

(
R

∂Θ̃l

∂R

)
+ k̂

∂2Θ̃l

∂Z̃2
+ ϵ2q̂, Z̃ < h̃(R, τ). (3.18b)

The boundary conditions on the solid–liquid interface are

ϵb−1 ∂h

∂τ
= −k̂

(
∂Θ̃l

∂Z̃
− ϵ2

∂Θ̃l

∂R

∂h̃

∂R

)
+

∂Θ̃s

∂Z̃
− ϵ2

∂Θ̃s

∂R

∂h̃

∂R
, Z̃ = h̃(R, τ), (3.18c)

∂h̃

∂τ
= Θ̃I

[
1 +

(
∂h̃

∂R

)2 ]1/2[
1 + ϵ2

(
∂h̃

∂R

)2 ]1/2

, Z̃ = h̃(R, τ), (3.18d )

where Θ̃I = Θ̃s(R, h̃(R, τ), τ) = Θ̃l(R, h̃(R, τ), τ). The symmetry about Z̃ = 0 implies that

∂Θ̃l/∂Z̃ = 0 at Z̃ = 0. The relevant matching conditions for the temperature in the solid

as Z̃ → ∞ will be discussed below.

The solution to this problem is now expanded as

Θ̃j = Θ̃(0)
j + ϵΘ̃(1)

j + O(ϵ2), (3.19a)

h̃ = h̃(0) + ϵh̃(1) + O(ϵ2). (3.19b)

Assuming that ϵ2q̂ = O(ϵ2), the O(1) solution for the temperature is straightforward to

obtain and is given by

Θ̃(0)
l (R, Z̃ , τ) = Θ̃(0)

s (R, Z̃ , τ) ≡ Θ̃(0)
I (R, τ). (3.20)

The matching condition for this problem is given by Θ̃(0)
s (R, Z̃ , τ) = θs(R, 0, τ) as Z̃ → ∞.

From (3.20), we can deduce that Θ̃(0)
I (R, τ) = θs(R, 0, τ). Therefore, the O(1) part of the

kinetic equation (3.18d) becomes

∂h̃(0)

∂τ
= θs(R, 0, τ)

[
1 +

(
∂h̃(0)

∂R

)2
]1/2

. (3.21)

Proceeding to the O(ϵ) problem, we find that the temperatures are determined from

bulk equations

∂2Θ̃(1)
j

∂Z̃2
= 0 (3.22)
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and must satisfy the Stefan condition

b−1 ∂h̃(0)

∂τ
= −k̂

∂Θ̃(1)
l

∂Z̃
+

∂Θ̃(1)
s

∂Z̃
. (3.23)

By exploiting the symmetry of the problem about the Z-axis, we find that the temperature

in the liquid, Θ̃(1)
l , must be constant in space. Asymptotically matching the derivatives of

the solid temperature in regions (i) and (iii) gives the relation

∂θ(1)
s

∂Z̃
=

∂θs
∂z

(3.24)

as Z̃ → ∞ and z → 0. Using (3.24) in the Stefan condition, (3.23) yields

∂h̃(0)

∂τ
= b

∂θs
∂z

, z = 0. (3.25)

We emphasise here that (3.21) and (3.25) can be treated as boundary conditions for the

problem in region (iii) away from the melt.

3.2.2 Analysis near the melt and near the rim

The next step is to consider the local dynamics near the rim in order to derive an equation

describing its motion. We switch to a travelling-wave coordinate given by Ř = (R−S(τ))/ϵ2

and let Z = ϵ2Ž . These scales have been chosen in order to balance both sides of the

initial interface profile given in (3.17). The position of the solid–liquid interface is written

as h(R, τ) = ϵ2ȟ(Ř) and the temperatures are denoted by Θ̌j for j = l, s. Upon using this

scaling in (2.9), the leading-order problem in ϵ is given by

∂2Θ̌j

∂Ř2
+

∂2Θ̌j

∂Ž2
= 0, (Ř, Ž) ∈ Ω̌j(τ), j = s, l. (3.26)

The Stefan condition reduces to the continuity of thermal flux across the interface

∂Θ̌s

∂Ž
− ∂Θ̌s

∂Ř

∂ȟ

∂Ř
= k̂

(
∂Θ̌l

∂Ž
− ∂Θ̌l

∂Ř

∂ȟ

∂Ř

)
, Ž = ȟ(Ř), Ř < 0. (3.27)

The leading-order kinetic equation reads

−dS

dτ

dȟ

dŘ
= Θ̌I

∣∣∣∣∣
∂ȟ

∂Ř

∣∣∣∣∣ , Ž = ȟ(Ř), Ř < 0, (3.28)

where Θ̌I = Θ̌s(Ř, ȟ(τ), τ) = Θ̌l(Ř, ȟ(τ), τ). Since the thickness of the melt needs to decrease

to zero as the rim is approached, we expect that ∂ȟ/∂Ř < 0 for all Ř < 0; therefore, the

kinetic condition (3.28) reduces to

∂S

∂τ
= Θ̌I (Ř, τ), Ř < 0. (3.29)
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Furthermore, we have the symmetry conditions

∂Θ̌l

∂Ž
= 0, Ž = 0, Ř < 0, (3.30a)

∂Θ̌s

∂Ž
= 0, Ž = 0, Ř > 0. (3.30b)

By matching to the solutions in region (ii), we obtain the following far-field conditions:

Θ̌l = Θ̌s ∼ θs(S(τ), 0, τ). (3.31)

It is straightforward to see that the bulk equations (3.26) and the Stefan condition (3.27)

are satisfied by temperatures that are constant in space. Therefore, we have that

Θ̌l = Θ̌s ≡ θs(S(τ), 0, τ) (3.32)

to leading order, which implies the rim moves according to

∂S

∂τ
= θs(S(τ), 0, τ). (3.33)

The next-order problem can be used to determine the profile of the melt near the rim;

however, this is not required in the subsequent analysis. Finally, we note that by matching

the melt heights in regions (ii) and (iii), i.e., ϵh̃ and ϵ2ȟ, we find that

h̃(0) ∼ 0, R ∼ S(τ). (3.34)

We now have all of the ingredients to write down a self-contained problem in region (iii).

3.2.3 A reduced model for O(1) times

In region (iii), the melt appears to have zero thickness; it has been collapsed onto a circle

lying within the Z = 0 plane. The asymptotic matching into the inner regions (i) and (ii)

provides boundary conditions on this circle. Although the melt is effectively treated as

having zero thickness, the model still captures its evolving shape.

In region (iii), the temperature field satisfies the equation

∂θs
∂τ

= ∇2θs + 1, Z > 0 (3.35a)

with θs = 0 when τ = 0. In the far-field, we require that θs ∼ τ as |X | → ∞. The Z = 0

plane is divided into two regions corresponding to being inside and outside of the melt,

R < S (τ) and R > S (τ), respectively. For points inside of the melt, we have Stefan and

anisotropic kinetic conditions given by (where we drop the (0) subscript on h̃(0))

∂h̃

∂τ
= b

∂θs
∂Z

, Z = 0, R < S(τ), (3.35b)

∂h̃

∂τ
= θs

[
1 +

(
∂h̃

∂R

)2]1/2

, Z = 0, R < S(τ). (3.35c)
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It should be noted that, because of (3.35b), the Stefan condition plays a significant rôle

in this regime. This means that the isothermal approximation fails to hold and the melt

region should no longer be expected to take a kinetic Wulff shape.

Outside of the melt, we impose a symmetry condition given by

∂θs
∂Z

= 0, Z = 0, R > S(τ). (3.35d )

The kinetic condition at the rim reads

∂S

∂τ
= θs, Z = 0, R = S(τ). (3.35e)

Finally, it is required that

h̃(S(τ), 0, τ) = 0. (3.35f )

To determine asymptotically consistent initial conditions for the position of the rim and

the profile of the solid–liquid interface, we examine the early behaviour of (3.35) and

match it to the small-time solution given by (3.15).

3.2.4 Early behaviour of model for O(1) times

The relevant scaling to resolve the early time behaviour and match into the small-time

regime is given by τ = ϵ1/2τ̂, θs = ϵ1/2θ̂s, X = ϵX̂ , h̃ = ϵĥ, and S = ϵŜ . From the

leading-order problem in ϵ, it is straightforward to deduce that θ̂ = τ̂. The leading-order

kinetic conditions that hold within the melt and at the rim are then given by

∂ĥ

∂τ̂
= τ̂

[
1 +

(
∂ĥ

∂R̂

)]1/2

, (3.36a)

∂Ŝ

∂τ̂
= τ̂. (3.36b)

From (3.15), we see that in the small-time regime, the rim grows like τ2/2 + O(ϵ) for

τ ∼ O(1); therefore, we can solve (3.36b) and by matching we obtain Ŝ(τ̂) = τ̂2/2. The

solution for Ŝ motivates seeking a similarity solution to (3.36a) of the form ĥ = τ̂2Ĥ(R̂/τ̂2).

Using this ansatz in (3.36a) gives the problem

2
[
Ĥ(ζ) − ζĤ ′(ζ)

]
=

[
1 + (Ĥ ′(ζ))2

]1/2
, (3.37)

where ζ = R̂/τ̂2 and Ĥ satisfies Ĥ(1/2) = 0. The solution is Ĥ(ζ) = A(1/4 − ζ2)1/2 or,

equivalently

ĥ = A

(
τ̂4

4
− R̂2

)1/2

, (3.38)

where A = 1 is a constant that can be determined by matching to (3.15) as τ ∼ O(1). From

this analysis, we can conclude that the model in (3.35) should have initial conditions for
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the interface given by

h̃ ∼
(
τ4

4
− R2

)1/2

, S ∼ τ2

2
(3.39)

as τ ∼ 0. For 0 < τ ≪ 1, (3.39) describes the early growth of the melt in the O(1) time

regime, which is consistent with the long-term growth in the first time regime.

3.3 Linear stability for times of O(1)

We now examine the linear stability of the system using the reduced model (3.35). The

calculation involves two main steps. First, a base state corresponding to a growing axisym-

metric melt is computed. Finally, we determine the growth rates of small, azimuthally

varying perturbations to the base state. Our analysis will focus on constructing local

solutions valid near, but not too close to, the rim.

Our calculation of the base state begins by introducing a travelling-wave coordinate X̆

such that X̆ = R − S(τ) and letting Z̆ = Z . We focus on the local behaviour of solutions

near the rim so that X̆2 + Z̆2 ≪ 1. The temperature and the melt thickness are written

as θs ∼ θ̆s(X̆, Z̆) and h ∼ h̆(X̆), where we expect from (3.17) that h̆(X̆) ∼ h̆1(−X̆)1/2 for

sufficiently small X̆.

Close to the rim, the temperature θ̆s approximately satisfies Laplace’s equation

∂2θ̆s

∂X̆2
+

∂2θ̆s

∂Z̆2
= 0. (3.40)

The Stefan and kinetic conditions read

−∂S

∂τ

∂h̆

∂X̆
= b

∂θ̆s

∂Z̆
, Z̆ = 0, X̆ < 0, (3.41)

−∂S

∂τ

∂h̆

∂X̆
= θ̆s

[
1 +

(
∂h̆

∂X̆

)2 ]1/2

, Z̆ = 0, X̆ < 0, (3.42)

respectively. The symmetry condition is given by

∂θ̆s

∂Z̆
= 0, Z̆ = 0, X̆ > 0 (3.43)

and the rim evolves according to

∂S

∂τ
= θ̆s, Z̆ = 0, X̆ = 0. (3.44)

Since we have assumed that θ̆s is independent of τ, we immediately deduce from (3.44)

that the rim moves with a constant velocity, V , given by V = θ̆s(0, 0).
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φ

S(τ)

u

(X̆, Z̆)

Figure 7. A schematic diagram of the local polar coordinates given by X̆ = u cosφ and Z̆ = u sinφ
that are centred at the rim. It is convenient to write the local temperature profile in terms of these
coordinates; see text for details.

An approximate solution for the temperature can be obtained by converting to local

polar coordinates that are centred at the rim. Thus, we introduce the change of variable

X̆ = u cosφ, Z̆ = u sinφ, (3.45)

where u is the local radius and φ is the polar angle measured relative to the positive

X̆-axis; see Figure 7.

An approximate solution for the temperature can be written as

θ̆s ∼ V + θ̆1u
1/2 cos(φ/2) + γX̆, (3.46)

which satisfies the symmetry condition (3.43) and where θ̆1 is a constant that can be

determined from the Stefan condition (3.41). In particular, by inserting (3.46) in (3.41)

and using the fact that h̆ ∼ h̆1(−X̆)1/2 for X̆ ∼ 0−, we find

1

2
V h̆1(−X̆)−1/2 ∼ 1

2
θ̆1(−X̆)−1/2, X̆ ∼ 0− (3.47)

so that θ̆1 = V h̆1. Using a similar procedure in the kinetic condition (3.42) shows that

h̆1 = 1. The parameter γ in (3.46) is taken to be a free parameter and we will investigate

the role it plays in controlling the stability of the problem.

We now investigate the stability of the base state by adding small perturbations of

order δ ≪ 1 to θ̆s and S . To simplify matters, we suppose that we are looking locally

near (X,Y , Z ) = (V τ+ X̆, Y̆ , Z̆), where X̆2 + Y̆ 2 + Z̆2 ≪ 1, and can consider the rim as a

straight line on these scales. Taking the rim to be flat is reasonable when the perturbation

wavenumber in the azimuthal direction is large. Note that X̆ = Y̆ = Z̆ = 0 corresponds

to a point on the base-state rim and, thus, we have effectively attached a Cartesian

coordinate system to this point. We write the local temperature and the position of the

rim as

θs ∼ θ̆s(X̆, Z̆) + δΘ̆s(X̆, Z̆) eiκY̆ +mτ, (3.48a)

S ∼ V τ+ δS̆ eiκY̆ +mτ, (3.48b)

where κ and m denote the wavenumber and growth rate of the perturbations, respectively,
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and θ̆s is given by (3.46). The perturbation to the temperature satisfies the equation

∂2Θ̆s

∂X̆2
+

∂2Θ̆s

∂Z̆2
− κ2Θ̆s = 0 (3.49)

together with

∂Θ̆s

∂Z̆
= 0, Z̆ = 0, X̆ > 0. (3.50)

The solution can be found using the local polar coordinates in (3.45) and written as

Θ̆s = Θ̆1u
−1/2e−κu cos(φ/2), (3.51)

where Θ̆1 is a constant that is to be determined. An equation governing the perturbation

to the rim position can be derived from inserting (3.48) into the kinetic condition

∂S/∂τ = θs(S(τ), τ), expanding about δ ≪ 1, and taking the O(δ) part

mS̆ =
∂θ̆s

∂X̆
S̆ + Θ̆s, Z̆ = 0, X̆ = 0. (3.52)

We note that

∂θ̆s

∂X̆
∼ V

2
X̆−1/2 + γ, Θ̆s ∼ Θ̆1X̆

−1/2 (3.53)

as X̆ ∼ 0 and Z̆ = 0, both of which become singular as X̆ → 0. In order for the kinetic

condition (3.52) to remain well defined, we need Θ̆1 = −(V/2)S̆ , which yields

mS̆ = γS̆ , (3.54)

i.e., the perturbation growth rate m is exactly equal to the parameter γ in the base-

state temperature profile (3.46). This linear analysis thus indicates instability if there is a

background temperature gradient in the direction of propagation of the rim, γ > 0, but

stability for a negative gradient, γ < 0. Note that in the case of instability, the growth rate

of the perturbations is independent of the wave number, in contrast to unstable Hele–

Shaw or Stefan problems without surface tension/energy, where growth rate increases

with wave number and can be arbitrarily high. Note that similar stability results for

another free boundary problem were obtained in Howison et al. [16].

Given the absence of exact and of approximate long-time solutions about which to

perturb, it is not immediately apparent what values γ might take in practice. Intuitively

we might expect γ to be positive, since melting at the interface has the effect of locally

reducing temperature, at least for relatively low times τ. The simulations by Hennessy [15]

support this claim, although they do not consider heat transfer in the axial direction. If

γ is positive, we then expect a mild instability whose form will also be influenced by any

further anisotropy, for instance, the usual six-fold one in the (X,Y ) plane.
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Figure 8. Early-time evolutions of an initially spherical melt for anisotropy functions f(ψ) =
ϵ+ sin2 ψ (panel a) and f(ψ) = ϵ/(1 + ϵ− sin2 ψ) (panel b), when ϵ = 0.1. The curves in panels (a)
and (b) are obtained from the solutions (3.55) and (3.56), respectively. The positions of the interface
are shown at equally spaced values of s̄ given by s̄ = 0, 2, 4, 6, 8, and 10, corresponding to rescaled
dimensionless times τ̄ = 0, 2, 2.83, 3.46, 4.0, and 4.47, respectively. Both anisotropy functions lead
to the formation of a corner, and this happens when τ̄ = 1.49 in panel (a) and τ̄ = 0.32 in panel
(b). As τ̄ → ∞, the interface profiles approach the kinetic Wulff shapes shown in Figure 4.

3.4 Other anisotropy functions

We now briefly outline the results that are obtained for the anisotropy functions (2.7)

and (2.8). Full details about the solutions in the early-time regime and the solution of

Charpit’s equations are given in Appendix A.

3.4.1 Dynamics with f(ψ) = ϵ+ sin2 ψ

In the early-time regime given by τ = O(α1/2), the solid–liquid interface can be written

parametrically as

X = [α+ s(1 + ϵ+ sin2 ϕ)] cosϕ, Z = [α+ s(ϵ− cos2 ϕ)] sinϕ, (3.55)

where ϕ ∈ [0, 2π) and s = τ2/2. Interface profiles at various times are shown in Figure 8(a).

The interface remains smooth until s = τ2/2 = α/(1− ϵ), at which point a corner develops

at the rim due to intersecting characteristics. The early growth of the rim for s/α ≪ ϵ

scales like S ∼ τ; however, the longer-term growth of the rim for s/α ≫ ϵ is reduced by

the corner and we find that S ∼ ϵ1/2τ2. The thickness of the melt in the axial direction

grows like ϵτ2 for all times.

For larger times, the separation of length scales in the radial and axial directions can,

in principle, be exploited and the model can be reduced using a similar analysis to that

in Section 3.2. However, the current model is expected to require additional mechanisms

such as surface energy to act to regularise the corner. Therefore, we do not proceed with

the model reduction in this case. Nevertheless, we note that because of the slower radial

growth for early times, in getting to terms to balance in a model equivalent to (3.35),

larger time and temperature scalings are needed: τ = ϵ−1/4τ∗ and θ = ϵ−1/4θ∗.
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3.4.2 Dynamics with f(ψ) = ϵ/(1 + ϵ− sin2 ψ)

In this case, the position of the interface in the early-time regime, τ = O(α1/2), is given by

X =

[
α+

ϵs(3 sin2 ϕ+ ϵ)

(sin2 ϕ+ ϵ)2

]
cosϕ, Z =

[
α− ϵs(3 cos2 ϕ− 1 − ϵ)

(sin2 ϕ+ ϵ)2

]
sinϕ, (3.56)

where, again, s = τ2/2. Figure 8(b) shows the corresponding interface profiles at various

times. Here, the corner appears in the very early stages of melt growth, in particular, when

s = τ2/2 = ϵα/(2 − ϵ). The growth of the rim scales like S ∼ α+ (αϵ)1/2τ for s ≪ α/ϵ and

like S ∼ ϵτ2 for s ≫ α/ϵ. The axial growth scales like ϵτ2 for all time.

For this particular anisotropy, the eventual growth of the melt both parallel and

normal to the c-axis is the same order of magnitude. The aspect ratio of the melt roughly

approaches 5:2 and, therefore, it is not possible to simplify the model for O(1) times.

3.4.3 Commonalities of the early-time growth

The three anisotropy functions that we consider produce interface profiles with common

growth features in the early-time regime. For instance, all three cases lead to melts that

evolve into their kinetic Wulff shapes given by (2.6). In fact, an analysis for arbitrary

anisotropy functions in Appendix A shows this will always be the case. Furthermore,

the growth of the melt in the axial direction, i.e., along the c-axis, is always found to

be quadratic with time. As shown in Appendix B, if nucleation occurs much later than

when the system is irradiated, then the axial growth becomes linear for all anisotropy

functions.

4 Discussion and conclusion

In this paper, we have formulated and analysed a mathematical model describing the

anisotropic growth of a Tyndall figure into a crystal of superheated ice. Both the solid

and liquid phases are assumed to be volumetrically heated by the absorption of incoming

radiation, which drives the melting process. The anisotropic growth of the Tyndall figure

is a result of the molecularly smoothly basal planes of the ice crystal melting at a

much slower rate in comparison to molecularly rough prism planes. This phenomenon is

modelled using a kinetic coefficient that depends on the orientation of the solid–liquid

interface. The relationship between the kinetic coefficient and the crystal orientation is

quantified through an anisotropy function. Our analysis indicates that there are two key

time regimes for the melt evolution. The first of these describes the rapid initial growth

of the Tyndall figure into its kinetic Wulff shape due to volumetric heating. The second

time regime describes the slower, diffusion-dominated growth.

The problem in the first time regime amounted to solving an anisotropic Eikonal

equation. Remarkably, it was possible to obtain an analytical solution to this equation for

an arbitrary anisotropy functions. Using this solution, we examined the interface profiles

and kinetic Wulff shapes that are obtained for three different anisotropy functions. These

anisotropy functions led to a rich variety of melt shapes including long rectangles with

rounded ends, oblate spheroids, as well as thick and thin lenses. Qualitatively, we found
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that the smoothest melts and the smallest aspect ratios occur when the anisotropy function

has broad maxima; anisotropy functions with narrow maxima gave rise to corners and

lens-shaped melts that can have order-one aspect ratios. Regardless of the anisotropy

function, the thickness of the melt in the direction of the c-axis was found to grow

quadratically with time. This is in contrast to the radial growth parallel to the basal

planes, which was highly dependent on the anisotropy function. These findings have

important practical implications, as they suggest that experimental data for the radial

growth of the melt can aid in the determination of likely candidates for the anisotropy

function. This is not the case for axial growth, which is predicted to be roughly the same

for all anisotropy functions.

By exploiting the thin aspect ratio of the melt figure, we showed that a simplified

model for the evolution in the second time regime can be derived by systematically

collapsing the three-dimensional melt figure to a two-dimensional surface with zero

thickness along the axial direction. This model was then used to carry out a linear stability

analysis, the results of which suggest that an instability will occur if the temperature field

locally increases in the direction of radial growth. Such an instability would likely lead

to fingers and could drive the formation of a Tyndall star similar to that shown in

Figure 1.

The results from our analysis, in combination with the experimental observations

by Takeya [29], may give some insight into appropriate anisotropy functions for the

melting of ice crystals. In particular, the melts documented by Takeya have a remarkably

constant thickness in direction of the c-axis which diminishes relatively rapidly near the

rim. In addition, the aspect ratio of the melt is small and on the order of 1:10. These

observations suggests that an appropriate anisotropy function for modelling the growth

of Tyndall figures would be qualitatively like that in (2.5) but with much broader maxima

at ψ = ±π/2.

Further predictions about Tyndall star evolution can be accessed through numerical

simulations of our model. From a computational perspective, simplified models such as

(3.35) are advantageous due to the reduced dimensionality of the free boundary and are

relatively straightforward to implement. Numerical solutions of such a model can provide

insights into when the condition for instability is satisfied and offer a means of probing

non-linear melt-figure morphologies. Furthermore, such simulations could explore whether

the onset of instability is linked to growth along the c-axis, which has been suggested

by experimental studies [25, 29]. Thus, there is a wide range of exciting and unanswered

problems relating to the formation and evolution of Tyndall stars, and we hope this

work not only provides some of the foundations that can aid in tackling these, but also

motivation for doing so.
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Appendix A solution of Charpit’s equations for the anisotropic Eikonal equations

An asymptotic analysis of the model revealed that the early-time interface profiles can be

obtained by solving an anisotropic Eikonal equation of the form

(s2X + s2Z )1/2f̂
(
sX(s2X + s2Z )−1/2

)
= 1, (A 1a)

where sX = ∂s/∂X and sZ = ∂s/∂Z . Equation (A 1) is supplemented with the condition

s0 = s(X0, Z0) ≡ 0, X2
0 + Z2

0 = α2. (A 1b)

The solution to this problem can be obtained using Charpit’s equations, which gener-

alise the well-known method of characteristics to fully non-linear first-order hyperbolic

partial differential equations (PDEs) [27]. We recall that when applying the method of

characteristics, one must simultaneously solve for the characteristic directions and the

solution to the PDE on these characteristics. The idea behind Charpit’s method is to treat

the first derivatives of the solution to the PDE as additional unknowns that must be

found along the characteristic directions. Thus, when applying Charpit’s method to this

problem, we must simultaneously solve for the characteristic directions, X and Z , as well

as the solution s and its derivatives sX and sZ along the characteristics. Although these

five unknowns are effectively treated as independent variables, Charpit’s equations ensure

that they always vary in a consistent manner.
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To apply Charpit’s method to equation (A 1), we first let p = sX , q = sZ , and we write

the PDE in equation (A 1a) as

G(X,Z, s, p, q) = (p2 + q2)1/2f̂
(
p(p2 + q2)−1/2

)
− 1 ≡ 0. (A 2)

The condition in equation (A 1b) can be treated as initial data and parametrised according

to

s0(ϕ) = s(X0(ϕ), Z0(ϕ)) = 0, ζ = 0, (A 3a)

X0(ϕ) = α cosϕ, ζ = 0, (A 3b)

Z0(ϕ) = α sinϕ, ζ = 0, (A 3c)

where ϕ ∈ [0, 2π) and ζ is an arbitrary parameter that measures distance along each

characteristic direction. Initial conditions for p and q, given by p0 and q0, can be obtained

by (i) differentiating the condition s0(ϕ) = s(X0(ϕ), Z0(ϕ)) ≡ 0 with respect to ϕ and (ii)

requiring the PDE equation (A 2) to hold on the initial curve, G(X0, Z0, s0, p0, q0) ≡ 0. By

simultaneously solving two these equations, we obtain

p0(ϕ) =
cosϕ

f̂(cosϕ)
, q0(ϕ) =

sinϕ

f̂(cosϕ)
, ζ = 0. (A 3d )

Charpit’s equations for this problem can be written as

Ẋ =
∂G

∂p
, (A 4a)

Ż =
∂G

∂q
, (A 4b)

ṡ = 1, (A 4c)

ṗ = 0, (A 4d )

q̇ = 0, (A 4e)

where the dot denotes differentiation with respect to ζ. Upon solving these equations with

the initial conditions in equation (A 3), we find that s ≡ ζ, so that ζ can be replaced by s.

In addition, we have p ≡ p0, q ≡ q0, and

X = [α+ sf̂(cosϕ)] cosϕ+ sf̂′(cosϕ) sin2 ϕ, (A 5a)

Z = [α+ s(f̂(cosϕ) − f̂′(cosϕ))] sinϕ (A 5b)

with the prime denoting derivative with respect to argument.

For the anisotropy function (a) f(ψ) = (ϵ2 +sin2 ψ)1/2, we have that f̂(w) = (ϵ2 +w2)1/2.

After inserting this expression into equation (A 5) and some algebra, the solution can be

written as

X =

(
α+

s(1 + ϵ2)

(ϵ2 + cos2 ϕ)1/2

)
cosϕ, Z =

(
α+

sϵ2

(ϵ2 + cos2 ϕ)1/2

)
sinϕ. (A 6)
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The properties of this solution are described in Section 3.1. For the anisotropy functions

(b) f(ψ) = ϵ+ sin2 ψ and (c) f(ψ) = ϵ/(1 + ϵ− sin2 ψ), we find that

X = [α+ s(1 + sin2 ϕ+ ϵ)] cosϕ, Z = [α− s(cos2 ϕ− ϵ)] sinϕ, (A 7)

and

X =

[
α+

ϵs(3 sin2 ϕ+ ϵ)

(sin2 ϕ+ ϵ)2

]
cosϕ, Z =

[
α− ϵs(3 cos2 ϕ− 1 − ϵ)

(sin2 ϕ+ ϵ)2

]
sinϕ, (A 8)

respectively. These solutions with ϵ = 0.1 are shown in Figures 5 and 8.

For case (b), focusing on that part of the free boundary lying in the first quadrant,

0 ! ϕ ! π/2, we see that some of the characteristics are directed down, towards Z = 0,

and intersection of characteristics starts, on the X-axis, when s = α/(1 − ϵ) ∼ α at

X = α+ α(1 + ϵ)/(1 − ϵ) = 2α/(1 − ϵ) ∼ 2α. For later times, this method of characteristics

indicates multiple-valued solutions. To avoid this, the convex part of the curve is taken,

giving corners on Z = 0 for s > α/(1 − ϵ). These would be expected to be rounded

off by any sort of surface-tension or surface-energy effects so that a Gibbs–Thomson

term is introduced into the free-boundary conditions. A mathematically simpler way of

regularising the problem would be to replace the anisotropic Eikonal equation, which is

a first-order flow, by a mean-curvature flow. Results of Barles & Souganidis [3] could be

applied to give continuous dependence of solutions on the coefficient of any curvature

term included in (3.5). This would again indicate that we should get the interface by

taking the convex part of the curve.

The same corner formation is seen for the anisotropy function (c). In this case, the

corner forms very quickly, when s = ϵα/(2 − ϵ), and close to the initial free boundary, at

X = 2α/(2 − ϵ).

The range of possible short-time interface behaviour is large because the growth in the

X direction can have quite different qualitative behaviour. For case (b), with s ≪ α/ϵ,

X = 2s(ϵ+ α/s)1/2 ∼ 2(αs)1/2 = (2α)1/2τ so that the growth is only linear in time. The final

case (c), has cos2 ϕ ∼ 1 − (2ϵs/α)1/2 and X ∼ α(1 + (2ϵs/α)1/2) = α(1 + (ϵ/α)1/2τ).

For large times, in the sense of s ≫ α/ϵ, the behaviour of Z is the same for all three

anisotropy functions: Z ∼ ϵs ∼ ϵτ2/2. However, the long-time growth in the X direction

is reduced, thanks to the appearance of the corner. For (b), the corner’s position is, in

general, given by X = [α+ s(1 + sin2 ϕ+ ϵ)] cosϕ with Z = [α− s(cos2 ϕ− ϵ)] sinϕ = 0.

Since 0 < ϕ < π/2, this gives cos2 ϕ = ϵ+α/s and X = 2s(ϵ+α/s)1/2 ∼ 2ϵ1/2s = ϵ1/2τ2 for

s ≫ α/ϵ. Very similar calculations for (c) show that the corner location can be obtained

implicitly from

X

α
∼ 2 cosϕ

3 cos2 ϕ− 1
,

ϵs

α
∼ (1 − cos2 ϕ)2

3 cos2 ϕ− 1
, (A 9)

for 0 < ϕ < cos−1(1/
√

3). For s ≫ α/ϵ, this gives cos2 ϕ ∼ (1/3) and we get X ∼
33/2/2ϵs = (33/2/4)ϵτ2.
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By taking the modified time variable s sufficiently large in comparison to α in equation

(A 5), the longer-term interface profile for an arbitrary anisotropy function is given by

X/s ∼ f̂(cosϕ) cosϕ+ f̂′(cosϕ) sin2 ϕ, (A 10a)

Z/s ∼ f̂(cosϕ) sinϕ− f̂′(cosϕ) cosϕ sinϕ (A 10b)

independent of the initial shape. Equation (A 10) is, in fact, equivalent to (2.6) and

therefore, the interface profiles approach the kinetic Wulff shapes. The direction of the

characteristics, Z/X, can be differentiated with respect to ϕ to check if this ever decreases,

leading to corner formation from an initially convex shape. After some manipulation, the

derivative turns out to be

(
f̂ − d

dϕ
(f̂′ sinϕ)

)
f̂ =

(
f +

d2f

dψ2

)
f .

The criterion for a continued smooth interface is then f + d2f/dψ2 " 0. Cahoon et al. [6]

and Wettlaufer et al. [34] find the same basic law for interface motion gives the rate of

change dκ/ds = (f+d2f/dψ2)κ2 for the interface curvature κ. The same key combination

appears in curvature-flow models for phase change with significant Gibbs–Thomson

effect [1,12]. In these works, the (f+d2f/dψ2) term multiplies curvature in the velocity law

and, to avoid negative diffusion, all angles making (f + d2f/dψ2) positive are prohibited,

leading to corners in the interface for all positive time.

Appendix B The role of nucleation

We now give a brief discussion of the effect of surface energy in the nucleation process,

while still neglecting the air bubble that appears in the melt. We concentrate on the

implications of the balance between the superheat temperature and the local equilibrium

temperature for a spherical liquid body of a given size; Chadam et al. [7] discusses related

effects in the growth of crystals when the Gibbs–Thomson effect is the only stabilising

action.

We suppose that nucleation occurs when the temperature in the solid exceeds a nucle-

ation temperature Tn given by the Gibbs–Thomson relation

Tn = T0

(
1 +

2γ

ρLan

)
, (B 1)

where γ is the interface energy, an is the nucleation radius. The time at which nucleation

occurs, measured relative to the moment the system is irradiated, is denoted by tn. Before

nucleation occurs, the temperature in the solid increases like Ts = T0+qst/(ρcps); therefore,

the nucleation time and temperatures can be related via tn = ρcps(Tn − T0)/qs.

So far we have been assuming that the nucleation temperature is close to the bulk

melting temperature, Tn ≃ T0, so that nucleation immediately occurs upon irradiation,

resulting in an initial liquid–solid interface that is approximately a sphere of radius a,

which is small compared to ϵℓ. The condition a ≪ ϵℓ allows the melt to become a

developed spheroid when the dimensionless time τ is O(1) in size. Note that if ϵ ≪ a ≪ 1
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there is a significant change to Section 3.2, with the Tyndall figure no longer being of

thickness order ϵ.

We now consider the opposite case whereby Tn ≫ T0 so that nucleation occurs much

later than when the system is first irradiated. The bulk temperatures in this case will be

large during the early evolution of the melt and will influence its growth kinetics. To

study the behaviour in this late-nucleation regime, we non-dimensionalise (2.1)–(2.3) by

writing x = ℓ̄X̄ , t = tn + (ℓ̄2/κs)τ̄, and T = T0 + ∆T θ̄, where ∆T = Tn − T0 = 2γ/(ρLan)

and ℓ̄ = ks/(ρcps∆TK). The dimensionless volumetric heat sources given by qiℓ̄
2/(ρcps∆T )

characterise the temperature rises that occur on the diffusive time scale due to absorption

relative to the nucleation temperature ∆T = Tn −T0. These relative temperature rises are

expected to be small so the volumetric source terms are neglected from the model, i.e., we

take qiℓ̄
2/(ρcps∆T ) ≃ 0. The dimensionless bulk equations for the temperatures can be

written as

∂θ̄s
∂τ̄

= ∇2θ̄s, X̄ ∈ Ω̄s(τ̄), (B 2a)

ĉp
∂θ̄l
∂τ̄

= k̂∇2θ̄l , X̄ ∈ Ω̄l(τ̄), (B 2b)

which have initial conditions θ̄s = θ̄l = 1 when τ̄ = 0 and far-field conditions θ̄s ∼ 1 for

|X̄ | → ∞. At the free boundary, the Stefan condition reads

v̄ = β̄−1

(
∂θs
∂n

− k̂
∂θl
∂n

)
, X̄ ∈ Γ̄ (τ̄), (B 2c)

where the Stefan number is now given by β̄ = L/(cps∆T ). The anisotropic kinetic condition

is

v̄ = θ̄If(ψ), X̄ ∈ Γ̄ (τ̄). (B 2d )

The initial interface Γ̄ (0) is assumed to be a circle of dimensionless radius ᾱ = an/ℓ̄.

In order to obtain the same asymptotic regimes as in the early-nucleation case considered

in the main text, we let β̄−1 = b̄ϵ and require the dimensionless initial melt radius to satisfy

ᾱ ≪ ϵ. The condition Tn ≫ T0 imposes an additional restriction on the dimensionless

nucleation radius given by ᾱ ≪ 2γ/(ρLℓ̄). Thus, in dimensional terms, we require

an ≪ min

{
ϵℓ̄,

2γ

ρL

}
. (B 3)

We now summarise the early-time, τ̄ ≪ ᾱ, and order-one time, τ̄ = O(1), problems in the

late-nucleating regime.

The early-time problem valid for τ̄ ≪ ᾱ can be deduced by repeating the analysis of

Section 3.1. The lack of a volumetric heat source means that the leading-order temper-

atures (in ᾱ) are constant in time, θ̄l = θ̄s ≡ 1. Thus, the anisotropic kinetic condition

becomes v̄ = f(ψ), which is now autonomous in the time variable τ̄. As a consequence,

the growth kinetics of the melt are modified. For the anisotropy function given by



Tyndall star initiation 645

f(ψ) = (ϵ2 + sin2 ψ)1/2, we find that the interface can be written parametrically as

X̄ =

[
ᾱ+

τ̄(1 + ϵ2)

(ϵ2 + cos2 ϕ)1/2

]
cosϕ, Z̄ =

[
ᾱ+

τ̄ϵ2

(ϵ2 + cos2 ϕ)1/2

]
sinϕ, (B 4)

where ϕ ∈ [0, 2π). Thus, the thickness and rim of the melt now grow linearly with time

rather than quadratically. However, the morphological characteristics of the interface

remain the same as in the early-nucleation regime and, in particular, the kinetic Wulff

shapes are still approached in the longer term. Similar changes are seen for other

anisotropy functions as well; that is, the powers of τ in the growth laws are reduced

by a factor of two.

For O(1) times and the anisotropy function f = (ϵ2 + sin2 ψ)1/2, the analysis in Section

3.2 can also be repeated in order to derive a simplified model that collapses the melt region

onto the Z̄ = 0 axis. In particular, the temperature in the solid satisfies the equation

∂θ̄s
∂τ̄

= ∇2θ̄s, Z̄ > 0 (B 5a)

with θ̄s = 1 when τ̄ = 0 and θ̄s ∼ 1 as |X | → ∞. The boundary conditions on Z̄ = 0 are

given by

∂h̄

∂τ̄
= b̄

∂θ̄s
∂Z̄

, Z̄ = 0, R̄ < S̄(τ̄), (B 5b)

∂h̄

∂τ̄
= θ̄s

[
1 +

(
∂h̄

∂R̄

)2]1/2

, Z̄ = 0, R̄ < S̄(τ̄), (B 5c)

∂S̄

∂τ̄
= θ̄s, Z̄ = 0, R̄ = S̄(τ̄), (B 5d )

∂θ̄s
∂Z̄

= 0, Z̄ = 0, R̄ > S̄(τ̄). (B 5e)

Finally, we require that

h̄(S̄(τ̄), 0, τ̄) = 0. (B 5f )


