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ABSTRAK 

Struktur pantai dan lautan tertakluk kepada beban gelombang terpisah yang mungkin 

mencapai 690𝑘𝑁𝑚−2. Untuk mengurangkan beban ini, kita mungkin mencondongkan 

permukaan benteng ke arah lautan ataupun ke arah daratan. Walau bagaimanapun, tidak 

dijelaskan bahawa kecerunan banteng boleh mengurangkan kesan gelombang dan 

eksperimen menggunakan model baru-baru ini menunjukkan bahawa benteng yang 

condong mungkin terdedah kepada beban lebih tinggi daripada benteng yang menegak. 

Dipengaruhi oleh penemuan ini, kami melakukan kajian secara teori mengenai pengaruh 

kecerunan benteng terhadap kesan gelombang. Model-model kesan gelombang 

matematik terhadap benteng yang condong ke arah lautan dan daratan dipertimbangkan 

dengan menggunakan lanjutan model Cooker iaitu benteng laut yang menegak. Teori 

impuls tekanan yang dicadangkan oleh Cooker diterapkan ke dalam dua masalah ini yang 

akan memudahkan masalah yang bergantung pada masa dan sangat tidak linear dengan 

mempertimbangkan masa integrasi tekanan selama jangka waktu utuk impak tekanan 

impuls. Penyelesaian masalah ini ditemui dengan menyelesaikan Persamaan Laplace 

untuk sempadan tertentu. Teori perturbasi diterapkan ke dalam model-model ini dan 

masalahnya diselesaikan dengan menggunakan MATLAB. Hubungan antara tekanan 

impuls dan sudut kecenderungan dinding disiasat. Keputusan menunjukkan terdapat 

persamaan dengan kajian eksperimen. Telah didapati bahawa tekanan impuls paling 

rendah berlaku apabila kecenderungan kecil berlaku menghampiri tembok yang menegak. 

Kajian juga menunjukkan bahawa tekanan impuls meningkat apabila impak permukaan 

meningkat. Tekanan gelombang meningkat kepada 17% untuk tembok yang condong ke 

arah daratan dan 20% untuk tembok yang condong ke arah lautan jika dibandingkan 

dengan tembok yang menegak pada kecenderungan sudut 10° dengan impak permukaan 

0.5. Cadangan reka bentuk untuk tembok didapati konservatif. 
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ABSTRACT 

Shoreline and ocean structures are subjected to breaking wave loads which may reach 

690𝑘𝑁𝑚−2. To reduce these loading, we might slope the exposed surface seaward or 

landward. However, it is unclear that sloped walls can reduce the wave impact and recent 

models tests indicated that sloped walls might be exposed to higher loads than vertical 

walls. Motivated by these findings, we perform a theoretical study of wave impacts on 

sloped seawalls. The mathematical models of wave impacts on landward-inclined and 

seaward-inclined seawalls are considered by using an extension of Cooker’s model for 

vertical seawalls. The pressure impulse theory proposed by Cooker is applied into these 

two problems which simplify the highly time-dependent and very nonlinear problem by 

considering the time integral of the pressure over the duration of the impact pressure-

impulse. The solution to this problem is found by solving Laplace’s Equation for specific 

boundary condition. The perturbation theory is applied into these models and the 

problems are solved by using MATLAB. The correlation between the pressure impulse 

and the inclination angle of the wall is investigated. The results are found to be in good 

agreement with the experimental study. It was found that the lowest pressure impulse 

occurs when the small inclination happens near to the vertical wall. Study also shows that 

pressure impulse increases as impact region increases. Breaking wave pressures increase 

to 17% for landward inclined wall and to 20% for seaward inclined wall compared to 

vertical wall at 10° incline with impact region of 0.5. Design recommendations were 

found to be conservative.  
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