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The Basic Model for Microbial Growth 
( d d h )(Monod and others, 1940s‐50s)

• HypothesesHypotheses
– Microbial growth rate is determined by the 

concentration of a single growth‐limiting substrateconcentration of a single growth limiting substrate 
(nutrient) in the growth medium.

– The growth rate adjusts itself instantaneously inThe growth rate adjusts itself instantaneously in 
response to changes in the substrate 
concentration.



st  concentration of substrate at time t

xt  concentration of microorganism at time t

xt is called the specific growth rate of the colony 
xt is called the specific growth rate of the colony.

Monod hypothesized that
xt
xt  st

where  is a continuous and increasing function that satisfies 0  0where  is a continuous and increasing function that satisfies 0  0
and limss  m where m   is called the maximal specific
growth rate.



Specifically, Monod hypothesized that  has the form

  mss  ms
Khs

where m is themaximal specific growth rate and
Kh is called the half-saturation constant (because
it is the value of s for which s  m/2).



Onemore hypothesis is:
The rate of decrease of substrate is instantaneously
proportional to the rate of increase of microorganism.
Thus

xt  Ystx t Ys t
where

Y  mass of organism formedY 
mass of substrate consumed

is called the yield constant.

By combining all of our modelling hypotheses,By combining all of our modelling hypotheses,
we obtain:



The Monod Model for Microbial 
h h lGrowth in Batch Culture

t 1 mst t 0 0st   1Y
m  
Kh  st

xt, s0  s0  0

xt  mst
K  

xt, x0  x0  0x t Kh  st
xt, x0 x0 0

This solutions of this model are in agreement with
what would be expected based on the modellingwhat would be expected based on the modelling
hypotheses: The substrate decreases. The microbe
increases (as an increasingly slower rate as substrate
becomes depleted) and

limt st  0, limt xt  x0  Ys0.



Continuous CultureContinuous Culture

A chemostat (also called a continuous culture device or aA chemostat (also called a continuous culture device or a 
CSTR) is a device that allows us to continuously refresh the 
culture medium and simultaneously remove the contents of 
the culture vessel (at the same rate ‐ so that the volume of the 
culture vessel remains constant at all times).



The Basic Continuous Culture ModelThe Basic Continuous Culture Model
F  flow rate (volume/time)
V  volume
D  F/V
sf  substrate concentration in the influent fresh medium

st  Dsf  1Y stxt  Dst, s0  s0  0

xt  stxt Dxt x0  x0  0x t  stxt Dxt, x0  x0  0



EquilibriaEquilibria

st Ds 1 stxt Dst s0 s  0s t  Dsf  1Y stxt  Dst, s0  s0  0

xt  stxt Dxt, x0  x0  0
One equilibrium point is E0  sf,0. This is the
equilibrium that would be achieved if there were
no microbes in the growth vesselno microbes in the growth vessel.

Assuming that there is a value, , such that   D,
th i th ilib i i t E  Y there is another equilibrium point: E1  ,Ysf  .
This equilibrium point is meaningful only if   sf.



Three ScenariosThree Scenarios

Washout rate too high Food input concentration too low

E1 does not exist in either of these scenarios.



E1  ,Ysf   does exist in this scenario
because m  D (meaning that  exists) and ( g )
also sf  .



Wewill now analyze what happens (using graphical
methods) when E1 exists (m  D and sf  ).f

For simplicity, we will assume that Y  1.
Thus E0  sf,0 and E1  ,sf  .
Th ll li i thi i t d b lThe nullclines in this case are pictured below.



Observe that our system also satisfies a “conservation law”.

       Dtst  xt  sf  sf  s0  x0eDt.



When we put these two pictures together, we see



ConclusionConclusion
If either D  m or (D  m and sf  ),
then the microoranism becomes extinct in the growth vessel:

limt st  sf and limt xt  0.
If D  m and sf   (and x0  0), then the microogranism
and substrate equilibrate to positive values.

limt st   and limt xt  sf  .
The latter case illustrates why this culture device is called a 
chemostat. It allows us to maintain a bacterial culture at a 
constant level for an indefinitely long period of time. 
Furthermore, the level can be adjusted by adjusting the , j y j g
operating parameters of the chemostat (the flow rate and 
substrate input concentration).



Competition Between Two SpeciesCompetition Between Two Species
For two different microbial species competing for the
same resource in a chemostat the model issame resource in a chemostat, the model is
st  Dsf  st  1stx1t  2stx2t
 t  t t D tx1 t  1stx1t Dx1t
x2 t  2stx2t Dx2t
here and are both ass med to be Monod f nctionswhere 1 and 2 are both assumed to be Monod functions
(which are different for each species).
We assume that each competitor is “adequate", meaningWe assume that each competitor is adequate , meaning
that each would survive (not become extinct) in the
absense of the other. Thus we assume that

1m  D, 2m  D, sf  1, sf  2.



EquilibriaEquilibria
The equilibria of this system are

E0  sf,0,0
E1  1,sf  1,0
E2  2,0,sf  2.

There is no possibility of coexistence of the species at
equilibrium. The questions to ask are thus:
1) Can the two species both persist in the culture vessel?
2) If not then will both or only one of the species persist?2) If not, then will both or only one of the species persist?

We will seek guidance on this issue by linearizing the
system at each of the equilibriasystem at each of the equilibria.



The Jacobian matrix of the right hand side of the system

st  Dsf  st  1stx1t  2stx2t
x1 t  1stx1t  Dx1t
x2 t  2stx2t  Dx2t

is

J
D  1 sx1  2 sx2 1s 2s

 sx  s D 0J  1sx1 1s  D 0
2 sx2 0 2s  D



At E0  sf,0,0, we have

D 1sf  2sf 
J  0 1sf  D 0

0 0 2sf  D

Since two of the eigenvalues of J are positive, we conclude
that E0 is unstable. Solutions that begin near E0 will moveg
away from E0 as time increases.



At E1  1,sf  1,0, we have

J
D  1 1sf  1 D 21

       D 0J  1 1sf  1 11 D 0
0 0 21 D

In this case, the eigenvalues of J are
1  D  0

     02  1 1sf  1  0
3  21 D.

Thus all eigenvalues of J have negative real parts (andThus all eigenvalues of J have negative real parts (and
hence J1 is asymptotically stable) if and only if
21  D. This will be true if and only if 1  2.
Analysis of the equilibrium point E2 is similar.



ConclusionConclusion
Assuming that

1  D 2  D sf  1 sf  21m  D, 2m  D, sf  1, sf  2
and assuming that 1  2, only one of the competitors
(the one with the smaller  value) can persist in the(the one with the smaller  value) can persist in the
growth vessel. The other competitor becomes extinct.
Thus, for example, if 1  2 (and x10  0), then

lim
t
st  1

lim
t
x1t  sf  1t 

lim
t
x2t  0.



Some Questions to ConsiderSome Questions to Consider
1) Recalling that

 sis  mis
Khis

,
and that i is defined to be the value such that ii  D,
how do we express the condition 1  2 (which is
necessary for the species x1 to be the dominant
competitor) in terms of the parameters and K ?competitor) in terms of the parameters mi and Khi?
2) Is it possible that 1  2? If so, what happens in
the competition?!p


