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Preface

This textbook is of an interdisciplinary nature and is designed for a two- or one-semester course in
probability and statistics, with basic calculus as a prerequisite. The book is primarily written to give
a sound theoretical introduction to statistics while emphasizing applications. If teaching statistics
is the main purpose of a two-semester course in probability and statistics, this textbook covers all
the probability concepts necessary for the theoretical development of statistics in two chapters, and
goes on to cover all major aspects of statistical theory in two semesters, instead of only a portion of
statistical concepts. What is more, using the optional section on computer examples at the end of
each chapter, the student can also simultaneously learn to utilize statistical software packages for data
analysis. It is our aim, without sacrificing any rigor, to encourage students to apply the theoretical
concepts they have learned. There are many examples and exercises concerning diverse application
areas that will show the pertinence of statistical methodology to solving real-world problems. The
examples with statistical software and projects at the end of the chapters will provide good perspective
on the usefulness of statistical methods. To introduce the students to modern and increasingly popular
statistical methods, we have introduced separate chapters on Bayesian analysis and empirical methods.

One of the main aims of this book is to prepare advanced undergraduates and beginning graduate
students in the theory of statistics with emphasis on interdisciplinary applications. The audience for
this course is regular full-time students from mathematics, statistics, engineering, physical sciences,
business, social sciences, materials science, and so forth. Also, this textbook is suitable for people
who work in industry and in education as a reference book on introductory statistics for a good
theoretical foundation with clear indication of how to use statistical methods. Traditionally, one of
the main prerequisites for this course is a semester of the introduction to probability theory. A working
knowledge of elementary (descriptive) statistics is also a must. In schools where there is no statistics
major, imposing such a background, in addition to calculus sequence, is very difficult. Most of the
present books available on this subject contain full one-semester material for probability and then,
based on those results, continue on to the topics in statistics. Also, some of these books include in their
subject matter only the theory of statistics, whereas others take the cookbook approach of covering
the mechanics. Thus, even with two full semesters of work, many basic and important concepts in
statistics are never covered. This book has been written to remedy this problem. We fuse together
both concepts in order for students to gain knowledge of the theory and at the same time develop
the expertise to use their knowledge in real-world situations.

Although statistics is a very applied subject, there is no denying that it is also a very abstract subject.
The purpose of this book is to present the subject matter in such a way that anyone with exposure
to basic calculus can study statistics without spending two semesters of background preparation.
To prepare students, we present an optional review of the elementary (descriptive) statistics in
Chapter 1. All the probability material required to learn statistics is covered in two chapters. Stu-
dents with a probability background can either review or skip the first three chapters. It is also our
belief that any statistics course is not complete without exposure to computational techniques. At
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the end of each chapter, we give some examples of how to use Minitab, SPSS, and SAS to statistically
analyze data. Also, at the end of each chapter, there are projects that will enhance the knowledge and
understanding of the materials covered in that chapter. In the chapter on the empirical methods, we
present some of the modern computational and simulation techniques, such as bootstrap, jackknife,
and Markov chain Monte Carlo methods. The last chapter summarizes some of the steps necessary
to apply the material covered in the book to real-world problems. The first eight chapters have been
class tested as a one-semester course for more than 3 years with five different professors teaching.
The audience was junior- and senior-level undergraduate students from many disciplines who had
had two semesters of calculus, most of them with no probability or statistics background. The feed-
back from the students and instructors was very positive. Recommendations from the instructors and
students were very useful in improving the style and content of the book.

AIM AND OBJECTIVE OF THE TEXTBOOK

This textbook provides a calculus-based coverage of statistics and introduces students to methods of
theoretical statistics and their applications. It assumes no prior knowledge of statistics or probability
theory, but does require calculus. Most books at this level are written with elaborate coverage of
probability. This requires teaching one semester of probability and then continuing with one or
two semesters of statistics. This creates a particular problem for non-statistics majors from various
disciplines who want to obtain a sound background in mathematical statistics and applications.
It is our aim to introduce basic concepts of statistics with sound theoretical explanations. Because
statistics is basically an interdisciplinary applied subject, we offer many applied examples and relevant
exercises from different areas. Knowledge of using computers for data analysis is desirable. We present
examples of solving statistical problems using Minitab, SPSS, and SAS.

FEATURES

■ During years of teaching, we observed that many students who do well in mathematics courses
find it difficult to understand the concept of statistics. To remedy this, we present most of
the material covered in the textbook with well-defined step-by-step procedures to solve real
problems. This clearly helps the students to approach problem solving in statistics more
logically.

■ The usefulness of each statistical method introduced is illustrated by several relevant examples.
■ At the end of each section, we provide ample exercises that are a good mix of theory and

applications.
■ In each chapter, we give various projects for students to work on. These projects are designed

in such a way that students will start thinking about how to apply the results they learned in
the chapter as well as other issues they will need to know for practical situations.

■ At the end of the chapters, we include an optional section on computer methods with Minitab,
SPSS, and SAS examples with clear and simple commands that the student can use to analyze
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data. This will help students to learn how to utilize the standard methods they have learned in
the chapter to study real data.

■ We introduce many of the modern statistical computational and simulation concepts, such as
the jackknife and bootstrap methods, the EM algorithms, and the Markov chain Monte Carlo
methods such as the Metropolis algorithm, the Metropolis–Hastings algorithm, and the Gibbs
sampler. The Metropolis algorithm was mentioned in Computing in Science and Engineering as
being among the top 10 algorithms having the “greatest influence on the development and
practice of science and engineering in the 20th century.”

■ We have introduced the increasingly popular concept of Bayesian statistics and decision theory
with applications.

■ A separate chapter on design of experiments, including a discussion on the Taguchi approach,
is included.

■ The coverage of the book spans most of the important concepts in statistics. Learning the
material along with computational examples will prepare students to understand and utilize
software procedures to perform statistical analysis.

■ Every chapter contains discussion on how to apply the concepts and what the issues are related
to applying the theory.

■ A student’s solution manual, instructor’s manual, and data disk are provided.
■ In the last chapter, we discuss some issues in applications to clearly demonstrate in a unified

way how to check for many assumptions in data analysis and what steps one needs to follow
to avoid possible pitfalls in applying the methods explained in the rest of this textbook.
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Flow Chart

This flow chart gives some options on how to use the book in a one-semester or two-semester course.
For a two-semester course, we recommend coverage of the complete textbook. However, Chapters 1,
9, and 14 are optional for both one- and two-semester courses and can be given as reading exercises.
For a one-semester course, we suggest the following options: A, B, C, D.
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Sir Ronald Fisher F.R.S. (1890–1962) was one of the leading scientists of the 20th century who
laid the foundations for modern statistics. As a statistician working at the Rothamsted Agricultural
Experiment Station, the oldest agricultural research institute in the United Kingdom, he also made
major contributions to Evolutionary Biology and Genetics. The concept of randomization and the
analysis of variance procedures that he introduced are now used throughout the world. In 1922 he
gave a new definition of statistics. Fisher identified three fundamental problems in statistics: (1)
specification of the type of population that the data came from; (2) estimation; and (3) distribution.
His book Statistical Methods for Research Workers (1925) was used as a handbook for the methods for
the design and analysis of experiments. Fisher also published the books titled The Design of Experiments
(1935) and Statistical Tables (1947). While at the Agricultural Experiment Station he had conducted
breeding experiments with mice, snails, and poultry, and the results he obtained led to theories about
gene dominance and fitness that he published in The Genetical Theory of Natural Selection (1930).

1.1 INTRODUCTION

In today’s society, decisions are made on the basis of data. Most scientific or industrial studies and
experiments produce data, and the analysis of these data and drawing useful conclusions from them
become one of the central issues. The field of statistics is concerned with the scientific study of
collecting, organizing, analyzing, and drawing conclusions from data. Statistical methods help us
to transform data to knowledge. Statistical concepts enable us to solve problems in a diversity of
contexts, add substance to decisions, and reduce guesswork. The discipline of statistics stemmed
from the need to place knowledge management on a systematic evidence base. Earlier works on
statistics dealt only with the collection, organization, and presentation of data in the form of tables
and charts. In order to place statistical knowledge on a systematic evidence base, we require a study
of the laws of probability. In mathematical statistics we create a probabilistic model and view the
data as a set of random outcomes from that model. Advances in probability theory enable us to draw
valid conclusions and to make reasonable decisions on the basis of data.

Statistical methods are used in almost every discipline, including agriculture, astronomy, biology,
business, communications, economics, education, electronics, geology, health sciences, and many
other fields of science and engineering, and can aid us in several ways. Modern applications of statis-
tical techniques include statistical communication theory and signal processing, information theory,
network security and denial of service problems, clinical trials, artificial and biological intelligence,
quality control of manufactured items, software reliability, and survival analysis. The first of these is to
assist us in designing experiments and surveys. We desire our experiment to yield adequate answers to
the questions that prompted the experiment or survey. We would like the answers to have good preci-
sion without involving a lot of expenditure. Statistically designed experiments facilitate development
of robust products that are insensitive to changes in the environment and internal component varia-
tion. Another way that statistics assists us is in organizing, describing, summarizing, and displaying
experimental data. This is termed descriptive statistics. A third use of statistics is in drawing inferences
and making decisions based on data. For example, scientists may collect experimental data to prove
or disprove an intuitive conjecture or hypothesis. Through the proper use of statistics we can conclude
whether the hypothesis is valid or not. In the process of solving a real-life problem using statistics,
the following three basic steps may be identified. First, consistent with the objective of the problem,
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we identify the model—the appropriate statistical method. Then, we justify the applicability of the
selected model to fulfill the aim of our problem. Last, we properly apply the related model to analyze
the data and make the necessary decisions, which results in answering the question of our problem
with minimum risk. Starting with Chapter 2, we will study the necessary background material to
proceed with the development of statistical methods for solving real-world problems.

In the present chapter we briefly review some of the basic concepts of descriptive statistics. Such
concepts will give us a visual and descriptive presentation of the problem under investigation. Now,
we proceed with some basic definitions.

1.1.1 Data Collection
One of the first problems that a statistician faces is obtaining data. The inferences that we make depend
critically on the data that we collect and use. Data collection involves the following important steps.

GENERAL PROCEDURE FOR DATA COLLECTION

1. Define the objectives of the problem and proceed to develop the experiment or survey.
2. Define the variables or parameters of interest.
3. Define the procedures of data-collection and measuring techniques. This includes sampling

procedures, sample size, and data-measuring devices (questionnaires, telephone interviews, etc.).

Example 1.1.1
We may be interested in estimating the average household income in a certain community. In this case,

the parameter of interest is the average income of a typical household in the community. To acquire the

data, we may send out a questionnaire or conduct a telephone interview. Once we have the data, we may

first want to represent the data in graphical or tabular form to better understand its distributional behavior.

Then we will use appropriate analytical techniques to estimate the parameter(s) of interest, in this case the

average household income.

Very often a statistician is confined to data that have already been collected, possibly even collected
for other purposes. This makes it very difficult to determine the quality of data. Planned collection
of data, using proper techniques, is much preferred.

1.2 BASIC CONCEPTS

Statistics is the science of data. This involves collecting, classifying, summarizing, organizing, ana-
lyzing, and interpreting data. It also involves model building. Suppose we wish to study household
incomes in a certain neighborhood. We may decide to randomly select, say, 50 families and examine
their household incomes. As another example, suppose we wish to determine the diameter of a rod,
and we take 10 measurements of the diameter. When we consider these two examples, we note that
in the first case the population (the household incomes of all families in the neighborhood) really
exists, whereas in the second, the population (set of all possible measurements of the diameter) is



4 CHAPTER 1 Descriptive Statistics

only conceptual. In either case we can visualize the totality of the population values, of which our
sample data are only a small part. Thus we define a population to be the set of all measurements or
objects that are of interest and a sample to be a subset of that population. The population acts as the
sampling frame from which a sample is selected. Now we introduce some basic notions commonly
used in statistics.

Definition 1.2.1 A population is the collection or set of all objects or measurements that are of interest to
the collector.

Example 1.2.1
Suppose we wish to study the heights of all female students at a certain university. The population will be

the set of the measured heights of all female students in the university. The population is not the set of all

female students in the university.

In real-world problems it is usually not possible to obtain information on the entire population. The
primary objective of statistics is to collect and study a subset of the population, called a sample, to
acquire information on some specific characteristics of the population that are of interest.

Definition 1.2.2 The sample is a subset of data selected from a population. The size of a sample is the
number of elements in it.

Example 1.2.2
We wish to estimate the percentage of defective parts produced in a factory during a given week (five days)

by examining 20 parts produced per day. The parts will be examined each day at randomly chosen times.

In this case “all parts produced during the week” is the population and the (100) selected parts for five days

constitutes a sample.

Other common examples of sample and population are:

Political polls: The population will be all voters, whereas the sample will be the subset of voters
we poll.

Laboratory experiment: The population will be all the data we could have collected if we were
to repeat the experiment a large number of times (infinite number of times) under the same
conditions, whereas the sample will be the data actually collected by the one experiment.

Quality control: The population will be the entire batch of items produced, say, by a machine
or by a plant, whereas the sample will be the subset of items we tested.

Clinical studies: The population will be all the patients with the same disease, whereas the
sample will be the subset of patients used in the study.

Finance: All common stock listed in stock exchanges such as the New York Stock Exchange,
the American Stock Exchanges, and over-the-counter is the population. A collection of 20
randomly picked individual stocks from these exchanges will be a sample.
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The methods consisting mainly of organizing, summarizing, and presenting data in the form of tables,
graphs, and charts are called descriptive statistics. The methods of drawing inferences and making
decisions about the population using the sample are called inferential statistics. Inferential statistics
uses probability theory.

Definition 1.2.3 A statistical inference is an estimate, a prediction, a decision, or a generalization about
the population based on information contained in a sample.

For example, we may be interested in the average indoor radiation level in homes built on reclaimed
phosphate mine lands (many of the homes in west-central Florida are built on such lands). In this
case, we can collect indoor radiation levels for a random sample of homes selected from this area,
and use the data to infer the average indoor radiation level for the entire region. In the Florida Keys,
one of the concerns is that the coral reefs are declining because of the prevailing ecosystems. In order
to test this, one can randomly select certain reef sites for study and, based on these data, infer whether
there is a net increase or decrease in coral reefs in the region. Here the inferential problem could be
finding an estimate, such as in the radiation problem, or making a decision, such as in the coral reef
problem. We will see many other examples as we progress through the book.

1.2.1 Types of Data
Data can be classified in several ways. We will give two different classifications, one based on whether
the data are measured on a numerical scale or not, and the other on whether the data are collected
in the same time period or collected at different time periods.

Definition 1.2.4 Quantitative data are observations measured on a numerical scale. Nonnumerical data
that can only be classified into one of the groups of categories are said to be qualitative or categorical data.

Example 1.2.3
Data on response to a particular therapy could be classified as no improvement, partial improvement, or

complete improvement. These are qualitative data. The number of minority-owned businesses in Florida

is quantitative data. The marital status of each person in a statistics class as married or not married is

qualitative or categorical data. The number of car accidents in different U.S. cities is quantitative data. The

blood group of each person in a community as O, A, B, AB is qualitative data.

Categorical data could be further classified as nominal data and ordinal data. Data characterized as
nominal have data groups that do not have a specific order. An example of this could be state names,
or names of the individuals, or courses by name. These do not need to be placed in any order. Data
characterized as ordinal have groups that should be listed in a specific order. The order may be either
increasing or decreasing. One example would be income levels. The data could have numeric values
such as 1, 2, 3, or values such as high, medium, or low.

Definition 1.2.5 Cross-sectional data are data collected on different elements or variables at the same
point in time or for the same period of time.
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Example 1.2.4
The data in Table 1.1 represent U.S. federal support for the mathematical sciences in 1996, in millions of

dollars (source: AMS Notices). This is an example of cross-sectional data, as the data are collected in one

time period, namely in 1996.

Table 1.1 Federal Support for the Mathematical
Sciences, 1996

Federal agency Amount

National Science Foundation 91.70

DMS 85.29

Other MPS 4.00

Department of Defense 77.30

AFOSR 16.70

ARO 15.00

DARPA 22.90

NSA 2.50

ONR 20.20

Department of Energy 16.00

University Support 5.50

National Laboratories 10.50

Total, All Agencies 185.00

Definition 1.2.6 Time series data are data collected on the same element or the same variable at different
points in time or for different periods of time.

Example 1.2.5
The data in Table 1.2 represent U.S. federal support for the mathematical sciences during the years

1995–1997, in millions of dollars (source: AMS Notices). This is an example of time series data, because

they have been collected at different time periods, 1995 through 1997.

For an extensive collection of statistical terms and definitions, we can refer to many sources
such as http://www.stats.gla.ac.uk/steps/glossary/index.html. We will give some other helpful Inter-
net sources that may be useful for various aspects of statistics: http://www.amstat.org/ (American
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Table 1.2 United States Federal Support for the Mathematical
Sciences in Different Years

Agency 1995 1996 1997

National Science Foundation 87.69 91.70 98.22

DMS 85.29 87.70 93.22

Other MPS 2.40 4.00 5.00

Department of Defense 77.40 77.30 67.80

AFOSR 17.40 16.70 17.10

ARO 15.00 15.00 13.00

DARPA 21.00 22.90 19.50

NSA 2.50 2.50 2.10

ONR 21.40 20.20 16.10

Department of Energy 15.70 16.00 16.00

University Support 6.20 5.50 5.00

National Laboratories 9.50 10.50 11.00

Total, All Agencies 180.79 185.00 182.02

Statistical Association), http://www.stat.ufl.edu (University of Florida statistics department),
http://www.stats.gla.ac.uk/cti/ (collection of Web links to other useful statistics sites), http://www.
statsoft.com/textbook/stathome.html (covers a wide range of topics, the emphasis is on techniques
rather than concepts or mathematics), http://www.york.ac.uk/depts/maths/histstat/welcome.htm
(some information about the history of statistics), http://www.isid.ac.in/ (Indian Statis-
tical Institute), http://www.math.uio.no/nsf/web/index.htm (The Norwegian Statistical Society),
http://www.rss.org.uk/ (The Royal Statistical Society), http://lib.stat.cmu.edu/ (an index of statisti-
cal software and routines). For energy-related statistics, refer to http://www.eia.doe.gov/. There are
various other useful sites that you could explore based on your particular need.

EXERCISES 1.2

1.2.1. Give your own examples for qualitative and quantitative data. Also, give examples for cross-
sectional and time series data.

1.2.2. Discuss how you will collect different types of data. What inferences do you want to derive
from each of these types of data?

1.2.3. Refer to the data in Example 1.2.4. State a few questions that you can ask about the data.
What inferences can you make by looking at these data?
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1.2.4. Refer to the data in Example 1.2.5. Can you state a few questions that the data suggest? What
inferences can you make by looking at these data?

1.3 SAMPLING SCHEMES

In any statistical analysis, it is important that we clearly define the target population. The population
should be defined in keeping with the objectives of the study. When the entire population is included
in the study, it is called a census study because data are gathered on every member of the population.
In general, it is usually not possible to obtain information on the entire population because the
population is too large to attempt a survey of all of its members, or it may not be cost effective.
A small but carefully chosen sample can be used to represent the population. A sample is obtained by
collecting information from only some members of the population. A good sample must reflect all the
characteristics (of importance) of the population. Samples can reflect the important characteristics
of the populations from which they are drawn with differing degrees of precision. A sample that
accurately reflects its population characteristics is called a representative sample. A sample that is not
representative of the population characteristics is called a biased sample. The reliability or accuracy
of conclusions drawn concerning a population depends on whether or not the sample is properly
chosen so as to represent the population sufficiently well.

There are many sampling methods available. We mention a few commonly used simple sampling
schemes. The choice between these sampling methods depends on (1) the nature of the problem or
investigation, (2) the availability of good sampling frames (a list of all of the population members),
(3) the budget or available financial resources, (4) the desired level of accuracy, and (5) the method
by which data will be collected, such as questionnaires or interviews.

Definition 1.3.1 A sample selected in such a way that every element of the population has an equal chance
of being chosen is called a simple random sample. Equivalently each possible sample of size n has an equal
chance of being selected.

Example 1.3.1
For a state lottery, 52 identical Ping-Pong balls with a number from 1 to 52 painted on each ball are put in

a clear plastic bin. A machine thoroughly mixes the balls and then six are selected. The six numbers on the

chosen balls are the six lottery numbers that have been selected by a simple random sampling procedure.

SOME ADVANTAGES OF SIMPLE RANDOM SAMPLING

1. Selection of sampling observations at random ensures against possible investigator biases.

2. Analytic computations are relatively simple, and probabilistic bounds on errors can be computed in
many cases.

3. It is frequently possible to estimate the sample size for a prescribed error level when designing the
sampling procedure.
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Simple random sampling may not be effective in all situations. For example, in a U.S. presidential
election, it may be more appropriate to conduct sampling polls by state, rather than a nationwide
random poll. It is quite possible for a candidate to get a majority of the popular vote nationwide and
yet lose the election. We now describe a few other sampling methods that may be more appropriate
in a given situation.

Definition 1.3.2 A systematic sample is a sample in which every Kth element in the sampling frame is
selected after a suitable random start for the first element. We list the population elements in some order (say
alphabetical) and choose the desired sampling fraction.

STEPS FOR SELECTING A SYSTEMATIC SAMPLE

1. Number the elements of the population from 1 to N .

2. Decide on the sample size, say n, that we need.

3. Choose K = N/n.

4. Randomly select an integer between 1 to K .

5. Then take every K th element.

Example 1.3.2
If the population has 1000 elements arranged in some order and we decide to sample 10% (i.e., N = 1000
and n = 100), then K = 1000/100 = 10. Pick a number at random between 1 and K = 10 inclusive, say 3.

Then select elements numbered 3, 13, 23, . . . , 993.

Systematic sampling is widely used because it is easy to implement. If the list of population elements
is in random order to begin with, then the method is similar to simple random sampling. If, however,
there is a correlation or association between successive elements, or if there is some periodic struc-
ture, then this sampling method may introduce biases. Systematic sampling is often used to select a
specified number of records from a computer file.

Definition 1.3.3 A stratified sample is a modification of simple random sampling and systematic sampling
and is designed to obtain a more representative sample, but at the cost of a more complicated procedure.
Compared to random sampling, stratified sampling reduces sampling error. A sample obtained by stratifying
(dividing into nonoverlapping groups) the sampling frame based on some factor or factors and then selecting
some elements from each of the strata is called a stratified sample. Here, a population with N elements is
divided into s subpopulations. A sample is drawn from each subpopulation independently. The size of each
subpopulation and sample sizes in each subpopulation may vary.

STEPS FOR SELECTING A STRATIFIED SAMPLE

1. Decide on the relevant stratification factors (sex, age, income, etc.).

2. Divide the entire population into strata (subpopulations) based on the stratification criteria. Sizes of
strata may vary.
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3. Select the requisite number of units using simple random sampling or systematic sampling from
each subpopulation. The requisite number may depend on the subpopulation sizes.

Examples of strata might be males and females, undergraduate students and graduate students,
managers and nonmanagers, or populations of clients in different racial groups such as African
Americans, Asians, whites, and Hispanics. Stratified sampling is often used when one or more of the
strata in the population have a low incidence relative to the other strata.

Example 1.3.3
In a population of 1000 children from an area school, there are 600 boys and 400 girls. We divide them into

strata based on their parents’ income as shown in Table 1.3.

Table 1.3 Classification of
School Children

Boys Girls

Poor 120 240

Middle Class 150 100

Rich 330 60

This is stratified data.

Example 1.3.4
Refer to Example 1.3.3. Suppose we decide to sample 100 children from the population of 1000 (that is,

10% of the population). We also choose to sample 10% from each of the categories. For example, we would

choose 12 (10% of 120) poor boys; 6 (10% of 60 rich girls) and so forth. This yields Table 1.4. This particular

sampling method is called a proportional stratified sampling.

Table 1.4 Proportional
Stratification of School
Children

Boys Girls

Poor 12 24

Middle Class 15 10

Rich 33 6
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SOME USES OF STRATIFIED SAMPLING

1. In addition to providing information about the whole population, this sampling scheme provides
information about the subpopulations, the study of which may be of interest. For example, in a U.S.
presidential election, opinion polls by state may be more important in deciding on the electoral
college advantage than a national opinion poll.

2. Stratified sampling can be considerably more precise than a simple random sample, because the
population is fairly homogeneous within each stratum but there is a sizable variation between the
strata.

Definition 1.3.4 In cluster sampling, the sampling unit contains groups of elements called clusters instead
of individual elements of the population. A cluster is an intact group naturally available in the field. Unlike
the stratified sample where the strata are created by the researcher based on stratification variables, the clusters
naturally exist and are not formed by the researcher for data collection. Cluster sampling is also called area
sampling.

To obtain a cluster sample, first take a simple random sample of groups and then sample all elements
within the selected clusters (groups). Cluster sampling is convenient to implement. However, because
it is likely that units in a cluster will be relatively homogeneous, this method may be less precise than
simple random sampling.

Example 1.3.5
Suppose we wish to select a sample of about 10% from all fifth-grade children of a county. We randomly

select 10% of the elementary schools assumed to have approximately the same number of fifth-grade

students and select all fifth-grade children from these schools. This is an example of cluster sampling, each

cluster being an elementary school that was selected.

Definition 1.3.5 Multiphase sampling involves collection of some information from the whole sample and
additional information either at the same time or later from subsamples of the whole sample. The multiphase
or multistage sampling is basically a combination of the techniques presented earlier.

Example 1.3.6
An investigator in a population census may ask basic questions such as sex, age, or marital status for the

whole population, but only 10% of the population may be asked about their level of education or about

how many years of mathematics and science education they had.

1.3.1 Errors in Sample Data
Irrespective of which sampling scheme is used, the sample observations are prone to various sources
of error that may seriously affect the inferences about the population. Some sources of error can
be controlled. However, others may be unavoidable because they are inherent in the nature of the
sampling process. Consequently, it is necessary to understand the different types of errors for a proper
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interpretation and analysis of the sample data. The errors can be classified as sampling errors and
nonsampling errors. Nonsampling errors occur in the collection, recording and processing of sample
data. For example, such errors could occur as a result of bias in selection of elements of the sample,
poorly designed survey questions, measurement and recording errors, incorrect responses, or no
responses from individuals selected from the population. Sampling errors occur because the sample
is not an exact representative of the population. Sampling error is due to the differences between the
characteristics of the population and those of a sample from the population. For example, we are
interested in the average test score in a large statistics class of size, say, 80. A sample of size 10 grades
from this resulted in an average test score of 75. If the average test for the entire 80 students (the
population) is 72, then the sampling error is 75 − 72 = 3.

1.3.2 Sample Size
In almost any sampling scheme designed by statisticians, one of the major issues is the determination
of the sample size. In principle, this should depend on the variation in the population as well as on
the population size, and on the required reliability of the results, that is, the amount of error that
can be tolerated. For example, if we are taking a sample of school children from a neighborhood
with a relatively homogeneous income level to study the effect of parents’ affluence on the academic
performance of the children, it is not necessary to have a large sample size. However, if the income
level varies a great deal in the feeding area of the school, then we will need a larger sample size to
achieve the same level of reliability. In practice, another influencing factor is the available resources
such as money and time. In later chapters, we present some methods of determining sample size in
statistical estimation problems.

The literature on sample survey methods is constantly changing with new insights that demand
dramatic revisions in the conventional thinking. We know that representative sampling methods
are essential to permit confident generalizations of results to populations. However, there are many
practical issues that can arise in real-life sampling methods. For example, in sampling related to
social issues, whatever the sampling method we employ, a high response rate must be obtained. It
has been observed that most telephone surveys have difficulty in achieving response rates higher
than 60%, and most face-to-face surveys have difficulty in achieving response rates higher than 70%.
Even a well-designed survey may stop short of the goal of a perfect response rate. This might induce
bias in the conclusions based on the sample we obtained. A low response rate can be devastating to
the reliability of a study. We can obtain series of publications on surveys, including guidelines on
avoiding pitfalls from the American Statistical Association (www.amstat.org). In this book, we deal
mainly with samples obtained using simple random sampling.

EXERCISES 1.3

1.3.1. Give your own examples for each of the sampling methods described in this section. Discuss
the merits and limitations of each of these methods.

1.3.2. Using the information obtained from the publications of the American Statistical Association
(www.amstat.org), write a short report on how to collect survey data, and what the potential
sources of error are.
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1.4 GRAPHICAL REPRESENTATION OF DATA

The source of our statistical knowledge lies in the data. Once we obtain the sample data values, one
way to become acquainted with them is to display them in tables or graphically. Charts and graphs
are very important tools in statistics because they communicate information visually. These visual
displays may reveal the patterns of behavior of the variables being studied. In this chapter, we will
consider one-variable data. The most common graphical displays are the frequency table, pie chart,
bar graph, Pareto chart, and histogram. For example, in the business world, graphical representations
of data are used as statistical tools for everyday process management and improvements by decision
makers (such as managers, and frontline staff) to understand processes, problems, and solutions. The
purpose of this section is to introduce several tabular and graphical procedures commonly used to
summarize both qualitative and quantitative data. Tabular and graphical summaries of data can be
found in reports, newspaper articles, Web sites, and research studies, among others.

Now we shall introduce some ways of graphically representing both qualitative and quantitative data.
Bar graphs and Pareto charts are useful displays for qualitative data.

Definition 1.4.1 A graph of bars whose heights represent the frequencies (or relative frequencies) of respective
categories is called a bar graph.

Example 1.4.1
The data in Table 1.5 represent the percentages of price increases of some consumer goods and services

for the period December 1990 to December 2000 in a certain city. Construct a bar chart for these data.

Table 1.5 Percentages of Price
Increases of Some Consumer
Goods and Services

Medical Care 83.3%

Electricity 22.1%

Residential Rent 43.5%

Food 41.1%

Consumer Price Index 35.8%

Apparel & Upkeep 21.2%

Solution
In the bar graph of Figure 1.1, we use the notations MC for medical care, El for electricity, RR for residential

rent, Fd for food, CPI for consumer price index, and A & U for apparel and upkeep.
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■ FIGURE 1.1 Percentage price increase of consumer goods.

Looking at Figure 1.1, we can identify where the maximum and minimum responses are located, so
that we can descriptively discuss the phenomenon whose behavior we want to understand.

For a graphical representation of the relative importance of different factors under study, one can use
the Pareto chart. It is a bar graph with the height of the bars proportional to the contribution of each
factor. The bars are displayed from the most numerous category to the least numerous category, as
illustrated by the following example. A Pareto chart helps in separating significantly few factors that
have larger influence from the trivial many.

Example 1.4.2
For the data of Example 1.4.1, construct a Pareto chart.

Solution
First, rewrite the data in decreasing order. Then create a Pareto chart by displaying the bars from the most

numerous category to the least numerous category.

Looking at Figure 1.2, we can identify the relative importance of each category such as the maximum,
the minimum, and the general behavior of the subject data.

Vilfredo Pareto (1848–1923), an Italian economist and sociologist, studied the distributions of wealth
in different countries. He concluded that about 20% of people controlled about 80% of a society’s
wealth. This same distribution has been observed in other areas such as quality improvement: 80%
of problems usually stem from 20% of the causes. This phenomenon has been termed the Pareto
effect or 80/20 rule. Pareto charts are used to display the Pareto principle, arranging data so that
the few vital factors that are causing most of the problems reveal themselves. Focusing improvement
efforts on these few causes will have a larger impact and be more cost-effective than undirected
efforts. Pareto charts are used in business decision making as a problem-solving and statistical tool
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■ FIGURE 1.2 Pareto chart.

that ranks problem areas, or sources of variation, according to their contribution to cost or to total
variation.

Definition 1.4.2 A circle divided into sectors that represent the percentages of a population or a sample that
belongs to different categories is called a pie chart.

Pie charts are especially useful for presenting categorical data. The pie “slices” are drawn such that
they have an area proportional to the frequency. The entire pie represents all the data, whereas each
slice represents a different class or group within the whole. Thus, we can look at a pie chart and
identify the various percentages of interest and how they compare among themselves. Most statistical
software can create 3D charts. Such charts are attractive; however, they can make pieces at the front
look larger than they really are. In general, a two-dimensional view of the pie is preferable.

Example 1.4.3
The combined percentages of carbon monoxide (CO) and ozone (O3) emissions from different sources are

listed in Table 1.6.

Table 1.6 Combined Percentages of CO and O3 Emissions

Transportation Industrial Fuel Solid Miscellaneous
(T) process (I) combustion (F) waste (S) (M)

63% 10% 14% 5% 8%

Construct a pie chart.

Solution
The pie chart is given in Figure 1.3.
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T(63.0%)

M(8.0%)

S(5.0%)

F(14.0%)I(10.0%)

■ FIGURE 1.3 Pie chart for CO and O3.

Definition 1.4.3 A stem-and-leaf plot is a simple way of summarizing quantitative data and is well suited
to computer applications. When data sets are relatively small, stem-and-leaf plots are particularly useful. In a
stem-and-leaf plot, each data value is split into a “stem” and a “leaf.” The “leaf” is usually the last digit of
the number and the other digits to the left of the “leaf” form the “stem.” Usually there is no need to sort the
leaves, although computer packages typically do. For more details, we refer the student to elementary statistics
books. We illustrate this technique by an example.

Example 1.4.4
Construct a stem-and-leaf plot for the 20 test scores given below.

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution
At a glance, we see that the scores are distributed from the 50s through the 90s. We use the first digit of

the score as the stem and the second digit as the leaf. The plot in Table 1.7 is constructed with stems in the

vertical position.

Table 1.7 Stem-and-Leaf Display of 20 Exam Scores

Stem Leaves

5 5

6 6 4

7 8 4 1 4 5 8 9 1

8 2 8 0 2 4 3

9 4 1 6
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The stem-and-leaf plot condenses the data values into a useful display from which we can identify
the shape and distribution of data such as the symmetry, where the maximum and minimum are
located with respect to the frequencies, and whether they are bell shaped. This fact that the frequencies
are bell shaped will be of paramount importance as we proceed to study inferential statistics. Also,
note that the stem-and-leaf plot retains the entire data set and can be used only with quantitative
data. Examples 1.8.1 and 1.8.6 explain how to obtain a stem-and-leaf plot using Minitab and
SPSS, respectively. Refer to Section 1.8.3 for SAS commands to generate graphical representations of
the data.

A frequency table is a table that divides a data set into a suitable number of categories (classes). Rather
than retaining the entire set of data in a display, a frequency table essentially provides only a count
of those observations that are associated with each class. Once the data are summarized in the form
of a frequency table, a graphical representation can be given through bar graphs, pie charts, and
histograms. Data presented in the form of a frequency table are called grouped data. A frequency
table is created by choosing a specific number of classes in which the data will be placed. Generally
the classes will be intervals of equal length. The center of each class is called a class mark. The end
points of each class interval are called class boundaries. Usually, there are two ways of choosing class
boundaries. One way is to choose nonoverlapping class boundaries so that none of the data points
will simultaneously fall in two classes. Another way is that for each class, except the last, the upper
boundary is equal to the lower boundary of the subsequent class. When forming a frequency table
this way, one or more data values may fall on a class boundary. One way to handle such a problem
is to arbitrarily assign it one of the classes or to flip a coin to determine the class into which to place
the observation at hand.

Definition 1.4.4 Let fi denote the frequency of the class i and let n be sum of all frequencies. Then the
relative frequency for the class i is defined as the ratio fi/n. The cumulative relative frequency for the
class i is defined by

∑i
k=1 fk/n.

The following example illustrates the foregoing discussion.

Example 1.4.5
The following data give the lifetime of 30 incandescent light bulbs (rounded to the nearest hour) of a

particular type.

872 931 1146 1079 915 879 863 1112 979 1120

1150 987 958 1149 1057 1082 1053 1048 1118 1088

868 996 1102 1130 1002 990 1052 1116 1119 1028

Construct a frequency, relative frequency, and cumulative relative frequency table.

Solution
Note that there are n = 30 observations and that the largest observation is 1150 and the smallest one is

865 with a range of 285. We will choose six classes each with a length of 50.



18 CHAPTER 1 Descriptive Statistics

Class Frequency Relative frequency Cumulative relative

frequency

fi
fi∑
fi

i∑
k=1

fk

n

50−900 4 4/30 4/30

900−950 2 2/30 6/30

950−1000 5 5/30 11/30

1000−1050 3 3/30 14/30

1050−1100 6 6/30 20/30

1100−1150 10 10/30 30/30

When data are quantitative in nature and the number of observations is relatively large, and there are
no natural separate categories or classes, we can use a histogram to simplify and organize the data.

Definition 1.4.5 A histogram is a graph in which classes are marked on the horizontal axis and either
the frequencies, relative frequencies, or percentages are represented by the heights on the vertical axis. In a
histogram, the bars are drawn adjacent to each other without any gaps.

Histograms can be used only for quantitative data. A histogram compresses a data set into a compact
picture that shows the location of the mean and modes of the data and the variation in the data,
especially the range. It identifies patterns in the data. This is a good aggregate graph of one variable.
In order to obtain the variability in the data, it is always a good practice to start with a histogram of
the data. The following steps can be used as a general guideline to construct a frequency table and
produce a histogram.

GUIDELINE FOR THE CONSTRUCTION OF A FREQUENCY TABLE AND HISTOGRAM

1. Determine the maximum and minimum values of the observations. The range,
R = maximum value − minimum value.

2. Select from five to 20 classes that in general are nonoverlapping intervals of equal length, so as to

cover the entire range of data. The goal is to use enough classes to show the variation in the data,

but not so many that there are only a few data points in many of the classes. The class width should

be slightly larger than the ratio

Largest value − Smallest value

Number of classes
.

3. The first interval should begin a little below the minimum value, and the last interval should end a
little above the maximum value. The intervals are called class intervals and the boundaries are called
class boundaries. The class limits are the smallest and the largest data values in the class. The class
mark is the midpoint of a class.
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4. None of the data values should fall on the boundaries of the classes.
5. Construct a table (frequency table) that lists the class intervals, a tabulation of the number of

measurements in each class (tally), the frequency fi of each class, and, if needed, a column with
relative frequency, fi /n, where n is the total number of observations.

6. Draw bars over each interval with heights being the frequencies (or relative frequencies).

Let us illustrate implementing these steps in the development of a histogram for the data given in the
following example.

Example 1.4.6
The following data refer to a certain type of chemical impurity measured in parts per million in 25 drinking-

water samples randomly collected from different areas of a county.

11 19 24 30 12 20 25 29 15 21

24 31 16 23 25 26 32 17 22 26

35 18 24 18 27

(a) Make a frequency table displaying class intervals, frequencies, relative frequencies, and percent-

ages.

(b) Construct a frequency histogram.

Solution
(a) We will use five classes. The maximum and minimum values in the data set are 35 and 11. Hence

the class width is (35 − 11)/5 = 4.8 � 5. Hence, we shall take the class width to be 5. The lower

boundary of the first class interval will be chosen to be 10.5. With five classes, each of width 5, the

upper boundary of the fifth class becomes 35.5. We can now construct the frequency table for the

data.

Class Class interval fi = frequency Relative Percentage

frequency

1 10.5 − 15.5 3 3/25 = 0.12 12

2 15.5 − 20.5 6 6/25 = 0.24 24

3 20.5 − 25.5 8 8/25 = 0.32 32

4 25.5 − 30.5 5 5/25 = 0.20 20

5 30.5 − 35.5 3 3/25 = 0.12 12

(b) We can generate a histogram as in Figure 1.4.

From the histogram we should be able to identify the center (i.e., the location) of the data, spread
of the data, skewness of the data, presence of outliers, presence of multiple modes in the data, and
whether the data can be capped with a bell-shaped curve. These properties provide indications of the
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■ FIGURE 1.4 Frequency histogram of impurity data.

proper distributional model for the data. Examples 1.8.2 and 1.8.7 explain how to obtain histograms
using Minitab and SPSS, respectively.

EXERCISES 1.4

1.4.1. According to the recent U.S. Federal Highway Administration Highway Statistics, the per-
centages of freeways and expressways in various road mileage–related highway pavement
conditions are as follows:
Poor 10%, Mediocre 32%, Fair 22%, Good 21%, and Very good 15%.
(a) Construct a bar graph.
(b) Construct a pie chart.

1.4.2. More than 75% of all species that have been described by biologists are insects. Of the
approximately 2 million known species, only about 30,000 are aquatic in any life stage. The
data in Table 1.4.1 give proportion of total species by insect order that can survive exposure
to salt (source: http://entomology.unl.edu/marine_insects/marineinsects.htm).

Table 1.4.1

Species Percentage Species Percentage

Coleoptera 26% Odonata 3%

Diptera 35% Thysanoptera 3%

Hemiptera 15% Lepidoptera 1%

Orthoptera 6% Other 6%

Collembola 5%
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(a) Construct a bar graph.
(b) Construct a Pareto chart.
(c) Construct a pie chart.

1.4.3. The data in Table 1.4.2 are presented to illustrate the role of renewable energy consumption
in the U.S. energy supply in 2007 (source: http://www.eia.doe.gov/fuelrenewable.html).
Renewable energy consists of biomass, geothermal energy, hydroelectric energy, solar energy,
and wind energy.

Table 1.4.2

Source Percentage

Coal 22%

Natural Gas 23%

Nuclear Electric Power 8%

Petroleum 40%

Renewable Energy 7%

(a) Construct a bar graph.
(b) Construct a Pareto chart.
(c) Construct a pie chart.

1.4.4. A litter is a group of babies born from the same mother at the same time. Table 1.4.3
gives some examples of different mammals and their average litter size (source: http://
www.saburchill.com/chapters/chap0032.html).

Table 1.4.3

Species Litter size

Bat 1

Dolphin 1

Chimpanzee 1

Lion 3

Hedgehog 5

Red Fox 6

Rabbit 6

Black Rat 11
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(a) Construct a bar graph.
(b) Construct a Pareto chart.

1.4.5. The following data give the letter grades of 20 students enrolled in a statistics course.

A B F A C C D A B F
C D B A B A F B C A

(a) Construct a bar graph.
(b) Construct a pie chart.

1.4.6. According to the U.S. Bureau of Labor Statistics (BLS), the median weekly earnings of full-
time wage and salary workers by age for the third quarter of 1998 is given in Table 1.4.4.

Table 1.4.4

16 to 19 years $260

20 to 24 years $334

25 to 34 years $498

35 to 44 years $600

45 to 54 years $628

55 to 64 years $605

65 years and over $393

Construct a pie chart and bar graph for these data and interpret. Also, construct a Pareto
chart.

1.4.7. The data in Table 1.4.5 are a breakdown of 18,930 workers in a town according to the type
of work.
Construct a pie chart and bar graph for these data and interpret.

1.4.8. The data in Table 1.4.6 represent the number (in millions) of adults and children liv-
ing with HIV/AIDS by the end of 2000 according to the region of the world (source:
http://w3.whosea.org/hivaids/factsheet.htm).
Construct a bar graph for these data. Also, construct a Pareto chart and interpret.

1.4.9. The data in Table 1.4.7 give the life expectancy at birth, in years, from 1900 through 2000
(source: National Center for Health Statistics).
Construct a bar graph for these data.

1.4.10. Dolphins are usually identified by the shape and pattern of notches and nicks on their dorsal
fin. Individual dolphins are cataloged by classifying the fin based on location of distinguish-
ing marks. When a dolphin is sighted its picture can then be compared to the catalog of
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Table 1.4.5

Mining 58

Construction 1161

Manufacturing 2188

Transportation and Public Utilities 821

Wholesale Trade 657

Retail Trade 7377

Finance, Insurance, and Real Estate 890

Services 5778

Total 18,930

Table 1.4.6

Country Adults and children living
with HIV/AIDS (in millions)

Sub-Saharan Africa 25.30

North Africa and Middle East 0.40

South and Southeast Asia 5.80

East Asia and Pacific 0.64

Latin America 1.40

Caribbean 0.39

Eastern Europe and Central Asia 0.70

Western Europe 0.54

North America 0.92

Australia and New Zealand 0.15

dolphins in the area, and if a match is found, the dolphin can be recorded as resighted. These
methods of mark-resight are for developing databases regarding the life history of individual
dolphins. From these databases we can calculate the levels of association between dolphins,
population estimates, and general life history parameters such as birth and survival rates.
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Table 1.4.7

Year Life expectancy

1900 47.3

1960 69.7

1980 73.7

1990 75.4

2000 77.0

The data in Table 1.4.8 represent frequently resighted individuals (as of January 2000) at a
particular location (source: http://www.eckerd.edu/dolphinproject/biologypr.html).

Table 1.4.8

Hammer (adult female) 59

Mid Button Flag (adult female) 41

Luseal (adult female) 31

84 Lookalike (adult female) 20

Construct a bar graph for these data.

1.4.11. The data in Table 1.4.9 give death rates (per 100,000 population) for 10 leading causes in
1998 (source: National Center for Health Statistics, U.S. Deptartment of Health and Human
Services).
(a) Construct a bar graph.
(b) Construct a Pareto chart.

1.4.12. In a fiscal year, a city collected $32.3 million in revenues. City spending for that year is
expected to be nearly the same, with no tax increase projected.
Expenditure: Reserves 0.7%, capital outlay 29.7%, operating expenses 28.9%, debt service
3.2%, transfers 5.1%, personal services 32.4%.
Revenues: Property taxes 10.2%, utility and franchise taxes 11.3%, licenses and permits 1%,
inter governmental revenue 10.1%, charges for services 28.2%, fines and forfeits 0.5%,
interest and miscellaneous 2.7%, transfers and cash carryovers 36%.
(a) Construct bar graphs for expenditure and revenues and interpret.
(b) Construct pie charts for expenditure and revenues and interpret.
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Table 1.4.9

Cause Death rate

Accidents and Adverse Effects 34.5

Chronic Liver Disease and Cirrhosis 9.7

Chronic Obstructive Lung Diseases and Allied Conditions 42.3

Cancer 199.4

Diabetes Mellitus 23.9

Heart Disease 268.0

Kidney Disease 9.7

Pneumonia and Influenza 35.1

Stroke 58.5

Suicide 10.8

1.4.13. Construct a histogram for the 24 examination scores given next.

78 74 82 66 94 71 64 88 55 80 73 86
91 74 82 75 96 78 84 79 71 83 78 79

1.4.14. The following table gives radon concentration in pCi/liter obtained from 40 houses in a
certain area.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2
7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4

15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7
6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

(a) Construct a stem-and-leaf display.
(b) Construct a frequency histogram and interpret.
(c) Construct a pie chart and interpret.

1.4.15. The following data give the mean of SAT Mathematics scores by state for 1999 for a randomly
selected 20 states (source: The World Almanac and Book of Facts 2000).

558 503 565 572 546 517 542 605 493 499
568 553 510 525 595 502 526 475 506 568

(a) Construct a stem-and-leaf display and interpret.
(b) Construct a frequency histogram and interpret.
(c) Construct a pie chart and interpret.
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1.4.16. A sample of 25 measurements is given here:

9 28 14 29 21 27 15 23 23 10
31 23 16 26 22 17 19 24 21 20
26 20 16 14 21

(a) Make a frequency table displaying class intervals, frequencies, relative frequencies, and
percentages.

(b) Construct a frequency histogram and interpret.

1.5 NUMERICAL DESCRIPTION OF DATA

In the previous section we looked at some graphical and tabular techniques for describing a data set.
We shall now consider some numerical characteristics of a set of measurements. Suppose that we
have a sample with values x1, x2, . . . , xn. There are many characteristics associated with this data set,
for example, the central tendency and variability. A measure of the central tendency is given by the
sample mean, median, or mode, and the measure of dispersion or variability is usually given by the
sample variance or sample standard deviation or interquartile range.

Definition 1.5.1 Let x1, x2, . . . , xn be a set of sample values. Then the sample mean (or empirical
mean) x is defined by

x = 1
n

n∑
i=1

xi.

The sample variance is defined by

s2 = 1
(n − 1)

n∑
i=1

(xi − x)2.

The sample standard deviation is

s =
√

s2.

The sample variance s2 and the sample standard deviation s both are measures of the variability or
“scatteredness” of data values around the sample mean x. Larger the variance, more is the spread.
We note that s2 and s are both nonnegative. One question we may ask is “why not just take the sum
of the differences (xi − x) as a measure of variation?” The answer lies in the following result which
shows that if we add up all deviations about the sample mean, we always get a zero value.

Theorem 1.5.1 For a given set of measurements x1, x2, . . . , xn, let x be the sample mean. Then

n∑
i=1

(xi − x) = 0.
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Proof. Since x = (1/n)
∑n

i=1 xi, we have
∑n

i=1 xi = nx. Now

n∑
i=1

(xi − x ) =
n∑

i=1

xi −
n∑

i=1

x

= nx − nx = 0.

Thus although there may be a large variation in the data values,
∑n

i=1(xi − x) as a measure of spread
would always be zero, implying no variability. So it is not useful as a measure of variability.

Sometimes we can simplify the calculation of the sample variance s2 by using the following
computational formula:

s2 =

⎡
⎣ n∑

i=1
x2
i − 1

n

(
n∑

i=1
xi

)2
⎤
⎦

(n − 1)
.

If the data set has a large variation with some extreme values (called outliers), the mean may not
be a very good measure of the center. For example, average salary may not be a good indicator of
the financial well-being of the employees of a company if there is a huge difference in pay between
support personnel and management personnel. In that case, one could use the median as a measure
of the center, roughly 50% of data fall below and 50% above. The median is less sensitive to extreme
data values.

Definition 1.5.2 For a data set, the median is the middle number of the ordered data set. If the data set has
an even number of elements, then the median is the average of the middle two numbers. The lower quartile
is the middle number of the half of the data below the median, and the upper quartile is the middle number
of the half of the data above the median. We will denote

Q1 = lower quartile

Q2 = M = middle quartile (median)

Q3 = upper quartile

The difference between the quartiles is called interquartile range (IQR).

IQR = Q3 − Q1.

A possible outlier (mild outlier) will be any data point that lies below

Q1 − 1.5(IQR) or above Q3 + 1.5(IQR).

Note that the IQR is unaffected by the positions of those observations in the smallest 25% or the
largest 25% of the data.

Mode is another commonly used measure of central tendency. A mode indicates where the data tend
to concentrate most.
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Definition 1.5.3 Mode is the most frequently occurring member of the data set. If all the data values are
different, then by definition, the data set has no mode.

Example 1.5.1
The following data give the time in months from hire to promotion to manager for a random sample of 25

software engineers from all software engineers employed by a large telecommunications firm.

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Calculate the mean, median, mode, variance, and standard deviation for this sample.

Solution
The sample mean is

x = 1
n

n∑
i=1

xi = 83.28 months.

To obtain the median, first arrange the data in ascending order:

5 7 12 14 14 14 18 21 22 23

24 25 34 34 37 47 49 64 67 69

125 192 229 453 483

Now the median is the thirteenth number which is 34 months.

Since 14 occurs most often (thrice), the mode is 14 months.

The sample variance is

s2 = 1
n − 1

n∑
i=1

(xi − x)2

= 1
24

[
(5 − 83.28)2 + · · · + (125 − 83.28)2

]
= 16,478.

and the sample standard deviation is, s = √
s2 = 128.36 months. Thus, we have sample mean x = 83.28

months, median= 34 months, and mode = 14 months. Note that the mean is very much different from the

other two measures of center because of a few large data values. Also, the sample variance s2 = 16,478
months, and the sample standard deviation s =128.36 months.

Example 1.5.2
For the data of Example 1.5.1, find lower and upper quartiles, median, and interquartile range (IQR). Check

for any outliers.
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Solution
Arrange the data in an ascending order.

5 7 12 14 14 14 18 21 22 23

24 25 34 34 37 47 49 64 67 69

125 192 229 453 483

Then the median M is the middle (13th) data value, M = Q2 = 34. The lower quartile is the middle number

below the median, Q1 = [(14 + 18)/2] = 16. The upper quartile, Q3 = [(67 + 69)/2] = 68.

The interquartile range, (IQR) = Q3 − Q1 = 68 − 16 = 52.

To test for outliers, compute

Q1 − 1.5(IQR) = 16 − 1.5(52) = −62

and

Q3 + 1.5(IQR) = 68 + 1.5(52) = 146.

Then all the data that fall above 146 are possible outliers. None is below −62. Therefore the outliers are 192,

229, 453, and 483.

We have remarked earlier that the mean as a measure of central location is greatly affected by the
extreme values or outliers. A robust measure of central location (a measure that is relatively unaffected
by outliers) is the trimmed mean. For 0 ≤ α ≤ 1, a 100α% trimmed mean is found as follows: Order
the data, and then discard the lowest 100α% and the highest 100α% of the data values. Find the mean
of the rest of the data values. We denote the 100α% trimmed mean by xα. We illustrate the trimmed
mean concept in the following example.

Example 1.5.3
For the data set representing the number of children in a random sample of 10 families in a neighborhood,

find the 10% trimmed mean (α = 0.1).

1 2 2 3 2 3 9 1 6 2

Solution
Arrange the data in ascending order.

1 1 2 2 2 2 3 3 6 9

The data set has 10 elements. Discarding the lowest 10% (10% of 10 is 1) and discarding the highest 10% of

the data values, we obtain the trimmed data set as

1 2 2 2 2 3 3 6

The 10% trimmed mean is

x0.1 = 1 + 2 + 2 + 2 + 2 + 3 + 3 + 6
8

= 2.6.

Note that the mean for the data in the previous example without removing any observations is 3.1, which is

different from the trimmed mean.
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Examples 1.8.2 and 1.8.7 explain how to obtain a histogram using Minitab and SPSS, respectively.
Example 1.8.9 demonstrates the SAS commands to obtain the descriptive statistics.

Although standard deviation is a more popular method, there are other measures of dispersion such
as average deviation or interquartile range. We have already seen the definition of interquartile range.
The average deviation for a sample x1, . . . , xn is defined by

Average deviation =

n∑
i=1

|xi − x|
n

.

Calculation of average deviation is simple and straightforward.

1.5.1 Numerical Measures for Grouped Data
When we encounter situations where the data are grouped in the form of a frequency table (see
Section 1.4), we no longer have individual data values. Hence, we cannot use the formulas in Defi-
nition 1.5.1. The following formulas will give approximate values for x and s2. Let the grouped data
have l classes, with mi being the midpoint and fi being the frequency of class i, i = 1, 2, . . . , l. Let
n = ∑l

i=1 fi.

Definition 1.5.4 The mean for a sample of size n,

x = 1
n

l∑
i=1

fimi,

where mi is the midpoint of the class i and fi is the frequency of the class i.

Similarly the sample variance,

s2 = 1
n − 1

n∑
i=1

fi (mi − x)2 =
∑

m2
i fi −

(∑
i

fimi

)2

n

n − 1
.

The following example illustrates how we calculate the sample mean for a grouped data.

Example 1.5.4
The grouped data in Table 1.8 represent the number of children from birth through the end of the teenage

years in a large apartment complex. Find the mean, variance, and standard deviation for these data:

Table 1.8 Number of Children and Their Age Group

Class 0–3 4–7 8–11 12–15 16–19

Frequency 7 4 19 12 8
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Solution
For simplicity of calculation we create Table 1.9.

Table 1.9

Class f i mi mif i m2
i f i

0−3 7 1.5 10.5 15.75

4−7 4 5.5 22 121

8−11 19 9.5 180.5 1714.75

12−15 12 13.5 162 2187

16−19 8 17.5 140 2450

n = 50
∑

mifi = 515
∑

m2
i fi = 6488.5

The sample mean is

x = 1
n

∑
i

fimi = 515
50

= 10.30.

The sample variance is

s2 =
∑

m2
i fi −

(∑
i

fimi

)2

n

n − 1
= 6488.5 − (515)2

50
49

= 24.16.

The sample standard deviation is s = √
s2 = √

24.16 = 4.92.

Using the following calculations, we can also find the median for grouped data. We only know that the
median occurs in a particular class interval, but we do not know the exact location of the median. We
will assume that the measures are spread evenly throughout this interval. Let

L = lower class limit of the interval that contains the median
n = total frequency

Fb = cumulative frequencies for all classes before the median class
fm = frequency of the class interval containing the median
w = interval width of the interval that contains the median

Then the median for the grouped data is given by

M = L + w

fm
(0.5n − Fb).

We proceed to illustrate with an example.
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Example 1.5.5
For the data of Example 1.5.4, find the median.

Solution
First develop Table 1.10.

Table 1.10

Class f i Cumulative f i Cumulative f i/n

0−3 7 7 0.14

4−7 4 11 0.22

8−11 19 30 0.6

12−15 12 42 0.84

16−19 8 50 1.00

The first interval for which the cumulative relative frequency exceeds 0.5 is the interval that contains the
median. Hence the interval 8 to 11 contains the median. Therefore, L = 8, fm = 19, n = 50, w = 3,
and Fb = 11. Then, the median is

M = L + w

fm
(0.5n − Fb) = 8 + 3

19
((0.5)(50) − 11) = 10.211.

It is important to note that all the numerical measures we calculate for grouped data are only
approximations to the actual values of the ungrouped data if they are available.

One of the uses of the sample standard deviation will be clear from the following result, which is
based on data following a bell-shaped curve. Such an indication can be obtained from the histogram
or stem-and-leaf display.

EMPIRICAL RULE

When the histogram of a data set is “bell shaped” or “mound shaped,” and symmetric, the empirical rule
states:

1. Approximately 68% of the data are in the interval (x − s, x + s).
2. Approximately 95% of the data are in the interval (x − 2s, x + 2s).
3. Approximately 99.7% of the data are in the interval (x − 3s, x + 3s).

The bell-shaped curve is called a normal curve and is discussed later in Chapter 3. A typical symmetric
bell-shaped curve is given in Figure 1.5.



1.5 Numerical Description of Data 33

1 sd

0.4

0.3

0.2

0.1

0.0

�3 �2 �1 0
x

1 2 3

Normal distribution

2 sd

3 sd

■ FIGURE 1.5 Bell-shaped curve.

1.5.2 Box Plots
The sample mean or the sample standard deviation focuses on a single aspect of the data set, whereas
histograms and stem-and-leaf displays express rather general ideas about data. A pictorial summary
called a box plot (also called box-and-whisker plots) can be used to describe several prominent features
of a data set such as the center, the spread, the extent and nature of any departure from symmetry,
and identification of outliers. Box plots are a simple diagrammatic representation of the five number
summary: minimum, lower quartile, median, upper quartile, maximum. Example 1.8.4 illustrates
the method of obtaining box plots using Minitab.

PROCEDURE TO CONSTRUCT A BOX PLOT

1. Draw a vertical measurement axis and mark Q1, Q2 (median), and Q3 on this axis as shown in
Figure 1.6.

2. Construct a rectangular box whose bottom edge lies at the lower quartile, Q1 and whose upper
edge lies at the upper quartile, Q3.

3. Draw a horizontal line segment inside the box through the median.
4. Extend the lines from each end of the box out to the farthest observation that is still within 1.5(IQR)

of the corresponding edge. These lines are called whiskers.
5. Draw an open circle (or asterisks *) to identify each observation that falls between 1.5(IQR) and

3(IQR) from the edge to which it is closest; these are called mild outliers.
6. Draw a solid circle to identify each observation that falls more than 3(IQR) from the closest edge;

these are called extreme outliers.
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■ FIGURE 1.6 A typical box-and-whiskers plot.

We illustrate the procedure with the following example.

Example 1.5.6
The following data identify the time in months from hire to promotion to chief pharmacist for a random

sample of 25 employees from a certain group of employees in a large corporation of drugstores.

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Construct a box plot. Do the data appear to be symmetrically distributed along the measurement axis?

Solution
Referring to Example 1.5.2, we find that the median, Q2 = 34.

The lower quartile is Q1 = 14+18
2 = 16.

The upper quartile is Q3 = 67+69
2 = 68.

The interquartile range is IQR = 68 − 16 = 52.
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To find the outliers, compute

Q1 − 1.5(IQR) = 16 − 1.5(52) = −62

and

Q3 + 1.5(IQR) = 68 + 1.5(52) = 146.

Using these numbers, we follow the procedure outlined earlier to construct the box plot in Figure 1.7. The *

in the box plot represents an outlier. The first horizontal line is the first quartile, the second is the median,

and the third is the third quartile.
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■ FIGURE 1.7 Box plot for months to promotion.

By examining the relative position of the median line (the middle line in Figure 1.7), we can test the
symmetry of the data. For example, in Figure 1.7, the median line is closer to the lower quartile than
the upper line, which suggests that the distribution is slightly nonsymmetric. Also, a look at this box
plot shows the presence of two mild outliers and two extreme outliers.

EXERCISES 1.5

1.5.1. The prices of 12 randomly chosen homes in dollars (approximated to nearest thousand) in
a growing region of Tampa in the summer of 2002 are given below.

176 105 133 140 305 215 207 210 173 150 78 96

Find the mean and standard deviation of the sampled home prices from this area.

1.5.2. The following is a sample of nine mortgage companies’ interest rates for 30-year home
mortgages, assuming 5% down.

7.625 7.500 6.625 7.625 6.625 6.875 7.375 5.375 7.500

(a) Find the mean and standard deviation and interpret.
(b) Find lower and upper quartiles, median, and interquartile range. Check for any outliers

and interpret.

1.5.3. For four observations, it is given that mean is 6, median is 4, and mode is 3. Find the standard
deviation of this sample.
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1.5.4. The data given below pertain to a random sample of disbursements of state highway funds
(in millions of dollars), to different states.

1188 1050 2882 2802 780 1171 685
537 519 2523 316 1117 1578 261

(a) Find the mean, variance, and range for these data and interpret.
(b) Find lower and upper quartiles, median and interquartile range. Check for any outliers

and interpret.
(c) Construct a box plot and interpret.

1.5.5. Maximal static inspiratory pressure (PImax) is an index of respiratory muscle strength. The
following data show the measure of PImax (cm H2O) for 15 cystic fibrosis patients.

105 80 115 95 100 85 90 70
135 105 45 115 40 115 95

(a) Find the lower and upper quartiles, median, and interquartile range. Check for any
outliers and interpret.

(b) Construct a box plot and interpret.
(c) Are there any outliers?

1.5.6. Compute the mean, variance, and standard deviation for the data in Table 1.5.1 (assume
that the data belong to a sample).

Table 1.5.1

Class 0–4 5–9 10–14 15–19 20–24

Frequency 5 14 15 10 6

1.5.7. (a) For any grouped data with l classes with group frequencies fi, and class midpoints mi,
show that

l∑
i=1

fi (mi − x) = 0.

(b) Verify this result for the data given in Exercise 1.5.6.

1.5.8. (a) Given the sample values x1, x2, . . . , xn, show that

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i −

(
n∑

i=1
xi

)2

n
.

(b) Verify the result of part (a) for the data of Exercise 1.5.5.
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1.5.9. The following are the closing prices of some securities that a mutual fund holds on a certain
day:

10.25 5.31 11.25 13.13 18.00 32.56 37.06 39.00
43.25 45.00 40.06 28.56 22.75 51.50 47.00 53.50
32.00 25.44 22.50 30.00 24.75 53.37 51.38 26.00
53.50 29.87 32.00 28.87 42.19 37.50 30.44 41.37

(a) Find the mean, variance, and range for these data and interpret.
(b) Find lower and upper quartiles, median, and interquartile range. Check for any outliers.
(c) Construct a box plot and interpret.
(d) Construct a histogram.
(e) Locate on your histogram x, x ± s, x ± 2s, and x ± 3s. Count the data points in each of

the intervals x ± s, x ± 2s, and x ± 3s and compare this with the empirical rule.

1.5.10. The radon concentration (in pCi/liter) data obtained from 40 houses in a certain area are
given below.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2
7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4

15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7
6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

(a) Find the mean, variance, and range for these data.
(b) Find lower and upper quartiles, median, and interquartile range. Check for any outliers.
(c) Construct a box plot.
(d) Construct a histogram and interpret.
(e) Locate on your histogram x ± s, x ± 2s, and x ± 3s. Count the data points in each of the

intervals x, x ± s, x ± 2s, and x ± 3s. How do these counts compare with the empirical
rule?

1.5.11. A random sample of 100 households’ weekly food expenditure represented by x from a
particular city gave the following statistics:

∑
xi = 11,000, and

∑
xi

2 = 1,900,000.

(a) Find the mean and standard deviation for these data.
(b) Assuming that the food expenditure of the households of an entire city of 400,000 will

have a bell-shaped distribution, how many households of this city would you expect to
fall in each of the intervals, x ± s, x ± 2s, and x ± 3s?

1.5.12. The following numbers are the hours put in by 10 employees of company in a randomly
selected week:

40 46 40 54 18 45 34 60 39 42

(a) Calculate the values of the three quartiles and the interquartile range. Also, calculate
the mean and standard deviation and interpret.
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(b) Verify for this data set that
∑10

i=1 (xi − x) = 0.
(c) Construct a box plot.
(d) Does this data set contain any outliers?

1.5.13. For the following data:

6.3 2.9 4.5 1.1 1.8 4.0 1.2 3.1 2.0 4.0
7.0 2.8 4.3 5.3 2.9 8.3 4.4 2.8 3.1 5.6
4.5 4.5 5.7 0.5 6.2 3.7 0.9 2.4 3.0 3.5

(a) Find the mean, variance, and standard deviation.
(b) Construct a frequency table with five classes.
(c) Using the grouped data formula, find the mean, variance, and standard deviation for

the frequency table constructed in part (b) and compare it to the results in part (a).

1.5.14. In order to assess the protective immunizing activity of various whooping cough vaccines,
suppose that 30 batches of different vaccines are tested on groups of children. Suppose that
the following data give immunity percentage in home exposure values (IPHE values).

85 51 41 90 91 40 39 69 45 47
42 12 70 38 97 34 94 77 88 91
79 90 43 40 89 85 71 30 25 21

(a) Find the mean, variance, and standard deviation and interpret.
(b) Construct a frequency table with five classes.
(c) Using the grouped data formula, find the mean, variance, and standard deviation for

the table in part (b) and compare it to the results in part (a).

1.5.15. The grouped data in Table 1.5.2 give the number of births by age group of mothers between
ages 10 and 39 in a certain state in 2000.

Find the median for this grouped data and interpret.

1.5.16. Table 1.5.3 gives the distribution of the masses (in grams) of 50 salmon from a single young
cohort.

Table 1.5.2

Age of mother Number of births

10–14 895

15–19 55,373

20–24 122,591

25–29 139,615

30–34 127,502

35–39 68,685
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Table 1.5.3

Weight 155–164 165–174 175–184 185–194 195–204

Frequency 8 11 18 9 4

(a) Using the grouped data formula, find the mean, variance, and standard deviation
(b) Find the median for this grouped data.

1.5.17. After a pollution accident, 180 dead fish were recovered from a stream. Table 1.5.4 gives
their lengths measured to the nearest millimeter.

Table 1.5.4

Length of Fish (mm) 1–19 20–39 40–59 60–79 80–99

Frequency 38 31 59 45 7

(a) Using the grouped data formula, find the mean, variance, and standard deviation.
(b) Find the median for this grouped data and interpret.

1.6 COMPUTERS AND STATISTICS

With present-day technology, we can automate most statistical calculations. For small sets of data,
many basic calculations such as finding means and standard deviations and creating simple charts,
graphing calculators are sufficient. Students should learn how to perform statistical analysis using
their handheld calculators. For deeper analysis and for large data sets, statistical software is necessary.
Software also provides easier data entry and editing and much better graphics in comparison to
calculators. There are many statistical packages available. Many such analyses can be performed with
spreadsheet application programs such as Microsoft Excel, but a more thorough data analysis requires
the use of more sophisticated software such as Minitab and SPSS. For students with programming
abilities, packages such as MATLAB may be more appealing. For very large data sets and for complicated
data analysis, one could use SAS. SAS is one of the most frequently used statistical packages. Many
other statistical packages (such as R, Splus, and StatXact) are available; the utilities and advantages
of each are based on the specific application and personal taste. For example, R is free software that
is being increasingly used by statisticians and can be downloaded from http://www.r-project.org/,
and a statistical tutorial for R can be found at http://www.biometrics.mtu.edu/CRAN/. For a good
introduction to doing statistics with R, refer to the book by Peter Dalgaard, Introductory Statistics, with
R, Springer, 2002.

In this book, we will give some representative Minitab, SPSS, and SAS commands at the end of each
chapter just to get students started on the technology. These examples are by no means a tutorial for
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the respective software. For a more thorough understanding and use of technology, students should
look at the users’ manual that comes with the software or at references given at the end of the book.
The computer commands are designed to be illustrative, rather than completely efficient. In dealing
with data analysis for real-world problems, we need to know which statistical procedure to use,
how to prepare the data sets suitable for use in the particular statistical package, and finally how
to interpret the results obtained. A good knowledge of theory supplemented with a good working
knowledge of statistical software will enable students to perform sophisticated statistical analysis,
while understanding the underlying assumptions and the limitations of results obtained. This will
prevent us from misleading conclusions when using computer-generated statistical outputs.

1.7 CHAPTER SUMMARY

In this chapter, we dealt with some basic aspects of descriptive statistics. First we gave basic definitions
of terms such as population and sample. Some sampling techniques were discussed. We learned about
some graphical presentations in Section 1.4. In Section 1.5 we dealt with descriptive statistics, in
which we learned how to find mean, median, and variance and how to identify outliers. A brief
discussion of the technology and statistics was given in Section 1.6. All the examples given in this
chapter are for a univariate population, in which each measurement consists of a single value. Many
populations are multivariate, where measurements consist of more than one value. For example, we
may be interested in finding a relationship between blood sugar level and age, or between body height
and weight. These types of problems will be discussed in Chapter 8.

In practice, it is always better to run descriptive statistics as a check on one’s data. The graphical and
numerical descriptive measures can be used to verify that the measurements are sound and that there
are no obvious errors due to collection or coding.

We now list some of the key definitions introduced in this chapter.

■ Population
■ Sample
■ Statistical inference
■ Quantitative data
■ Qualitative or categorical data
■ Cross-sectional data
■ Time series data
■ Simple random sample
■ Systematic sample
■ Stratified sample
■ Proportional stratified sampling
■ Cluster sampling
■ Multiphase sampling
■ Relative frequency
■ Cumulative relative frequency
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■ Bar graph
■ Pie chart
■ Histogram
■ Sample mean
■ Sample variance
■ Sample standard deviation
■ Median
■ Interquartile range
■ Mode
■ Mean
■ Empirical rule
■ Box plots

In this chapter, we have also introduced the following important concepts and procedures:

■ General procedure for data collection
■ Some advantages of simple random sampling
■ Steps for selecting a stratified sample
■ Procedures to construct frequency and relative frequency tables and graphical representations

such as stem-and-leaf displays, bar graphs, pie charts, histograms, and box plots
■ Procedures to calculate measures of central tendency, such as mean and median, as well as

measures of dispersion such as the variance and standard deviation for both ungrouped and
grouped data

■ Guidelines for the construction of frequency tables and histograms
■ Procedures to construct a box plot

1.8 COMPUTER EXAMPLES

In this section, we give some examples of how to use Minitab, SPSS, and SAS for creating graphical
representations of the data as well as methods for the computation of basic statistics. Sometimes, the
outputs obtained using a particular software package may not be exactly as explained in the book; they
vary from one package to another, and also depend on the particular software version. It is important to
obtain the explanation of outputs from the help menu of the particular software package for complete
understanding. The “Computer Examples” sections of this book are not designed as manuals for the
software, nor are they written in the most efficient way. The idea is only to introduce some basic
procedures, so that the students can get started with applying the theoretical material they have seen
in each of the chapters.

1.8.1 Minitab Examples
A good place to get help on Minitab is http://www.minitab.com/resources/. There are many nice
sites available on Minitab procedures; for example, Minitab student tutorials can be obtained from
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http://www.minitab.com/resources/tutorials/. Here we illustrate only some of the basic uses of
Minitab. In Minitab, we can enter the data in the spreadsheet and use the Windows pull-down menus,
or we can directly enter the data and commands. We will mostly give procedures for the pull-down
menus only. It is up to the user’s taste to choose among these procedures. It should be noted that
with different versions of Minitab, there will be some differences in the pull-down menu options. It
is better to consult the Help menu for the actual procedure.

Example 1.8.1 (Stem-and-Leaf):
For the following data, construct a stem-and-leaf display using Minitab:

78 74 82 66 94 71 64 88 55 80

91 74 82 75 96 78 84 79 71 83

Solution
For the pull-down menu, first enter the data in column 1. Then follow the following sequence. The boldface

represents the actions.

Graph > Character Graphs > Stem-and-Leaf
In Variables: type C1 and click OK

We will get the following output:

Stem-and-Leaf of C1 N = 20
Leaf Unit = 1.0
1 5 5

2 6 4

3 6 6

7 7 1 1 4 4

(4) 7 5 8 8 9

9 8 0 2 2 3 4

4 8 8

3 9 14

1

The following are the explanations of each column in the stem-and-leaf display, as given in the Minitab Help

menu. The display has three columns:

Left: Cumulative count of values from the top of the figure down and from the bottom of the figure up

to the middle.

Middle number in parentheses (stem): Count of values in the row containing the median. Parenthe-

ses around the median row are omitted if the median falls between two lines of the display.

Right (leaves): Each value is a single digit to place after the stem digits, representing one data value.

The leaf unit tells you where to put the decimal place in each number.
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Note that this display is a little different from the one we explained in Section 1.4. However, if we combine

the stems and the corresponding leaves, we will get the representation as in Section 1.4.

Example 1.8.2 (Histogram):
For the following data, construct a histogram:

25 37 20 31 31 21 12 25 36 27

38 16 40 32 33 24 39 26 27 19

Solution
Enter the data in C1, then use the following sequence

Graph > Histogram. . . > in Graph variables: type C1 > OK

We will get the histogram as shown in Figure 1.8.
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■ FIGURE 1.8 Histogram for data of Example 1.8.2.

If we want to change the number of intervals, after entering Graph variables, click Options. . . and click

Number of intervals and enter the desired number, then OK.

Example 1.8.3 (Descriptive Statistics):
In this example, we will describe how to obtain basic statistics such as mean, median, and standard deviation

for the following data:
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5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125

Solution
Enter the data in C1. Then use

Stat > Basic Statistics > Display Descriptive Statistics. . . > in Variables: type C1 > click OK

We will get the following output:

Variable N Mean Median

C1 25 83.3 34.0

TrMean StDev SE Mean Minimum Maximum

69.3 128.4 25.7 5.0 483.0

Q1 Q3

16.0 68.0

Here, TrMean represents the trimmed mean. A 5% trimmed mean is calculated. Minitab removes the smallest

5% and the largest 5% of the values (rounded to the nearest integer) and then averages the remaining values.

Also, SE Mean gives the standard error of the mean. It is calculated as StDev/SQRT (N), where StDev is the

standard deviation.

Example 1.8.4 (Sorting and Box Plot):
For the following data, first sort in the increasing order and then construct a box plot to check for outliers.

870 922 1146 1120 1079 905 888 865 1112 966

1150 977 958 1088 1139 1055 1082 1053 1048 1118

866 996 1102 1028 1130 1002 990 1052 1116 1109

Solution
After entering the data in C1, we can sort the data in increasing order as follows:

Manip > Sort. . . > in Sort column(s): type C1 > in Store sorted column(s) in: type C2 > in Sorted
by column: type C1 > OK

In column C2, we will get the following sorted data:

C2

865 866 870 888 905 922 958 966 977 990 996

1002 1028 1048 1052 1053 1055 1079 1082 1088 1102 1109

1112 1116 1118 1120 1130 1139 1146 1150

If we want to draw a box plot for the data, do the following:
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Graph > Box plot. . . > in Graph variables: under Y , type C1 > OK

We will get the box plot as shown in Figure 1.9.
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■ FIGURE 1.9 Box plot data of Example 1.8.4.

Example 1.8.5 (Test of Randomness):
Almost all of the analyses in this book assume that the sample is random. How can we verify whether the

sample is really random? Project 12B explains a procedure called run test. Without going into details, this

test is simple with Minitab. All we have to do is enter the data in C1. Then click

Stat > Nonparametric > Runs Test. . . > in variables: enter C1 > OK

For instance, if we have the following data:

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56

we will get following output:

Run Test

C1

K = 44.0500

The observed number of runs = 14

The expected number of runs = 11.0000

10 Observations above K 10 below
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* N Small -- The following approximation may be
invalid

The test is significant at 0.1681

Cannot reject at alpha = 0.05
‘‘Cannot reject’’ in the output means that it is reasonable to assume that the sample is random. For any

data, it is always desirable to do a run test to determine the randomness.

1.8.2 SPSS Examples
For SPSS, we will give only Windows commands. For all the pull-down menus, the sequence will be
separated by the > symbol.

Example 1.8.6
Redo Example 1.8.1 with SPSS.

Solution
After entering the data in C1,

Analyze > Descriptive Statistics > Explore. . . >
At the Explore window select the variable and move to Dependent List; then click Plots. . ., select

Stem-and-Leaf , click Continue, and click OK at the Explore Window

We will get the output with a few other things, including box plots along with the stem-and-leaf display,

which we will not show here.

Example 1.8.7
Redo Example 1.8.2 with SPSS.

Solution
After entering the data:

Graphs > Histogram. . . >
At the Histogram window select the variable and move to Variable, and click OK

We will get the histogram, which we will not display here.

Example 1.8.8
Redo Example 1.8.3 with SPSS.
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Solution
Enter the data. Then:

Analyze > Descriptive Statistics > Frequencies. . . >
At the Frequencies window select the variable(s); then open the Statistics window and check

whichever boxes you desire under Percentile, Dispersion, Central Tendency, and Distribution >
continue > OK

For example, if you select Mean, Median, Mode, Standard Deviation, and Variance, we will get the following

output and more:

Statistics

VAR00001

N Valid 25

Missing 0

Mean 83.2800

Median 34.0000

Mode 14.00

Std. Deviation 128.36488

Variance 16477.54333

1.8.3 SAS Examples
We will now give some SAS procedures describing the numerical measures of a single variable. PROC
UNIVARIATE will give mean, median, mode, standard deviation, skewness, kurtosis, etc. If we do
not need median, mode, and so on, we could just as well use PROC MEANS in lieu of PROC
UNIVARIATE. We can use the following general format in writing SAS programs with appropriate
problem-specific modifications. There are many good online references as well as books available for
SAS procedures. To get support on SAS, including many example codes, refer to the SAS support Web
site: http://support.sas.com/. Another helpful site can be found at http://www.ats.ucla.edu/stat/sas/.
There are many other sites that may suit your particular application.

GENERAL FORMAT OF AN SAS PROGRAM

DATA give a name to the data set;
INPUT here we put variable names and column locations, if there are more than one variable;
CARDS; (also we can use DATALINES;)
Enter the data here;
TITLE ‘here we include the title of our analysis’;
PROC PRINT;
PROC name of procedure (such as PROC UNIVARIATE) goes here;
Options that we may want to include (such as the variables
to be used) go here;
RUN;
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After writing an SAS program, to execute it we can go to the menu bar and select run>submit, or click
the “running man” icon. On execution, SAS will output the results to the Output window. All the
steps used including time of execution and any error messages will be given in the Log window.

In order to make the SAS outputs more manageable, we can use the following SAS command at the
beginning of an SAS program:

options ls=80 ps=50;

ls stands for line size, and this sets each line to be 80 characters wide. ps stands for page size and
allows 50 lines on each page. This reduces the number of unnecessary page breaks. In order to avoid
date and number, we can use the option commands:

Options nodate nonumber;

Example 1.8.9
For the data of Example 1.8.3, use PROC UNIVARIATE to summarize the data.

Solution
In the program editor window, type the following if you are entering the data directly. If you are using the

data stored in a file, the comment line (with *) should be used instead of the input and data lines.

Options nodate nonumber;

DATA ex9;

INPUT ex9 @@;

DATALINES;

5 7 229 453 12 14 18 14 14 483

22 21 25 23 24 34 37 34 49 64

47 67 69 192 125;

PROC UNIVARIATE;

TITLE;

RUN;

In this case we will get the following output:

The UNIVARIATE Procedure
Variable: ex9

Moments
N 25 Sum Weights 25
Mean 83.28 Sum Observations 2082
Std Deviation 128.364884 Variance 16477.5433
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Skewness 2.45719194 Kurtosis 5.47138396
Uncorrected SS 568850 Corrected SS 395461.04
Coeff Variation 154.136508 Std Error Mean 25.6729767

Basic Statistical Measures
Location Variability

Mean 83.28000 Std Deviation 128.36488
Median 34.00000 Variance 16478
Mode 14.00000 Range 478.00000

Interquartile Range 49.00000

Tests for Location: Mu0=0
Test -Statistic- -p Value-
Student’s t t 3.243878 Pr > |t| 0.0035
Sign M 12.5 Pr >= |M| <.0001
Signed Rank S 162.5 Pr >= |S| <.0001

Quartiles (Definition 5)
Quartile Estimate
100% Max 483
99% 483
95% 453
90% 229
75% Q3 67
50% Median 34
25% Q1 18
10% 12
5% 7
1% 5
0% Min 5

The UNIVARIATE Procedure
Variable: ex9

Extreme Observations
-Lowest- -Highest-
Value Obs Value Obs
5 1 125 25
7 2 192 24
12 5 229 3
14 9 453 4
14 8 483 10

We can observe from the previous output that PROC UNIVARIATE gives much information about the data,

such as mean, standard deviation, and quartiles. If we do not want all these details, we could use the PROC

MEANS command. In the previous code, if we replace PROC UNIVARIATE by the PROC MEANS statement,

we will get the following:

The MEANS Procedure
Analysis Variable : ex9

N Mean Std Dev Minimum Maximum
--------------------------------------------------
25 83.2800000 128.3648836 5.0000000 483.0000000
--------------------------------------------------

The output is greatly simplified.
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If we use PROC UNIVARIATE PLOT NORMAL; this option will produce three plots: stem-and-leaf, box plot,

and normal probability plot (this will be discussed later in the text). In order to obtain bar graphs at the

midpoints of the class intervals, use the following commands:

PROC CHART DATA=ex9;
VBAR ex9;

If we want to create a frequency table, use the following:

PROC FREQ;

table ex9;

title ’Frequency tabulation’;

Every PROC or procedure has its own name and options. We will use different PROCs as we need them.
Always remember to enclose titles in single quotes. There are various other actions that we can perform
for the data analysis using SAS. It is beyond the scope of this book to explain general and efficient SAS
codes. For details, we refer to books dedicated to SAS, such as the book by Ronald P. Cody and Jeffrey K.
Smith, Applied Statistics and the SAS Programming Language, 5th Edition, Prentice Hall, 2006. There are
many Web sites that give SAS codes. One example with references for many aspects of SAS, including
many codes, can be found at http://www.sas.com/service/library/onlinedoc/code.samples.html.

EXERCISES 1.8

1.8.1. The following data represent the lengths (to the nearest whole millimeter) of 80 shoots from
seeds of a certain type planted at the same time.

75 72 76 76 72 74 71 75 77 72

74 71 76 76 76 72 71 73 73 71

72 72 75 70 74 74 78 74 76 79

75 76 73 73 71 72 79 74 77 72

76 70 72 75 78 72 69 75 72 71

77 79 76 73 75 73 72 75 74 78

73 77 73 77 70 74 66 74 73 77

75 79 75 70 72 73 80 73 78 75

Using one of the software packages (Minitab, SPSS, or SAS):
(a) Represent the data in a histogram.

(b) Find the summary statistics such as mean, median, variance, and standard deviation.

(c) Draw box plots and identify any outliers.
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1.8.2. On a particular day, asked, “How many minutes did you exercise today?” the following were
the responses of 30 randomly selected people:

15 30 25 10 30 15 10 45 20 22

18 0 45 12 15 10 17 30 30 15

10 30 20 8 18 30 27 33 15 0

Using one of the software packages (Minitab, SPSS, or SAS):
(a) Represent the data in a histogram.

(b) Find the summary statistics such as mean, median, variance, and standard deviation.

(c) Draw box plots and identify any outliers.

PROJECTS FOR CHAPTER 1

1A. World Wide Web and Data Collection
Statistical Abstracts of the United States is a rich source of statistical data (http://www.census.
gov/prod/www/statistical-abstract-us.html). Pick any category of interest to you and obtain data
(say, Income, Expenditures, and Wealth). Represent a section of the data graphically. Find mean,
median, and standard deviation. Identify any outliers. There are many other sites, such as
http://lib.stat.cmu.edu/datasets/ and http://it.stlawu.edu/∼rlock/datasurf.html, that we can use for
obtaining real data sets.

1B. Preparing a List of Useful Internet Sites
Prepare a list of Internet references for various aspects of statistical study.

1C. Dot Plots and Descriptive Statistics
From the local advertisements of apartments for rent, randomly pick 50 monthly rents for two-
bedroom apartments. For these data, first draw a dot plot and then obtain descriptive statistics (use
Minitab, SPSS, or SAS, or any other statistical software).
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Andrei Kolmogorov (1903–1987) laid the mathematical foundations of probability theory and the
theory of randomness. His monograph Grundbegriffe der Wahrscheinlichkeitsrechnung, published in
1933, introduced probability theory in a rigorous way from fundamental axioms. He later used
probability theory to study the motion of the planets and the turbulent flow of air from a jet
engine. He also made important contributions to stochastic processes, information theory, statis-
tical mechanics, and nonlinear dynamics. Kolmogorov had numerous interests outside mathematics.
In particular, he was interested in the form and structure of the poetry of the Russian author
Pushkin.

2.1 INTRODUCTION

Probability theory provides a mathematical model for the study of randomness and uncertainty.
The concept of probability occupies an important role in the decision-making process, whether the
problem is one faced in business, in engineering, in government, in sciences, or just in one’s own
everyday life. Most decisions are made in the face of uncertainty. The mathematical models of prob-
ability theory enable us to make predictions about certain mass phenomena from the necessarily
incomplete information derived from sampling techniques. It is the probability theory that enables
one to proceed from descriptive statistics to inferential statistics. In fact, probability theory is the most
important tool in statistical inference.

The origin of probability theory can be traced to modeling of games of chances such as dealing
from a deck of cards, or spinning a roulette wheel. The earliest results on probability arose from
the collaboration of the eminent mathematicians Blaise Pascal and Pierre Fermant and a gambler,
Chevalier de Méré. They were interested in what seemed to be contradictions between mathemat-
ical calculations and actual games of chance, such as throwing dice, tossing coin, or spinning a
roulette wheel. For example, in repeated throws of a die, it was observed that each number, 1 to 6,
appeared with a frequency of approximately 1/6. However, if two dice are rolled, the sum of num-
bers showing on two dice, that is, 2 to 12, did not appear equally often. It was then recognized
that, as the number of throws increased, the frequency of these possible results could be predicted
by following some simple rules. Similar basic experiments were conducted using other games of
chance, which resulted in the establishment of various basic rules of probability. Probability theory
was developed solely to be applied to games of chance until the 18th century, when Pierre Laplace
and Karl F. Gauss applied the basic probabilistic rules to other physical problems. Modern proba-
bility theory owes much to the 1933 publication Foundations of Theory of Probability by the Russian
mathematician Andrei N. Kolmogorov. He developed the probability theory from an axiomatic point
of view.

Our objective in this chapter is to provide only a brief review of various definitions and facts from
probability that are needed elsewhere in the text. Proofs are omitted in most cases. Many books are
devoted solely to the study of probability theory and we refer to them for further details and deeper
understanding.



2.2 Random Events and Probability 55

2.2 RANDOM EVENTS AND PROBABILITY

Any process whose outcome is not known in advance but is random is termed an experiment. The term
experiment is used here in a wider sense than the usual notion of a controlled laboratory testing situa-
tion. Thus an experiment may include observing whether a fuse is defective or not, or the duration of
time from start to end of rain in a particular place. Assume that the experiment can be repeated any
number of times under identical conditions. Each repetition is called a trial. A (random) experiment
satisfies the following three conditions: (1) the set of all possible outcomes are known in advance
in each trial; (2) in any particular trial, it is not known which particular outcome will happen; and
(3) the experiment can be repeated under identical conditions. We will now summarize some
notations and concepts for our study of probability.

BASIC DEFINITIONS

1. The sample space associated with an experiment is the set consisting of all possible outcomes and
is called the sure event in the experiment. A sample space is also referred to as a probability space. A
sample space will be denoted by S .

2. An outcome in S is also called a sample point. An event A is a subset of outcomes in S , that is, A ⊂ S .
We say that an event A occurs if the outcome of the experiment is in A.

3. The null subset φ of S is called an impossible event.
4. The event A ∪ B consists of all outcomes that are in A or in B or in both.
5. The event A ∩ B consists of all outcomes that are both in A and B.
6. The event Ac (the complement of A in S) consists of all outcomes not in A, but in S .

Using these concepts, we can define the following. All events are considered to be subsets of S. For
some more concepts from set theory, we refer to Appendix A1.

Definition 2.2.1 Two events A and B are said to be mutually exclusive or disjoint if A∩B = φ. Mutually
exclusive events cannot happen together.

The mathematical definition of probability has changed from its earliest formulation as a measure
of belief to the modern approach of defining through the axioms. We shall discuss four definitions
of probability. We now give an informal definition of probability.

INFORMAL DEFINITION OF PROBABILITY

Definition 2.2.2 The probability of an event is a measure (number) of the chance with which we can expect
the event to occur. We assign a number between 0 and 1 inclusive to the probability of an event. A probability of
1 means that we are 100% sure of the occurrence of an event, and a probability of 0 means that we are 100%
sure of the nonoccurrence of the event. The probability of any event A in the sample space S is denoted by P(A).

From this definition, we can see that P(S) = 1. The earliest approach to measuring uncertainty (in
chance events) is the classical probability concept, which applies when all possible outcomes are
equally likely or when the probabilities of outcomes are known.
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CLASSICAL DEFINITION OF PROBABILITY

Definition 2.2.3 If there are n equally likely possibilities, of which one must occur, and m of these are regarded
as favorable to an event, or as “success,” then the probability of the event or a “success” is given by m/n.

Now we give steps that can be used to compute the probabilities of events using this classical approach.

METHOD OF COMPUTING PROBABILITY BY THE CLASSICAL APPROACH

A. When all outcomes are equally likely
1. Count the number of outcomes in the sample space; say this is n.
2. Count the number of outcomes in the event of interest, A, and say this is m.
3. P(A) = m/n.

B. When all outcomes are not equally likely
1. Let O1, O2, . . . , On be the outcomes of the sample space S . Let P(Oi ) = pi , i = 1, 2, . . . , n. In this

case, the probability of each outcome, pi , is assumed to be known.
2. List all the outcomes in A, say, Oi , Oj , . . . , Om .
3. P(A) = P(Oi ) + P

(
Oj
) + · · · + P(Om) = pi + pj + · · · + pm , the sum of the probabilities of the

outcomes in A.

Example 2.2.1
A balanced die (with all outcomes equally likely) is rolled. Let A be the event that an even number

occurs. Then there are three favorable outcomes (2, 4, 6) in A, and the sample space has six elements,

{1, 2, 3, 4, 5, 6}. Hence P(A) = 3/6 = 1/2.

Example 2.2.2
Suppose we toss two coins. Assume that all the outcomes are equally likely (fair coins).

(a) What is the sample space?

(b) Let A be the event that at least one of the coins shows up heads. Find P(A).

(c) What will be the sample space if we know that at least one of the coins showed up heads?

Solution
(a) The sample space consists of four outcomes, namely S = {(H, H), (H, T ), (T, H), (T, T )}.

(b) The event A has three outcomes, (H, H), (H, T ), and (T, H). Therefore P(A) = 3/4.

(c) Since we know that at least one of the coins showed up heads, the possible outcomes are (H, H),

(H, T ), and (T, H). The sample space now has only three outcomes {(H, H), (H, T ), (T, H)}.

The classical probability concept is not applicable in situations where the various possibilities cannot
be regarded as equally likely. Suppose we are interested in whether or not it will rain on a given
day with known meteorological conditions. Clearly we cannot assume that the events of rain or
no rain are equally likely. In such cases, one could use the so-called frequency interpretation of
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probability. The frequentistic view is a natural extension of the classical view of probability. This
definition was developed as the result of work by R. von Mises in 1936.

FREQUENCY DEFINITION OF PROBABILITY

Definition 2.2.4 The probability of an outcome (event) is the proportion of times the outcome (event)
would occur in a long run of repeated experiments.

For example, to find the probability of heads, H , using a biased coin, we would imagine the coin
is repeatedly tossed. Let n(H) be the number of times H appears in n trials. Then the probability of
heads is defined as P(H) = limn→∞(n(H)/n).

The frequency interpretation of probability is often useful. However it is not complete. Because of
the condition of repetition under identical circumstances, the frequency definition of probability is
not applicable to every event. For a more complete picture, it makes sense to develop the probability
theory through axioms. Now we will define probabilities axiomatically. This definition results from
the 1933 studies of A. N. Kolmogorov.

AXIOMATIC DEFINITION OF PROBABILITY

Definition 2.2.5 Let S be a sample space of an experiment. Probability P(.) is a real-valued function that
assigns to each event A in the sample space S a number P(A), called the probability of A, with the following
conditions satisfied:

1. It is nonnegative, P(A) ≥ 0.

2. It is unity for a certain event. That is, P(S) = 1.

3. It is additive over the union of an infinite number of pairwise disjoint events, that is, if A1, A2, . . . form
a sequence of pairwise mutually exclusive events (that is, Ai ∩ Aj = φ, for i = j) in S, then
P
(⋃∞

i=1 Ai

) = ∑∞
i=1 P(Ai).

From the previous three axioms, it can be shown that P(φ) = 0, and if A1, A2, . . . form a sequence of
pairwise mutually exclusive events in S, then P

(⋃n
i=1 Ai

) = ∑n
i=1 P(Ai) for a finite n. Also we could

verify that 0 ≤ P(A) ≤ 1, for any event A. It is important to observe that the axioms do not tell us
how to assign probabilities to events.

Example 2.2.3
A die is loaded (not all outcomes are equally likely) such that the probability that the number i shows up is

Ki, i = 1, 2, . . . , 6, where K is a constant. Find

(a) the value of K.

(b) the probability that a number greater than 3 shows up.
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Solution
(a) Here the sample space S has six outcomes {1, 2, . . . , 6}. Hence, using axioms (2) and (3) we have

P(1) + P(2) + . . . + P(6) = 1.

Since P(i) = Ki, we have

(K)(1) + (K)(2) + . . . + (K)(6) = 1 or

(K)(1 + 2 + . . . + 6) = (K)(21) = 1.

Hence K = 1/21.

The probability of, say, the number 5 showing up is 5/21.

(b) Let A be the event that a number greater than 3 shows up. Then the outcomes in A are {4, 5, 6}
and they are mutually exclusive. Therefore,

P(A) = P(4) + P(5) + P(6)

= 4
21

+ 5
21

+ 6
21

= 15
21

.

The following properties help us in going beyond the axioms to actually compute various
probabilities.

SOME BASIC PROPERTIES OF PROBABILITY

For two events A and B in S , we have the following:

1. P(Ac ) = 1 − P(A), where Ac is the complement of the set A in S .

2. If A ⊂ B, then P(A) ≤ P(B).

3. P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
In particular, if A ∩ B = φ, then P(A ∪ B ) = P(A) + P(B).

Example 2.2.4
In a large university, the freshman profile for one year’s fall admission says that 40% of the students were in

the top 10% of their high school class, and that 65% are white, of whom 25% were in the top 10% of their

high school class. What is the probability that a freshman student selected randomly from this class either

was in the top 10% of his or her high school class or is white?

Solution
Let E1 be the event that a person chosen at random was in the top 10% of his or her high school class,

and let E2 be the event that the student is white. We are given P(E1) = 0.40, P(E2) = 0.65, and

P(E1 ∩ E2) = 0.25. Then the event that the student chosen is white or was in the top 10% of his or her
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high scool class is represented by E1 ∪ E2. Thus

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2)

= 0.40 + 0.65 − 0.25 = 0.80.

Example 2.2.5
A subway station in a large city has 12 gates, six inbound (entering into the subway station) and six outbound

(exiting the subway station). The number of gates open in each direction is observed at a particular time of

day. Assume that each outcome of the sample space is equally likely.

(a) Define a suitable sample space.

(b) What is the probability that at most one gate is open in each direction?

(c) What is the probability that at least one gate is open in each direction?

(d) What is the probability that the number of gates open is the same in both directions?

(e) What is the probability of the event that the total number of gates open is six?

Solution
(a) We define the sample space to be the set of ordered pairs (x, y), where x is the number of inbound

gates open and y is the number of outbound gates open. For example, (4, 5) means four gates

for inbound and five gates for outbound are open. (1, 0) means one gate is open in the inbound

direction and no gate is open in the outbound direction. Figure 2.1 represents the situation

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We see that the sample space has 49 possible outcomes. We assume that these outcomes are equally

likely.

Enter

Exit

1
2
3

5
4

6

1
2
3

5
4

6

■ FIGURE 2.1 Inbound and outbound traffic.
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(b) Suppose that A is the event that at most one gate is open in each direction. Then

A = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Hence,

P(A) = 4
49

= 0.082

(c) Let B be the event that at least one gate is open in each direction. Then B contains 36 elements.

Hence,

P(B) = 36
49

= 0.7347.

(d) Let

C = event that number of open gates is the same both ways

= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

Then P(C) = 7
49

= 0.1428.

(e) Let

D = the event that the total number of gates open is six

= {(3, 3), (2, 4), (4, 2), (5, 1), (1, 5), (6, 0), (0, 6)}.

Hence, P(D) = 7/49.

EXERCISES 2.2

2.2.1. Consider an experiment in which each of three cars exiting from a university main entrance
turns right (R) or left (L). Assume that a car will turn right or left with equal probability
of 1/2.
(a) What is the sample space S?
(b) What is the probability that at least one car will turn left?
(c) What is the probability that at most one car will turn left?
(d) What is the probability that exactly two cars will turn left?
(e) What is the probability that all three cars will turn in the same direction?

2.2.2. A coin is tossed three times. Define an appropriate sample space for the following cases:
(a) The outcome of each individual toss is of interest.
(b) Only the number of trials is of interest.

2.2.3. A pair of six-sided balanced dice are rolled. What are the probabilities of getting the sum
of the face values as follows?
(a) 8
(b) 6 or 9
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(c) 3, 8, or 12
(d) Not an even number

2.2.4. An experiment has four possible outcomes A, B, C, and D. Check whether the following
assignments of probability are possible:
(a) P(A) = 0.20, P(B) = 0.40, P(C) = 0.09, P(D) = 0.31.
(b) P(A) = 0.41, P(B) = 0.17, P(C) = 0.12, P(D) = 0.36.
(c) P(A) = 1/8, P(B) = 1/2, P(C) = 1/4, P(D) = 1/8.

2.2.5. Suppose we toss two coins and suppose that each of the four points in the sample space
S = {(H, H), (H, T ), (T, H), (T, T )} is equally likely. Let the events be A = {(H, H), (H, T )}
and B = {(H, H), (T, H)}. Find P(A ∪ B).

2.2.6. An urn contains 12 white, 5 yellow, and 13 black marbles. A marble is chosen at random
from the urn, and it is noted that it is not one of the black marbles. What is the sample
space in view of this knowledge? What is the probability that it is yellow?

2.2.7. Two fair dice are rolled and face values are noted.

(a) What is the probability space?
(b) What is the probability that the sum of the numbers showing is 7?
(c) What is the probability that both dice show number 2?

2.2.8. In a city, 65% of people drink coffee, 50% drink tea, and 25% both. What is the probability
that a person chosen at random will drink at least one of coffee or tea? Will drink neither?

2.2.9. In a fruit basket, there are five mangos, of which two are spoiled. If we were to randomly
pick two mangos:

(a) What would be our sample space?
(b) What is the probability that both mangos are good?
(c) What is the probability that no more than one mango is spoiled?

2.2.10. In a box there are three slips of paper, with one of the letters A, C, T written on each slip.
If the slips are drawn out of the box one at a time, what is the probability of obtaining the
word CAT?

2.2.11. Suppose that the genetic makeup of the population of a city is as in Table 2.2.1.

Table 2.2.1

Genetic makeup AA Aa aa

Probability p 2q r

An individual is considered to have the dominant characteristic if the person has the AA
or Aa genetic trait. If we were to choose an individual from this city at random, what is the
probability that this person has the dominant characteristic?
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2.2.12. Using the axioms of probability, show that P(φ) = 0, and if A1, . . . , An are pairwise

mutually exclusive, then P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P(Ai).

2.2.13. Using the axioms of probability, prove the following:
(a) If A ⊂ B, then P(A) ≤ P(B).
(b) P(A ∪ B) = P(A) + P(B) − P(A ∩ B). In particular, if A ∩ B = φ, then P(A ∪ B) =

P(A) + P(B).

2.2.14. Using the axioms of probability, show that

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

− P(B ∩ C) + P(A ∩ B ∩ C)

2.2.15. Prove that
(a) P(A ∩ B) ≥ P(A) + P(B) − 1

(b) P

(
2⋃

i=1
Ai

)
≤

2∑
i=1

P(Ai)

2.2.16. If A and B are mutually exclusive events, P(A) = 0.17 and P(B) = 0.46, find
(a) P(A ∪ B)

(b) P(Ac)

(c) P(Ac ∪ Bc)

(d) P((A ∩ B)c)

(e) P(Ac ∩ Bc)

2.2.17. If P(A) = 0.24, P(B) = 0.67, and P(A ∩ B) = 0.09, find
(a) P(A ∪ B)

(b) P((A ∪ B)c)

(c) P(Ac ∪ Bc)

(d) P((A ∩ B)c)

(e) P(Ac ∩ Bc)

2.2.18. In a series of seven games, the first team to win four games wins the series. If the teams are
evenly matched, what is the probability that the team that wins the first game will win the
series?

2.2.19. In a survey, 1000 adults were asked if they would approve an increase in tax if the revenues
went to build a football stadium. It was also noted whether the person lived in a city (C),
suburb (S), or rural area (R), of the county. The results are summarized in Table 2.2.2.
Define the following events:

A: person chosen is from the city
B: person disapproves tax increase

Find the following probabilities;

(i) P(B), (ii) P(Ac ∩ B), and (iii) P(A ∪ Bc)
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Table 2.2.2

Yes (for tax increase) No (against tax increase)

C 150 250

S 250 150

R 50 150

2.2.20. A couple has two children. Suppose we know the elder child is a boy.
(a) Determine an appropriate sample space.
(b) Find the probability that both are boys.

2.2.21. A box contains three red and two blue flies. Two flies are removed with replacement. Let A

be the event that both the flies are of the same color and B be the event that at least one of
the flies is red. Find (i) P(A), (ii) P(B), (iii) P(A ∪ B), and (iv) P(A ∩ B).

2.2.22. Prove that for any n,

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai) −
∑

i1<i2

P(Ai1 ∩ Ai2) + · · ·

+ (−1)m+1
∑

i1<i2<...<im

P
(
Ai1 ∩ Ai2 ∩ . . . ∩ Aim

)

+ · · · + (−1)n+1P(A1 ∩ A2 ∩ . . . An).

The summation
∑

i1<i2<...<im

P
(
Ai1 ∩ Ai2 ∩ . . . ∩ Aim

)
is taken over all of the

(
n
m

)
subsets of

size m from the set {1, 2, . . . , n}.
2.2.23. A sequence of events {An, n ≥ 1} is said to be an increasing sequence if A1 ⊂ A2 ⊂ . . . ⊂

An ⊂ . . . , whereas it is said to be decreasing if A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . . If {An, n ≥ 1} is

increasing sequence of events, then lim
n→∞ An =

∞⋃
i=1

An. Similarly, if {An, n ≥ 1} is decreasing

sequence of events, then lim
n→∞ An =

∞⋂
i=1

An. Show that if {An, n ≥ 1} is either an increasing

or a decreasing sequence of events, then lim
n→∞ P(An) = P

(
lim

n→∞ An

)
.

2.3 COUNTING TECHNIQUES AND CALCULATION OF
PROBABILITIES

In a sample space with a large number of outcomes, determining the number of outcomes associ-
ated with the events through direct enumeration could be tedious. In this section we develop some
counting techniques and use them in probability computations.
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A1

A2A

B

A3

B1

B2

B3

■ FIGURE 2.2 Tree diagram.

MULTIPLICATION PRINCIPLE

Theorem 2.3.1 If the experiments A1, A2, . . . , Am contain, respectively, n1, n2, . . . , nm outcomes, such that
for each possible outcomes of A1 there are n2 possible outcomes for A2, and so on, then there are a total of
n1, n2, . . . , nm possible outcomes for the composite experiment A1, A2, . . . , Am.

For m = 2 and n1 = 2, n2 = 3, the tree diagram in Figure 2.2 illustrates the multiplication principle.
If we count the total number of branches at the top of the tree, we get the total number of possible
outcomes for the composite experiment. In the figure, we can see that there are total of six branches
that represent all the possible outcomes of this experiment. The tree diagrams can be utilized for
counting for any finite number of composite experiments.

Example 2.3.1
In how many different ways can a student club at a large university with 500 members choose its president

and vice president?

Solution
The president can be chosen 500 ways, and the vice president can be chosen from the remaining 499 ways.

Hence, by the multiplication principle, there are (500)(499) = 249,500 ways in which the complete choice

can be made.

When a random sample of size k is taken with replacement from a total of n objects, the total number
of ways in which the random sample of size k can be selected depends on the particular sampling
method we employ. Here we will consider four sampling methods: (i) sampling with replacement
and the objects are ordered, (ii) sampling without replacement and the objects are ordered, (iii)
sampling without replacement and the objects are not ordered, and (iv) sampling with replacement
and the objects are not ordered.

(I) Sampling with Replacement and the Objects Are Ordered

When a random sample of size k is taken with replacement from a total of n objects and the objects
being ordered, then there are nk possible ways of selecting k-tuples.
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For example, (1) if a die is rolled four times, then the sample space will consist of 64 4-tuples. (2) If
an urn contains nine balls numbered 1 to 9, and a random sample with replacement of size k = 6 is
taken, then the sample space S will consist of 96 6-tuples.

(II) Sampling without Replacement and the Objects Are Ordered

The symbol n! (read n factorial) is defined as n! = n(n − 1) . . . (2)(1). Clearly 1! = 1. By definition,
we take 0! = 1.

If r objects are chosen from a set of n distinct objects without replacement, any particular (ordered)
arrangement of these objects is called a permutation. For example, CDAB is a permutation of the
letters ABCD. The number of permutations of these four letters is 4! = 24, because the first position
can be filled by any of the four letters, leaving only three possibilities for the second position, two for
the third position, and only one for the fourth position, yielding the number of permutations to be
4.3.2.1 = 24.

PERMUTATION OF n OBJECTS TAKEN m AT A TIME

Theorem 2.3.2 The number of permutations of m objects selected from a collection of n distinct objects is

nPm = n!
(n − m)!

= n(n − 1)(n − 2) . . . (n − m + 1).

When a random sample of size k is taken without replacement from a total of n objects and the
objects being ordered, we will apply the permutation formula.

Example 2.3.2
How many distinct three-digit numbers can be formed using the digits 2, 4, 6, and 8 if no digit can be

repeated?

Solution
The number of distinct three-digit numbers will be the number of permutations of three numbers from the

set of four numbers {2, 4, 6, 8}. Hence the number of distinct three-digit numbers will be 4P3 = 4!/1! = 24.

(III) Sampling without Replacement and the Objects Are Not Ordered

Note that in a permutation, the order in which each object is selected becomes important. When the
order of arrangement is not important—for example, if we do not distinguish between AB and BA—the
arrangement is called a combination. We give the following result for number of combinations.

NUMBER OF COMBINATIONS OF n OBJECTS TAKEN m AT A TIME

Theorem 2.3.3 The number of ways in which m objects can be selected (without replacement) from a
collection of n distinct objects is
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(
n

m

)
= n!

m!(n − m)!

= n(n − 1)(n − 2) . . . (n − m + 1)

m! , m = 0, 1, 2, . . . , n.

The symbol
(
n
m

)
is to be read as “n choose m.” When a random sample of size k is taken without

replacement from a total of n objects and the objects are not ordered, we will apply combinations
formula.

Example 2.3.3
How many different ways can the admissions committee of a statistics department choose four foreign

graduate students from 20 foreign applicants and three U.S. students from 10 U.S. applicants?

Solution
The four foreign students can be chosen in

(20
4
)

ways, and the three U.S. students can be chosen in
(10

3
)

ways. Now, by the multiplication principle, the whole selection can be made in
(20

4
)(10

3
) = 581,400 ways.

(IV) Sampling with Replacement and the Objects Are Not Ordered

In obtaining an unordered sample of size k, with replacement, from a total of n objects, k − 1
replacements will be made before sampling ceases. Thus n is increased by k − 1 so that sampling in
this manner may be thought of as drawing an unordered sample of size k from a population of size
n + k − 1. Hence, the number of possible samples can be obtained by using the formula

(
n + k − 1

k

)
= (n + k − 1)!

k!(n − 1)! , k = 0, 1, 2, . . . .

Example 2.3.4
An urn contains 15 balls numbered 1 to 15. If four balls are drawn at random, with replacement and without

regard for order, how many samples are possible?

Solution
Using the previous formula, the number of possible samples is(

15 + 4 − 1
4

)
= 18!

4!14! = 3060.

If we need to divide n objects into more than two groups, we can use the following result.
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NUMBER OF COMBINATIONS OF n OBJECTS INTO m CLASSES

Theorem 2.3.4 The number of ways that n objects can be grouped into m classes with ni in the ith class,

i = 1, 2, . . . , m and
m∑

i=1
ni = n is given by

(
n

n1n2 . . . nm

)
= n!

n1! n2! . . . nm!

In the foregoing theorem, the numbers
(

n

n1n2 . . . nm

)
are called multinomial coefficients.

We can use the previous computational technique to compute the probabilities of events of interest
by using frequency interpretation of probability. Suppose that there are a total of N possible outcomes
for the experiment and let nA be the number of outcomes favoring an event A. Then the probability
of this event is P(A) = nA/N. The following is a well-known problem that is called the birthday
problem.

Example 2.3.5
In a room there are n people. What is the probability that at least two of them have a common birthday?

Solution
Disregarding the leap years, assume that every day of the year is equally likely to be a birthday. Let A be

the event that there are at least two people with a common birthday. There are 365n possible outcomes of

which Ac can happen in 365 × 364 × (365 − n + 1) ways. Because the event A can happen in many more

ways, it is easier to calculate P
(
Ac
)

, that is, the probability that no two persons have the same birthday

or equivalently that they all have different birthdays. To count the number of n-tuples in Ac , because there

are no common birthdays, we can use the method of choosing distinct objects without replacement for an

ordered arrangement. Thus there are 365 possibilities to choose the first person, 364 for the second person,

. . . , (365 − (n − 1)) possibilities for the nth person. The product of these numbers gives the total number of

elements in Ac . Thus

P
(
Ac
) = 365 × 364 × . . . × (365 − n + 1)

365n

and hence

P(A) = 1 − 365 × 364 × . . . × (365 − n + 1)

365n
.

For example, if n = 3, P(A) = 1 − 365×364×363
3653 = 0.0082, and if n = 40,

P(A) = 1 − (365)(364) . . . (365 − 40 + 1)

(365)40 = 1 − 0.891 = 0.109.
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That is, there is only a 0.82% chance of having a common birthday among three persons, whereas if n = 40,

then P(A) = 0.109— that is, the chance of having a common birthday among 40 persons increases to

10.9%. Thus, as the number of persons increases, the chance of finding people with common birthdays also

increases.

Example 2.3.6
In a tank containing 10 fishes, there are three yellow and seven black fishes. We select three fishes at

random.

(a) What is the probability that exactly one yellow fish gets selected?

(b) What is the probability that at most one yellow fish gets selected?

(c) What is the probability that at least one yellow fish gets selected?

Solution
Let A be the event that exactly one yellow fish gets selected, and B be the event that at most one yellow

fish gets selected. There are
(10

3
) = 120 ways to select three fishes from 10.

(a) There are
(3
1
) = 3 ways to select a yellow fish and

(7
2
) = 21 ways to select two black fishes. By

multiplication rule, the probability of selecting exactly one yellow fish is

(
3
1

)(
7
2

)
(

10
3

) = 3(21)

120
= 0.525.

(b) The probability that at most one yellow fish gets selected is the same as the probability of selecting

none or one, which is (
3
1

)(
7
2

)
(

10
3

) +

(
3
0

)(
7
3

)
(

10
3

) = 0.525 + 0.292 = 0.817.

(c) The probability that at least one yellow fish gets selected is the same as 1 − P(none), which is

1 − 0.292 = 0.708.

Example 2.3.7
Refer to Example 2.3.3. Suppose that the admission committee decides to randomly choose seven graduate

students from a pool of 30 applicants, of whom 20 are foreign and 10 are U.S. applicants. What is the

probability that a chosen seven will have four foreign students and three U.S. students?
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Solution
As in Example 2.3.3, the number of ways of selecting four foreign and three U.S. students is(

20
4

)(
10
3

)
= 581,400.

The number of ways of selecting seven applicants out of 30 is

(
30
7

)
= 2,035,800.

Hence the probability that a randomly selected group of seven will consist of four foreign and three U.S.

students is (
20
4

)(
10
3

)
(

30
7

) = 581,400
2,035,800

= 0.2856.

EXERCISES 2.3

2.3.1. Determine the following:

(i)
(

10
2

)
, (ii)

(
10
0

)
, (iii)

(
10
9

)
, (iv)

(
10
2

)(
10
3

)
, and (v)

(
10

2 3 5

)
.

2.3.2. A game in a state lottery selects four numbers from a set of numbers, {0,1,2,3,4,5,6,7,8,9},
with no number being repeated. How many possible groups of four numbers are possible?

2.3.3. A 10-bit binary word is a sequence of 10 digits, of which each may be either a 1 or a 0. How
many 10-bit words are there?

2.3.4. Insulin, a peptide hormone built from 51 amino acid residues, is one of the smallest proteins
known (note that proteins are made up of chains of amino acids) with a molecular weight
of 5808 Da. Twenty amino acids are encoded by the standard genetic code, that is, proteins
are built from a basic set of 20 amino acids. How many possible proteins of length 51 can
be made with 20 amino acids for each position in the protein?

2.3.5. An examination is designed where the students are required to answer any 20 questions
from a group of 25 questions. How many ways can a student choose the 20 questions?

2.3.6. How many different six-place license plates are possible if the first three places and the last
place are to be occupied by letters and the fourth and fifth places are to be occupied by
numbers?

2.3.7. In how many different ways can 15 tickets to a football game be distributed among a class
of 30 students if each student gets at most one ticket?
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2.3.8. How many different four-letter English words (with or without meaning) can be written
using distinct letters from the alphabet?

2.3.9. DNA (deoxyribonucleic acid) is made from a sequence of four nucleotides (A, T, G, or C).
Suppose a region of DNA is 40 nucleotides long. How many possible nucleotide sequences
are there in this region of DNA?

2.3.10. Show that

(a)
(

n

0

)
=
(

n

n

)
= 1.

(b)
(

n

m

)
=
(

n − 1
m − 1

)
+
(

n − 1
m

)
, 1 ≤ m ≤ n.

(c)
(

n

m

)
=
(

n

n − m

)
.

2.3.11. A lot of 50 electrical components numbered 1 to 50 is drawn at random, one by one, and is
divided among five customers.
(a) Suppose that it is known that components 3, 18, 12, 26, and 46 are defective. What is

the probability that each customer will receive one defective component?
(b) What is the probability that one customer will have drawn five defective components?
(c) What is the probability that two customers will receive two defective components each,

two none, and the other one?

2.3.12. A package of 15 apples contains two defective apples. Four apples are selected at random.
(a) Find the probability that none of the selected apples is defective.
(b) Find the probability that at least one of the selected apples is defective.

2.3.13. A homeowner wants to repaint her home and install new carpets (no store where she live
sells both paint and carpet). She plans to get the services from the stores where she buys
the paint and carpet. Suppose there are 12 paint stores with painting service available and
15 carpet stores with installation services available in that city. In how many ways can she
choose these two stores?

2.3.14. From an urn containing 15 white, 7 black, and 8 yellow balls a sample of 3 balls is drawn
at random. Find the probability that
(a) All three balls are yellow.
(b) All three balls are of the same color.
(c) All three balls are of different colors.

2.3.15. Refer to Example 2.3.5. Compute (A) for (a) n = 20, (b) n = 30. Estimate n if you wish to
have an approximately 50% chance of finding someone who shares your birthday.

2.3.16. A box of manufactured items contains 12 items, of which four are defective. If three items
are drawn at random without replacement, what is the probability that
(a) The first one is defective and the rest are good?
(b) Exactly one of the three is defective?
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2.3.17. Five white and four black balls are arranged in a row. What is the probability that the end
balls are of different colors?

2.3.18. Three numbers are chosen at random from the numbers {1, 2, . . . , 9}. What is the probability
that the middle number is 5?

2.3.19. In each of the following, find the number of elements in the resulting sample space.
(a) If a die is rolled five times, how many elements are there in the sample space?
(b) If 13 cards are selected from a deck of 52 playing cards without replacement, and the

order in which the cards are drawn is important, how many elements are there in the
sample space?

(c) Four players in a game of bridge are dealt 13 cards each from an ordinary deck of 52
cards. What is the total number of ways in which we can deal the 13 cards to the four
players?

(d) If a football squad consists of 72 players, how many selections of 11-man teams are
possible?

2.3.20. In Florida Lotto, an urn contains balls numbered 1 to 53. From this urn, a machine chooses
six balls at random and without replacement. The order in which the balls are selected does
not matter. For a $1 bet, a player chooses six numbers. If all six numbers match with the six
numbers chosen by the urn, the player wins the jackpot. What is the probability of winning
the Florida Lotto jackpot?

2.3.21. The cells in our bodies receive half of their chromosomes from the father and the other
half from the mother. So for each pair of homologous chromosomes one will be a paternal
chromosome and one will be a maternal chromosome. We have 23 pairs of homologous
chromosomes.
(a) How many possible combinations of paternal and maternal chromosomes are there?
(b) What is the probability of getting a gamete with nine paternal and 14 maternal

chromosomes? Assume that any ordered combination is equally likely.

2.4 THE CONDITIONAL PROBABILITY, INDEPENDENCE, AND BAYES’ RULE

If we know that an event has already occurred or we have some partial information about the event,
then this knowledge may affect the probability of the event of interest. For example, if we were to
guess on the probability of rain today, the answers will be different depending on whether we are
sitting inside a windowless office or we are outside and can see the formation of heavy clouds. This
leads to the idea of conditional probability.

Definition 2.4.1 The conditional probability of an event A, given that an event B has occurred, denoted
by P(A|B), is equal to

P(A|B) = P(A ∩ B)

P(B)

provided P(B) > 0.
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Example 2.4.1
We toss two balanced dice, and let A be the event that the sum of the face values of two dice is 8, and B

be the event that the face value of the first one is 3. Calculate P(A|B).

Solution
The elements of the events A and B are

A = {(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}.

and

B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}.
Now A ∩ B = {(3, 5)}

P(A) = 5/36, P(B) = 6/36, and P(A ∩ B) = 1/36.

Therefore,

P(A|B) = P(A ∩ B)

P(B)
=

1
36
6

36

= 1
6

.

It is important to note that the conditional probability P(.|B), is a probability on B. It satisfies all the
axioms of a probability.

SOME PROPERTIES OF CONDITIONAL PROBABILITY

1. If E2 ⊂ E1, then P(E2|A) ≤ P(E1|A).
2. P(E |A) = 1 − P(E c |A).
3. P(E1 ∪ E2|A ) = P(E1|A) + P(E2|A) − P(E1 ∩ E2|A ).

4. Multiplication law: P(A ∩ B ) = P(B)P(A|B ) = P(A)P(B|A).

In general,

P(A1 ∩ A2 ∩ . . . ∩ An ) = P(A1 )P(A2|A1 )P(A3|A1 ∩ A2 ) . . .

P(An |A1 ∩ A2 ∩ . . . ∩ An−1 ).

Example 2.4.2
A fruit basket contains 25 apples and oranges, of which 20 are apples. If two fruits are randomly picked in

sequence, what is the probability that both the fruits are apples?

Solution
Let

A = {event that the first fruit is an apple}
B = {event that the second fruit is an apple}.
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We need to find P(A ∩ B). We have

P(A) = 20/25, P(B|A) = 19/24.

Now using the multiplication principle for conditional probabilities,

P(A ∩ B) = P(A)P(B|A) =
(

20
25

)(
19
24

)
= 0.633.

Hence the probability that both the fruits are apples is 0.633.

Probability and statistics are proving to be very useful in the field of genetics. Genetics is the study
of heredity—traits transmitted from parent to offspring. The starting point of the subject of genetics
as presently known can be attributed to Gregor Mendel (1822–1884), an Austrian monk. During the
1850s Mendel was interested in plant breeding. He performed careful experiments with the garden
pea, Pisum sativum, and uncovered the basic principles of genetic inheritance. Mendel discovered that
traits are inherited in discrete units (known as genes). Mendel’s law of independent segregation states
that the parent transmits randomly one of its traits to the offspring. Geneticists use letters to represent
alleles. A capital letter is used to represent a dominant trait, and a lowercase letter is used to represent a
recessive trait. A dominant allele can be observed in the organism’s appearance or physiology, whereas
a recessive allele cannot be observed unless the individual has two copies of the recessive allele.

Example 2.4.3
Suppose we are given a population with the following genetic distribution:

Genetic makeup AA Aa aa

Probability p 2q r

Alleles are randomly donated from parents to offspring. Assuming random mating, what is the probability

that the mating is Aa × Aa and the offspring is aa (recessive trait)?

Solution
Let B denote the event that the mating is Aa×Aa, and C denote the event that the offspring is aa. Then we

have P(B) = 4q2. Because the alleles are randomly donated from parents to offspring, P(C|B) = 1
4 . Now,

using the multiplication principle for conditional probabilities,

P(B ∩ C) = P(B)P(C|B) = (4q2)

(
1
4

)
= q2.

Hence the probability that the mating is Aa × Aa and the offspring is of the recessive trait is q2.

In order to compute probabilities similar to that in Example 2.4.3, we could use Table 2.1. The
distributions of the progeny (zygotes) are the predicted values from Mendel’s law.
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Table 2.1 The Distribution of Zygotes

Mating Probability Probability of zygotes (offspring)
of mating AA Aa aa

AA × AA p2 1 0 0

AA × Aa 2pq 1/2 1/2 0

AA × aa pr 0 1 0

Aa × Aa 4q2 1/4 1/2 1/4

Aa × aa 2qr 0 1/2 1/2

aa × aa r2 0 0 1

If the occurrence of one event has no effect on the occurrence of another event, then those two events
are said to be independent of each other. Thus we have the following definition.

Definition 2.4.2 Two events A and B with P(A) = 0 and P(B) = 0 are said to be independent if
P(A|B) = P(A), or P(B|A) = P(B). Otherwise, A and B are dependent.

As a consequence of the foregoing definition, two events A and B are independent if and only if
P(A ∩ B) = P(A)P(B) and at least one of P(A) or P(B) is not zero. An alternative definition of
independence of two events A and B can be based on this equality. That is, two events A and B are
said to be independent if

P(A ∩ B) = P(A)P(B)

In this case it is not necessary to assume that at least one of P(A) or P(B) is not zero.

Example 2.4.4
Suppose that we toss two fair dice. Let E1 denote the event that the sum of the dice is 6 and E2 denote the

event that the first die equals 4. Then, P(E1 ∩ E2) = P({4, 2}) = 1/36 = P(E1)P(E2) = 5/216. Hence

E1 and E2 are dependent events.

Definition 2.4.3 The k events A1, A2, . . . , Ak are mutually independent if for every j = 2, 3, . . . , k

and every subset of distinct indices i1, i2, . . . , ij

P
(
Ai1 ∩ Ai2 ∩ . . . ∩ Aij

)
= P

(
Ai1

)
P
(
Ai2

)
. . . P

(
Aij

)

Mutually independent events will often be called independent. In particular, if P
(
Aij ∩ Aik

) = P
(
Aij

)
P
(
Aik

)
for each j = k, then the events are called pairwise independent.

Now we will discuss computation of the probability P
(
Aj |B ) (called posterior probability) from the

given prior probabilities P(Ai) and conditional probabilities P(B |Ai ). First we will state the total
probability rule.
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LAW OF TOTAL PROBABILITY

Theorem 2.4.1 Assume S = A1 ∪ A2 ∪ . . . ∪ An, where P(Ai) > 0, i = 1, 2, . . . , n, and Ai ∩ Aj = φ (null
set) for i = j. Then for any event B,

P(B) =
n∑

i=1

P(Ai)P (B |Ai ).

The set A1, A2, . . . , An given in Theorem 2.4.1 is called the partition of S.

Example 2.4.5
Assume that a noisy channel independently transmits symbols, say 0s 60% of the time and 1s 40% of

the time. At the receiver, there is a 1% chance of obtaining any particular symbol distorted. What is the

probability of receiving a 1, irrespective of which symbol is transmitted?

Solution
Given

P(0) = P(′0′ is transmitted) = 0.6

and

P(1) = P(′1′ is transmitted) = 0.4.

Also, given that the probability that a particular symbol is distorted is 0.01; that is,

P(1|0) = P(1 is received|0 is transmitted)

= 0.01 = P(0|1) = P(0 is received|1 is transmitted).

Hence, from the total probability rule, the probability of receiving a zero is

P(1) = P(receive a 1) = P(1|0)P(0) + P(1|1)P(1)

= (0.01)(0.6) + (0.99)(0.4) = 0.402.

Hence, irrespective of whether a 0 or 1 is transmitted, the probability of receiving a 1 is 0.402.

Example 2.4.6
During an epidemic in a town, 40% of its inhabitants became sick. Of any 100 sick persons, 10 will need to

be admitted to an emergency ward. What is the probability that a randomly chosen person from this town

will be admitted to an emergency ward?

Solution
Let

A = {the person is healthy}
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and

B = {the person is admitted to an emergency ward}
It is given

P(Ac) = 0.4.

Hence,

P(A) = 0.6.

We want to find P(B). Now P(B|A) = 0, because a healthy person will not be admitted to an emergency

ward. Also,

P(B|Ac) = 10
100 = 0.1.

Hence, by the total probability rule,

P(B) = P(A)P(B|A) + P(Ac)P(B|Ac)

= (0.6)(0) + (0.1)(0.4) = 0.04.

Sometimes it is not possible to directly calculate the conditional probability that is needed but other
probabilities related to the probability in question are available. Bayes’ rule shows how probabilities
change in the light of information and how to calculate them. It is also an essential tool in the
Bayesian inference. Bayes’ theorem is named after an English clergyman, Reverend Thomas Bayes,
who outlined the result in a paper published (posthumously) in 1763. This is one of those results
that we can prove relatively easily. However, the implications of this result are profound in statistics
and many other applied fields; see Chapter 11.

BAYES’ RULE

Theorem 2.4.2 Assume S = A1 ∪ A2 ∪ . . . ∪ An, where P(Ai) > 0, i = 1, 2, . . . , n and Ai ∩ Aj = φ for
i = j. Then for any event B, with P(B) > 0

P
(
Aj |B ) = P

(
Aj

)
P
(
B
∣∣Aj

)
n∑

i=1
P(Ai)P(B |Ai )

.

Proof. We have

P
(
Aj

∣∣B) = P
(
Aj ∩ B

)
P(B)

= P
(
Aj ∩ B

)
n∑

i=1
P(Ai) P

(
B
∣∣Aj

) , by total probability rule for P(B)
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= P
(
Aj

)
P
(
B
∣∣Aj

)
n∑

i=1
P(Ai) P(B |Ai )

In Bayes’ theorem, the probabilities P(Ai) are called the prior or a priori probabilities of the events
Ai and the conditional probability P

(
Aj |B ) is called the posterior probability of the event Aj . The

events A1, . . . . ., An are sometimes called the states of nature.

Example 2.4.7
Suppose a statistics class contains 70% male and 30% female students. It is known that in a test, 5% of males

and 10% of females got an “A” grade. If one student from this class is randomly selected and observed to

have an “A” grade, what is the probability that this is a male student?

Solution
Let A1 denote that the selected student is a male, and A2 denote that the selected student is a female. Here

the sample space S = A1 ∪ A2. Let D denote that the selected student has an ‘‘A’’ grade. We are given

P(A1) = 0.7, P(A2) = 0.3, P(D |A1 ) = 0.05, and P(D |A2 ) = 0.10. Then by the total probability rule,

P(D) = P(A1)P
(
D
∣∣A1

)+ P(A2) P
(
D
∣∣A2

)
= 0.035 + 0.030 = 0.065.

Now by Bayes’ rule,

P(A1 |D) = P(A1) P(D |A1 )

P(A1) P(D |A1 ) + P(A2) P(D |A2 )

= (0.7)(0.05)

(0.065)
= 7

13
= 0.538.

This shows that even though the probability of a male student getting an ‘‘A’’ grade is smaller than that for

a female student, because of the larger number of male students in the class, a male student with an ‘‘A’’

grade has a greater probability of being selected than a female student with an ‘‘A’’ grade.

STEPS TO APPLY BAYES’ RULE

To find P(A1|D ):
1. List all the probabilities including conditional probabilities given in the problem. That is

P(A1 ), . . . , P(An ) and P(D|A1 ), . . . , P(D|An ).
2. Write the numerator as the product, P(A1 )P(D|A1 ).
3. Using total probability rule, find the denominator probability in the Bayes’ rule.
4. The desired probability is Numerator

Denominator .
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Example 2.4.8
Suppose that three types of antimissile defense systems are being tested. From the design point of view,

each of these systems has an equally likely chance of detecting and destroying an incoming missile within a

range of 250 miles with a speed ranging up to nine times the speed of sound. However, in actual practice it

has been observed that the precisions of these antimissile systems are not the same; that is, the first system

will usually detect and destroy the target 10 of 12 times, the second will detect and destroy it 9 of 12 times,

and the third will detect and destroy it 8 of 12 times. We have observed that a target has been detected

and destroyed. What is the probability that the antimissile defense system was of the third type?

Solution
Let S1, S2, and S3 be the events that the first, second, and third antimissile defense systems, respectively, are

used. Also let D be the event that the target has been detected and destroyed. We wish to find P(S3 |D).

Given that P(S1) = P(S2) = P(S3) = 1/3, P(D |S1 ) = 10/12, P(D |S2 ) = 9/12, and P(D |S3 ) = 8/12.

By total probability rule,

P(D) = P(S1)P(D|S1) + P(S2)P(D|S2) + P(S3)P(D|S3)

=
(

1
3

)(
10
12

)
+
(

1
3

)(
9

12

)
+
(

1
3

)(
8

12

)
= 0.75.

Now using the Bayes formula, we have

P(S3|D) = P(S3) P(D|S3)

P(D)
= (1/3)(8/12)

0.75
= 8

27
= 0.2963.

If the target is destroyed, then the probability that the antimissile defense system was of the third type is

0.2963.

EXERCISES 2.4

2.4.1. Consider the portion of an electric circuit with three relays shown in Figure 2.3. Current
will flow from point a to point b if at least one of the relays closes properly when activated.

1

2

3

a b

■ FIGURE 2.3
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The relays may malfunction and not close properly when activated. Suppose that the relays
act independently of one another and close properly when activated with probability 0.9.
(a) What is the probability that current will flow when the relays are activated?
(b) Given that current flowed when the relays were activated, what is the probability that

relay 1 functioned?

2.4.2. If P(A) > 0, P(B) > 0 and P(A) < P(A|B), show that P(B) < P(B|A).

2.4.3. If P(B) > 0,
(a) Show that P(A|B) + P(Ac|B) = 1.
(b) Show that in general the following two statements are false: (i) P(A|B)+P(A|Bc) = 1,

(ii) P(A|B) + P(Ac|Bc) = 1.

2.4.4. If P(B) = p, P(Ac|B) = q, and P(Ac ∩Bc) = r, find (a) P(A∩Bc), (b) P(A), and (c) P(B|A).

2.4.5. If A and B are independent, show that so are (i) Ac and B, (ii) A and Bc, and (iii) Ac

and Bc.

2.4.6. Show that two events A and B are independent if and only if P(A ∩ B) = P(A)P(B) when
at least one of P(A) or P(B) is not zero.

2.4.7. A card is elected at random from an ordinary deck of 52 playing cards. If E is the event
that the selected card is an ace and F is the event that it is a spade, show that E and F are
independent events.

2.4.8. A fruit basket contains 30 apples, of which five are bad. If you pick two apples at random,
what is the probability that both are good apples?

2.4.9. Two students are to be selected at random from a class with 10 girls and 12 boys. What is
the probability that both will be girls?

2.4.10. Assume a population with the genetic distribution given in Example 2.4.3. Assume random
mating. What is the probability that an offspring is aa?

2.4.11. One of the most common forms of colorblindness is a sex-linked hereditary condition
caused by a defect on the X chromosome (one of the two chromosomes that determine
gender). It is known that colorblindness is much more prevalent in males than in females.
Suppose that 6% of males are colorblind but only 0.75% of females are colorblind. In a
certain population, 45% are male and 55% are female. A person is randomly selected from
this population.
(a) Find the probability that the person is colorblind.
(b) Find the probability that the person is colorblind given that the person is a male.

2.4.12. A survey asked a group of 400 people whether or not they were doing daily exercise. The
responses by sex and physical activity are as in Table 2.4.1.
A person is randomly selected.
(a) What is the probability that this person is doing daily exercise?
(b) What is the probability that this person is doing daily exercise if we know that this

person is a male?
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Table 2.4.1

Male Female

Daily exercise 50 61

No daily exercise 177 112

2.4.13. A laboratory blood test is 98% effective in detecting a certain disease if the person has
the disease (sensitivity). However, the test also yields a “false positive” result for 0.5% of
the healthy persons tested. (That is, if a healthy person is tested, then, with probability
0.005, the test result will show positive.) Assume that 2% of the population actually has
this disease (prevalence). What is the probability a person has the disease given that the
test result is positive?

2.4.14. In order to evaluate the rate of error experienced in reading chest x-rays, the following
experiment is done. Several people with known tuberculosis (TB) status (through other
reliable tests) are subjected to chest x-rays. A technician who is unaware of this status reads
the x-ray, and Table 2.4.2 gives the result. Here +x-ray means the technician concluded that
the person has TB.

Table 2.4.2

Person without TB Person with TB Total

+X-ray 70 27 97

−X-ray 1883 20 1903

Total 1945 55 2000

Find (a) P(TB| + X − ray), (b) P(+X − ray|No TB), and (c) P(No TB| − X − ray).

2.4.15. Each of the 12 ordered boxes contains 12 coins, consisting of pennies and dimes. The
number of dimes in each box is equal to its order among the boxes, that is, box number 1
contains one dime and 11 pennies, box number 2 contains two dimes and 10 pennies, etc.
A pair of fair dice is tossed, and the total showing indicates which box is chosen to have a
coin selected at random from it.
(a) Find the probability that a coin selected is a dime.
(b) It is observed that the selected coin is a penny. Find the probability that it came from

box number 4.

2.4.16. Of 600 car parts produced, it is known that 350 are produced in one plant, 150 parts in
a second plant, and 100 parts in a third plant. Also it is known that the probabilities are
0.15, 0.2, and 0.25 that the parts will be defective if they are produced in the first, second,
or third plants, respectively. What is the probability that a randomly picked part from this
batch is not defective?

2.4.17. One class contains 5 girls and 10 boys and a second class contains 13 boys and 12 girls.
A student is randomly picked from the second class and transferred to the first one. After
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that, a student is randomly chosen from the first class. What is the probability that this
student is a boy?

2.4.18. Consider that we have in an industrial complex two large boxes, each of which contains 30
electrical components. It is known that the first box contains 26 operable and 4 nonoperable
components and that the second box contains 28 operable and 2 nonoperable components.
Assume that the probability of making a selection from each of the boxes is the same.
(a) Find the probability that a component selected at random will be operable.
(b) Suppose the component chosen at random is operable. Find the probability that the

component was chosen from box 1.

2.4.19. Urn 1 contains five white balls and three red balls. Urn 2 contains four white and six red
balls. An urn is selected at random, and a ball is drawn at random from that urn. Find the
probability that, if the ball selected is white, it came from urn 1.

2.4.20. An urn contains two white balls and two black balls. A number is randomly chosen from
the set {1, 2, 3, 4}, and many balls are removed from the urn. Find the probability that the
number i, i = 1, 2, 3, 4, was chosen if at least one white ball was removed from the urn.

2.4.21. A certain state groups its licensed drivers according to age into the following categories: (1)
16 to 25; (2) 26 to 45; (3) 46 to 65; and (4) over 65. Table 2.4.3 lists, for each group, the
proportion of licensed drivers who belong to the group and the proportion of drivers in
the group who had accidents.

Table 2.4.3

Group Size Accident rate

1 0.250 0.086

2 0.257 0.044

3 0.347 0.056

4 0.146 0.098

(a) What proportion of licensed drivers had an accident?
(b) What proportion of those licensed drivers who had an accident were over 65?

2.4.22. It is known that a rare disease, K, is present only in 0.2% of the population. Performance
of the test by a physician’s diagnostic test for the presence or absence of the disease K is
given in Table 2.4.4, where R+ denotes the positive test result, and R− denotes the negative
result. Also, Kc denotes absence of the disease.

Table 2.4.4

R+ R−

K 0.98 0.02

Kc 0.01 0.99
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(a) What is the probability that a patient has the disease, if the test result is positive?
(b) What is the probability that a patient has the disease, if the test result is negative?

2.4.23. A store has light bulbs from two suppliers, 1 and 2. The chance of supplier 1 delivering
defective bulbs is 10%, whereas supplier 2 has a defective rate of 3%. Suppose 60% of the
current supply of light bulbs came from supplier 1. If one of these bulbs is taken from the
current supply and observed to be defective, find the probability that it came from supplier 2.

2.4.24. The quality control chart of a certain manufacturing company shows that 45% of the
defective parts produced in the company are due to mechanical errors and 55% were caused
by human error. The defective parts caused by mechanical errors can be detected, with 95%
accuracy rate, at an inspection station. The detection rate is only 80% if the defective parts
are due to human error.
(a) Suppose a defective part was detected at the inspection station. What is the probability

that this defective part is due to human error?
(b) Suppose that a customer returned a defective part that went undetected at the inspection

station. What is the probability that the defective part is due to human error?

2.4.25. A circuit has three major components: A, B, and C. Component A operates independently
of B and C. The components B and C are interdependent. It is known that the component
A works properly 85% of the time; component B, 90% of the time; and component C,
95% of the time. However, if component C fails, there is a 75% chance that B will also
fail. Assume that at least two parts must operate for the circuit to function. What is the
probability that the circuit will function properly?

2.4.26. Suppose that the data in Table 2.4.5 represent approximate distribution of blood type
frequency in percentage of total population.

Table 2.4.5

Blood type O A B AB

Frequency (%) 45 40 10 5

Assume that the blood types are distributed the same in both male and female populations.
Also assume that the blood types are independent of marriage.
(a) What is the probability that in a randomly chosen couple the wife has type B blood

and the husband has type O blood?
(b) It is known that a person with type B blood can safely receive transfusions only from

persons with type B or type O blood. What is the probability a husband has type B or
type O blood? It is given that a woman has type B blood, what is the probability that
her husband is an acceptable donor for her?

2.4.27. Suppose that there are 40 students in a statistics class and their blood type follows the
percentage distribution given in Exercise 2.4.26.
(a) If we randomly select two students from this class, what is the probability that both

will have the same blood type?
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(b) If we randomly select two students from this class and it is observed that the first
student’s blood type is B+, what is the probability that the second student’s blood
type is O+?

2.4.28. A rare nonlethal disease (ND) that develops during adolescence is believed to be associated
with a certain recessive genotype (aa) at a certain locus. It is known that in a population
5% of adults have the disease. Suppose that among the adults with the disease ND, 85%
have the aa genotype. Also suppose that among the adults without the disease, 2% of them
have the aa genotype. We have randomly selected an adult from this population,
(a) What is the probability that this person has the disease but not the aa genome type?
(b) What is the probability that this person has the aa genome type the but not the disease

ND?
(c) Given that this person has the aa genotype, what is the probability that this person

has the disease ND?

2.6.29. (The gambler’s ruin problem) Two gamblers, A and B, bet on the outcomes of successive
flips of a coin. On each flip, if the coin comes up heads, A collects from B one unit, whereas
if it comes up tails, A pays to B one unit. They continue to do this until one of them runs
out of money. If it is assumed that the successive flips of the coin are independent and each
flip results in a head ith probability p, what is the probability that A winds up with all the
money if A starts with i units and B starts with N − i units?

2.5 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

An experiment may contain numerous characteristics that can be measured. However in most cases,
an experimenter will focus on some specific characteristics of the experiment. For example, a traffic
engineer may focus on the number of vehicles traveling on a certain road or in a certain direction
rather than the brand of vehicles or number of passengers in each vehicle. In general, each outcome
of an experiment can be associated with a number by specifying a rule of association. The concept of
a random variable allows us to pass from the experimental outcomes to a numerical function of the
outcomes, often simplifying the sample space.

Definition 2.5.1 A random variable (r.v.) X is a function defined on a sample space, S, that associates a
real number, X(ω) = x, with each outcome ω in S.

Example 2.5.1
Two balanced coins are tossed and face values are noted. Then the sample space S = {HH, HT, TH, TT }.

Define the random variable X(ω) = n, where n is the number of heads and ω represents a simple event

such as HH . Then

X(ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, if ω = (TT )

1, if ω ∈ {HT, TH}
2, if ω = (HH).

It can be noted that X(ω) = 0 or 2 with probability 1/4 (w.p. 1/4) and X(ω) = 1 w.p. 1/2
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It is important to note that in the definition of a random variable, probability plays no role. However,
as evidenced by the previous example, for each value or a set of values of the random variable, there
are underlying collections of events, and through these events one connects the values of random
variables with probability measures.

The random variable is represented by a capital letter (X, Y, Z, . . .), and any particular real value of the
random variable is denoted by the corresponding lowercase letter (x, y, z, . . .). We define two types
of random variables, discrete and continuous. In this book, we will not deal with mixed random
variables.

Definition 2.5.2 A random variable X is said to be discrete if it can assume only a finite or countably
infinite number of distinct values.

Suppose an Internet business firm had 1000 hits on a particular day. Let the random variable X be
defined as the number of sales resulted on that day. Then, X can take values 0, 1, . . . , 1000. If we are
to define a random variable as the number of telephone calls made from a large city on any given
day, for all practical purposes, this can be assumed to take values 0, 1, . . . , ∞.

Example 2.5.2
In the tossing of three fair coins, let the random variable X be defined as X = number of tails. Then X can

assume values 0, 1, 2, and 3. We can associate these values with probabilities in the following way:

P(X = 0) = P({H, H, H}) = 1/8

P(X = 1) = P ({H, H, T } ∪ {H, T, H} ∪ {T, H, H}) = 3/8

P(X = 2) = P ({T, T, H} ∪ {T, H, T } ∪ {H, T, T }) = 3/8

P(X = 3) = P({T, T, T }) = 1/8.

We can write this in the tabular form

x 0 1 2 3

p(x) 1/8 3/8 3/8 1/8

Let X be a discrete random variable assuming values x1, x2, x3, . . . . We have the following.

Definition 2.5.3 The discrete probability mass function (pmf ) of a discrete random variable X is the
function

p(xi) = P (X = xi) , i = 1, 2, 3, . . ..

A probability mass function (pmf) is more simply called a probability function (pf).

The cumulative distribution function (cdf ) F of the random variable X is defined by

F(x) = P(X ≤ x)

=
∑

all y≤x

p(y), for − ∞ < x < ∞.
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A cumulative distribution function is also called a probability distribution function or simply the
distribution function.

The probability function p(x) is nonnegative. In addition, because X must take on one of the values
in {x1, x2, x3 . . .}, we have

∑∞
i=1 p(xi) = 1. Although the pmf p(x) is defined only for a set of discrete

values x1, x2, x3 . . . , the cdf F(x) is defined for all real values x of X.

Example 2.5.3
Suppose that a fair coin is tossed twice so that the sample space is S = {HH, HT, TH, TT }. Let X be number

of heads.

(a) Find the probability function for X.

(b) Find the cumulative distribution function of X.

Solution
(a) We have

1/4 = P({HH}) = P({HT }) = P({TH}) = P({TT }).
Hence, the pmf is given by

p(0) = P(X = 0) = 1/4, p(1) = 1/2, p(2) = 1/4.

(b) For example,

F(1.5) = P(X ≤ 1.5) = P(X = 0 or 1)

= P(X = 0) + P(X = 1)

= 1
4

+ 1
2

= 3
4

.

Proceeding similarly, we obtain (as shown in Figure 2.5)

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, −∞ < x < 0
1/4, 0 ≤ x < 1
3/4, 1 ≤ x < 2
1, 2 ≤ x < ∞.

�
X (�)

R, the real line

Sample space S

■ FIGURE 2.4 Random variable as a function.
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0

1

3/4

1/4

1 2 3

■ FIGURE 2.5 Graph of F(x).

We have seen that a discrete random variable assumes a finite or a countably infinite value. In contrast,
we define a continuous random variable as one that assumes uncountably many values, such as the
points on a real line. We now give the definition of a continuous random variable.

Definition 2.5.4 Let X be a random variable. Suppose that there exists a nonnegative real-valued function:
f : R → [0, ∞) such that for any interval [a, b],

P(X ∈ [a, b]) =
b∫

a

f (t)dt.

Then X is called a continuous random variable. The function f is called the probability density
function (pdf) of X.

The cumulative distribution function (cdf) is given by

F(x) = P(X ≤ x) =
x∫

−∞
f (t)dt.

For a given function f to be a pdf, it needs to satisfy the following two conditions: f (x) ≥ 0 for all
values of x, and

∫∞
−∞ f (x)dx = 1.

Also, if f is continuous, then dF(x)
dx

= f (x), where F(x) is the cdf. This follows from the fundamental
theorem of calculus. If f is the pdf of a random variable X, then

P(a ≤ X ≤ b) =
b∫

a

f (x)dx.

Figure 2.5 represents P(a ≤ X ≤ b).

As a result, for any real number a, P(X = a) = 0. Also,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b).

If we have cdf F(x), then we have

P(a ≤ X ≤ b) = F(b) − F(a).
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SOME PROPERTIES OF DISTRIBUTION FUNCTION

1. 0 ≤ F (x ) ≤ 1.
2. lim

x→−∞ F (x ) = 0, and lim
x→∞ F (x ) = 1.

3. F is a nondecreasing function, and right continuous.

Example 2.5.4
Let the function

f (x) =
{

λxe−x, x > 0
0, otherwise.

(a) For what value of λ is f a pdf?

(b) Find F(x).

Solution
(a) First note that f (x) ≥ 0. Now, for f (x) to be a pdf, we need

∫∞
−∞ f (x)dx = 1. Because f (x) = 0

for x ≤ 0,

Therefore λ = 1. See Figure 2.6.

1 =
∞∫

−∞
f (x)dx =

∞∫
0

λxe−xdx

= λ

∞∫
0

xe−xdx = λ

⎡
⎣−xe−x

∣∣∞
0 +

∞∫
0

e−xdx

⎤
⎦(using integration

by parts)

= λ
[
0 − e−x

∣∣∞
0

]
= λ.

X Data

0.0

0.1

0.2

0.3

0.4

0.5

a b

f(
x

)

P(a # X # b)

■ FIGURE 2.6 Probability as an area under a curve.
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0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

■ FIGURE 2.7 Graph of f (x) = xe−x .

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

■ FIGURE 2.8 Graph of F(x), x ≥ 0.

(b) The cumulative distribution function is

F(x) =
x∫

−∞
f (t)dt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0

x∫
0

te−tdt = 1 − (x + 1) e−x, x ≥ 0.

Figure 2.8 represents the cumulative distribution.

Example 2.5.5
Suppose that a large grocery store has shelf space for 150 cartons of fruit drink that are delivered on a

particular day of each week. The weekly sale for fruit drink shows that the demand increases steadily up to
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100 cartons and then levels off between 100 and 150 cartons. Let Y denote the weekly demand in hundreds

of cartons. It is known that the pdf of Y can be approximated by

f (y) =

⎧⎪⎨
⎪⎩

y, 0 ≤ y ≤ 1
1, 1 < y ≤ 1.5
0, elsewhere.

(a) Find F(y),

(b) Find P(0 ≤ Y ≤ 0.5),

(c) Find P(0.5 ≤ Y ≤ 1.2).

Solution
(a) The graph of the density function f (y) is shown in Figure 2.9.

From the definition of cdf, we have (Figure 2.10)

F(y) =
y∫

−∞
f (t)dt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, y < 0

y∫
0

tdt, 0 ≤ y < 1

1∫
0

tdt +
y∫

1

dt, 1 ≤ y < 1.5

1∫
0

tdt +
1.5∫
1

dt, y ≥ 1.5

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, y < 0

y2/2, 0 ≤ y < 1

y − 1/2, 1 ≤ y < 1.5

1, y ≥ 1.5.

1

1

y

f (y )

■ FIGURE 2.9 Graph of f (y).
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F(y)
1

1 1.5

1
2

y

■ FIGURE 2.10 Graph of cdf.

(b) The probability,

P (0 ≤ Y ≤ 0.5) = F (0.5) − F (0)

= (0.5)2 /2 = 1/8 = 0.125.

(c)

P (0.5 ≤ Y ≤ 1.2) = F(1.2) − F(0.5)

= (1.2 − 1/2) − 0.125 = 0.575.

EXERCISES 2.5

2.5.1. The probability function of a random variable Y is given by p (i) = cλi

i! , i = 0, 1, 2, . . . ,
where λ is a known positive value and c is a constant.
(a) Find c.
(b) Find P(Y = 0).
(c) Find P(Y > 2).

2.5.2. Find k so that the function given by

p(x) = k

x + 1
, x = 1, 2, 3, 4

is a probability function. Graph the density and cumulative distribution functions.

2.5.3. A random variable X has the following distribution:

x −5 0 3 6
p(x) 0.2 0.1 0.4 0.3

Find the cumulative distribution function F(x) and graph it.

2.5.4. The cdf of a discrete random variable X is given in the following table:

x −1 0 2 5 6
p(x) 0.1 0.15 0.4 0.8 1

(a) Find P(X = 2).
(b) Find P(X > 0).
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2.5.5. The cumulative distribution function F(x) of a random variable X is given by

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, −∞ < x ≤ −1
0.2, −1 < x ≤ 3
0.8, 3 < x ≤ 9
1, x > 9.

Write down the values of the random variable X and the corresponding probabilities, p(x).

2.5.6. The probability density function of a random variable X is given by

f (x) =
{

cx, 0 < x < 4
0, otherwise.

(a) Find c.
(b) Find the distribution function F(x).
(c) Compute P(1 < x < 3).

2.5.7. Let the function

f (x) =
⎧⎨
⎩

cx2, 0 < x < 3

0, otherwise.

(a) Find the value of c so that f (x) is a density function.
(b) Compute P(2 < X < 3).
(c) Find the distribution function F(x).

2.5.8. Suppose that Y is a continuous random variable whose pdf is given by

f (y) =
{

K(4y − 2y2), 0 < y < 2

0, elsewhere.

(a) What is the value of K?
(b) Find P(Y > 1).
(c) Find F(y).

2.5.9. The random variable X has a cumulative distribution function

F(x) =
⎧⎨
⎩

0, for x ≤ 0

x2

1+x2 , for x > 0.

Find the probability density function of X.

2.5.10. A random variable X has a cumulative distribution function

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x ≤ 0

ax + b, if 0 < x ≤ 3

1, if x > 3.
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(a) Find the constants a and b.
(b) Find the pdf f (x).
(c) Find P(1 < X < 5).

2.5.11. The amount of time, in hours, that a machine functions before breakdown is a continuous
random variable with pdf

f (t) =
{

1
120 e−t/120, t ≥ 0

0, t < 0.

What is the probability that this machine will function between 98 and 145 hours before
breaking down? What is the probability that it will function less than 160 hours?

2.5.12. The length of time that an individual talks on a long-distance telephone call has been found
to be of a random nature. Let X be the length of the talk; assume it to be a continuous
random variable with probability density function given by

f (x) =
{

αe−(1/5)x, x > 0

0, elsewhere.

Find

(a) The value of α that makes f (x) a probability density function.
(b) The probability that this individual will talk (i) between 8 and 12 minutes, (ii) less

than 8 minutes, (iii) more than 12 minutes.
(c) Find the cumulative distribution function, F(x).

2.5.13. Let T be the life length of a mechanical system. Suppose that the cumulative distribution of
such a system is given by

F(t) =
⎧⎨
⎩

0, t < 0

1 − exp
(
− (t−γ)β

α

)
, t ≥ 0, α > 0, β, γ ≥ 0.

Find the probability density function that describes the failure behavior of such a system.

2.6 MOMENTS AND MOMENT-GENERATING FUNCTIONS

One of the most useful concepts in probability theory is that of expectation of a random variable.
The expected value may be viewed as the balance point of distribution of probability on the real line,
or in common language, the average.

Definition 2.6.1 Let X be a discrete random variable with pf p(x). Then the expected value of X, denoted
by E(X), is defined by

μ = E(X) =
∑
all x

xp(x), provided
∑
all x

|x| p(x) < ∞.
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Now we will define the expected value for a continuous random variable.

Definition 2.6.2 The expected value of a continuous random variable X with pdf f (x) is defined by

μ = E(X) =
∞∫

−∞
xf (x)dx, provided

∞∫
−∞

|x| f (x)dx < ∞.

The expected value of X is also called the expectation or mathematical expectation of X. We denote
the expected value of X by μ.

Example 2.6.1
Let

X =
{

1, with a probability 1/2
0, with a probability 1/2.

Then E(X) = 1(1/2) + 0(1/2) = 1/2.

Example 2.6.2
Let X be a discrete random variable whose probability density function is given in the following table:

x −1 0 1 2 3 4 5

p(x) 1
7

1
7

1
14

2
7

1
14

1
7

1
7

Find E(X).

Solution
By definition,

E(X) =
∑

xp(x) = −1
(

1
7

)
+ 0

(
1
7

)
+ 1

(
1

14

)

+ 2
(

2
7

)
+ 3

(
1

14

)
+ 4

(
1
7

)
+ 5

(
1
7

)
= 2.

Example 2.6.3
Let X ≥ 0 be an integer-valued random variable such that P(X = n) = pn. Show that EX =∑∞

n=1 P(X ≥ n).
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Solution
Using the definition of expectation, and the fact that (0)(p0) = 0, we have

EX =
∞∑

n=1

npn = 1p1 + 2p2 + 3p3 + · · ·

= p1 + p2 + p3 + · · ·
+ p2 + p3 + p4 + · · ·
+ p3 + p4 + · · ·

= P (X ≥ 1) + P (X ≥ 2) + · · ·

=
∞∑

n=1

P (X ≥ n).

Example 2.6.4
Suppose you are selling a car. Let X0, X1, X2, . . . be the successive offers occurring at times 0, 1, 2, . . . , n,

that you receive (assume that the offers are random, independent, and have the same distribution); see

Figure 2.11. Show that E(N) = ∞, where N = min{n : Xn > X0}, that is the first time an offer exceeds the

initial offer X0 at time ‘0’.

0

X0

X1

Xn

1 2 3 4 n 21 n

■ FIGURE 2.11 Size of successive offerings.

Solution
By definition,

P (N ≥ n) = P
(
X0 is largest of X0, X1, . . . , Xn−1

)
= 1

n
, by symmetry,

as any of the X′
is could be more than the rest. Hence, using Example 2.6.3,

E(N) =
∞∑

n=1

P (N ≥ n) =
∞∑

n=1

1
n

= ∞.

You would expect to wait a long time to receive an offer better than the first one. So, take the first offer.
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Definition 2.6.3 The variance of a random variable X is defined by

σ2 = Var(X) = E(X − μ)2

The square root of variance, denoted by σ, is called the standard deviation.

The variance is a measure of spread or variability of values of a random variable around the mean.

The next result shows how to obtain the expectation of a function of a random variable.

EXPECTATION OF FUNCTION OF A RANDOM VARIABLE

Theorem 2.6.1 Let g(X) be a function of X, then the expected value of g(X) is

E [g(X)] =

⎧⎪⎨
⎪⎩

∑
x

g(x)p(x), if X is discrete

∞∫
−∞

g(x)f (x)dx, if X is continuous

provided the sum or the integral exists.

We now give some properties of the expectation of a random variable.

SOME PROPERTIES OF EXPECTED VALUE AND VARIANCE

Theorem 2.6.2 Let c be a constant and let g(X), g1(X), . . . , gn(X) be functions of a random variable X such
that E(g(X)) and E(gi(X)) for i = 1, 2, . . . , n exist. Then the following results hold:

(a) E(c) = c.
(b) E [cg(X)] = cE [g(X)].
(c) E[

∑
i

gi(X)] = ∑
i

E[gi(X)].

(d) Var(aX + b) = a2Var(X). In particular, Var(aX) = a2Var(X).
(e) Var(X) = E

(
X2)− μ2.

Proof. Proof of (a) through (d) will be given as an exercise. We will prove (e).

Var(X) = E(X − μ)2

= E
(
X2 − 2Xμ + μ2

)

= E
(
X2
)

− 2μE (X) + μ2

= E
(
X2
)

− 2μ2 + μ2

= E
(
X2
)

− μ2.
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Example 2.6.5
A discrete random variable X is said to be uniformly distributed over the numbers 1, 2, 3, . . . , n, if

P(X = i) = 1
n , i = 1, 2, . . . , n.

Find EX and Var(X).

Solution
By definition

EX =
n∑

i=1

xipi

= 1
(

1
n

)
+ 2

(
1
n

)
+ · · · + n

(
1
n

)

= 1
n

[
n (n + 1)

2

]
= n + 1

2
.

Similarly, using the summation formula 12 + 22 + · · · + n2 = n(n+1)(2n+1)
6 , we get

EX2 = 12
(

1
n

)
+ 22

(
1
n

)
+ · · · + n2

(
1
n

)

= 1
n

[
n(n + 1)(2n + 1)

6

]

= (n + 1)(2n + 1)

6
.

Hence,

Var(X) = EX2 − (EX)2

= (n + 1)(2n + 1)

6
−
(

n + 1
2

)2

= n2 − 1
12

.
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Example 2.6.6
To find out the prevalence of smallpox vaccine use, a researcher inquired into the number of times a

randomly selected 200 people aged 16 and over in an African village had been vaccinated. He obtained

the following figures: never, 17 people; once, 30; twice, 58; three times, 51; four times, 38; five times, 7.

Assuming these proportions continue to hold exhaustively for the population of that village, what is the

expected number of times those people in the village had been vaccinated, and what is the standard

deviation?

Solution
Let X denote the random variable representing the number of times a person aged 16 or older in this village

has been vaccinated. Then, we can obtain the following distribution:

x 0 1 2 3 4 5

p(x) 17/200 30/200 58/200 51/200 38/200 7/200

Then,

E(X) =
∑

xp(x) = 1
200

(0(17) + 1(30) + 2(58) + 3(51) + 4(38) + 5(7))

= 2.43.

Also,

Var(X) = E(X2) − (E(X))2

=
∑

x2p(x) − (2.43)2 = 7.52 − (2.43)2

= 1.6151.

Thus, the standard deviation is
√

1.6151 = 1.2709.

Example 2.6.7
Let Y be a random variable with pdf

f (y) =
⎧⎨
⎩

3
64

y2(4 − y), 0 ≤ y ≤ 4

0, elsewhere.

(a) Find the expected value and variance of Y .

(b) Let X = 300Y + 50. Find E(X) and Var(X), and

(c) Find P(X > 750).
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Solution
(a)

E(Y) =
∞∫

−∞
yf (y)dy

= 3
64

4∫
0

yy2 (4 − y) dy

= 2.4

and

Var(Y) =
4∫

0

(y − 2.4)2 3
64

y2 (4 − y) dy

= 0.64.

(b) Using the fact that Var(aY + b) = a2Var(Y), we have

Var(X) = (300)2Var(Y)

= 90,000(0.64) = 57,600.

(c)

P (X > 750) = P(300Y + 50 > 750)

= P

(
Y >

7
3

)

= 3
64

4∫
7/3

y2(4 − y) dy = 0.55339.

2.6.1 Skewness and Kurtosis
Even though the mean μ and the standard deviation σ are significant descriptive measures that locate
the center and describe the spread or dispersion of probability density function f (x), they do not
provide a unique characterization of the distribution. Two distributions may have the same mean
and variance and yet could be very different, as in Figure 2.12.

To better approximate the probability distribution of a random variable, we may need higher
moments.
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Mean 5 1
Variance 5 1

Mean 5 1
Variance 5 1

0.0

0.1

0.2

0.3

0.4

0.5

■ FIGURE 2.12 Same mean and variance.

Definition 2.6.4 The kth moment about the origin of a random variable X is defined as EXk and
denoted by μ′

k, whenever it exists. The kth moment about its mean (also called central kth moment)
of a random variable X is defined as E

[
(X − μ)k

]
and denoted by μk, k = 2, 3, 4, . . . , whenever it exists.

In particular, we have E(X) = μ′
1 = μ, and σ2 = μ2. We have seen earlier that the second moment

about mean (variance, σ2) is used as a measure of dispersion about the mean.

Definition 2.6.5 The standardized third moment about mean

α3 = E(X − μ)3

σ3 = μ3

μ
3/2
2

is called the skewness of the distribution of X. The standardized fourth moment about mean

α4 = E(X − μ)4

σ4

is called the kurtosis of the distribution.

Skewness is used as a measure of the asymmetry (lack of symmetry) of a density function about
its mean. Recall that a distribution, or data set, is symmetric if it looks the same to the left and
right of the center point. If α3 = 0, then the distribution is symmetric about the mean, if α3 > 0,
the distribution has a longer right tail, and if α3 < 0, the distribution has a longer left tail. Thus,
the skewness of a normal distribution is zero. Kurtosis is a measure of whether the distribution is
peaked or flat relative to a normal distribution. Kurtosis is based on the size of a distribution’s tails.
Positive kurtosis indicates too few observations in the tails, whereas negative kurtosis indicates too
many observations in the tail of the distribution. Distributions with relatively large tails are called
leptokurtic, and those with small tails are called platokurtic. A distribution which has the same kurtosis
as a normal distribution is known as mesokurtic. It is known that the kurtosis for a standard normal
distribution α4 = 3.

An important expectation is the moment-generating function for a random variable, in a sense, this
packages all the moments for a random variable in one expression.
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Definition 2.6.6 For a random variable X, suppose that there is a positive number h such that for −h < t < h

the mathematical expectation E
(
etX
)

exists. The moment-generating function (mgf) of the random
variable X is defined by

MX(t) = E
(
etX
)

=
⎧⎨
⎩
∑

etxp(x), if discrete∫
etxf (x)dx, if continuous

.

An advantage of the moment generating function is its ability to give the moments. Recall that the
Maclaurin series of the function etx is

etx = 1 + tx + (tx)2

2! + (tx)3

3! + · · · + (tx)n

n! + · · · ·

By using the fact that the expected value of the sum equals the sum of the expected values, the
moment-generating function can be written as

MX(t) = E
[
etX
]

= E

[
1 + tX + (tX)2

2! + (tX)3

3! + · · · + (tX)n

n! + · · ·
]

= 1 + tE[X] + t2

2!E
[
X2
]

+ t3

3!E
[
X3
]

+ · · · + tn

n!E
[
Xn
]+ · · ·

Taking the derivative of MX(t) with respect to t, we obtain

dMX (t)

dt
= M′

X (t) = E[X] + tE[X] + t2

2!E
[
X2
]

+ t3

3!E
[
X3
]

+ · · · + t(n−1)

(n − 1)!E
[
Xn
]+ · · ·

Evaluating this derivative at t = 0, all terms except E[X] become zero. We have

M′
X(0) = E[X].

Similarly, taking the second derivative of MX(t), we obtain

M′′
X (0) = E

[
X2
]
.

Continuing in this manner, from the nth derivative M
(n)
X (t) with respect to t, we obtain all the moments

to be

M
(n)
X (0) = E

[
Xn
]
, n = 1, 2, 3, . . . .

We summarize these calculations in the following theorem.
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Theorem 2.6.3 If MX(t) exists, then for any positive integer k,

dkMX (t)

dtk

∣∣∣∣∣
t=0

= M
(k)
X

(0) = μ′
k.

The usefulness of the foregoing theorem lies in the fact that, if the mgf can be found, the often difficult
process of integration or summation involved in calculating different moments can be replaced by
the much easier process of differentiation. The following examples illustrate this fact.

Example 2.6.8
Let X be a random variable with pf

p(x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n.

(This random variable is called a binomial random variable, and the pf is called a binomial distribution.)

Show that MX(t) = [
(1 − p) + pet

]n, for all real values of t. Also obtain mean and variance of the random

variable X.

Solution
The moment-generating function of X is

MX(t) = E
(
etX
)

=
n∑

x=0

etx

(
n

x

)
px (1 − p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1 − p)n−x.

Using the binomial formula, we have

MX(t) = [
pet + (1 − p)

]n
, −∞ < t < ∞.

The first two derivatives of MX(t) are

M′
X(t) = n

[
(1 − p) + pet

](n−1) (
pet

)
and

M′′
X(t) = n(n − 1)

[
(1 − p) + pet

](n−2) (
pet

)2 + n
[
(1 − p) + pet

](n−1) (
pet

)
.

Thus,

μ = E(X) = M′
X(0) = np
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and

σ2 = E
(
X2
)

− μ2 = M′′(0) − (np)2

= n(n − 1) p2 + np − (np)2 = np(1 − p) .

Example 2.6.9
Let X be a random variable with pmf f (x) = e−λλx/(x!), x = 0, 1, 2, . . . . (Such a random variable is called

a Poisson r.v. and the distribution is called a Poisson distribution with parameter λ.) Find the mgf of X.

Solution
By definition

MX(t) = EetX =
∞∑

x=0

etxf (x)

=
∞∑

x=0

etx e−λλx

x! =
∞∑

x=0

e−λ

(
etλ
)x

x!

= e−λ
∞∑

x=0

eλet

[
e−(λet)

(
λet
)x

x!

]

= eλ(et−1)
∞∑

x=0

[
e−(λet)

(
λet
)x

x!

]

We observe that e−(λet)
(
λet
)x

/x! is a Poisson pf with parameter λet . Hence
∞∑

x=0

e−(λet)(λet)x

x! = 1. Thus

from (1),

MX(t) = eλ(et−1).

Example 2.6.10
Let X be a random variable with pdf given by

f (x) =
{

1
β e−x/β, x > 0

0, otherwise.

Find mgf MX(t).
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Solution
By definition of mgf,

Mx(t) =
−∞∫
∞

etxf (x)dx

=
∞∫

0

etx 1
β

e−x/βdx

= 1
β

∞∫
0

e
−
(

1
β
−t
)
x
dx,

(
t <

1
β

)

= 1
β

[
− 1

((1/β) − t)
e
−
(

1
β
−t
)
x
∣∣∣∣∞
x=0

]

= 1
β

β

1 − βt
= 1

1 − βt
, t <

1
β

.

Example 2.6.11
Let X be a random variable with pdf f (x) =

(
1/

√
2π
)

e−x2/2, −∞ < x < ∞. (We call such random

variable a standard normal random variable.) Find the mgf of X.

Solution
By the definition of mgf, we have

E
(
etx
) = 1√

2π

+∞∫
−∞

etxe−x2/2dx

= 1√
2π

+∞∫
−∞

e− 1
2

(
x2−2tx

)
dx

= 1√
2π

+∞∫
−∞

e− 1
2

(
x2−2tx+t2

)+ t2
2 dx

= 1√
2π

+∞∫
−∞

e− 1
2 (x−t)2+ t2

2 dx

= et2/2 1√
2π

+∞∫
−∞

e− 1
2 (x−t)2

dx = et2/2
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as 1/
√

2πe
− 1

2 (x−t)2
is a normal pdf with mean t and variance 1 and hence 1√

2π

+∞∫
−∞

e− 1
2 (x−t)2 = 1.

A random variable X with pdf

f (x) = (1/
√

2π)e
− 1

2σ2 (x−μ)2
, −∞ < x < ∞

is called a normal random variable with mean μ and variance σ2. We will denote such random variables by

X : N(μ, σ2).

PROPERTIES OF THE MOMENT-GENERATING FUNCTION

1. The moment-generating function of X is unique in the sense that, if two random variables X and Y
have the same mgf (MX (t ) = MY (t ), for t in an interval containing 0), then X and Y have the same
distribution.

2. If X and Y are independent, then

MX+Y (t ) = MX (t )MY (t ).

That is, the mgf of the sum of two independent random variables is the product of the mgfs of the
individual random variables. The result can be extended to ′n′ random variables.

3. Let Y = aX + b. Then

MY (t ) = ebt MX (at).

Example 2.6.12
Find the mgf of X : N

(
μ, σ2).

Solution
Let Y : N(0, 1) and let X = σY + μ. Then by the foregoing property (3), and the Example 2.6.11, the mgf of

X is

MX(t) = eμtMY (σt)

= eμte
1
2 σ2t2 = eμt+ 1

2 σ2t2 .

Example 2.6.13
Let X1 : N

(
μ, σ2

1
)
, X2 : N

(
μ, σ2

2
)
. Let X1 and X2 be independent. Find the mgf of Y = X1 + X2 and

obtain the distribution of Y .
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Solution
By property (2),

MY(t) = MX1(t)MX2(t)

=
(
eμ1t+ 1

2 σ2
1 t2
) (

eμ2t+ 1
2 σ2

2 t2
)

= e(μ1+μ2)t+ 1
2

(
σ2

1+σ2
2
)
t2 .

This implies Y : N
(
μ1 + μ2, σ2

1 + σ2
2
)

.

This result can be generalized. If X1, . . . , Xn are independent random variables such that Xi :
N
(
μi, σ

2
i

)
, i = 1, 2, . . . , n, then we can show that

∑n
i=1 aiXi : N

(∑n
i=1 aiμi,

∑n
i=1 a2

i σ
2
i

)
.

EXERCISES 2.6

2.6.1. Find E(X) where X is the outcome when one rolls a six-sided balanced die. Find the mgf of
X. Also, using the mgf of X, compute the variance of X.

2.6.2. The grades from a statistics class for the first test are given by

xi 96 87 65 49 77 74 99 68 56 84
p (xi) 3/15 2/15 1/15 1/15 2/15 1/15 1/15 1/15 1/15 2/15

(a) Find mean μ and variance σ2.
(b) Find the mgf.

2.6.3. The cdf of a discrete random variable Y is given in the following table:

y −1 0 2 5 6
F(y) 0.1 0.15 0.4 0.8 1

(a) Find EY , EY2, EY3, and Var(Y).
(b) Find the mgf of Y .

2.6.4. A discrete random variable X is such that

P(X = n) = 2n−1

3n
, n = 1, 2, . . . , n, . . . .

Show that EX = 3.

2.6.5. A discrete random variable X is such that

P
(
X = 2n

) = 1
2n

, n = 1, 2, . . . .

Show that EX = ∞. That is, X has no mathematical expectation.
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2.6.6. Let X be a random variable with pdf f (x) = kx2 where 0 ≤ x ≤ 1.
(a) Find k.
(b) Find E(X) and Var(X).
(c) Find MX(t). Using the mgf, find E(X).

2.6.7. Let X be a random variable with pdf f (x) = ax2 + b, 0 ≤ x ≤ 1. Find a and b such that
E(X) = 5

8 .

2.6.8. Given that X1, X2, X3, and X4 are independent random variables with mean 2 and variance
4, find E(Y) and E(Z) for

Y = 3X4 − X1 + 1
5X3

Z = X2 + 7X3 − 9X1.

2.6.9. For a random variable X, prove (a)–(d) of Theorem 2.6.2.

2.6.10. Let ε (for “error”) be a random variable with E(ε) = 0, and Var(ε) = σ2. Define the random
variable, X = μ + ε, where μ is a constant. Find E(X), Var(X), and E

(
ε2
)
.

2.6.11. A degenerate random variable is a random variable taking a constant value. Let X = c. Show
that E(X) = c, and Var(X) = 0. Also find the cumulative distribution function of the
degenerate distribution of X.

2.6.12. Let Y : N
(
μ, σ2

)
. Use the mgf to find E

(
X2
)

and E
(
X4
)
.

2.6.13. Using Theorem 2.6.3, show that the mean and variance of the Poisson distribution, with
parameter λ, is equal to λ.

2.6.14. Let X be a discrete random variable with a mass function

p(x) =
⎧⎨
⎩

1
x(x+1) , x = 1, 2, . . . ,

0, otherwise.

Show that the moment-generating function does not exist for this random variable.

2.6.15. Let X be a random variable with geometric pdf

f (x) = p(1 − p)x, x = 1, 2, 3, . . ..

(a) Find E(X) and Var(X).
(b) Show that MX(t) = pet

1−(1−p)et , t < − ln (1 − p).

2.6.16. Find E(X) and Var(X) for a random variable X with pdf f (x) = 1/2e−|x|.
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2.6.17. The probability density function of the random variable X is given by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x2

2 , 0 < x ≤ 1,

6x−2x2−3
2 , 1 < x ≤ 2,

(x−3)2

2 , 2 < x ≤ 3,

0, otherwise.

Find the expected value of the random variable X.

2.6.18. Let the random variable X be normally distributed with mean 0 and variance σ2. Show that
E
(
X2k+1

)=0, where k = 0, 1, 2, . . . .

2.6.19. Find the mgf of the random variable X with pdf f (x) = 1/2e−|x|, −∞ < x < ∞.

2.6.20. If the kth moment of a random variable exists, show that all moments of order less than k

exist.

2.6.21. Suppose that the random variable X has an mgf

MX(t) = α

α − t
, t <

1
α

.

Let the random variable Y have the following function for its probability density:

g(y) =
{

αe−αy, y > 0, α > 0,

0, otherwise.

Can we obtain the probability density of the variable X with the foregoing information?

2.7 CHAPTER SUMMARY

In this chapter, we have introduced the concepts of random events and probability, how to compute
the probabilities of events using counting techniques. We have studied the concept of conditional
probability, independence, and Bayes’ rule. Random variables and distribution functions, moments,
and moment-generating functions of random variables have also been introduced.

The following lists some of the key definitions introduced in this chapter.

■ Sample space
■ Mutually exclusive events
■ Informal definition of probability
■ Classical definition of probability
■ Frequency interpretation of probability
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■ Axiomatic definition of probability
■ Multinomial coefficients
■ Conditional probability
■ Mutually independent events
■ Pairwise independent events
■ Random variable (r.v.)
■ Discrete random variable
■ Discrete probability mass function
■ Cumulative distribution function
■ Continuous random variable
■ Expected value
■ kth moment about the origin
■ kth moment about its mean
■ Skewness and kurtosis
■ Moment-generating function

The following important concepts and procedures have been discussed in this chapter:

■ Method of computing probability by the classical approach
■ Some basic properties of probability
■ Computation of probability using counting techniques
■ Four sampling methods:

❏ Sampling with replacement and the objects are ordered
❏ Sampling without replacement and the objects are ordered
❏ Sampling without replacement and the objects are not ordered
❏ Sampling with replacement and the objects are not ordered

■ Permutation of n objects taken m at a time
■ Combinations of n objects taken m at a time
■ Number of combinations of n objects into m classes
■ Some properties of conditional probability
■ Law of total probability
■ Steps to apply Bayes’ rule
■ Some properties of distribution function
■ Some properties of expected value
■ Expectation of function of a random variable
■ Properties of moment-generating functions

2.8 COMPUTER EXAMPLES (OPTIONAL)

The three softwares packages, Minitab, SPSS, and SAS, that we are using in this book are not specifically
designed for probability computations. However, the following examples are given to demonstrate
that we will be able to use the software for some basic probability computations. We do not rec-
ommend using any of these three software packages for probability calculations; they are basically
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designed for statistical computations. There are many other software packages such as Maple or
MATLAB, that can be used efficiently for probability computations.

2.8.1 Minitab Computations
In order to find the cdf of a random variable, we can use the following commands in Example 2.8.1.
We can use the mathematical expressions to find the expected value of a discrete random variable.

Example 2.8.1
A random variable X has the following distribution:

x 1 4 5 8 11

p(x) 0.2 0.2 0.1 0.15 0.35

Find P(X ≤ 4).

Solution
Enter x values in C1 and p(x) values in C2.

Calc > Probability Distributions > Discrete. . . > click Cumulative probability, and in Values in:
enter C1, Probabilities in: enter C2, click input column: enter C1, in Optional storage: enter

C3 > OK

We will get the following output in column C3.

0.20 0.40 0.50 0.65 1.00

Example 2.8.2
For the random variable X in Example 2.8.1, find E(X).

Solution
Enter x values in column C1 (i.e., 1 4 5 8 11), and enter p(x) values in column C2. Use the following procedure.

Calc > Calculator. . . > Store results in variable: type C3 > in Expression: type (C1)*(C2) > click OK
Then to find the sum of values in column C3 > Calc > Column Statistics. . . > click Sum and in Input
variable: type C3 > click OK

We will get the output as

Column Sum

Sum of C3 = 6.5500
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Note that this Sum gives the E(X). In the previous procedure, if we store the expression
(C1)*(C1)*(C2) in column C4 and find the sum of terms in C4, we will get E

(
X2
)
. Using this,

we will be able to compute Var(X). Using a similar procedure, we can obtain E(Xn) for any n ≥ 1.

2.8.2 SPSS Examples

Example 2.8.3
For the random variable X in Example 2.8.1, find E(X).

Solution
In column 1, enter the x values and column 2 enter the p(x) values. Then

Transform > compute. . . > in target variable: type a name, say, product. Move var00001 and

var00002 to Numeric Expression: field and put ‘‘*’’ in between them as (var00001)*(var00002).
Then use the SUM(. , .) command to find the value of E(X)

2.8.3 SAS Examples

Example 2.8.4
A random variable X has the following distribution:

x 2 5 6 8 9

P(X) 0.1 0.2 0.3 0.1 0.3

Using SAS, find E(X).

Solution
For discrete distributions where the random variable takes finite values, we can adapt the following procedure:

data evalue;
input x y n;
z=x*y*n;
cards;
2 .1 5
5 .2 5
6 .3 5
8 .1 5
9 .3 5
;
run;
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proc means;
run;

We know that if proc means is used just for x∗y, that will give us 1
n

∑
xρ(x); hence, multiplying by n,

the number of values X takes will give us E(X) = ∑
xp(x). We will get the following output:

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

===================================================

x 5 6.0000000 2.7386128 2.0000000 9.0000000

y 5 0.2000000 0.1000000 0.1000000 0.3000000

n 5 5.0000000 0 5.0000000 5.0000000

z 5 6.5000000 4.8476799 1.0000000 13.5000000

From this, we can see that E(X) = 6.5. A direct way to find the expected value is by using “PROC
IML.”

options nodate nonumber;
/* Finding expected value of a random variable */
proc iml;
/* defining all the variables */
x={2 5 6 8 9}; /* a row vector */
y={.1 .2 .3 .1 .3}; /* probabilities */
/* calculations */
z=x*y‘;
/* print statements */
print “Display the vector x and probability y and the expected value”;
print x y, z;
quit;

We will get the following output:

X

2 5 6 8 9

Y

0.1 0.2 0.3 0.1 0.3

Z

6.5
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PROJECTS FOR CHAPTER 2

2A. The Birthday Problem
The famous birthday problem is to find the smallest number of people one must ask to get an even
chance that at least two people have the same birthday. To solve this you can use the following steps.

Find the probability that in a group of k people no two have the same probability. Let q be this
probability. Then p = 1 − q is the probability that at least two people have the same birthday.
Ignoring leap years, take the sample space S as all sequences of length k with each element one of
the 365 days in the year. Thus there are 365k elements in S.

(a) Find the total number of sequences with no common birthdays.
(b) Assuming that each sequence is equally likely, show that

q = (365)(364) . . . (365 − k + 1)

365k
.

(c) Write a computer program for calculating q for k = 2 to 50, and find the first k for which
p > 0.5. This will give the least number of people we should ask to make it an even chance
that at least two people will have the same birthday.

2B. The Hardy--Weinberg Law
Hereditary traits in offspring depend on a pair of genes, one each contributed by the father and the
mother. A gene is either a dominant allele, denoted by A, or a recessive allele, denoted by a. If the
genotype is AA, Aa, or aA, then the hereditary trait is A, and if the genotype is aa, then the hereditary
trait is a. Suppose that the probabilities of the mother carrying the genotypes aa, aA (same as Aa),
and AA are p, q, and r, respectively. Here p+ q+ r = 1. The same probabilities are true for the father.

(a) Assuming that the genetic contributions of the mother and father are independent and the
matings are random, show that the respective probabilities for the first-generation offspring
are

p1 = (p + q/2)2 , q1 = 2 (r + q/2) (p + q/2) , r1 = (r + q/2)2 .

Also find P(A) and P(a).
(b) The Englishman G. H. Hardy and the German W. Weinberg could show that the foregoing

probabilities in a population stay constant for generations if certain conditions are fulfilled.
This is known as the Hardy–Weinberg law. Under the conditions of part (a), using the induc-
tion argument, show that the Hardy–Weinberg law is satisfied, i.e., pn = p1, qn = q1, and
rn = r1 for all n ≥ 1. The consequences of the Hardy–Weinberg law are that (i) no evolu-
tionary change occurs through the process of sexual reproduction itself, and (ii) changes in
allele and genotype frequencies can result only from additional forces on the gene pool of a
species.
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Johann Carl Friedrich Gauss
(Source: http://tobiasamuel.files.wordpress.com/2008/06/carl_friedrich_gauss.jpg)

German mathematician and physicist Carl Friedrich Gauss (1777–1855) is sometimes called the
“prince of mathematics.” He was a child prodigy. At the age of 7, Gauss started elementary school,

Mathematical Statistics with Applications
Copyright © 2009 by Academic Press, Inc. All rights of reproduction in any form reserved. 113



114 CHAPTER 3 Additional Topics in Probability

and his potential was noticed almost immediately. His teachers were amazed when Gauss summed the
integers from 1 to 100 instantly. At age 24, Gauss published one of the most brilliant achievements
in mathematics, Disquisitiones Arithmeticae (1801). In it, Gauss systematized the study of number
theory. Gauss applied many of his mathematical insights in the field of astronomy, and by using
the method of least squares he successfully predicted the location of the asteroid Ceres in 1801. In
1820 Gauss made important inventions and discoveries in geodesy, the study of the shape and size of
the earth. In statistics, he developed the idea of the normal distribution. In the 1830s he developed
theories of non-Euclidean geometry and mathematical techniques for studying the physics of fluids.
Although Gauss made many contributions to applied science, especially electricity and magnetism,
pure mathematics was his first love. It was Gauss who first called mathematics “the queen of the
sciences.”

3.1 INTRODUCTION

In the previous chapter, we looked at the basic concepts of probability calculations, random variables,
and their distributions. There are many special distributions that have useful applications in statistics.
It is worth knowing the type of distribution that we can expect under different circumstances, because
a better knowledge of the population will result in better inferential results. In the next section, we
discuss some of these distributions with some additional distributions presented in Appendix A3.
We also briefly deal with joint distributions of random variables and functions of random variables.
Limit theorems play an important role in statistics. We will present two limit theorems: the law of
large numbers and the Central Limit Theorem.

3.2 SPECIAL DISTRIBUTION FUNCTIONS

Random variables are often classified according to their probability distribution functions. In any
analysis of quantitative data, it is a major step to know the form of the underlying probability
distributions. There are certain basic probability distributions that are applicable in many diverse
contexts and thus repeatedly arise in practice. A great variety of special distributions have been stud-
ied over the years. Also, new ones are frequently being added to the literature. It is impossible to
give a comprehensive list of distribution functions in this book. There are many books and Web sites
that deal with a range of distribution functions. A good list of distributions can be obtained from
http://www.causascientia.org/math_stat/Dists/Compendium.pdf. In this section, we will describe
some of the commonly used probability distributions. In Appendix A3, we list some more distri-
butions with their mean, variance, and moment-generating functions. First we discuss some discrete
probability distributions.

3.2.1 The Binomial Probability Distribution
The simplest distribution is the one with only two possible outcomes. For example, when a coin (not
necessarily fair) is tossed, the outcomes are heads or tails, with each outcome occurring with some
positive probability. These two possible outcomes may be referred to as “success” if heads occurs and
“failure” if tails occurs. Assume that the probability of heads appearing in a single toss is p; then
the probability of tails is 1 − p = q. We define a random variable X associated with this experiment
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as taking value 1 with probability p if heads occurs and value 0 if tails occurs with probability q.
Such a random variable X is said to have a Bernoulli probability distribution. That is, X is a Bernoulli
random variable if for some p, 0 ≤ p ≤ 1, the probability P(X = 1) = p and P(X = 0) = 1 − p. The
probability function of a Bernoulli random variable X can be expressed as

p(x) = P(X = x) =
{

px(1 − p)1−x, x = 0, 1

0, otherwise.

Note that this distribution is characterized by the single parameter p. It can be easily verified that
the mean and variance of X are E[X] = p, var(X) = pq, respectively, and the moment-generating
function is MX(t) = pet + (1 − p).

Even when the experimental values are not dichotomous, reclassifying the variable as a Bernoulli
variable can be helpful. For example, consider blood pressure measurements. Instead of representing
the numerical values of blood pressure, if we reclassify the blood pressure as “high blood pressure”
and “low blood pressure,” we may be able to avoid dealing with a possible misclassification due to
diurnal variation, stress, and so forth, and concentrate on the main issue, which would be: Is the
average blood pressure unusually high?

In a succession of Bernoulli trials, one is more interested in the total number of successes (whenever a
1 occurs in a Bernoulli trial, we term it a “success”). The probability of observing exactly k successes in
n independent Bernoulli trials yields the binomial probability distribution. In practice, the binomial
probability distribution is used when we are concerned with the occurrence of an event, not its
magnitude. For example, in a clinical trial, we may be more interested in the number of survivors
after a treatment.

Definition 3.2.1 A binomial experiment is one that has the following properties: (1) The experiment
consists of n identical trials. (2) Each trial results in one of the two outcomes, called a success S and failure
F. (3) The probability of success on a single trial is equal to p and remains the same from trial to trial. The
probability of failure is 1 − p = q. (4) The outcomes of the trials are independent. (5) The random variable
X is the number of successes in n trials.

Earlier we have seen that the number of ways of obtaining x successes in n trials is given by

(
n

x

)
= n!

x!(n − x)! .

Definition 3.2.2 A random variable X is said to have binomial probability distribution with parameters
(n, p) if and only if

P(X = x) = p(x) =
(

n

x

)
pxqn−x

=
⎧⎨
⎩

n!
x!(n−x)!pxqn−x, x = 0, 1, 2, . . . , n, 0 ≤ p ≤ 1, and q = 1 − p

0, otherwise.
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To show the dependence on n and p, denote p(x) by b(x, n, p) and the cumulative probabilities by

B(x, n, p) =
x∑

i=0

b(i, n, p)

Binomial probabilities are tabulated in the binomial table.

By the binomial theorem, we have

(p + q)n =
n∑

x=0

(
n

x

)
pxqn−x.

Because (p + q) = 1, we conclude that
∑x

i=0 b(i, n, p) = ∑n
x=0

(
n

x

)
pxqn−x = 1n = 1, for all n ≥ 1

and 0 ≤ p ≤ 1. Hence, p(x) is indeed a probability function. The binomial probability distribu-
tion is characterized by two parameters, the number of independent trials n and the probability of
success p.

Example 3.2.1
It is known that screws produced by a certain machine will be defective with probability 0.01 independently

of each other. If we randomly pick 10 screws produced by this machine, what is the probability that at least

two screws will be defective?

Solution
Let X be the number of defective screws out of 10. Then X can be considered as a binomial r.v. with

parameters (10, 0.01). Hence, using the binomial pf p(x), given in Definition 3.2.2, we obtain

P(X ≥ 2) =
10∑

x=2

(
10
x

)
(0.01)x(0.99)10−x

= 1 − [P(X = 0) + P(X = 1)] = 0.004.

In Chapter 2, we saw Mendel’s law. In biology, the result “gene frequencies and genotype ratios in
a randomly breeding population remain constant from generation to generation” is known as the
Hardy–Weinberg law.

Example 3.2.2
Suppose we know that the frequency of a dominant gene, A, in a population is equal to 0.2. If we randomly

select eight members of this population, what is the probability that at least six of them will display the

dominant phenotype? Assume that the population is sufficiently large that removing eight individuals will

not affect the frequency and that the population is in Hardy–Weinberg equilibrium.
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Solution
First of all, note that an individual can have the dominant gene, A, if the person has traits AA, aA, or Aa.

Hence, if the gene frequency is 0.2, the probability that an individual is of genotype A is

P(A) = P(AA ∪ Aa ∪ aA) = P(AA) + 2P(Aa)

= (0.2)2 + 2(0.2)(0.8) = 0.36.

Let X denote the number of individuals out of eight that display the dominant phenotype. Then X

is binomial with n = 8, and p = 0.36. Thus, the probability that at least six of them will display the
dominant phenotype is

P(X ≥ 6) = P(X = 6) + P(X = 7) + P(X = 8)

=
8∑

i=6

(
10

i

)
(0.36)i(0.64)10−i = 0.029259.

For large n, calculation of binomial probabilities is tedious. Many statistical software packages
have binomial probability distribution commands. For the purpose of this book, we will use
the binomial table that gives the cumulative probabilities B(x, n, p) for n = 2 through n = 20 and
p = 0.05, 0.10, 0.15, . . . , 0.90, 0.95. If we need the probability of a single term, we can use the
relation

P(X = x) = b(x, n, p) = B(x, n, p) − B(x − 1, n, p).

Example 3.2.3
A manufacturer of inkjet printers claim that only 5% of their printers require repairs within the first year. If

of a random sample of 18 of the printers, four required repairs within the first year, does this tend to refute

or support the manufacturer’s claim?

Solution
Let us assume that the manufacturer’s claim is correct; that is, the probability that a printer will require

repairs within the first year is 0.05. Suppose 18 printers are chosen at random. Let p be the probability that

any one of the printers will require repairs within the first year. We now find the probability that at least four

of these out of the 18 will require repairs during the first year. Let X represent the number of printers that

require repair within the first year. Then X follows the binomial pmf with p = 0.05, n = 18. The probability

that four or more of the 18 will require repair within the first year is given by

P(X ≥ 4) =
18∑

x=4

(
18
x

)
(0.05)x(0.95)18−x
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or, using the binomial table,

18∑
x=4

b(x, 18, 0.05) = 1 − B(3, 18, 0.05)

= 1 − 0.9891

= 0.0109.

This value (approximately 1.1%) is very small. We have shown that if the manufacturer’s claim is correct,

then the chances of observing four or more bad printers out of 18 are very small. But we did observe exactly

four bad ones. Therefore we must conclude that the manufacturer’s claim cannot be substantiated.

MEAN, VARIANCE, AND MGF OF A BINOMIAL RANDOM VARIABLE

Theorem 3.2.1 If X is a binomial random variable with parameters n and p, then

E(X) = μ = np

Var(X) = σ2 = np(1 − p).

Also the moment-generating function

MX(t) = [
pet + (1 − p)

]n
.

Proof. We derive the mean and the variance. The derivation for mgf is given in Example 2.6.5. Using
the binomial pmf, p(x) = (n!/(x!(n − x)!))pxqn−x, and the definition of expectation, we have

μ = E(X) =
n∑

x=0

xp(x) =
n∑

x=0

x
n!

x!(n − x)!p
x(1 − p)n−x

=
n∑

x=1

n!
(x − 1)!(n − x)!p

x(1 − p)n−x,

since the first term in the sum is zero, as x = 0.

Let i = x − 1. When x varies from 1 through n, i = (x − 1) varies from zero through (n − 1). Hence,

μ =
n−1∑
i=0

n!
i!(n − i − 1)!p

i+1(1 − p)n−i−1

= np

n−1∑
i=0

(n − 1)!
i!(n − 1 − i)!p

i(1 − p)n−1−i

= np,
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because the last summand is that of a binomial pmf with parameter (n − 1) and p, hence, equals 1.

To find the variance, we first calculate E [X(X − 1)].

E [X(X − 1)] =
n∑

x=0

x(x − 1)
n!

x!(n − x)!p
x(1 − p)n−x

=
n∑

x=2

n!
(x − 2)!(n − x)!p

x(1 − p)n−x,

because the first two terms are zero. Let i = x − 2. Then,

E [X(X − 1)] =
n−2∑
i=0

n!
i!(n − i − 2)!p

i+2(1 − p)n−i−2

= n(n − 1)p2
n−2∑
i=0

(n − 2)!
i!(n − 2 − i)!p

i(1 − p)n

= n(n − 1)p2,

because the last summand is that of a binomial pf with parameter (n − 2) and p thus equals 1.

Note that E(X(X − 1)) = EX2 − E(X), and so we obtain

σ2 = Var(X) = E(X2) − [E(X)]2

= E [X(X − 1)] + E(X) − [E(X)]2

= n(n − 1)p2 + np − (np)2 = −np2 + np

= np(1 − p).

3.2.2 Poisson Probability Distribution
The Poisson probability distribution was introduced by the French mathematician Siméon-Denis
Poisson in his book published in 1837, which was entitled Recherches sur la probabilité des jugements
en matières criminelles et matière civile and dealt with the applications of probability theory to lawsuits,
criminal trials, and the like. Consider a statistical experiment of which A is an event of interest.
A random variable that counts the number of occurrences of A is called a counting random variable.
The Poisson random variable is an example of a counting random variable. Here we assume that the
numbers of occurrences in disjoint intervals are independent and the mean of the number occurrences
is constant.
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Definition 3.2.3 A discrete random variable X is said to follow the Poisson probability distribution
with parameter λ > 0, denoted by Poisson(λ), if

P(X = x) = f (x, λ) = f (x) = e−λλx

x! , x = 0, 1, 2, . . .

The Poisson probability distribution is characterized by the single parameter, λ, which represents the
mean of a Poisson probability distribution. Thus, in order to specify the Poisson distribution, we only
need to know the mean number of occurrences. This distribution is of fundamental theoretical and
practical importance. Rare events are modeled by the Poisson distribution. For example, the Poisson
probability distribution has been used in the study of telephone systems. The number of incoming
calls into a telephone exchange during a unit time might be modeled by a Poisson variable assuming
that the exchange services a large number of customers who call more or less independently. Some
other problems where Poisson representation can be used are the number of misprints in a book,
radioactivity counts per unit time, the number of plankton (microscopic plant or animal organisms
that float in bodies of water) per aliquot of seawater, or count of bacterial colonies per petri plate
in a microbiological study. In stem cell research, the Poisson distribution is used to analyze the
redundancy of clusters in the stem cell database. A Poisson probability distribution has the unique
property that its mean equals its variance.

MEAN, VARIANCE, AND MOMENT–GENERATING FUNCTION OF A POISSON RANDOM VARIABLE

Theorem 3.2.2 If X is a Poisson random variable with parameter λ, then

E(X) = λ

Var(X) = λ.

Also the moment-generating function is

MX(t) = eλ(et−1).

The proof of this result is similar to that we used in Theorem 3.2.1 in this section. One needs to use
the Maclaurin’s expansion, eλ = ∑∞

i=0(λi/i!).

Example 3.2.4
Let X be a Poisson random variable with λ = 1/2. Find

(a) P(X = 0)

(b) P(X ≥ 3)

Solution
(a) We have

P(X = 0) = p(0) = e−1/2(1/2)0

0! = e−1/2 = 0.60653.
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(b) Here we will use complementary event to compute the required probability. That is,

P(X ≥ 3) = 1 − P(X ≤ 2) = 1 − [p(0) + p(1) + p(2)]

= 1 −
[
e−1/2 + e−1/2(1/2)

1! + e−1/2(1/2)2

2!

]

= 1 − 0.98561 = 0.01439.

When n is large and p small, binomial probabilities are often approximated by Poisson probabilities.

In these situations, where performing the factorial and exponential operations required for direct

calculation of binomial probabilities is a lengthy and tedious process and tables are not available,

the Poisson approximation is more feasible. The following theorem states this result.

POISSON APPROXIMATION TO THE BINOMIAL PROBABILITY DISTRIBUTION

Theorem 3.2.3 If X is a binomial r.v. with parameters n and p, then for each value x = 0, 1, 2, . . . and as
p → 0, n → ∞ with np = λ constant,

lim
n→∞

(n

x

)
px(1 − p)n−x = e−λλx

x! .

The proof of this result is similar to that we used in Theorem 3.2.1. In the present context, the Poisson
probability distribution is sometimes referred to as “the distribution of rare events” because of the
fact that p is quite small when n is large. Usually, if p ≤ 0.1 and n ≥ 40 we could use the Poisson
approximation in practice. In general, another rule of thumb is to use Poisson approximation to
binomial in the case of np < 5.

Example 3.2.5
If the probability that an individual suffers an adverse reaction from a particular drug is known to be 0.001,

determine the probability that out of 2000 individuals, (a) exactly three and (b) more than two individuals

will suffer an adverse reaction.

Solution
Let Y be the number of individuals who suffer an adverse reaction. Then Y is binomial with n = 2000 and

p = 0.001. Because n is large and p is small, we can use the Poisson approximation with λ = np = 2.

(a) The probability that exactly three individuals will suffer an adverse reaction is

P(Y = 3) = 23e−2

3! = 0.18.

That is, there is approximately an 18% chance that exactly three individuals of 2000 will suffer an

adverse reaction.
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(b) The probability that more than two individuals will suffer an adverse reaction is

P(Y > 2) = 1 − P(Y = 0) − P(Y = 1) − P(Y = 2)

= 1 − 5e−2 = 0.323.

Similarly, there is approximately a 32.3% chance that more than two individuals will have an adverse

reaction.

Now we will discuss some continuous distributions. As mentioned earlier, if X is a continuous random
variable with pdf f (x), then

P(a ≤ X ≤ b) =
b∫

a

f (x)dx.

3.2.3 Uniform Probability Distribution
The uniform probability distribution is used to generate random numbers from other distributions
and also is useful as a “first guess” if no other information about a random variable X is known,
other than that it is between a and b. Also, in real-world problems that have uniform behavior in a
given interval, we can characterize the probabilistic behavior of such a phenomenon by the uniform
distribution. (See Figure 3.1.)

Definition 3.2.4 A random variable X is said to have a uniform probability distribution on (a, b),
denoted by U(a, b), if the density function of X is given by

f (x) =
⎧⎨
⎩

1
b − a

, a ≤ x ≤ b,

0, otherwise.

The cumulative distribution function is given by

F(x) =
x∫

−∞

1
b − a

dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < a

x − a

b − a
, a ≤ x < b

1, x ≥ b.

a b

f (x) � 1/(b � a)

f (x) � 0f (x) � 0

■ FIGURE 3.1 Uniform probability density.
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Example 3.2.6
If X is a uniformly distributed random variable over (0, 10), calculate the probability that (a) X < 3,

(b) X > 6, and (c) 3 < X < 8.

Solution

(a)

P(X < 3) =
3∫

0

1
10

dx = 3
10

.

(b)

P(X > 6) =
10∫

6

1
10

dx = 4
10

.

(c)

P(3 < X < 8) =
8∫

3

1
10

dx = 1
2

.

MEAN, VARIANCE, AND MOMENT–GENERATING FUNCTION OF A UNIFORM RANDOM VARIABLE

Theorem 3.2.4 If X is a uniformly distributed random variable on (a, b), then

E(X) = a + b

2
.

and

Var(X) = (b − a)2

12
.

Also, the moment-generating function is

MX(t) =

⎧⎪⎨
⎪⎩

etb − eta

t(b − a)
, t = 0

1, t = 0.



124 CHAPTER 3 Additional Topics in Probability

Proof. We will obtain the mean and the variance and leave the derivation of the moment-generating
function as an exercise. By definition we have

E(X) =
∞∫

−∞
x

1
b − a

dx

=
b∫

a

x
1

b − a
dx = 1

b − a

⎛
⎝ x2

2

∣∣∣∣∣
b

a

⎞
⎠

= a + b

2
.

Also

E(X2) =
b∫

a

x2 1
b − a

dx = 1
b − a

⎛
⎝ x3

3

∣∣∣∣∣
b

a

⎞
⎠

= 1
3

b3 − a3

b − a

= 1
3

(b2 + ab + a2) as b3 − a3 = (b − a)(b2 + ab + a2).

Thus,

Var(X) = E(X2) − (E(X))2

= 1
3

(b2 + ab + a2) − (a + b)2

4

= 1
12

(b − a)2.

Example 3.2.7
The melting point, X, of a certain solid may be assumed to be a continuous random variable that is uniformly

distributed between the temperatures 100◦C and 120◦C. Find the probability that such a solid will melt

between 112◦C and 115◦C.

Solution
The probability density function is given by

f (x) =
⎧⎨
⎩

1
20

, 100 ≤ x ≤ 120

0 otherwise.
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Hence,

P(112 ≤ X ≤ 115) =
115∫

112

1
20

dx = 3
20

= 0.15.

Thus, there is a 15% chance of this solid melting between 112◦C and 115◦C.

3.2.4 Normal Probability Distribution
The single most important distribution in probability and statistics is the normal probability distri-
bution. The density function of a normal probability distribution is bell shaped and symmetric about
the mean. The normal probability distribution was introduced by the French mathematician Abra-
ham de Moivre in 1733. He used it to approximate probabilities associated with binomial random
variables when n is large. This was later extended by Laplace to the so-called Central Limit Theorem,
which is one of the most important results in probability. Carl Friedrich Gauss in 1809 used the nor-
mal distribution to solve the important statistical problem of combining observations. Because Gauss
played such a prominent role in determining the usefulness of the normal probability distribution,
the normal probability distribution is often called the Gaussian distribution. Gauss and Laplace noticed
that measurement errors tend to follow a bell-shaped curve, a normal probability distribution. Today,
the normal probability distribution arises repeatedly in diverse areas of applications. For example, in
biology, it has been observed that the normal probability distribution fits data on the heights and
weights of human and animal populations, among others.

We should also mention here that almost all basic statistical inference is based on the normal prob-
ability distribution. The question that often arises is, when do we know that our data follow the
normal distribution? To answer this question we have specific statistical procedures that we study
in later chapters, but at this point we can obtain some constructive indications of whether the data
follows the normal distribution by using descriptive statistics. That is, if the histogram of our data can
be capped with a bell-shaped curve (Figure 3.2), if the stem-and-leaf diagram is fairly symmetrical
with respect to its center, and/or by invoking the empirical rule “backwards,” we can obtain a good
indication whether our data follow the normal probability distribution.

Definition 3.2.5 A random variable X is said to have a normal probability distribution with parameters
μ and σ2, if it has a probability density function given by

f (x) = 1√
2πσ

e−(x−μ)2/2σ2
, −∞ < x < ∞, −∞ < μ < ∞, σ > 0.

If μ = 0, and σ = 1, we call it standard normal random variable.

For any normal random variable with mean μ and variance σ2, we use the notation X ∼ N(μ, σ2).
When a random variable X has a standard normal probability distribution, we will write X ∼ N(0, 1)

(X is a normal with mean 0 and variance 1). Probabilities for a standard normal probability
distribution are given in the normal table.
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0.5

0.4

0.3

0.2

0.1

0.0
0

■ FIGURE 3.2 Standard normal density function.

MEAN, VARIANCE, AND MGF OF A NORMAL RANDOM VARIABLE

Theorem 3.2.5 If X ∼ N(μ, σ2), then E(X) = μ and Var(X) = σ2. Also the moment-generating function is

MX(t) = e
tμ+ 1

2 t2σ2
.

If X ∼ N(μ, σ2), then the z-transform (or z-score) of X, Z = X−μ
σ

, is an N(0, 1) random variable. This
fact will be used in calculating probabilities for normal random variables.

Example 3.2.8
(a) For X ∼ N(0, 1), calculate P(Z ≥ 1.13).

(b) For X ∼ N(5, 4), calculate P(−2.5 < X < 10).

Solution
(a) Using the normal table,

P(Z ≥ 1.13) = 1 − 0.8708 = 0.1292.

The shaded part in the graph represents the P(Z ≥ 1.13).

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

1.13 22.5 5 10
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(b) Using the z-transform, we have

P(−2.5 < X < 10) = P

(−2.5 − 5
2

< Z <
10 − 5

2

)

= P(−3.75 < Z < 2.5)

= P(−3.75 < Z < 0) + P(0 < Z < 2.5)

= 0.9938.

In the following example, we will show how to find the z values when the probabilities are given.

Example 3.2.9
For a standard normal random variable Z, find the value of z0 such that

(a) P(Z > z0) = 0.25.

(b) P(Z < z0) = 0.95.

(c) P(Z < z0) = 0.12.

(d) P(Z > z0) = 0.68.

Solution
(a) From the normal table, and using the fact that the shaded area in the figure is 0.25, we obtain

z0 ≈ 0.675.

(b) Because P(Z < z0) = 1 −P(Z ≥ z0) = 0.95 = 0.5 + 0.45. This implies, P(Z > z0) = 0.05. From

the normal table, z0 = 1.645.

0.5

0.4

0.3

0.2

0.1

0.0
Z0

(c) From the normal table, z0 = −1.175.

(d) Using the normal table, we have P(Z > z0) = 0.5 + P(0 < Z < z0) = 0.68.

This implies, P(Z ≤ z0) = 0.32. From the normal table, z0 = − 0.465.

Example 3.2.10
The scores of an examination are assumed to be normally distributed with μ = 75 and σ2 = 64. What is the

probability that a score chosen at random will be greater than 85?
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Solution
Let X be a randomly chosen score from the exam scores. Then, X ∼ N(75, 64).

P(X > 85) = P

(
X − 75

8
>

85 − 75
8

= 1.25
)

= P(Z > 1.25) = 0.1056.

0.5

0.4

0.3

0.2

0.1

0.0
1.25

Thus, there is about a 10.56% chance that the score will be greater than 85.

In practice, whenever a large number of small effects are present and acting additively, it is reasonable
to assume that observations will be normal. When the number of data is small, it is risky to assume
a normal distribution without a proper testing. Apart from histogram, box-plot, and stem-and-leaf-
displays, one of the most useful tools for assessing normality is a quantile quantile or QQ plot. This is
a scatterplot with the quantiles of the scores on the horizontal axis and the expected normal scores on
the vertical axis. The expected normal scores are calculated by taking the z-scores of (ri−0.5)/n, where
ri is the rank ith observation in increasing order. The steps in constructing a QQ plot are as follows:
First, we sort the data in an ascending order. If the plot of these scores against the expected normal
scores is a straight line, then the data can be considered normal. Any curvature of the points indicates
departures from normality. This procedure obtaining a normal plot (QQ plot is similar to normal
plot for a normal distribution) is described in Project 4C. Figure 3.3 shows a normal probability plot
generated by Minitab.

If plotted points do not fit the line well, but bend away from it in places, the distribution may be
nonnormal. The shapes in Figure 3.4 will give some indication of the distribution of the data.

0.999

0.99

0.95

0.80

0.50

0.20

0.05

0.01

0.001

21.5 21.0 20.5 0.0 0.5

■ FIGURE 3.3 Normal probability plot.
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If the layout of points appears to bend 
up and to the left of the normal line 
that indicates a long tail to the right, or 
right skew.

If the layout of points bends down and 
to the right of the normal line that 
indicates a long tail to the left, or left 
skew.

If the layout of points starts below the 
normal line, bends to follow it, and 
ends above it, this will indicate long tails. 
That is, there is more variance than we 
would expect in a normal distribution.

An S-shaped layout of points indicates 
shorter than normal tails, thus, a 
smaller variance is expected.

■ FIGURE 3.4 Shapes indicating distribution of the data.

Almost all of the statistical software packages include a procedure for obtaining the graph of a normal
probability plot that can be used to test the normality of a data. A discussion of how to do this is
given in Section 14.4. Errors in the measurements can also act in a multiplicative (rather than additive)
manner. In that case, the assumption of normality is not justified.

A closely related distribution to normal distribution is the log-normal distribution. A variable might
be modeled as log-normal if it can be thought of as the multiplicative effect of many small independent
factors. This distribution arises in physical problems when the domain of the variate, X, is greater
than zero and its histogram is markedly skewed. If a random variable Y is normally distributed,
then exp(Y) has a log-normal distribution. Thus, the natural logarithm of a log-normally distributed
variable is normally distributed. That is, if X is a random variable with log-normal distribution, then
ln(X) is normally distributed. Most biological evidence suggests that the growth processes of living
tissue proceed by multiplicative, not additive, increments. Thus, the measures of body size should at
most follow a log-normal rather than normal distribution. Also, the sizes of plants and animals is
approximately log-normal. The log-normal distribution is also useful in modeling of claim sizes in
the insurance industry.

The probability density function of a log-normal random variable, X, is given as

f (x) =
⎧⎨
⎩

1
xσy

√
2π

e
−(ln x−μy)

2/2σ2
y , x > 0, σy > 0, −∞ < μy < ∞

0, otherwise.
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where μy and σy are the mean and standard deviation of Y = ln(X). These parameters are related to
the parameters of the random variable X as follows:

μy = ln

(√
μ4

x

μ2
x + σ2

x

)
, σy = ln

(√
μ2

x + σ2
x

μ2
x

)
.

We can verify that the expected value X is

E(X) = e
μy+(σ2

y /2)

and the variance is

Var(X) = (e
σ2

y − 1)e
2μy+σ2

y .

The question of when the log-normal distribution is applicable in a given physical problem after a
certain amount of data has been obtained can be answered by creating a normal probability plot of
ln(X) and testing for normality. Thus, if the natural logarithms of the data show normality, log-normal
distribution may be more appropriate.

If X is log-normally distributed with parameters μy and σy, and 0 < a < b, then with Y = ln(X)

P(a ≤ X ≤ b) = P(ln a ≤ Y ≤ ln b)

= P

(
ln a − μy

σy
≤ Y − μy

σy
≤ ln b − μy

σy

)

= P(a′ ≤ Z ≤ b′),

where Z ∼ N(0, 1). This probability can be obtained from the standard normal table.

Example 3.2.11
In an effort to establish a suitable height for the controls of a moving vehicle, information was gathered

about X, the amounts by which the heights of the operators vary from 60 inches, which is the minimum

height. It was verified that the data that were collected followed the log-normal distribution by normal

probability plot of Y = ln X. Assume that μx = 6 in. and σx = 2 in.

(a) What percentage of operators would have a height less than 65.5 in.?

(b) If an operator is chosen at random, what is the probability that his or her height will be between

64 and 66 in.?

Solution
(a) Here, X = 65.5 − 60 = 5.5. Also,

μy = ln

(√
μ4

x

μ2
x + σ2

x

)
= ln

√
64

62 + 22 = 1.74,
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σy = ln

(√
μ2

x + σ2
x

μ2
x

)
= ln

√
62 + 22

62 = 0.053.

Thus,

P(X ≤ 5.5) = P(Y ≤ ln 5.5) = P

(
Z ≤ (ln 5.5) − 1.74

0.053

)

= P(Z ≤ −0.67) = 0.2514.

Hence, about 25.14% of the heights of the operators vary from 60 inches.

(b) Similar to part (a), we get

P(4 ≤ X ≤ 6) = P(ln 4 ≤ Y ≤ ln 6)

= P

(
(ln 4) − 1.74

0.053
≤ Z ≤ (ln 6) − 1.74

0.053

)

= P(−6.67 ≤ Z ≤ 0.98) = 0.8365.

3.2.5 Gamma Probability Distribution
The gamma probability distribution has found applications in various fields. For example, in engi-
neering, the gamma probability distribution has been employed in the study of system reliability. We
describe the gamma function before we introduce the gamma probability distribution. The gamma
function, denoted by �(a), is defined as

�(a) =
∞∫

0

e−xxa−1dx, a > 0.

It can be shown using the integration by parts that for a > 1, �(a) = (a − 1)�(a − 1). In particular, if
n is a positive integer, �(n) = (n − 1)!.
Definition 3.2.6 A random variable X is said to possess a gamma probability distribution with
parameters α > 0 and β > 0 if it has the pdf given by

f (x) =
⎧⎨
⎩

1
βα�(α)

xα−1e−x/β, if x > 0

0, otherwise.

The gamma density has two parameters, α and β. We denote this by Gamma(α, β). The parameter
α is called a shape parameter, and β is called a scale parameter. Changing α changes the shape of the
density, whereas varying β corresponds to changing the units of measurement (such as changing from
seconds to minutes). Varying these two parameters will generate different members of the gamma
family. If we take α to be a positive integer, we get a special case of gamma probability distribution,
known as the Erlang distribution. This is used extensively in queuing theory to model waiting times.
Figure 3.5 gives an indication of how α and β influence the shape and scale of f (x).



132 CHAPTER 3 Additional Topics in Probability

0.3

0.25

0.15

0.05

0.1

0
0 5 10 15 20

Gam(4, 3)

Gam(2, 3)

Gam(3, 1)

Gamma pdfs for (2, 3), (3, 1), (4, 3), and (2, 4)

Gam(2, 4)

25

0.2

■ FIGURE 3.5 Gamma pdfs for different degrees of freedom.

MEAN, VARIANCE, AND MGF OF A GAMMA RANDOM VARIABLE

Theorem 3.2.6 If X is a gamma random variable with parameters α > 0 and β > 0, then

E(X) = αβ and Var(X) = αβ2.

Also, the moment-generating function is

MX(t) = 1
(1 − βt)α

, t <
1
β

.

Example 3.2.12
The daily consumption of aviation fuel in millions of gallons at a certain airport can be treated as a gamma

random variable with α = 3, β = 1.

(a) What is the probability that on a given day the fuel consumption will be less than 1 million gallons?

(b) Suppose the airport can store only 2 million gallons of fuel. What is the probability that the fuel

supply will be inadequate on a given day?

Solution
(a) Let X be the fuel consumption in millions of gallons on a given day at a certain airport. Then,

X ∼ �(α = 3, β = 1) and

f (x) = 1

�(3)(13)
x3−1e−x = 1

2
x2e−x, x > 0.

Hence, using integration by parts, we obtain

P(X < 1) = 1
2

1∫
0

x2e−xdx = 1 − 5
2e

= 0.08025.
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0.00
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0.20

Thus, there is about an 8% chance that on a given day the fuel consumption will be less than

1 million gallons.

(b) Because the airport can store only 2 million gallons, the fuel supply will be inadequate if the fuel

consumption X is greater than 2. Thus,

P(X > 2) = 1
2

∞∫
2

x2e−xdx = 0.677.

0.30

0.25

0.15

0.05

0.00
2

0.10

0.20

We can conclude that there is about a 67.7% chance that the fuel supply of 2 million gallons will be

inadequate on a given day. So, if the model is right, the airport needs to store more than 2 million

gallons of fuel.

We now describe two special cases of gamma probability distribution. In the pdf of the gamma, we
let α = 1, we get the pdf of an exponential random variable.

Definition 3.2.7 A random variable X is said to have an exponential probability distribution with
parameter β if the pdf of X is given by

f (x) =
⎧⎨
⎩

1
β

e−x/β, β > 0; 0 ≤ x < ∞
0, otherwise.

Exponential random variables are often used to model the lifetimes of electronic components such
as fuses, for survival analysis, and for reliability analysis, among others. The exponential distribution
(Figure 3.6) is also used in developing models of insurance risks.
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■ FIGURE 3.6 Probability density function for exponential r.v.

MEAN, VARIANCE, AND MGF OF AN EXPONENTIAL RANDOM VARIABLE

Theorem 3.2.7 If X is an exponential random variable with parameters β > 0, then

E(X) = β and Var(X) = β2.

Also the moment-generating function is

MX(t) = 1
(1 − βt)

, t <
1
β

.

Example 3.2.13
The time, in hours, during which an electrical generator is operational is a random variable that follows

the exponential distribution with β = 160. What is the probability that a generator of this type will be

operational for

(a) Less than 40 hours?

(b) Between 60 and 160 hours?

(c) More than 200 hours?

Solution
Let X denote the random variable corresponding to time (in hours) during which the generator is operational.

Then the density function of X is given by

f (x) =
⎧⎨
⎩

1
160

e
−
(

x
160

)
, x ≥ 0

0, otherwise.
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Thus, we have the following:

(a) P(X ≤ 40) = ∫ 40
0

1
160 e−(x/160)dx = 0.22119. There is about a 22.1% chance that a generator of

this type will be operational for less than 40 hours.

(b) P(60 ≤ X ≤ 160) = ∫ 160
60

1
160 e−(x/160)dx = 0.3194. Hence, there is about a 31.94% chance that

a generator of this type will be operational between 60 and 160 hours.

(c) P(X > 200) = ∫∞
200

1
160 e−(x/160)dx = 0.2865. The chance that the generator will last more than

200 hours is about 28.65%.

Another special case of gamma probability distribution that is useful in statistical inference problems
is the chi-square distribution.

Definition 3.2.8 Let n be a positive integer. A random variable, X, is said to have a chi-square (χ2)

distribution with n degrees of freedom if and only if X is a gamma random variable with parameters
α = n/2 and β = 2. We denote this by X ∼ χ2(n).

Hence, the probability density function of a chi-square distribution with n degrees of freedom is
given by

f (x) =
⎧⎨
⎩

1

�
(
n
2
)
2n/2 x(n/2)−1e−x/2, 0 ≤ x < ∞

0, otherwise.

Figure 3.7 illustrates the dependence of the chi-square distribution on n.

The mean and variance of a chi-square random variable follow directly from Theorem 3.2.6.
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■ FIGURE 3.7 Chi-square pdfs for different degrees of freedom.
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MEAN, VARIANCE, AND MGF OF A CHI-SQUARE RANDOM VARIABLE

Theorem 3.2.8 If X is a chi-square random variable with n degrees of freedom, then E(X) = n and
Var(X) = 2n. Also, the moment-generating function is given by

MX(t) = 1

(1 − 2t)n/2 , t <
1
2

.

Another class of distributions that plays a crucial role in Bayesian statistics (see Chapter 11) is the
beta distribution. The beta distribution is used as a prior distribution for binomial or geometric
proportions. A random variable X is said to have a beta distribution with parameters α and β if and
only if the density function of X is

f (x) =
⎧⎨
⎩

xα−1(1−x)β−1

B(α,β) , α, β > 0; 0 ≤ x ≤ 1

0, otherwise,

where B(α, β)= ∫ 1
0 xα−1(1 − x)β−1dx. It can be proved (see Exercise 3.2.31) that B(α, β)= �(α)�(β)

�(α+β)
,

and that E(X) = α
α+β

and Var(X) = αβ

(α+β)2(α+β+1)
.

One of the questions we may have is: “How do we know which distribution to use in a given physical
problem?” There is no simple and direct answer to this question. One intuitive way is to construct
a histogram from the information at hand; from the shape of this histogram, we decide whether
the random variable follows a particular distribution such as gamma distribution. Once we decide
that it follows a particular distribution, then the parameters of this distribution, such as α and β,
must be statistically estimated. In Chapter 5, we discuss how to estimate these parameters. Then a
goodness-of-fit test can be performed to see whether the distribution model seems to be the right one.

EXERCISES 3.2

3.2.1. A fair coin is tossed 10 times. Let X denote the number of heads obtained. Find the following.
(a) P(X = 7)

(b) P(X ≤ 7)

(c) P(X > 0)

(d) E(X) and Var(X)

3.2.2. Let X be a Poisson random variable with λ = 1/3. Find
(a) P(X = 0)

(b) P(X ≥ 4).

3.2.3. For a standard normal random variable Z, find the value of z0 such that
(a) P(Z > z0) = 0.05
(b) P(Z < z0) = 0.88
(c) P(Z < z0) = 0.10
(d) P(Z > z0) = 0.95.
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3.2.4. Let X ∼ N(12, 5). Find the value of x0 such that
(a) P(X > x0) = 0.05
(b) P(X < x0) = 0.98
(c) P(X < x0) = 0.20
(d) P(X > x0) = 0.90.

3.2.5. Let X ∼ N(10, 25). Compute
(a) P(X ≤ 20)

(b) P(X > 5)

(c) P(12 ≤ X ≤ 15)

(d) P(|X − 12| ≤ 15).

3.2.6. A quarterback on a football team has a pass completion rate of 0.62. If, in a given game, he
attempts 16 passes, what is the probability that he will complete
(a) 12 passes?
(b) More than half of his passes?
(c) Interpret your result.
(d) Out of the 16 passes, what is the expected number of completions?

3.2.7. A consulting group believes that 70% of the people in a certain county are satisfied with their
health coverage. Assuming that this is true, find the probability that in a random sample of
15 people from the county:
(a) Exactly 10 are satisfied with their health coverage, and interpret.
(b) Not more than 10 are satisfied with their health coverage, and interpret.
(c) What is the expected number of people out of 15 that are satisfied with their health

coverage?

3.2.8. A man fires at a target six times; the probability of his hitting it each time is independent of
other tries and is 0.40.
(a) What is the probability that he will hit at least once?
(b) How many times must he fire at the target so that the probability of hitting it at least

once is greater than 0.77?
(c) Interpret your findings.

3.2.9. A certain electronics company produces a particular type of vacuum tube. It has been
observed that, on the average, three tubes of 100 are defective. The company packs the
tubes in boxes of 400. What is the probability that a certain box of 400 tubes will contain
(a) r defective tubes?
(b) At least k defective tubes?
(c) At most one defective tube?
(d) Interpret your answers to (a), (b), and (c).

3.2.10. Suppose that, on average, in every two pages of a book there is one typographical error, and
that the number of typographical errors on a single page of the book is a Poisson r.v. with
λ = 1/2. What is the probability of at least one error on a certain page of the book? Interpret
your result.
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3.2.11. Show that the probabilities assigned by Poisson probability distribution satisfy the
requirements that 0 ≤ p(x)≤ 1 for all x and

∑
x p(x)= 1.

3.2.12. In determining the range of an acoustic source using the triangulation method, the time at
which the spherical wave front arrives at a receiving sensor must be measured accurately.
Measurement errors in these times can be modeled as possessing uniform probability dis-
tribution from −0.05 to 0.05 microseconds. What is the probability that a particular arrival
time measurement will be in error by less than 0.01 microsecond? What does your answer
mean?

3.2.13. The hardness of a piece of ceramic is proportional to the firing time. Assume that a rating
system has been devised to rate the hardness of a ceramic piece and that this measure of
hardness is a random variable that is distributed uniformly between 0 and 10. If a hardness
in [5,9] is desirable for kitchenware, what is the probability that a piece chosen at random
will be suitable for kitchen use?

3.2.14. A receiver receives a string of 0s and 1s transmitted from a certain source. The receiver used
a majority rule. That is, if the receiver acquires five symbols, of which three or more are 1s, it
decides that a 1 was transmitted. The receiver is correct only 85% of the time. What is P(W),
the probability of a wrong decision if the probabilities of receiving 0s and 1s are equally
likely? What can you conclude from your result?

3.2.15. The efficiency X of a certain electrical component may be assumed to be a random variable
that is distributed uniformly between 0 and 100 units. What is the probability that X is:
(a) Between 60 and 80 units?
(b) Greater than 90 units?
(c) Interpret (a) and (b).

3.2.16. The reliability function of a system or a piece of equipment at time t is defined by

R(t) = P(T ≥ t) = 1 − F(t)

where T , the failure time, is a random variable with a known distribution. A certain vacuum
tube has been observed to fail uniformly over the interval [t1, t2].
(a) Determine the reliability of such a tube at time t, t1 ≤ t ≤ t2.
(b) If 180 ≤ t ≤ 220, what is the reliability of such a tube at 200 hours?
(c) The failure or hazard rate function ρ(t) is defined by

ρ(t) = f (t)

1 − F(t)
= f (t)

R(t)
= − dR(t)

dt

R(t)
.

Calculate the failure rate of this vacuum tube. Interpret your result.

3.2.17. An electrical component was studied in the laboratory, and it was determined that its failure
rate was approximately equal to 1

β
= 0.05. What is the reliability of such a component at

10 hours?
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3.2.18. Suppose that the life length of a mechanical component is normally distributed.
(a) If σ = 3 and μ = 100, find the reliability of such a system at 105 hours.
(b) What should be the expected life of the component if it has reliability of 0.90 for 120

hours?

3.2.19. A geologist defines granite as a rock containing quartz, feldspar, and small amounts of
other minerals, provided that it contains not more than 75% quartz. If all the percentages
are equally likely, what proportion of granite samples that the geologist collects during his
lifetime will contain from 50% to 65% quartz?

3.2.20. For a normal random variable with pdf,

f (x) = 1√
2πσ

e−(x−μ)2/2σ2
, ∞ < x < ∞

show that
∫∞
−∞ f (x)dx = 1. [Hint: use polar coordinates.]

3.2.21. A professor in a large statistics class has a grading policy such that only the 15% of the
students with the highest scores will receive the grade A. The mean score for this class is 72
with a standard deviation of 6. Assuming that all the grades for this class follow a normal
probability distribution, what is the minimum score that a student in this class has to get
to receive an A grade?

3.2.22. The scores, X, of an examination may be assumed to be normally distributed with μ = 70
and σ2 = 49. What is the probability that:
(a) A score chosen at random will be between 80 and 85?
(b) A score will be greater than 75?
(c) A score will be less than 90?
(d) Interpret the meaning of (a), (b), and (c).

3.2.23. Suppose that the diameters of golf balls manufactured by a certain company are normally
distributed with μ = 1.96 in. and σ = 0.04 in. A golf ball will be considered defective if
its diameter is less than 1.90 in. or greater than 2.02 in. What is the percentage of defective
balls manufactured by the company? What did the answer indicate?

3.2.24. Suppose that the arterial diastolic blood pressure readings in a population follow a normal
probability distribution with mean 80 mm Hg and standard deviation 6.2 mm Hg. Suppose
it is recommended that a physician be consulted if an individual has an arterial diastolic
blood pressure reading of 90 mm Hg or more. If an individual is randomly picked from
this population, what is the probability that this individual needs to consult a physician?
Discuss the meaning of your result.

3.2.25. In a certain pediatric population, systolic blood pressure is normally distributed with mean
115 mm Hg and standard deviation 10 mm Hg. Find the probability that a randomly selected
child from this population will have:
(a) A systolic pressure greater than 125 mm Hg.
(b) A systolic pressure less than 95 mm Hg.
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(c) A systolic pressure below which 95% of this population lies.
(d) Interpret (a), (b), and (c).

3.2.26. A physical fitness test was given to a large number of college freshmen. In part of the test,
each student was asked to run as far as he or she could in 10 minutes. The distance each
student ran in miles was recorded and can be considered to be a random variable, say X.
The data showed that the random variable X followed the log-normal distribution with
μy = 0.35 and σy = 0.5, where Y = ln X. A student is considered physically fit if he or she
is able to run 1.5 miles in the time allowed. What percentage of the college freshmen would
be considered physically fit if we consider only this part of the test?

3.2.27. An experimenter is designing an experiment to test tetanus toxoid in guinea pigs. The survival
of the animal following the dose of the toxoid is a random phenomenon. Past experience
has shown that the random variable that describes such a situation follows the log-normal
distribution with μy = 0 and σy = 0.65. As a requirement of good design the experimenter
must choose doses at which the probability of surviving is 0.20, 0.50, and 0.80. What three
doses should he choose?

3.2.28. Show that �(1) = 1 and for a > 1, �(a) = (a − 1)�(a − 1).

3.2.29. (a) Find the moment-generating function for a gamma probability distribution with
parameter α > 0 and β > 0. [Hint: In the integral representation of E(etX), change
the variable t to u = (1 − βt)x/β, with (1 − βt) > 0.]

(b) Using the mgf of a gamma probability distribution, find E(X) and Var(X).

3.2.30. Let X be an exponential random variable. Show that, for numbers a > 0 and b > 0,

P(X > a + b |X > a) = P(X > b).

(This property of the exponential distribution is called the memoryless property of the
distribution.)

3.2.31. A random variable X is said to have a beta distribution with parameters α and β if and only
if the density function of X is

f (x) =
⎧⎨
⎩

xα−1(1−x)β−1

B(α,β) , α, β > 0; 0 ≤ x ≤ 1

0, otherwise

where B(α, β) = ∫ 1
0 xα−1(1 − x)β−1dx.

(a) Show that B(α, β) = �(α)�(β)
�(α+β)

.

(b) Show that E(X) = α
α+β

and Var(X) = αβ

(α+β)2(α+β+1)
.

3.2.32. The daily proportion of major automobile accidents across the United States can be treated
as a random variable having a beta distribution with α = 6 and β = 4. Find the probability
that, on a certain day, the percentage of major accidents is less than 80% but greater than
60%. Interpret your answer.
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3.2.33. Suppose that network breakdowns occur randomly and independently of each other on an
average rate of three per month.
(a) What is the probability that there will be just one network breakdown during December?

Interpret.
(b) What is the probability that there will be at least four network breakdowns during

December? Interpret.
(c) What is the probability that there will be at most seven network breakdowns during

December? Interpret.

3.2.34. Let X be a random variable denoting the number of events occurring in the time interval
(0, t]. Show that X has a gamma probability distribution with parameters n and λ.

3.2.35. In order to etch an aluminum tray successfully, the pH of the acid solution used must be
between 1 and 4. This acid solution is made by mixing a fixed quantity of etching compound
in powder form with a given volume of water. The actual pH of the solution obtained by
this method is affected by the potency of the etching compound, by slight variations in the
volume of water used, and perhaps by the pH of the water. Thus, the pH of the solution
varies. Assume that the random variable that describes the random phenomenon is gamma
distributed with α = 2 and β = 1.
(a) What is the probability that an acid solution made by the foregoing procedure will

satisfactorily etch a tray?
(b) What would the answer to part (a) be if α = 1 and β = 2?

3.3 JOINT PROBABILITY DISTRIBUTIONS

We have thus far confined ourselves to studying one-dimensional or univariate random variables and
their properties. In many practical situations, we are required to deal with several, not necessarily
independent random variables. For example, we might be interested in a study involving the weights
and heights (W, H) of a certain group of persons. In this situation, we need the two random variables
(W, H), and it is likely that these two are related. Then it becomes important to study the joint effect of
these random variables, which will lead to finding the joint probability distributions. In this section,
we confine our studies to two random variables and their joint distributions, which are called bivariate
distributions. We consider the random variables to be either both discrete or both continuous. We now
define joint distribution of two random variables.

Definition 3.3.1 (a) Let X and Y be random variables. If both X and Y are discrete, then

f (x, y) = P(X = x, Y = y)

is called the joint probability function (joint pmf ) of X and Y .

(b) If both X and Y are continuous then f (x, y) is called the joint probability density function (joint
pdf ) of X and Y if and only if

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
b∫

a

d∫
c

f (x, y)dxdy.
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Example 3.3.1
A probability class contains 10 African American, 8 Hispanic American, and 15 white students. If 12

students are randomly selected from this class, and if X = number of black students, and Y = number of

white students, find the joint probability function of the bivariate random variable (X, Y).

Solution
There are a total of 33 students. The number of ways in which x African American, and y white students can

be picked (which means, the remaining 12 − (x + y) students are Hispanic American) can be obtained using

the multiplication principle as

(
10

x

)(
15

x

)(
8

12 − x − y

)
.

The number of ways to pick 12 students from 33 students is

(
33

12

)
. Hence, the joint probability function is

P(X = x, Y = y) =

(
10

x

)(
15

y

)(
8

12 − x − y

)
(

33

12

)

where 0 ≤ x ≤ 10, 0 ≤ y ≤ 12, and 4 ≤ x + y ≤ 12. The last constraint is needed because there are only

eight Hispanic Americans, so the combined minimum number of whites and African Americans should be at

least 4.

We follow the notation:
∑

x,y to denote
∑

x

∑
y. The joint distribution of two random variables has

to satisfy the following conditions.

Theorem 3.3.1 If X and Y are two random variables with joint probability function f (x, y), then

1. f (x, y) ≥ 0 for all x and y.
2. If X and Y are discrete, then

∑
x,y f (x, y) = 1,

where the sum is over all values (x, y) that are assigned nonzero probabilities. If X and Y are continuous, then

∞∫
−∞

∞∫
−∞

f (x, y) = 1.

Given the joint probability distribution (pdf or pmf), the probability distribution function of a
component random variable can be obtained through the marginals.
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Definition 3.3.2 The marginal pmf of X denoted by fX(x) (or f (x), when there is no confusion) is defi-
ned by

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

∞∫
−∞

f (x, y)dy, if X and Y are continuous,

∑
all y

f (x, y), if X and Y are discrete.

Similarly, the marginal pdf of Y is defined by

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

∞∫
−∞

f (x, y)dx, if X and Y are continuous,

∑
all x

f (x, y), if X and Y are discrete.

Note that

P(a ≤ X ≤ b) =

⎧⎪⎨
⎪⎩

b∫
a

fX(x)dx, if X and Y are continuous,

∑
fX(x), if X and Y are discrete,

where summation is over all values of X from a to b.

Example 3.3.2
Find the marginal probability density function of the random variables X and Y , if their joint probability

function is given by Table 3.1.

Table 3.1

y
x −2 0 1 4 Sum

−1 0.2 0.1 0.0 0.2 0.5

3 0.1 0.2 0.1 0.0 0.4

5 0.1 0.0 0.0 0.0 0.1

Sum 0.4 0.3 0.1 0.2 1.0

Find the marginal densities of X and Y .

Solution
By definition, the marginal pdfs of X are given by the column sums (summands over y for fixed x), and the

marginal pdfs of Y are obtained by the row sums. Hence,

xi −1 3 5 otherwise

fX(xi) 0.5 0.4 0.1 0

yj −2 0 1 4 otherwise

fY (yi) 0.4 0.3 0.1 0.2 0
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Using the joint probability distribution and the marginals, we can now introduce the conditional
probability distribution function.

Definition 3.3.3 The conditional probability distribution of the random variable X given Y is given by

f (x |y ) = f (x |Y = y )

=

⎧⎪⎪⎨
⎪⎪⎩

f (x, y)

fY (y)
, if X and Y are continuous, fY (y) = 0,

P(X = x, Y = y)

fY (y)
, if X and Y are discrete.

We note that both the marginal probability densities of X and Y as well as the conditional pdf must
satisfy the two important conditions of a pdf.

We know that two events A and B are independent if P(A∩B) = P(A)P(B). It is usually more conve-
nient to establish independence through the probability functions. Hence, we define independence
for bivariate probability distribution as follows.

Definition 3.3.4 Let X and Y have a joint pmf or pdf f (x, y). Then X and Y are independent if and
only if

f (x, y) = fX(x)fY (y), for all x and y.

That is, for independent random variables, the joint pdf is the product of the marginals.

Example 3.3.3
Let

f (x, y) =
{

3x, 0 ≤ y ≤ x ≤ 1,

0, otherwise.

(a) Find P
(
X ≤ 1

2 , 1
4 < Y < 3

4

)
.

(b) Find the marginals fX(x) and fY (y).

(c) Find the conditional f (x |y )(0 < y < 1). Also compute f
(
x|Y = 1

2

)
.

(d) Are X and Y independent?

Solution
(a) The domain of the function f(x,y) is given in Figure 3.8. The required probability

P
(
X ≤ 1

2 , 1
4 < Y < 3

4

)
is the volume over the area of the shaded region as shown by Figure 3.9.

That is,

P
(
X ≤ 1

2 , 1
4 < Y < 3

4

)
=

1/2∫
1/4

x∫
1/4

3xdydx
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=
∫ 1/2

1/4
3x

(
x − 1

4

)
dx

=
(

3x3

3
− 3x2

8

)∣∣∣∣∣
1/2

1/4

= 5
128

.

y

1

1
x

f (x, y )� 3x in
this region

■ FIGURE 3.8 Domain of f (x, y).

y

x

y � x1

1.21.00.80.60.40.20.0

The region 0 � x � 1/2
and 1/4 � y � 3/4

■ FIGURE 3.9 Region of integration.

(b) To find the marginals, we note that for each x, y varies from 0 to x(0 < y < x). Therefore

fX(x) =
x∫

0

3xdy = 3x
(
y|x0
) = 3x2, 0 < x < 1.

Similarly, for each y, x varies from y to 1.

fY (y) =
1∫

y

3xdx = 3x2

2

∣∣∣∣∣
1

y

= 3
2

− 3y2

2

= 3
2

(1 − y2), 0 < y < 1.
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(c) Using the definition of conditional density

f (x |y ) = f (x, y)

fY (y)
= 3x

3
2 (1 − y2)

= 2x

1 − y2 , y ≤ x ≤ 1.

From this we have

f
(
x |y = 1

2

)
= 2x(

1 −
(

1
2

)2
) = 8

3
x, 1

2 ≤ x ≤ 1.

(d) To check for independence of X and Y

fX(1)fY

(
1
2

)
= (3)

(
9
8

)
= 27

8 = 3 = f
(

1, 1
2

)
.

Hence, X and Y are not independent.

Recall that in the case of a univariate random variable X, with probability function f (x), we have

EX =
⎧⎨
⎩
∑
x

xf (x), if
∑
x

|x|f (x) < ∞, for discrete r.v.∫
xf (x)dx, if

∫ |x|f (x)dx < ∞, for continuous r.v.

Now we define similar concepts for bivariate distribution.

Definition 3.3.5 Let f (x, y) be the joint probability function, and let g(x, y) be such that∑
x,y |g(x, y)|f (x, y) <∞ in the discrete case, or

∫∞
−∞

∫∞
−∞ |g(x, y)|f (x, y)dxdy < ∞, in the continuous

case. Then the expected value of g(X, Y) is given by

Eg(X, Y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
x,y

g(x, y)f (x, y), if X, Y are discrete,

∞∫
−∞

∞∫
−∞

g(x, y)f (x, y)dxdy, if X, Y are continuous.

In particular

E(X, Y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
x,y

xyf (x, y), if X, Y are discrete,

∞∫
−∞

∞∫
−∞

xyf (x, y)dxdy, if X, Y are continuous.

The following properties of mathematical expectation are easy to verify.

PROPERTIES OF EXPECTED VALUE

1. E (aX + bY ) = aE (X ) + bE (Y ).
2. If X and Y are independent, then E (XY ) = E (X )E (Y ). However, the converse is not necessarily true.
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Example 3.3.4
Let f (x, y) = 3x, 0 ≤ y ≤ x ≤ 1.

(a) Find E(4X − 3Y),

(b) Find E(XY).

Solution
(a) E(X) = ∫

xfX(x)dx and E(Y) = ∫
yfY (y)dy.

Recall that earlier (Example 3.3.3) we have computed fX(x) = 3x2 (0 < x < 1) and fY (y) =
3
2 (1 − y2), 0 ≤ y ≤ 1. Using these results, we have

E(X) =
1∫

0

x3x2dx = 3
4

,

E(Y) =
1∫

0

y
3
2

(1 − y2)dy = 3
8

.

Hence,

E(4X − 3Y) = 3 − 9
8

= 15
8

.

(b)

E(XY) =
1∫

0

x∫
0

xy(3x)dydx = 3
10

.

Conditional expectations are defined in the same way as univariate expectations, except that the
conditional density is utilized in place of the unconditional density function.

Definition 3.3.6 Let X and Y be jointly distributed with pf or pdf f (x, y). Let g be a function of x. Then
the conditional expectation of g(x) given, Y = y is

E(g(X) |y ) = E(g(X) |Y = y )

=
⎧⎨
⎩
∑

all x

g(x)f (x |y ), if X, Y are discrete,

∫
g(x)f (x |y )dx, if X, Y are continuous.

Note that E(g(X) |y ) is a function of y. If we let Y range over all of its possible values, the conditional
expectation E(g(X) |Y ) can be thought of as a function of the random variable Y . We will then be
able to find the mean and variance of E(g(X) |Y ), as given in the following result, the proof of which
is left as an exercise.

Theorem 3.3.2 Let X and Y be two random variables. Then

(a) E(X) = E[E(X|Y)].
(b) Var(X) = E[Var(X|Y)] + Var[E(X|Y)].
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Example 3.3.5
Let X and Y be two random variables with joint density function given by

f (x, y) =
⎧⎨
⎩

x2 + xy
3 , 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2

0, otherwise.

Find the conditional expectation, E
(
X|Y = 1

2

)
.

Solution
First we will find the conditional density, f (x |y ). The marginal

fY (y) =
1∫

0

(
x2 + xy

3

)
dx = 1

3
+ 1

6
y, 0 < y < 2.

Therefore,

f (x|y) = f (x, y)

fY (y)
= x2 + xy

3
1
6y + 1

3

, 0 ≤ x ≤ 1.

Hence,

f
(
x|Y = 1

2

)
= x2 + x

6
1

12 + 1
3

= 12
5

(
x2 + x

6

)
.

Thus,

E
(
X|Y = 1

2

)
=

1∫
0

xf (x |y ) dx

=
1∫

0

x
12
5

(
x2 + x

6

)
dx = 11

15
= 0.733.

3.3.1 Covariance and Correlation
We will now define the covariance and correlation coefficient of two random variables.

Definition 3.3.7 (i) The covariance between two random variables X and Y is defined by

σXY = Cov(X, Y) = E(X − μX)(Y − μY ) = E(XY) − μXμY ,

where μX = E(X) and μY = E(Y).



3.3 Joint Probability Distributions 149

(ii) The correlation coefficient, ρ = ρ(x, y) is defined by

ρ = Cov(X, Y)√
Var(X)Var(Y)

.

Correlation is the measure of the linear relationship between the random variables X and Y . If Y = aX+b(a =
0), then ρ(x, y) = 1. If dependence on X and Y needs to be specified, we will use the notation, ρXY .

From the definition of the covariance of X and Y , we note that if small values of X, for which
(X − μX) < 0, tend to be associated with small values of Y , for which (Y − μY) < 0, and similarly
large values of X with large values of Y, then Cov(X, Y) ≡ E[(X−μX)(Y −μY)] can be expected to be
positive. On the other hand, if small values of X tend to be associated with large values of Y and vice
versa so that (X − μX) and (Y − μY) are of opposite signs, then Cov(X, Y) < 0. Thus, covariance can
be thought of as a signed measure of the variation of Y relative to X. If X and Y are independent, then
it follows from the definition of covariance that Cov(X, Y) = 0. The correlation coefficient of X and
Y , is a dimensionless quantity that measures the linear relationship between the random variables X

and Y .

PROPERTIES OF COVARIANCE AND CORRELATION COEFFICIENT

(a) −1 ≤ ρ ≤ 1.
(b) If X and Y are independent, then ρ = 0. The converse is not true.

(c) If Y = aX + b, then

Cov (X; Y ) =
⎧⎨
⎩

1, if a > 0,

−1, if a < 0.

Note that Cov (X , X ) = Var (X ).
(d) If U = a1X + b1 and V = a2Y + b2, then

(i) Cov (U , V ) = a1a2Cov (X , Y ),

and

(ii) ρUV =
⎧⎨
⎩

ρXY , if a1a2 > 0

−ρXY , otherwise.

(e) Var (aX + bY ) = a2Var (X ) + b2Var (Y ) + 2abCov (X , Y ).

Example 3.3.6
The joint probability density of the random variables X and Y is given by

f (x, y) =
⎧⎨
⎩

1
64

e−y/8, 0 ≤ x ≤ y < ∞
0, otherwise.
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Find the covariance of X and Y .

Solution
We can use the formula, Cov(X, Y)= E(XY) − E(X)E(Y). Now using integration by parts (three times) we

will get

E(XY) =
∞∫

0

y∫
0

(xy)
1

64
e−y/8dxdy

= 1
64

∞∫
0

ye−y/8

⎛
⎝ y∫

0

xdx

⎞
⎠ dy

= 1
128

∞∫
0

y3e−y/8dy = 192.

We can also obtain

E(X) =
∞∫

0

y∫
0

x
1

64
e−y/8dxdy = 8

and

E(Y) =
∞∫

0

y∫
0

y
1

64
e−y/8dxdy = 16.

Thus, Cov(X, Y) = 192 − (8)(16) = 64.

Next we will define the moment-generating function for the bivariate distributions.

Definition 3.3.8 Let X and Y be jointly distributed. Then the joint moment-generating function is
defined by

M(X,Y) (t1, t2) = E
(
et1X+t2Y

)

=

⎧⎪⎪⎨
⎪⎪⎩

∑
y

∑
x

et1x+t2yf (x, y), if X and Y are discrete

∞∫
−∞

∞∫
−∞

et1x+t2yf (x, y)dxdy, if X and Y are continuous.

EXERCISES 3.3

3.3.1. An experiment consists of drawing four objects from a container, which holds eight operable,
six defective, and 10 semioperable objects. Let X be the number of operable objects drawn
and Y the number of defective objects drawn.
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(a) Find the joint probability function of the bivariate random variable (X, Y).
(b) Find P(X = 3, Y = 0).
(c) Find P(X < 3, Y = 1).
(d) Give a graphical presentation of (a), (b), and (c).

3.3.2. Let

f (x, y) =
⎧⎨
⎩

1
50

(x2 + 2y), x = 0, 1, 2, 3 and y = x + 3,

0, otherwise.

Show that f (x, y) satisfies the conditions of a probability density function.

3.3.3. Let

f (x, y) = c(1 − x)(1 − y), −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

Find the c that makes f (x, y) the joint probability density function of the random variable
(X, Y).

3.3.4. Let

f (x, y) = xe−xy, x ≥ 0, y ≥ 1.

Is f (x, y) a probability density function? If not, find the proper constant to multiply with
f (x, y) so that it will be a probability density.

3.3.5. Find the marginal probability density function of the random variables X and Y , if their
joint probability density function is given in Table 3.3.1.

Table 3.3.1

y

x −2 0 1 4

−1 0.3 0.1 0.0 0.2

3 0.0 0.2 0.1 0.0

5 0.1 0.0 0.0 0.0

3.3.6. Find the marginal density functions of the random variables X and Y if their joint probability
density function is given by

f (x, y) =
⎧⎨
⎩

1
5 (3x − y), 1 ≤ x ≤ 2, 1 ≤ y ≤ 3,

0, otherwise.
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3.3.7. Determine the conditional probability P(X = −1 |Y = 0 ) for the random variables defined
in Problem 3.3.5.

3.3.8. Find k so that f (x, y) = kxy, 1 ≤ x ≤ y ≤ 2 will be a probability density function. Also find
(i) P(X ≤ 3

2 , Y ≤ 3
2 ), and (ii) P(X + Y ≤ 3

2 ).

3.3.9. The random variables X and Y have a joint density

f (x, y) =
⎧⎨
⎩

8
9xy, 1 ≤ x ≤ y ≤ 2,

0, elsewhere.

Find:
(a) The marginal of X.
(b) P(1.5 < X < 1.75, Y > 1).

3.3.10. The joint pdf of X and Y is

f (x, y) =
⎧⎨
⎩

1
28 (4x + 2y + 1), 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

0, elsewhere.

Find (a) fX(x) and fY (y), and (b) f (y |x).

3.3.11. Find the joint mgf of the random variables (X, Y) defined in Problem 3.3.9.

3.3.12. The joint density of a random variable (X, Y) is given by

f (x, y) =
⎧⎨
⎩

x3y3

16 , 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

0, elsewhere.

(a) Find marginals of X and Y , and (b) find f (y |x).

3.3.13. The joint probability function of a discrete random variable (X, Y) is given by

f (x, y) =
⎧⎨
⎩
[

6xy
n(n+1)(2n+1)

]2
, x, y = 1, 2, . . . , n,

0, otherwise.

Find (a) f (x |y ), and (b) f (y |x).
[Hint:

∑n
i=1 i2 = (n(n + 1)(2n + 1))/6.]

3.3.14. Consider bivariate random variables with the density

f (x, y) =
(

n

x

)
yx+α−1(1 − y)n−x+β−1, for x = 0, 1, . . . , n

and 0 < y ≤ 1.
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Verify that

f (x |y ) ∝
(

n

x

)
yx(1 − y)n−x

and

f (y|x) ∝ yx+α−1(1 − y)n−x+β−1.

3.3.15. The joint density function of the discrete random variable (X, Y) is given in Table 3.3.2.

Table 3.3.2

y

x 1 2 3

1 1
6

1
6

1
6

2 1
6

1
12

1
12

3 1
12

1
12 0

(a) Find E(XY).
(b) Find Cov(X, Y).
(c) Find the correlation coefficient ρX,Y .

3.3.16. The joint probability function of the continuous random variable (X, Y) is given by

f (x, y) =
⎧⎨
⎩

1
28 (4x + 2y + 1), 0 ≤ x < 2, 0 ≤ y < 2,

0, otherwise.

(a) Find E(XY).
(b) Find Cov(X, Y).
(c) Find the correlation coefficient ρXY .

3.3.17. Let X and Y be random variables and U = aX+b, V = cY +d, where a, b, c, d are constants.

Show that ρUV =
{

ρXY , if ac > 0
−ρXY , otherwise.

3.3.18. Let X and Y be two independent random variables, and let Y = aX + b, where a and b are
constants. Show that (a) ρXY = 1 if a > 0, and (b) ρXY = −1 if a < 0.

3.3.19. If |ρXY | = 1, then prove that P(Y = aX + b) = 1.
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3.3.20. Let X and Y be two random variables with joint density function

f (x, y) =
⎧⎨
⎩

8xy, 0 ≤ x ≤ y ≤ 1

0, otherwise.

(a) Find the conditional expectation, E
(
X|Y = 3

4

)
.

(b) Find Cov(X, Y).

3.3.21. Let X and Y be two random variables with joint density function

f (x, y) =
⎧⎨
⎩

e−y, 0 ≤ x ≤ y

0, otherwise.

(a) Find the conditional expectation, E(X|Y = y).
(b) Find Cov(X, Y).
(c) Are X and Y independent? Why?

3.3.22. Let

f (x, y) = c

(1 + x2)
√

1 − y2
, −∞ < x < ∞, −1 < y < 1.

Find the c that makes f (x, y) the probability density function of the random variable (X, Y).
Determine whether X and Y are independent.

3.3.23. If the random variables X and Y are independent and have equal variances, what is the
coefficient of correlation between the random variables X and aX+Y , where a is a constant?

3.4 FUNCTIONS OF RANDOM VARIABLES

In this section we discuss the methods of finding the probability distribution of a function of a
random variable X. We are given the distribution of X, and we are required to find the distribution of
g(X). There are many physical problems that call for the derivation of the distribution of a function
of a random variable. The following is one of the classical examples. The velocity V of a gas molecule
(Maxwell–Boltzmann law) behaves as a gamma-distributed random variable. We would like to derive
the distribution of E = mV 2, the kinetic energy of the gas molecule. Because the value of the velocity is
the outcome of a random experiment, so is the value of E. This is a problem of finding the distribution
of a function of a random variable E = g(V). We now illustrate various techniques for finding the
distribution of g(X) by means of examples.

3.4.1 Method of Distribution Functions
Basically the method of distribution functions is as follows. If X is a random variable with pdf fX(x)

and if Y is some function of X, then we can find the cdf FY(y) = P(Y ≤ y) directly by integrating
fX(x) over the region for which {Y ≤ y}. Now, by differentiating FY(y), we get the probability density
function fY (y) of Y . In general, if Y is a function of random variables X1, . . . , Xn, say g(X1, . . . , Xn),
then we can summarize the method of distribution function as follows.
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PROCEDURE TO FIND CDF OF A FUNCTION OF R.V. USING THE METHOD OF DISTRIBUTION
FUNCTIONS

1. Find the region {Y ≤ y } in the (x1, x2, . . . , xn ) space, that is find the set of (x1, x2, . . . , xn ) for which
g(x1, . . . , xn ) ≤ y .

2. Find FY (y ) = P(Y ≤ y ) by integrating f (x1, x2, . . . , xn ) over the region {Y ≤ y }.
3. Find the density function fY (y ) by differentiating FY (y ).

Example 3.4.1
Let X ∼ N(0, 1). Using the cdf of X, find the pdf of X2.

Solution
Let Y = X2. Note that the pdf of X is

f (x) = 1√
2π

e−x2/2, −∞ < x < ∞.

Then the cumulative distribution function of Y for a given y ≥ 0 is

F(y) = P(Y ≤ y) = P(X2 ≤ y)

= P(−√
y ≤ X ≤ √

y)

=
√

y∫
−√

y

1√
2π

e−x2/2dx

= 2

√
y∫

0

1√
2π

e−x2/2dx, (by the symmetry of e−x2/2).

Hence, by differentiating F(y), we obtain the probability density function as

fY (y) = 2√
2π

e−y/2 1
2
√

y

=
⎧⎨
⎩

1√
2π

y−1/2e−y/2, 0 < y < ∞
0, otherwise.

This is a χ2-distribution with 1 degree of freedom.

The same method can be used for the discrete case.
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Example 3.4.2
Suppose that the random variable X has a Poisson probability distribution

f (x) =
⎧⎨
⎩

e−λλx

x! , x = 0, 1, 2, . . .

0, otherwise.

Find the cumulative distribution function of Y = aX + b.

Solution
The cdf of Y is given by

F(y) = P(Y ≤ y) = P(aX + b ≤ y)

= P

(
X ≤ y − b

a

)
=

[
y−b
a

]
∑
x=0

e−λλx

x! ,

where [x] is the largest integer less than or equal to x. Therefore,

F(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, y < b[
y−b
a

]
∑
x=0

e−λλx

x! , y ≥ b.

It should be noted here that the pmf, fY (y) of Y , can be found from the equation

fY (y) = FY (y) − FY (y − 1), for y = an + b, n = 0, 1, 2, . . .

The multivariate case (in particular, the bivariate case), though more difficult, can be handled similarly.

3.4.2 The pdf of Y = g(X ), Where g Is Differentiable and Monotone
Increasing or Decreasing

We now consider the distribution of a random variable Y = g(X), where X is a continuous random
variable with pdf fX(x). Assume that g is differentiable and the inverse function g−1 of g exists. Let
X = g−1(Y). Let fX(x) be the probability density function of X. Then the density function of Y can
be obtained using the method just given. Thus,

fY (y) = fX(g−1(y)) · d

dy
g−1(y).

This is a special case of the transformation method, which is explained later in Subsection 3.4.4.
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Example 3.4.3
Let X ∼ N(0, 1). Find the pdf of Y = eX.

Solution
Here g(x) = ex, and hence, g−1(y) = ln(y). Thus, d

dy
g−1(y) = 1

y .

Also,

fX(x) = 1√
2π

e−x2/2, −∞ < x < ∞.

Therefore, the pdf of Y is

fY (y) =
⎧⎨
⎩

1
y
√

2π
e−[ln(y)]2/2, y > 0,

0, otherwise.

3.4.3 Probability Integral Transformation
Let X be a continuous random variable, with pdf f and cdf F . Let Y = F(X). Then,

P(Y ≤ y) = P(F(X) ≤ y) = P(X ≤ F−1(y))

=
F−1(y)∫
−∞

fX(x)dx = FX(x)

∣∣∣F−1(y)

−∞ = y.

Hence,

f (y) =
⎧⎨
⎩

1, 0 < y < 1

0, otherwise.

Thus, Y has a U(0, 1) distribution. The transformation Y = F(X) is called a probability integral
transformation. It is interesting to note that irrespective of the pdf of X, Y is always uniform
in (0, 1).

Example 3.4.4
Let X be a normal with mean μ and variance σ2. Thus,

f (x) = 1√
2πσ

e−(x−μ)/2σ2
, −∞ < x < ∞, −∞ < μ < ∞, and σ2 > 0.
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Let Y = ∫ X
0

1√
2πσ

e−(x−μ)/2σ2
du. Then Y = F(X), where F is the cdf of a standard normal random

variable. Therefore Y is uniform on (0, 1). That is,

f (y) =
⎧⎨
⎩

1, if 0 < y < 1

0, otherwise.

3.4.4 Functions of Several Random Variables: Method of Distribution
Functions

We now discuss the distribution of Y , when Y is a function of several random variables, Y =
g(X1, . . . , Xn).

Example 3.4.5
Let X1, . . . , Xn be continuous iid random variables with pdf f (x) (cdf F(x)). Find the pdfs of

Y1 = min(X1, . . . , Xn) and Yn = max(X1, . . . , Xn).

Solution
For the random variable Y1, we have

1 − FY1(y) = P(Y1 > y)

= P(X1 > y, X2 > y, . . . , Xn > y)

= P(X1 > y)P(X2 > y) . . . P(Xn > y)

(because of independence)

= (1 − F(y))n.

This implies

FY1(y) = 1 − (1 − F(y))n

and

fY1(y) = n(1 − F(y))n−1f (y).

Consider Yn. Its cdf is given by

FYn
(y) = P(Yn ≤ y) = (F(y))n.

This implies that

fYn
(y) = n(F(y))n−1f (y).
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3.4.5 Transformation Method
A simple generalization of the method of distribution functions to functions of more than one variable
is the transformation method. We illustrate the method for bivariate distributions. The method is similar
for the multivariate case. Let the joint pdf of (X, Y) be f (x, y). Let U = g1(X, Y); V = g2(X, Y). The
mapping from (X, Y) to (U, V ) is assumed to be one-to-one and onto. Hence, there are functions, h1

and h2 such that

x = h−1
1 (u, v),

and

y = h−1
2 (u, v).

Define the Jacobian of the transformation J by

J =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂u

∣∣∣∣∣∣∣∣
.

Then the joint pdf of U and V is given by

f (u, v) = f (h−1
1 (u, v), h−1

2 (u, v)) |J | .

Example 3.4.6
Let X and Y be independent random variables with common pdf f (x) = e−x, (x > 0). Find the joint pdf of

U = X/(X + Y), V = X + Y .

Solution
We have U = X/(X + Y) = X/V . Hence, X = UV and Y = V − X = V − UV= V(1 − U). Thus, the Jacobian

J =
∣∣∣∣∣ v u

−v 1 − u

∣∣∣∣∣.
Then |J | = v(1 − u) + uv = v(>0). Note that 0 ≤ u ≤ 1, 0 < v < ∞.

f (u, v) = f
(
h−1

1 (u, v), h−1
2 (u, v)

)
|J |

= e−uve−v(1−u)v

= ve−v, 0 ≤ u ≤ 1, 0 < v < ∞.
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Suppose we want the marginal fV (v) and fU(v), that is,

fV (v) =
1∫

0

ve−vdu = ve−v, 0 < v < ∞

and

fU(u) =
∞∫

0

ve−vdv = 1, 0 ≤ u ≤ 1.

Sometimes the expressions for two variables, U and V , may not be given. Only one expression is
available. In that case, call the given expression of X and Y as U, and define V = Y . Then, we can use
the previous method to first find the joint density and then find the marginal to obtain the pdf of U.
The following example demonstrates the method.

Example 3.4.7
Let X and Y be independent random variables uniformly distributed on [0, 1]. Find the distribution of X+Y .

Solution
Let

U = X + Y,

V = Y,

f (x, y) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

X = U − V,

Y = V,

J =
∣∣∣∣∣1 −1
0 1

∣∣∣∣∣ = 1.

Thus, we have

f (u, v) =
{

1, 0 ≤ u − v ≤ 1, 0 ≤ v ≤ 1,

0, otherwise.

Because V is the variable we introduced, to get the pdf of U , we just need to find the marginal pdf from the

joint pdf. From Figure 3.10, the regions of integration are 0 ≤ u ≤ 1, and 0 ≤ u ≤ 2. That is,

fU(u) =
∫

f (u, v)dv =
∫

1dv

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∫
0

dv = u, 0 ≤ u ≤ 1

1∫
u−1

dv = 2 − u, 0 ≤ u ≤ 2.



3.4 Functions of Random Variables 161

u

v

u 5 v

(1, 0) (2, 0)

v 5 u 2 1

■ FIGURE 3.10 The regions of integration.

0.0 0.5 1.0 1.5 2.0 2.5

fU (�)

�

■ FIGURE 3.11 Graph of fU(u).

Figure 3.11 shows the graph of fU(u).

EXERCISES 3.4

3.4.1. Let X be a uniformly distributed random variable over (0, a). Find the pdf of Y = cX + d.

3.4.2. The joint pdf of (X, Y) is

f (x, y) = 1

θ2 e− x+y
θ , x, y > 0, θ > 0.

Find the pdf of U = X − Y .
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3.4.3. Let f (x, y) be the probability density function of the continuous random variable (X, Y). If
U = XY , show that the probability density function of U is given by

fU(u) =
∞∫

−∞
f
(u

v
, v
) ∣∣∣∣1v

∣∣∣∣ dv.

3.4.4. The joint pdf of X and Y is

f (x, y) = θe−(x+θy), θ > 0, x > 0.

Find the pdf of XY .

3.4.5. If the joint pdf of (X, Y) is

f (x, y) = 1
2πσ1σ2

e
− 1

4σ2
1σ2

2

(
x2+y2)

, − ∞ < x < ∞,

− ∞ < y < ∞; σ1, σ2 > 0

find the pdf of X2 + Y2.

3.4.6. Let X1, . . . , Xn be independent and identically distributed random variables with pdf f (x) =
(1/θ)e−x/θ, x > 0, θ > 0. Find the pdf of

∑n
i=1 Xi.

3.4.7. Let f (x, y) be the pdf of the continuous random variable (X, Y). If U = X + Y , then show
that the probability density function of U is given by

fU(u) =
∞∫

−∞
f (u − v, v)dv.

3.4.8. Let X be uniformly distributed over (−2, 2) and Y = X2. Find the Cov(X, Y). Are X and Y

independent?

3.4.9. Let X ∼ N(μ, σ2). Show that
(a) Z = (X−μ)

σ
is N(0, 1).

(b) U = (X−μ)2

σ2 is χ2(1).

3.4.10. Let X ∼ N(μ, σ2). Find the pdf of Y = eX.

3.4.11. The probability density of the velocity, V , of a gas molecule, according to the Maxwell–
Boltzmann law, is given by

f (v, β) =
⎧⎨
⎩

cv2e−βv2
, v > 0,

0, elsewhere

where c is an appropriate constant and β depends on the mass of the molecule and the
absolute temperature. Find the density function of the kinetic energy E, which is given by
E = g(V) = 1

2mV 2.



3.5 Limit Theorems 163

3.4.12. Let X and Y be two independent random variables, each normally distributed, with param-
eters (μ1, σ2

1 ), and (μ2, σ2
2 ), respectively. Show that the probability density function of

U = X/Y is given by

fU(u) = σ1σ2

π
(
σ2

1 + σ2
2u2

) , −∞ < u < ∞.

3.4.13. Let

f (x, y) = 1

2πσ2 e−(1/2σ2)(x2+y2)
, −∞ < x, y < ∞

be the joint pdf of (X, Y). Let

U =
√

X2 + Y2 and V = tan−1
(

Y

X

)
, 0 ≤ V ≤ 2π.

Find the joint pdf of (U, V ).

3.4.14. Let the joint pdf of (X, Y) be given by

f (x, y) =
⎧⎨
⎩

β−2e−{(x+y)/β}, x, y > 0, β > 0,

0, elsewhere.

Let U = X − Y

2
and V = Y . Find the joint pdf of (U, V ).

3.4.15. Let X and Y be independent and identically distributed random variables with pdf

f (x) =
⎧⎨
⎩

1
2 e−x/2, x ≥ 0,

0, otherwise.

Find the distribution of (X − Y)/2.

3.4.16. If X and Y are independent and chi-square distributed random variables with n1 and n2

degrees of freedom, respectively. Obtain the joint distribution of (U, V ), where U = X + Y

and V = X/Y .

3.5 LIMIT THEOREMS

Limit theorems play a very important role in the study of probability theory and in its applications. In
Chapter 2, we saw that the frequency interpretation of probability depends on the long-run proportion
of times the outcome (event) would occur in repeated experiments. Also, in Section 3.2, we learned
that some binomial probabilities can be computed using either the Poisson probability distribution
or the normal probability distribution using the limiting arguments. Many random variables that we
encounter in nature have distributions close to the normal probability distribution. These modeling
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simplifications are possible because of various limit theorems. In this section, we discuss the law of
large numbers and the Central Limit Theorem.

First we give Chebyshev’s theorem, which is a useful result for proving limit theorems. It gives a lower
bound for the area under a curve between two points that are on opposite sides of the mean and
are equidistant from the mean. The strength of this result lies in the fact that we need not know the
distribution of the underlying population, other than its mean and variance. This result was developed
by the Russian mathematician Pafnuty Chebyshev (1821–1894).

CHEBYSHEV’S THEOREM

Theorem 3.5.1 Let the random variable X have a mean μ and standard deviation σ. Then for K > 0, a
constant,

P(|X − μ| < Kσ) ≥ 1 − 1

K2 .

Proof. We will work with the continuous case. By definition of the variance of X,

σ2 = E(X − μ)2 =
∞∫

−∞
(x − μ)2f (x)dx

=
μ−Kσ∫
−∞

(x − μ)2f (x)dx +
μ+Kσ∫

μ−Kσ

(x − μ)2f (x)dx +
∞∫

μ+Kσ

(x − μ)2f (x)dx

≥
μ−Kσ∫
−∞

(x − μ)2f (x)dx +
∞∫

μ+Kσ

(x − μ)2f (x)dx.

Note that (x − μ)2 ≥ K2σ2 for x ≤ μ − Kσ or x ≥ μ + Kσ. The equation above can be rewritten as

σ2 ≥ K2σ2

⎡
⎢⎣

μ−Kσ∫
−∞

f (x)dx +
∞∫

μ+Kσ

f(x)dx

⎤
⎥⎦

= K2σ2 [P{X ≤ μ − Kσ} + P{X ≥ μ + Kσ}]
= K2σ2P{|X − μ| ≥ Kσ}.

This implies that

P{|X − μ| ≥ Kσ} ≤ 1

K2
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or

P (|X − μ| < Kσ) ≥ 1 − 1

K2 .

We can also write Chebyshev’s theorem as

P{|X − μ| ≥ ε} ≤ E
[
(X − μ)2]

ε2 = Var(X)

ε2 , for some ε > 0.

Equivalently,

P{|X − μ| ≥ Kσ} ≤ 1

K2 .

In other words, Chebyshev’s inequality states that the probability that a random variable X differs
from its mean by at least K standard deviations is less than or equal to 1/K2(K ≥ 2).

In statistics, if we do not have any idea of the population distribution, Chebyshev’s theorem is
used in the following manner. For any data set (regardless of the shape of the distribution), at least
(1−(1/k2))100% of observations will lie within k(≥1) standard deviations of the mean. For example,
at least (1−(1/22))100% = 75% of the data will fall in the interval (x−2s, x+2s) and at least 88.9% of
the observations will lie within three standard deviations of the mean. If the population distribution
is bell shaped, we have a better result than Chebyshev’s theorem, namely, the empirical rule that
states the following: (i) approximately 68% of the observations lie within one standard deviation
of the mean; (ii) approximately 95% of the observations lie within two standard deviations of the
mean; and (iii) approximately 99.7% of the observations lie within three standard deviations of the
mean.

Example 3.5.1
A random variable X has mean 24 and variance 9. Obtain a bound on the probability that the random

variable X assumes values between 16.5 to 31.5.

Solution
From Chebyshev’s theorem.

P {μ − Kσ < X < μ + Kσ} ≥ 1 − 1

K2 .

Equating μ + Kσ to 31.5 and μ − Kσ to 16.5 with μ = 24 and σ = √
9 = 3, we obtain K = 2.5.

Hence,

P {16.5 < X < 31.5} ≥ 1 − 1

(2.5)2 = 0.84.



166 CHAPTER 3 Additional Topics in Probability

Example 3.5.2
Let X be a random variable that represents the systolic blood pressure of the population of 18- to

74-year-old men in the United States. Suppose that X has mean 129 mm Hg and standard deviation

19.8 mm Hg.

(a) Obtain a bound on the probability that the systolic blood pressure of this population will assume

values between 89.4 and 168.6 mm Hg.

(b) In addition, assume that the distribution of X is approximately normal. Using the normal table, find

P(89.4 ≤ X ≤ 168.6). Compare this with the empirical rule.

Solution

(a) Because we are given only the mean and standard deviation, and no distribution is specified, we use

Chebyshev’s theorem. We have

P {μ − Kσ < X < μ + Kσ} ≥ 1 − 1

K2 .

Equating μ+Kσ to 168.6 and μ−Kσ to 89.4 with μ = 129 and σ = 19.8, we obtain K = 2. Hence,

P {89.4 ≤ X ≤ 168.6} ≥ 1 − 1

(2)2 = 0.75.

(b) Because X is normally distributed with mean 129 and standard deviation 19.8, using the z-score, we

get

P(89.4 ≤ X ≤ 168.6) = P

(
89.4 − 129

19.8
≤ Z ≤ 168.6 − 129

19.8

)

= P(−2 ≤ Z ≤ 2) = 0.9544.

Hence, approximately 95.44% of this population will have systolic blood pressure values between 89.4

and 168.6 mm Hg. This compares well with the 95% value from the empirical rule.

We could use Chebyshev’s inequality to prove the following result, which is called the weak law of
large numbers. The law of large numbers states that if the sample size n is large, the sample mean
rarely deviates from the mean of the distribution of X, which in statistics is called the population
mean.

LAW OF LARGE NUMBERS

Theorem 3.5.2 Let X1, . . . , Xn be a set of pairwise independent random variables with E(Xi) = μ, and
var(Xi) = σ2. Then for any c > 0,

P
{
μ − c ≤ X ≤ μ + c

} ≥ 1 − σ2

nc2
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and as n → ∞, the probability approaches 1. Equivalently,

P

(∣∣∣∣Sn

n
− μ

∣∣∣∣ < ε

)
→ 1

as n → ∞.

Proof. Because X1, . . . , Xn are iid random variables, we know that Var(Sn) = nσ2, and Var(Sn/n) =
σ2/n. Also, E(Sn/n) = μ. By Chebyshev’s theorem, for any ε > 0,

P

(∣∣∣∣Sn

n
− μ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2 .

Thus, for any fixed ε,

P

(∣∣∣∣Sn

n
− μ

∣∣∣∣ ≥ ε

)
→ 0

as n → ∞. Equivalently,

P

(∣∣∣∣Sn

n
− μ

∣∣∣∣ < ε

)
→ 1

as n → ∞.

Thus, without any knowledge of the probability distribution function of Sn, the (weak) law of large
numbers states that the sample mean, X = Sn/n, will differ from the population mean by less than
an arbitrary constant, ε > 0, with probability that tends to 1 as n tends to ∞. Because of this, the law
of large numbers is also called the “law of averages.” This result basically states that we can start with
a random experiment whose outcome cannot be predicted with certainty, and by taking averages,
we can obtain an experiment in which the outcome can be predicted with a high degree of accuracy.
The law of large numbers in its simplest form for the Bernoulli random variables was introduced
by Jacob Bernoulli toward the end of the 16th century. This result in generality was first proved by
the Russian mathematician A. Khintchine in 1929. This result is widely used in its applications to
insurance, statistics, and the study of heredity.

Example 3.5.3
Let X1, . . . , Xn be iid Bernoulli random variables with parameter p. Verify the law of large numbers.

Solution
For Bernoulli random variables we know that EXi = p, and Var(Xi) = p(1 − p). Thus, by Chebyshev’s

theorem,

P
{
p − c ≤ X ≤ p + c

} = P

{∣∣∣∣Sn

n
− p

∣∣∣∣ ≤ c

}
≥ 1 − σ2

nc2

= 1 − p(1 − p)

nc2 → 1, as n → ∞.

This verifies the weak law of large numbers.
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Example 3.5.4
Consider n rolls of a balanced die. Let Xi be the outcome of the ith roll, and let Sn = ∑n

i=1Xi. Show that,

for any ε > 0,

P

(∣∣∣∣Sn

n
− 7

2

∣∣∣∣ ≥ ε

)
→ 0

as n → ∞.

Solution
Because the die is balanced, EXi = 7/2. By the law of large numbers, for any ε > 0,

P

(∣∣∣∣Sn

n
− 7

2

∣∣∣∣ ≥ ε

)
→ 0

as n → ∞, or equivalently,

P

(∣∣∣∣Sn

n
− 7

2

∣∣∣∣ < ε

)
→ 1

as n → ∞.

One of the most important results in probability theory is the Central Limit Theorem. This basically
states that the z-transform of the sample mean is asymptotically standard normal. The amazing thing
about the Central Limit Theorem is that no matter what the shape of the original distribution is,
the (sampling) distribution of the mean approaches a normal probability distribution. We state one
version of the Central Limit Theorem. In a restricted case, the proof uses the idea that the moment-
generating functions of Zn converge to the moment-generating function of the standard normal
random variable. The general proof is a little bit more involved. Because the proof of the Central
Limit Theorem is available in most probability books, we will not give the proof here.

CENTRAL LIMIT THEOREM (CLT)

Theorem 3.5.3 If X1, . . . , Xn is a random sample from an infinite population with mean μ, variance σ2,
and the moment-generating function MX(t), then the limiting distribution of Zn = (X − μ)/(σ/

√
n) as

n → ∞ is the standard normal probability distribution. That is,

lim
n→∞ P(Zn ≤ z) = 1√

2π

z∫
−∞

e−t2/2dt.

If Sn = ∑n
i=1 Xi, then we can rewrite Zn as

Zn = X − μ

σ/
√

n
= n

(
X − μ

)
nσ/

√
n

,

= Sn − nμ

σ
√

n
, since nX =

n∑
i=1

Xi.
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Then the CLT states that Zn = (Sn − nμ) /σ
√

n is approximately N(0, 1) for large n.

The Central Limit Theorem basically says that when we repeat an experiment a large number of times,
the average (almost always) follows a Gaussian distribution.

Example 3.5.5
X1, X2, . . . are iid random variables such that

Xi =
{

1, with probability p,

0, with probability 1 − p.

Show that Zn = (Sn − np)/
√

npq is approximately normal for large n, where Sn = ∑n
i=1Xi, and q = 1 − p.

Solution
We know that

E(X) = p; E(X2) = p; Var(X) = p − p2 = pq.

Hence, by the CLT, the limiting distribution of Zn = (Sn − np)/
√

npq as n → ∞ is the standard normal

probability distribution.

Example 3.5.6
A soft-drink vending machine is set so that the amount of drink dispensed is a random variable with a mean

of 8 ounces and a standard deviation of 0.4 ounces. What is the approximate probability that the average

of 36 randomly chosen fills exceed 8.1 ounces?

Solution
From the CLT, ((X − 8)/(0.4/

√
36)) ∼ N(0, 1). Hence, from the normal table,

P
{
X > 8.1

} = P

⎧⎨
⎩Z >

8.1 − 8.0
0.4√

36

⎫⎬
⎭

= p {Z > 1.5} = 0.0668.

Example 3.5.7
Numbers in decimal form are often approximated by the closest integers. Suppose n numbers X1, . . . , Xn

are approximated by their closest integers J1, J2, . . . , Jn. Let Ui = Xi − Ji. Assume that Ui are uniform on

(−0.5, 0.5) and that U ′
is are independent.

(a) Show that

∑n
i=1 Ui√
n/12

∼ N(0, 1) as n → ∞.

(b) Find P

{ −5√
300/12

≤
∑n

i=1 Ui√
300/12

≤ 5√
300/12

}
.
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(c) Find the value of a such that P
{−a ≤ ∑

Ui ≤ a
} = 0.95

(d) For n = 106, find a such that P
{
−a ≤ ∑106

i=1 Ui ≤ a
}

= 0.99.

Solution

(a) Because U′
is are uniform in (−0.5, 0, 5),

∑
Ui = 0, Var(Ui) = 1/12. Let, Sn = ∑n

i=1Xi, and

Kn = ∑n
i=1Ji. Then

P{|Sn − Kn| ≤ a} = P
{
−a ≤

∑
(Xi − Ji) ≤ a

}

= P
{
−a ≤

∑
Ui ≤ a

}
.

By the CLT,

∑n
i=1 Ui − 0√

n/12
∼ N(0, 1) as n → ∞.

(b) For n = 300; a = 5. Using the normal table,

P

{ −5√
300/12

≤
∑n

i=1 Ui√
300/12

≤ 5√
300/12

}
= 0.68.

(c) Now,

0.95 = P
{
−a ≤

∑
Ui ≤ a

}

= P

{ −a√
300/12

≤ Z ≤ a√
300/12

}
.

From the normal table, we get
a√

300/12
= 1.96. This implies, a = 9.8.

(d) We have

0.99 = P

⎧⎨
⎩−a ≤

106∑
i=1

Ui ≤ a

⎫⎬
⎭

= P

{
−a√

106/12
≤ Z ≤ a√

106/12

}
.

Now, using the normal table, we have a/
√

106/12 = 2.58. Hence, a = 745.

Example 3.5.8
A casino has a coin, suspected to be biased. Estimate p (probability of heads) such that they can be confident

that their estimate (say, p̂) is within 0.01 of p (unknown). What is the minimum number of times we need

to toss this coin?
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Solution
Set

Xj =
{

1, if H as j’th toss,

0, if T as j’th toss.

Suppose we decided to use p̂ =
∑

Xi

n , that is,

(
#Heads

n

)
.

We want P{|X − p| < 0.01} = 0.99.

Because Y = ∑n
i=1 Xi ∼ Bin(n, p), we have EY = np, Var(Y) = npq. By the CLT, (X − p)/

√
pq/n ∼

N(0, 1). Now,

0.99 = P

{
−0.01√

pq/n
<

X − p√
pq/n

<
0.01√
pq/n

}

= P

{ −0.01√
pq/n

< Z <
0.01√
pq/n

}
.

Using the normal table, (0.01/
√

pq/n) = 2.58, this implies that
√

n ≥ (2.58
√

pq/0.01).

Because the maximum of pq = 1/4, it is sufficient that

√
n = (2.58)(

√
(1/4))

0.01
= 129.

Hence, n = (129)2 = 16,641, and we should choose the sample size n ≥ 16,641.

The Central Limit Theorem is extremely important in statistics because it says that we can approx-
imate the distribution of certain statistics without much of the knowledge about the underlying
distribution of that statistics for a relatively “large” sample size. How large the n should be for
this normal approximation to work depends on the distribution of the original distribution.
A rule of thumb is that the sample size n must be at least 30. We deal with these issues in
Chapter 4.

EXERCISES 3.5

3.5.1. Let X be a random variable with probability density function

f (x) =
{

630x4(1 − x)4, 0 < x < 1,

0, otherwise.

(a) Obtain the lower bound given by Chebyshev’s inequality for P{0.2 < X < 0.8}.
(b) Compute the exact probability, P{0.2 < X < 0.8}.
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3.5.2. Suppose that the number of cars arriving in 1 hour at a busy intersection is a Poisson
probability distribution with λ = 100. Find, using Chebyshev’s inequality, a lower bound
for the probability that the number of cars arriving at the intersection in 1 hour is between
70 and 130.

3.5.3. Prove Chebyshev’s inequality for the discrete case.

3.5.4. Suppose that the number of cars arriving at a busy intersection in a large city has a Poisson
distribution with mean 120. Determine a lower bound for the probability that the number
of cars arriving in a given 20-minute period will be between 100 and 140 using Chebyshev’s
inequality.

3.5.5. Find the smallest value of n in a binomial distribution for which we can assert that

P

(∣∣∣∣Xn

n
− p

∣∣∣∣ < 0.1
)

≥ 0.90.

3.5.6. How large should the size of a random sample be so that we can be 90% certain that the
sample mean X will not deviate from the true mean by more than σ/2?

3.5.7. Let a fair coin be tossed n times and let Sn be the number of heads that turn up. Show that
the fraction of heads, Sn/n, will be near to 1/2 for large n. What can we conclude if the coin
is not fair?

3.5.8. Suppose that a failure of certain component follows the distribution f (x) = px(1 − p)x

for x = 0, 1, and zero, elsewhere. How many components must one test in order that the
sample mean X will lie within 0.4 of the true state of nature with probability at least as great
as 0.95?

3.5.9. Let X1, . . . , Xn be a sequence of mutually independent random variables, with probability
distribution

P(Xi = √
i) = 1

2
and P(Xi = −√

i) = 1
2

.

Show that this sequence of random variables does not satisfy the conditions of the law of
large numbers.

3.5.10. Give a proof of the Central Limit Theorem.

3.5.11. Let X1, . . . , Xn be independent discrete random variables identically distributed as

f (xi) =
⎧⎨
⎩

0.2, xi = 0, 1, 2, 3, 4,

0, otherwise.

Using CTL, find the approximate value of P(X100 > 2), where X100 = (1/100)
∑100

i=1 Xi.

3.5.12. Let X1, . . . , Xn be a sequence of independent Poisson-distributed random variables, with
parameter λ. Let Sn = ∑n

i=1Xi. Show that Zn = ((Sn − nλ)/
√

nλ) ∼ N(0, 1).



3.6 Chapter Summary 173

3.5.13. Let X1, . . . , Xn be a sequence of independent uniformly-distributed over [0,1) random
variables. Let Sn = ∑n

i=1Xi. Show that Zn = ((Sn − nλ)/
√

nλ) ∼ N(0, 1).

3.5.14. Suppose that 2500 customers subscribe to a telephone exchange. There are 80 trunk lines
available. Any one customer has the probability of 0.03 of needing a trunk line on a given
call. Consider the situation as 2500 trials with probability of “success” p = 0.03. What is
the approximate probability that the 2500 customers will “tie up” the 80 trunk lines at any
given time?

3.5.15. Suppose a group of people have an average IQ of 122 with standard deviation 2. Obtain a
bound on the probability that IQ values of this group will be between 104 and 120.

3.5.16. Let X be a random variable that represents the diastolic blood pressure (DBP) of the
population of 18- to 74-year-old men in the United States who are not taking any corrective
medication. Suppose that X has mean 80.7 mm Hg and standard deviation 9.2.
(a) Obtain a bound on the probability that the DBP of this population will assumes values

between 53.1 and 108.3 mm Hg.
(b) In addition, assume that the distribution of X is approximately normal. Using the

normal table, find P(53.1 ≤ X ≤ 108.3). Compare this with the empirical rule.

3.5.17. Color blindness appears in 2% of the people in a certain population. How large must a
random sample be in order to be 99% certain that a color-blind person is included in the
sample?

3.5.18. A shirt manufacturer knows that, on the average, 2% of his product will not meet quality
specifications. Find the greatest number of shirts constituting a lot that will have, with
probability 0.95, fewer than five defectives.

3.5.19. A random sample of size 100 is taken from a population with mean 1 and variance 0.04.
Find the probability that the sample mean is between 0.99 and 1.

3.5.20. The lifetime X (in hours) of a certain electrical component has the pdf f (x) =
(1/3)e−(1/3)x, x > 0. If a random sample of 36 is taken from these components, find
P(X < 2).

3.5.21. A drug manufacturer receives a shipment of 10,000 calibrated “eyedroppers” for administer-
ing the Sabin poliovirus vaccine. If the calibration mark is missing on 500 droppers, which
are scattered randomly throughout the shipment, what is the probability that, at most, two
defective droppers will be detected in a random sample of 125?

3.6 CHAPTER SUMMARY

In this chapter we looked at some special distribution functions that arise in practice. It should
be noted that we discussed only a few of the important probability distributions. There many
other discrete and continuous distributions that will be useful and appropriate in particular appli-
cations. Some of them are given in Appendix A3. A larger list of probability distributions can
be found at http://www.causascientia.org/math_stat/Dists/Compendium.pdf, among many other
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places. For more than one random variable, we learned the joint distributions. We also saw how
to find the density and cumulative distribution for the functions of a random variable. Limit theo-
rems are a crucial part of probability theory. We have introduced the Chebyshev’s inequality, the law
of large numbers, and the Central Limit Theorem for the random variables.

We now list some of the key definitions introduced in this chapter:

■ Bernoulli probability distribution
■ Binomial experiment
■ Poisson probability distribution
■ Probability distribution
■ Normal (or Gaussian) probability distribution
■ Standard normal random variable
■ Gamma probability distribution
■ Exponential probability distribution
■ Chi-square (χ2) distribution
■ Joint probability density function
■ Bivariate probability distributions
■ Marginal pdf
■ Conditional probability distribution
■ Independence of two r.v.s
■ Expected value of a function of bivariate r.v.s
■ Conditional expectation
■ Covariance
■ Correlation coefficient

In this chapter, we have also learned the following important concepts and procedures:

■ Mean, variance, and moment-generating function (mgf) of a binomial random variable
■ Mean, variance, and mgf of a Poisson random variable
■ Poisson approximation to the binomial probability distribution
■ Mean, variance, and mgf of a uniform random variable
■ Mean, variance, and mgf of a normal random variable
■ Mean, variance, and mgf of a gamma random variable
■ Mean, variance, and mgf of an exponential random variable
■ Mean, variance, and mgf of a chi-square random variable
■ Properties of expected value
■ Properties of the covariance and correlation coefficient
■ Procedure to find the cdf of a function of r.v. using the method of distribution functions
■ The pdf of Y = g(X), where g is differentiable and monotone increasing or decreasing
■ The pdf of Y = g(X), using the probability integral transformation
■ The transformation method to find the pdf of Y = g(X1, . . . , Xn)

■ Chebyshev’s theorem
■ Law of large numbers
■ Central Limit Theorem (CLT)
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3.7 COMPUTER EXAMPLES (OPTIONAL)

3.7.1 Minitab Examples
Minitab contains subroutines that can do pdf and cdf computations. For example, for binomial
random variables, the pdf and cdf can be respectively computed using the following comments.

MTB > pdf k;
SUBC > binomial n p.

and

MTB > cdf;
SUBC > binomial n p.

Practice: Try the following and see what you get.

MTB > pdf 3;
SUBC > binomial 5 0.40.

will give

K P(X = K)

3.00 0.2304

and

MTB > cdf;
SUBC > binomial 5 0.40.

will give

BINOMIAL WITH N = 5 P = 0.400000
K P(X LESS OR = K)
0 0.0778
1 0.3370
2 0.6826
3 0.9130
4 0.9898
5 1.0000
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Similarly, if we want to calculate the cdf for a normal probability distribution with mean k and
standard deviation s, use the following comments.

MTB > cdf x;
SUBC > normal k s.

will give P(X ≤ x).

Practice: Try the following.

MTB > cdf 4.20;
SUBC > normal 4 2.

We can use the invcdf command to find the inverse cdf. For a given probability p, P(X ≤ x) = F(x) =
p, we can find x for a given distribution. For example, for a normal probability distribution with
mean k and standard deviation s, use the following.

MTB > invcdf p;
SUBC > normal k s.

We can also use the pull-down menus to compute the probabilities. The following example illustrates
this for a binomial probability distribution.

Example 3.7.1
A manufacturer of a color printer claims that only 5% of their printers require repairs within the first year. If

out of a random sample of 18 of their printers, four required repairs within the first year, does this tend to

refute or support the manufacturer’s claim? Use Minitab.

Solution
Type the numbers 1 through 18 in C1. Then

Calc > Probability Distributions > Binomial. . . > choose Cumulative probability > in Number of
trials, enter 18 and in Probability of success, enter 0.05 > in Input column: type C1 > Click OK

We will get the following output.
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Cumulative Distribution Function

Binomial with n=18 and p=0.0500000

x P(X<=x)

1.00 0.7735

2.00 0.9419

3.00 0.9891

4.00 0.9985

5.00 0.9998

6.00 1.0000

7.00 1.0000

8.00 1.0000

9.00 1.0000

10.00 1.0000

11.00 1.0000

12.00 1.0000

13.00 1.0000

14.00 1.0000

15.00 1.0000

16.00 1.0000

17.00 1.0000

18.00 1.0000

The required probability is P(X≥4) = 1 − P(X ≤ 3) = 1 − 0.9891 = 0.0109.

3.7.2 SPSS Examples

Example 3.7.2
For the data of Example 3.7.1, using SPSS, find P(X ≤ 3).

Solution
Enter numbers 1 through 18 in C1. Then use the following.

Transform > Compute > type in the Target Variable: y > Use the scroll bar beside the Functions

box to find CDF.BINOM(q, n, p) > Highlight it and use the up button to load it into the Numeric
Expression: box. Set q to 3 (success, the x-value), n to 18 (total trials) and p to 0.05 (probability of

success) > OK

In the second column, we will get the y-values as 0.99. Hence, P(X ≤ 3) = 0.99.

We can use this procedure for many other distributions.
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3.7.3 SAS Examples
Sometimes, we can use computer calculations to find out the exact probability of a certain event in
lieu of approximations. For example, when n is large in a binomial experiment, we can use normal
approximation to calculate the probabilities. The following example shows how to calculate binomial
probabilities using SAS codes.

Example 3.7.3
Suppose that a certain drug to treat a disease has a success rate of p = 0.65. This drug is given to n = 500
patients with the disease.

(a) What is the probability that 335 or fewer show improvement?

(b) What is the probability that more than 320 show improvement?

(c) What is the probability that exactly 300 show improvement?

(d) What is the probability that the number of improvements lies in the interval (300,350)?

Solution
Let X = number of patients showing improvement. Then X is a binomial random variable with parameters

n = 500 and p = 0.65.

(a) First three lines in the following code are comment lines. In general, it is always helpful to include

the comment lines to explain about the program.

/*This program can be used to compute probability*/
/* that a Binomial variable with parameters p*/
/*and n is less than or equal to x*/
data binomial;

p=0.65;
n=500;
x=335;
y=probbnml(p,n,x);

cards;
proc print;
run;

The following is the SAS output from running the foregoing program.

Obs p n x y
1 0.65 500 335 0.83753

Here y = 0.83753 is the P (X ≤ 335).

(b) To calculate P(X > 320), we can use the following.

data binomial;
p=0.65;
n=500;
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x=320;
y=probbnml(p,n,x);
z=1–y;

cards;
proc print;
run;

The following is the SAS output from running the foregoing program, where the value of z is the probability

we are looking for.

Obs p n x y z
1 0.65 500 320 0.33516 0.66484

Hence, P(X > 320) = 0.66484.

(c) To find P(X = 300), we can use the following.

data binomial;
p=0.65;
n= 500;
x1=300;
y1=probbnml(p,n,x1);
x2=299;
y2=probbnml(p,n,x2);
z=y1−y2;

cards;
proc print;
run;

The following is the SAS output from running the foregoing program, where the value of z is the probability

we are looking for.

Obs p n x1 y1 x2 y2 z
1 0.65 500 300 0.011327 299 .008864418 .002462253

(d) To find P(300 < X < 350), use the following.

data binomial;
p=0.65;
n=500;
x1=300;
y1=probbnml(p,n,x1);
x2=349;
y2=probbnml(p,n,x2);
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z=y2−y1;
cards;
proc print;
run;

We will get the following output.

Obs p n x1 y1 x2 y2 z
1 0.65 500 300 0.011327 349 0.98982 0.97849

Hence, P(300 < X < 350) = 0.97849.

Similar procedures could be used to calculate probabilities for other distributions.

In order to test for normality of a given data set using a normal probability plot, we can use PROC
UNIVARIATE (see Chapter 1 for explanation) in the following manner. Normal plot is called qqplot
in SAS.

proc univariate data=K noprint; /*Specify the name of data set as K*/
qqplot standard;
run;
quit;

Note that this avoids printing of all the standard output due to the univariate command, and we get
only the QQ plot. If we need a straight line in the plot, we can modify the commands as follows.

proc univariate data=K noprint; /*Specify the name of data set as B*/
qqplot standard/ normal (mu=m, sigma=s);
run;
quit;

PROJECTS FOR CHAPTER 3

3A. Mixture Distribution
In statistical modeling, if the data are contaminated by outliers or if the samples are drawn from a
population formed by a mixture of two populations, one could use mixture distributions. Mixture
distributions are used frequently in medical applications, such as micro array analysis. Suppose a
random variable X has pdf f1(x) with probability p1 and pdf f2(x) with probability p2, where
p1 +p2 = 1. Then we say that the r.v. X has a mixture distribution. This can be thought of as observing
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a Bernoulli random variable Z that is equal to 1 with probability p1 and 2 with probability p2.
Thus,

X =
{

X1 ∼ f1(x), if Y = 1,

X2 ∼ f2(x), if Y = 2.

(a) Show that the pdf of X is given by f (x) = p1f1(x) + p2f2(x).
(b) If (μ1, σ2

1 ) and (μ2, σ2
2 ) are means and variances of f1(x) and f2(x), respectively, show

that

μ = E(X) = p1μ1 + p2μ2,

and

σ2 = Var(X) = p1σ2
1 + p2σ2

1 + p1μ2
1 + p2μ2

2 − (p1μ1 + p2μ2)2.

3B. Generating Samples from Exponential and Poisson Probability
Distribution

(a) Generate a sample from 1
θ
e−x/θ (θ is chosen). Let Y1, Y2, . . . , Yn be a sample from a U(0, 1)

distribution. Let F(x) = 1−e−x/θ (cdf of exponential). Then Y = F(x) is uniform. yj = 1−e−x/θ

implies xj = − θ ln(1 − yi) = − θ ln ui, where u1, u2, . . . ., un is a sample from U(0, 1). Then
X1, . . . , Xn is a sample from an exponential distribution with parameter θ.

(b) Suppose we want to generate a sample from a Poisson probability distribution with parameter
λ. X1, . . . , Xn is a sample from an exponential distribution with parameter 1/λ till

∑n
i=1 Xi

just exceeds 1. Then yn(n−1) is a sample values form a Poisson probability distribution with
parameter λ.

EXERCISE 3B

Let u1, u2, . . . , un be a sample from U(0, 1). Show that

(i) X = −2
n∑

i=1
ln(ui) ∼ χ2

2n,

(ii) X = −β
α∑

i=1
ln(ui) ∼ gamma(α, β), and

(iii) X =
α∑

i=1
ln(ui)

α+β∑
i=1

ln(ui)

∼ Beta(α, β).

3C. Coupon Collector’s Problem
Suppose there are n distinct colors of coupons. Each color of coupon is equally likely to occur. When
a complete set of coupons with each color represented is assembled, you win a prize. Let X = #
coupons for a complete set. Find (a) Distribution of X, (b) E(X), and (c) Var(X).
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3D. Recursive Calculation of Binomial and Poisson Probabilities
A simple way to calculate binomial probabilities is as follows: For a given n and p, evaluate b(0, n, p)

and then apply the recursive relationship

b(x + 1, n, p) = b(x, n, p)
p(n − x)

(1 − p)(x + 1)

to obtain other binomial probabilities.

(a) Derive this recursion formula.
(b) For n = 15, p = 0.4, using the recursive formula, compute all other probabilities starting from

x = 0.

The following recursive formulas are very useful in calculating successive Poisson probabilities:

f (x − 1, λ) = f (x, λ)
x

λ

and

f (x + 1, λ) = e−λλx+1

(x + 1)! = f (x, λ)
λ

x + 1
.

For example, if λ = 2.5, we know that f (0, 2.5) = e−2.5 = 0.08208. Using this, calculate (c) f (1, 2.5)

and f (2, 2.5).
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Objective: In this chapter we study the probability distributions of various sample statistics such as
the sample mean and the sample variance and illustrate their usefulness.
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Abraham de Moivre
(Source: http://en.wikipedia.org/wiki/File:Abraham_de_Moivre.jpg)

Abraham de Moivre (1667–1754) was a French mathematician known for his work on the normal
distribution and probability theory. He is famous for de Moivre’s formula, which links complex
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numbers and trigonometry. He fled France and went to England to escape the persecution of Protes-
tants. In England he wrote a book on probability theory, titled The Doctrine of Chances. This book
was very popular among gamblers. The normal distribution was first introduced by de Moivre in an
article in 1733 in the context of approximating certain binomial distributions for large n, and is now
called the theorem of de Moivre–Laplace.

4.1 INTRODUCTION

Sampling distributions play a very important role in statistical analysis and decision making. We
begin with studying the distribution of a statistic computed from a random sample. Based on
the probabilistic foundation of Chapters 2 and 3, the present study marks the beginning of our
learning of statistics beyond the descriptive phase. Because a sample is a set of random variables
X1, . . . , Xn, it follows that a sample statistic that is a function of the sample is also random. We
call the probability distribution of a sample statistic its sampling distribution. Sampling distributions
provide the link between probability theory and statistical inference. The ability to determine the
distribution of a statistic is a critical part in the construction and evaluation of statistical proce-
dures. It is important to observe that there is a difference between the distribution of population
from which the sample was taken and the distribution of the sample statistic. In general, a pop-
ulation has a distribution called a population distribution, which is usually unknown, whereas a
statistic has a sampling distribution, which is usually different from the population distribution.
The sampling distribution of a statistic provides a theoretical model of the relative frequency histogram
for the likely values of the statistic that one would observe through repeated sampling. Even though
some of the terms in this section have already been defined in Chapter 1, we now present these
definitions in terms of random variables. These abstractions are introduced to develop scientifi-
cally based methods of analyzing the data, and one should always keep in mind the underlying
population.

Definition 4.1.1 A sample is a set of observable random variables X1, . . . , Xn. The number n is called the
sample size.

In most of the inferential procedures that we study in this book, we are dealing with random samples.
We call the random variables X1, . . . , Xn identically distributed if every Xi has the same probability
distribution.

Definition 4.1.2 A random sample of size n from a population is a set of n independent and identically
distributed (iid) observable random variables X1, . . . , Xn.

Note that in a sample (not a random sample), Xis need not be independent or identically distributed.
For the results of this book to be applicable, it is important to ensure that the selection of a sample is at
least approximately random. The significance of random sampling is that the probability distribution
of a statistic can be easily derived. Random sampling helps us to control systematic basis. For a finite
population, one can serially number the elements of the population and then select a random sample
with the help of a table of random digits. One of the simplest ways to select a random sample of
finite size is to use a table of random numbers. When the population size is very large, such a method
can become very taxing and sometimes practically impossible. However, there are excellent computer
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programs for generating random samples from large populations, and these programs can be used.
Now we define a statistic.

Definition 4.1.3 A function T of observable random variables X1, . . . , Xn that does not depend on any
unknown parameters is called a statistic.

The sample mean X = (1/n)
∑n

i=1 Xi is a function of X1, . . . , Xn. The sample median and sample
variance S2 are also examples of statistics. It is important to observe that even with random sampling,
there is sampling variability or error. That is, if we select different samples from the same popu-
lation, a statistic will take different values in different samples. Thus, a sample statistic is a random
variable, and hence it has a probability distribution. In order for us to study the behavior of the
phenomenon a sample statistic represents, we must identify its probability distribution.

Definition 4.1.4 The probability distribution of a sample statistic is called the sampling distribution.

We can illustrate these definitions with the following example with a finite population and a finite
sample size. In this case, we take all possible samples of size n from a population of size N.

Example 4.1.1
Let the population consist of the numbers {1, 2, 3, 4, 5}. Consider all possible samples consisting of three

numbers randomly chosen without replacement from this population. Obtain the distribution of the sample

mean.

Solution
Disregarding the order, it is clear that there are

(
5
3

)
= 10 equally likely possible samples of size 3. They are

(1,2,3), (1,2,4), (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,4), (2,3,5), (2,4,5), and (3,4,5). Calculating the mean, X, for

each of the samples, we will get the sampling distribution of X as

x
2
1

7
3

8
3

3
1

10
3

11
3

4
1

p (x)
1
10

1
10

2
10

2
10

2
10

1
10

1
10

For example, in the table, P
(
X = 8/3

) = 2/10 because the two samples (1,2,5) and (1,3,4) both give an

x = 8/3, which is an estimate of the population mean, μ.

In general, sampling distributions are theoretical distributions that consist of possibly an infinite number of

sample statistics taken from an infinite number of randomly selected samples of a fixed sample size. For

example, if a sample of size n = 30 were taken from a large population an infinite number of times, the

combined means taken from all the samples would make up the sampling distribution of the mean. Every

sample statistic has a sampling distribution. The next result states that if one selects a random sample from

a population with mean μ and variance σ2, then regardless of the form of the population distribution, one

can obtain the mean and standard deviation of the statistic X in terms of the mean and standard deviation

of the population. This is explained in the following result.
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Theorem 4.1.1 Let X1, . . . , Xn be a random sample of size n from a population with mean μ and variance
σ2. Then E(X) = μ and Var(X) = σ2/n.

Proof. The mean and variance of X is given by,

E
(
X
) = E

(
1
n

n∑
i=1

Xi

)
= 1

n

n∑
i=1

E(Xi)

= 1
n

n∑
i=1

μ = 1
n

nμ = μ.

and

Var
(
X
) = Var

(
1
n

n∑
i=1

Xi

)

= 1

n2

n∑
i=1

Var(Xi) (because X′
i s are independent and

Var(aXi) = a2Var (Xi))

= 1

n2 nσ2 = σ2

n
.

We denote E
(
X
) = μX and Var

(
X
) = σ2

X
. Note that from the previous theorem, μX = μ and

σX = σ/
√

n. Here, σX is called the standard error of the mean. It is important to notice that the
variance of each of the random variables X1, X2, . . . , Xn is σ2, whereas the variance of the sample
mean X is σ2/n, which is smaller than the population variance σ2 for n ≥ 2.

The implication of Theorem 4.1.1 is that the sample means become more and more reliable as an
estimate of μ as the sample size is increased, as we would expect. From Chebyshev’s inequality,

P
(∣∣X − μ

X

∣∣ < kσ
X

) ≥ 1 − 1

k2 .

Let ε = (kσ/
√

n). Then k = (ε
√

n)/σ. Since μX = μ, the above inequality can be written as

P
(∣∣X − μ

∣∣ < ε
) ≥ 1 − σ2

nε2 .

Thus, for any ε > 0, the probability that the difference between X and μ less than ε can be made
arbitrarily close to 1 by choosing the sample size n is sufficiently large. We illustrate this result in the
following example.

Example 4.1.2
A particular brand of drink has an average of 12 ounces per can. As a result of randomness, there will be

small variations in how much liquid each bottle really contains. It has been observed that the amount of

liquid in these bottles is normally distributed with σ = 0.8 ounce. A sample of 10 bottles of this brand of
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soda is randomly selected from a large lot of bottles, and the amount of liquid, in ounces, is measured in

each. Find the probability that the sample mean will be within 0.5 ounce of 12 ounces.

Solution
Let X1, X2, . . . , X10 denote the ounces of liquid measured for each of the bottles. We know that Xis are

normally distributed with mean μ = 12 and variance σ2 = 0.64. From Theorem 4.1.1, X possesses a

normal distribution (actually, for the normality part, we use Corollary 4.2.2) with a mean 12 and variance

σ2/n = 0.64/10 = 0.064. We find

P
(∣∣X −12| ≤ 0.5) = P

(−0.5 ≤ (
X − 12

) ≤ 0.5
)

= P

(
− 0.5

σ/
√

n
≤ X − 12

σ/
√

n
≤ 0.5

σ/
√

n

)

= P

(
− 0.5

0.253
≤Z≤ 0.5

0.253

)

= P(−1.97 ≤Z≤ 1.97)

= 0.9512.
(
using standard normal table

)
.

Hence, the chance is about 0.95% that the mean amount of drink in any 10 bottles randomly chosen will be

between 11.5 to 12.5 ounces.

4.1.1 Finite Population
Let {c1, c2, . . . , cN} be a finite population. Then the population mean μ = (1/N)

∑N
i=1 ci and the

population variance σ2 = (1/N)
∑N

i=1 (ci − μ)2. The following theorem for the sample mean and
variance is stated without proof.

Theorem 4.1.2 If X1, . . . , Xn is a sample of size n (chosen without replacement) from a population
{c1, c2, . . . , cN}, then

E
(
X
) = μ

Var
(
X
) = σ2

n

(
N − n

N − 1

)
.

We remark here that the sample in the theorem is not a random sample and Xis are not
iid random variables. The factor (N − n)/(N − 1) in the foregoing theorem is often called the
finite population correction factor. It is close to 1 unless the sample amounts to a significant
portion of the population. Note that the sampling without replacement causes dependence
among the Xis. However, if the sample size n is small relative to the population size N,
the population correction factor is approximately 1. Hence, we will not use the finite pop-
ulation correlation factor in the derivation of sampling distribution, unless it is absolutely
necessary.
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Example 4.1.3
Obtain the mean and variance of X in Example 4.1.1.

Solution
First note that for the population in Example 4.1.1, the population mean is μ = (1/N)

∑N
i=1 ci = 3 and the

population variance is σ2 = (1/N)
∑N

i=1 (ci − μ)2 = 2. Applying the probability distribution of X given in

Example 4.3.1, we obtain

E
(
X
) = 2

(
1
10

)
+ 7

3

(
1
10

)
+ 8

3

(
2
10

)
+ 3

(
2
10

)
+ 10

3

(
2
10

)

+ 11
3

(
1
10

)
+ 4

(
1
10

)

= 3,

and

Var
(
X
) = E

(
X

2
)

− (
EX

)2 = 22
(

1
10

)
+
(

7
3

)2 ( 1
10

)
+
(

8
3

)2 ( 2
10

)

+ 32
(

2
10

)
+
(

10
3

)2 ( 2
10

)
+
(

11
3

)2 ( 1
10

)
+ 42

(
1
10

)
− 32

= 2
3

× 1
2

= 0.3333.

This is the same as (σ2/n). [(N − n)/(N − 1)]. In this case we observe that the variance of X is precisely

one sixth of the original variance.

Example 4.1.4
Let X1, . . . , Xn be a random sample from a population with mean μ and variance σ2. Consider the sample

variance

S2 = 1
n − 1

n∑
i=1

(
Xi − X

)2
.

Show that E(S2) = σ2.

Solution
It can be shown that (see Exercise 1.5.8)

1
n − 1

n∑
i=1

(
Xi − X

)2 =

n∑
i=1

X2
i − nX

2

n − 1
.
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Hence,

E
(
S2
)

= E

⎛
⎜⎜⎜⎝

n∑
i=1

X2
i − nX

2

n − 1

⎞
⎟⎟⎟⎠ = 1

n − 1

n∑
i=1

E
(
X2

i

)
− n

n − 1
E
(
X

2
)

.

Using the fact that E
(
X2) = Var (X) + μ2 and Theorem 4.1.1, we have

E
(
S2
)

= 1
n − 1

n
(
σ2 + μ2

)
− n

n − 1

(
σ2

n
+ μ2

)

=
(

n

n − 1
− 1

n − 1

)
σ2 +

(
n

n − 1
− n

n − 1

)
μ2

= σ2.

This shows that the expected value of the sample variance is the same as the variance of the population

under consideration.

EXERCISES 4.1

4.1.1. Let the population be given by the numbers {−2, −1, 0, 1, 2}. Take all random samples of
size 3.
(a) Without replacement, obtain the following in each case.

(i) The sampling distribution of the sample mean.
(ii) The sampling distribution of the sample median.

(iii) The sampling distribution of the sample standard deviation.
(iv) The mean and variance of the sample mean.

(b) How many samples of size 3 can we get, if we sample with replacement?

4.1.2. (a) How many different samples of size n = 2 can be chosen from a finite population of
size 12 if the sampling is without replacement?

(b) What is the probability of each sample in part (a), if each sample of size 2 is equally
likely?

(c) Find the value of the finite population correction factor.

4.1.3. Let the population be given by {1, 2, 3}. Let p(x) = 1/3 for x = 1, 2, 3. Take samples of size
3 with replacement.
(a) Calculate μ and σ2.
(b) Obtain the sampling distribution of the sample mean.
(c) Obtain the mean and variance of the sample mean.

4.1.4. Find the value of the finite population correlation factor for
(a) n = 8 and N = 60.
(b) n = 8 and N = 1000.
(c) n = 15 and N = 60.
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4.1.5. For a random sample X1, . . . , Xn, let (S′)2 = (1/n)
∑n

i=1

(
Xi − X

)2
. Find E[(S′)2]. Compare

this with E
(
S2
)
.

4.1.6. For a random sample X1, . . . , Xn with mean μ and variance σ2, let Tn =
n∑

i=1
Xi, the sample

total. Show that E (Tn) = nμ and Var (Tn) = nσ2.

4.1.7. A particular brand of sugar is sold in 5-lb packages. The weight of sugar in these packages
can be assumed to be normally distributed with mean μ = 5 lb and standard deviation
σ = 2 lb. What is the probability that the mean weight of sugar in 15 randomly selected
packages will be within 0.2 lb of 5 lb?

4.1.8. A random sample of size 150 is taken from an infinite population having the mean μ = 15
and standard deviation σ = 2.5. What is the probability that X will be between 10.5 and
18.5?

4.1.9. The distribution of heights of all students in a large university has a normal distribution
with a mean of 66 inches and a standard deviation of 2 inches. What is the probability that
the mean height of 26 randomly selected students from this university will be more than
70 inches?

4.1.10. An image-encoding algorithm, when used to encode images of a certain size, uses a mean
of 110 milliseconds with a standard deviation of 15 milliseconds. What is the probability
that the mean time (in milliseconds) for encoding 50 randomly selected images of this size
will be between 90 milliseconds and 135 milliseconds? What assumptions do we need to
make?

4.1.11. In order to evaluate a new release of a database management system, a database admin-
istrator runs a benchmark program several times and measures the time to completion in
seconds. Assuming that the distribution of times is normal with mean 95 seconds and with
standard deviation of 10 seconds, what proportion of measurement times will fall below 85
seconds?

4.1.12. A population of disk drives manufactured by a certain company runs with mean seek time of
10 milliseconds with standard deviation of 0.1 milliseconds. What proportion of samples of
size 250 would you expect to result in a mean less than 9 milliseconds? What assumptions
do we need to make?

4.1.13. Suppose that the national norm of a science test for 12th graders on a particular year has a
mean of 215 and a standard deviation of 35.
(a) A random sample of 55 12th graders is selected. What is the probability that this group

will average more than 230?
(b) A random sample of 200 12th graders is selected. What is the probability that this group

will average over 230?
(c) A random sample of 35 12th graders is selected. What is the probability that this group

will average over 230?
(d) How does the sample size influence the probability?
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4.1.14. Scores on the Wechsler Adult Intelligence Scale for the 20 to 34 age group are approximately
normally distributed with mean equal to 110 and standard deviation equal to 25. If we select
100 people at random, what is the probability that this group will have an average score of
125 or above?

4.1.15. It is known that a healthy human body has an average temperature of 98.6◦F, with a standard
deviation of 0.95◦F. Sixty healthy humans are selected at random. What is the probability
that their temperatures average at least 99.1◦F?

4.2 SAMPLING DISTRIBUTIONS ASSOCIATED WITH NORMAL POPULATIONS

The sampling distribution of a statistic will depend upon the population distribution from which
the samples are taken. In this section we discuss the sampling distributions of some statistics that
are based on a random sample drawn from a normal distribution. These statistics are used in many
statistical procedures that are very important in solving real-world problems. The following result
establishes the distribution of a linear combination of independent normal random variables.

Theorem 4.2.1 Let X1, . . . , Xn be independent random variables with the distribution of Xi being normal

with mean μi and variance σ2
i . Let a1, a2, . . . , an be real constants. Then the distribution of Y = ∑n

i=1 aiXi

is normal with mean μY = ∑n
i=1 aiμi and variance σ2

Y = ∑n
i=1 a2

i σ
2
i .

Proof. The moment-generating function of Y is given by

MY(t) = Ee(
∑n

i=1 aiXi)t

=
∏
i

Ee(aiXi)t [by independence ofX′
is]

=
∏
i

Ee(ait)Xi

=
∏

i
MXi

(ait) [using the definition of mgf)

=
∏

i
e(aiμit+(1/2)a2

i σ2
i t2) [using mgf of a normal]

= e[(
∑

i aiμi)t+(1/2)
(∑

i a
2
i σ2

i

)
t2]

which is the mgf of a normal random variable with mean
∑

i aiμi and variance
∑

i a
2
i σ

2
i .

In Theorem 4.2.1 let ai = 1/n, μi = μ, and σ2
1 = σ2, we obtain the following result, which provides

the distribution of the sample mean.

Corollary 4.2.2 Let X1, . . . , Xn be a random sample of size n from a normal population with mean μ and
variance σ2. Then

X = (1/n)
∑n

i=1
Xi

is normally distributed with mean μX = μ and variance σ2
X

= σ2/n.
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Recall that we have used the notation X ∼ N(μ, σ2) to mean that the random variable X is normally
distributed with mean μ and variance σ2. From Corollary 4.2.2, X ∼ N(μ, σ2/n) and hence by the
z-transformation we obtain the standard normal random variable, Z = (

X − μ
)
/
(
σ/

√
n
) ∼ N(0, 1).

Example 4.2.1
A company that manufactures cars claims that the gas mileage for its new line of hybrid cars, on the average,

is 60 miles per gallon with a standard deviation of 4 miles per gallon. A random sample of 16 cars yielded a

mean of 57 miles per gallon. If the company’s claim is correct, what is the probability that the sample mean

is less than or equal to 57 miles per gallon? Comment on the company’s claim about the mean gas mileage

per gallon of its cars. What assumptions did you make?

Solution
Let X represent the gas mileage for the new car (in miles per gallon). If the company’s claim is true, then

from Corollary 4.2.2, X is normally distributed with mean μ = 60 and variance σ2/n = 16/16 = 1. Hence,

P
(
X ≤ 57

) = P

(
X − 60

1
≤ 57 − 60

1

)

= P(Z ≤ −3) ≈ 1 − 0.999

= 0.001.

Therefore, if the company’s claim is correct, it is very unlikely that the mean value of the random sample of

16 cars will be 57 miles per gallon. Because the mean is indeed 57 miles per gallon, we conclude that the

company’s claim is very likely not true. Here we have assumed that the sample of 16 measurements comes

from a normal population, so that we could apply the results of Corollary 4.2.2.

Now we introduce some distributions that can be derived from a normal distribution. These
distributions play a very important role in inferential problems.

4.2.1 Chi-Square Distribution
A chi-square distribution is used in many inferential problems, for example, in inferential problems
dealing with the variance. Recall that the chi-square distribution is a special case of a gamma distri-
bution with α = n/2 and β = 2. If n is a positive integer, then the parameter n is called the degrees of
freedom. However, if n is not an integer, but β = 2, we still refer to this distribution as a chi-square.
The mgf of a χ2− random variable is M(t) = (1 − 2t)−n/2. The mean and variance of a chi-square
distribution are μ = n and σ2 = 2n, respectively. That is, the mean of a χ2(n) random variable is
equal to its degree of freedom and the variance is twice the degree of freedom. We now give some
useful results for χ2− random variables.

Theorem 4.2.3 Let X1, . . . , Xk be independent χ2− random variables with n1, . . . , nk degrees of freedom,
respectively. Then the sum V = ∑k

i=1 Xi is chi-square distributed with n1 + n2 + · · · + nk degrees of
freedom.
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Proof. The mgf of V is

MV (t) =
k∏

i=1

(1 − 2t)−ni/2 = (1 − 2t)

−
(

k∑
i=1

ni

)
/2

.

This implies that V ∼ χ2
(∑k

i=1 ni

)
.

Our next result states that the difference of two chi-square random variables is a chi-square random
variable, given by the following theorem. The proof is left as an exercise.

Theorem 4.2.4 Let X1 and X2 be independent random variables. Suppose that X1 is χ2 with n1 degrees of
freedom, whereas Y = X1 + X2 is chi-square with n degrees of freedom, where n > n1. Then X2 = Y − X1

is a chi-square random variable with n − n1 degrees of freedom.

The following result shows that we can generate a chi-square random variable from a gamma random
variable.

Theorem 4.2.5 If a random variable X has a gamma distribution with parameters α and β, then

Y = 2X

β
∼χ2(2α).

Proof. Recall that the mgf of the gamma random variable X is (1 − βt)−α.

MY(t) = M 2X
β

(t) = E

(
e

2X
β

t
)

= E

(
e
X( 2

β
t)
)

= MX

(
2
β

t

)

= (1 − 2t)−α = (1 − 2t)− 2α
2 .

Hence, Y ∼ χ2(2α).

The following result states that by squaring a standard normal random variable, we can generate a
chi-square random variable, with one degree of freedom.

Theorem 4.2.6 If X is a standard normal random variable, then X2 is chi-square random variable with 1 d.f.

Proof. Because X ∼ N(0, 1) the moment-generating function of X2 is

MX2(t) =
∞∫

−∞
etx2 1√

2π
e−x2/2dx = (1 − 2t)−1/2.

This implies that X2 ∼ χ2(1). Figure 4.1 gives the probability densities of the random variables X

and X2.
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4

Densities of Standard normal r.v. and its square

3.5

3

2.5

2

1.5

1

0.5

0
23 22 21 0 1 2 3

pdf of X 2

pdf of X

■ FIGURE 4.1 pdf of standard normal r.v. and the pdf of its square.

The following result is a direct consequence of Theorems 4.2.3 and 4.2.6. This result illustrates how to
obtain a random sample from chi-square distribution if we have a random sample of n measurements
from a normal population.

Theorem 4.2.7 Let the random sample X1, . . . , Xn be from a N(μ, σ2) distributed. Then Zi = (Xi − μ)/

σ, i = 1, . . . , n are independent standard normal random variables and

n∑
i=1

Z2
i =

n∑
i=1

(
Xi − μ

σ

)2

has a χ2-distribution with n degrees of freedom. In particular, if X1, . . . , Xn are independent standard normal
random variables, then Y2 = ∑n

i=1 X2
i is chi-square distributed with n degrees of freedom.

If X ∼ χ2 (n), then from the chi-square table, we can compute the values of χ2
α (n) such that

P
(
X > χ2

α (n)
)

= α,

as shown by Figure 4.2.

For example, if X ∼ χ2 (15), to find χ2
0.95 (15) look in the chi-square table with the row labeled 15 d.f.

and the column headed χ2
0.950 and obtain the value as 7.26094. Thus, with 15 degrees of freedom,

P (X > 7.26094) = 0.95. Also, if X is a chi-square random variable with 11 degrees of freedom, from
the chi-square table we have χ2

0.05 (11) = 19.675. Therefore, P (X > 19.675) = 0.05.
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�

X 2(n )

■ FIGURE 4.2 Chi-square probability density.

Example 4.2.2
Let the random variables X1, X2, . . . , X5 be from an N (5, 1) distribution. Find a number a such that

P

⎛
⎝ 5∑

i=1

(Xi − 5)2 ≤ a

⎞
⎠ = 0.90.

Solution

By Theorem 4.2.7,
5∑

i=1
Z2

i =
5∑

i=1

(
Xi−5

1

)2 =
5∑

i=1
(Xi − 5)2 has a chi-square distribution with 5 degrees of

freedom. Because the upper tail area is 0.10, looking at the chi-square table with 5 d.f. and the column

corresponding to χ2
0.10, we obtain a = 9.23635. Thus,

P

⎛
⎝ 5∑

i=1

(Xi − 5)2 ≤ 9.23635

⎞
⎠ = 0.90.

Example 4.2.3
Suppose that X is χ2 − random variable with 20 degrees of freedom. Use the chi-square table to obtain

the following:

(a) Find x0 such that P (X > x0) = 0.95.

(b) Find P (X ≤ 12.443).

Solution
(a) For 20 degrees of freedom, using the chi-square table, we have

P (X > 10.851) = 0.95.

Hence, x0 = 10.851.
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(b) From the chi-square table,

P (X ≤ 12.443) = 0.10.

The following result gives the probability distribution for a function of the sample variance S2.

Theorem 4.2.8 If X1, . . . , Xn is a random sample from a normal population with the mean μ and variance
σ2, then

(a) the random variable

(b)

n∑
i=1

(
Xi − X

)2
σ2 = (n − 1) S2

σ2 .

has a chi-square distribution with (n − 1) degrees of freedom.

(c) X and S2 are independent.

Proof. We will only prove part (a). For part (b), we will give some comments on the proof.

(a) We know from Theorem 4.2.7 that
(
1/σ2

)∑n
i=1 (Xi − μ)2 has a chi-square distribution with n

degrees of freedom. Thus,

1

σ2

n∑
i=1

(Xi − μ)2 = 1

σ2

n∑
i=1

(
Xi − X + X − μ

)2

= 1

σ2

[
n∑

i=1

(
Xi − X

)2 +
n∑

i=1

(
X − μ

)2]

(
Since 2

n∑
i=1

(
Xi − X

) (
X − μ

) = 0

)

= (n − 1) S2

σ2 +
(

X − μ

σ/
√

n

)2

.

The left-hand side of this equation has a chi-square distribution with n degrees of freedom.
Also, since

(
X − μ

)
/
(
σ/

√
n
) ∼N (0, 1) by Theorem 4.2.6 we have

[(
X − μ

)
/
(
σ/

√
n
)]2 ∼ χ2 (1).

Now from Theorem 4.2.4, (n − 1) S2/σ2 ∼ χ2 (n − 1).

(b) We will accept the result of part (b) without proof here. A rigorous proof depends on
geometric properties of the multivariate normal distribution, which is beyond the scope
of this book. A proof based on moment-generating functions is relatively straightforward,
where essentially we can first show that the random variable X and the vector of ran-
dom variables

(
X1 − X, . . . , Xn − X

)
are independent. Because S2 is a function of the vector(

X1 − X, . . . , Xn − X
)
, it is then independent of X.
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Example 4.2.4
Let X1, X2, . . . , X10 be a random sample from a normal distribution with σ2 = 0.8. Find two positive

numbers a and b such that the sample variance S2 satisfies

P
(
a ≤ S2 ≤ b

)
= 0.90.

Solution
Because

(n−1)S2

σ2 ∼ χ2 (n − 1), we have

P
(
a ≤ S2 ≤ b

)
= P

(
(n − 1) a

σ2 ≤ (n − 1) S2

σ2 ≤ (n − 1) b

σ2

)
.

The desired values can be found by setting the upper tail area and lower tail area each equal to 0.05. Using

the chi-square table with n − 1 = 9 degrees of freedom, we have

(n − 1) b

σ2 = 9b

0.8
= 16.919 = χ2

0.05,9,

which implies b = ((16.919) × (0.8) /9) = 1.50. Similarly,

(n − 1) a

σ2 = 9a

0.8
= 3.325 = χ2

0.95,9.

So we have a = ((3.325) × (0.8) /9) = 0.295.

Hence,

P
(

0.295 ≤ S2 ≤ 1.50
)

= 0.90.

It is important to note that this is not the only interval that would satisfy

P
(
a ≤ S2 ≤ b

)
= 0.90

but it is a convenient one.

Example 4.2.5
A fruit-drink company wants to know the variation, as measured by the standard deviation, of the amount

of juice in 16-ounce cans. From past experience, it is known that σ2 = 2. The company statistician decides

to take a sample of 25 cans from the production line and compute the sample variance. Assuming that the

sample values may be viewed as a random sample from a normal population, find a value of b such that

P
(
S2 > b

) = 0.05.
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Solution
To find the necessary probability, use the fact that (n − 1) S2/σ2 ∼ χ2 (n − 1), with n = 25,

0.05 = P(S2 > b) = P

(
24S2

2
>

24b

2

)

= P(χ2 > c).

From the chi-square table we obtain, c = 36.4151. Hence, b = 2
24 c = 2

24 (36.4151) = 3.03 and

P
(
S2 > 3.03

)
= 0.05.

SUMMARY OF CHI-SQUARE DISTRIBUTION

Let X1, . . . , Xn be iid N
(
μ, σ2) random variables. Then

1. X has N
(
μ, σ2/n

)
distribution,

2. (n − 1)S2/σ2 has a chi-square distribution with (n − 1) degrees of freedom, and

3. X and S2 are independent.

4. A χ2− random variable has a mean equal to its degrees of freedom and a variance equal to twice its
degrees of freedom.

4.2.2 Student t-Distribution
Let the random variables X1, . . . , Xn follow a normal distribution with mean μ and variance σ2.
If σ is known, then we know that

√
n
((

X − μ
)
/σ
)

is N (0, 1). However, if σ is not known (as is
usually the case), then it is routinely replaced by the sample standard deviation s. If the sample
size is large, one could suppose that s ≈ σ and apply the Central Limit Theorem and obtain that√

n
((

X − μ
)
/S
)

is approximately an N (0, 1). However, if the random sample is small, then the dis-
tribution of

√
n
((

X − μ
)
/S
)

is given by the so-called Student t-distribution (or simply t-distribution).
This was originally developed by W. S. Gosset in 1908. Because his employers, the Guinness brewery,
would not permit him to publish this important work in his own name, he used the pseudonym
“Student.” Thus, the distribution is known as the Student t-distribution.

Definition 4.2.2 If Y and Z are independent random variables, Y has a chi-square distribution with n

degrees of freedom, and Z ∼ N (0, 1), then

T = Z√
Y/n

is said to have a (Student) t-distribution with n degrees of freedom. We denote this by T ∼ Tn.

The probability density of the random variable T with n degrees of freedom is given by

f (t) =
�
(

n+1
2

)
√

πn�
(
n
2
)
(

1 + t2

n

)− n+1
2

, −∞ < t < ∞.
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■ FIGURE 4.3 The Student t-distribution.

Figure 4.3 illustrates the behavior of the t-distributions for n = 2, 10, 20, and 30. It is clear from
Figure 4.3 that as n becomes larger and larger, it is almost impossible to distinguish the graphs. It can
be shown that the t-distribution tends to a standard normal distribution as the degrees of freedom
(equivalently, the sample size n) tend to infinity. In fact, the standard normal distribution provides a good
approximation to the t-distribution for sample sizes of 30 or more. We will use this approximation in the
statistical inference problems for n ≥ 30.

The t-density is symmetric about zero, and then we have E (T ) = 0. If n > 2, it can be shown that
Var (T ) = n/ (n − 2). The value of tα,n is such that P

(
t > tα,n

) = α (the shaded area in Figure 4.4) is
obtained from the t-table. For example, if a random variable X has a t-distribution with 9 degrees of
freedom and α = 0.01, then t0.01,9 = 2.821.

If we have a random sample from a normal population, the following result involving a t-distribution
is useful in applications.

Theorem 4.2.9 If X and S2 are the mean and the variance of a random sample of size n from a normal
population with the mean μ and variance σ2, then

T = X − μ

S/
√

n

has a t-distribution with (n−1) degrees of freedom.

Proof. By Corollary 4.2.2,

Z = X − μ

σ/
√

n
∼ N (0, 1) .



200 CHAPTER 4 Sampling Distributions

0.4

f(t )

0.35

0.3

0.25

0.2

0.15

0.1

0.05

24 23 22 21 0 1 2 3 4
t

■ FIGURE 4.4 Probability of t-distribution.

By Theorem 4.2.8, we have

Y = (n − 1) S2

σ2 = 1

σ2

n∑
i=1

(
Xi − X

)2 ∼ χ2 (n − 1) .

Hence,

T =
X−μ(
σ/

√
n
)√

(n−1)S2

σ2(n−1)

∼ Z√
χ2(n−1)

n−1

.

Also, X and S2 are independent. Thus, Y and Z are independent, and by Definition 4.2.2, T follows
a t-distribution with (n − 1) degrees of freedom.

How can we distinguish between given degrees of freedom and the degrees of freedom from a sample?
For the t-distribution, if n is given as the degrees of freedom, we will just use n. However, if a random
sample of size n is given, then the corresponding degrees of freedom will be (n − 1), as given in
Theorem 4.2.9.

The assumption that the sample comes from a normal population is not that onerous. In practice, it
is necessary to check that the sampled population is approximately bell shaped and not too much
skewed. Construction of the normal-scores plot or histogram is a way to check for approximate
normality. See Project 4C.
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Example 4.2.6
A manufacturer of fuses claims that with 20% overload, the fuses will blow in less than 10 minutes on the

average. To test this claim, a random sample of 20 of these fuses was subjected to a 20% overload, and the

times it took them to blow had the mean of 10.4 minutes and a sample standard deviation of 1.6 minutes.

It can be assumed that the data constitute a random sample from a normal population. Do they tend to

support or refute the manufacturer’s claim?

Solution
Given y = 10.4, s = 1.6, n = 20, and μ = 10. Hence

t = y − μ

s/
√

n
= 10.4 − 10

1.6/
√

20
= 1.118.

The degree of freedom is n − 1 = 19. From the t-table, the probability that t exceeds 1.328 is 0.10, and

because the observed value of t = 1.118 is less than t0.10(19) = 1.328 and 0.10 is a pretty large probability,

we conclude that the data tend to agree with the manufacturer’s claim.

We will study the problems of the foregoing type in Chapter 7, where we will be learning about
hypothesis testing. Prior to Student’s work on the t-distribution, a very large number of observations
were necessary for design and analysis of experiments. Today, the use of the t-distribution often
makes it possible to draw reliable conclusions from samples as small as 15 to 30 experimental units,
provided that the samples are representative of their populations and that normality could reasonably
be assumed or justified for the population.

Example 4.2.7
The human gestation period—the period of time between conception and labor—is approximately 40

weeks (280 days), measured from the first day of the mother’s last menstrual period. For a newborn full-

term infant, the length appropriate for gestational age is assumed to be normally distributed with μ = 50
centimeters and σ = 1.25 centimeters. Compute the probability that a random sample of 20 infants born

at full term results in a sample mean greater than 52.5 centimeters.

Solution
Let X be length (measured in centimeters) of a newborn full-term infant. Then X ∼ N (50, 1.56/20). Hence

P
(
X > 52.5

) = P

(
t >

52.5 − 50

1.25/
√

20
= 8.94

)
≈ 0.

Thus, the probability of such an occurrence is negligible.

In the previous example, it should be noted that P
(
X > 52.5

) ≈ 0 does not imply that the probability
of observing a newborn full-term infant with length greater than 52.5 centimeters is zero. In fact, with
19 degrees of freedom, P (X > 52.5) = P (t > 2) ≈ 0.025.
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4.2.3 F-Distribution
The F -distribution was developed by Fisher to study the behavior of two variances from random sam-
ples taken from two independent normal populations. In applied problems we may be interested
in knowing whether the population variances are equal or not, based on the response of the ran-
dom samples. Knowing the answer to such a question is also important in selecting the appropriate
statistical methods to study their true means.

Definition 4.2.3 Let U and V be chi-square random variables with n1 and n2 degrees of freedom, respectively.
Then if U and V are independent,

F = U/n1

V/n2

is said to have an F-distribution with n1 numerator degrees of freedom and n2 denominator degrees of
freedom. We denote this by F ∼ F (n1, n2).

The pdf for a random variable X ∼ F (n1, n2) is given by

f (x) =
⎧⎨
⎩

�((n1 + n2)/2)
�(n1/2)�(n2/2)

(
n1
n2

)n1/2
x

n1
2 −1

(
1 + n1

n2
x
)−(n1+n2)/2

, x > 0

0, elsewhere.

A graph of f (x) for various values of n is given in Figure 4.5.
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■ FIGURE 4.5 pdfs of F -distribution.
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■ FIGURE 4.6 F -distribution probability.

To find Fα (n1, n2) such that P (F > Fα (n1, n2)) = α (shaded area in Figure 4.6), we use the F -table.
For example, if F has 3 numerator and 6 denominator degrees of freedom, then F0.01 (3, 6) = 9.78.

If we know Fα (n1, n2), it is possible to find F1−α (n2, n1) by using the identity

F1−α (n2, n1) = 1/Fα (n1, n2) .

Using this identity we can obtain F0.99 (6, 3) = 1/F0.01 (3, 6) = 1/9.78 = 0.10225.

When we need to compare the variances of two normal populations, we will use the following result.

Theorem 4.2.10 Let two independent random samples of size n1 and n2 be drawn from two normal pop-
ulations with variances σ2

1 , σ2
2 , respectively. If the variances of the random samples are given by S2

1 , S2
2 ,

respectively, then the statistic

F = S2
1/σ2

1

S2
2/σ2

2
= σ2

2S2
1

σ2
1S2

2

has the F-distribution with (n1 − 1) numerator and (n2 − 1) denominator degrees of freedom.

Proof. From Theorem 4.2.9, we know that

U = (n1 − 1) S2
1

σ2
1

∼ χ2 (n1 − 1)

and

V = (n2 − 1) S2
2

σ2
2

∼ χ2 (n2 − 1) .

Also, U and V are independent. From Definition 4.2.3, F ∼ F (n1 − 1, n2 − 1).
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Corollary 4.2.11 If σ2
1 = σ2

2 , then

F = S2
1

S2
2

∼F (n1 − 1, n2 − 1).

When σ2
1 = σ2

2 , we refer to them as two populations that are homogeneous with respect to their
variances.

Example 4.2.8
Let S2

1 denote the sample variance for a random sample of size 10 from Population I and let S2
2 denote the

sample variance for a random sample of size 8 from Population II. The variance of Population I is assumed to

be three times the variance of Population II. Find two numbers a and b such that P
(
a ≤ S2

1/S2
2 ≤ b

) = 0.90
assuming S2

1 to be independent of S2
2 .

Solution
From the problem, we can assume that σ2

1 = 3σ2
2 with n1 = 10 and n2 = 8. Thus, we can write

S2
1/σ2

1

S2
2/σ2

2
= S2

1/3σ2
2

S2
2/σ2

2
= S2

1

3S2
2

,

this has F -distribution with n1 − 1 = 9 numerator and n2 − 1 = 7 denominator degrees of freedom. Using

the F -table, F0.05 (9, 7) = 3.68. Now to find F0.95 such that

P

(
S2

1

3S2
2

< F0.95

)
= 0.05.

We proceed as follows:

P

(
S2

1

3S2
2

< F0.95

)
= P

(
3S2

2

S2
1

>
1

F0.95

)
= 0.05.

Indexing ν1 = 7 and ν2 = 9 in the F -table, we have 1/F0.95 (7, 9) = 3.29 or F0.95 = 1/3.29 = 0.304.

Hence, the entire probability statement is

P

(
0.304 ≤ S2

1

3S2
2

≤ 3.68

)
= P

(
0.912 ≤ S2

1

S2
2

≤ 11.04

)
= 0.90.

Thus, a = 0.912 and b = 11.04.

EXERCISES 4.2

4.2.1. Let Y have a chi-square distribution with 15 degrees of freedom. Find the following
probabilities.
(a) P (Y ≤ y0) = 0.025
(b) P (a < Y < b) = 0.95
(c) P (Y ≥ 22.307).
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4.2.2. Let Y have a chi-square distribution with 7 degrees of freedom. Find the following
probabilities.
(a) P (Y > y0) = 0.025
(b) P (a < Y < b) = 0.90
(c) P (Y > 1.239).

4.2.3. The time to failure T of a microwave oven has an exponential distribution with pdf

f (t) = 1
2

e−t/2, t > 0.

If three such microwave ovens are chosen and t is the mean of their failure times, find the
following:
(a) Distribution of T .
(b) P

(
T > 2

)
.

4.2.4. Let X1, X2, . . . , X10 be a random sample from a standard normal distribution. Find the
numbers a and b such that

P

(
a ≤

10∑
i=1

X2
i ≤ b

)
= 0.95.

4.2.5. Let X1, X2, . . . , X5 be a random sample from the normal distribution with mean 55 and
variance 223. Let

Y =
5∑

i=1

(Xi − 55)2 /223

and

Z =
5∑

i=1

(
Xi − X

)2
/223.

(a) Find the distribution of the random variables Y and Z.
(b) Are Y and Z independent?
(c) Find (i)P(0.62 ≤ Y ≤ 0.76), and (ii)P(0.77 ≤ Z ≤ 0.95).

4.2.6. Let X and Y be independent chi-square random variables with 14 and 5 degrees of freedom,
respectively. Find
(a) P (|X − Y | ≤ 11.15),
(b) P (|X − Y | ≥ 3.8).

4.2.7. A particular type of vacuum-packed coffee packet contains an average of 16 ounces. It has
been observed that the number of ounces of coffee in these packets is normally distributed
with σ = 1.41 ounce. A random sample of 15 of these coffee packets is selected, and the
observations are used to calculate s. Find the numbers a and b such that P

(
a ≤ S2 ≤ b

) =
0.90.

4.2.8. An optical firm buys glass slabs to be ground into lenses, and it is known that the variance
of the refractive index of the glass slabs is to be no more than 1.04 × 10−3. The firm rejects
a shipment of glass slabs if the sample variance of 16 pieces selected at random exceeds
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1.15 × 10−3. Assuming that the sample values may be looked on as a random sample from
a normal population, what is the probability that a shipment will be rejected even though
σ2 = 1.04 × 10−3?

4.2.9. Assume that T has a t-distribution with 8 degrees of freedom. Find the following
probabilities.
(a) P (T ≤ 2.896)

(b) P (T ≤ −1.860)

(c) The value of a such that P (−a < T < a) = 0.99

4.2.10. Assume that T has a t-distribution with 15 degrees of freedom. Find the following
probabilities.
(a) P (T ≤ 1.341)

(b) P (T ≥ −2.131)

(c) The value of a such that P (−a < T < a) = 0.95

4.2.11. A psychologist claims that the mean age at which female children start walking is 11.4
months. If 20 randomly selected female children are found to have started walking at a
mean age of 11.5 months with standard deviation of 2 months, would you agree with the
psychologist’s claim? Assume that the sample came from a normal population.

4.2.12. Let U1 and U2 be independent random variables. Suppose that U1 is χ2 with ν1 degrees of
freedom while U = U1 + U2 is chi-square with ν degrees of freedom, where ν > ν1. Then
prove that U2 is chi-square random variable with ν − ν1 degrees of freedom.

4.2.13. Show that if X ∼ χ2 (ν), then EX = ν and Var (X) = 2ν.

4.2.14. Let X1, . . . , Xn be a random sample with Xi ∼ χ2 (1), for i = 1, . . . , n. Show that the
distribution of

Z = X − 1√
2/n

as n → ∞ is standard normal.

4.2.15. Find the variance of S2, assuming the sample X1, X2, . . . , Xn is from N
(
μ, σ2

)
.

4.2.16. Let X1, X2, . . . , Xn be a random sample from an exponential distribution with parameter

θ. Show that the random variable 2θ−1
(

n∑
i=1

Xi

)
∼ χ2 (2n).

4.2.17. Let X and Y be independent random variables from an exponential distribution with com-
mon parameter θ = 1. Show that X/Y has an F -distribution. What is the number for degrees
of freedom?

4.2.18. Prove that if X has a t-distribution with n degrees of freedom, then X2 ∼ F (1, n).

4.2.19. Let X be F distributed with 9 numerator and 12 denominator degrees of freedom. Find
(a) P (X ≤ 3.87),
(b) P (X ≤ 0.196),
(c) The value of a and b such that P (a < Y < b) = 0.95.
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4.2.20. Prove that if X ∼ F (n1, n2), then 1/X ∼ F (n2, n1).

4.2.21. Find the mean and variance of F (n1, n2) random variable.

4.2.22. Let X11, X12, . . . , X1n1 be a random sample with sample mean X1 from a normal population
with mean μ1 and variance σ2

1 , and let X21, X22, . . . , X2n2 be a random sample with sample
mean X2 from a normal population with mean μ2 and variance σ2

2 . Assume the two samples
are independent. Show that the sampling distribution of

(
X1 − X2

)
is normal with mean

μ1 − μ2 and variance σ2
1/n1 + σ2

2/n2.

4.2.23. Let X1, X2, . . . , Xn1 be a random sample from a normal population with mean μ1 and vari-
ance σ2, and Y1, Y2, . . . , Yn2 be a random sample from an independent normal population
with mean μ2 and variance σ2. Show that

T =
(
X − Y

)− (μ1 − μ2)√
(n1−1)S2

1+(n2−1)S2
2

n1+n2−2

(
1
n1

+ 1
n2

) ∼ T(n1+n2−2)

4.2.24. Show that a t-distribution tends to a standard normal distribution as the degrees of freedom
tend to infinity.

4.2.25. Show that the mgf of a χ2 random variable is M (t) = (1 − 2t)−ν/2. Using the mgf, show
that the mean and variance of a chi-square distribution are ν and 2ν, respectively.

4.2.26. Let the random variables X1, X2, . . . , X10 be normally distributed with mean 8 and variance
4. Find a number a such that

P

⎛
⎝ 10∑

i=1

(
Xi − 8

2

)2
≤ a

⎞
⎠ = 0.95

4.2.27. Let X2 ∼ F (1, n). Show that X ∼ t (n).

4.3 ORDER STATISTICS

In practice, the random variables of interest may depend on the relative magnitudes of the observed
variable. For example, we may be interested in the maximum mileage per gallon of a particular
class of cars. In this section, we study the behavior of ordering a random sample from a continuous
distribution.

Definition 4.3.1 Let X1, . . . , Xn be a random sample from a continuous distribution with pdf f (x). Let
Y1, . . . , Yn be a permutation of X1, . . . , Xn such that

Y1 ≤ Y2 ≤ · · · ≤ Yn.

Then the ordered random variables Y1, . . . , Yn are called the order statistics of the random sample
X1, . . . , Xn. Here Yk is called the kth order statistic. Because of continuity, the equality sign could be
ignored.
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Remark. Although Xi ’s are iid random variables, the random variables Yi’s are neither independent
nor identically distributed.

Thus, the minimum of Xi ’s is

Y1 = min (X1, . . . , Xn)

and the maximum is

Yn = max (X1, . . . , Xn).

The order statistics of the sample X1, X2, . . . , Xn can also be denoted by X(1), X(2), . . . , X(n) where

X(1) < X(2) < · · · < X(n).

Here X(k) is the kth order statistic and is equal to Yk in Definition 4.3.1. One of the most com-
monly used order statistics is the median, the value in the middle position in the sorted order of the
values.

Example 4.3.1
(i) The range R = Yn − Y1 is a function of order statistics.

(ii) The sample median M equals Ym+1 if n = 2m + 1.

Hence, the sample median M is an order statistic, when n is odd. If n is even then the sample median can

be obtained using the order statistic, M = (1/2)
[
Yn/2 + Y(n/2)+1

]
.

The following result is useful in determining the distribution of functions of more than one order
statistics.

Theorem 4.3.1 Let X1, . . . , Xn be a random sample from a population with pdf f (x). Then the joint pdf of
order statistics Y1, . . . , Yn is

f (y1, . . . , yn) =
⎧⎨
⎩

n!f (y1)f (y2) . . . f (yn), for y1 < · · · < yn

0, otherwise.

The pdf of the kth order statistic is given by the following theorem.

Theorem 4.3.2 The pdf of Yk is

fk (y) = fYk
(y) = n!

(k − 1)! (n − k)!f (y) (F (y))k−1 (1 − F (y))n−k,

for −∞ < y < ∞, where F(y) = P(Xi ≤ y) is the cdf of Xi.

In particular, the pdf of Y1 is f1 (y) = nf (y) [1 − F (y)]n−1 and the pdf of Yn is fn (y) =
nf (y) [F (y)]n−1. In the following example, we will derive pdf for Yn.
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Example 4.3.2
Let X1, . . . , Xn be a random sample from U [0, 1]. Find the pdf of the kth order statistic Yk .

Solution
Since the pdf of Xi is f (x) = 1, 0 ≤ x ≤ 1, the cdf is F (x) = x, 0 ≤ x ≤ 1. Using Theorem 4.3.2, the pdf

of the kth order statistic Yk reduces to

fk(y) = n!
(k − 1)! (n − k)!y

k−1 (1 − y)n−k , 0 ≤ y ≤ 1

which is a beta distribution with α = k and β = n − k + 1.

The next example gives the so-called extreme (i.e., largest) value distribution, which is the distribution
of the order statistic Yn.

Example 4.3.3
Find the distribution of the nth order statistic Yn of the sample X1, . . . , Xn from a population with pdf

f (x).

Solution
Let the cdf of Yn be denoted by Fn (y). Then

Fn (y) = P(Yn ≤ y) = P

(
max

1≤i≤n
Xi ≤ y

)

= P(X1 ≤ y, . . . , Xn ≤ y) = [F (y)]n (by independence).

Hence, the pdf fn (y) of Yn is

fn(y) = d

dy
[F(y)]n = n[F(y)]n−1 d

dy
F(y)

= n[F(y)]n−1f (y).

In particular, if X1, . . . , Xn is a random sample from U [0, 1], then the cumulative extreme value distribution

is given by

Fn (y) =

⎧⎪⎪⎨
⎪⎪⎩

0, y < 0

yn, 0 ≤ y ≤ 1

1, y > 1.
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Example 4.3.4
A string of 10 light bulbs is connected in series, which means that the entire string will not light up if any

one of the light bulbs fails. Assume that the lifetimes of the bulbs, τ1, . . . , τ10, are independent random

variables that are exponentially distributed with mean 2. Find the distribution of the life length of this string

of light bulbs.

Solution
Note that the pdf of τi is f(t) = 2e−2t , 0 < t < ∞, and the cumulative distribution of τi is Fτi (t) = 1−e−2t .

Let T represent the lifetime of this string of light bulbs. Then,

T = min(τ1, . . . , τ10).

Thus,

FT (t) = 1 − [1 − Fτi (t)]10.

Hence, the density of T is obtained by differentiating FT (t) with respect to t, that is,

fT (t) = 10fτi (t)[1 − Fτi (t)]9

=
{

2(10)e−2t (e−2t )9 = 20e−20t , 0 < t < ∞
0, otherwise.

The joint pdf of the order statistics is given by the following result.

Theorem 4.3.3 Let X1, . . . , Xn be a random sample with continuous probability density function f (x)

and a distribution function F(x). Let Y1, . . . , Yn be the order statistics. Then for any 1 ≤ i < k ≤ n and
−∞ < x ≤ y < ∞, the joint pdf of Yi and Yk is given by

fYi,Yk
(x, y) = n!

(i − 1)! (k − i − 1)! (n − k)! [F (x)]i−1

× [F (y) − F (x)]k−i−1 [1 − F (y)]n−k f (x) f (y)

Example 4.3.5
Let X1, . . . , Xn be a random sample from U [0, 1]. Find the joint pdf of Y2 and Y5.

Solution
Taking i = 2 and k = 5 in Theorem 4.3.3, we get the joint pdf of Y2 and Y5 as

fY2,Y5 (x, y) = n!
(2 − 1)! (5 − 2 − 1)! (n − 5)! [F (x)]2−1

[F (y) − F (x)]5−2−1 × [1 − F (y)]n−5 f (x) f (y)

=
{

n!
2(n−5)!x (y − x)2 (1 − y)n−5 0 < x ≤ y < 1

0, otherwise.
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EXERCISES 4.3

4.3.1. The lifetime X of a certain electrical fuse has the following probability density function

f (x) =
{

1
10 e−x/10, x > 0

0, otherwise.

Suppose two such fuses are in series and operate independently in a system. Find the pdf of
the lifetime Y of the system. (The system will work only if both the fuses operate.)

4.3.2. Suppose that time between two telephone calls at an office, in minutes, is uniformly dis-
tributed on the interval [0, 20]. If there were 15 calls, (i) what is the probability that the
longest time interval between calls is less than 15 minutes? (ii) What is the probability that
the shortest time interval between calls is greater than 5 minutes?

4.3.3. Let X1, X2, X3 be three random variables of discrete type. Let X1, X2 take values 0, 1, and
X3 take values 1, 2, 3. What are the values of Y1, Y2, Y3?

4.3.4. Let X1, . . . , X10 be a random sample from U [0, 1]. Find the joint density of Y2 and Y7,
where Yi, i = 1, 2, . . . , 10 are order statistics of X1, . . . , X10.

4.3.5. Let X1, . . . , Xn be a random sample from exponential distribution with a mean of θ. Show
that Y1 = min (X1, X2, . . . , Xn) has an exponential distribution with mean θ/n. Also, find
the pdf of Yn = max (X1, X2, . . . , Xn).

4.3.6. A string of 10 light bulbs is connected in parallel, which means that the entire string will
fail to light up only if all 10 of the light bulbs fail. Assume that the lifetimes of the bulbs,
τ1, . . . , τ10, are independent random variables that are exponentially distributed with mean
θ. Find the distribution of the lifetimes of this string of light bulbs.

4.3.7. Let X1, . . . , Xn be a random sample from the uniform distribution f(x) = 1/2, 0 ≤ x ≤ 2.
Find the probability density function for the range R = (

X(n) − X(1)

)
.

4.3.8. Given a sample of 25 observations from a distribution with pdf

f(x) =
⎧⎨
⎩

e−x, x > 0

0, otherwise

let M be the sample median. Compute P (M ≥ b).
[Hint: Note that M is the 13th order statistic.]

4.3.9. Let X1, . . . , Xn be a random sample from a normal population with mean 10 and variance
4. What is the probability that the largest observation is greater than 10?

4.3.10. Let X1, . . . , Xn be a random sample from an exponential population with parameter θ. Let
Y1, . . . , Yn be the ordered random variables.
(a) Show that the sampling distributions of Y1 and Yn are given by

f1 (y1) =
{

n
θ e−ny1/θ, if y1 > 0

0, otherwise,
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and

fn (yn) =
⎧⎨
⎩

n
θ e−yn/θ

[
1 − e−yn/θ

]n−1
, if yn > 0

0, otherwise.

(b) Let n = 2l + 1. Show that the sampling distribution of the median, M, is given by

f (m) =
⎧⎨
⎩

n!
(l!)2θ

e−m(l+1)/θ
[
1 − e−m/θ

]l
, for m > 0

0, otherwise.

4.3.11. Let X1, . . . , Xn be a random sample from a beta distribution with α = 2 and β = 3. Find
the joint pdf of Y1 and Yn.

4.3.12. Let X1, . . . , Xn be a random sample from a geometric distribution with pmf

pi = P (X = i) = pqi−1, i = 1, 2, . . . , 0 < p < 1, q = 1 − p.

Show that

P(Yk = y) =
n∑

i=k

(
n

i

)
q(y−1)(n−i){qn−i[1 − qy]i − [1 − qy−1]i},

y = 1, 2, . . . .

4.4 LARGE SAMPLE APPROXIMATIONS

If the sample size is large, the normality assumption on the underlying population can be relaxed.
A useful generalization of Corollary 4.2.2 follows.

Theorem 4.4.1 Suppose that the population (not necessarily normal) from which samples are taken has
a probability distribution with mean μ and variance σ2. Then the standardized variable (or z-transform)
associated with X, given by

Z = X − μ

σ/
√

n

is asymptotically standard normal. That is,

lim
n→∞ P (Z ≤ z) = 1√

2π

z∫
−∞

e−u2/2du.

Theorem 4.4.1 follows directly from the Central Limit Theorem. The consequence of this for statistics
is that, regardless of the form of the population distribution, the distribution of the z-transform of
a sample mean X will be approximately a standard normal random variable whenever n is large.
This fact will be used in almost all large sample inference problems. It is important to note that, by
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Theorem 4.2.2, if the random sample came from a normal population, then sampling distribution of
the mean is normally distributed regardless of the size of the sample. We could use the foregoing results
if the population variance σ2 is known or when the sample size is large. Even though the required
sample size to apply Theorem 4.4.1 will depend on the particular distribution of the population, for
practical purposes we will consider the sample size to be large enough if n ≥ 30.

Example 4.4.1
The average SAT score for freshmen entering a particular university is 1100 with a standard deviation of

95. What is the probability that the mean SAT score for a random sample of 50 of these freshmen will be

anywhere from 1075 to 1110?

Solution
The distribution of X has the mean μ

X
= 1100 and σ

X
= 95/

√
50. By Theorem 4.4.3,

X ∼ N
(

1100, σ
X

= 95/
√

90
)

. The z-series corresponding to 1075 and 1110 are z = [(1075 − 1100)/

95/
√

50
]

= −1.8608 and z =
[
(1110 − 1100)/95/

√
50
]

= 0.74432.

Hence

P
(
1075 ≤ X ≤ 1110

) = P (−1.8608 ≤ Z ≤ 0.74432) = 0.739

means that we are 73.9% certain based on the given data that the mean SAT score is between 1075 and

1110, inclusive.

4.4.1 The Normal Approximation to the Binomial Distribution
We know that a binomial random variable Y , with parameters n and p = P (success), can be viewed
as the number of successes in n trials and can be written as

Y =
n∑

i=1

Xi

where,

Xi =
{

1 with probability p

0 with probability (1 − p).

The fraction of successes in n trials is

Y

n
= 1

n

n∑
i=1

Xi = X.

Hence, Y/n is a sample mean. Since E (Xi) = p and Var (Xi) = p (1 − p), we have

E

(
Y

n

)
= E

(
1
n

n∑
i=1

Xi

)
= 1

n
np = p
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■ FIGURE 4.7 Probability function of discrete r.v.

and

Var

(
Y

n

)
= 1

n2

n∑
i=1

Var (Xi) = p (1 − p)

n
.

Because Y = nX, by the Central Limit Theorem, Y has an approximate normal distribution with
mean μ = np and variance σ2 = np(1 − p). Because the calculation of the binomial probabilities
is cumbersome for large sample sizes n, the normal approximation to the binomial distribution is
widely used. A useful rule of thumb for use of the normal approximation to the binomial distribution
is to make sure n is large enough if np ≥ 5 and n(1 − p) ≥ 5. Otherwise, the binomial distribution
may be so asymmetric that the normal distribution may not provide a good approximation. Other
rules, such as np ≥ 10 and n(1 − p) ≥ 10, or np(1 − p) ≥ 10, are also used in the literature. Because
all of these rules are only approximations, for consistency’s sake we will use np ≥ 5 and n(1 − p) ≥ 5
to test for largeness of sample size in the normal approximation to the binomial distribution. If need
arises, we could use the more stringent condition np(1 − p) ≥ 10.

Recall that discrete random variables take no values between integers, and their probabilities are
concentrated at the integers as shown in Figure 4.7. However, the normal random variables have
zero probability at these integers; they have nonzero probability only over intervals. Because we
are approximating a discrete distribution with a continuous distribution, we need to introduce a
correction factor for continuity which is explained below.

CORRECTION FOR CONTINUITY FOR THE NORMAL APPROXIMATION TO THE BINOMIAL
DISTRIBUTION

(a) To approximate P(X ≤ a) or P(X > a), the correction for continuity is (a + 0.5), that is,

P(X ≤ a) = P

(
Z <

(a + 0.5) − np√
np(1 − p)

)

and

P(X > a) = P

(
Z >

(a + 0.5) − np√
np(1 − p)

)
.

(b) To approximate P(X ≥ a) or P(X < a), the correction for continuity is (a − 0.5), that is,

P(X ≥ a) = P

(
Z >

(a − 0.5) − np√
np(1 − p)

)
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f (x)

x
i �1/2 i �1/2

■ FIGURE 4.8 Continuity correction for P(X = i).

and

P(X < a) = P

(
Z <

(a − 0.5) − np√
np(1 − p)

)
.

(c) To approximate P(a ≤ X ≤ b ), treat ends of the intervals separately, calculating two distinct

z -values according to steps (a) and (b), that is,

P(a ≤ X ≤ b ) = P

(
(a − 0.5) − np√

np(1 − p)
< Z <

(a + 0.5) − np√
np(1 − p)

)
.

(d) Use the normal table to obtain the approximate probability of the binomial event.

The shaded area in Figure 4.8 represents the continuity correction for P (X = i).

Example 4.4.2
A study of parallel interchange ramps revealed that many drivers do not use the entire length of parallel

lanes for acceleration, but seek, as soon as possible, a gap in the major stream of traffic to merge. At one

site on Interstate Highway 75, 46% of drivers used less than one third of the lane length available before

merging. Suppose we monitor the merging pattern of a random sample of 250 drivers at this site.

(a) What is the probability that fewer than 120 of the drivers will use less than one third of the

acceleration lane length before merging?

(b) What is the probability that more than 225 of the drivers will use less than one third of the

acceleration lane length before merging?
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Solution
First we check for adequacy of the sample size:

np = (250)(0.46) = 115 and n(1 − p) = (250)(1 − 0.46) = 135.

Both are greater than 5. Hence, we can use the normal approximation. Let X be the number of drivers using

less than one third of the lane length available before merging. Then X can be considered to be a binomial

random variable. Also,

μ = np = (250)(0.46) = 115.0

and

σ = √
np(1 − p) = √

250(0.46)(0.54) = 7.8804.

(a) P(X < 120) = P

(
Z <

119.5 − 115
7.8804

= 0.57103
)

= 0.7157, that is, we are approximately 71.57%

certain that fewer than 120 drivers will use less than one third of the acceleration length before

merging.

(b) P(X > 225) = P

(
Z >

225.5 − 115
7.8804

= 14.02213
)

≈ 0, that is, there is almost no chance that

more than 225 drivers will use less than one third of the acceleration lane length before merging.

EXERCISES 4.4

4.4.1. A random sample size of 150 is taken from an infinite population having mean μ = 8 and
variance σ2 = 4. What is the probability that X will be between 7.5 and 10?

4.4.2. A machine that is used to fill bottles with soda has been observed to have a true standard
deviation in the amounts of fill of approximately σ = 1.25 ounces. However, the mean
ounces of fill μ may change from day to day, because of change of operator or adjustments
in the machine. If n = 55 observations on ounces of fill are taken on a given day, find the
probability that the sample mean will be within 0.5 ounce of the true population mean.
State any assumptions.

4.4.3. The times spent by customers coming to a certain gas station to fill up can be viewed as
independent random variables with a mean of 3 minutes and a variance of 1.5 minutes.
Approximate the probability that a random sample of 75 customers in this gas station will
spend a total time less than 3 hours. Interpret your results and state any assumptions.

4.4.4. Refer to Exercise 4.4.3. Find the number of customers, m, such that the probability that all
the m customers can fill up in less than 3 hours is approximately 0.2.

4.4.5. In the mathematics department of a certain university, in a particular semester, 1250 students
took the elementary algebra final examination. The mean was 69% with a standard deviation
of 5.4%. If a random sample of 60 students is selected from this population, what is the
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probability that the average score of this sample will be at most 75.08? Interpret your results
and state any assumptions.

4.4.6. For a newborn full-term infant, the weight appropriate for gestational age is assumed to be
normally distributed with μ = 3025 grams and σ = 165 grams. Compute the probability
that a random sample of 50 infants born at full term results in a sample mean of less than
3500 grams.

4.4.7. Let X1, . . . , Xn be a random sample, each with mean μ1 and standard deviation σ1.
Also, let Y1, Y2, . . . , Ym be a random sample, each with mean μ2 and a standard devi-
ation σ2. Assume that both the samples are from normal populations. Verify that(
X − Y

) ∼ N
(
μ1 − μ2, 1

n
σ2

1 + 1
m

σ2
2

)
.

4.4.8. Let X1, . . . , Xn be a random sample, each with mean μ1 and standard deviation σ1. Also,
let Y1, Y2, . . . , Yn be a random sample independent of X1, . . . , Xn, each with mean μ2 and
a standard deviation σ2. Prove that the random variable

Vn =
(
X − Y

)− (μ1 − μ2)√
σ2

1+σ2
2

n

satisfies the conditions of Theorem 4.4.1 and hence Vn is asymptotically normal.

4.4.9. Suppose X is a binomial random variable with n = 20 and p = 0.2. Find the probability
that X ≤ 10 using binomial tables and compare this to the corresponding value found from
normal approximation.

4.4.10. Using normal approximation, find the probability of obtaining 90 heads in 150 tosses of a
fair coin. Is the normal approximation valid? Why?

4.4.11. A car rental company finds that each day 6% of the persons making reservations will not
show up. If the rental company reserves for 215 persons with only 200 automobiles, what is
the probability that an automobile will be available for every person who shows up holding
a reservation? (Use the normal approximation.)

4.4.12. The president of the United States is thought to have a positive approval rating of 58% of
the people at a certain time. In a random sample of 1200 people, what is the approximate
probability that the number of positive approvals will be at least 750? Interpret your results
and state any assumptions.

4.4.13. In the United States, sudden infant death syndrome (SIDS) is one of the leading causes of
postneonatal deaths (those occurring between the ages of 28 days and 1 year). Thus far, the
most significant risk factor discovered for SIDS is placing babies to sleep in a prone position
(on their stomachs). Suppose the rate of death due to SIDS is 0.00103 per year. In a random
sample of 5000 infants between the ages of 28 days and 1 year, what is the approximate
probability that the number of SIDS-related deaths will be at least 10? Interpret your results
and state any assumptions.
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4.4.14. Let X and Y be independent binomial random variables with parameters (n, p1) and (m, p2),
respectively.

(a) Find E

(
X

n
− Y

n

)
.

(b) Find Var

(
X

n
− Y

n

)
.

(c) Show that
(

X

n
− Y

n

)
∼N

(
E

(
X

n
− Y

n

)
, Var

(
X

n
− Y

n

))
, for large n.

4.5 CHAPTER SUMMARY

In this chapter, we learned about sampling distributions. In sampling distributions associated with
normal populations, we have seen that we can generate chi-square, t-, and F -distributions. In
Section 4.3 we dealt with order statistics. Then in Section 4.4 we looked at large sample approxi-
mations such as the normal approximation to the binomial distribution. In the following section,
we will give Minitab examples to show how the idea of sampling distribution can be explored using
statistical software.

We will now list some of the key definitions introduced in this chapter.

■ Sampling distribution

■ Sample and sample size

■ Random sample

■ Statistic

■ Standard error

■ Finite population correction factor

■ Degrees of freedom

■ t-distribution

■ F -distribution

■ Order statistics

In this chapter, we have also presented the following important concepts and procedures:

■ Sampling distribution associated with normal distribution

■ Results on chi-square distribution

■ Results on Student t-distribution

■ Results on F -distribution

■ Derivation of probability density functions for order statistics

■ Large sample approximations

■ Normal approximation to the binomial

■ Correction for continuity for the normal approximation to the binomial distribution
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4.6 COMPUTER EXAMPLES

4.6.1 Minitab Examples

Example 4.6.1
Create three samples of size 30 from standard normal distribution using Minitab, and draw histograms for

each sample.

Solution
We can use the following procedure:

1. Open a new worksheet.

2. Choose Calc > Random Data > Normal.

3. Generate 30 rows of data.

4. Store results in C1-C3.

5. Enter a mean of 0 and a standard deviation of 1 and click OK.

6. Choose Graph > Character Graphs > Histogram and enter C1-C3 in the variable box and click OK.

We will not give the data or any of the three histograms that we will get. These histograms are just

lines containing *’s. If we need actual histograms, in step 6 use

Graph > Histogram and enter C1 in the graph variable box and click OK

If we wish to generate descriptive statistics, then

7. Choose Stat > Basic Statistics > Display Descriptive statistics. . . , enter C1-C3 in the variable box,

and click OK.

If we would like to see the mean for the three samples,

8. Choose Calc > Row Statistics, then click Mean and in the Input variables type C1-C3. In Store Result

in: C4 and Click OK.

To see the histogram of these averages, follow step 6 with C4 in the graph variable box.

Using a similar procedure, one could generate samples from normal distributions with different means

and standard deviations, as well as from other distributions.

4.6.2 SPSS Examples
If we have the full version of SPSS, we can write code that can be used to simulate a sampling
distribution with different values of p. However, with the student version, it is not easy to simulate.
Therefore, we will not give SPSS examples in this chapter.

4.6.3 SAS Examples

Example 4.6.2
Generate 50,000 observations from a normal distribution with mean 30 and standard deviation 8. Obtain

summary statistics for these data and draw a graph.
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Solution
We could use the following program.

title ’50000 Obs Sample from a Normal Distribution’;
title2 ’with Mean=30 and Standard Deviation=8’;

data normaldat;

do n=1 to 50000;
X=8*rannor(55)+ 30;
output;

end;
run;

proc univariate data=normaldat;
var x;
run;

proc chart;
vbar x / midpoints=6 to 54 by 2;
format x msd.;
run;

In the foregoing program, rannor(55), the number 55 is just a seed number to obtain the same series of

random numbers each time we run the program. If we use ‘0’, each time we run the program we will get a

different set of random numbers. We will not give the output.

Example 4.6.3
From an exponential distribution, draw 10,000 samples, each sample of size 15. Compute the mean of each

sample and draw a chart for the means. This will be an approximate sampling distribution of X for a fixed

sample of size 15.

Solution
Use the following program.

title ’10000 Sample Means with 15 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data sample15;
do Sample=1 to 10000;
do n=1 to 15;
X=ranexp(3);
output;

end;
end;
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proc means data=sample 15 noprint;
output out=mean 15 mean=Mean;
var x;
by sample;
run;
proc chart data=mean 15;
vbar mean/axis=1800

midpoints=0.10 to 2.05 by .1;
run;
proc univariate data=mean4 noextrobs=0 normal

mu0=1;
var mean;
run;

This will produce an approximate sampling distribution of X. We will not give the output.

PROJECTS FOR CHAPTER 4

4A. A Method to Obtain Random Samples from Different Distributions
Most of the statistical software packages contain a random number generator that produces approx-
imations to random numbers from the uniform distribution U [0, 1]. To simulate the observation
of any other continuous random variables, we can start with uniform random numbers and asso-
ciate these to the distribution we want to simulate. For example, suppose we wish to simulate an
observation from the exponential distribution

F(x) = 1 − e−0.5x, 0 < x < ∞.

First produce the value of y from the uniform distribution. Then solve for x from the equation

y = F(x) = 1 − e−0.5x.

So x = [− ln (1 − y)] /0.5 is the corresponding value of the exponential random variable. For instance,
if y = 0.67, then x = [− ln (1 − y)] /0.5 = 2.2173. If we wish to simulate a sample from the distribution
F from the different values of y obtained from the uniform distribution, the procedure is repeated
for each new observation x.

(a) Simulate 10 observations of a random variable having exponential distribution with mean
and standard deviation both equal to 2.

(b) Select 1500 random samples of size n = 10 measurements from a population with an expo-
nential distribution with mean and standard deviation both equal to 2. Calculate sample
mean for each of these 1500 samples and draw a relative frequency histogram. Based on
Theorems 4.1.1 and 4.4.1, what can you conclude?

It should be noted that in general, if Y ∼ U (0, 1) random variable, then we can show that X = − lnY
λ

will give an exponential random variable with parameter λ. Uniform random variables could also
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be used to generate random variables from other distributions. For example, let Uis be iid U [0, 1]
random variables. Then,

X = −2
ν∑

i=1

ln (Ui) ∼ χ2
2ν,

and

Y = −β

α∑
i=1

ln (Ui) ∼ Gamma (α, β) .

Of course, these transformations are useful only when ν and α are integers. More efficient methods,
such as MCMC methods, are discussed in Chapter 13.

4B. Simulation Experiments
When the derivation via probability rules is too difficult or complicated to be carried out, one can use
simulation experiments to obtain information about a statistic’s sampling distribution. The following
characteristics of the experiment must be specified:

(i) The population distribution (normal with μ = 10 and σ = 2, exponential with λ = 5, etc.)
(ii) The sample size n and the statistic of interest (X, S, etc.)

(iii) The number of replications k (such as k = 300)

Then, using a computer program, obtain k different random samples, each of size n, from the des-
ignated population distribution. Calculate the value of the statistic for each of the k replications.
Construct a histogram for this k statistic. This histogram gives the approximate sampling distribution
of the statistic. The larger the value of k, the better will be the approximation.

(a) For your simulation study, use the population distribution as normal with μ = 3.4 and
σ = 1.2.
For n = 8 perform k = 500 replications and draw a histogram for values of the sample means.
Repeat the experiment with n = 15, n = 25, and n = 35 and draw the histograms. Based on
this exercise, you will be able to intuitively verify the result that X based on a large n tends to
be closer to μ than does X based on a small n.

(b) Repeat the experiment of part (a) with different values of k, such as k = 200, k = 750, and
k = 1000.

(c) Repeat the simulation study with different distributions such as exponential distribution.

4C. A Test for Normality
Many statistical procedures require that the population be at least approximately normal. Therefore, a
procedure is needed for checking that the sampled data could have come from a normal distribution.
There are many procedures, such as the normal-score plot, or Lilliefors test for normality, available
in statistics for this purpose. We will describe the normal-score plot, which is an effective way to detect
deviations from normality. The normal scores consist of values of z that divide the axes into equal
probability intervals. For a sample of size 4, the normal scores are −z0.20 = −0.84, −z0.40 = −0.25,
z0.40 = −0.25, and z0.20 = 0.84.



Projects for Chapter 4 223

STEPS TO CONSTRUCT A NORMAL PLOT

1. Rearrange the n data points in ascending order.
2. Obtain the n normal scores.
3. Plot the k th largest observation, versus the k th normal score, for all k .
4. If the data were from a standard normal distribution, the plot would resemble a 45 degree line

through the origin.
5. If the observations were from normal (but not from standard normal), the pattern should still be a

straight line. However, the line need not pass through the origin or have a slope 1.

In applications, a minimum of 15 to 20 observations is needed to reach a more accurate conclusion.

EXERCISES

1. For different observations, construct normal plots and check for normality of the corresponding
populations.

2. Using software (such as Minitab), generate 15 observations each from the following distributions:
(a) Normal (2, 4), (b) Uniform (0, 1), (c) Gamma (2, 4), and (d) Exponential (2).
For each of these data sets, draw a probability plot and note the geometry of the plots.
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Chapter 5
Point Estimation

Objective: In this chapter we study some statistical methods to find point estimators of population
parameters and study their properties.
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C. R. Rao
(Source: http:www.science.psu.edu/alert/Rao6-2007.htm)

Calyampudi Radhakrishna (C. R.) Rao (1920–) is a contemporary statistician whose work has influ-
enced not just statistics, but such diverse fields as anthropology, biometry, demography, economics,
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genetics, geology, and medicine. Several statistical terms and equations are named after Rao. He has
worked with many other famous statisticians such as Blackwell, Fisher, and Neyman and has had
dozens of theorems named after him. Rao earned an M.A. in mathematics and another M.A. in statis-
tics, both in India, and earned his Ph.D. and Sc.D. at Cambridge University. The following was stated
in the Preface to the 1991 special issue of the Journal of Quantitative Economics in Rao’s honor: “Dr. Rao
is a very distinguished scientist and a highly eminent statistician of our time. His contributions to
statistical theory and applications are well known, and many of his results, which bear his name,
are included in the curriculum of courses in statistics at bachelor’s and master’s level all over the
world. He is an inspiring teacher and has guided the research work of numerous students in all areas
of statistics. His early work had greatly influenced the course of statistical research during the last
four decades. One of the purposes of this special issue is to recognize Dr. Rao’s own contributions to
econometrics and acknowledge his major role in the development of econometric research in India.”
The importance of statistics can be summarized in Rao’s own words: “If there is a problem to be
solved, seek statistical advice instead of appointing a committee of experts. Statistics can throw more
light than the collective wisdom of the articulate few.”

5.1 INTRODUCTION

In statistical analysis, point estimation of population parameters plays a very significant role. In
studying a real-world phenomenon we begin with a random sample of size n taken from the totality
of a population. The initial step in statistically analyzing these data is to be able to identify the
probability distribution that characterizes this information. Because the parameters of a distribution
are its defining characteristics, it becomes necessary to know the parameters. In the present chapter,
we assume that the form of the population distribution is known (binomial, normal, etc.) but the
parameters of the distribution (p for a binomial; μ and σ2 for a normal, etc.) are unknown. We shall
estimate these parameters using the data from our random sample. It is extremely important to have
the best possible estimate of the population parameter(s). Having such estimates will lead to a better
and more accurate statistical analysis.

For example, in the area of phosphate mining in Florida, we may be interested in estimating the
average radioactivity from both uranium and radium in a clay settling area of a mining site. Suppose
that a random sample of 10 such sites resulted in a sample average of 40 pCi/g (picocuries/gram) of
radioactivity. We may use this value as an estimate of the average radioactivity for all of the settling
areas of mining sites in Florida. Because many Florida crops are grown on clay settling areas, this type
of estimate is important for accessing the radioactivity-associated risks that are due to eating food
from the crops grown on these clay settling areas.

We will now introduce some of the more useful statistical point estimation methods, discuss their
properties, and illustrate their usefulness with a number of applications. The importance of point
estimates lies in the fact that many statistical formulas are based on them. For example, the point
estimates of mean and standard deviation are used in the calculation of confidence intervals and
in many formulas for hypothesis testing. These topics are covered in subsequent chapters. Also, in
most applied problems, a certain numerical characteristic of the physical phenomenon may be of
interest; however, its value may not be observable directly. Instead, suppose it is possible to observe
one or more random variables, the distribution of which depends on the characteristic of interest. Our
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objective will be to develop methods that use the observed values of random variables (sample data)
in order to gain information about the unknown and unobservable characteristic of the population.

Let X1, . . . , Xn be independent and identically distributed (iid) random variables (in statistical lan-
guage, a random sample) with a pdf or pf f (x, θ1, . . . θl), where θ1, . . . , θl are the unknown population
parameters (characteristics of interest). For example, a normal pdf has parameters μ (the mean) and σ2

(the variance). The actual values of these parameters are not known. The problem in point estimation
is to determine statistics gi(X1, . . . , Xn), i = 1, . . . , l, which can be used to estimate the value of each
of the parameters—that is, to assign an appropriate value for the parameters θ = (θ1, . . . , θl) based
on observed sample data from the population. These statistics are called estimators for the parameters,
and the values calculated from these statistics using particular sample data values are called estimates
of the parameters. Estimators of θi are denoted by θ̂i, where θ̂i = gi(X1, . . . , Xn), i= 1, . . . , l. Observe
that the estimators are random variables. As a result, an estimator has a distribution (which we called
the sampling distribution in Chapter 4). When we actually run the experiment and observe the data,
let the observed values of the random variables be X1, . . . , Xn be x1, . . . , xn; then, θ̂(X1, . . . , Xn) is an
estimator, and its value θ̂(x1, . . . , xn) is an estimate. For example, in case of the normal distribution,
the parameters of interest are θ1 = μ, and θ2 = σ2, that is, θ = (μ, σ2). If the estimators of μ and
σ2 are X = (1/n)

∑n
i=1 Xi and S2 = (1/n − 1)

∑n
i=1 (Xi − X)2 respectively, then, the corresponding

estimates are x = (1/n)
∑n

i=1 xi and s2 = (1/n − 1)
∑n

i=1 (xi − x)2, the mean and variance corre-
sponding to the particular observed sample values. In this book, we use capital letters such as X and
S2 to represent the estimators, and lowercase letters such as x and s2 to represent the estimates.

There are many methods available for estimating the true value(s) of the parameter(s) of interest.
Three of the more popular methods of estimation are the method of moments, the method of max-
imum likelihood, and Bayes’ method. A very popular procedure among econometricians to find a
point estimator is the generalized method of moments. In this chapter we study only the method of
moments and the method of maximum likelihood for obtaining point estimators and some of their
desirable properties. In Chapter 11, we shall discuss Bayes’ method of estimation.

There are many criteria for choosing a desired point estimator. Heuristically, some of them can
be explained as follows (detailed coverage is given in Sections 5.2 through 5.5). An estimator, θ̂,
is unbiased if the mean of its sampling distribution is the parameter θ. The bias of θ̂ is given by
B = E(θ̂) − θ. The estimator satisfies the consistency property if the sample estimator has a high
probability of being close to the population value θ for a large sample size. The concept of efficiency
is based on comparing variances of the different unbiased estimators. If there are two unbiased
estimators, it is desirable to have the one with the smaller variance. The estimator has the sufficiency
property if it fully uses all the sample information. Minimal sufficient statistics are those that are
sufficient for the parameter and are functions of every other set of sufficient statistics for those same
parameters. A method due to Lehmann and Scheffé can be used to find a minimal sufficient statistic.

5.2 THE METHOD OF MOMENTS

How do we find a good estimator with desirable properties? One of the oldest methods for finding
point estimators is the method of moments. This is a very simple procedure for finding an estimator
for one or more population parameters. Let μ′

k = E[Xk] be the kth moment about the origin of a
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random variable X, whenever it exists. Let m′
k = (1/n)

∑n
i=1 Xk

i be the corresponding kth sample
moment. Then, the estimator of μ′

k by the method of moments is m′
k. The method of moments is

based on matching the sample moments with the corresponding population (distribution) moments
and is founded on the assumption that sample moments should provide good estimates of the cor-
responding population moments. Because the population moments μ′

k = hk(θ1, θ2, . . . , θl) are
often functions of the population parameters, we can equate corresponding population and sample
moments and solve for these parameters in terms of the moments.

METHOD OF MOMENTS

Choose as estimates those values of the population parameters that are solutions of the equations
μ′

k = m′
k , k = 1, 2, . . . , l . Here μ′

k is a function of the population parameters.

For example, the first population moment is μ′
1 = E(X), and the first sample moment is X =∑n

i=1 Xi/n. Hence, the moment estimator of μ′
1 is X. If k = 2, then the second population and

sample moments are μ′
2 = E(X2) and m′

2 = (1/n)
∑n

i=1 X2
i , respectively. Basically, we can use the

following procedure in finding point estimators of the population parameters using the method of
moments.

THE METHOD OF MOMENTS PROCEDURE

Suppose there are l parameters to be estimated, say θ = (θ1, . . . , θl ).
1. Find l population moments, μ′

k , k = 1, 2, . . . , l . μ′
k will contain one or more parameters θ1, . . . , θl .

2. Find the corresponding l sample moments, m′
k , k = 1, 2, . . . , l . The number of sample moments

should equal the number of parameters to be estimated.
3. From the system of equations, μ′

k = m′
k , k = 1, 2, . . . , l , solve for the parameter θ = (θ1, . . . , θl );

this will be a moment estimator of θ̂.

The following examples illustrate the method of moments for population parameter estimation.

Example 5.2.1
Let X1, . . . , Xn be a random sample from a Bernoulli population with parameter p.

(a) Find the moment estimator for p.

(b) Tossing a coin 10 times and equating heads to value 1 and tails to value 0, we obtained the

following values:

0 1 1 0 1 0 1 1 1 0

Obtain a moment estimate for p, the probability of success (head).
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Solution
(a) For the Bernoulli random variable, μ′

k
= E[X] = p, so we can use m′

1 to estimate p. Thus,

m′
1 = p̂ = 1

n

n∑
i=1

Xi.

Let

Y =
n∑

i=1

Xi.

Then, the method of moments estimator for p is p̂ = Y/n. That is, the ratio of the total number of

heads to the total number of tosses will be an estimate of the probability of success.

(b) Note that this experiment results in Bernoulli random variables. Thus, using part (a) with Y = 6, we

get the moment estimate of p is p̂ = 6
10 = 0.6.

We would use this value p̂ = 0.6, to answer any probabilistic questions for the given problem. For

example, what is the probability of exactly obtaining 8 heads out of 10 tosses of this coin? This can be

obtained by using the binomial formula, with p̂ = 0.6, that is, P(X = 8) =
(

10
8

)
(0.6)8(0.4)10−8.

In Example 5.2.1, we used the method of moments to find a single parameter. We demonstrate in
Example 5.2.2 how this method is used for estimating more than one parameter.

Example 5.2.2
Let X1, . . . , Xn be a random sample from a gamma probability distribution with parameters α and β. Find

moment estimators for the unknown parameters α and β.

Solution
For the gamma distribution (see Section 3.2.5),

E[X] = αβ and E
[
X2
]

= αβ2 + α2β2.

Because there are two parameters, we need to find the first two moment estimators. Equating sample

moments to distribution (theoretical) moments, we have

1
n

n∑
i=1

Xi = X = αβ, and
1
n

n∑
i=1

X2
i = αβ2 + α2β2.

Solving for α and β we obtain the estimates as α = (x/β) and β = [{(1/n)
∑n

i=1 x2
i − x2}/x].
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Therefore, the method of moments estimators for α and β are

α̂ = X

β̂

and

β̂ =
1
n

n∑
i=1

X2
i − X

2

X
=

n∑
i=1

(
Xi − X

)2
nX

,

which implies that

α̂ = X

β̂
= X

2

1
n

n∑
i=1

X2
i − X

2
= X

2

n∑
i=1

(
Xi − X

)2 .

Thus, we can use these values in the gamma pdf to answer questions concerning the probabilistic behavior

of the r.v. X.

Example 5.2.3
Let the distribution of X be N(μ, σ2).

(a) For a given sample of size n, use the method of moments to estimate μ and σ2.

(b) The following data (rounded to the third decimal digit) were generated using Minitab from a

normal distribution with mean 2 and a standard deviation of 1.5.

3.163 1.883 3.252 3.716 −0.049 −0.653 0.057 2.987
4.098 1.670 1.396 2.332 1.838 3.024 2.706 0.231
3.830 3.349 −0.230 1.496

Obtain the method of moments estimates of the true mean and the true variance.

Solution
(a) For the normal distribution, E(X) = μ, and because Var(X) = EX2 − μ2, we have the second

moment as E(X2) = σ2 + μ2.

Equating sample moments to distribution moments we have

1
n

n∑
i=1

Xi = μ′
1 = μ

and

μ′
2 = 1

n

n∑
i=1

X2
i = σ2 + μ2.
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Solving for μ and σ2, we obtain the moment estimators as

μ̂ = X

and

σ̂2 = 1
n

n∑
i=1

X2
i − X

2 = 1
n

n∑
i=1

(
Xi − X

)2
.

(b) Because we know that the estimator of the mean is μ̂ = X and the estimator of the variance is σ̂2 =
(1/n)

∑n
i=1 X2

i −X
2

, from the data the estimates are μ̂ = 2.005, and σ̂2 = 6.12−(2.005)2 = 2.1.

Notice that the true mean is 2 and the true variance is 2.25, which we used to simulate the data.

In general, using the population pdf we evaluate the lower order moments, finding expressions for the
moments in terms of the corresponding parameters. Once we have population (theoretical) moments,
we equate them to the corresponding sample moments to obtain the moment estimators.

Example 5.2.4
Let X1, . . . , Xn be a random sample from a uniform distribution on the interval [a, b]. Obtain method of

moment estimators for a and b.

Solution
Here, a and b are treated as parameters. That is, we only know that the sample comes from a uniform

distribution on some interval, but we do not know from which interval. Our interest is to estimate this

interval.

The pdf of a uniform distribution is

f (x) =
⎧⎨
⎩

1
b − a

, a ≤ x ≤ b

0, otherwise.

Hence, the first two population moments are

μ1 = E(X) =
b∫

a

x

b − a
dx = a + b

2
and μ2 = E(X2) =

b∫
a

x2

b − a
dx = a2 + ab + b2

3
.

The corresponding sample moments are

μ̂1 = X and μ̂2 = 1
n

n∑
i=1

X2
i .

Equating the first two sample moments to the corresponding population moments, we have

μ̂1 = a + b

2
and μ̂2 = a2 + ab + b2

3
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which, solving for a and b, results in the moment estimators of a and b,

â = μ̂1 −
√

3
(
μ̂2 − μ̂2

1
)

and b̂ = μ̂1 +
√

3
(
μ̂2 − μ̂2

1
)
.

In Example 5.2.4, if a = −b, that is, X1, . . . , Xn is a random sample from a uniform distribution on
the interval (−b, b), the problem reduces to a one-parameter estimation problem. However, in this
case E(Xi) = 0, so the first moment cannot be used to estimate b. It becomes necessary to use the
second moment. For the derivation, see Exercise 5.2.3.

It is important to observe that the method of moments estimators need not be unique. The following
is an example of the nonuniqueness of moment estimators.

Example 5.2.5
Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ > 0. Show that both

(1/n)
∑n

i=1 Xi and (1/n)
∑n

i=1 X2
i − (

(1/n)
∑n

i=1 Xi

)2 are moment estimators of λ.

Solution
We know that E(X) = λ, from which we have a moment estimator of λ as (1/n)

∑n
i=1 Xi. Also, because

we have Var(X) = λ, equating the second moments, we can see that

λ = E(X2) − (EX)2,

so that

λ̂ = 1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

.

Thus,

λ̂ = 1
n

n∑
i=1

Xi

and

λ̂ = 1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

.

Both are moment estimators of λ. Thus, the moment estimators may not be unique. We generally choose X

as an estimator of λ, for its simplicity.
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It is important to note that, in general, we have as many moment conditions as the parameters.
In Example 5.2.5, we have more moment conditions than parameters, because both the mean and
variance of Poisson random variables are the same. Given a sample, this results in two different
estimates of a single parameter. One of the questions could be, can these two estimators be combined
in some optimal way? This is done by the so-called generalized method of moments (GMM). We will
not deal with this topic.

As we have seen, the method of moments finds estimators of unknown parameters by equating the
corresponding sample and population moments. This method often provides estimators when other
methods fail to do so or when estimators are harder to obtain, as in the case of a gamma distribution.
Compared to other methods, method of moments estimators are easy to compute and have some
desirable properties that we will discuss in ensuing sections. The drawback is that they are usually
not the “best estimators” (to be defined later) available and sometimes may even be meaningless.

EXERCISES 5.2

5.2.1. Let X1, . . . , Xn be a random sample of size n from the geometric distribution for which p

is the probability of success.

(a) Use the method of moments to find a point estimator for p.
(b) Use the following data (simulated from geometric distribution) to find the moment

estimator for p:

2 5 7 43 18 19 16 11 22
4 34 19 21 23 6 21 7 12

How will you use this information? [The pdf of a geometric distribution is f (x) =
p(1 − p)x−1, for x = 1, 2, . . . . Also μ = 1/p.]

5.2.2. Let X1, . . . , Xn be a random sample of size n from the exponential distribution whose pdf
(by taking θ = 1/β in Definition 2.3.7) is

f (x, θ) =
⎧⎨
⎩

θe−θx, x ≥ 0

0, x < 0.

(a) Use the method of moments to find a point estimator for θ.
(b) The following data represent the time intervals between the emissions of beta particles.

0.9 0.1 0.1 0.8 0.9 0.1 0.1 0.7 1.0 0.2

0.1 0.1 0.1 2.3 0.8 0.3 0.2 0.1 1.0 0.9

0.1 0.5 0.4 0.6 0.2 0.4 0.2 0.1 0.8 0.2

0.5 3.0 1.0 0.5 0.2 2.0 1.7 0.1 0.3 0.1

0.4 0.5 0.8 0.1 0.1 1.7 0.1 0.2 0.3 0.1
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Assuming the data follow an exponential distribution, obtain a moment estimate for the
parameter θ. Interpret.

5.2.3. Let X1, . . . , Xn be a random sample from a uniform distribution on the interval
(θ − 1, θ + 1).
(a) Find a moment estimator for θ.
(b) Use the following data to obtain a moment estimate for θ:

11.72 12.81 12.09 13.47 12.37

5.2.4. The probability density of a one-parameter Weibull distribution is given by

f(x) =
{

2αxe−αx2
, x > 0

0, otherwise.

(a) Using a random sample of size n, obtain a moment estimator for α.
(b) Assuming that the following data are from a one-parameter Weibull population,

1.87 1.60 2.36 1.12 0.15
1.83 0.64 1.53 0.73 2.26

obtain a moment estimate of α.

5.2.5. Let X1, . . . , Xn be a random sample from the truncated exponential distribution with pdf

f(x) =
{

e−(x−θ), x ≥ θ

0, otherwise.

Find the method of moments estimate of θ.

5.2.6. Let X1, . . . , Xn be a random sample from a distribution with pdf

f(x, α) = 1 + αx

2
, −1 ≤ x ≤ 1, and − 1 ≤ α ≤ 1.

Find the moment estimators for α.

5.2.7. Let X1, . . . , Xn be a random sample from a population with pdf

f (x) =
⎧⎨
⎩

2α2

x3 , x ≥ α

0, otherwise.

Find a method of moments estimator for α.

5.2.8. Let X1, . . . , Xn be a random sample from a negative binomial distribution with pmf

p(x, r, p) =
(

x + r − 1
r − 1

)
px(1 − p)x, 0 ≤ p ≤ 1, x = 0, 1, 2, . . . .
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Find method of moments estimators for r and p. [Here E[X] = r(1 − p)/p and E
[
X2
] =

r(1 − p)(r − rp + 1)/p2.]

5.2.9. Let X1, . . . , Xn be a random sample from a distribution with pdf

f (x) =
{

(θ + 1) xθ, 0 ≤ x ≤ 1; θ > −1

0, otherwise.

Use the method of moments to obtain an estimator of θ.

5.2.10. Let X1, . . . , Xn be a random sample from a distribution with pdf

f (x) =
{2β−2x

β2 , 0 < x < β

0, otherwise.

Use the method of moments to obtain an estimator of β.

5.2.11. Let X1, . . . , Xn be a random sample with common mean μ and variance σ2. Obtain a method
of moments estimator for σ.

5.2.12. Let X1, . . . , Xn be a random sample from the beta distribution with parameters α and β.
Find the method of moments estimator for α and β.

5.2.13. Let X1, X2, . . . , Xn be a random sample from a distribution with unknown mean μ and
variance σ2. Show that the method of moments estimators for μ and σ2 are, respectively, the
sample mean X and S′2 = (1/n)

∑n
i=1 (X − X)2. Note that S′2 = [(n − 1)/n] S2 where S2 is

the sample variance.

5.3 THE METHOD OF MAXIMUM LIKELIHOOD

It is highly desirable to have a method that is generally applicable to the construction of statistical
estimators that have “good” properties. In this section we present an important method for finding
estimators of parameters proposed by geneticist/statistician Sir Ronald A. Fisher around 1922 called
the method of maximum likelihood. Even though the method of moments is intuitive and easy to
apply, it usually does not yield “good” estimators. The method of maximum likelihood is intuitively
appealing, because we attempt to find the values of the true parameters that would have most likely
produced the data that we in fact observed. For most cases of practical interest, the performance of
maximum likelihood estimators is optimal for large enough data. This is one of the most versatile
methods for fitting parametric statistical models to data. First, we define the concept of a likelihood
function.

Definition 5.3.1 Let f (x1, . . . , xn; θ), θ ∈ � ⊆ Rk, be the joint probability (or density) function of n

random variables X1, . . . , Xn with sample values x1, . . . , xn. The likelihood function of the sample is
given by

L(θ; x1, . . . , xn) = f (x1, . . . , xn; θ), [= L(θ), in a briefer notation].
We emphasize that L is a function of θ for fixed sample values.
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If X1, . . . , Xn are discrete iid random variables with probability function p(x, θ), then, the likelihood
function is given by

L(θ) = P(X1 = x1, . . . , Xn = xn)

=
n∏

i=1

P(Xi = xi), (by multiplication rule for independent
random variables)

=
n∏

i=1

p (xi, θ)

and in the continuous case, if the density is f (x, θ), then the likelihood function is

L(θ) =
n∏

i=1

f (xi, θ).

It is important to note that the likelihood function, although it depends on the observed sample values
x = (x1, . . . , xn), is to be regarded as a function of the parameter θ. In the discrete case, L(θ; x1, . . . , xn)

gives the probability of observing x = (x1, . . . , xn), for a given θ. Thus, the likelihood function is a
statistic, depending on the observed sample x = (x1, . . . , xn).

Example 5.3.1
Let X1, . . . , Xn be iid N(μ, σ2) random variables. Let x1, . . . , xn be the sample values. Find the likelihood

function.

Solution
The density function for the normal variable is given by f (x) = 1

σ
√

2π
exp

(
− (x−μ)2

2σ2

)
. Hence, the likelihood

function is

L
(
μ, σ2

)
=

n∏
i=1

1√
2πσ

exp

(
− (xi − μ)2

2σ2

)
= 1

(2π)n/2σn
exp

⎛
⎜⎜⎜⎝−

n∑
i=1

(xi − μ)2

2σ2

⎞
⎟⎟⎟⎠ .

A statistical procedure should be consistent with the assumption that the best explanation of a set
of data is provided by an estimator θ̂, which will be the value of the parameter θ that maximizes the
likelihood function. This value of θ will be called the maximum likelihood estimator. The goal of
maximum likelihood estimation is to find the parameter value(s) that makes the observed data most
likely.

Definition 5.3.2 The maximum likelihood estimators (MLEs) are those values of the parameters that
maximize the likelihood function with respect to the parameter θ. That is,

L
(
θ̂; x1, . . . , xn

)
= max

θ∈�
L (θ; x1, . . . , xn)

where � is the set of possible values of the parameter θ.
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The method of maximum likelihood extends to the case of several parameters. Let X1, . . . , Xn be a
random sample with joint pmf (if discrete) or pdf (if continuous)

L(θ1, . . . , θm; x1, . . . , xn) = f (x1, x2, . . . , xn; θ1, θ2, . . . , θm)

where the values of the parameters θ1, . . . , θm are unknown and x1, . . . , xn are the observed sample
values. Then, the maximum likelihood estimates θ̂1, . . . , θ̂m are those values of the θ′

is that maximize
the likelihood function, so that

f
(
x1, . . . , xn; θ̂1, . . . , θ̂m

)
≥ f (x1, . . . , xn; θ1, . . . , θm)

for all allowable θ1, . . . , θm.

Note that the likelihood function conveys to us how feasible the observed sample is as a function of
the possible parameter values. Maximum likelihood estimates give the parameter values for which
the observed sample is most likely to have been generated. In general, the maximum likelihood
method results in the problem of maximizing a function of single or several variables. Hence, in most
situations, the methods of calculus can be used. In deriving the MLEs, however, there are situations
where the techniques developed are more problem specific. Sometimes we need to use numerical
methods, such as Newton’s method.

In order to find a MLE, we need only to compute the likelihood function and then maximize that
function with respect to the parameter of interest. In many cases, it is easier to work with the natural
logarithm (ln) of the likelihood function, called the log-likelihood function. Because the natural log-
arithm function is increasing, the maximum value of the likelihood function, if it exists, will occur
at the same point as the maximum value of the log-likelihood function. We now summarize the
calculus-based procedure to find MLEs.

PROCEDURE TO FIND MLE

1. Define the likelihood function, L(θ).
2. Often it is easier to take the natural logarithm (ln) of L(θ).
3. When applicable, differentiate ln L(θ) with respect to θ, and then equate the derivative to zero.
4. Solve for the parameter θ, and we will obtain θ̂.
5. Check whether it is a maximizer or global maximizer.

Example 5.3.2
Suppose X1, . . . , Xn are a random sample from a geometric distribution with parameter p, 0 ≤ p ≤ 1.

Find MLE p̂.

Solution
For the geometric distribution, the pmf is given by

f (x, p) = p(1 − p)x−1, 0 ≤ p ≤ 1, x = 1, 2, 3, . . . .
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Hence, the likelihood function is

L(p) =
n∏

i=1

[
p (1 − p)x−1

]
= pn (1 − p)

−n+
n∑

i=1
xi

.

Taking the natural logarithm of L(p),

ln L = n ln p +
(

−n +
n∑

i=1

xi

)
ln (1 − p) .

Taking the derivative with respect to p, we have

d ln L

dp
= n

p
−

(
−n +

n∑
i=1

xi

)

(1 − p)
.

Equating
d ln L(p)

dp
to zero, we have

n

p
−

(
−n +

n∑
i=1

xi

)

(1 − p)
= 0.

Solving for p,

p = n
n∑

i=1
xi

= 1
x
.

Thus, we obtain a maximum likelihood estimator of p as

p̂ = n
n∑

i=1
Xi

= 1

X
.

We remark that (1/X) is the maximum likelihood estimate of p. It can be shown that p̂ is a global maximum.

Example 5.3.3
Suppose X1, . . . , Xn are random samples from a Poisson distribution with parameter λ. Find MLE λ̂.

Solution
We have the probability mass function

p(x) = λxe−λ

x! , x = 0, 1, 2, . . . , λ > 0.
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Hence, the likelihood function is

L (λ) =
n∏

i=1

λxie−λ

xi! = λ

n∑
i=1

xi

e−nλ

n∏
i=1

xi!
.

Then, taking the natural logarithm, we have

ln L(λ) =
n∑

i=1

xi ln λ − nλ −
n∑

i=1

ln (xi!)

and differentiating with respect to λ results in

d ln L(λ)

dλ
=

n∑
i=1

xi

λ
− n

and

d ln L(λ)

dλ
= 0, implies

n∑
i=1

xi

λ
− n = 0.

That is,

λ =

n∑
i=1

xi

n
= x.

Hence, the MLE of λ is

λ̂ = X.

It can be verified that the second derivative is negative and, hence, we really have a maximum.

Sometimes the method of derivatives cannot be used for finding the MLEs. For example, the likelihood
is not differentiable in the range space. In this case, we need to make use of the special structures
available in the specific situation to solve the problem. The following is one such case.

Example 5.3.4
Let X1, . . . , Xn be a random sample from U(0, θ), θ > 0. Find the MLE of θ.

Solution
Note that the pdf of the uniform distribution is

f (x) =
⎧⎨
⎩

1
θ
, 0 ≤ x ≤ θ

0, otherwise.
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L (�)

�
X(n)

■ FIGURE 5.1 Likelihood function for uniform probability distribution.

Hence, the likelihood function is given by

L (θ, x1, x2, . . . , xn) =
⎧⎨
⎩

1
θn

, 0 ≤ x1, x2, . . . , xn ≤ θ

0, otherwise.

When θ ≥ max(xi), the likelihood is (1/θn), which is positive and decreasing as a function of θ (for fixed n).

However, for θ < max(xi) the likelihood drops to 0, creating a discontinuity at the point max(xi) (this is the

minimum value of θ that can be chosen which still satisfies the condition 0 ≤ xi ≤ θ), and Figure 5.1 shows

that the maximum occurs at this point. Hence, we will not be able to find the derivative. Thus, the MLE is

the largest order statistic,

θ̂ = max (Xi) = X(n).

In the previous example, because E(X) = (θ/2), we can see that θ = 2E(X). Hence, the method
of moments estimator for θ is θ̂ = 2X. Sometimes the method of moments estimator can give
meaningless results. To see this, suppose we observe values 3, 5, 6, and 18 from a U(0, θ) distribution.
Clearly, the maximum likelihood estimate of θ is 18, whereas the method of moments estimate is
16, which is not quite acceptable, because we have already observed a value of 18.

As mentioned earlier, if the unknown parameter θ represents a vector of parameters, say θ =
(θ1, . . . , θl), then the MLEs can be obtained from solutions of the system of equations

∂

∂θ
ln L (θ1, . . . , θn) = 0, for i = 1, . . . , l.

These are called the maximum likelihood equations and the solutions are denoted by (θ̂1, . . . , θ̂l).

Example 5.3.5
Let X1, . . . , Xn be N

(
μ, σ2).

(a) If μ is unknown and σ2 = σ2
0 is known, find the MLE for μ.

(b) If μ = μ0 is known and σ2 is unknown, find the MLE for σ2.

(c) If μ and σ2 are both unknown, find the MLE for θ = (
μ, σ2).
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Solution
In order to avoid notational confusion when taking the derivative, let θ = σ2. Then, the likelihood function

is

L (μ, θ) = (2πθ)−n/2 exp

⎛
⎜⎜⎜⎝−

n∑
i=1

(xi − μ)2

2θ

⎞
⎟⎟⎟⎠

or

ln L (μ, θ) = −n

2
ln (2π) − n

2
ln θ −

n∑
i=1

(xi − μ)2

2θ
.

(a) When θ = θ0 = σ2
0 is known, the problem reduces to estimating the only one parameter, μ.

Differentiating the log-likelihood function with respect to μ,

∂

∂μ

(
ln L (μ, θ0)

) =
2

n∑
i=1

(xi − μ)

2θ0
.

Setting the derivative equal to zero and solving for μ,

n∑
i=1

(xi − μ) = 0.

From this,

n∑
i=1

xi = nμ or μ = x.

Thus, we get μ̂ = X.

(b) When μ = μ0 is known, the problem reduces to estimating the only one parameter, σ2 = θ.

Differentiating the log-likelihood function with respect to θ,

∂ ln L (μ, θ)

∂θ
= −n

2θ
+

n∑
i=1

(xi − μ)2

2θ2 .

Setting the derivative equal to zero and solving for θ, we get

θ̂ = σ̂2 =

n∑
i=1

(Xi − μ0)2

n
.
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(c) When both μ and θ are unknown, we need to differentiate with respect to both μ and θ individually:

∂ ln L (μ, θ)

∂μ
=

2
n∑

i=1
(xi − μ)

2θ

and

∂ ln L (μ, θ)

∂θ
= −n

2θ
+

n∑
i=1

(xi − μ)2

2θ2 .

Setting the derivatives equal to zero and solving simultaneously, we obtain

μ̂ = X,

σ̂2 = θ̂ =

n∑
i=1

(
Xi − X

)2
n

= S′2.

Note that in (a) and (c), the estimates for μ are the same; however, in (b) and (c), the estimates for

σ2 are different.

At times, the maximum likelihood estimators may be hard to calculate. It may be necessary to use
numerical methods to approximate values of the estimate. The following example gives one such case.

Example 5.3.6
Let X1, . . . , Xn be a random sample from a population with gamma distribution and parameters α and β.

Find MLEs for the unknown parameters α and β.

Solution
The pdf for the gamma distribution is given by

f (x) =
⎧⎨
⎩

xα−1e−x/β

�(α)βα , x > 0, α > 0, β > 0

0, otherwise.

The likelihood function is given by

L = L(α, β) = 1
(� (α) βα)n

n∏
i=1

xα−1
i e

−
n∑

i=1
xi/β

.

Taking the logarithms gives

ln L = −n ln � (α) − nα ln β + (α − 1)

n∑
i=1

ln xi −
n∑

i=1

x

β
.
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Now taking the partial derivatives with respect to α and β and setting both equal to zero, we have

∂

∂α
ln L = −n

�′ (α)

� (α)
− n ln β +

n∑
i=1

ln xi = 0

∂

∂β
ln L = −n

α

β
+

n∑
i=1

xi

β2 = 0.

Solving the second one to get β in terms of α, we have

β = x

α
.

Substituting this β in the first equation, we have to solve

−n
�′ (α)

� (α)
− n ln

x

α
+

n∑
i=1

ln xi = 0

for α > 0. There is no closed-form solution for α and β. In this case, one can use numerical methods such as

the Newton--Raphson method to solve for α, and then use this value to find β.

There are many references available on the Web. Explaining the Newton–Raphson method, for
instance, http://web.as.uky.edu/statistics/users/viele/sta601s08/nummax.pdf gives the algorithm for
the gamma distribution.

In only a few cases are we able to obtain a simple form for the maximum likelihood equation that
can be solved by setting the first derivative to zero. Often we cannot write an equation that can be
differentiated to find the MLE parameter estimates. This is especially true in the situation where the
model is complex and involves many parameters. Evaluating the likelihood exhaustively for all values
of the parameters becomes almost impossible, even with modern computers. This is why so-called
optimization algorithms have become indispensable to statisticians. The purpose of an optimization
algorithm is to find as fast as possible the set of parameter values that make the observed data most
likely. There are many such algorithms available. We describe the Newton–Raphson method in Project
5F, and another powerful algorithm, known as the EM algorithm, is given in Section 13.4.

Sometimes, it may be necessary to estimate a function of a parameter. The following invariance
property of maximum likelihood estimators is very useful in those cases.

Theorem 5.3.1 Let h(θ) be a one-to-one function of θ. If θ̂ = (θ̂1, . . . , θ̂l) is the MLE of θ = (θ1, . . . , θl),
then the MLE of a function h(θ) = (h1(θ), . . . , hk(θ)) of these parameters is h(θ̂) = (h1(θ̂), . . . , hk(θ̂)) for
1 ≤ k ≤ l.

As a consequence of the invariance property, in Example 5.3.5, we can obtain the estimator of the

true standard deviation as σ̂ = √
σ̂2 =

√
(1/n)

∑n
i=1

(
Xi − X

)2
.
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It is also known that, under very general conditions on the joint distribution of the sample and for
a large sample size n, the MLE θ̂ is approximately the minimum variance unbiased estimator (this
concept is introduced in the next section) of θ.

EXERCISES 5.3

5.3.1. Let X1, . . . , Xn be a random sample recorded as heads or tails resulting from tossing a coin n

times with unknown probability p of heads. Find the MLE p̂ of p. Also using the invariance
property, obtain an MLE for q = 1 − p. How would you use the results you have obtained?

5.3.2. Suppose X1, . . . , Xn are a random sample from an exponential distribution with parameter
θ. Find the MLE of θ̂. Also using the invariance property, obtain an MLE for the variance.

5.3.3. Let X be a random variable representing the time between successive arrivals at a checkout
counter in a supermarket. The values of X in minutes (rounded to the nearest minute) are

1 2 3 7 11 4 13
12 7 3 2 11 7 2

Assume that the pdf of X is f (x) = (1/θ)e−(x/θ). Use these data to find MLE θ̂. How can you
use this estimate you have just derived?

5.3.4. Let X1, . . . , Xn be a random sample from the truncated exponential distribution with pdf

f (x) =
⎧⎨
⎩

e−(x−θ), x ≥ θ

0, otherwise.

Show that the MLE of θ is min(Xi).

5.3.5. The pdf of a random variable X is given by

f (x) =
⎧⎨
⎩

2x
α2 e−x2/α2

, x > 0

0, otherwise.

Using a random sample of size n, obtain MLE α̂ for α.

5.3.6. The pdf of a random variable X is given by

P (X = n) = 1
n! exp

(
αn − eα

)
, n = 0, 1, 2, . . . .

Using a random sample of size n, obtain MLE α̂ for α.

5.3.7. Let X1, . . . , Xn be a random sample from a two-parameter Weibull distribution with pdf

f (x) =
⎧⎨
⎩

α
βα xα−1e−(x/β)α , x ≥ 0

0, otherwise.

Find the MLEs of α and β.
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5.3.8. Let X1, . . . , Xn be a random sample from a Rayleigh distribution with pdf

f (x) =
⎧⎨
⎩

x
αe−x2/2α, x > 0

0, otherwise.

Find the MLEs of α.

5.3.9. Let X1, . . . , Xn be a random sample from a two-parameter exponential population with
density

f (x, θ, υ) = 1
θ
e− (x−υ)

θ , for x ≥ υ, θ > 0.

Find MLEs for θ and υ when both are unknown.

5.3.10. Let X1, . . . , Xn be a random sample from the shifted exponential distribution with pdf

f (x) =
⎧⎨
⎩

λe−λ(x−θ), x ≥ θ

0, otherwise.

Obtain the maximum likelihood estimators of θ and λ.

5.3.11. Let X1, . . . , Xn be a random sample on [0, 1] with pdf

f (x) = �(2θ)

�(θ)2 [x(1 − x)]θ−1, θ > 0.

What equation does the maximum likelihood estimate of θ satisfy?

5.3.12. Let X1, . . . , Xn be a random sample with pdf

f (x) =
⎧⎨
⎩

(α + 1)xα, 0 ≤ x ≤ 1

0, otherwise.

Find the MLE of α.

5.3.13. Let X1, . . . , Xn be a random sample from a uniform distribution with pdf

f (x) =
⎧⎨
⎩

1
3θ+2 , 0 ≤ x ≤ 3θ + 2

0, otherwise.

Obtain the MLE of θ.

5.3.14. Let X1, . . . , Xn be a random sample from a Cauchy distribution with pdf

f (x) = 1

π
[
1 + (x − β)2

] , −∞ < x < ∞.

Find the MLE for β.
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5.3.15. The following data represent the amount of leakage of a fluorescent dye from the
bloodstream into the eye in patients with abnormal retinas:

1.6 1.4 1.2 2.2 1.8 1.7
1.8 6.3 2.4 2.3 18.9 22.8

Assuming that these data come from a normal distribution, find the maximum likelihood
estimate of (μ, σ).

5.3.16. Let X1, . . . , Xn be a random sample from a population with gamma distribution and
parameters α and β. Show that the MLE of μ = αβ is the sample mean μ̂ = X.

5.3.17. The lifetimes X of a certain brand of component used in a machine can be modeled as
a random variable with pdf f (x) = (1/θ) e−(x/θ). The reliability R(x) of the component is
defined as R(x) = 1 − F(x). Suppose X1, X2, . . . , Xn are the lifetimes of n components
randomly selected and tested. Find the MLE of R(x).

5.3.18. Using the method explained in Project 4A, generate 20 observations of a random variable
having an exponential distribution with mean and standard deviation both equal to 2. What
is the maximum likelihood estimate of the population mean? How much is the observed
error?

5.3.19. Let X1, . . . , Xn be a random sample from a Pareto distribution (named after the economist
Vilfredo Pareto) with shape parameter a. The density function is given by

f (x) =
⎧⎨
⎩

a

xa+1 , x ≥ 1

0, otherwise.

(The Pareto distribution is a skewed, heavy-tailed distribution. Sometimes it is used to model
the distribution of incomes.) Show that the maximum likelihood estimator of a is

â = n
n∑

i=1
ln (Xi)

.

5.3.20. Let X1, . . . , Xn be a random sample from N (θ, θ), 0 < θ < ∞. Find the maximum likelihood
estimate of θ.

5.4 SOME DESIRABLE PROPERTIES OF POINT ESTIMATORS

Two different methods of finding estimators for population parameters have been introduced in the
preceding sections. We have seen that it is possible to have several estimators for the same parameter.
For a practitioner of statistics, an important question is going to be which of many available sam-
ple statistics, such as mean, median, smallest observation, or largest observation, should be chosen
to represent all of the sample? Should we use the method of moments estimator, the maximum
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likelihood estimator, or an estimator obtained through some other method of least squares (we will
see this method in Chapter 8)? Now we introduce some common ways to distinguish between them
by looking at some desirable properties of these estimators.

5.4.1 Unbiased Estimators
It is desirable to have the property that the expected value of an estimator of a parameter is equal to
the true value of the parameter. Such estimators are called unbiased estimators.

Definition 5.4.1 A point estimator θ̂ is called an unbiased estimator of the parameter θ if E(θ̂) = θ for
all possible values of θ. Otherwise θ̂ is said to be biased. Furthermore, the bias of θ̂ is given by

B = E(θ̂) − θ.

Note that the bias is nothing but the expected value of the (random) error, E(θ̂ − θ). Thus, the
estimator is unbiased if the bias is 0 for all values of θ. The bias occurs when a sample does not
accurately represent the population from which the sample is taken. It is important to observe that
in order to check whether θ̂ is unbiased, it is not necessary to know the value of the true parameter.
Instead, one can use the sampling distribution of θ̂. We demonstrate the basic procedure through the
following example.

Example 5.4.1
Let X1, . . . , Xn be a random sample from a Bernoulli population with parameter p. Show that the method

of moments estimator is also an unbiased estimator.

Solution
We can verify that the moment estimator of p is

p̂ =

n∑
i=1

Xi

n
= Y

n
.

Because for binomial random variables, E (Y) = np, it follows that

E
(
p̂
) = E

(
Y

n

)
= 1

n
E (Y) = 1

n
· np = p.

Hence, p̂ = Y/n is an unbiased estimator for p.

In fact, we have the following result, which states that the sample mean is always an unbiased estimator
of the population mean.

Theorem 5.4.1 The mean of a random sample X is an unbiased estimator of the population mean μ.



248 CHAPTER 5 Point Estimation

Proof. Let X1, . . . , Xn be random variables with mean μ. Then, the sample mean is X = (1/n)
∑n

i=1 Xi.

EX = 1
n

n∑
i=1

EXi = 1
n

· nμ = μ.

Hence, X is an unbiased estimator of μ.

How is this interpreted in practice? Suppose that a data set is collected with n numerical observations
x1, . . . , xn. The resulting sample mean may be either less than or greater than the true population
mean, μ (remember, we do not know this value). If the sampling experiment was repeated many
times, then the average of the estimates calculated over these repetitions of the sampling experiment
will equal the true population mean.

If we have to choose among several different estimators of a parameter θ, it is desirable to select one
that is unbiased. The following result states that the sample variance S2 = (1/n − 1)

∑n
i=1

(
Xi − X

)2
is an unbiased estimator of the population variance σ2. This is one of the reasons why in the definition
of the sample variance, instead of dividing by n, we divide by (n − 1).

Theorem 5.4.2 If S2 is the variance of a random sample from an infinite population with finite variance
σ2, then S2 is an unbiased estimator for σ2.

Proof. Let X1, . . . , Xn be iid random variables with variance σ2 < ∞. We have

E
(
S2
)

= 1
n − 1

E

n∑
i=1

(
Xi − X̄

)2 = 1
n − 1

E

[
n∑

i=1

{
(Xi − μ) − (

X − μ
)}2

]

= 1
n − 1

[
n∑

i=1

E {Xi − μ}2 − nE
{
X − μ

}2
]

.

Because E{(Xi − μ)2} = σ2 and E{(X − μ
)2} = σ2/n, it follows that

E
(
S2) = 1

n − 1

[
n∑

i=1

σ2 − n
σ2

n

]
= σ2.

Hence, S2 is an unbiased estimator of σ2.

It is important to observe the following:

1. S2 is not an unbiased estimator of the variance of a finite population.
2. Unbiasedness may not be retained under functional transformations, that is; if θ̂ is an unbiased

estimator of θ, it does not follow that f (θ̂) is an unbiased estimator of f (θ).
3. Maximum likelihood estimators or moment estimators are not, in general, unbiased.
4. In many cases it is possible to alter a biased estimator by multiplying by an appropriate constant

to obtain an unbiased estimator.

The following example will show that unbiased estimators need not be unique.
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Example 5.4.2
Let X1, . . . , Xn be a random sample from a population with finite mean μ. Show that the sample mean X

and 1
3X + 2

3X1 are both unbiased estimators of μ.

Solution
By Theorem 1, X is unbiased. Now

E
[

1
3X + 2

3X1

]
= 1

3μ + 2
3μ = μ.

Hence, 1
3X + 2

3X1 is also an unbiased estimator of μ.

How many unbiased estimators can we find? In fact, the following example shows that if we have
two unbiased estimators, there are infinitely many unbiased estimators.

Example 5.4.3
Let θ̂1 and θ̂2 be two unbiased estimators of θ. Show that

θ̂3 = aθ̂1 + (1 − a) θ̂2, 0 ≤ a ≤ 1

is an unbiased estimator of θ. Note that θ̂3 is a convex combination of θ̂1 and θ̂2. In addition, assume that

θ̂1 and θ̂2 are independent, and Var(θ̂1) = σ2
1 and Var(θ̂2) = σ2

2 . How should the constant a be chosen in

order to minimize the variance of θ̂3?

Solution
We are given that E(θ̂1) = θ and E(θ̂2) = θ. Therefore,

E
(
θ̂3
) = E

[
aθ̂1 + (1 − a) θ̂2

]
= aEθ̂1 + (1 − a) Eθ̂2

= aθ + (1 − a) θ = θ.

Hence θ̂3 is unbiased. By independence,

Var
(
θ̂3
) = Var

[
aθ̂1 + (1 − a) θ̂2

]
= a2Var

(
θ̂1
)+ (1 − a)2 Var

(
θ̂2
)

= a2σ2
1 + (1 − a)2 σ2

2 .

To find the minimum,

d

da
Var

(
θ̂3
) = 2aσ2

1 − 2(1 − a)σ2
2 = 0,
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gives us

a = σ2
2

σ2
1 + σ2

2
.

Because d2

da2 V(θ̂3) = 2σ2
1 + 2σ2

2 > 0, V (θ̂3) has a minimum at this value of ′a ′. Thus, if σ2
1 = σ2

2 , then

a = 1/2.

Example 5.4.4
Let X1, . . . , Xn be a random sample from a population with pdf

f (x) =
⎧⎨
⎩

1
β e−x/β, x > 0

0, otherwise.

Show that the method of moments estimator for the population parameter β is unbiased.

Solution
From Section 5.2, we have seen that the method of moments estimator for β is the sample mean X, and

the population mean is β. Because E(X) = μ = β, the method of moments estimator for the population

parameter β is unbiased.

As we have seen, there can be many unbiased estimators of a parameter θ. Which one of these
estimators can we choose? If we have to choose an unbiased estimator, it will be desirable to choose
the one with the least variance. If an estimator is biased, then we should prefer the one with low bias
as well as low variance. Generally, it is better to have an estimator that has low bias as well as low
variance. This leads us to the following definition.

Definition 5.4.2 The mean square error of the estimator θ̂, denoted by MSE(θ̂), is defined as

MSE
(
θ̂
)

= E
(
θ̂ − θ

)2
.

Through the following calculations, we will now show that the MSE is a measure that combines both
bias and variance.

MSE
(
θ̂
)

= E
(
θ̂ − θ

)2 = E
[(

θ̂ − E
(
θ̂
))

+
(
E
(
θ̂
)

− θ
)]2

= E

[(
θ̂ − E

(
θ̂
))2 +

(
E
(
θ̂
)

− θ
)2 + 2

(
θ̂ − E

(
θ̂
)) (

E
(
θ̂
)

− θ
)]

= E
(
θ̂ − E

(
θ̂
))2 + E

(
E
(
θ̂
)

− θ
)2 + 2E

(
θ̂ − E

(
θ̂
)) (

E
(
θ̂
)

− θ
)

= Var
(
θ̂
)

+
[
E
(
θ̂
)

− θ
]2

,
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because letting B = E(θ̂) − θ, we get

MSE
(
θ̂
) = Var

(
θ̂
)+ B2.

B is called the bias of the estimator. Also, E(θ̂ − E(θ̂))(E(θ̂) − θ) = 0.

Because the bias is zero for unbiased estimators, it is clear that MSE(θ̂) = Var(θ̂). Mean square error
measures, on average, how close an estimator comes to the true value of the parameter. Hence, this
could be used as a criterion for determining when one estimator is “better” than another. However,
in general, it is difficult to find θ̂ to minimize MSE(θ̂). For this reason, most of the time, we look only
at unbiased estimators in order to minimize Var(θ̂). This leads to the following definition.

Definition 5.4.3 The unbiased estimator θ̂ that minimizes the mean square error is called the minimum
variance unbiased estimator (MVUE) of θ.

Example 5.4.5
Let X1, X2, X3 be a sample of size n = 3 from a distribution with unknown mean μ, −∞ < μ < ∞, where

the variance σ2 is a known positive number. Show that both θ̂1 = X and θ̂2 = [(2X1 + X2 + 5X3) /8] are

unbiased estimators for μ. Compare the variances of θ̂1 and θ̂2.

Solution
We have

E
(
θ̂1
) = E

(
X
) = 1

3
· 3μ = μ,

and

E
(
θ̂2
) = 1

8
[2EX1 + EX2 + 5EX3]

= 1
8

[2μ + μ + 5μ] = μ.

Hence, both θ̂1 and θ̂2 are unbiased estimators.

However,

Var
(
θ̂1
) = σ2

3
,

whereas

Var
(
θ̂2
) = Var

(
2X1 + X2 + 5X3

8

)

= 4
64

σ2 + 1
64

σ2 + 25
64

σ2 = 30
64

σ2.

Because Var(θ̂1)<Var(θ̂2), we see that X is a better unbiased estimator in the sense that the variance of X

is smaller.
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It is important to observe that the maximum likelihood estimators are not always unbiased, but it
can be shown that for such estimators the bias goes to zero as the sample size increases.

5.4.2 Sufficiency
In the statistical inference problems on a parameter, one of the major questions is: Can a specific
statistic replace the entire data without losing pertinent information? Suppose X1, . . . , Xn is a random
sample from a probability distribution with unknown parameter θ. In general, statisticians look for
ways of reducing a set of data so that these data can be more easily understood without losing the
meaning associated with the entire collection of observations. Intuitively, a statistic U is a sufficient
statistic for a parameter θ if U contains all the information available in the data about the value of θ.
For example, the sample mean may contain all the relevant information about the parameter μ, and
in that case U = X is called a sufficient statistic for μ. An estimator that is a function of a sufficient
statistic can be deemed to be a “good” estimator, because it depends on fewer data values. When
we have a sufficient statistic U for θ, we need to concentrate only on U because it exhausts all the
information that the sample has about θ. That is, knowledge of the actual n observations does not
contribute anything more to the inference about θ.

Definition 5.4.4 Let X1, . . . , Xn be a random sample from a probability distribution with unknown param-
eter θ. Then, the statistic U = g(X1, . . . , Xn) is said to be sufficient for θ if the conditional pdf or pf of
X1, . . . , Xn given U = u does not depend on θ for any value of u. An estimator of θ that is a function
of a sufficient statistic for θ is said to be a sufficient estimator of θ.

Example 5.4.6
Let X1, . . . , Xn be iid Bernoulli random variables with parameter θ. Show that U = ∑n

i=1 Xi is sufficient

for θ.

Solution
The joint probability mass function of X1, . . . , Xn is

f (X1, . . . , Xn; θ) = θ

n∑
i=1

Xi

(1 − θ)
n−

n∑
i=1

Xi

, 0 ≤ θ ≤ 1.

Because U = ∑n
i=1 Xi we have

f (X1, . . . , Xn; θ) = θU (1 − θ)n−U , 0 ≤ U ≤ n.

Also, because U ∼ B(n, θ), we have

f (u; θ) =
(

n

u

)
θU(1 − θ)n−U.

Also,

f (x1, . . . , xn |U = u) = f (x1, . . . , xn, u)

fU (u)
=
{

f (x1,...,xn)
fU(u) , u = ∑

xi

0, otherwise.
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Therefore,

f (x1, . . . , xn|U = u) =

⎧⎪⎪⎨
⎪⎪⎩

θu(1−θ)n−u(
n

u

)
θu(1−θ)n−u

= 1(
n

u

) if u = ∑
xi

0, otherwise.

which is independent of θ. Therefore U is sufficient for θ.

Example 5.4.7
Let X1, . . . , Xn be a random sample from U(0, θ). That is,

f (x) =
{

1
θ , if 0 < x < θ

0, otherwise.

Show that U = max
1≤i≤n

X is sufficient for θ.

Solution
The joint density or the likelihood function is given by

f (x1, . . . , xn; θ) =
{

1
θn , if 0 < x1, . . . , xn < θ

0, otherwise.

The joint pdf f (x1, . . . , xn; θ) can be equivalently written as

f (x1, . . . , xn; θ) =
{

1
θn , if xmin > 0, xmax < θ

0, otherwise.

Now, we can compute the pdf of U.

F(u) = P (U ≤ u) = P (X1, . . . , Xn ≤ u)

=
n∏

i=1

P (Xi ≤ u) (because of independence)

=
n∏

i=1

⎛
⎝ u∫

0

1
θ
dx

⎞
⎠ = un

θn
, 0 < u < θ.

The pdf of U may now be obtained as

f (u) = d

du
F(u) = nun−1

θn
, 0 < u < θ
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Moreover,

f (x1, . . . , xn |u) =

⎧⎪⎨
⎪⎩

f (x1,...,xn,u)
fU(u)

= f (x1,...,xn)
fU(u)

, if u = xmax and xmin > 0

0, otherwise.

Using the expressions for f (x1, . . . , xn) and fU(u) we obtain

f (x1, . . . , xn |u = u) =
⎧⎨
⎩

1/θn

nun−1/θn = 1
nun−1 , if u = xmax and xmin > 0

0, otherwise

f (X1, . . . , Xn |U ) is a function of u and xmin which is independent of θ. Hence, U = max
1≤i≤n

Xi is sufficient

for θ.

The outcome X1, . . . , Xn is always sufficient, but we will exclude this trivial statistic from consid-
eration. In the previous two examples, we were given a statistic and asked to check whether it was
sufficient. It can often be tedious to check whether a statistic is sufficient for a given parameter based
directly on the foregoing definition. If the form of the statistic is not given, how do we guess what is
the sufficient statistic? Now think of working out the conditional probability by hand for each of our
guesses! In general, this will be a tedious way to go about finding sufficient statistics. Fortunately, the
Neyman–Fisher factorization theorem makes it easier to spot a sufficient statistic. The following result
will give us a convenient way of verifying sufficiency of a statistic through the likelihood function.

NEYMAN–FISHER FACTORIZATION CRITERIA

Theorem 5.4.3 Let U be a statistic based on the random sample X1, . . . , Xn. Then, U is a sufficient statistic
for θ if and only if the joint pdf (or pf ) f (x1, . . . , xn; θ) (which depends on the parameter θ) can be factored
into two nonnegative functions.

f (x1, . . . , xn; θ) = g (u, θ) h (x1, . . . , xn) , for all x1, . . . , xn,

where g (u, θ) is a function only of u and θ and h (x1, . . . , xn) is a function of only x1, . . . , xn and not of θ.

Proof. (Discrete case.) We will only give the proof in the discrete case, even though the result is also
true for the continuous case. First suppose that U (X1, . . . , Xn) is sufficient for θ. Then, X1 = x1, X2 =
x2, . . . , Xn = xn if and only if X1 = x1, X2 = x2, . . . , Xn = xn and U (X1, . . . , Xn) = U (x1, . . . , xn) =
u(say). Therefore

f (x1, . . . , xn; θ) = Pθ

(
X1 = x1, X2 = x2, . . . , Xn = xn and U = u

)
= Pθ (X1 = x1, X2 = x2, . . . , Xn = xn |U = u) Pθ (U = u) .



5.4 Some Desirable Properties of Point Estimators 255

Because U is assumed to be sufficient for θ, the conditional probability Pθ (X1 = x1, X2 =
x2, . . . , Xn = xn |U = u) does not depend on θ. Let us denote this conditional probability by
h(x1, . . . , xn). Clearly Pθ(U = u) is a function of u and θ. Let us denote this by g(u, θ).

It now follows from the equation above that

f (x1, . . . , xn; θ) = g (u, θ) h (x1, . . . , xn)

as was to be shown.

To prove the converse, assume that

f (x1, . . . , xn; θ) = g (u, θ) h (x1, . . . , xn) .

Define the set Au by

Au = {(x1, . . . , xn) : U (x1, . . . , xn) = u} .

That is, Au is the set of all (x1, . . . , xn) such that U maps it into u. We note that Au does not depend
on θ. Now

Pθ(X1 = x1, X2 = x2, . . . , Xn = xn |U = u)

= Pθ

(
X1 = x1, X2 = x2, . . . , Xn = xn and U = u

)
Pθ (U = u)

=
⎧⎨
⎩

Pθ(X1=x1,X2=x2,...,Xn=xn and U=u)
Pθ(U=u) , if (x1, . . . , xn) ∈ Au

0, if (x1, . . . , xn) /∈ Au.

If (x1, . . . , xn) /∈ Au, then, clearly,

f (x1, . . . , xn; θ) = Pθ (X1 = x1, X2 = x2, . . . , Xn = xn |U = u)

which is independent of θ.

If (x1, . . . , xn) ∈ Au, then, using the factorization criterion, we obtain

Pθ(X1 = x1, X2 = x2, . . . , Xn = xn |U = u)

= Pθ (X1 = x1, X2 = x2, . . . , Xn = xn)

Pθ (U = u)

= f (x1, . . . , xn; θ)
Pθ (U = u)

= g (u, θ) h (x1, . . . , xn)∑
(x1,...,xn)∈Au

g (u, θ) h (x1, . . . , xn)

= g (u, θ) h (x1, . . . , xn)

g (u, θ)
∑

(x1,...,xn)∈Au

h (x1, . . . , xn)
= h (x1, . . . , xn)∑

(x1,...,xn)∈Au

h (x1, . . . , xn)
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Therefore, the conditional distribution of X1, . . . , Xn given U does not depend on θ, proving that U

is sufficient.

One can use the following procedure to verify that a given statistic is sufficient. This procedure is
based on factorization criteria rather than using the definition of sufficiency directly.

PROCEDURE TO VERIFY SUFFICIENCY

1. Obtain the joint pdf or pf fθ (x1, . . . , xn ).
2. If necessary, rewrite the joint pdf or pf in terms of the given statistic and parameter so that one can

use the factorization theorem.
3. Define the functions g and h, in such a way that g is a function of the statistic and parameter only

and h is a function of the observations only.
4. If step 3 is possible, then the statistic is sufficient. Otherwise, it is not sufficient.

In general, it is not easy to use the factorization criterion to show that a statistic U is not sufficient.
We now give some examples using the factorization theorem.

Example 5.4.8
Let X1, . . . , Xn denote a random sample from a geometric population with parameter p. Show that X is

sufficient for p.

Solution
For the geometric distribution, the pf is given by

f (x, p) =
⎧⎨
⎩

p (1 − p)x−1 , x ≥ 1

0, otherwise.

Hence, the joint pf is

f (x1, . . . , xn; p) = pn (1 − p)
−n+

n∑
i=1

xi

=
⎧⎨
⎩

pn(1 − p)nx−n, if x1, . . . , xn ≥ 1

0, otherwise.

Take,

g(x, p) = pn (1 − p)nx−n and h(x1, . . . , xn) =
⎧⎨
⎩

1, if xi ≥ 1

0, otherwise.

Thus, X is sufficient for p.
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Example 5.4.9
Let X1, . . . , Xn denote a random sample from a U (0, θ) with pdf

fθ(x) =

⎧⎪⎨
⎪⎩

1
θ
, 0 < x < θ, θ > 0

0, otherwise.

Show that X(n)= max
1≤i≤n

Xi is sufficient for θ, using the factorization theorem.

Solution
The likelihood function of the sample is

fθ (x1, . . . , xn) =

⎧⎪⎨
⎪⎩

1
θn

, if 0 < x1, . . . , xn < θ,

0, otherwise.

We can now write fθ (x1, . . . ., xn) as

fθ (x1, . . . , xn) = h (x1, . . . , xn) g
(
θ, x(n)

)
, for all x1, . . . , xn

where

h (x1, . . . , xn) =
⎧⎨
⎩

1, if x1, . . . , xn > 0

0, otherwise

and

g
(
θ; x(n)

) =

⎧⎪⎨
⎪⎩

1
θn

, if 0 < x(n) < θ,

0, otherwise.

From the factorization theorem, we now conclude that X(n) is sufficient for θ. In the next definition, we

introduce the concept of joint sufficiency.

Definition 5.4.5 Two statistics U1 and U2 are said to be jointly sufficient for the parameters θ1 and θ2

if the conditional distribution of X1, . . . , Xn given U1 and U2 does not depend on θ1 or θ2. In general,
the statistic U = (U1, . . . , Un) is jointly sufficient for θ = (θ1, . . . , θn) if the conditional distribution of
X1, . . . , Xn given U is free of θ.

Now we state the factorization criteria for joint sufficiency analogous to the single population
parameter case.
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THE FACTORIZATION CRITERIA FOR JOINT SUFFICIENCY

Theorem 5.4.4 The two statistics U1 and U2 are jointly sufficient for θ1 and θ2 if and only if the likelihood
function can be factored into two non-negative functions,

f (x1, . . . , xn; θ1, θ2) = g(u1, u2; θ1, θ2) h(x1, . . . , xn)

where g (u1, u2; θ1, θ2) is only a function of u1, u2; θ1 and θ2, and h(x1, xn) is free of θ1 or θ2.

Example 5.4.10
Let X1, . . . , Xn be a random sample from N(μ, σ2).

(a) If μ is unknown and σ2 = σ2
0 is known, show that X is a sufficient statistic for μ.

(b) If μ = μ0 is known and σ2 is unknown, show that
∑n

i=1 (Xi − μ0)2 is sufficient for σ2.

(c) If μ and σ2 are both unknown, show that
∑n

i=1 Xi and
∑n

i=1 X2
i are jointly sufficient for μ and σ2.

Solution
The likelihood function of the sample is

L = 1

(2π)n/2 σn
exp

⎡
⎢⎢⎢⎣−

n∑
i=1

(Xi − μ)2

2σ2

⎤
⎥⎥⎥⎦

= 1

(2π)n/2 σn
exp

[
1

2σ2

(
n∑

i=1

x2
i − 2μ

n∑
i=1

xi + nμ2

)]

= (2π)−n/2 σ−n exp

⎛
⎜⎜⎜⎝−

n∑
i=1

x2
i

2σ2

⎞
⎟⎟⎟⎠ exp

(
2μnx

2σ2

)
exp

(
−nμ2

2σ2

)
.

(a) When σ2 = σ2
0 is known, use the factorization criteria, with

g(x, μ) = exp

(
2nμx − nμ2

2σ2
0

)

and

h(x1, . . . , xn) = (2π)−n/2 σ−n exp

⎛
⎜⎜⎜⎝−

n∑
i=1

x2
i

2σ2

⎞
⎟⎟⎟⎠ .

Therefore, X is sufficient for μ.
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(b) When μ = μ0 is known, let

g

(
n∑

i=1

(Xi − μ)2 , σ2

)
= σ−n exp

∣∣∣∣∣∣∣∣∣
−

n∑
i=1

(xi − μ)2

2σ2

∣∣∣∣∣∣∣∣∣
and

h(x1, . . . , xn) = 1

(2π)n/2 .

Thus,
∑n

i=1 (Xi − μ)2 is sufficient for σ2.

(c) When both μ and σ2 are unknown, use

g

(
n∑

i=1

xi,

n∑
i=1

x2
i , μ, σ2

)
= σ−n exp

∣∣∣∣∣∣∣∣∣
−

n∑
i=1

x2
i − 2μ

n∑
i=1

xi + nμ2

2σ2

∣∣∣∣∣∣∣∣∣
and

h(x1, . . . , xn) = 1

(2π)n/2 .

Hence,
∑n

i=1 Xi and
∑n

i=1 X2
i are jointly sufficient for μ and σ2.

Example 5.4.11
Suppose that we have a random sample X1, . . . , Xn from a discrete distribution given by

fθ(x) = C (θ) 2−x/θ, x = θ, θ + 1, θ + 2, . . . ; θ > 0

where C (θ) > 0 is a normalizing constant. Using the factorization theorem, find a sufficient statistic for θ.

Solution
The joint density function f (x1, . . . , xn; θ) of the sample X1, . . . , Xn is

f (x1, . . . , xn; θ) =

⎧⎪⎪⎨
⎪⎪⎩

C (θ) 2
−

n∑
i=1

(xi/θ)

, x1, x2, . . . , xn are integers ≥ θ

0, otherwise .

The function f (x1, . . . , xn; θ) can be written as

f (x1, . . . , xn; θ) = h(x1, . . . , xn) C (θ) 2
−

n∑
i=1

(xi/θ)

g1
(
θ, x(1)

)
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where x(1) = min
i

(x1, . . . , xn), and

h(x1, x2, . . . , xn) =
⎧⎨
⎩

1, if xj − x(1) ≥ 0 is an integer for j = 1, 2, . . . , n

0, otherwise

and

g1
(
θ, x(1)

) =
⎧⎨
⎩

1, if x(1) ≥ θ

0, otherwise.

Thus,

f (x1, . . . , xn; θ) = h(x1, . . . , xn) g
(
θ,
∑

xi, x(1)

)

where g
(
θ,
∑

xi, x(1)

) = C(θ)2
−

n∑
i=1

(xi/ θ)
g1
(
θ, x(1)

)
. Using the factorization theorem, we conclude that(∑

xi, x(1)

)
is jointly sufficient for θ. This result shows that even for a single parameter, we may need

more than one statistic for sufficiency.

When using the factorization criterion, one has to be careful in cases where the range space depends
on the parameter.

Using the factorization criterion, we can prove the following result, which says that if we have
a unique maximum likelihood estimator, then that estimator will be a function of the sufficient
statistic.

Theorem 5.4.5 If U is a sufficient statistic for θ, the maximum likelihood estimator of θ, if unique, is a
function of U.

Proof. Because U is sufficient, by Theorem 5.4.1, the joint pdf can be factored as

f (x1, . . . , xn; θ) = g(u, θ) h(x1, . . . , xn).

This depends on θ only through the statistic U. To maximize L we need to maximize g(U, θ).

Many common distributions such as Poisson, normal, gamma, and Bernoulli are members of the
exponential family of probability distributions. The exponential family of distributions has density
functions of the form

f (x; θ) =
⎧⎨
⎩

exp [k(x)c(θ) + S(x) + d(θ)] , if x ∈ B

0, x /∈ B

where B does not depend on the parameter θ.
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Example 5.4.12
Write the following in exponential form.

(a)
e−λλx

x!
(b) px (1 − p)1−x

(c)
1√
2π

e−(x−μ)2/2

Solution

(a) We have

e−λλx

x! = exp [x ln λ − ln x! − λ] .

Here k(x) = x, c (λ) = ln λ, S(x) = − ln (x!), and d (λ) = −λ.

(b) Similarly,

px (1 − p)1−x = exp
[
x ln

(
p

1 − p

)
+ ln (1 − p)

]
, x = 0 or 1.

(c) This is the standard normal density.

1√
2π

e−(x−μ)2/2 = exp
[
xμ − x2

2 − μ2

2 − 1
2 ln (2π)

]
, −∞ < x < ∞.

Note that in the previous example, for each of the cases,
∑n

i=1 Xi is a sufficient statistic for the
parameter. In the next result, we give a generalization of this fact.

Theorem 5.4.6 Let X1, . . . , Xn be a random sample from a population with pdf or pmf of the exponential
form

f (x; θ) =
{

exp [k(x)c (θ) + S(x) + d (θ)] , if x ∈ B

0, x /∈ B

where B does not depend on the parameter θ. The statistic
∑n

i=1 k (Xi) is sufficient for θ.

Proof. The joint density

f (x1, . . . , xn; θ) = exp

[
c (θ)

n∑
i=1

k (xi) +
n∑

i=1

S (xi) + nd (θ)

]

=
{

exp

[
c (θ)

n∑
i=1

k (xi) + nd (θ)

]}{
exp

[
n∑

i=1

S (xi)

]}
.

Using the factorization theorem, the statistic
∑n

i=1 k (Xi) is sufficient.
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It does not follow that every function of a sufficient statistic is sufficient. However, any one-to-one
function of a sufficient statistic is also sufficient. Every statistic need not be sufficient. When they
do exist, sufficient estimators are very important, because if one can find a sufficient estimator it
is ordinarily possible to find an unbiased estimator based on the sufficient statistic. Actually, the
following theorem shows that if one is searching for an unbiased estimator with minimal variance,
it has to be restricted to functions of a sufficient statistics.

RAO–BLACKWELL THEOREM
Theorem 5.4.7 Let X1, . . . , Xn be a random sample with joint pf or pdf f (x1, . . . , xn; θ) and let
U = (U1, . . . , Un) be jointly sufficient for θ = (θ1, . . . , θn). If T is any unbiased estimator of k (θ), and if
T ∗ = E (T |U ), then:

(a) T ∗ is an unbiased estimator of k(θ).
(b) T ∗ is a function of U, and does not depend on θ.
(c) Var

(
T ∗) ≤ Var(T ) for every θ, and Var

(
T ∗) < Var(T ) for some θ unless T ∗ = T with probability 1.

Proof.

(a) By the property of conditional expectation and by the fact that T is an unbiased estimator of k(θ),

E
(
T ∗)= E(E(T |U)) = E(T ) = k(θ).

Hence, T ∗ is an unbiased estimator of k(θ).
(b) Because U is sufficient for θ, the conditional distribution of any statistic (hence, for T ), given U,

does not depend on θ. Thus, T ∗ = E(T |U) is a function of U.
(c) From the property of conditional probability, we have the following:

Var (T ) = E (Var (T |U )) + Var (E (T |U ))

= E (Var (T |U )) + Var
(
T ∗) .

Because Var (T |U ) ≥ 0 for all u, it follows that E (Var (T |U )) ≥ 0. Hence, Var
(
T ∗) ≤ Var(T ). We

note that Var
(
T ∗) = Var(T ) if and only if Var (T |U) = 0 or T is a function of U, in which case

T ∗ = T (from the definition of T ∗ = E (T |U ) = T ).

In particular, if k (θ) = θ, and T is an unbiased estimator of θ, then T ∗ = E (T |U ) will typically give
the MVUE of θ. If T is the sufficient statistic that best summarizes the data from a given distribution
with parameter θ, and we can find some function g of T such that E (g (T )) = θ, it follows from the
Rao–Blackwell theorem that g(T ) is the UMVUE for θ.

EXERCISES 5.4

5.4.1. Let X1, . . . , Xn be a random sample from a population with density

f (x) =
{

e−(x−θ), for x > θ

0, otherwise.
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(a) Show that X is a biased estimator of θ.

(b) Show that X is an unbiased estimator of μ = 1 + θ.

5.4.2. The mean and variance of a finite population {a1, . . . , aN} are defined by

μ = 1
N

N∑
i=1

ai and σ2 = 1
N

N∑
i=1

(ai − μ)2.

For a finite population, show that the sample variance S2 is a biased estimator of σ2.

5.4.3. For an infinite population with finite variance σ2, show that the sample standard deviation
S is a biased estimator for σ. Find an unbiased estimator of σ. [We have seen that S2 is an
unbiased estimator of σ2. From this exercise, we see that a function of an unbiased estimator
need not be an unbiased estimator.]

5.4.4. Let X1, . . . , Xn be a random sample from an infinite population with finite variance σ2.
Define

S′2 = 1
n

n∑
i=1

(
Xi − X

)2
.

Show that S′2 is a biased estimator for σ2, and that the bias of S′2 is − σ2

n
. Thus, S′2 is

negatively biased, and so on average underestimates the variance. Note that S′2 is the MLE
of σ2.

5.4.5. Let X1, . . . , Xn be a random sample from a population with the mean μ. What condition
must be imposed on the constants c1, c2, . . . , cn so that

c1X1 + c2X2 + · · · + cnXn

is an unbiased estimator of μ?

5.4.6. Let X1, . . . , Xn be a random sample from a geometric distribution with parameter θ. Find
an unbiased estimate of θ.

5.4.7. Let X1, . . . , Xn be a random sample from U (0, θ) distribution. Let Yn = max{X1, . . . , Xn}.
We know (from Example 5.3.4) that θ̂1 = Yn is a maximum likelihood estimator of θ.

(a) Show that θ̂2 = 2X is a method of moments estimator.

(b) Show that θ̂1 is a biased estimator, and θ̂2 is an unbiased estimator of θ.

(c) Show that θ̂3 = n+1
n

θ̂1 is an unbiased estimator of θ.

5.4.8. Let X1, . . . , Xn be a random sample from a population with mean μ and variance 1. Show
that μ̂2 = X

2
is a biased estimator of μ2, and compute the bias.

5.4.9. Let X1, . . . , Xn be a random sample from an N
(
μ, σ2

)
distribution. Show that the estimator

μ̂ = X is the MVUE for μ.
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5.4.10. Let X1, . . . , Xn1 be a random sample from an N
(
μ1, σ2

)
distribution and let Y1, . . . , Yn2 be

a random sample from a N
(
μ2, σ2

)
distribution. Show that the pooled estimator

σ̂2 = (n1 − 1) S2
1 + (n2 − 1) S2

2
n1 + n2 − 2

is unbiased for σ2, where S2
1 and S2

2 are the respective sample variances.

5.4.11. Let X1, . . . , Xn be a random sample from an N
(
μ, σ2

)
distribution. Show that the sample

median, M, is an unbiased estimator of the population mean μ. Compare the variances of
X and M. [Note: For the normal distribution, the mean, median, and mode all occur at
the same location. Even though both X and M are unbiased, the reason we usually use the
mean instead of the median as the estimator of μ is that X has a smaller variance than M.]

5.4.12. Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ. Show
that the sample mean X is sufficient for λ.

5.4.13. Let X1, . . . , Xn be a random sample from a population with density function

fσ(x) = 1
2σ

exp
(

−|x|
σ

)
, −∞ < X < ∞, σ > 0.

Find a sufficient statistic for the parameter σ.

5.4.14. Show that if θ̂ is a sufficient statistic for the parameter θ and if the maximum likelihood
estimator of θ is unique, then the maximum likelihood estimator is a function of this
sufficient statistic θ̂.

5.4.15. Let X1, . . . , Xn be a random sample from an exponential population with parameter θ.

(a) Show that
∑n

i=1 Xi is sufficient for θ. Also show that X is sufficient for θ.
(b) The following is a random sample from exponential distribution.

1.5 3.0 2.6 6.8 0.7 2.2 1.3 1.6 1.1 6.5
0.3 2.0 1.8 1.0 0.7 0.7 1.6 3.0 2.0 2.5
5.7 0.1 0.2 0.5 0.4

(i) What is an unbiased estimate of the mean?
(ii) Using part (a) and these data, find two sufficient statistics for the parameter θ.

5.4.16. Let X1, . . . , Xn be a random sample from a one-parameter Weibull distribution with pdf

f (x) =
⎧⎨
⎩

2αxe−αx2
, x > 0

0, otherwise.

(a) Find a sufficient statistic for α.
(b) Using part (a), find an UMVUE for α.
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5.4.17. Let X1, . . . , Xn be a random sample from a population with density function

f (x) =

⎧⎪⎨
⎪⎩

1
θ
, − θ

2
≤ x ≤ θ

2
, θ > 0

0, otherwise.

Show that
(

min
1≤i≤n

Xi, max
1≤i≤n

Xi

)
is sufficient for θ.

5.4.18. Let X1, . . . , Xn be a random sample from a G(1, β) distribution.

(a) Show that U = ∑n
i=1 Xi is a sufficient statistic for β.

(b) The following is a random sample from a G(1, β) distribution.

0.3 3.4 0.4 1.8 0.7 1.0 0.1 2.3 3.7 2.0
0.3 3.7 0.1 1.3 1.2 3.3 0.2 1.3 0.6 0.4

Find a sufficient statistic for β.

5.4.19. Show that X1 is not sufficient for μ, if X1, . . . , Xn is a sample from N(μ, 1).

5.4.20. Let X1, . . . , Xn be a random sample from the truncated exponential distribution
with pdf

f (x) =
⎧⎨
⎩

eθ−x, x > θ

0, otherwise.

Show that X(1) = min(Xi) is sufficient for θ.

5.4.21. Let X1, . . . , Xn be a random sample from a distribution with pdf

f (x) =
⎧⎨
⎩

θxθ−1, 0 < x < 1, θ > 0

0, otherwise.

Show that U = X1, . . . , Xn is a sufficient statistic for θ.

5.4.22. Let X1, . . . , Xn be a random sample of size n from a Bernoulli population with parameter
p. Show that p̂ = X is the UMVUE for p.

5.4.23. Let X1, . . . , Xn be a random sample from a Rayleigh distribution with pdf

f (x) =
⎧⎨
⎩

2x
α e−x2/α, x > 0

0, otherwise.

Show that
∑n

i=1 X2
i is sufficient for the parameter α.
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5.5 OTHER DESIRABLE PROPERTIES OF A POINT ESTIMATOR

In this section, we discuss a few more properties of point estimators that can be used in choosing a
particular estimator.

5.5.1 Consistency
It is a desirable property that the values of an estimator be closer to the value of the true parameter
being estimated as the sample size becomes larger. To this end, we now introduce the notion of
consistent estimators. Consistency is a large-sample, or asymptotic, property. That is, it describes
the behavior of estimators as the sample size n becomes infinitely large. In this section, we use the
notation θ̂n for θ̂ to show the dependence of the estimator on the sample size n.

Definition 5.5.1 The estimator θ̂n is said to be a consistent estimator of θ if, for any ε > 0,

lim
n→∞ P

[∣∣θ̂n − θ
∣∣ ≤ ε

]
= 1

or equivalently,

lim
n→∞ P

[∣∣θ̂n − θ
∣∣ > ε

]
= 0.

The statement “θ̂n is a consistent estimator of θ” is equivalent to “θ̂n converges in probability to θ.”
That is, the sample estimator should have a high probability of being close to the population value
θ for large sample size n. The idea of consistency can be observed in Figure 5.2, where θ̂n converges
to θ. If it did not, θ̂n would not be a consistent estimator of θ.

If the estimator is unbiased, we have the following result, which gives a sufficient condition for the
consistency of an estimator. However, it is important to note that a consistent estimator need not be
unbiased, and hence this result is not a necessary condition.

A SUFFICIENT CONDITION FOR CONSISTENCY OF AN UNBIASED ESTIMATOR

Theorem 5.5.1 An unbiased estimator θ̂n of θ is a consistent estimator for θ if

lim
n→∞ Var

(
θ̂n

) = 0.

� x

n

■ FIGURE 5.2 Consistency of an estimator.
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The proof of this theorem follows directly from Chebyshev’s inequality. A general version of this result
is proved in Theorem 5.5.3.

Example 5.5.1
Let X1, . . . , Xn be a random sample with true mean μ and finite variance. Then, the sample mean X is a

consistent estimator of the population mean μ.

Solution
We show this result in two ways.

(i) Using Chebyshev’s inequality, P{|X − μ| ≥ ε} ≤ Var(x)

ε2 , we obtain

P
[∣∣X − μ

∣∣ ≤ k
] ≥ 1 −

σ2
X

k2

= 1 − σ2

k2n
→ 1as n → ∞.

Hence, X is a consistent estimator of μ.

(ii) First note that X is an unbiased estimator of μ. Because Var
(
X
) = (

σ2/n
)

, we have

lim
n→∞

σ2

n
= 0.

Thus, from the previous theorem, X is a consistent estimator of μ.

We can generalize Theorem 5.5.1 even when the estimator is biased. The following result states that
the mean square error of θ̂n decreases to zero as more and more observations are incorporated into
its computation.

TEST FOR CONSISTENCY

Theorem 5.5.2 Let θ̂n be an estimator of θ and let Var
(
θ̂n

)
be finite. If

lim
n→∞ E

[(
θ̂n − θ

)2] = 0

then θ̂n is a consistent estimator of θ.

Proof. Using Chebyshev’s inequality, we obtain

P
[∣∣θ̂n − θ

∣∣ ≥ ε
]

≤
E
[(

θ̂n − θ
)2]

s2 .

Because

lim
n→∞ E

[(
θ̂n − θ

)2] = 0, [by hypothesis]
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the right-hand side converges to zero. Thus,

lim
n→∞ P

[∣∣θ̂n − θ
∣∣ ≥ ε

]
= 0.

Consequently θ̂n is a consistent estimator of θ.

Furthermore, we know that

E
[(

θ̂n − θ
)2] = Var

(
θ̂n

)+
[
B
(
θ̂n

)]2
,

and for unbiased estimators, the bias B
(
θ̂n

)
is zero. As a result, Theorem 5.5.1 is a particular case

of Theorem 5.5.3. We now summarize the procedure for testing for consistency of an estimator as
follows:

PROCEDURE TO TEST FOR CONSISTENCY

1. Check whether the estimator θ̂n is unbiased or not.
2. Calculate Var

(
θ̂n
)

and B
(
θ̂n
)
, the bias of θ̂n .

3. An unbiased estimator is consistent if Var
(
θ̂n
) → 0 as n → ∞.

4. A biased estimator is consistent if both

Var
(
θ̂n
) → 0 and B

(
θ̂n
) → 0 as n → ∞.

Example 5.5.2
Let X1, . . . , Xn be a random sample from N

(
μ, σ2) population.

(a) Show that the sample variance S2 is a consistent estimator for σ2.

(b) Show that the maximum likelihood estimators for μ and σ2 are consistent estimators for μ and σ2.

Solution

(a) We have already seen that ES2 = σ2, and hence, S2 is an unbiased estimator of σ2. Because

the sample is drawn from a normal distribution, we know that
[
(n − 1) S2/σ2] has a chi-square

distribution with (n − 1) d.f. and

Var

(
(n − 1) S2

σ2

)
= 2 (n − 1).

Thus,

2 (n − 1) = Var

(
(n − 1) S2

σ2

)
= (n − 1)2

σ4 Var
(
S2).
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This implies that

Var
(
S2) = 2σ4

n − 1
→ 0 as n → ∞.

Hence, S2 is a consistent estimator of the variance of a normal population.

(b) We have seen that the MLE of μ is μ̂ = X, and that of σ2 is σ̂2
n = (1/n)

∑n
i=1

(
Xi − X

)2
. Now μ̂ is

an unbiased estimator of μ, and Var(X) = (σ2/n) → 0 as n → ∞. Therefore, from Theorem 5.5.1,

X is a consistent estimator for μ.

Now we will use the identity

E
[(

θ̂n − θ
)2] = Var

(
θ̂n

)+
[
B
(
θ̂n

)]2

to show that the MLE for σ2 is biased with

E
(
σ̂2
n

) = n − 1
n

σ2

and

B
(
σ̂2
n

) = n − 1
n

σ2 − σ2 = −1
n

σ2.

Thus, σ̂2
n = (1/n)

∑n
i=1

(
Xi − X

)2 = ((n − 1) /n) S2. Using part (a), we get

Var
(
σ̂2
n

) = (n − 1)2

n2 Var
(
S2)

= (n − 1)2 2σ4

n2 (n − 1)
= 2(n − 1)

(
σ2)2

n2 .

Therefore,

lim
n→∞ B

(
σ̂2
n

) = lim
n→∞

−σ2

n
= 0, and lim

n→∞ Var
(
σ̂2
n

)

= lim
n→∞

2(n − 1)
(
σ2)2

n2 = 0.

By Theorem 5.5.3,

σ̂2
n = 1

n

n∑
i=1

(
Xi − X

)2

is a consistent estimator of σ2.

From the foregoing example we can see that consistent estimators need not be unique. It turns out that
most of the MLEs and method of moments estimators derived for important probability distributions
are consistent.
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5.5.2 Efficiency
We have seen that there can be more than one unbiased estimator for a parameter θ. We have also
mentioned that the one with the least variance is desirable. Here, we introduce the concept of effi-
ciency, which is based on comparing variances of the different unbiased estimators. If there are two
unbiased estimators, it is desirable to have the one with a smaller variance.

Definition 5.5.2 If θ̂1 and θ̂2 are two unbiased estimators for θ, the efficiency of θ̂1 relative to θ̂2 is the
ratio

e
(
θ̂1, θ̂2

) = Var
(
θ̂2
)

Var
(
θ̂1
) .

If Var
(
θ̂2
)

> Var
(
θ̂1
)
, or equivalently, e

(
θ̂1, θ̂2

)
> 1, then, θ̂1 is relatively more efficient than θ̂2. That

is θ̂1 has a smaller variance as compared to the variance of θ̂2.

We summarize the following procedure to compare the efficiencies of the different unbiased
estimators.

PROCEDURE TO TEST RELATIVE EFFICIENCY

1. Check for unbiasedness of θ̂1 and θ̂2.
2. Calculate the variances of θ̂1 and θ̂2.

3. Calculate the relative efficiency as

e
(
θ̂1; θ̂2

) = Var
(
θ̂2
)

Var
(
θ̂1
) .

4. Conclusion: If e
(
θ̂1, θ̂2

)
< 1, θ̂2 is more efficient than θ̂1, and if e

(
θ̂1, θ̂2

)
> 1, then, θ̂1 is more efficient

than θ̂2. Among the unbiased estimators, the more efficient estimator is preferable.

Example 5.5.3
Let X1, . . . , Xn, n > 3, be a random sample from a population with a true mean μ and variance σ2.

Consider the following three estimators of μ:

θ̂1 = 1
3

(X1 + X2 + X3) ,

θ̂2 = 1
8

X1 + 3
4 (n − 2)

(
X2 + · · · + Xn−1

)+ 1
8

Xn,

and

θ̂3 = X.

(a) Show that each of the three estimators is unbiased.

(b) Find e
(
θ̂2, θ̂1

)
, e
(
θ̂3, θ̂1

)
, and e

(
θ̂3, θ̂2

)
. Which of the three estimators is more efficient?
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Solution
(a) Given E(Xi) = μ, i = 1, 2, . . . , n. Then,

E
(
θ̂1
) = 1

3
[E(X1) + E(X2) + E(X3)] = 3μ

3
= μ

E
(
θ̂2
) = 1

8
E(X1) + 3

4 (n − 2)

(
E(X2) + · · · + E

(
Xn−1

))+ 1
8

E(Xn)

= 1
8

μ + 3
4 (n − 2)

(n − 2) μ + 1
8

μ = μ

E
(
θ̂3
) = E

(
X
) = μ.

Hence, θ̂1, θ̂2, and θ̂3 are unbiased estimators of μ.

(b) Computing the variances, we have

Var
(
θ̂1
) = 1

9
(Var(X1) + Var(X2) + Var(X3))

= 1
9

3σ2 = σ2

3
.

Var
(
θ̂2
) = σ2

64
+ 9 (n − 2) σ2

16 (n − 2)2 + σ2

64

= 2σ2

64
+ 9σ2

16 (n − 2)
= n + 16

32 (n − 2)
σ2.

Var
(
θ̂3
) = σ2

n
.

The relative efficiencies are

e
(
θ̂1, θ̂2

) = Var
(
θ̂2
)

Var
(
θ̂1
) = σ2 (n + 16) /32 (n − 2)

σ2/3

= 3 (n + 16)

32 (n − 2)
< 1 for n > 3.

Thus, for n ≥ 4, θ̂2 is more efficient than θ̂1.

e
(
θ̂3, θ̂1

) = Var
(
θ̂1
)

Var
(
θ̂3
) = σ2/3

σ2/n
= n

3
> 1 for n ≥ 4.
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Hence, for n > 3, θ̂3 is more efficient than θ̂1.

e
(
θ̂3, θ̂2

) = Var
(
θ̂2
)

Var
(
θ̂3
) =

n+16
32(n−2) σ

2

σ2/n

= n2 + 16n

32 (n − 2)
> 1 for n ≥ 4.

Therefore, even though both θ̂3θ̂2 are based on all the n observations, for n > 3, the sample mean θ̂3 is

more efficient than θ̂2.

It is reasonable to compare estimators on the basis of variance alone if they are both unbiased.
To facilitate the cases where the estimators are biased, we use the mean square error (MSE) in the
definition of relative efficiency.

Definition 5.5.3 An estimator θ̂1 is more efficient than θ̂2 if

MSEθ̂1 ≤ MSEθ̂2

with strict inequality for some θ. Also, the relative efficiency of θ̂1 with respect to θ̂2 is

e
(
θ̂1, θ̂2

) =
E
[(

θ̂2 − θ
)2]

E
[(

θ̂1 − θ
)2] = MSE

(
θ̂2
)

MSE
(
θ̂1
) .

Example 5.5.4
Let X1, . . . , Xn, n ≥ 2 be a random sample from a normal population with a true mean μ and variance σ2.

Consider the following two estimators of σ2: θ̂1 = S2, and θ̂2 = S′2. Find e
(
θ̂1, θ̂2

)
.

Solution
Because

(n−1)S2

σ2 ∼ χ2 (n − 1), E(S2) = σ2, and MSE(S2) = Var(S2). Also, 2(n − 1) = Var
(

(n−1)S2

σ2

)
=

(n−1)2

σ4 Var(S2).

Thus,

MSE
(
θ̂1
) = 2

n − 1
σ4.

Also, it can be shown that

MSE
(
S′2) = (2n − 1)

n2 σ2.
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Thus, the relative efficiency of θ̂1 with respect to θ̂2 is

e
(
θ̂1, θ̂2

) = MSE
(
θ̂2
)

MSE
(
θ̂1
) = MSE

(
S′2)

MSE
(
S2
)

=
(2n−1)

n2 σ2

2
(n−1) σ

2
= (2n − 1) (n − 1)

2n2 .

For n ≥ 2, it can be seen that e
(
θ̂1, θ̂2

)
< 1. Hence, S′2 is relatively more efficient than S2.

We have seen that it is possible that one unbiased estimator is more efficient than another. This
leads to the possibility of having one unbiased estimator more efficient than all the other unbiased
estimators. This directs us to the following definition.

Definition 5.5.4 An unbiased estimator θ̂0, is said to be a uniformly minimum variance unbiased
estimator (UMVUE) for the parameter θ if, for any other unbiased estimator θ̂

Var
(
θ̂0
) ≤ Var

(
θ̂
)
,

for all possible values of θ.

It is not always easy to find an UMVUE for a parameter. However, the following result gives a lower
bound for the variance of any unbiased estimator.

CRAMÉR–RAO INEQUALITY
Theorem 5.5.3 Let X1, . . . , Xn be a random sample from a population with pdf (or pf ) fθ(x) that depends
on a parameter θ. If θ̂ is an unbiased estimator of θ, then, under very general conditions, the following
inequality is true:

Var
(
θ̂
) ≥ 1

nE

[(
∂ ln fθ(x)

∂θ

)2
] .

If θ̂ is an unbiased estimator of ψ(θ), then

Var
(
θ̂
) ≥

(
∂ψ(θ)

∂θ

)2

nE
[

∂
∂θ ln fθ(x)

]2 .
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If L(θ) is the likelihood function, we can rewrite the Cramér–Rao inequality in the form

Var
(
θ̂
) ≥ 1

E

[(
∂ ln L(θ)

∂θ

)2
]

From the Cramér–Rao inequality, we can obtain the following result.

EFFICIENT ESTIMATOR
Theorem 5.5.4 If θ̂ is an unbiased estimator of θ and if

Var
(
θ̂
) = 1

nE

[(
∂ ln fθ(x)

∂θ

)2
] ,

then θ̂ is a uniformly minimum variance unbiased estimator (UMVUE) of θ. Sometimes θ̂ is also referred to as
an efficient estimator.

Note that if the function f (.) is sufficiently smooth, it can be shown that

E

(
∂ ln fθ(x)

∂θ

)2
= −E

(
∂2 ln fθ(x)

∂θ2

)
= Var[ln fθ(x)] .

Hence, the Cramér–Rao inequality in this case can be rewritten as

Var
(
θ̂
) ≥ 1

−nE
(

∂2 ln fθ(x)

∂θ2

) = 1

nVar
[

∂
∂θ ln fθ(x)

] .

Now, we will give a procedure to apply the Cramér–Rao inequality.

CRAMÉR–RAO PROCEDURE TO TEST FOR EFFICIENCY

1. For the pdf (or pf), find ∂ lnf (x)
∂θ and ∂2 ln f (x)

∂θ2 .

2. Calculate (1/n) E
[
− ∂2 ln f (x)

∂θ2

]
if f (x) is smooth, or else calculate

[
1/nE

[(
∂ ln f (x)

∂θ

)2
]]

.

3. Calculate Var(θ̂).
4. If the result of step 2 is equal to the result of step 3, then, θ̂ is efficient for θ.

Example 5.5.5
Let X1, . . . , Xn be a random sample from an N(μ, σ2) population with density function f (x). Show that X

is an efficient estimator for μ.
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Solution
To calculate the Cramér–Rao lower bound, we have

ln f (x) = c − (x − μ)2

2σ2 ,

where c is a constant not involving μ. Then

∂ ln f (x)

∂μ
= x − μ

σ2

and

∂2 ln f (x)

∂μ2 = − 1

σ2

or

1

nE

[
−∂2 ln f (x)

∂θ2

] = 1

nE

(
1

σ2

) = σ2

n
= Var

(
X
)
.

Therefore, X is an efficient estimator of μ. That is, X is an UMVUE of μ.

Example 5.5.6
Suppose p(x) is the Poisson distribution with parameter λ. Show that the sample mean Xn is an efficient

estimator for λ.

Solution
Here the density function is given by p(x) = λx e−λ

x! . Taking logarithms,

ln p(x) = x ln λ − λ − ln(x!)

∂ ln p(x)

∂λ
= x

λ
− 1,

and

∂2 ln p(x)

∂λ2 = − x

λ2

Therefore, using the fact that the expected value of a Poisson r.v. is λ,

1

nE
[
− ∂2 ln f (x)

∂λ2

] = 1

nE
(

X
λ2

) = λ

n
= Var

(
X
)
.

Hence, X is an efficient estimator of λ.

Example 5.5.7
Let X1, . . . , Xn be a random sample from a Bernoulli trial with probability of success p. Show that the

maximum likelihood estimator is also an efficient estimator.
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Solution
Note that the MLE of p is p̂ = (1/n)

∑n
i=1 Xi = X/n, the fraction of successes in the total number of trials,

n. Because we can view n Bernoulli trials as being a single observation from a binomial distribution with

parameters n and p, the likelihood function is

L(p) =
(

n

x

)
px(1 − p)x.

Then,

ln L(p) = ln

(
n

x

)
+ x ln p + (n − x) ln(1 − p).

Now

∂ ln L(p)

∂p
= x

p
− n − x

1 − p
= x − np

p(1 − p)
.

Hence,

E

[(
∂ ln L(p)

∂p

)2
]

= E

[(
x − np

p (1 − p)

)2
]

= Var(x)

[p(1 − p)]2

= np(1 − p)

[p(1 − p)]2
n

p(1 − p)
.

Therefore, the Cramér– Rao bound is

1

E

[(
∂ ln L(p)

∂p

)2
] = p(1 − p)

n
.

Now

Var
(
p̂
) = Var

(
X

n

)

= 1

n2 Var(x)

= 1

n2 np(1 − p) = p(1 − p)

n
.

Because the variance of the estimator is equal to the Cramér–Rao lower bound, we conclude that p̂ = X
n is

an efficient estimator of p.

It is important to note that an UMVUE may not exist for a given problem. Even when an UMVUE
exists, it is not necessary that it have a variance equal to the Cramér–Rao lower bound. The term
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I(θ) = E

[(
∂ ln f (x)

∂θ

)2
]

is called the Fisher information. In fact, for a random sample of size n with

likelihood function L(θ), the Fisher information is defined as In(θ) = E

[(
∂ ln L(θ)

∂θ

)2
]

. It can be

shown that the Fisher information in a sample of size n is n times the Fisher information in one
observation. That is, In(θ) = nI(θ).

5.5.3 Minimal Sufficiency and Minimum-Variance Unbiased Estimation
In the study of statistics, it is desirable to reduce the data contained in the sample as much as possible
without losing relevant information. Our objective is to find minimal sufficient statistics and use
them to develop uniformly minimum variance unbiased estimators (UMVUEs) for true parameters.
Whenever sufficient statistics exist, then a statistician with those summary measures is as well off as
the statistician with the entire sample, for point estimation purposes. Minimal sufficient statistics are
those that are sufficient for the parameters and are functions of every other set of sufficient statistics
for those same parameters.

Definition 5.5.5 A sufficient statistic T (X) is called a minimal sufficient statistic if for any other statistic
T ′(X), T (X) is a function of T ′(X). That is,

T (X) = g
(
T ′(X)

)
.

Using this definition, it is difficult to determine whether a set of statistics is, in fact, minimal sufficient.
Now we will present a method due to Lehmann and Scheffé that will be of great help in finding a
minimal sufficient statistic.

We can summarize the Lehmann and Scheffé method to find a minimal sufficient statistic as fol-
lows. Let X1, . . . , Xn be a random sample with pdf or pmf f (x) that depends on a parameter θ. Let
(x1, . . . , xn) and (y1, . . . , yn) be two different sets of values of (X1, . . . , Xn). Let

L (θ; x1, . . . , xn)

L (θ; y1, . . . , yn)

be the ratio of the likelihoods evaluated at these two points. Suppose it is possible to find a
function g(x1, . . . , xn) such that this ratio will be free of the unknown parameter θ if and only if
g(x1, . . . , xn) = g(y1, . . . , yn). If such a function g can be found, then g(X1, . . . , Xn) is a minimal
sufficient statistic for θ.

Example 5.5.8
Let X1, . . . , Xn be a random sample from the Bernoulli distribution where P (Xi = 1) = p and

P (Xi = 0) = 1 − p, with p unknown. Find a minimal sufficient statistic for p.



278 CHAPTER 5 Point Estimation

Solution
The ratio of the likelihoods is

L(x1, . . . , xn)

L(y1, . . . , yn)
= p(x1, . . . , xn)

p(y1, . . . , yn)
= p

∑
xi (1 − p)n−∑ xi

p
∑

yi (1 − p)n−∑ yi

=
(

p

1 − p

)∑ xi−∑ yi

.

This ratio is to be independent of p, if and only if

n∑
i=1

xi −
n∑

i=1

yi = 0

which implies
n∑

i=1

xi =
n∑

i=1

yi.

Therefore,

g (X1, . . . , Xn) =
n∑

i=1

Xi

is a minimal sufficient statistic for p.

Example 5.5.9
Let X1, . . . , Xn be a random sample from a U(0, θ) distribution. Find a minimal sufficient statistic for θ.

Solution
The likelihood function is

L =
⎧⎨
⎩

1
θn

, if max(x1, . . . , xn) ≤ θ

0, otherwise .

Denote by xmax = max(x1, . . . , xn), and ymax = max(y1, . . . , yn). Then, the ratio of the likelihood

functions is

L(x1, . . . , xn)

L(y1, . . . , yn)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,

0,

if max (xmax , ymax) ≤ θ,

if ymax < xmax , and ymax ≤ θ ≤ xmax ,

undefined, elsewhere.

Thus, the ratio will not depend on θ if and only if xmax = ymax . Therefore, a minimal sufficient statistic for

θ is X(n), the largest order statistic.
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It is important to note that although we often can find a single statistic that is minimal sufficient for
one parameter, this need not be the case (see Exercise 5.5.1). For most of the density functions that we
consider, any unbiased estimator that is a function of a minimal sufficient statistic will be a uniformly
minimum variance unbiased estimator (UMVUE), that is, it will posses the smallest variance possible
among unbiased estimators.

Example 5.5.10
Let X1, . . . , Xn be a random sample from the normal distribution with known mean μ = μ0 and unknown

variance σ2. Show that
∑n

i=1 (Xi − μ0)2 is the minimal sufficient statistic for σ2. Use this statistic to find

an MVUE of σ2.

Solution
The ratio of the likelihoods is

L(x1, . . . , xn)

L (y1, . . . , yn)
= exp

[−∑ (xi − μ0)2/2σ2]
exp

[−∑ (yi − μ0)2/2σ2
]

= exp
[

1

2σ2

{∑
(yi − μ0)2 −

∑
(xi − μ0)2

}]
.

In order for this ratio to be free of σ2, we need

∑
(yi − μ0)2 =

∑
(xi − μ0)2.

Hence,
∑

(Xi − μ0)2 is minimal sufficient for σ2.

Because E(Xi − μ0)2 = σ2, we can see that (1/n)
∑

(Xi − μ0)2 is an unbiased estimator of σ2. Because

this is a function of a minimal sufficient statistic, (1/n)
∑n

i=1 (Xi − μ0)2 is an MVUE of σ2.

EXERCISES 5.5

5.5.1. Show that the maximum likelihood estimator for p, Yn/n in a binomial distribution is
consistent.

5.5.2. Show that Yn, the nth-order statistic from a U(0, θ) distribution, is a consistent estimator for
θ.

5.5.3. Let X1, . . . , Xn be a random sample with EXi = μi, EX2
i = μ′

2, and EX4
i = μ′

4, all finite.
Show that S2 = (1/n)

∑n
i=1 (Xi − X)2 is a consistent estimator of σ2 = Var(Xi).

5.5.4. Let X1, . . . , Xn be a random sample from a population with pdf

f (x) =
{

αxα−1, for 0 < x < 1; α > 0
0, otherwise.
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Is the method of moments estimator for α consistent?

5.5.5. Let X1, . . . , Xn be a random sample from an exponential population with parameter θ. Show
that X is a consistent estimator of θ.

5.5.6. Let X1, . . . , Xn and Y1, . . . , Yn be independent random samples from populations with
means μ1 and μ2 variances σ2

1 and σ2
2 , respectively. Show that the difference X − Y is a

consistent estimator of μ1 − μ2.

5.5.7. Let X1, . . . , Xn be a random sample from a population with pdf

f (x) =
{

1
αx(1−α)/α, for 0 < x < 1; α > 0

0, otherwise.

(a) Show that the maximum likelihood estimator of α is α̂ = − (1/n)
∑n

i=1 ln Xi.
(b) Is α̂ of part (a) an unbiased estimator of α?
(c) Is α̂ of part (a) a consistent estimator of α?

5.5.8. Let X1, . . . , Xn be a random sample from a Rayleigh distribution with pdf

f (x) =
{

x
αe−x2/(2α), for x > 0

0, otherwise.

(a) Determine the maximum likelihood estimator α̂ of α.
(b) Is α̂ of part (a) an unbiased estimator of α?
(c) Is α̂ of part (a) a consistent estimator of α?

5.5.9. Let X1, . . . , Xn be a random sample from the uniform distribution on the interval (θ, θ + 1).
Let

θ̂1 = X − 1
2

, θ̂2 = X(n) − n

n + 1
,

where X(n) is the nth order statistic. Find the efficiency of θ̂2 relative to θ̂1.

5.5.10. Let X1, . . . , Xn be a random sample from an N(μ, σ2) population. Let θ̂1 be the sample
mean and θ̂2 be the sample median. It is known that Var(θ̂2) = (1.2533)2(σ2/n). Find the
efficiency of θ̂2 relative to θ̂1.

5.5.11. Let X1, . . . , Xn be a random sample from an exponential population with parameter θ. Show
that X is efficient for θ.

5.5.12. Let X1, . . . , Xn be a random sample from an N(μ, σ2) population. Show that

MSE
(
S′2) = 2 (n − 1)

n2 σ4,

where S′2 = (1/n)
∑n

i=1

(
Xi − X

)2
.
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5.5.13. Prove

E

[(
∂ ln f (x)

∂θ

)2
]

= −E

[(
∂2 ln f (x)

∂θ2

)]
,

making suitable assumptions.

5.5.14. Let X1, . . . , Xn be a random sample from an N(μ, σ2) population.

(a) Show that the sample variance S2 is an UMVUE for σ2 when the value of μ is not
known.

(b) Show that the variance of S2 is greater than the Cramér–Rao lower bound.

5.5.15. Let X1, . . . , Xn be a random sample from a U(0, θ) distribution. Let X(n) be the nth order
statistic.

(a) Show that θ̂1 =X(n), θ̂2=2X, and θ̂3=n+1
n

X(n) are unbiased estimators of θ.

(b) Find the efficiency of θ̂1 relative to θ̂2.

(c) Find the efficiency of θ̂2 relative to θ̂3.

5.5.16. Let X1, . . . , Xn, (n ≥ 2) be a random sample from a distribution with pdf

f (x) = 1
π[1+(x−θ)2]

, −∞ < x < ∞, −∞ < θ < ∞.

Show that the Cramér–Rao lower bound for a UBE of θ is 2/n.

5.5.17. Let X1, . . . , Xn, n > 4, be a random sample from a population with a mean μ and variance
σ2. Consider the following three estimators of μ:

θ̂1 = 1
9

(X1 + 2X2 + 5X3 + X4) ,

θ̂2 = 2
5

X1 + 1
5

X2 + 1
5 (n − 3)

(
X3 + . . . + Xn−1

)+ 1
5

Xn,

and θ̂3 = X.

(a) Show that each of the three estimators is unbiased.

(b) Find e(θ̂2, θ̂1), e(θ̂3, θ̂1), and e(θ̂3, θ̂2).

5.5.18. Find the Cramér–Rao lower bound for the variance of an unbiased estimator of θ, based on
a sample of size n for the following pdfs:
(i) f (x, θ) = 1

θ2 xe−x/θ, x > 0, θ > 0.

(ii) f (x, θ) = θxθ−1, 0 < x < 1, θ > 0.

5.5.19. Let Y1, . . . , Yn be a random sample from the uniform distribution over the interval
(θ − 1, θ + 1). Show that the order statistics X1 = min(Yi) and Xn = max(Yi) are jointly
sufficient for θ. Also, show that X1 and Xn are jointly minimal for θ.
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5.5.20. Let X1, . . . , Xn be a random sample from a normal distribution with unknown mean μ

and known variance σ2. Find the maximum likelihood estimator of μ and show that it is a
function of a minimal sufficient statistic.

5.5.21. Let X1, . . . , Xn be a random sample from a normal distribution with unknown mean μ and
unknown variance σ2. Show that

∑n
i=1 Xi and

∑n
i=1 X2

i are jointly minimal sufficient for μ

and σ2. Also show that X and S2 are UMVUEs for μ and σ2.

5.5.22. Let X1, . . . , Xn be a random sample from the Weibull density

f (x) =
⎧⎨
⎩
(

2x

α

)
e−x2/α, x > 0

0, otherwise.

Find an UMVUE for α.

5.5.23. Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ. Find a
minimal sufficient statistic for λ.

5.5.24. Let X1, . . . , Xn be a random sample from a gamma distribution with parameters α and β,
both unknown. Find minimal sufficient statistics for the parameters α and β.

5.5.25. Let X1, . . . , Xn be a random sample from a distribution with density function

f (x) =
{

ex−β, x ≥ β

0, otherwise.

Find an UMVUE for β.

5.5.26. Let X1, . . . , Xn be a random sample from the exponential distribution with pdf

f (x) =
{

1
β e−x/β, x > 0

0, otherwise.

Show that X is an UMVUE for β. Also show that
(

n
n+1

)
X

2
is an MVUE for β2.

5.5.27. Let X1, . . . , Xn be a random sample from a Rayleigh distribution with pdf

f (x) =
{

2x
β e−x2/β, x > 0

0, otherwise.

Find an UMVUE for β.

5.6 CHAPTER SUMMARY

In this chapter we have discussed the basic concepts of point estimation. Two methods of finding point
estimators were described—the method of moments and the method of maximum likelihood. We
have seen that the maximum likelihood estimators possess the invariance property, which states that if
θ̂ is a maximum likelihood estimator of the parameter θ, then h(θ̂) is a maximum likelihood estimator
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for h(θ). Some desirable properties of the point estimators that we have discussed are unbiasedness,
consistency, efficiency, and sufficiency. Unbiasedness means that the expected value of the sample
statistic (the mean of its probability distribution) should be equal to the parameter. Unbiasedness
guards against consistently producing under- or overestimates of the parameter in repeated sampling.
If the estimator is consistent, then, as the sample size increases, the estimator can be expected to get
closer and closer to the population parameter. Efficient estimators have the lowest variance among
all other estimators. A sufficient estimator is a “good” estimator of the population parameter θ in the
sense that it depends on fewer data values.

We will now list some of the key definitions introduced in this chapter.

■ Method of moments
■ Likelihood function
■ Maximum likelihood equations
■ Unbiased estimator
■ Mean square error
■ Minimum variance unbiased estimator
■ Consistent estimator
■ Efficiency
■ Uniformly minimum variance unbiased estimator
■ Efficient estimator
■ Sufficient estimator
■ Jointly sufficient
■ Minimal sufficient statistic

In this chapter, we have also learned the following important concepts and procedures.

■ The method of moments procedure
■ Procedure to find MLE
■ Procedure to test for consistency
■ Procedure to test relative efficiency
■ Cramér–Rao procedure to test for efficiency
■ Procedure to verify sufficiency

5.7 COMPUTER EXAMPLES

Because in the earlier chapters we have already given steps to obtain summary statistics such as the
mean and variance using SPSS and SAS, we could use those commands to obtain point estimates as
we will do with Minitab. Therefore, we will not give separate subsections for SPSS and SAS procedures.
The following examples illustrate Minitab procedures.

Example 5.7.1
Generate 50 sample points from an N(4, 4) distribution and find the descriptive statistics. Obtain an

unbiased and sufficient estimate of μ.
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Solution
Because we know that the sample mean x is an unbiased and sufficient estimate of the population mean μ,

we only need to find the sample mean of the generated data.

Calc > Random Data > Normal . . . > Type 50 in Generate __ rows of data > Store in column(s):
type C1
> type in Mean: 4.0 and in Standard deviation: 2.0 > click OK .

The following is one possible output.

C1

4.76039 5.07819 4.85263 4.08032 6.77772 4.21677 1.51811

5.16925 3.68845 6.40513 6.13801 7.20015 2.41415 3.50008

3.25593 2.66181 1.01352 5.82506 6.04212 5.22235 5.29924

2.80955 4.19032 4.65449 3.48680 6.39083 6.56357 1.32281

2.43494 2.01465 4.02358 8.22997 2.44516 0.39563 3.78948

1.76723 3.15460 4.81882 0.36250 0.85002 14.47052 0.79586

2.86329 5.97599 7.75170 7.10011 6.61681 0.97982 4.01400

5.38503

Now follow the procedure to obtain the descriptive statistics from Example 1.8.3 to obtain

Descriptive Statistics
Variable N Mean Median TrMean StDev SE Mean

C1 50 4.116 4.135 4.115 2.047 0.289
Variable Minimum Maximum Q1 Q3

C1 0.362 8.230 2.443 5.863

We can see that the unbiased and sufficient estimate of the mean μ for these data is x = 4.116.

Example 5.7.2
Generate 35 samples from a U(0, 5) distribution and using the descriptive statistics command, find the

maximum likelihood estimate for this data.

Solution
We know that for a random sample X1, . . . , Xn from U(0, θ), the MLE, θ̂ = max(Xi)=X(n), the nth order

statistic. We can use the following steps to obtain the estimate.

Calc > Random Data > Uniform. . . > Type 35 in Generate __ rows of data > Store in column(s):
type C1 > type in Lower end point: 0.0 and in Upper end point: 5.0 > click OK

One possible output is given below.
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C1

4.32848 4.79402 0.34515 0.08428 1.93000 0.27878 3.12992

0.07934 3.12453 1.69073 3.44003 0.47447 2.28072 0.49205

2.92537 2.39721 4.84440 1.79129 4.38718 3.60697 0.94159

4.20844 3.75506 4.56626 3.50280 1.95689 0.56969 1.02543

3.25272 4.61083 3.06527 2.34003 0.40877 2.52708 1.44525

Now follow the procedure to obtain the descriptive statistics from Example 1.8.3 to obtain

Descriptive Statistics

Variable N Mean Median TrMean StDev SE Mean
C1 35 2.417 2.397 2.413 1.541 0.260

Variable Minimum Maximum Q1 Q3
C1 0.079 4.844 0.942 3.607

Therefore the MLE θ̂ = 4.884.

For the previous example, it should be noted that because we are generating random data, each time
we follow this procedure, we will be getting different answers. When we have a particular data set,
enter the data in C1 and just use the procedure to find the descriptive statistics. For other distributions,
click the appropriate distribution in Random Data.

PROJECTS FOR CHAPTER 5

5A. Asymptotic Properties
In general, we do not have a single sample with one estimator of the unknown parameter θ. Rather,
we will have a general formula that defines an estimator for any sample size. This gives a sequence of
estimators of θ:

θ̂ = hn (X1, . . . , Xn) , n = 1, 2, . . . ..

In this case, we can define the following asymptotic properties:

(i) The sequence of estimators θ̂n is said to be asymptotically unbiased for θ if bias
(
θ̂n

) → 0 as
n → ∞.

(ii) Suppose θ̂n and ŷn are two sequences of estimators that are asymptotically unbiased for θ.
The asymptotic relative efficiency of θ̂n to ŷn is defined by

lim
n

Var
(
θ̂n

)
Var

(
ŷn

) .
(a) Show that θ̂n is asymptotically unbiased if and only if

E
(
θ̂n

) → θ as n → ∞.
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(b) Let X1, . . . , Xn be a random sample from a distribution with unknown mean μ and variance
σ2. It is known that the method of moments estimators for μ and σ2 are, respectively, the
sample mean X and S′2

n = (1/n)
∑n

i=1

(
Xi − X

)2 = ((n − 1)/n) S2
n , where S2

n is the sample
variance.

(i) Show that S′2
n is an asymptotically unbiased estimator of σ2.

(ii) Show that the asymptotic relative efficiency of S′2
n to S2

n is 1.
(iii) Show that MSE

(
S′2

n

)
< MSE

(
S2

n

)
. Thus, S2

n is unbiased but S′2
n has a smaller mean

square error. However, it should be noted that the difference is very small and approaches
zero as n becomes large.

5B. Robust Estimation
The estimators derived in this chapter are for particular parameters of a presumed underlying family
of distributions. However, if the choice of the underlying family of distributions is based on past
experience, there is a possibility that the true population will be slightly different from the model
used to derive the estimators. Formally, a statistical procedure is robust if its behavior is relatively
insensitive to deviations from the assumptions on which it is based. If the behavior of an estimator
is taken as its variance, a given estimator may have minimum variance for the distribution used, but
it may not be very good for the actual distribution. Hence, it is desirable for the derived estimators
to have small variance over a range of distributions. We call such estimators robust estimators. The
following illustrates how the variance of an estimator can be affected by deviations from the presumed
underlying population model.

Consider estimating the mean of a standard normal distribution. Let X1, . . . , Xn be a random sam-
ple from a standard normal distribution. Suppose the population actually follows a contaminated
normal distribution. That is, for 0 ≤ δ ≤ 1, 100 (1 − δ) % of the observations come from an N(0, 1)

distribution and the remaining 100δ% of observations come from an N(0, 5) distribution. We already
know that the minimum variance unbiased estimator of the mean μ of an uncontaminated normal
distribution is the sample mean. A less effective alternative would be the sample median.

(a) Conduct a simulation study with sample size n that takes, say, 5000 random samples of 100
observations each. Find the mean and median. Also find the sample variance of each. For
various values of δ, say 0.0, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4, create a table of variances of
sample mean and sample variance. Compare the variances as the value of δ increases.

(b) The aim of robust estimation is to derive estimators with variance near that of the sample
mean when the distribution is standard normal while having the variance remain relatively
stable as δ increases. One such estimator is the α− trimmedmean. Let 0 ≤ α ≤ 0.5, and define
k = [nα], where [x] is the greatest integer that is less than or equal to x. For the ordered
sample, discard the k highest and lowest observations and find the mean of the remaining
n − k observations. That is, let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the ordered sample, and define

Xα = X(1+k) ≤ X(2+k) ≤ . . . ≤ X(n+k)

n − 2k
.

For the values of δ and the samples in part (a), compute the mean and the 0.05-, 0.1-, 0.25-, and
0.5-trimmed means. Discuss the robustness.
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5C. Numerical Unbiasedness and Consistency
(a) Run the simulation of a normal experiment with increasing sample size. Numerically show

the unbiased and consistent properties of the sample mean. Run the experiment at least up
until n = 1000.

(b) Repeat the experiment of part (a), now with an exponential distribution.

5D. Averaged Squared Errors (ASEs)
Generate 25 samples of size 40 from a normal population with μ = 10, and σ2 = 4. For each of the
25 samples:

(a) Compute: x, s2 =
40∑
i=1

(xi−x)2

39 , s2
1 =

40∑
i=1

(xi−x)2

40 , and s2
2 =

40∑
i=1

(xi−x)2

41 .

(b) Compute the average squared error (ASE) for each of the estimates s2, s2
1, s2

2 as follows.

Let Ks2 =
[[

K∑
i=1

(xi − x)2
]

/39
]

for K = 1, 2, . . . , 25; and Ks2
be the sample variance for the

Kth sample. Then, the average squared error is

ASE =

25∑
i=1

(
Ks2 − σ2

)2

25
.

Repeat this procedure for the other two estimators. Compare the three ASEs and check which
has the least ASE.

(c) Repeat (a) and (b) with a sample size of 15.

5E. Alternate Method of Estimating the Mean and Variance
(a) Consider the following alternative method of estimating μ and σ2. We sample sequentially,

and at each stage we compute the estimates of μ and σ2 as follows.
Let X1, . . . , Xn, Xn+1 be the sample values.
Compute

Xn =

n∑
i=1

Xi

n
, Xn+1 =

n+1∑
i=1

Xi

n + 1
, S2

n =

n∑
i=1

(
Xi − Xn

)2
n − 1

, and

S2
n+1 =

n+1∑
i=1

(
Xi − Xn

)2
n

.

The sequential procedure is stopped when∣∣∣S2
n − S2

n+1

∣∣∣ ≤ 0.01.

This will also determine the sample size.
(b) Compare the sample sizes and estimates in 5D and 5E.
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5F. Newton–Raphson in One Dimension
For a given function g(x), suppose we need to solve g(θ) = 0. Using the first-order Taylor expansion,
g(θ) ≈ g(x) + (θ − x)g′(x), where g′(x) = dg

dx
, and setting g(θ) = 0, we get θ ≈ x − g(x)

g′(x)
. Thus, starting

with an initial guess solution x, the guess is updated by θ using the previous formula. This derivation
is the basis for the Newton–Raphson iterative method for obtaining the solution of g(θ) = 0. This is
given by

θ(n+1) = θn − g (θn)

g′ (θn)
, n ≥ 0,

where θn is the value of θ at the nth iteration, starting with the initial guess, θ0. For a good approxi-
mation of the solution, the choice of θ0 is important. The convergence of this algorithm cannot be
guaranteed.

For the MLE, we want to find a solution of

g(θ) = dL

dθ
= 0,

where L = L (θ) is the likelihood function of the random sample X1, . . . , Xn. An iterative algorithm
for finding the MLE can be given by

θ(n+1) = θn −
dL

dθ
(θn)

d2L

dθ2 (θn)

, n ≥ 0.

Write a computer program to find the MLE of α for a gamma distribution with parameters α and β.

5G. The Empirical Distribution Function
The estimators in this chapter yield a single real value (point estimate) for each parameter. In Chapter
6, we will learn about so-called interval estimates. In this project, we use an estimation procedure that
estimates the whole distribution function, F , of a random variable X. We now define the empirical
distribution.

The empirical distribution function for a random sample X1, . . . , Xn from a distribution F is the function
defined by

Fn(x) = 1
n

#{i, 1 ≤ i ≤ n : Xi ≤ x}.

It can be shown that nFn(x) is a binomial random variable with

E [Fn(x)] = F(x) and Var [Fn(x)] = 1
n

F(x) [1 − F(x)] .

Also, by the strong law of large numbers, for each real number x,

lim
n→∞ Fn(x) = F(x) with probability 1.
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One of the tests to determine whether a random sample comes from a specific distribution is the
Kolmogorov–Smirnov (K-S) test. The K-S test is based on the maximum distance between the empirical
distribution function and the actual cumulative distribution function of this specific distribution
(such as, say, the normal distribution).

Using the method of Project 4A (or using any statistical software), generate 100 sample points from
a normal distribution with mean 2 and variance 9. Graph the empirical distribution function for this
sample. Compare this graph with the graph of the N(2, 9) distribution.
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Chapter 6
Interval Estimation

Objective: To learn some statistical methods that are commonly used to obtain interval estimation
or confidence limits of the unknown population parameters.
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Karl Pearson
(Source: http://www-history.mcs.st-and.ac.uk/∼history/PictDisplay/Pearson.html)

Karl Pearson (1857–1936) is considered the founder of the 20th-century science of statistics.
Pearson has contributed in several different fields such as anthropology, biometry, eugenics, scientific
method, and statistical theory. He applied statistics to biological problems of heredity and evolution.
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He is the author of The Grammar of Science, the three volumes of The Life, Letters and Labors of Francis
Galton, and The Ethic of Free Thought. Pearson was the founder of the statistical journal Biometrika.
In 1900, he published a paper on the chi-square goodness of fit test. This is one of Pearson’s most
significant contributions to statistics. In 1893, Pearson coined the term “standard deviation.”

6.1 INTRODUCTION

In the previous chapter, we studied methods for finding point estimators for the population parame-
ters. In general the estimates will differ from the true parameter values by varying amounts depending
on the sample values obtained. In addition, the point estimates do not convey any measure of
reliability.

In this chapter, we discuss another type of estimation, called an interval estimation. Although point
estimators are useful, interval estimators convey more information about the data that are used to
obtain the point estimate. The purpose of using an interval estimator is to have some degree of
confidence of securing the true parameter. For an interval estimator of a single parameter θ, we will
use the random sample to find two quantities L and U such that L < θ < U with some probability.
Because L and U depend on the sample values, they will be random. This interval (L, U) should
have two properties: (1) P(L < θ < U) is high, that is, the true parameter θ is in (L, U) with high
probability, and (2) the length of the interval (L, U) should be relatively narrow on the average.

In summary, interval estimation goes a step beyond point estimation by providing, in addition to
the estimating interval (L, U), a measure of one’s confidence in the accuracy of the estimate. Interval
estimators are called confidence intervals and the limits are called U and L, the upper and lower confidence
limits, respectively. The associated levels of confidence are determined by specified probabilities. The
width of the confidence interval reflects the amount of variability inherent in the point estimate.
Thus, our objective is to find a narrow interval with high probability of enclosing the true parameter,
θ. We will restrict our attention to single parameter estimation.

The probability that a confidence interval will contain the true parameter θ is called the confidence
coefficient. The confidence coefficient gives the fraction of the time that the constructed interval will
contain the true parameter, under repeated sampling.

Let L and U be the lower and upper confidence limits for a parameter θ based on a random sample
X1, . . . , Xn. Both L and U are functions of the sample. We can write the interval estimate of θ as

P (L ≤ θ ≤ U) = 1 − α

and we read it as we are (1 − α)100% confident that the true parameter θ is located in the interval
(L, U ). The number 1 − α is the confidence coefficient, and the interval (L, U ) is referred to as a
(1 − α)100% confidence interval ((1 − α)100% CI) for θ. Thus, if we want a 95% confidence interval
for, say, population mean μ, then α = 0.05. Note that for the discrete random variables, we may not
be able to find a lower bound L and an upper bound U such that the probability, P (L ≤ θ ≤ U ),
is exactly (1 − α). In such a case we can choose L and U such that P (L ≤ θ ≤ U ) ≥ 1 − α.

How do we find the confidence interval? For this, we use the error structure of the point estimator
to obtain this interval. For instance, we know that the sample mean, X, is a point estimate (MLE or
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unbiased estimator) of the population mean μ. In this case, we know that the standard error of X is
σ/

√
n. If the sample came from a normal population, then for a 95% confidence interval for the mean,

multiply the standard error by 1.96 and then add and subtract this product from the sample mean.
From this we can also observe that, if everything else remains the same, the size of the confidence
interval reduces as the sample size increases.

Example 6.1.1
As part of a promotion, the management of a large health club wants to estimate average weight loss for its

members within the first 3 months after joining the club. They took a random sample of 45 members of this

health club and found that they lost an average of 13.8 pounds within the first 3 months of membership

with a sample standard deviation of 4.2 pounds. Find a 95% confidence interval for the true mean. What if

a random sample of 200 members of this health club also resulted in the same sample mean and sample

standard deviation?

Solution
Here a point estimate of the true mean μ is the sample mean x = 13.8 pounds. Because n = 45 is large

enough, we can use the Central Limit Theorem and use approximate normality for the distribution of X

with mean μ and the approximate standard error (4.2/
√

45) = 0.626. Thus a 95% confidence interval is

13.8 ± (1.96)(0.626), resulting in the interval (12.57, 15.03). Thus, on average, with 95% confidence, one

can expect the true mean to lie in this interval.

For n = 200, the standard error is (4.2/
√

200) ≈ 0.297. Thus a 95% confidence interval is 13.8 ±
(1.96)(0.297) resulting in the interval (13.22, 14.38). Thus the more sample values (that is, the more

information) we have, the tighter (smaller width) the interval.

The previous example was built on our knowledge of the sampling distribution of the sample mean. What

if the sampling distribution of the statistic we are interested in is not readily available? More generally, our

success in building confidence intervals for an estimate of a parameter depends on identifying a quantity

known as the pivot. We now describe this method.

6.1.1 A Method of Finding the Confidence Interval: Pivotal Method
The pivotal method is a general method of constructing a confidence interval using a pivotal quantity.
This relies on our knowledge of sampling distributions. Here we have to find a pivotal quantity with
the following two characteristics:

(i) It is a function of the random sample (a statistic or an estimator θ̂) and the unknown parameter
θ, where θ is the only unknown quantity, and

(ii) It has a probability distribution that does not depend on the parameter θ.

From (i) and (ii), it is important to note that the pivotal quantity depends on the parameter, but
its distribution is independent of the parameter. Let X1, . . . , Xn be a random sample and let θ̂ be a
reasonable point estimate of θ. For instance, θ̂ could be the maximum likelihood (or some other)
estimator of θ. In general, finding a pivotal quantity may not be easy. However, if θ̂ is the sample
mean X or sample variance S2, we could find a pivotal quantity with known sampling distributions.
Suppose p(θ̂, θ) is a pivotal quantity with known probability distribution that is independent of θ.
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(Usually, the probability distribution of the pivotal quantity will be standard normal, t, χ2, or
F -distribution.) The following are some of the standard pivotal quantities: If the sample X1, . . . , Xn

is from N(μ, σ2)

(i) With μ unknown and σ known, let X be the sample mean. Then the pivot is (X−μ)/(σ/
√

n),
which has an N(0, 1) distribution (see comments after Corollary 4.2.2).

(ii) With μ unknown and σ unknown, then the pivot is (X − μ)/(S/
√

n), which has a t-
distribution with (n − 1) degrees of freedom (see Theorem 4.2.9). If n is large, using CLT,
the distribution of the pivot is approximately N(0, 1).

(iii) If σ2 is unknown, then the pivot is (n − 1)S2/σ2, which has a χ2-distribution with (n − 1)

degrees of freedom (see Theorem 4.2.8).

For a given value of α, (0 < α < 1), and constants a and b, with (a < b), let

P (a ≤ p(θ̂, θ) ≤ b) = 1 − α.

Hence, given θ̂, the inequality is solved for θ to obtain a region of θ values, usually an interval

corresponding to the observed θ̂-value. The following examples illustrate the pivotal method.

Example 6.1.2
Suppose we have a random sample X1, . . . , Xn from N(μ, 1). Construct a 95% confidence interval for μ.

Solution
Here the confidence coefficient is 0.95. We know that the maximum likelihood estimator of μ is X, which

has an N(μ, 1/n) distribution. Note that this distribution depends on the unknown value of μ, and hence

X cannot be a pivot. However, taking the z-transform of X, we obtain the pivotal quantity as

Z = X − μ

σ/
√

n
= X − μ

1/
√

n

which has an N(0, 1) distribution that is a function of the sample measurements and does not depend on μ.

Hence, this Z can be taken as a pivot p(θ̂, θ). Now to find a and b such that P (a ≤ Z = p(θ̂, θ) ≤ b) = 0.95.

One such choice is to find the value of a such that p(−a ≤ Z ≤ a) = 0.95. From the normal table,

P (−zα/2 ≤ Z ≤ zα/2) = 0.95,

where zα/2 represents the value of z with tail area α/2. This implies a = zα/2 = 1.96. Hence,

P (−1.96 ≤ Z ≤ 1.96) = 0.95

or, using the definition of Z and solving for μ, we obtain

P

(
X − 1.96√

n
≤ μ ≤ X + 1.96√

n

)
= 0.95.
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Hence, a 95% confidence interval for μ is (X − (1.96/
√

n), X + (1.96/
√

n)). Thus, the lower confidence

limit L is X−(1.96/
√

n) and the upper confidence limit U is X + (1.96/
√

n).

From the derivation of Example 6.1.1, it follows that

P

(∣∣X − μ
∣∣ < zα/2

σ√
n

)
= 1 − α.

Thus, for a normal population with known variance σ2, if X is used as an estimator of the true mean
μ, the probability that the error will be less than zα/2σ/

√
n is 1 − α. It is important to note that there

is some arbitrariness in choosing a confidence interval for a given problem. There may be several
pivotals for θ̂ that could be used. Also, it is not necessary to allocate equal probability to the two tails
of the distribution; however, doing so may result in the shortest length confidence interval for a given
confidence coefficient.

When we make the statement of the form

P

(
X − 1.96√

n
≤ μ ≤ X + 1.96√

n

)
= 0.95,

we mean that, in an infinite series of trials in which repeated samples of size n are drawn from
the same population and 95% confidence intervals for μ are calculated by the same method for
each of the samples, the proportion of intervals that actually include μ will be 0.95. Figure 6.1
illustrates this idea, where the vertical line represents the position of true mean μ and each of
the horizontal lines represents a 95% confidence interval of the sample, 20 samples of size n are
taken.

A statement of the type P (x − (1.96/
√

n) ≤ μ ≤ x + (1.96/
√

n)) = 0.95, where x is the observed
sample mean, is misleading. Once we calculate this interval using a particular sample, then either
this interval contains the true mean μ or not, and hence the probability will be either 0 or 1. Thus,
the correct interpretation of confidence interval for the population mean is that if samples of the
same size, n, are drawn repeatedly from a population, and a confidence interval is calculated from
each sample, then 95% of these intervals should contain the population mean. This is often stated as
“We are 95% confident that the true mean is in the interval (X− zα/2(σ/

√
n), X+ zα/2(σ/

√
n)).” Thus,

�

■ FIGURE 6.1 95% confidence intervals for μ.
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PDF of P

■ FIGURE 6.2 Probability density of the pivot.

the correct interpretation requires the confidence limits to be variables. This concept of confidence
interval is attributed to Neyman.

We can follow the accompanying procedure to find a confidence interval for the parameter θ.

PROCEDURE TO FIND A CONFIDENCE INTERVAL FOR θ USING THE PIVOT

1. Find an estimator θ̂ of θ: usually MLE of θ works.
2. Find a function of θ and θ̂, p(θ, θ̂) (pivot), such that the probability distribution of p(. , . ) does not

depend on θ.
3. Find a and b such that P(a ≤ p(θ, θ̂) ≤ b) = 1 − α. Choose a and b such that P(p(θ, θ̂)≤a) = α/2 and

P(p(θ, θ̂) ≥ b) = α/2 (see Figure 6.2 where the shaded area in each side is α/2).
4. Now, transform the pivot confidence interval to a confidence interval for the parameter θ. That is,

work with the inequality in step 3 and rewrite it as P(L ≤ θ ≤ U) = 1 − α, where L is the lower
confidence limit and U is the upper confidence limit.

The following example is given to show that the success of finding a pivotal quantity depends on our
ability to find the right transformation of the statistic and its distribution so that the transformed
variable is a pivot.

Example 6.1.3
Suppose the random sample X1, . . . , Xn has U(0, θ) distribution. Construct a 90% confidence interval for

θ and interpret. Identify the upper and lower confidence limits.

Solution
From Example 5.3.4, we know that

U = max Xi
1≤i≤n
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is the MLE of θ. The random variable U has the pdf

fU(u) = nun−1/θn, 0 ≤ u ≤ θ.

This is not independent of the parameter θ. Let Y = U/θ, then (using the Jacobians described in Chapter 3)

the pdf of Y is given by

fY (y) = ny n−1, 0 ≤ y ≤ 1.

Hence, Y satisfies the two characteristics of the pivotal quantity. Thus, Y = U/θ is a pivot. Now, we have to

find a and b such that

p(a ≤ U

θ
≤ b) = 0.90.

0.05

0.05

0 1y

pdf of Y

To find a and b we use the cdf of Y, FY (y) = yn, 0 ≤ y ≤ 1, as follows.

0.95

0.05

y

F(y )

0 a 1b

FY (a) = 0.05 and FY (b) = 0.95

which implies that

an = 0.05 and bn = 0.95
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resulting in

a = n
√

0.05 and b = n
√

0.95.

Write

P

(
n
√

0.05 <
U

θ
<

n
√

0.95
)

= 0.90.

Solving, the 90% confidence interval for θ is(
U

n
√

0.95
,

U
n
√

0.05

)

or

P

(
U

n
√

0.95
≤ θ ≤ U

n
√

0.05

)
= 0.90.

Thus, the lower confidence limit is U/
n
√

0.95 and the upper confidence limit is U/
n
√

0.05, and the 90%

confidence interval is (U/
n
√

0.95, U/
n
√

0.05).

We can interpret this in the following manner. In a large number of trials in which repeated samples
are taken from a population with uniform pdf with parameter θ, approximately 90% of the intervals
will contain θ. For instance, if we observed n = 20 values from a uniform distribution with the
maximum observed value being 15, then a 90% confidence interval for θ is (15.04, 17.42). Thus, we
are 90% confident that these data came from a uniform distribution upper limit falling somewhere
in this interval.

It is important to note that the pivotal method may not be applicable in all situations. For example,
in the binomial case, to find a confidence interval for p, there is no quantity that satisfies the two
conditions of a pivot. However, if sample size is large, then the z-score of sample proportion can be
used as a pivot with approximate standard normal distribution. For pivotal method to work, there
is the practical necessity that the distribution of the pivotal quantity make it easy to compute the
probabilities. In cases where the pivotal method does not work, we may need to use other techniques
such as the method based on sampling distributions (see Project 4A). A proper discussion of these
methods is beyond the level of this book.

EXERCISES 6.1

6.1.1. (a) Suppose we construct a 99% confidence interval. What are we 99% confident about?
(b) Which of the confidence intervals is wider, 90% or 99%?
(c) In computing a confidence interval, when do you use the t-distribution and when do

you use z, with normal approximation?
(d) How does the sample size affect the width of a confidence interval?

6.1.2. Suppose X is a random sample of size n = 1 from a uniform distribution defined on the
interval (0, θ). Construct a 98% confidence interval for θ and interpret.
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6.1.3. Consider the probability statement

P

(
−2.81 ≤ Z = X − μ

σ/
√

n
≤ 2.75

)
= κ

where X is the mean of a random sample of size n from N(μ, σ2) distribution with
known σ2.

(a) Find κ.
(b) Use this statement to find a confidence interval for μ.
(c) What is the confidence level of this confidence interval?
(d) Find a symmetric confidence interval for μ.

6.1.4. A random sample of size 50 from a particular brand of 16-ounce tea packets produced a
mean weight of 15.65 ounces. Assume that the weights of these brands of tea packets are
normally distributed with standard deviation of 0.59 ounce. Find a 95% confidence interval
for the true mean μ.

6.1.5. Let X1, . . . , Xn be a random sample from an N(μ, σ2), where the value of σ2 is unknown.

(a) Construct a (1−α)100% confidence interval for σ2, choosing an appropriate pivot.
Interpret its meaning.

(b) Suppose a random sample from a normal distribution gives the following summary
statistics: n = 21, x = 44.3, and s = 3.96. Using part (a), find a 90% confidence interval
for σ2. Interpret its meaning.

6.1.6. Let X1, . . . , Xn be a random sample from a gamma distribution with α = 2 and unknown
β. Construct a 95% confidence interval for β.

6.1.7. Let X1, . . . , Xn be a random sample from an exponential distribution with pdf f (x) =
(1/θ)e−x/θ, θ > 0, x > 0. Construct a 95% confidence interval for θ and interpret. [Hint:
Recall that

∑n
i=1Xi has a gamma distribution with α = n, β = θ.]

6.1.8. Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ.

(a) Construct a 90% confidence interval for λ.
(b) Suppose that the number of raisins in a bowl of a particular brand of cereal is observed

to be 25. Assuming that the number of raisins in a bowl is Poisson distributed, estimate
the expected number of raisins per bowl with a 90% confidence interval.

(c) How many bowls of cereal need to be sampled in order to estimate the expected number
of raisins per bowl with a standard error of less than 0.2?

6.1.9. Let X1, . . . , Xn be a random sample from an N(μ, σ2).

(a) Construct a (1 − α)100% confidence interval for μ when the value of σ2 is known.
(b) Construct a (1 − α)100% confidence interval for μ when the value of σ2 is unknown.

6.1.10. Let X1, . . . , Xn be a random sample from an N(μ1, σ2) population and Y1, . . . , Yn be an
independent random sample from an N(μ2, σ2) distribution where σ2 is assumed to be
known. Construct a (1 − α)100% interval for (μ1 − μ2). Interpret its meaning.
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6.1.11. Let X1, . . . , Xn be a random sample from a uniform distribution on [θ, θ + 1]. Find a 99%
confidence interval for θ, using an appropriate pivot.

6.2 LARGE SAMPLE CONFIDENCE INTERVALS: ONE SAMPLE CASE

If the sample size is large, then by the Central Limit Theorem, certain sampling distributions can be
assumed to be approximately normal. That is, if θ is an unknown parameter (such as μ, p, (μ1 −μ2),
(p1 − p2)), then for large samples, by the Central Limit Theorem, the z-transform

z = θ̂ − θ

σ
θ̂

possesses an approximately standard normal distribution, where θ̂ is the MLE of θ and σ
θ̂

is its standard
deviation. Then as in Example 6.1.1, the pivotal method can be used to obtain the confidence interval
for the parameter θ. For θ = μ, n ≥ 30 will be considered large; for the binomial parameter p, n is
considered large if np, and n(1 − p) are both greater than 5.

PROCEDURE TO CALCULATE LARGE SAMPLE CONFIDENCE INTERVAL FOR θ

1. Find an estimator (such as the MLE) of θ, say θ̂.
2. Obtain the standard error, σ

θ̂
of θ̂.

3. Find the z -transform z = (θ̂ − θ)/σ
θ̂

. Then z has an approximately standard normal distribution.
4. Using the normal table, find two tail values −zα/2 and zα/2.

5. An approximate (1 − α)100% confidence interval for θ is
(
θ̂ − zα/2σ

θ̂
, θ̂ + zα/2σ

θ̂

)
, that is,

P
(
θ̂ − zα/2σ

θ̂
≤ θ ≤ θ̂ + zα/2σ

θ̂

)
= 1 − α.

6. Conclusion: We are (1 − α)100% confident that the true parameter θ lies in the interval(
θ̂ − zα/2σ

θ̂
, θ̂ + zα/2σ

θ̂

)
.

Example 6.2.1
Let θ̂ be a statistic that is normally distributed with mean θ and standard deviation σ

θ̂
, where σ is assumed

to be known. Find a confidence interval for θ that possesses a confidence coefficient equal to 1 − α.

Solution
The z-transform of θ̂ is

Z = θ̂ − θ

σ
θ̂

and has a standard normal distribution. Select two tail values −zα/2 and zα/2 such that

P (−zα/2 ≤ Z ≤ zα/2) = 1 − α.

Because of symmetry, this is the shortest interval that contains the area 1 − α. Then,

P (θ̂ − zα/2σ
θ̂

≤ θ ≤ θ̂ + zα/2σ
θ̂
) = 1 − α.
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Therefore, the confidence limits of θ are θ̂ − zα/2σ
θ̂

and θ̂ + zα/2σ
θ̂

. Hence, (1 −α)100% confidence interval

for θ is given by θ̂ ± zα/2σ
θ̂

.

If in particular for a large sample of size n, let θ̂ = X be the sample mean. Then the large sample
(1 − α)100% confidence interval for the population mean μ is

X ± zα/2
σ√
n

� X ± zα/2
S√
n

where S is a point estimate of σ. That is,

P

(
X − zα/2

S√
n

≤ μ ≤ X + zα/2
S√
n

)
= 1 − α.

As we have seen in Section 6.1, the correct interpretation of this confidence interval is that in a repeated
sampling, approximately (1 −α)100% of all intervals of the form X± zα/2(S/

√
n) include μ, the true

mean. Suppose x and s are the sample mean and the sample standard deviation, respectively, for a
particular set of n observed sample values x1, . . . , xn. Then we do not know whether the particular
interval (x − zα/2(s/

√
n), x − zα/2(s/

√
n)) contains μ. However, the procedure that produced this

interval does capture the true mean in approximately (1 − α)100% of cases. This interpretation will
be assumed hereafter, when we make a statement such as, “We are 95% confident that the true mean
will lie in the interval (74.1, 79.8).”

Example 6.2.2
Two statistics professors want to estimate average scores for an elementary statistics course that has two

sections. Each professor teaches one section and each section has a large number of students. A random

sample of 50 scores from each section produced the following results:

(a) Section I: x1 = 77.01, s1 = 10.32
(b) Section II: x2 = 72.22, s2 = 11.02

Calculate 95% confidence intervals for each of these three samples.

Solution
Because n = 50 is large, we could use normal approximation. For α = 0.05, from the normal table:

zα/2 = z0.025 = 1.96. The confidence intervals are:

(a) We have

x1 ± zα/2
s1√
n

= 77.01 ± 1.96
(

10.32√
50

)

which gives a 95% confidence interval (74.149, 79.871).

(b) We can compute

x2 ± zα/2
s2√
n

= 72.22 ± 1.96
(

11.02√
50

)

which gives the interval (69.165, 75.275).
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It may be noted that if the population is normal with a known variance σ2, we can use X ± zα/2(σ/
√

n)

as the confidence interval for the population mean μ, irrespective of the sample size. However, if σ2 is
unknown, in order to use X ± zα/2(s/

√
n) as an approximate confidence interval for μ, the sample size

has to be large for the Central Limit Theorem to hold. However to use this approximate procedure,
we do not need the condition that samples arise from a normal distribution. We will consider sample
size to be large if n ≥ 30 (applicable to estimators of the mean). If not, we shall use the small sample
procedure discussed in the next section.

Example 6.2.3
Fifteen vehicles were observed at random for their speeds (in mph) on a highway with speed limit posted

as 70 mph, and it was found that their average speed was 73.3 mph. Suppose that from past experience we

can assume that vehicle speeds are normally distributed with σ = 3.2. Construct a 90% confidence interval

for the true mean speed μ, of the vehicles on this highway. Interpret the result.

Solution
Because the population is given to be normal with standard deviation σ = 3.2, sample size need not be

large given x = 73.3 and σ = 3.2. Here, n = 15, and α = 0.10. Thus, zα/2 = z0.05 = 1.645. Hence, a

90% confidence interval for μ is given by

73.3 − 1.645
3.2√

15
< μ < 73.3 + 1.645

3.2√
15

or

71.681 < μ < 74.919.

Interpretation: We are 90% confident that the true mean speed μ of the vehicles on this highway is between

71.681 and 74.919.

6.2.1 Confidence Interval for Proportion, p
Considerabinomialdistributionwithparameterp. LetXbethenumberofsuccesses inn trials.Thenthe
maximum likelihood estimator p̂ of p is p̂ = X/n. It can be shown, using the procedure outlined at the
beginning of this section, that an approximate large sample (1 − α)100% confidence interval for p is

(
p̂ − zα/2

√
p̂(1 − p̂)

n
, p̂ + zα/2

√
p̂(1 − p̂)

n

)
.

That is,

P

(
p̂ − zα/2

√
p̂(1 − p̂)

n
< p < p̂ + zα/2

√
p̂(1 − p̂)

n

)
= 1 − α.

A natural question is: “How do we determine the sample size that we have is sufficient for the normal
approximation that is used in the foregoing formula?” There are various rules of thumb that are used
to determine the adequacy of the sample size for normal approximation. Some of the popular rules
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are that np and n(1 − p) should be greater than 10, or that p̂ ± 2
√

p̂(1 − p̂)/n should be contained
in the interval (0, 1), or np(1 − p) ≥ 10, etc. All of these rules perform poorly when p is nearer to 0
or 1. Recently, there have been many works on coverage analysis for confidence intervals. We refer to
a survey article by Lee et al. for more details on this topic. For simplicity of calculations, we will use
the rule that np and n(1 − p) are both greater than 5.

Example 6.2.4
An auto manufacturer gives a bumper-to-bumper warranty for 3 years or 36,000 miles for its new vehicles.

In a random sample of 60 of its vehicles, 20 of them needed five or more major warranty repairs within the

warranty period. Estimate the true proportion of vehicles from this manufacturer that need five or more

major repairs during the warranty period, with confidence coefficient 0.95. Interpret.

Solution
Here we need to find a 95% confidence interval for the true proportion, p. Here, p̂ = 20/60 = 1/3. For

α = 0.05, zα/2 = z0.025 = 1.96. Hence, a 95% confidence interval for p is

p̂ ± zα/2

√
p̂(1 − p̂)

n
= 1

3
± 1.96

√√√√(
1
3

) (
2
3

)
60

which gives the confidence interval as (0.21405, 0.45262). That is, we are 95% confident that the true

proportion of vehicles from this manufacturer that need five or more major repairs during the warranty

period will lie in the interval (0.21405, 0.45262).

6.2.2 Margin of Error and Sample Size
In real-world problems, the estimates of the proportion p are usually accompanied by a margin of
error, rather than a confidence interval. For example, in the news media, especially leading up to
election time, we hear statements such as “The CNN/USA Today/Gallup poll of 818 registered voters
taken on June 27–30 showed that if the election were held now, the president would beat his challenger
52% to 40%, with 8% undecided. The poll had a margin of error of plus or minus four percentage
points.” What is this “margin of error”? According to the American Statistical Association, the margin
of error is a common summary of sampling error that quantifies uncertainty about a survey result.
Thus, the margin of error is nothing but a confidence interval. The number quoted in the foregoing
statement is half the maximum width of a 95% confidence interval, expressed as a percentage.

Let b be the width of a 95% confidence interval for the true proportion, p. Let p̂ = x/n be an estimate
for p where x is the number of successes in n trials. Then,

b = x

n
+ 1.96

√
(x/n)(1 − (x/n))

n
−
(

x

n
− 1.96

√
(x/n)(1 − (x/n))

n

)

= 3.92

√
(x/n)(1 − (x/n))

n
≤ 3.92

√
1

4n
,

because (x/n)(1 − (x/n)) = p̂(1 − p̂) ≤ 1
4 .
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Thus, the margin of error associated with p̂ = (x/n) is 100d%, where

d = max b

2
=

3.92
√

1
4n

2
= 1.96

2
√

n
.

From the foregoing derivation, it is clear that we can compute the margin of error for other values of
α by replacing 1.96 by the corresponding value of zα/2.

A quick look at the formula for the confidence interval for proportions reveals that a larger sample
would yield a shorter interval (assuming other things being equal) and hence a more precise estimate
of p. The larger sample is more costly in terms of time, resources, and money, whereas samples that
are too small may result in inaccurate inferences. Then, it becomes beneficial for finding out the
minimum sample size required (thus less costly) to achieve a prescribed degree of precision (usually,
the minimum degree of precision acceptable). We have seen that the large sample (1 − α)100%
confidence interval for p is

p̂ − zα/2

√
p̂(1 − p̂)

n
< p < p̂ + zα/2

√
p̂(1 − p̂)

n
.

Rewriting it, we have

∣∣p̂ − p
∣∣ ≤ zα/2

√
p̂(1 − p̂)

n
= zα/2√

n

√
p̂(1 − p̂)

which shows that, with probability (1 − α), the estimate p̂ is within zα/2
√

p̂(1 − p̂)/n units of p.
Because p̂(1 − p̂) ≤ 1/4, for all values of p̂, we can write the foregoing inequality as

∣∣p̂ − p
∣∣ ≤ zα/2√

n

√
1
4

= zα/2

2
√

n
.

If we wish to estimate p at level (1 − α) to within d units of its true value, that is |p̂ − p| ≤ d, the
sample size must satisfy the condition (zα/2/(2

√
n)) ≤ d, or

n ≥
z2
α/2

4d2 .

Thus, to estimate p at level (1 − α) to within d units of its true value, take the minimal sample size as
n = z2

α/2/4d2, and if this is not an integer, round up to the next integer.

Sometimes, we may have an initial estimate p̃ of the parameter p from a similar process or from a
pilot study or simulation. In this case, we can use the following formula to compute the minimum
required size of the sample to estimate p, at level (1 − α), to within d units by using the formula

n =
z2
α/2p̃(1 − p̃)

d2

and, if this is not an integer, rounding up to the next integer.
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A similar derivation for calculation of sample size for estimation of the population mean μ at level
(1 − α) with margin of error E is given by

n =
z2
α/2σ2

E2

and, if this is not an integer, rounding up to the next integer. This formula can be used only if we
know the population standard deviation, σ. Although it is unlikely to know σ when the population
mean itself is not known, we may be able to determine σ from an earlier similar study or from a pilot
study/simulation.

Example 6.2.5
A dendritic tree is a branched formation that originates from a nerve cell. In order to study brain deve-

lopment, researchers want to examine the brain tissues from adult guinea pigs. How many cells must the

researchers select (randomly) so as to be 95% sure that the sample mean is within 3.4 cells of the population

mean? Assume that a previous study has shown σ = 10 cells.

Solution
A 95% confidence corresponds to α = 0.05. Thus, from the normal table, zα/2 = z0.025 = 1.96. Given that

E = 3.4 and σ = 10, and using the sample size formula, the required sample size n is

n =
z2
α/2σ2

E2 = (1.96)2(10)2

(3.4)2 = 33.232.

Thus, take n = 34.

Example 6.2.6
Suppose that a local TV station in a city wants to conduct a survey to estimate support for the president’s

policies on economy within 3% error with 95% confidence.

(a) How many people should the station survey if they have no information on the support level?

(b) Suppose they have an initial estimate that 70% of the people in the city support the economic

policies of the president. How many people should the station survey?

Solution
Here α = 0.05, and thus zα/2 = 1.96. Also, d = 0.03.

(a) With no information on p, we use the sample size formula:

n =
z2
α/2

4d2 = (1.96)2

4(0.03)2 = 1067.1.

Hence, the TV station must survey 1068 people.
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(b) Because p̃ = 0.7, the required sample size is calculated from

n =
z2
α/2p̃(1 − p̃)

d2

= (1.96)2(0.70)(0.30)

(0.03)2 = 896.37.

Thus, the TV station must survey at least 897 people.

In practice, we should realize that one of the key factors of a good design is not sample size by
itself; it is getting representative samples. Even if we have a very large sample size, if the sample is
not representative of our target population, then sample size means nothing. Therefore, whenever
possible, we should use random sampling procedures (or other appropriate sampling procedures) to
ensure that our target population is properly represented.

EXERCISES 6.2

6.2.1. A survey indicates that it is important to pay attention to truth in political advertising. Based
on a survey of 1200 people, 35% indicated that they found political advertisements to be
untrue; 60% say that they will not vote for candidates whose advertisements are judged to be
untrue; and of this latter group, only 15% ever complained to the media or to the candidate
about their dissatisfaction.
(a) Find a 95% confidence interval for the percentage of people who find political

advertising to be untrue.
(b) Find a 95% confidence interval for the percentage of voters who will not vote for

candidates whose advertisements are considered to be untrue.
(c) Find a 95% confidence interval for the percentage of those who avoid voting for can-

didates whose advertisements are considered untrue and who have complained to the
media or to the candidate about the falsehood in commercials.

(d) For each case above, interpret the results and state any assumptions you have made.

6.2.2. Many mutual funds use an investment approach involving owning stocks whose price/earn-
ings multiples (P/Es) are less than the P/E of the S&P 500. The following data give P/Es of
49 companies a randomly selected mutual fund owns in a particular year.

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1
9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6 11.1
8.9 11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3 12.3

11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9 12.9
14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3

Find a 98% confidence interval for the mean P/E multiples. Interpret the result and state
any assumptions you have made.
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6.2.3. Let X1, . . . , Xn be a random sample from N(μ, σ2) distribution, σ2 known.
(a) Show that μ̂ = X is a maximum likelihood estimator of the population mean μ.
(b) Show that

P

(
X − 2σ√

n
< μ < X + 2σ√

n

)
= 0.954.

(c) Let

P

(
X − kσ√

n
< μ < X + kσ√

n

)
= 0.90.

Find k.

6.2.4. Let the observed mean of a sample of size 45 be x = 68.51 from a distribution having variance
110. Find a 95% confidence interval for the true mean μ and interpret the result and state
any assumptions you have made.

6.2.5. In a random sample of 50 college seniors, 18 indicated that they were planning to pursue a
graduate degree. Find a 98% confidence interval for the true proportion of all college seniors
planning to pursue a graduate degree, and interpret the result, and state any assumptions
you have made.

6.2.6. DVD players coming off an assembly line are automatically checked to make sure they are
not defective. The manufacturer wants an interval estimate of the percentage of DVD players
that fail the testing procedure. Compute a 90% confidence interval, based on a random
sample of size 105 in which 17 DVD players failed the testing procedure. Also, interpret the
result and state any assumptions you have made.

6.2.7. Studies have shown that the risk of developing coronary disease increases with the level of
obesity, or accumulation of body fat. A study was conducted on the effect of exercise on
losing weight. Fifty men who exercised lost an average of 11.4 lb, with a standard deviation
of 4.5 lb. Construct a 95% confidence interval for the mean weight loss through exercise.
Interpret the result and state any assumptions you have made.

6.2.8. Basing findings on 60 successful pregnancies involving natural birth, an experimenter found
that the mean pregnancy term was 274 days, with a standard deviation of 14 days. Construct
a 99% confidence interval for the true mean pregnancy term μ.

6.2.9. Let Y be the binomial random variable with parameter p and n = 400. If the observed value
of Y is y = 120, find a 95% confidence interval for p.

6.2.10. For a health screening in a large company, the diastolic and systolic blood pressures of all
the employees were recorded. In a random sample of 150 employees, 12 were found to
suffer from hypertension. Find 95% and 98% confidence intervals for the proportion of the
employees of this company with hypertension.

6.2.11. In a random sample of 500 items from a large lot of manufactured items, there were 40
defectives.
(a) Find a 90% confidence interval for the true proportion of defectives in the lot.



308 CHAPTER 6 Interval Estimation

(b) Is the assumption of normal approximation valid?
(c) Suppose we suspect that another lot has the same proportion of defectives as in the first

lot. What should be the sample size if we want to estimate the true proportion within
0.01 with 90% confidence?

6.2.12. Pesticide concentrations in sediment from irrigation areas can provide information required
to assess exposure and fate of these chemicals in freshwater ecosystems and their likely
impacts to the marine environment. In a study (Jochen F. Muller et al., “Pesticides in sedi-
ments from Queensland Irrigation channels and drains,” Marine Pollution Bulletin 41(7–12),
294–301, 2000), 103 sediment samples were collected from irrigation channels and drains
in 11 agricultural areas of Queensland. In 74 of these samples, they detected DDTs with con-
centration levels up to 840 ng g−1 dw. Obtain a 95% confidence interval for the proportion
of total number of sediments with detectable DDTs.

6.2.13. Let X be the mean of a random sample of size n from an N(μ, 16) distribution. Find n such
that p(X − 2 < μ < X + 2) = 0.95.

6.2.14. Let X be a Poisson random variable with parameter λ. A sample of 150 observations from
this population has a mean equal to 2.5. Construct a 98% confidence interval for λ.

6.2.15. An opinion poll conducted in March of 1996 by a newspaper (Tampa Tribune) among eligible
voters with a sample size 425 showed that the president, who was seeking reelection, had
45% support. Give a 95% and a 98% confidence interval for the proportion of support for
the president.

6.2.16. A random sample of 100 households located in a large city recorded the number of people
living in the household, Y , and the monthly expenditure for food, X. The following summary
statistics are given.

100∑
i=1

Yi = 340

100∑
i=1

Y2
i = 1650

100∑
i=1

Xi = 40,000

100∑
i=1

X2
i = 44,000,000

(a) Form a 95% confidence interval for the mean number of people living in a household
in this city.

(b) Form a 95% confidence interval for the mean monthly food expenses.
(c) For each case just given, interpret the results and state any assumptions you have made.
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6.2.17. Let X1, . . . , Xn be a random sample from an exponential distribution with parameter θ.
A sample of 350 observations from this population has a mean equal to 3.75. Construct a
90% confidence interval for θ.

6.2.18. Suppose a coin is tossed 100 times in order to estimate p = p(Head). It is observed that head
appeared 60 times. Find a 95% confidence interval for p.

6.2.19. Suppose the population is women at least 35 years of age who are pregnant with a
fetus affected by Down syndrome. We are interested in testing positive on a noninvasive
screening test for fetuses affected by Down syndrome in women at least 35 years of age.
In an experiment, suppose 52 of 60 women tested positive. Obtain a 95% confidence
interval for the true proportion of women at least 35 years of age who are pregnant
with a fetus affected by Down syndrome who will receive positive test results from this
procedure.

6.2.20. (a) Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ.
Derive a (1 − α)100% large sample confidence interval for λ.

(b) To date nodes in a phylogenetic tree, the mean path length (MPL) is used in estimating
the relative age of a node. The following data represent the MPL for 39 nodes (source:
Tom Britton, Bengt Oxelman, Annika Vinnersten, and Kåre Bremer, “Phylogenetic dating
with confidence intervals using mean path-lengths”). Assume that the data (given in
centimeters) follow a Poisson distribution with parameter λ.

65.2 47.0 38.2 13.5 18.0 25.6 16.3 14.0 23.2 18.8

7.5 13.3 11.0 54.9 22.0 50.1 32.6 26.0 13.0 9.0

7.2 4.7 4.5 41.1 45.8 37.0 8.5 30.5 29.3 13.8

7.7 5.5 24.1 12.5 22.3 19.0 9.5 4.7 3.0

Obtain a 95% confidence interval for λ and interpret.

6.2.21. A person plans to start an Internet service provider in a large city. The plan requires an
estimate of the average number of minutes of Internet use of a household in a week. How
many households must be (randomly) sampled to be 95% sure that the sample mean is
within 15 minutes of the population mean? Assume that a pilot study estimated the value
of σ = 35 minutes.

6.2.22. The fruit fly Drosophila melanogaster normally has a gray color. However, because of mutation
a good portion of them are black. A biologist eager to learn about the effect of mutation
wants to collect a random sample to estimate the proportion of black fruit flies of this type
within 1% error with 95% confidence.

(a) How many individual flies should the researcher capture if there is no information on
the population proportion of black flies?

(b) Suppose the researcher has the initial estimate that 25% of the fruit fly Drosophila
melanogaster have been affected by this mutation. What is the sample size?
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6.2.23. In a pharmacological experiment, 35 lab rats were not given water for 11 hours and were
then permitted access to water for 1 hour. The amounts of water consumed (mL/hour) are
given in the following table.

10.6 13.3 15.5 10.7 9.6 12.1 11.8 10.9 9.9 13.2
9.3 11.7 9.9 13.0 12.3 11.0 13.1 11.0 12.5 13.9

14.1 14.8 15.1 12.8 14.0 7.1 14.1 12.7 9.6 12.5
9.0 12.7 13.6 12.5 12.6

Obtain a 98% confidence interval for the mean amount of water consumed.

6.3 SMALL SAMPLE CONFIDENCE INTERVALS FOR μ

Now we will consider the problem of finding a confidence interval for the true mean μ of a normal
population when the variance σ2 is unknown and obtaining a large sample is either impossible or
impractical. Let X1, . . . , Xn be a random sample from a normal population. We know that

T =
√

n
X−μ

σ√
(n − 1)S2/[σ2(n − 1)] = X − μ

S/
√

n

has a t-distribution with (n − 1) degrees of freedom, irrespective of the value of σ2. Thus, (X −
μ)/(S/

√
n) can be used as a pivot. Hence, for n small (n < 30) and σ2 unknown, we have the

following result.

Theorem 6.3.1 If X and S are the sample mean and the sample standard deviation of a random sample of
size n from a normal population, then

X − tα/2.n−1
S√
n

< μ < X + tα/2.n−1
S√
n

is a (1 − α)100% confidence interval for the population mean μ.

Note that if the confidence coefficient, 1 − α, and X and S remain the same, the confidence range
CR = θ̂U − θ̂L decreases as the sample size n increases, which means that we are closing in on the
true parameter value of θ.

One can use the following procedure to find the confidence interval for the mean when a small
sample is from an approximately normal distribution.

PROCEDURE TO FIND SMALL SAMPLE CONFIDENCE INTERVAL FOR μ

1. Calculate the values of X and S , from the sample X1, . . . , Xn .
2. Using the t-table, select two tail values −tα/2 and tα/2.

3. The (1 − α)100% confidence interval for μ is(
X − tα/2.n−1

S√
n

, X + tα/2.n−1
S√

n

)

that is, P
(

X − tα/2.n−1
S√

n
≤ μ ≤ X + tα/2.n−1

S√
n

)
= 1 − α.
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4. Conclusion: We are (1 − α)100% confident that the true parameter μ lies in the interval(
X − tα/2.n−1

(
S/

√
n
)

, X + tα/2.n−1
(

S/
√

n
))

.
5. Assumption: The population is normal.

In practice, the first step in the previous procedure should include a test of normality (see Project 4C).
A built-in test of normality is available in most of the statistical softwares packages. In Example 6.3.3,
we show how this test is utilized. Even when the data fail the normality test, most statistical software
will produce a confidence interval based on normality or give an error report. We should understand
that generally such answers are meaningless. In those cases, nonparametric methods (Chapter 12)
such as the Wilcoxon rank sum method or bootstrap methods (Chapter 13) will be more appropriate.
For more discussion, refer to Section 14.4.1.

Example 6.3.1
The following is a random data from a normal population.

7.2 5.7 4.9 6.2 8.5 2.8

Construct a 95% confidence interval for the population mean μ. Interpret.

Solution
The first step is to calculate mean and standard deviation of the sample. We compute as the mean x =
5.883 and standard deviation, s = 1.959. For 5 degrees of freedom, and for α = 0.05, from the t-table,

t0.025 = 2.571. Hence, a 95% confidence interval for μ is(
x − tα/2.n−1

2√
n
, x + tα/2.n−1

2√
n

)
=
(

5.883 − 2.571
(

1.959√
6

)
, 5.5883 + 2.571

(
1.959√

6

))
= (3.827, 7.939).

This can be interpreted as that we are 95% confident that the true mean μ will be between 3.827 and 7.939.

Example 6.3.2
The scores of a random sample of 16 people who took the TOEFL (Test of English as a Foreign Language)

had a mean of 540 and a standard deviation of 50. Construct a 95% confidence interval for the population

mean μ of the TOEFL score, assuming that the scores are normally distributed.

Solution
Because n = 16 is small, using Theorem 6.3.1 with degrees of freedom 15, a 95% confidence interval for μ is

x ± tα/2.n−1
s√
n

= 540 ± 2.131
(

50√
16

)
.

So the 95% confidence interval for the population mean μ of the TOEFL scores is (513.36, 566.64).
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A Dobson unit is the most basic measure used in ozone research. The unit is named after G. M. B. Dobson,

one of the first scientists to investigate atmospheric ozone (between 1920 and 1960). He designed the

Dobson spectrometer----the standard instrument used to measure ozone from the ground. The data in

Example 6.3.3 represent the total ozone levels at randomly selected points on the earth (represented

by the pair (Latitude, Longitude)) on a particular day from the NASA site http://jwocky.gsfc.nasa.gov/

teacher/ozone_overhead.html?228,110. You could use this site to find the amount of the total column ozone

over where you are now with a two-day delay.

Example 6.3.3
The following data represent the total ozone levels measured in Dobson units at randomly selected locations

of earth on a particular day.

269 246 388 354 266 303

295 259 274 249 271 254

Can we say that the data are approximately normally distributed? Construct a 95% confidence interval for

the population mean μ of ozone levels on this day.

Solution
The following is the probability plot of these data created using Minitab.
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Normal probability plot for ozone data

Because all the data values lie within the bounds on the normal probability plot (see the discussion in

Section 3.2.4), we can assume that the data have approximate normality. We have x = 285.7 and s = 43.9.

Also n = 12. For α = 0.05, t0.025,11 = 2.201. A 95% confidence interval for μ is

x ± tα/2,(n−1)
s√
n

= 285.7 ± 2.201
(

43.9√
12

)
.

Hence, a 95% confidence interval for μ, the average ozone level over the earth, lies in (257.81, 313.59).
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EXERCISES 6.3

6.3.1. (a) How does the t-distribution compare with the normal distribution?
(b) How does the difference affect the size of confidence intervals constructed using z

(normal approximation) relative to those constructed using the t-distribution?
(c) Does sample size make a difference?
(d) What assumptions do we need to make in using the t-distribution for the construction

of a confidence interval?

6.3.2. Use the t-table to determine the values of tα/2 that would be used in the construction of a
confidence interval for a population mean in each of the following cases:
(a) α = 0.99, n = 20
(b) α = 0.95, n = 18
(c) α = 0.90, n = 25

6.3.3. Let X1, . . . , Xn be a random sample from a normal population. A particular realization
resulted in a sample mean of 20 with the sample standard deviation 4. Construct a 95%
confidence interval for μ when:
(a) n = 5, (b) n = 10, and (c) n = 25. What happens to the length of the confidence interval
as n changes?

6.3.4. In a large university, the following are the ages of 20 randomly chosen employees:

24 31 28 43 28 56 48 39 52 32
38 49 51 49 62 33 41 58 63 56

Assuming that the data come from a normal population, construct a 95% confidence interval
for the population mean μ of the ages of the employees of this university. Interpret your
answer.

6.3.5. A random sample of size 26 is drawn from a population having a normal distribution. The
sample mean and the sample standard deviation from the data are given, respectively, as
x = −2.22 and s = 1.67. Construct a 98% confidence interval for the population mean μ

and interpret.

6.3.6. A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients.
Twenty patients from the group were given the drug. The changes in heart rates were found
to be as follows.

−1 8 5 10 2 12 7 9 1 3
4 6 4 12 11 2 −1 10 2 8

Construct a 98% confidence interval for the mean change in heart rate. Assume that the
population has a normal distribution. Interpret your answer.

6.3.7. Ten bearings made by a certain process have a mean diameter of 0.905 cm with a standard
deviation of 0.0050 cm. Assuming that the data may be viewed as a random sample from a
normal population, construct a 95% confidence interval for the actual average diameter of
bearings made by this process and interpret.
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6.3.8. Air pollution in large U.S. cities is monitored to see whether it conforms to requirements set
by the Environmental Protection Agency. The following data, expressed as an air pollution
index, give the air quality of a city for 10 randomly selected days.

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

Assuming that the data may be looked upon as a random sample from a normal population,
construct a 95% confidence interval for the actual average air pollution index for this city
and interpret.

6.3.9. In order to find out the average hemoglobin (Hb) level in children with chronic diarrhea,
a random sample of 10 children with chronic diarrhea is selected from a city and their Hb
levels (g/dL) are obtained as follows:

12.3 11.4 14.2 15.3 14.8 13.8 11.1 15.1 15.8 13.2

Assuming that the data may be looked upon as a random sample from a normal population,
construct a 99% confidence interval for the actual average Hb level in children with chronic
diarrhea for this city and interpret. Draw a box plot and normal plot for this data, and
comment.

6.3.10. Suppose that you need to estimate the mean number of typographical errors per page in
the rough draft of a 400-page book. A careful examination of 10 pages gives an average of 6
errors per page with a standard deviation of 2 errors. Assuming that the data may be looked
upon as a random sample from a normal population, construct a 99% confidence interval
for the actual average number of errors per page in this book and interpret. In this problem,
is the normal model appropriate?

6.3.11. Creatine kinase (CK) is found predominantly in muscle and is released into the cir-
culation during muscular lesions. Therefore, serum CK activity has been theoretically
expected to be useful as a marker in exercise physiology and sports medicine for
the detection of muscle injury and overwork. The following data represent the peak
CK activity (measured in IU/L) after 90 minutes of exercise in 15 healthy young
men. (Source: Manabu Totsuka, Shigeyuki Nakaji, Katsuhiko Suzuki, Kazuo Sugawara,
and Koki Sato, Break point of serum creatine kinase release after endurance exercise,
http://jap.physiology.org/cgi/content/full/93/4/1280.)

1112 722 689 251 196 185 128 102 166 178
775 694 514 244 208

Construct a 95% confidence interval for the mean peak CK activity.

6.3.12. A random sample of 20 observations gave the following summary statistics:
∑

xi = 234
and

∑
x2
i = 3048. Assuming that the data may be looked upon as a random sam-

ple from a normal population, construct a 95% confidence interval for the actual
average, μ.
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6.3.13. Let a random sample of size 17 from a normal population for which both mean μ and
variance σ2 are unknown yield x = 3.12 and s2 = 1.04. Determine a 99% confidence
interval for μ.

6.3.14. A random sample from a normal population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92
117 93 98 120 97 109 78 87 99 79
104 85 91 107 89

(a) Calculate an unbiased estimate θ̂ of the population mean.
(b) Give approximate 99% confidence interval for the population mean.

6.3.15. The following are random data from a normal population.

3.3 3.3 4.7 2.6 6.4 4.7 1.7 4.5 5.0 3.0

Construct a 98% confidence interval for the population mean μ.

6.3.16. The following data represent the rates (micrometers per hour) at which a razor cut made in
the skin of anesthetized newts is closed by new cells.

28 20 21 39 32 23 18 31 14 23
18 22 28 24 33 12 23 21 25 25

(a) Can we say that the data are approximately normally distributed?
(b) Find a 95% confidence interval for population mean rate μ for the new cells to close a

razor cut made in the skin of anesthetized newts.
(c) Find a 99% confidence interval for μ.
(d) Is the 95% CI wider or narrower than the 99% CI? Briefly explain why.

6.3.17. For a particular car, when the brake is applied at 62 mph, the following data give
stopping distance (in feet) for 10 random trials on a dry surface. (Source: http://
www.nhtsa.dot.gov/cars/testing/brakes/b.pdf.)

146.9 148.4 149.4 148.6 150.3
147.5 147.5 149.3 148.4 145.5

(a) Can we say that the data are approximately normally distributed?
(b) Find a 95% confidence interval for population mean stopping distance μ.

6.4 A CONFIDENCE INTERVAL FOR THE POPULATION VARIANCE

In this section we derive a confidence interval for the population variance σ2 based on the chi-
square distribution (χ2-distribution). Recall that the χ2-distribution, like the Student t-distribution,
is indexed by a parameter called the degrees of freedom. However, the χ2-distribution is not symmetric
and covers positive values only, and hence it cannot be used to describe a random variable that assumes
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negative values. Let X1, . . . , Xn be normally distributed with mean μ and variance σ2, with both μ

and σ unknown. We know that
n∑

i=1
(Xi − X)2

σ2 = (n − 1)S2

σ2

has a χ2-distribution with (n − 1) degrees of freedom irrespective of σ2. Hence it can be used as a
pivot. We now find two numbers χ2

L and χ2
U such that

P

(
χ2

L ≤ (n − 1)S2

σ2 ≤ χ2
U

)
= 1 − α.

The foregoing inequality can be rewritten as

P

(
(n − 1)S2

χ2
U

≤ σ2 ≤ (n − 1)S2

χ2
L

)
= 1 − α.

Hence, a (1 − α)100% confidence interval for σ2 is given by ((n − 1)S2/χ2
U, (n − 1)S2/χ2

L). For
convenience, we take the areas to the right of χ2

U = χ2
α/2 and to the left of χ2

L = χ2
1−α/2 to be both

equal to α/2; see Figure 6.3. Using the chi-square table we can find the values of χ2
α/2 and χ2

1−α/2.
Then, we have the following result.

Theorem 6.4.1 If X and S are the mean and standard deviation of a random sample of size n from a normal
population, then

P

(
(n − 1)S2

χ2
α/2

≤ σ2 ≤ (n − 1)S2

χ2
1−α/2

)
= 1 − α

where the χ2-distribution has (n − 1) degrees of freedom.

That is, we are (1 − α)100% confident that the population variance σ2 falls in the interval ((n − 1)S2/χ2
α/2,

(n − 1)S2/χ2
1−α/2).

�/2

�/2

�2

�U
2�L

2

(12�)

■ FIGURE 6.3 Chi-square density with equal area on both sides of the CI.
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Example 6.4.1
A random sample of size 21 from a normal population gave a standard deviation of 9. Determine a 90%

confidence interval for σ2.

Solution
Here n = 21 and s2 = 81. From the χ2-table with 20 degrees of freedom, χ2

0.05 = 31.4104 and

χ2
0.95 = 10.8508. Therefore, a 90% confidence interval for σ2 is obtained from

(
(n − 1)S2

χ2
α/2

,
(n − 1)S2

χ2
1−α/2

)
.

Thus, we get

(20)(81)

31.4104
< σ2 <

(20)(81)

10.8508

or, we are 90% confident that 51.575 < σ2 < 149.298.

We can summarize the steps for obtaining the confidence interval for the true variance as follows.

PROCEDURE TO FIND CONFIDENCE INTERVAL FOR σ2

1. Calculate x and s2 from the sample x1, . . . , xn .
2. Find χ2

U = χ2
α/2, and χ2

L = χ2
1−α/2 using the χ2-square table with (n − 1) degrees of freedom.

3. Compute the (1 − α)100% confidence interval for the population variance σ2 as(
(n − 1)s2/χ2

α/2, (n − 1)s2/χ2
1−α/2

)
, where χ2-values are with (n − 1) degrees of freedom.

Assumption: The population is normal.

Example 6.4.2
The following data represent cholesterol levels (in mg/dL) of 10 randomly selected patients from a large

hospital on a particular day.

360 352 294 160 146 142 318 200 142 116

Determine a 95% confidence interval for σ2.

Solution
From the data, we can get x = 223 and standard deviation s = 96.9. The following probability graph is

obtained by Minitab.
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Even though the scattergram does not appear to follow a straight line, the data are still within the band,

so we can assume approximate normality for the data. (In situations like this, we could also use nonpara-

metric tests explained in Chapter 12.) A box plot of the data shows that there are no outliers. From the

χ2-table, χ2
0.025(9) = 19.023 and χ2

0.975(9) = 2.70. Therefore a 90% confidence interval for σ2 is obtained

from (
(n − 1)S2

χ2
α/2(n − 1)

,
(n − 1)S2

χ2
1−α/2(n − 1)

)
.

Thus, we get

(9)(96.9)2

19.023
< σ2 <

(9)(96.9)2

2.70

or, we are 95% confident that 4442.3 < σ2 < 31,299. Note that the numbers look very large, but it is the

value of variance. By taking the square root of the numbers on the both sides, we can also get a confidence

interval for the standard deviation σ.

As remarked in the previous exercise, in general to find a (1 − α)100% confidence interval for the true

population standard deviation, σ, take the square roots of the end points of the confidence interval of the

variance.

EXERCISES 6.4

6.4.1. A random sample of size 20 is drawn from a population having a normal distribution. The
sample mean and the sample standard deviation from the data are given, respectively, as
x = −2.2 and s = 1.42. Construct a 90% confidence interval for the population variance σ2

and interpret.
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6.4.2. A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients.
Twenty patients from the group were given the drug. The changes in heart rates were found
to be as follows.

−1 8 5 10 2 12 7 9 1 3
4 6 4 12 11 2 −1 10 2 8

Construct a 95% confidence interval for the variance of change in heart rate. Assume that
the population has a normal distribution and interpret.

6.4.3. Air pollution in large U.S. cities is monitored to see whether it conforms to requirements set
by the Environmental Protection Agency. The following data, expressed as an air pollution
index, give the air quality of a city for 10 randomly selected days.

56.23 57.12 57.7 65.80 59.40
62.90 58.00 64.56 63.92 63.45

Assuming that the data may be viewed as a random sample from a normal population,
construct a 99% confidence interval for the actual variance of the air pollution index for this
city and interpret.

6.4.4. A random sample of 25 observations gave the following summary statistics:
∑

xi = 234
and

∑
x2
i = 3048. Assuming that the data can be looked upon as a random sample from a

normal population, construct a 95% confidence interval for the actual variance, σ2.

6.4.5. Let a random sample of size 18 from a normal population with both mean μ and variance
σ2 unknown yield x = 2.27 and s2 = 1.02. Determine a 99% confidence interval for σ2.

6.4.6. Suppose we want to study contaminated fish in a river. It is important for the study to know
the size of the variance σ2 in the fish weights. The 25 samples of fish in the study produced
the following summary statistics: x = 1030.5 g, and the standard deviation s = 200.6 g.
Construct a 95% confidence interval for the true variation in weights of contaminated fish
in this river.

6.4.7. A random sample from a normal population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92
117 93 98 120 97 109 78 87 99 79
104 85 91 107 89

(a) Calculate an unbiased estimate σ̂2 of the population variance.
(b) Give approximate 99% confidence interval for the population variance.
(c) Interpret your results and state any assumptions you made in order to solve the problem.

6.4.8. It is known that some brands of peanut butter contain impurities within an acceptable level.
A test conducted on randomly selected 12 jars of a certain brand of peanut butter resulted
in the following percentages of impurities:

1.9 2.7 2.1 2.8 2.3 3.6 1.4 1.8 2.1 3.2 2.0
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(a) Construct a 95% confidence interval for the average percentage of impurities in this
brand of peanut butter.

(b) Give an approximate 95% confidence interval for the population variance.
(c) Interpret your results and test for normality.

6.4.9. The following data represent the maximal head measurements (across the top of the skull)
in millimeters of 15 Etruscans (inhabitants of ancient Etruria).

152 147 126 140 135 139 149 140
142 147 132 148 146 143 137

(a) Calculate an unbiased estimate σ̂2 of the population variance.
(b) Give approximate 95% confidence interval for the population variance.
(c) Interpret your results and test for normality.

6.4.10. A pharmaceutical company tested a new drug to be marketed for the treatment of a particular
type of virus. In order to obtain an estimate on the mean recovery time, this drug was tested
on 15 volunteer patients, and the recovery time (in days) was recorded. The following data
were obtained.

8 17 10 6 34 11 13 6 9 8
19 4 12 17 7

(a) Obtain a 95% confidence interval estimate of the mean recovery.
(b) What assumptions do we need to make? Test for these assumptions.

6.4.11. The rates of return (rounded to the nearest percentage) for 25 clients of a financial firm are
given in the following table.

13 11 28 6 −4 15 13 6 11 11
3 12 20 3 16 16 15 8 20 15
4 1 12 2 −9

Find a 98% confidence interval for the variance σ2 of rates of return. Use this to find the
confidence interval for the population standard deviation, σ.

6.4.12. In order to test the precision of a new type of blood sugar monitor for diabetic patients, 20
randomly selected monitors of this type were used. A blood sample with 120 mg/dL was
tested in each of these monitors, and the resulting readings are given in the following table.

117 116 121 120 122 117 120 120 118 119
118 123 119 123 119 122 118 122 121 120

(a) Obtain a 99% confidence interval for the variance σ2.
(b) Is it reasonable to assume that the data follow a normal distribution?
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6.5 CONFIDENCE INTERVAL CONCERNING TWO POPULATION PARAMETERS

In the earlier sections we studied the confidence limits of true parameters from samples from single
populations. Now, we consider the interval estimation based on samples from two populations. Our
interest is to obtain a confidence interval for the parameters of interest based on two independent
samples taken from these two populations.

Let X11, . . . , X1n1 be a random sample from a normal distribution with mean μ1 and variance σ2
1 , and

let X21, . . . , X2n2 be a random sample from a normal distribution with mean μ2 and variance σ2
2 . Let

X1 = (1/n1)
∑n1

i=1X1i and X2 = (1/n2)
∑n2

i=1X2i. We will assume that the two samples are indepen-
dent. Then X1 and X2 are independent. The distribution of X1 − X2 is N(μ1 − μ2, (1/n1)σ2

1 +
(1/n2)σ2

2 ). Now as in the one-sample case, the confidence interval for μ1 − μ2 is obtained as
follows.

LARGE SAMPLE CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO MEANS

(i) σ1, σ2 are known. The (1 − α)100% large sample confidence interval for μ1 − μ2 is

given by

(
X 1 − X 2

)± zα/2

√√√√(σ2
1

n1
+ σ2

2
n2

)
.

(ii) If σ1 and σ2 are not known, σ1 and σ2 can be replaced by the respective sample standard
deviations S1 and S2 when ni ≥ 30, i = 1, 2. Thus, we can write

p

⎛
⎝( X 1 − X 2

) − zα/2

√√√√(S2
1

n1
+ S2

2
n2

)
≤ μ1 − μ2

≤ (
X 1 − X 2

)+ zα/2

√√√√(S2
1

n1
+ S2

2
n2

)⎞⎠ = 1 − α.

Assumptions: The population is normal, and the samples are independent.

Example 6.5.1
A study of two kinds of machine failures shows that 58 failures of the first kind took on the average

79.7 minutes to repair with a standard deviation of 18.4 minutes, whereas 71 failures of the second kind

took on average 87.3 minutes to repair with a standard deviation of 19.5 minutes. Find a 99% confidence

interval for the difference between the true average amounts of time it takes to repair failures of the two

kinds of machines.
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Solution
Here, n1 = 58, n2 = 71, x1 = 79.7, s1 = 18.4, x2 = 87.3, and s2 = 19.5. Then the 99% confidence interval

for μ1 − μ2 is given by

(79.7 − 87.3) ± 2.575

√
(18.4)2

58
+ (19.5)2

71
.

That is, we are 99% certain that μ1 − μ2 is located in the interval ( −16.215, 1.0149). Note that −16.215 <

μ1−μ2 < 1.0149 means that more than 90% of the length of this interval is negative. Thus, we can conclude

that μ2 dominates μ1, that is, μ2 > μ1 more than 90% of the time.

In the small sample case, the problem of constructing confidence intervals for the difference of the
means from the two normal populations with unknown variances can be a difficult one. However, if
we assume that the two populations have a common but unknown variance, say σ2

1 = σ2
2 = σ2, we

can obtain an estimate of the variance by pooling the two sample data sets. Define the pooled sample
variance S2

p as

S2
p =

n1∑
i=1

(
X1i − X1

)2 +
n2∑
i=1

(
X2i − X1

)2
n1 + n2 − 2

= (n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Now, when the two samples are independent,

T =
(
X1 − X2

)− (μ1 − μ2)

Sp

√
1
n1

+ 1
n2

has a t-distribution with n1 + n2 − 2 degrees of freedom. We summarize the CI for μ1 − μ2 below.

SMALL SAMPLE CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO MEANS
(
σ2

1 = σ2
2

)
The small sample (1 − α)100% confidence interval for μ1 − μ2 is

(
X 1 − X 2

)± tα/2, (n1+n2−2)Sp

√
1

n1
+ 1

n2
.

Assumptions: The samples are independent from two normal populations with equal variances.
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Example 6.5.2
Independent random samples from two normal populations with equal variances produced the following

data.

Sample 1: 1.2 3.1 1.7 2.8 3

Sample 2: 4.2 2.7 3.6 3.9

(a) Calculate the pooled estimate of σ2.

(b) Obtain a 90% confidence interval for μ1 − μ2.

Solution
(a) We have n1 = 5 and n2 = 4. Also,

x1 = 2.36, s2
1 = 0.733

x2 = 3.6, s2
2 = 0.42.

Hence,

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
= 0.5989.

(b) For the confidence coefficient 0.90, α = 0.10 and from the t-table, t0.05,7 = 1.895. Thus, a 90%

confidence interval for μ1 − μ2 is

(X1 − X2) ± tα/2,(n1+n2−2)sp

√
1
n1

+ 1
n2

= (2.36 − 3.6) ± 1.895

√
0.5989

(
1
5

+ 1
4

)

= −1.24 ± 0.98 = (−2.22, −0.26).

Here, μ2 dominates μ1 uniformly. Note that we can decrease the confidence range −2.22 to 0.26, by

increasing n1 and n2, with 1 − α = 0.90 to remain the same. This means that we are closing on the

unknown true value of μ1 − μ2.

In the small sample case, if the equality of the variances cannot be reasonably assumed, that is
σ2

1 = σ2
2 , we can still use the previous procedure, except that we use the following degrees of freedom

in obtaining the t- value from the table. Let

ν =

(
s2
1

n1
+ s2

2
n2

)2

⎛
⎝ s2

1
n1

⎞
⎠

2

n1−1 +
(

s22
n2

)2

n2−1

.
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The number given in this formula is always rounded down for the degrees of freedom. Hence, in this
case, a small sample (1 − α)100% confidence interval for μ1 − μ2 is given by

(X1 − X2) ± tα/2,ν

√
S2

1
n1

+ S2
2

n2
,

where the t-distribution has ν degrees of freedom as given previously.

Example 6.5.3
Assuming that two populations are normally distributed with unknown and unequal variances. Two

independent samples are taken with the following summary statistics:

n1 = 16 x1 = 20.17 s1 = 4.3

n2 = 11 x2 = 19.23 s2 = 3.8

Construct a 95% confidence interval for μ1 − μ2.

Solution
First let us compute the degrees of freedom,

ν =

(
s2
1

n1
+ s2

2
n2

)2

(
s2
1

n1

)2

n1 − 1
+

(
s2
1

n1

)2

n1 − 1

=

(
(4.3)2

16
+ (3.8)2

11

)
(

(4.3)2

16

)2

15
+

(
(3.8)2

11

)2

110

= 23.312.

Hence, ν = 23, and t0.025,23 = 2.069.

Now a 95% confidence interval for μ1 − μ2 is

( x1 − x2) ± tα/2,ν

√
s2
1

n1
+ s2

2
n2

= (20.17 − 19.23)

± (2.069)

√
(4.3)2

16
+ (3.8)2

11

which gives the 95% confidence interval as

−2.3106 < μ1 − μ2 < 4.1906.

In a real-world problem, how do we determine if σ2
1 = σ2

2 , or σ2
1 = σ2

2 so that we can select one of
the two methods just given? In Chapter 14, we discuss a procedure that determines the homogeneity
of the variances (i.e., whether σ2

1 = σ2
2). For the time being a good indication is to look at the point

estimators of σ2
1 and σ2

2 , namely, S2
1 and S2

2 . If the point estimators are fairly close to each other, then
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we can select σ2
1 = σ2

2 . Otherwise, σ2
1 = σ2

2 . For a more general method of testing for equality of
variances, we refer to Section 14.4.3.

We now give a procedure for a large sample confidence interval for the difference of the true
proportions, p1 − p2, in two binomial distributed populations.

LARGE SAMPLE CONFIDENCE INTERVAL FOR p1− p2

The (1 − α)100% large sample confidence interval for p1 − p2 is given by

(
p̂1 − p̂2

)± zα/2

√√√√( p̂1
(
1 − p̂1

)
n1

+ p̂2
(
1 − p̂2

)
n2

)
,

where p̂1 and p̂2 are the point estimators of p1 and p2. This approximation is applicable if p̂i ni ≥ 5,
i = 1, 2 and (1 − p̂i )ni ≥ 5, i = 1, 2. The two samples are independent.

Example 6.5.4
Iron deficiency, the most common nutritional deficiency worldwide, has negative effects on work capac-

ity and on motor and mental development. In a 1999–2000 survey by the National Health and Nutrition

Examination Survey (NHANES), iron deficiency was detected in 58 of 573 white, non-Hispanic females

(10% rounded to whole number) and 95 of 498 (19% rounded to whole number) black, non-Hispanic

females (source: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5140a1.htm). Let p1 be the propor-

tion of black, non-Hispanic females with iron deficiency and let p2 be the proportion of black, non-Hispanic

females with iron deficiency. Obtain a 95% confidence interval for p1 − p2.

Solution
Here, n1 = 573 and n2 = 498. Also, p̂1 = 58

573 = 0.10122 ≈ 0.1, and p̂2 = 95
498 = 0.1907 ≈ 0.19. For

α = 0.05, z0.025 = 1.96. Hence, a 95% confidence interval for p1 − p2 is

(p̂1 − p̂2) ± zα/2

√(
p̂1(1 − p̂1)

n1
+ p̂2(1−p̂2)

n2

)

= (0.1 − 0.19) ± (1.96)

√
(0.1)(0.9)

573
+ (0.19)(0.81)

498

= (−0.13232, −0.047685).

Here, the true difference of p1 − p2 is located in the negative portion of the real line, which tells us that the

true proportion of black, non-Hispanic females with iron deficiency is larger than the proportion of white,

non-Hispanic females with iron deficiency .

There are situations in applied problems that make it necessary to study and compare the true variances
of two independent normal distributions. For this purpose, we will find a confidence interval for the
ratio σ2

1/σ2
2 using the F -distribution. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent samples of size
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n1 and n2 from two normal distributions N(μ1, σ2
1 ) and N(μ2, σ2

2 ), respectively. Let S2
1 and S2

2 be the
variances of the two random samples. The confidence interval for the ratio σ2

1/σ2
2 is given as follows.

A (1 − α)100% CONFIDENCE INTERVAL FOR
σ2

1
σ2

2

A (1 − α)100% confidence interval for σ2
1 /σ2

2 is given by

((
S2

1

S2
2

)(
1

Fn1−1, n2−1, 1−α/2

)
,

(
S2

1

S2
2

)(
1

Fn1−1, n2−1, (α/2)

))
.

That is,

P

((
S2

1

S2
2

)(
1

Fn1−1, n2−1, 1−α/2

)
≤ σ2

1

σ2
2

≤
(

S2
1

S2
2

)(
1

Fn1−1, n2−1, 1(α/2)

))

= 1 − α.

Assumptions: The two populations are normal, and the samples are independent.

Note that we can also write a (1 − α)100% confidence interval for σ2
1/σ2

2 in the form

((
S2

1

S2
2

)(
1

Fn1−1,n2−1,1−α/2

)
,

(
S2

1

S2
2

)
Fn2−1,n1−1,1−α/2

)
.

The following example illustrates how to find the confidence interval for σ2
1/σ2

2 .

Example 6.5.5
Assuming that two populations are normally distributed, two independent random samples are taken with

the following summary statistics:

n1 = 21 x1 = 20.17 s1 = 4.3
n2 = 16 x2 = 19.23 s2 = 3.8

Construct a 95% confidence interval for σ2
1/σ2

2 .

Solution
Here, n1 = 21, n2 = 16, and α = 0.05. Using the F -table, we have

Fn1−1,n2−1,1−α/2 = F(20, 15, 0.975) = 2.76

and

Fn2−1,n1−1,1−α/2 = F(15, 20, 0.975) = 2.57.
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A 95% confidence interval for σ2
1/σ2

2 is

((
S2

1

S2
2

)(
1

Fn1−1,n2−1,1−α/2

)
,

(
S2

1

S2
2

)
Fn2−1,n1−1,1−α/2

)

=
((

(4.3)2

(3.8)2

)(
1

2.76

)
,

(
(4.3)2

(3.8)2

)
(2.57)

)
= (0.46394, 3.2908).

That is, we are 95% confident that the ratio of true variance, σ2
1/σ2

2 , is located in the interval that implies a

95% confidence interval (0.46394, 3.2908).

EXERCISES 6.5

6.5.1. A study was conducted to compare two different procedures for assembling components.
Both procedures were implemented and run for a month to allow employees to learn each
procedure. Then each was observed for 10 days with the following results. Values are number
of components assembled per day.

Procedure I 115 101 113 64 104 97 114 96 87 93

Procedure II 86 99 100 78 97 111 102 94 88 99

Construct a 98% confidence interval for the difference in the mean number of compo-
nents assembled by the two methods. Assume that the data for each procedure are from
approximately normal populations with a common variance. Interpret the result.

6.5.2. A study was conducted to see the differences between oxygen consumption rates for male
runners from a college who had been trained by two different methods, one involving
continuous training for a period of time each day and the other involving intermittent
training of about the same overall duration. The means, standard deviations, and sample
sizes are shown in the following table.

Continuous training n1 = 15 x1 = 46.28 s1 = 6.3

Intermittent training n2 = 7 x2 = 42.34 s2 = 7.8

If the measurements are assumed to come from normally distributed populations with
equal variances, estimate the difference between the population means, with confidence
coefficient 0.95, and interpret.

6.5.3. Studies have shown that the risk of developing coronary disease increases with the level of
obesity. A study comparing two methods of losing weight: diet alone and exercise alone
were conducted on 82 men over 1-year period. Forty-two men dieted and lost an average of
16.0 lb over the year, with a standard deviation of 5.6 lb. Forty-five men who exercised lost an
average of 10.6 lb, with a standard deviation of 7.9 lb. Construct a 99% confidence interval
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for the difference in the mean weight loss by these two methods. State any assumptions you
made and interpret the result you obtained.

6.5.4. The following information was obtained from two independent samples selected from two
normally distributed populations with unknown but equal variances.

Sample 1 14 15 12 13 6 14 11 12 17 19 23

Sample 2 16 18 12 20 15 19 15 22 20 18 23 12 20

Construct a 95% confidence interval for the difference between the population means and
interpret.

6.5.5. In the academic year 2001–2002, two random samples of 25 male professors and 23 female
professors from a large university produced a mean salary for male professors of $58,550
with a standard deviation of $4000; the mean for female professors was $53,700 with a
standard deviation of 3200. Construct a 90% confidence interval for the difference between
the population mean salaries. Assume that the salaries of male and female professors are
both normally distributed with equal standard deviations. Interpret the result.

6.5.6. Let the random variables X1 and X2 follow binomial distributions that have parameters
n1 = 100, n2 = 75, Let x1 = 35 and x2 = 27 be observed values of X1 and X2. Let p1 and p2

be the true proportions. Determine an appropriate 95% confidence interval for p1 − p2.

6.5.7. The following information is obtained from two independent samples selected from two
populations.

n1 = 40 x1 = 28.4 s1 = 4.1
n2 = 32 x2 = 25.6 s2 = 4.5

(a) What is the maximum likelihood estimator of μ1 − μ2?
(b) Construct a 99% confidence interval for μ1 − μ2.

6.5.8. In order to compare the mean hemoglobin (Hb) levels of well-nourished and undernour-
ished groups of children, random samples from each of these groups yielded the following
summary.

Number of Sample Sample Standard
Children Mean Deviation

Well nourished 95 11.2 0.9
Undernourished 75 9.8 1.2

Construct a 95% confidence interval for the true difference of means, μ1 − μ2.

6.5.9. In a certain part of a city, the average price of homes in 2000 was $148,822, and in 2001
it was $155,908. Suppose these means were based on a random sample of 100 homes in
1997 and 150 homes in 1998 and that the sample standard deviations of sale prices were
$21,000 for 2000 and $23,000 for 2001. Find a 98% confidence interval for the difference
in the two population means.
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6.5.10. Two independent samples from a normal population are taken with the following summary
statistics:

n1 = 16 x1 = 2.4 s1 = 0.1
n2 = 11 x2 = 2.6 s2 = 0.5

Construct a 95% confidence interval for σ2
1/σ2

2 .

6.5.11. The following information was obtained from two independent samples selected from two
normally distributed populations.

Sample 1 35 36 33 34 27 35 32 33 38 40 44
Sample 2 37 39 33 41 36 40 36 43 41 39 44 33 41

Construct a 90% confidence interval for σ2
1/σ2

2 .

6.5.12. The management of a supermarket wanted to study the spending habits of its male and
female customers. A random sample of 16 male customers who shopped at this supermarket
showed that they spent an average of $55 with a standard deviation of $12. Another random
sample of 25 female customers showed that they spent $85 with a standard deviation of
$20.50. Assuming that the amounts spent at this supermarket by all its male and female
customers were approximately normally distributed, construct a 90% confidence interval
for the ratio of variance in spending for males and females, σ2

1/σ2
2 .

6.5.13. An experiment is conducted comparing the effectiveness of a new method of teaching algebra
for eighth-grade students. Twelve gifted and 12 regular students are taught using this method.
Their scores on a final exam are shown in the following table.

Average 58 69 55 65 88 52 99 76 45 86 55 79
Gifted 77 86 84 93 77 91 87 95 68 78 74 58

(a) Compute the 95% confidence interval on the difference between the mean of the
students being taught by this new method.

(b) Construct a 95% confidence interval for the ratio of variance in test scores for regular
and gifted students, σ2

1/σ2
2 .

(c) What are the assumptions you made in parts (a) and (b)? Are these assumptions
justified?

6.5.14. Assume that two populations have the same variance σ2. If a sample of size n1 produced
a variance S2

1 from population I and a sample of size n2 produced a variance S2
2 from

population II, show that the pooled variance

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

is an unbiased estimator of σ2. Show that (S2
1 + S2

2)/2 is also an unbiased estimator of σ2.
Which of the two estimators would you prefer? Give reasons for your choice.
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6.6 CHAPTER SUMMARY

This chapter discusses the concept of interval estimation. A (1 − α)100% confidence interval (CI) for
an unknown parameter θ is computed from sample data. The so-called pivotal method is introduced
for deriving a confidence interval. Large sample and small sample confidence intervals are derived for
population mean μ. Confidence intervals in the case of two samples are also discussed. Additionally,
confidence intervals for variance and ratio of variances are derived.

The following list gives some of the key definitions introduced in this chapter.

■ Upper and lower confidence limits
■ Confidence coefficient
■ 100(1 − α)% confidence interval for θ

■ Interval estimation
■ Confidence interval

The following important concepts and procedures are discussed in this chapter.

■ Pivotal method
■ Procedure to find a confidence interval for θ using the pivot
■ Procedure to find a large sample confidence interval for θ

■ Procedure to find a small sample confidence interval for μ

■ Procedure to find a confidence interval for the population variance σ2.
■ Large sample confidence interval for the difference of the means
■ Small sample confidence interval for the difference of two means (σ2

1 = σ2
2 )

■ Small sample confidence interval for the difference of two means (σ2
1 = σ2

2 )

■ Large sample confidence interval for p1 − p2

■ A (1 − α)100% confidence interval for σ2
1/σ2

2

6.7 COMPUTER EXAMPLES

6.7.1 Minitab Examples

Example 6.7.1
(Small Sample): Using Minitab, obtain a 95% confidence interval for μ using the following data

7.227 5.7383 4.9369 6.238 8.4876 2.7618

Solution
Use the following commands.

Enter the data in C1. Then

Stat > Basic Statistics > 1-sample t. . . , in variables: enter C1, click Confidence interval, in Level
default value is 95, if any other value, enter that value, and click OK
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We will obtain the following output.

T Confidence Intervals

Variable N Mean StDev SE Mean 95.0% C.I.

C1 6 5.898 1.968 0.804 (3.832, 7.964)

Example 6.7.2
(Large Sample): For the data

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1 9.9

9.6 9.0 13.7 9.4 16.6 9.1 10.1 10.6 11.1 8.9 11.7

12.8 11.5 10.6 12.0 11.1 6.4 12.3 12.3 11.4 9.9 15.5

14.3 11.5 13.3 11.8 12.8 13.7 13.9 12.9 14.2 14.0

obtain a 98% confidence interval for μ.

Solution
Enter the data in C1. Then click

Stat > Basic Statistics > 1-Sample Z. . . > in Variables: type C1 > click Confidence interval, and

enter 98 in Level: > enter 5 in Sigma: > OK

We will obtain the following output.

THE ASSUMED SIGMA = 5.00

Variable N MEAN STDEV SE MEAN 98.0 PERCENT C.I.

C1 49 12.124 4.700 0.714 (10.462, 13.787)

Example 6.7.3
For the following data, find a 90% confidence interval for μ1 − μ2

Sample 1 1.2 3.1 1.7 2.8 3.0

Sample 2 4.2 2.7 3.6 3.9

Solution
Enter sample 1 in C1 and sample 2 in C2. Then click

Stat > Basic Statistics > 2-Sample t. . . > click Sample in different columns > in First: enter C1 and

in Second: enter C2 > enter 90 in Confidence Level: (if equality of variance can be assumed, click

Assume equal variances) > OK
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We will obtain the following output:

TWOSAMPLE T FOR C1 VS C2

N MEAN STDEV SE MEAN

C1 5 2.360 0.856 0.38

C2 4 3.600 0.648 0.32

90 PCT CI FOR MU C1 − MU C2: (−2.22, −0.26)

TTEST MU C1 = MU C2 (VS NE): T = −2.39 P = 0.048 DF = 7

POOLED STDEV = 0.774

6.7.2 SPSS Examples

Example 6.7.4
Consider the data

66 74 79 80 77 78 65 79 81 69

Using SPSS, obtain a 99% confidence interval for μ.

Solution
One easy way to obtain the confidence interval in SPSS is to use the hypothesis testing procedure. The

procedure is as follows: First enter the data in C1. Then click

Analyze > Compare Means > One-sample t Test. . . , > Move var00001 to Test Variable(s), and

Click Options . . . , and enter 99 in Confidence interval:, click Continue, and OK

Note that the default value is 95%.

We will obtain the following output:

One-Sample Statistics

Std. error
N Mean Std. deviation mean

VAR00001 10 74.8000 5.99630 1.89620

One-Sample Test

Test Value = 0

99% Confidence
interval of the

Mean difference

t df Sig.(2-tailed) difference Lower Upper

VAR00000 39.447 9 .000 74.8000 68.6377 80.9623

From this, we obtain the 99% confidence interval as (68.6377, 80.9623).
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6.7.3 SAS Examples

Example 6.7.5
The following data give P/E for a particular year of 49 mutual fund companies owned by a randomly

selected mutual fund.

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1

9.9 9.6 9.0 16.6 9.1 10.1 10.6 11.1 8.9 11.7

12.8 11.5 12.0 10.6 11.1 6.4 11.4 9.9 14.3 11.5

11.8 13.3 13.9 12.9 14.2 14.0 15.5 17.9 21.8 18.4

34.3 13.7 12.3 18.0 9.4 12.3 16.9 12.8 13.7

Find a 98% confidence interval for the mean P/E multiples. Use SAS procedures.

Solution
We could use the following procedure.

DATA peratio;
INPUT patio @@;
DATALINES;
6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8
7.1 9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6
11.1 8.9 11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3
12.3 11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9 12.9
14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3
;

PROC MEANS data = peratio lclm uclm alpha = 0.02;
var peratio;
RUN;

We will obtain the following output:

The MEANS Procedure

Analysis Variable : peratio

Lower 98% Upper 98%
CL for Mean CL for Mean
------------------------------------------------------------
10.5084971 13.7404825

------------------------------------------------------------

Hence, we will obtain the 98% confidence interval for the P/E ratios as (10.50, 13.74).

EXERCISES 6.7

6.7.1. Using any of the software packages (Minitab, SPSS, or SAS), obtain confidence intervals for
at least one data set taken from each section of this chapter.
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PROJECTS FOR CHAPTER 6

6A. Simulation of Coverage of the Small Confidence Intervals for μ

(a) Generate 25 samples of size 15 from a normal population with μ = 10 and σ2 = 4. Using
a statistical package (such as Minitab), compute the 95% confidence intervals for each of
the samples using the small sample formula. From your output, determine the proportion
of the 25 intervals that cover the true mean μ = 10.

(b) What would you expect if the sample size is increased to 100? Would the width of the interval
increase or decrease? Would you expect more or fewer of these intervals to contain the true
mean 10? Check your answers with actual computation.

(c) Repeat with 20 samples of size 10.

6B. Confidence Intervals Based on Sampling Distributions
If we want to obtain a (1 − α)100% confidence interval for θ, begin with an estimator θ̂ of θ and
determine its sampling distribution. Now select two probability levels, α1 and α2, so that α = α1 +α2.
Generally we let α1 = α2. Take a sample and calculate the value of θ̂, say θ̂ = k. Now we need to
determine the values of the upper and lower confidence limits. Find a value θL such that

p(θ̂ ≥ k) = α1

and θU such that

p(θ̂ ≤ k) = α2.

Then a (1 − α)100% confidence interval for θ will be

θL < θ < θU.

(a) Let X1, . . . , Xn be a random sample from U(0, θ) distribution. Obtain a (1 − α)100%
confidence interval for θ, using the method of sampling distribution.

(b) Let X have a binomial distribution with parameters n and p. First show that there is no quan-
tity that satisfies the conditions of a pivotal quantity. Then using the method of sampling
distributions, obtain a (1 − α)100% confidence interval for p.

6C. Large Sample Confidence Intervals: General Case
The method of finding a confidence interval for a parameter θ that we described in this chapter depends
on our ability to find the pivotal quantity. We have seen that such a quantity may not exist. In those
cases, the method of sampling distribution described in the previous project could be used. However,
this method can involve some difficult calculations. For large samples, we can utilize the following
procedure, which is based on the asymptotic distribution of maximum likelihood estimators. Under
fairly general conditions, the maximum likelihood estimators have a limiting distribution that is
normal. Also, maximum likelihood estimators are asymptotically efficient. Hence, for a large sample
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the maximum likelihood estimator θ̂ of θ will have approximately normal distribution with mean θ.
Also, if the Cramér–Rao lower bound exists, the limiting variance of θ̂ will be

σ2
θ̂

= 1

E

[(
∂ ln L

∂θ

)2
] .

Hence,

Z = θ̂ − θ

σ
θ̂

∼ N(0, 1).

Then a large sample (1 − α)100% confidence interval is obtained from the probability statement

P

(
−zα/2 <

θ̂ − θ

σ
θ̂

< zα/2

)
≈ 1 − α.

We summarize the procedure to construct large sample confidence intervals.

1. Determine the maximum likelihood estimator, θ̂, of θ. Also find the maximum likelihood
estimators of all other unknown parameters.

2. Obtain the variance σ
θ̂

(if possible directly, otherwise by using the Cramér–Rao lower bound).
3. In the expression for σ

θ̂
, substitute θ̂ for θ. Replace all other unknown parameters by its

maximum likelihood estimators. Let the resulting quantity be denoted by s
θ̂
.

4. Now construct a (1 − α)100% confidence interval for θ from

θ̂ − zα/2s
θ̂

< θ < θ̂ + zα/2s
θ̂
.

(a) Using the foregoing procedure, show that a large sample (1 − α)100% confidence interval
for the parameter p in a binomial distribution based on n trials is

p̂ − zα/2

√
p̂(1 − p̂)

n
< p < p̂ + zα/2

√
p̂(1 − p̂)

n
.

(b) Let X1, . . . , Xn be a random sample from a normal population with parameters μ and σ2.
Derive a large sample confidence interval for σ2 using the above procedure.

(c) Let X1, . . . , Xn be a random sample from a population with a pdf

f (x) =

⎧⎪⎨
⎪⎩

1
θ
e−x/θ, x > 0

0, otherwise.

Derive a large sample confidence interval for θ.
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6D. Prediction Interval for an Observation from a Normal Population
In many cases, we may be interested in predicting future observations from a population, rather than
making an inference. A (1 − α)100% prediction interval for a future observation X is an interval of the
form (XL, XU) such that p(XL < X < XU) = 1 − α. Similarly to confidence intervals, we can also
define one-sided prediction intervals. Assume that the population is normal with known variance
σ2. Let X1, . . . , Xn be a random sample from this population. Then the sampling distribution of
the difference X − X (we use X to denote Xn) is normal with mean zero and variance σ2 + σ2

X
=

(1 + (1/n))σ2. Then a (1 − α)100% prediction interval for X is given by

(
X − zα/2

√(
1 + 1

n

)
σ2, X + zα/2

√(
1 + 1

n

)
σ2

)
.

Thus, we are (1 − α)100% confident that the next observation, Xn+1, will lie in this interval. As in
confidence intervals, if the sample size is large, replace σ by sample standard deviation s.

In case, where both μ and σ are not known, and the sample size is small (so that the Central Limit
Theorem cannot be applied), it can be shown that

[
(Xn+1 − Xn)/(Sn

√
1 + (1/n))

]
has a t-distribution

with (n − 1) degrees of freedom. Thus, a (1 − α)100% prediction interval for Xn+1 is given by

(
X − tα/2,n−1

√
(1 + (1/n))S2, X + tα/2,n−1

√
(1 + (1/n))S2

)
.

A standard measure of the capacity of lungs to expel air in breathing is called forced expiratory
volume (FEV). The FEV1 is the volume exhaled during the first second of a forced expiratory maneuver
started from the level of total lung capacity. The following data (source: M. Bland, An Introduction
to Medical Statistics, Oxford University Press, 1995) represents FEV measurements (in liters) from
57 male medical students.

4.47 3.10 4.50 4.90 3.50 4.14 4.32 4.80 3.10 4.68
4.47 3.57 2.85 5.10 5.20 4.80 5.10 4.30 4.70 4.08
3.48 4.20 3.70 5.30 4.71 4.10 4.30 3.39 3.69 4.44
5.00 4.50 4.20 4.16 3.70 3.83 3.90 4.47 3.30 5.43
3.42 3.60 3.20 4.56 4.78 3.60 3.96 3.19 2.85 3.04
3.78 3.75 4.05 3.54 4.14 2.98 3.54

Obtain a 95% prediction interval for a future observation Xn+1.
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Jerzy Neyman
(Source: http://sciencematters.berkeley.edu/archives/volume2/issue12/legacy.php)

Jerzy Neyman (1894–1981) made far-reaching contributions in hypothesis testing, confidence inter-
vals, probability theory, and other areas of mathematical statistics. His work with Egon Pearson gave
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logical foundation and mathematical rigor to the theory of hypothesis testing. Their ideas made sure
that samples were large enough to avoid false representation. Neyman made a broader impact in
statistics throughout his lifetime.

7.1 INTRODUCTION

Statistics plays an important role in decision making. In statistics, one utilizes random samples to
make inferences about the population from which the samples were obtained. Statistical inference
regarding population parameters takes two forms: estimation and hypothesis testing, although both
hypothesis testing and estimation may be viewed as different aspects of the same general problem of
arriving at decisions on the basis of observed data. We already saw several estimation procedures in
earlier chapters. Hypothesis testing is the subject of this chapter. Hypothesis testing has an important
role in the application of statistics to real-life problems. Here we utilize the sampled data to make
decisions concerning the unknown distribution of a population or its parameters. Pioneering work
on the explicit formulation as well as the fundamental concepts of the theory of hypothesis testing
are due to J. Neyman and E. S. Pearson.

A statistical hypothesis is a statement concerning the probability distribution of a random variable
or population parameters that are inherent in a probability distribution. The following example
illustrates the concept of hypothesis testing. An important industrial problem is that of accepting or
rejecting lots of manufactured products. Before releasing each lot for the consumer, the manufacturer
usually performs some tests to determine whether the lot conforms to acceptable standards. Let us
say that both the manufacturer and the consumer agree that if the proportion of defectives in a lot is
less than or equal to a certain number p, the lot will be released. Very often, instead of testing every
item in the lot, we may test only a few items chosen at random from the lot and make decisions
about the proportion of defectives in the lot; that is, we make the decisions about the population
on the basis of sample information. Such decisions are called statistical decisions. In attempting to
reach decisions, it is useful to make some initial conjectures about the population involved. Such
conjectures are called statistical hypotheses. Sometimes the results from the sample may be markedly
different from those expected under the hypothesis. Then we can say that the observed differences
are significant and we would be inclined to reject the initial hypothesis. These procedures that enable
us to decide whether to accept or reject hypotheses or to determine whether observed samples differ
significantly from expected results are called tests of hypotheses, tests of significance, or rules of decision.

In any hypothesis testing problem, we formulate a null hypothesis and an alternative hypothesis such that
if we reject the null, then we have to accept the alternative. The null hypothesis usually is a statement
of either the “status quo” or “no effect.” A guideline for selecting a null hypothesis is that when the
objective of an experiment is to establish a claim, the nullification of the claim should be taken as
the null hypothesis. The experiment is often performed to determine whether the null hypothesis is
false. For example, suppose the prosecution wants to establish that a certain person is guilty. The null
hypothesis would be that the person is innocent and the alternative would be that the person is guilty.
Thus, the claim itself becomes the alternative hypothesis. Customarily, the alternative hypothesis is
the statement that the experimenter believes to be true. For example, the alternative hypothesis is
the reason a person is arrested (police suspect the person is not innocent). Once the hypotheses
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have been stated, appropriate statistical procedures are used to determine whether to reject the null
hypothesis. For the testing procedure, one begins with the assumption that the null hypothesis is true.
If the information furnished by the sampled data strongly contradicts (beyond a reasonable doubt)
the null hypothesis, then we reject it in favor of the alternative hypothesis. If we do not reject the
null, then we automatically reject the alternative. Note that we always make a decision with respect
to the null hypothesis. Note that the failure to reject the null hypothesis does not necessarily mean
that the null hypothesis is true. For example, a person being judged “not guilty” does not mean the
person is innocent. This basically means that there is not enough evidence to reject the null hypothesis
(presumption of innocence) beyond “a reasonable doubt.”

We summarize the elements of a statistical hypothesis in the following.

THE ELEMENTS OF A STATISTICAL HYPOTHESIS

1. The null hypothesis, denoted by H0, is usually the nullification of a claim. Unless evidence from the
data indicates otherwise, the null hypothesis is assumed to be true.

2. The alternate hypothesis, denoted by Ha (or sometimes denoted by H1), is customarily the claim
itself.

3. The test statistic, denoted by TS, is a function of the sample measurements upon which the
statistical decision, to reject or not reject the null hypothesis, will be based.

4. A rejection region (or a critical region) is the region (denoted by RR) that specifies the values
of the observed test statistic for which the null hypothesis will be rejected. This is the range of
values of the test statistic that corresponds to the rejection of H0 at some fixed level of significance,
α, which will be explained later.

5. Conclusion: If the value of the observed test statistic falls in the rejection region, the null hypothesis
is rejected and we will conclude that there is enough evidence to decide that the alternative
hypothesis is true. If the TS does not fall in the rejection region, we conclude that we cannot reject
the null hypothesis.

In practice one may have hypotheses such as H0 : μ = μ0 against one of the following alternatives:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ha : μ = μ0, called a two-tailed alternative
or Ha : μ < μ0, called a lower (or left) tailed alternative
or Ha : μ > μ0, called an upper (or right) tailed alternative

A test with a lower or upper tailed alternative is called a one-tailed test. In an applied hypothesis testing
problem, we can use the following general steps.

GENERAL METHOD FOR HYPOTHESIS TESTING

1. From the (word) problem, determine the appropriate null hypothesis, H0, and the alternative, Ha.
2. Identify the appropriate test statistics and calculate the observed test statistic from the data.
3. Find the rejection region by looking up the critical value in the appropriate table.
4. Draw the conclusion: Reject or fail to reject the null hypothesis, H0.
5. Interpret the results: State in words what the conclusion means to the problem we started with.
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It is always necessary to state a null and an alternate hypothesis for every statistical test performed.
All possible outcomes should be accounted for by the two hypotheses.

Example 7.1.1
In a coin-tossing experiment, let p be the probability of heads. We start with the claim that the coin is fair,

that is, H0 :p = 1/2. We test this against one of the following alternatives:

(a) Ha: The coin is not fair (p = 1/2). This is a two-tailed alternative.

(b) Ha: The coin is biased in favor of heads (p > 1/2). This is an upper tailed alternative.

(c) Ha: The coin is biased in favor of tails (p < 1/2). This is a lower tailed alternative.

It is important to observe that the test statistic is a function of a random sample. Thus, the test statistic
itself is a random variable whose distribution is known under the null hypothesis. The value of a test
statistic when specific sample values are substituted is called the observed test statistic or simply test
statistic.

For example consider the hypothesis H0 : μ = μo versus Ha : μ = μo, where μo is known. Assume
that the population is normal with a known variance σ2. Consider X, an unbiased estimator of μ

based on the random sample X1, . . . , Xn. Then Z = (X − μ0)/(σ/
√

n) is a function of the random
sample X1, . . . , Xn, and has a known distribution, a standard normal, under H0. If x1, x2, . . . , xn are
specific sample values, then z = (x−μ0)/(σ/

√
n) is called the observed sample statistic or simply sample

statistic.

Definition 7.1.1 A hypothesis is said to be a simple hypothesis if that hypothesis uniquely specifies
the distribution from which the sample is taken. Any hypothesis that is not simple is called a composite
hypothesis.

Example 7.1.2
Refer to Example 7.1.1. The null hypothesis p =1/2 is simple, because the hypothesis completely specifies

the distribution, which in this case will be a binomial with p = 1/2 and with n being the number of tosses.

The alternative hypothesis p = 1/2 is composite because the distribution now is not completely specified

(we do not know the exact value of p).

Because the decision is based on the sample information, we are prone to commit errors. In a statistical
test, it is impossible to establish the truth of a hypothesis with 100% certainty. There are two possible
types of errors. On the one hand, one can make an error by rejecting H0 when in fact it is true. On
the other hand, one can also make an error by failing to reject the null hypothesis when in fact it is
false. Because the errors arise as a result of wrong decisions, and the decisions themselves are based
on random samples, it follows that the errors have probabilities associated with them. We now have
the following definitions.
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Table 7.1 Statistical Decision and Error Probabilities

Statistical True state of null hypothesis

decision H0 true H0 false

Do not reject H0 Correct decision Type II error (β)

Reject H0 Type I error (α) Correct decision

The decision and the errors are represented in Table 7.1.

Definition 7.1.2 (a) A type I error is made if H0 is rejected when in fact H0 is true. The probability of
type I error is denoted by α. That is,

P (rejecting H0|H0 is true) = α.

The probability of type I error, α, is called the level of significance.

(b) A type II error is made if H0 is accepted when in fact Ha is true. The probability of a type II error is
denoted by β. That is,

P (not rejecting H0|H0 is false) = β.

It is desirable that a test should have a = β = 0 (this can be achieved only in trivial cases), or at least
we prefer to use a test that minimizes both types of errors. Unfortunately, it so happens that for a
fixed sample size, as α decreases, β tends to increase and vice versa. There are no hard and fast rules
that can be used to make the choice of α and β. This decision must be made for each problem based
on quality and economic considerations. However, in many situations it is possible to determine
which of the two errors is more serious. It should be noted that a type II error is only an error in
the sense that a chance to correctly reject the null hypothesis was lost. It is not an error in the sense
that an incorrect conclusion was drawn, because no conclusion is made when the null hypothesis is
not rejected. In the case of type I error, a conclusion is drawn that the null hypothesis is false when,
in fact, it is true. Therefore, type I errors are generally considered more serious than type II errors.
For example, it is mostly agreed that finding an innocent person guilty is a more serious error than
finding a guilty person innocent. Here, the null hypothesis is that the person is innocent, and the

Prob (TYPE II Error) 5 Beta
Under H0

Prob (TYPE I Error) 5 Alpha
    Under Ha

Critical value
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alternate hypothesis is that the person is guilty. “Not rejecting the null hypothesis” is equivalent to
acquitting a defendant. It does not prove that the null hypothesis is true, or that the defendant is
innocent. In statistical testing, the significance level α is the probability of wrongly rejecting the null
hypothesis when it is true (that is, the risk of finding an innocent person guilty). Here the type II risk
is acquitting a guilty defendant. The usual approach to hypothesis testing is to find a test procedure
that limits α, the probability of type I error, to an acceptable level while trying to lower β as much as
possible.

The consequences of different types of errors are, in general, very different. For example, if a doctor
tests for the presence of a certain illness, incorrectly diagnosing the presence of the disease (type I
error) will cause a waste of resources, not to mention the mental agony to the patient. On the other
hand, failure to determine the presence of the disease (type II error) can lead to a serious health risk.

To formulate a hypothesis testing problem, consider the following situation. Suppose a toy store
chain claims that at least 80% of girls under 8 years old prefer dolls over other types of toys. We feel
that this claim is inflated. In an attempt to dispose of this claim, we observe the buying pattern of 20
randomly selected girls under 8 years old, and we observe X, the number of girls under 8 years old
who buy stuffed toys or dolls. Now the question is, how can we use X to confirm or reject the store’s
claim? Let p be the probability that a girl under 8 chosen at random prefers stuffed toys or dolls. The
question now can be reformulated as a hypothesis testing problem. Is p ≥ 0.8 or p < 0.8? Because we
would like to reject the store’s claim only if we are highly certain of our decision, we should choose
the null hypothesis to be H0 : p ≥ 0.8, the rejection of which is considered to be more serious. The
null hypothesis should be H0 : p ≥ 0.8, and the alternative Ha : p < 0.8. In order to make the null
hypothesis simple, we will use H0 : p = 0.8, which is the boundary value with the understanding that
it really represents H0 : p ≥ 0.8. We note that X, the number of girls under 8 years old who prefer
stuffed toys or dolls, is a binomial random variable. Clearly a large sample value of X would favor
H0. Suppose we arbitrarily choose to accept the null hypothesis if X > 12. Because our decision is
based on only a sample of 20 girls under 8, there is always a possibility of making errors whether
we accept or reject the store chain’s claim. In the following example, we will now formally state this
problem and calculate the error probabilities based on our decision rule.

Example 7.1.3
A toy store chain claims that at least 80% of girls under 8 years old prefer dolls over other types of toys.

After observing the buying pattern of many girls under 8 years old, we feel that this claim is inflated. In an

attempt to dispose of this claim, we observe the buying pattern of 20 randomly selected girls under 8 years

old, and we observe X, the number of girls who buy stuffed toys or dolls. We wish to test the hypothesis

H0 : p = 0.8 against Ha : p < 0.8. Suppose we decide to accept the H0 if X > 12 (that is X ≥ 13). This

means that if {X ≤ 12} (that is X < 13) we will reject H0.

(a) Find α.

(b) Find β for p = 0.6.

(c) Find β for p = 0.4.

(d) Find the rejection region of the form {X ≤ K} so that (i) α = 0.01; (ii) α = 0.05.

(e) For the alternative Ha :p = 0.6, find β for the values of α in part (d).
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Solution
The TS X is the number of girls under 8 years old who buy dolls. X follows the binomial distribution with

n = 20 and p, the unknown population proportion of girls under 8 who prefer dolls. We now calculate α

and β.

(a) For p = 0.8, the probability of type I error is

α = P{reject H0|H0 is true}
= P{X ≤ 12|p = 0.8}

=
12∑

x=0

(
20
x

)
(0.8)x(0.2)20−x

= 0.0321.

If we calculate α for any other value of p > 0.8, then we will find that it is smaller than 0.0321.

Hence, there is at most a 3.21% chance of rejecting a true null hypothesis. That is, if the store’s claim

is in fact true, then the chance that our test will erroneously reject that claim is at most 3.21%.

(b) Here p = 0.6. The probability of type II error is

β = P{accept H0|H0 false}
= P{X > 12|p = 0.6}
= 1 − P{X ≤ 12|p = 0.6}
= 1 − 0.584

= 0.416

so there is a 4.2% chance of accepting a false null hypothesis. Thus, in case the store’s claim is not

true, and the truth is that only 60% of girls under 8 years old prefer dolls over other types of toys,

then there is a 4.2% chance that our test will erroneously conclude that the store’s claim is true.

(c) If p = 0.4, then

β = P{accept H0|H0 false}
= P{X > 12|p = 0.4}
= 1 − P{X ≤ 12|p = 0.4}
= 1 − 0.979

= 0.021.

That is, there is a 2.1% chance of accepting a false null hypothesis.

(d) (i) To find K such that

α = P{X ≤ K|p = 0.8} = 0.01

from the binomial table, K = 11. Hence, the rejection region is: Reject H0 if {X ≤ 11}.

(ii) To find K such that

α = P{X ≤ K|p = 0.8} = 0.05
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from the binomial table, α = 0.05 falls between K = 12 and K = 13. However, for K = 13, the

value for α is 0.087, exceeding 0.05. If we want to limit α to be no more than 0.05, we will

have to take K = 12. That is, we reject the null hypothesis if X ≤ 12, yielding an α = 0.0321
as shown in (a).

(e) (i) When a = 0.01, from (d), the rejection region is of the form {X ≤ 11}. For p = 0.6,

β = P{accept H0|H0 false}
= P{Y > 11|p = 0.6}
= 1 − P{Y ≤ 11|p = 0.6}
= 1 − 0.404

= 0.596.

(ii) From (a) and (b) for testing the hypothesis H0 : p = 0.8 against Ha : p < 0.8 with n = 20.

We see that when α is 0.0321, β is 0.416. From (d)(i) and (e)(i) for the same hypothesis, we

see that when α is 0.01, β is 0.596. This holds in general. Thus, we observe that for fixed n as

α decreases, β increases and vice versa.

In the next example, we explore what happens to β as the sample size increases, with α fixed.

Example 7.1.4
Let X be a binomial random variable. We wish to test the hypothesis H0 : p = 0.8 against Ha : p = 0.6. Let

α = 0.03 be fixed. Find β for n = 10 and n = 20.

Solution
For n = 10, using the binomial tables, we obtain P{X ≤ 5|p = 0.8} ∼= 0.03. Hence the rejection region for

the hypothesis H0 : p = 0.8 vs. Ha : p = 0.6 is given by reject H0 if X ≤ 5. The probability of type II error is

β = P{accept H0|p = 0.6}
β = P{X > 5|p = 0.6} = 1 − P{X ≤ 5|p = 0.6} = 0.733.

For n = 20, as shown in Example 7.1.3, if we reject H0 for X ≤ 12, we obtain

P(X ≤ 12|p = 0.8) ∼= 0.03

and

β = P(X > 12|p = 0.6) = 1 − P{X ≤ 12|p = 0.6} = 0.416.

We see that for a fixed α, as n increases β decreases and vice versa. It can be shown that this result holds in

general.
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In order for us to compute the value of β, it is necessary that the alternate hypothesis is simple. Now
we will discuss a three-step procedure to calculate β.

STEPS TO CALCULATE β

1. Decide an appropriate test statistic (usually this is a sufficient statistic or an estimator for the
unknown parameter, whose distribution is known under H0).

2. Determine the rejection region using a given α, and the distribution of the test statistic (TS).

3. Find the probability that the observed test statistic does not fall in the rejection region assuming

Ha is true. This gives β. That is,

β = P(T .S . falls in the complement of the rejection region|Hais true).

Example 7.1.5
A random sample of size 36 from a population with known variance, σ2 = 9, yields a sample mean of

x = 17. Find β, for testing the hypothesis H0 : μ = 15 versus Ha : μ = 16. Assume α = 0.05.

Solution
Here n = 36, x = 17, and σ2 = 9. In general, to test H0 : μ = μ0 versus Ha : μ > μ0, we proceed as

follows. An unbiased estimator of μ is X. Intuitively we would reject H0 if X is large, say X > c. Now using

α = 0.05, we will determine the rejection region. By the definition of α, we have

P(X > c |μ = μ0) = 0.05

or

P

(
X − μ0

σ/
√

n
>

c − μ0

σ/
√

n
|μ = μ0

)
= 0.05

But if μ = μ0, because the sample size n ≥ 30, [(X − μ0)/(σ/
√

n)] ∼ N(0, 1). Therefore, P
(

X−μ0
(σ/

√
n)

>

c−μ0
(σ/

√
n)

)
= 0.05 is equivalent to P

(
Z >

c−μ0
(σ/

√
n)

)
= 0.05. From standard normal tables, we obtain P (Z >

1.645) = 0.05. Hence
c−μ0
(σ/

√
n)

= 1.645 or c = μ0 + 1.645(σ/
√

n).

Therefore, the rejection region is the set of all sample means x such that

x > μ0 + 1.645
(

σ√
n

)
.

Substituting μ0 = 15, and σ = 3, we obtain

μ0 + 1.645(σ/
√

n) = 15 + 1.645
(

3
36

)
= 15.8225.

The rejection region is the set of x such that x ≥ 15.8225.
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Then by definition,

β = P (X ≤ 15.8225 when μ = 16).

Consequently, for μ = 16,

β = P

(
X − 16

σ/
√

n
≤ 15.8225 − 16

3/
√

36

)

= P (Z ≤ −0.36)

= 0.3594.

That is, under the given information, there is a 35.94% chance of not rejecting a false null hypothesis.

7.1.1 Sample Size
It is clear from the preceding example that once we are given the sample size n, an α, a simple
alternative Ha, and a test statistic, we have no control over β and it is exactly determined. Hence, for
a given sample size and test statistic, any effort to lower β will lead to an increase in α and vice versa.
This means that for a test with fixed sample size it is not possible to simultaneously reduce both α

and β. We also notice from Example 7.1.4 that by increasing the sample size n, we can decrease β

(for the same α) to an acceptable level. The following discussion illustrates that it may be possible to
determine the sample size for a given α and β.

Suppose we want to test H0 : μ = μ0 versus Ha : μ > μ0. Given α and β, we want to find n, the
sample size, and K, the point at which the rejection begins. We know that

α = P (X > K when μ = μ0)

= P

(
X − μ0

σ/
√

n
>

K − μ0

σ/
√

n
, when μ = μ0

)
(7.1)

= P (Z > za)

and

β = P (X ≤ K, when μ = μa)

= P

(
X − μa

σ/
√

n
≤ K − μa

σ/
√

n
, when μ = μa

)
(7.2)

= P (z ≤ −zβ).

From Equations (7.1) and (7.2),

zα = K − μ0

σ/
√

n
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and

−zβ = K − μa

σ/
√

n
.

This gives us two equations with two unknowns (K and n), and we can proceed to solve them.
Eliminating K, we get

μ0 + zα

(
σ√
n

)
= μa − zβ

(
σ√
n

)
.

From this we can derive
√

n = (zα + zβ)σ

μa − μ0
.

Thus, the sample size for an upper tail alternative hypothesis is

n = (zα + zβ)2σ2

(μa − μ0)2 .

The sample size increases with the square of the standard deviation and decreases with the square of
the difference between mean value of the alternative hypothesis and the mean value under the null
hypothesis. Note that in real-world problems, care should be taken in the choice of the value of μa

for the alternative hypothesis. It may be tempting for a researcher to take a large value of μa in order
to reduce the required sample size. This will seriously affect the accuracy (power) of the test. This
alternative value must be realistic within the experiment under study. Care should also be taken in
the choice of the standard deviation σ. Using an underestimated value of the standard deviation to
reduce the sample size will result in inaccurate conclusions similar to overestimating the difference
of means. Usually, the value of σ is estimated using a similar study conducted earlier. The problem
could be that the previous study may be old and may not represent the new reality. When accuracy is
important, it may be necessary to conduct a pilot study only to get some idea on the estimate of σ.
Once we determine the necessary sample size, we must devise a procedure by which the appropriate
data can be randomly obtained. This aspect of the design of experiments is discussed in Chapter 9.

Example 7.1.6
Let σ = 3.1 be the true standard deviation of the population from which a random sample is chosen. How

large should the sample size be for testing H0 : μ = 5 versus Ha : μ = 5.5, in order that α = 0.01 and

β = 0.05?

Solution
We are given μ0 = 5 and μa = 5.5. Also, zα = z0.01 = 2.33 and zβ = z0.05 = 1.645. Hence, the

sample size

n = (zα + zβ)2σ2

(μa − μ0)2 = (2.33 + 1.645)2(3.1)2

(0.5)2 = 607.37.
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So, n = 608 will provide the desired levels. That is, in order for us to test the foregoing hypothesis, we must

randomly select 608 observations from the given population.

From a practical standpoint, the researcher typically chooses α, and the sample size β is ignored.
Because a trade-off exists between α and β, choosing a very small value of α will tend to increase β in
a serious way. A general rule of thumb is to pick reasonable values of α, possibly in the 0.05 to 0.10
range so that β will remain reasonably small.

EXERCISES 7.1

7.1.1. An appliance manufacturer is considering the purchase of a new machine for stamping out
sheet metal parts. If μ0 (given) is the true average of the number of good parts stamped out
per hour by their old machine and μ is the corresponding true unknown average for the
new machine, the manufacturer wants to test the null hypothesis μ = μ0 versus a suitable
alternative. What should the alternative be if he does not want to buy the new machine
unless it is (a) more productive than the old one? (b) At least 20% more productive than the
old one?

7.1.2. Formulate an alternative hypothesis for each of the following null hypotheses.
(a) H0: Support for a presidential candidate is unchanged after the start of the use of TV

commercials.
(b) H0: The proportion of viewers watching a particular local news channel is less

than 30%.
(c) H0: The median grade point average of undergraduate mathematics majors is 2.9.

7.1.3. It is suspected that a coin is not balanced (not fair). Let p be the probability of tossing a head.
To test H0 : p = 0.5 against the alternative hypothesis Ha : p > 0.5, a coin is tossed 15 times.
Let Y equal the number of times a head is observed in the 15 tosses of this coin. Assume the
rejection region to be {Y ≥ 10}.
(a) Find α.
(b) Find β for p = 0.7.
(c) Find β for p = 0.6.
(d) Find the rejection region for {Y ≥K} for α = 0.01, and α = 0.03.
(e) For the alternative Ha : p = 0.7, find β for the values of α given in (d).

7.1.4. In Exercise 7.1.3:

(a) Assume that the rejection region is {Y ≥ 8}. Calculate α and β if p = 0.6. Compare the
results with the corresponding values obtained in Exercise 7.1.3. (This gives the effect of
enlarging the rejection region on α and β.)

(b) Assume that the rejection region is {Y ≥ 8}. Calculate α and β if p = 0.6 and (i) the coin
is tossed 20 times, or (ii) the coin is tossed 25 times. (This shows the effect of increasing
the sample size on α and β for a fixed rejection region.)

7.1.5. Suppose we have a random sample of size 25 from a normal population with an unk-
nown mean μ and a standard deviation of 4. We wish to test the hypothesis H0 : μ = 10 vs.
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Ha : μ > 10. Let the rejection region be defined by: reject H0 if the sample mean
X > 11.2.
(a) Find α.
(b) Find β for Ha : μ = 11.
(c) What should the sample size be if α = 0.01 and β = 0.8?

7.1.6. A process for making steel pipe is under control if the diameter of the pipe has mean 3.0 in.
with standard deviation of no more than 0.0250 in. To check whether the process is under
control, a random sample of size n = 30 is taken each day and the null hypothesis μ = 3.0
is rejected if X is less than 2.9960 or greater than 3.0040. Find (a) the probability of type I
error; (b) the probability of type II error when μ = 3.0050 in. Assume σ = 0.0250 in.

7.1.7. A bowl contains 20 balls, of which x are green and the remain- der red. To test H0 : x = 10
versus Ha : x = 15, three balls are selected at random without replacement, and H0 is rejected
if all three balls are green. Calculate α and β for this test.

7.1.8. Suppose we have a sample of size 6 from a population with pdf f (x) = (1/θ)e−x/θ, x > 0, θ >

0. We wish to test H0 : θ = 1 vs. Ha : θ > 1. Let the rejection region be defined by reject H0 if∑6
i=1 Xi > 8. (a) Find α. (b) Find β for Ha : θ = 2.

7.1.9. Let σ2 = 16 be the variance of a normal population from which a random sample is chosen.
How large should the sample size be for testing H0 : μ = 25 versus Ha : μ = 24, in order that
α = 0.05 and β = 0.05?

7.2 THE NEYMAN–PEARSON LEMMA

In practical hypothesis testing situations, there are typically many tests possible with significance level
α for a null hypothesis versus alternative hypothesis (see Project 7A). This leads to some important
questions, such as (1) how to decide on the test statistic and (2) how to know that we selected the best
rejection region. In this section, we study the answer to these questions using the Neyman–Pearson
approach.

Definition 7.2.1 Suppose that W is the test statistic and RR is the rejection region for a test of hypothesis
concerning the value of a parameter θ. Then the power of the test is the probability that the test rejects H0

when the alternative is true. That is,

π = Power(θ)

= P(W in RR when the parameter value is an alternative θ).

If H0 : θ = θ0 and Ha : θ = θ0, then the power of the test at some θ = θ1 = θ0 is

Power(θ1) = P(reject H0|θ = θ1).

But, β(θ1) = P(accept H0|θ = θ1). Therefore,

Power(θ1) = 1 − β(θ1).

A good test will have high power.
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Note that the power of a test H0 cannot be found until some true situation Ha is specified. That is,
the sampling distribution of the test statistic when Ha is true must be known or assumed. Because
β depends on the alternative hypothesis, which being composite most of the time does not specify
the distribution of the test statistic, it is important to observe that the experimenter cannot control
β. For example, the alternative Ha : μ < μ0 does not specify the value of μ, as in the case of the null
hypothesis, H0 : μ = μ0.

Example 7.2.1
Let X1, . . . , Xn be a random sample from a Poisson distribution with parameter λ, that is, the pdf is

given by f (x) = e−λλx/(x!). Then the hypothesis H0 : λ = 1 uniquely specifies the distribution, because

f (x) = e−1/(x!) and hence is a simple hypothesis. The hypothesis Ha : λ > 1 is composite, because f (x) is

not uniquely determined.

Definition 7.2.2 A test at a given α of a simple hypothesis H0 versus the simple alternative Ha that has
the largest power among tests with the probability of type I error no larger than the given α is called a most
powerful test.

Consider the test of hypothesis H0 : θ = θ0 versus Ha : θ = θ1. If α is fixed, then our interest is to
make β as small as possible. Because β = 1 − Power(θ1), by minimizing β we would obtain a most
powerful test. The following result says that among all tests with given probability of type I error, the
likelihood ratio test given later minimizes the probability of a type II error, in other words, it is most
powerful.

Theorem 7.2.1 (Neyman–Pearson Lemma) Suppose that one wants to test a simple hypothesis H0 :
θ = θ0 versus the simple alternative hypothesis Ha : θ = θ1 based on a random sample X1, . . . , Xn from a
distribution with parameter θ. Let L(θ) ≡ L(θ; X1, . . . , Xn) > 0 denote the likelihood of the sample when
the value of the parameter is θ. If there exist a positive constant K and a subset C of the sample space Rn (the
Euclidean n-space) such that

1.
L(θ0)

L(θ1)
≤ K for (x1, x2, . . . , xn) ∈ C

2.
L(θ0)

L(θ1)
≥ K for (x1, x2, . . . , xn) ∈ C′, where C′ is the complement of C, and

3. P [(X1, . . . , Xn) ∈ C; θ0] = α.

Then the test with critical region C will be the most powerful test for H0 versus Ha. We call α the size of the
test and C the best critical region of size α.

Proof. We prove this theorem for continuous random variables. For discrete random variables, the
proof is identical with sums replacing the integral. Let S be some region in Rn, an n-dimensional
Euclidean space. For simplicity we will use the following notation:∫

S

L(θ) =
∫
S

. . .

∫
S

L(θ; x1, x2, . . . , xn)dx1dx2, . . . , dxn
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Note that

P((X1, . . . , Xn) ∈ C; θ0) =
∫
C

f(x1, . . . , xn; θ0)dx1, . . . , dxn

=
∫
C

L(θ0; x1, . . . , xn)dx1, . . . , dxn.

Suppose that there is another critical region, say B, of size less than or equal to α, that is∫
B

L(θ0) ≤ α. Then

0 ≤
∫
C

L(θ0) −
∫
B

L(θ0), because
∫
C

L(θ0) = α by assumption 3.

Therefore,

0 ≤
∫
C

L(θ0) −
∫
B

L(θ0)

=
∫

C∩B

L(θ0) +
∫

C∩B′
L(θ0) −

∫
C∩B

L(θ0) −
∫

C′∩B

L(θ0)

=
∫

C∩B′
L(θ0) −

∫
C′∩B

L(θ0).

Using assumption 1 of Theorem 7.2.1, KL(θ1) ≥ L(θ0) at each point in the region C and hence in
C ∩ B′. Thus ∫

C∩B′
L(θ0) ≤ K

∫
C∩B′

L(θ1).

By assumption 2 of the theorem, KL(θ1) ≤ L(θ0) at each point in C′, and hence in C′ ∩ B. Thus,∫
C′∩B

L(θ0) ≥ K

∫
C′∩B

L(θ1).

Therefore,

0 ≤
∫

C∩B′
L(θ0) −

∫
C′∩B

L(θ0)

≤ K

⎧⎪⎨
⎪⎩
∫

C∩B′
L(θ1) −

∫
C′∩B

L(θ1)

⎫⎪⎬
⎪⎭.
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That is,

0 ≤ K

⎧⎪⎨
⎪⎩
∫

C∩B

L(θ1) +
∫

C∩B′
L(θ1)−

∫
C∩B

L(θ1) −
∫

C′∩B

L(θ1)

⎫⎪⎬
⎪⎭

= K

⎧⎨
⎩
∫
C

L(θ1) −
∫
B

L(θ1)

⎫⎬
⎭.

As a result, ∫
C

L(θ1) ≥
∫
B

L(θ1).

Because this is true for every critical region B of size ≤ α, C is the best critical region of size α, and
the test with critical region C is the most powerful test of size α.

When testing two simple hypotheses, the existence of a best critical region is guaranteed by the
Neyman–Pearson lemma. In addition, the foregoing theorem provides a means for determining
what the best critical region is. However, it is important to note that Theorem 7.2.1 gives only the
form of the rejection region; the actual rejection region depends on the specific value of α.

In real-world situations, we are seldom presented with the problem of testing two simple hypotheses.
There is no general result in the form of Theorem 7.4.1 for composite hypotheses. However, for
hypotheses of the form H0 : θ = θ0 versus Ha : θ > θ0, we can take a particular value θ1 > θ0 and
then find a most powerful test for H0 : θ = θ0 versus Ha : θ > θ1. If this test (that is, the rejection
region of the test) does not depend on the particular value θ1, then this test is said to be a uniformly
most powerful test for H0 : θ = θ0 versus Ha : θ > θ0.

The following example illustrates the use of the Neyman–Pearson lemma.

Example 7.2.2
Let X1, . . . , Xn denote an independent random sample from a population with a Poisson distribution with

mean λ. Derive the most powerful test for testing H0 : λ = 2 versus Ha : λ = 1/2.

Solution
Recall that the pdf of Poisson variable is

p(x) =
{

e−λλx

x! , λ > 0, x = 0, 1, 2, . . .

0, otherwise.

Thus, the likelihood function is

L =

[
λ
(

n∑
i=1

xi)

e−λn

]
n
�
i=1

(xi!)
.



7.2 The Neyman–Pearson Lemma 353

For λ = 2,

L(θ0) = L(λ = 2) =

[
2

(
n∑

i=1
xi

)
e−2n

]
n
�
i=1

(xi!)

and for λ = 1/2,

L(θ1) = L(λ = 1/2) =

⎡
⎣(1/2)

(
n∑

i=1
xi

)
e−(1/2)n

⎤
⎦

n
�
i=1

(xi!)

Thus,

L(θ0)

L(θ1)
=
(

2(
∑

xi)e−n2
)

(
1
2

)∑ xi
e− n

2

< K

which implies

(4)

∑
xi
(
e− 3n

2

)
< K

or, taking natural logarithm,

(∑
xi

)
ln 4 − 3n

2
< ln K.

Solving for (
∑

xi) and letting {[ln K + (3n/2)]/ ln 4} = K′, we will reject H0 whenever (
∑

xi) < K′.

A step-by-step procedure in applying the Neyman–Pearson lemma is now given.

PROCEDURE FOR APPLYING THE NEYMAN–PEARSON LEMMA

1. Determine the likelihood functions under both null and alternative hypotheses.
2. Take the ratio of the two likelihood functions to be less than a constant K .
3. Simplify the inequality in step 2 to obtain a rejection region.

Example 7.2.3
Suppose X1, . . . , Xn is a random sample from a normal distribution with a known mean of μ and an

unknown variance of σ2. Find the most powerful α-level test for testing H0 : σ2 = σ2
0 versus Ha :

σ2 = σ2
1 (σ2

1 > σ2
0 ). Show that this test is equivalent to the χ2-test. Is the test uniformly most powerful for

Ha : σ2 > σ2
0 ?
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Solution

To test H0 : σ2 = σ2
0 versus Ha : σ2 > σ2

1 . We have

L(σ2
0 ) =

n∏
i=1

1√
2πσn

0
e

− (xi − μ)2

2σ2
0

= 1

(
√

2π)nσn
0

e

−
∑

(xi − μ)2

2σn
0 .

Similarly,

L(σ2
1 ) = 1

(
√

2π)nσn
1

e

−
∑

(xi − μ)2

2σ2
1 .

Therefore, the most powerful test is, reject H0 if,

L(σ2
0 )

L(σ2
1 )

=
(

σ2
1

σ2
0

)n

e

[
− (σ2

1−σ2
0 )2

2σ2
1σ2

0

∑
(xi − μ)2

]
≤ K

for some K.

Taking the natural logarithms, we have

n ln
(

σ1

σ0

)
− (σ2

1 − σ2
0 )

2σ2
1σ2

0

∑
(xi − μ)2 ≤ ln K

or

∑
(xi − μ)2 ≥

[
n ln

(
σ1

σ0

)
− ln K

](
2σ2

1σ2
0

σ2
1 − σ2

0

)
= C.

To find the rejection region for a fixed value of α, write the region as

∑
(xi − μ)2

σ2
0

≥ C

σ2
0

= C′.

Note that
∑

(xi − μ)2/σ2
0 has a χ2-distribution with n degrees of freedom. Under the H0 because the same

rejection region (does not depend upon the specific value of σ2
1 in the alternative) would be used for any

σ2
1 > σ2

0 , the test is uniformly most powerful.

The foregoing example shows that, in order to test for variance using a sample from a normal
distribution, we could use the chi-square table to obtain the critical value for the rejection region
given α.
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EXERCISES 7.2

7.2.1. Suppose X1, . . . , Xn is a random sample from a normal distribution with a known variance
of σ2 and an unknown mean of μ. Find the most powerful α-level test of H0 : μ = μ0 versus
Ha : μ = μa if (a) μ0 > μa, and (b) μa > μ0.

7.2.2. Show that the most powerful test obtained in Example 7.2.1 is uniformly most powerful for
testing H0 : μ ≤ μ0 versus Ha : μ > μa, but not uniformly most powerful for testing H0 : μ = μ0

versus Ha : μ = μ0.

7.2.3. Suppose X1, . . . , Xn is a random sample from a U(0, θ) distribution. Find the most powerful
α-level test for testing H0 : θ = θ0 versus Ha : θ = θ1, where θ0 < θ1.

7.2.4. Let X1, . . . , Xn be a random sample from a geometric distribution with parameter p. Find the
most powerful test of H0 : p = p0 versus Ha : p = pa(> p0). Is this uniformly most powerful
test for H0 : p = p0 versus Ha : p > p0?

7.2.5. Let X1, . . . , Xn be a random sample from a distribution having a pdf of

f (y) =
⎧⎨
⎩

2y

η2 e
− y2

η2 , if x > 0

0, otherwise.

Find a uniformly most powerful test for testing H0 : η = η0 versus Ha : η < η0.

7.2.6. Let X be a single observation from the pdf

f (x) =
{

θxθ−1, 0 < x < 1

0, otherwise.

Find the most powerful test with a level of significance α = 0.01 to test H0 : θ = 3 versus
Ha : θ = 4.

7.2.7. Let X1, . . . , Xn be a random sample from a Bernoulli distribution with parameter p. Find the
most powerful test of H0 : p = p0 versus Ha : p = pa, where pa > p0.

7.2.8. Let X1, . . . , Xn be a random sample from a Poisson distribution with mean λ. Find a best
critical region for testing H0 : λ = 3 against Ha : λ = 6.

7.3 LIKELIHOOD RATIO TESTS

The Neyman–Pearson lemma provides a method for constructing most powerful tests for simple
hypotheses. We also have seen that in some instances when a hypothesis is not simple, it is pos-
sible to find uniformly most powerful tests. In general, uniformly most powerful (UMP) tests do
not exist for composite hypotheses. As an example, consider the two-sided hypothesis, at level α,
given by

H0 : μ = μ0 vs. Ha : μ = μ0

where μ is the mean of a normal population with known variance σ2. If X is the sample mean of a
random sample of size n, then as shown earlier, we can use the test statistic
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Z = X − μ0

σ
/√

n
.

For Ha : μ = μ1 > μ0, the rejection region for the most powerful test would be

Reject H0 if z > zα.

On the other hand for Ha : μ = μ2 < μ0, the rejection region for the most powerful test would be

Reject H0 if z < −zα.

Thus, the rejection region depends on the specific alternative. Consequently, the two-sided hypothesis
just given has no UMP test.

In this section, we shall study a general procedure that is applicable when one or both H0 and Ha are
composite. In fact, this procedure works for simple hypotheses as well. This method is based on the
maximum likelihood estimation and the ratio of likelihood functions used in the Neyman–Pearson
lemma. We assume that the pdf or pmf of the random variable X is f (x, θ), where θ can be one or
more unknown parameters. Let � represent the total parameter space that is the set of all possible
values of the parameter θ given by either H0 or H1.

Consider the hypotheses

H0 : θ ∈ �0 vs. Ha : θ ∈ �a = � − �0.

where θ is the unknown population parameter (or parameters) with values in �, and �0 is a subset
of �.

Let L(θ) be the likelihood function based on the sample X1, . . . , Xn. Now we define the likelihood
ratio corresponding to the hypotheses H0 and Ha. This ratio will be used as a test statistic for the
testing procedure that we develop in this section. This is a natural generalization of the ratio test used
in the Neyman–Pearson lemma when both hypotheses were simple.

Definition 7.3.1 The likelihood ratio λ is the ratio

λ =
max
θ∈�0

L(θ; x1, . . . , xn)

max
θ∈�

L(θ; x1, . . . , xn)
= L∗

0
L∗ .

We note that 0 ≤ λ ≤ 1. Because λ is the ratio of nonnegative functions, λ ≥ 0. Because �0 is a subset
of �, we know that max

θ∈�0
L(θ) ≤ max

θ∈�
L(θ). Hence, λ ≤ 1.

If the maximum of L in �0 is much smaller as compared with the maximum of L in �, that is, if
λ is small, it would appear that the data X1, . . . , Xn do not support the null hypothesis θ ∈ �0. On
the other hand, if λ is close to 1, one could conclude that the data support the null hypothesis, H0.
Therefore, small values of λ would result in rejection of the null hypothesis, and large values nearer
to 1 will result a decision in support of the null hypothesis.



7.3 Likelihood Ratio Tests 357

For the evaluation of λ, it is important to note that maxθ ∈ � L(θ) = L(θ̂ml.), where θ̂ml. is the maximum
likelihood estimator of θ ∈ �, and maxθ ∈ �0 L(θ) is the likelihood function with unknown parameters
replaced by their maximum likelihood estimators subject to the condition that θ ∈ �0. We can
summarize the likelihood ratio test as follows.

LIKELIHOOD RATIO TESTS (LRTs)

To test

H0 : θ ∈ �0 vs. Ha : θ ∈ �a

λ =
max
θ∈�0

L(θ; x1, . . . , xn )

max
θ∈�

L(θ; x1, . . . , xn )
= L∗

0
L∗

will be used as the test statistic.

The rejection region for the likelihood ratio test is given by

Reject H0 if λ ≤ K .

K is selected such that the test has the given significance level α.

Example 7.3.1
Let X1, . . . , Xn be a random sample from an N(μ, σ2). Assume that σ2 is known. We wish to test, at level

α, H0 : μ = μ0 vs. Ha : μ = μ0. Find an appropriate likelihood ratio test.

Solution
We have seen that to test

H0 : μ = μ0 vs. Ha : μ = μ0

there is no uniformly most powerful test for this case. The likelihood function is

L(μ) =
(

1√
2πσ

)n

e

−

n∑
i=1

(xi − μ)2

2σ2
.

Here, �0 = {μ0} and �a = R − {μ0}.

Hence,

L∗
0 = max

μ=μ0

(
1√
2πσ

)n

e

−

n∑
i=1

(xi − μ)2

2σ2

=
(

1√
2πσ

)n

e

−

n∑
i=1

(xi − μ0)2

2σ2
.
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Similarly,

L∗ = max−∞<μ<∞

(
1√
2πσ

)n

e

−

n∑
i=1

(xi − μ)2

2σ2
.

Because the only unknown parameter in the parameter space � is μ, −∞ < μ < ∞, the maximum of the

likelihood function is achieved when μ equals its maximum likelihood estimator, that is,

μ̂ml. = X.

Therefore, with a simple calculation we have

λ = e
−
( n∑

i=1
(xi−μ0)2

)
/2σ2

e
−
( n∑

i=1
(xi−x)2

)
/2σ2

= e−n(x−μ0)2/2σ2
.

Thus, the likelihood ratio test has the rejection region

Reject H0 if λ ≤ K

which is equivalent to

− n

2σ2 (X − μ0)2 ≤ ln K ⇔

(X − μ0)2

σ2/n
≥ 2 ln K ⇔

∣∣∣∣∣X − μ0

σ/
√

n

∣∣∣∣∣ ≥ 2 ln K = c1, say.

Note that we use the symbol ⇔ to mean ‘‘if and only if.’’ We now compute c1. Under H0, [(X − μ0)/

(σ/
√

n)] ∼ N(0, 1).

Observe that

α = P

{∣∣∣∣∣X − μ0

σ
/√

n

∣∣∣∣∣ ≥ c1

}

gives a possible value of c1 as c1 = zα/2. Hence, LRT for the given hypothesis is

Reject H0 if

∣∣∣∣∣X − μ0

σ/
√

n

∣∣∣∣∣ ≥ za/2.

Thus, in this case, the likelihood ratio test is equivalent to the z-test for large random samples.

In fact, when both the hypotheses are simple, the likelihood ratio test is identical to the Neyman–
Pearson test. We can now summarize the procedure for the likelihood ratio test, LRT.
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PROCEDURE FOR THE LIKELIHOOD RATIO TEST (LRT)

1. Find the largest value of the likelihood L(θ) for any θ0 ∈ �0 by finding the maximum likelihood
estimate within �0 and substituting back into the likelihood function.

2. Find the largest value of the likelihood L(θ) for any θ ∈ � by finding the maximum likelihood
estimate within � and substituting back into the likelihood function.

3. Form the ratio

λ = λ(x1, x2, . . . , xn ) = L(θ) in �0

L(θ) in �
.

4. Determine a K so that the test has the desired probability of type I error, α.
5. Reject H0 if λ ≤ K .

In the next example, we find a LRT for a testing problem when both H0 and Ha are simple.

Example 7.3.2
Machine I produces 5% defectives. Machine 2 produces 10% defectives. Ten items produced by each of

the machines are sampled randomly; X = number of defectives. Let θ be the true proportion of defectives.

Test H0 : θ = 0.05 versus Ha : θ = 0.1. Use α = 0.05.

Solution

We need to test H0 : θ = 0.05 vs. Ha : θ = 0.1. Let

L(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
10

x

)
(0.05)x(0.95)10−x, if θ = 0.05

(
10

x

)
(0.1)x(0.90)10−x, if θ = 0.10.

And

L1 = L(0.05) =
(

10
x

)
(0.05)x(0.95)10−x

and

L2 = L(0.1) =
(

10
x

)
(0.1)x(0.90)10−x.

Thus, we have

L1

L2
= 0.05x

0.1x

(0.95)10−x

(0.9)10−x
=
(

1
2

)x (19
18

)10−x

.
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The ratio

λ = L1

max(L1, L2)
.

Note that if max(L1, L2) = L1, then λ = 1. Because we want to reject for small values of λ, max(L1, L2) =
L2, and we reject H0 if (L1/L2) ≤ K or (L2/L1) > K (note that

L2
L1

= 2x(18
19 )10−x).

That is, reject H0 if

2x

(
18
19

)10−x

> K

⇔
(

2
18
19

)x

> K1

⇔
(

19
9

)x

> K1.

Hence, reject H0 if X > C; P(X > C|H0 : θ = 0.05) ≤ 0.05.

Using the binomial tables, we have

P(X > 2|θ = 0.05) = 0.0116

and

P(X ≥ 2|θ = 0.05) = 0.0862.

Reject H0 if X > 2. If we want α to be exactly 0.05, we have to use randomized test. Reject with
probability 0.0384

0.0762 = 0.5039 if X = 2.

The likelihood ratio tests do not always produce a test statistic with a known probability distribu-
tion such as the z-statistic of Example 7.3.1. If we have a large sample size, then we can obtain an
approximation to the distribution of the statistic λ, which is beyond the level of this book.

EXERCISES 7.3

7.3.1. Let X1, . . . , Xn be a random sample from an N(μ, σ2). Assume that σ2 is unknown. We wish
to test, at level α, H0 : μ = μ0 vs Ha : μ < μ0. Find an appropriate likelihood ratio test.

7.3.2. Let X1, . . . , Xn be a random sample from an N(μ, σ2). Assume that both μ and σ2 are
unknown. We wish to test, at level α, H0 : σ2 = σ2

0 vs. Ha : σ2 > σ2
0 . Find an appropriate

likelihood ratio test.

7.3.3. Let X1, . . . , Xn be a random sample from an N(μ1, σ2) and let Y1, Y2, . . . , Yn be an indepen-
dent sample from an N(μ2, σ2), where σ2 is unknown. We wish to test, at level α, H0 : μ1 =
μ2 vs. Ha : μ1 = μ2. Find an appropriate likelihood ratio test.

7.3.4. Let X1, . . . , Xn be a sample from a Poisson distribution with parameter λ. Show that a like-
lihood ratio test of H0 : λ = λ0 vs. Ha : λ = λ0 rejects the null hypothesis if X ≥ m1 or
X ≤ m2.
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7.3.5. Let X1, . . . , Xn be a sample from an exponential distribution with parameter θ. Show that a
likelihood ratio test of H0 : θ = θ0 vs. Ha : θ = θ0 rejects the null hypothesis if

∑n
i=1 Xi ≥ m1

or
∑n

i=1 Xi ≤ m2.

7.3.6. A clinical oncology program developed a set of guidelines for their cancer patients to follow.
It is believed that the proportion of patients who are still living after 24 months is greater
for those who follow the guidelines. Of the 40 patients who followed the guidelines, 30 are
still living after 24 months, whereas of 32 patients who did not follow the guidelines, 21 are
living after 24 months. Find a likelihood ratio test at α = 0.01 to decide whether the program
is effective.

7.4 HYPOTHESES FOR A SINGLE PARAMETER

In this section, we first introduce the concept of p-value. After that, we study hypothesis testing
concerning a single parameter.

7.4.1 The p-Value
In hypothesis testing, the choice of the value of α is somewhat arbitrary. For the same data, if the test
is based on two different values of α, the conclusions could be different. Many statisticians prefer to
compute the so-called p-value, which is calculated based on the observed test statistic. For computing
the p-value, it is not necessary to specify a value of α. We can use the given data to obtain the
p-value.

Definition 7.4.1 Corresponding to an observed value of a test statistic, the p-value (or attained
significance level) is the lowest level of significance at which the null hypothesis would have been
rejected.

For example, if we are testing a given hypothesis with α = 0.05 and we make a decision to reject H0

and we proceeded to calculate the p-value equal to 0.03, this means that we could have used an α as
low as 0.03 and still maintain the same decision, rejecting H0.

Based on the alternative hypothesis, one can use the following steps to compute the p-value.

STEPS TO FIND THE p-VALUE

1. Let TS be the test statistic.
2. Compute the value of TS using the sample X1, . . . , Xn . Say it is a.

3. The p-value is given by

p-value =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (T S < a|H0), if lower tail test

P (T S > a|H0), if upper tail test

P (|T S| > |a||H0), if two tail test.
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Example 7.4.1
To test H0 : μ = 0 vs. Ha : μ = 0, suppose that the test statistic Z results in a computed value of 1.58.

Then, the p-value = P(|Z| > 1.58) = 2(0.0571) = 0.1142. That is, we must have a type I error of 0.1142 in

order to reject H0. Also, if Ha : μ > 0, then the p-value would be P(Z > 1.58) = 0.0582. In this case we

must have an α of 0.0582 in order to reject H0.

The p-value can be thought of as a measure of support for the null hypothesis: The lower its value,
the lower the support. Typically one decides that the support for H0 is insufficient when the p-value
drops below a particular threshold, which is the significance level of the test.

REPORTING TEST RESULT AS p-VALUES

1. Choose the maximum value of α that you are willing to tolerate.
2. If the p-value of the test is less than the maximum value of α, reject H0.

If the exact p-value cannot be found, one can give an interval in which the p-value can lie. For example,
if the test is significant at α = 0.05 but not significant for α = 0.025, report that 0.025 ≤ p-value ≤
0.05. So for α > 0.05, reject H0, and for α < 0.025, do not reject H0.

In another interpretation, 1−(p-value) is considered as an index of the strength of the evidence against
the null hypothesis provided by the data. It is clear that the value of this index lies in the interval
[0, 1]. If the p-value is 0.02, the value of index is 0.98, supporting the rejection of the null hypothesis.
Not only do p-values provide us with a yes or no answer, they provide a sense of the strength of the
evidence against the null hypothesis. The lower the p-value, the stronger the evidence. Thus, in any
test, reporting the p-value of the test is a good practice.

Because most of the outputs from statistical software used for hypothesis testing include the p-value,
the p-value approach to hypothesis testing is becoming more and more popular. In this approach,
the decision of the test is made in the following way. If the value of α is given, and if the p-value of the
test is less than the value of α, we will reject H0. If the value of α is not given and the p-value associated
with the test is small (usually set at p-value < 0.05), there is evidence to reject the null hypothesis in
favor of the alternative. In other words, there is evidence that the value of the true parameter (such as
the population mean) is significantly different (greater, or lesser) than the hypothesized value. If the
p-value associated with the test is not small (p > 0.05), we conclude that there is not enough evidence
to reject the null hypothesis. In most of the examples in this chapter, we give both the rejection region
and p-value approaches.

Example 7.4.2
The management of a local health club claims that its members lose on the average 15 pounds or more

within the first 3 months after joining the club. To check this claim, a consumer agency took a random

sample of 45 members of this health club and found that they lost an average of 13.8 pounds within the

first 3 months of membership, with a sample standard deviation of 4.2 pounds.
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(a) Find the p-value for this test.

(b) Based on the p-value in (a), would you reject the null hypothesis at α = 0.01?

Solution
(a) Let μ be the true mean weight loss in pounds within the first 3 months of membership in this club.

Then we have to test the hypothesis

H0 : μ = 15 versus Ha : μ < 15

Here n = 45, x = 13.8, and s = 4.2. Because n = 45 > 30, we can use normal approximation.

Hence, the test statistic is

z = 13.8 − 15

4.2/
√

45
= −1.9166

and

p-value = P(Z < −1.9166) � P(Z < −1.92) = 0.0274.

Thus, we can use an α as small as 0.0274 and still reject H0.

(b) No. Because the p-value = 0.0274 is greater than α = 0.01, one cannot reject H0.

In any hypothesis testing, after an experimenter determines the objective of an experiment and decides
on the type of data to be collected, we recommend the following step-by-step procedure for hypothesis
testing.

STEPS IN ANY HYPOTHESIS TESTING PROBLEM

1. State the alternative hypothesis, Ha (what is believed to be true).
2. State the null hypothesis, H0 (what is doubted to be true).
3. Decide on a level of significance α.
4. Choose an appropriate TS and compute the observed test statistic.
5. Using the distribution of TS and α, determine the rejection region(s) (RR).
6. Conclusion: If the observed test statistic falls in the RR, reject H0 and conclude that based on the

sample information, we are (1 − α)100% confident that Ha is true. Otherwise, conclude that there is
not sufficient evidence to reject H0. In all the applied problems, interpret the meaning of your
decision.

7. State any assumptions you made in testing the given hypothesis.
8. Compute the p-value from the null distribution of the test statistic and interpret it.

7.4.2 Hypothesis Testing for a Single Parameter
Now we study the testing of a hypothesis concerning a single parameter, θ, based on a random sample
X1, . . . , Xn. Let θ̂ be the sample statistic. First, we deal with tests for the population mean μ for large
and small samples. Next, we study procedures for testing the population variance σ2. We conclude
the section by studying a test procedure for the true proportion p.
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To test the hypothesis H : μ = μ0 concerning the true population mean μ, when we have a large
sample (n ≥ 30) we use the test statistic Z given by

Z = X − μ0

S/
√

n

where S is the sample standard deviation and μ0 is the claimed mean under H0 (if the population
variance is known, we replace S with σ.

For a small random sample (n < 30), the test statistic is

T = X − μ0

S/
√

n

where μ0 is the claimed value of the true mean, and X and S are the sample mean and standard
deviation, respectively. Note that we are using the lowercase letters, such as z and t, to represent the
observed values of the test statistics Z and T , respectively.

In practice, with raw data, it is important to verify the assumptions. For example, in the small sample
case, it is important to check for normality by using normal plots. If this assumption is not satisfied,
the nonparametric methods described in Chapter 12 may be more appropriate. In addition, because
the sample statistic such as X and S will be greatly affected by the presence of outliers, drawing a box
plot to check for outliers is a basic practice we should incorporate in our analysis.

We now summarize the typical test of hypothesis for tests concerning population (true) mean.

In order to compute the observed test statistic, z in the large sample case and t in the small sample
case, calculate the values of z = (x − μ0)/(s/

√
n) and t = [(x − μ0)/(s/

√
n)], respectively.

SUMMARY OF HYPOTHESIS TESTS FOR μ

Large Sample (n ≥ 30) Small Sample (n < 30)
To test To test
H0 : μ = μ0 H0 : μ = μ0

versus versus

Ha :

μ > μ0, upper tail test
μ < μ0, lower tail test
μ = μ0, two-tailed test

Ha :
μ > μ0, upper tail test
μ < μ0, lower tail test
μ = μ0, two-tailed test

Test statistic: Z = X − μ0

σ/
√

n
Test statistic: T = X − μ0

S/
√

n
Replace σ by S , if σ is unknown.

Rejection region :

⎧⎪⎪⎨
⎪⎪⎩

z > zα, upper tail RR

z < −zα, lower tail RR

|z| > zα/2, two tail RR

RR :

⎧⎪⎪⎨
⎪⎪⎩

t > tα,n−1, upper tail RR

t < −tα,n−1, lower tail RR

|t | > tα/2,n−1, two tail RR
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Assumption: n ≥ 30 Assumption: Random sample
comes from a normal
population

Decision: Reject H0, if the observed test statistic falls in the RR and conclude that Ha is true with
(1 − α)100% confidence. Otherwise, keep H0 so that there is not enough evidence to conclude that
Ha is true for the given α and more experiments may be needed.

Example 7.4.3
It is claimed that sports-car owners drive on the average 18,000 miles per year. A consumer firm believes that

the average mileage is probably lower. To check, the consumer firm obtained information from 40 randomly

selected sports-car owners that resulted in a sample mean of 17,463 miles with a sample standard deviation

of 1348 miles. What can we conclude about this claim? Use α = 0.01.

Solution
Let μ be the true population mean. We can formulate the hypotheses as H0 : μ = 18,000 versus

Ha : μ < 18,000.

The observed test statistic (for n ≥ 30) is

z = x − μ0

σ/
√

n
∼= 17,463 − 18,000

1348/
√

40

= −2.52.

Rejection region is {z < −z0.01} = {z < −2.33}.

Decision: Because z = −2.52 is less than −2.33, the null hypothesis is rejected at α = 0.01. There is

sufficient evidence to conclude that the mean mileage on sport cars is less than 18,000 miles per year.

Example 7.4.4
In a frequently traveled stretch of the I-75 highway, where the posted speed is 70 mph, it is thought that

people travel on the average of at least 75 mph. To check this claim, the following radar measurements of

the speeds (in mph) is obtained for 10 vehicles traveling on this stretch of the interstate highway.

66 74 79 80 69 77 78 65 79 81

Do the data provide sufficient evidence to indicate that the mean speed at which people travel on this

stretch of highway is at most 75 mph? Test the appropriate hypothesis using α = 0.01. Draw a box plot and

normal plot for this data, and comment.

Solution
We need to test

H0 : μ = 75 vs. Ha : μ > 75
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■ FIGURE 7.1 Box plot of speed data.

For this sample, the sample mean is x = 74.8 mph and the standard deviation is σ = 5.9963 mph. Hence,

the observed test statistic is

t = x − μ0

σ/
√

n
= 74.8 − 75

5.9963/
√

10

= −0.10547.

From the t-table, t0.019 = 2.821. Hence, the rejection region is {t > 2.821}.

Because, t = −0.10547 does not fall in the rejection region, we do not reject the null hypothesis at α = 0.01.

Note that we assumed that the vehicles were randomly selected and that collected data follow the normal

distribution, because of the small sample size, n < 30, we use the t-test.

Figures 7.1 and 7.2 are the box plot and the normal plot of the data, respectively.
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■ FIGURE 7.2 Normal probability plot for speed.

The box plot suggests that there are no outliers present. However, the normal plot indicates that the normality

assumption for this data set is not justified. Hence, it may be more appropriate to do a nonparametric test.
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Example 7.4.5
In attempting to control the strength of the wastes discharged into a nearby river, an industrial firm has

taken a number of restorative measures. The firm believes that they have lowered the oxygen consuming

power of their wastes from a previous mean of 450 manganate in parts per million. To test this belief,

readings are taken on n = 20 successive days. A sample mean of 312.5 and the sample standard deviation

106.23 are obtained. Assume that these 20 values can be treated as a random sample from a normal

population. Test the appropriate hypothesis. Use α = 0.05.

Solution
Here we need to test the following hypothesis:

H0 : μ = 450 vs. Ha : μ < 450

Given n = 20, x = 312.5, and s = 106.23. The observed test statistic is

t = 312.5 − 450

106.23/
√

20
= −5.79.

The rejection region for α = 0.05 and with 19 degrees of freedom is the set of t-values such that

{t < −t0.05,19} = {t < −1.729}.

Decision: Because t = −5.79 is less than −1.729, reject H0. There is sufficient evidence to confirm the

firm’s belief.

For large random samples, the following procedure is used to perform tests of hypotheses about the

population proportion, p.

Example 7.4.6
A machine is considered to be unsatisfactory if it produces more than 8% defectives. It is suspected that the

machine is unsatisfactory. A random sample of 120 items produced by the machine contains 14 defectives.

Does the sample evidence support the claim that the machine is unsatisfactory? Use α = 0.01.

Solution
Let Y be the number of observed defectives. This follows a binomial distribution. However, because np0 and

nq0 are greater than 5, we can use a normal approximation to the binomial to test the hypothesis. So we

need to test H0 : p = 0.08 versus Ha : p > 0.08. Let the point estimate of p be p̂ = (Y/n) = 0.117, the

sample proportion. Then the value of the TS is

z = p̂ − p0√
p0q0

n

= 0.117 − 0.08√
(0.08)(0.92)

120

= 0.137.

For α = 0.01, z0.01 = 2.33. Hence, the rejection region is {z > 2.33}.
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Decision: Because 0.137 is not greater than 2.33, we do not reject H0. We conclude that the evidence does

not support the claim that the machine is unsatisfactory.

SUMMARY OF LARGE SAMPLE HYPOTHESIS TEST FOR p

To test

H0 : p = p0

versus

p > p0, upper tail test

Ha : p < p0, lower tail test.

Test statistic:

Z = p̂ − p0

σp̂
, where σp̂ =

√
p0q0

n
, where q0 = 1 − p0.

Rejection region :

⎧⎪⎨
⎪⎩

z > zα, upper tail RR

z < −zα, lower tail RR

|z | > zα/2, two tail RR,

where z is the observed test statistic.
Assumption: n is large. A good rule of thumb is to use the normal approximation to the binomial
distribution only when np0 and n(1 − p0) are both greater than 5.

Decision: Reject H0, if the observed test statistic falls in the RR and conclude that Ha is true with
(1 − α)100% confidence. Otherwise, do not reject H0 because there is not enough evidence to
conclude that Ha is true for given α and more data are needed.

Note that this an approximate test, and the test can be improved by increasing the sample size.

Now we give the procedure for testing the population variance when the samples come from a normal
population.

SUMMARY OF HYPOTHESIS TEST FOR THE VARIANCE σ2

To test

H0 : σ2 = σ2
0

versus

σ2 > σ2
0 , upper tail test

Ha : σ2 < σ2
0 , lower tail test

σ2 = σ2
0 , two-tailed test.
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Test statistic:

χ2 = (n − 1)S2

σ2
0

where S2 is the sample variance.

Observed value of test statistic:

(n − 1)s2

σ2
0

Rejection region :

⎧⎪⎪⎨
⎪⎪⎩

χ2 > χ2
α,n−1, upper tail RR

χ2 < χ2
1−α,n−1, lower tail RR

χ2 > χ2
α/2,n−1 or χ2 < χ2

1−α/2,n−1, two tail RR

where χ2
α,n−1 is such that the area under the chi-square distribution with (n − 1) degrees of freedom to its

right is equal to α.

Assumption: Sample comes from a normal population.

Decision: Reject H0, if the observed test statistic falls in the RR and conclude that Ha is true with
(1 − α)100% confidence. Otherwise, do not reject H0 because there is not enough evidence to conclude
that Ha is true for given α and more data are needed.

Because the chi-square distribution is not symmetric, the “equal tails” used for the two-sided alter-
native may not be the best procedure. However, in real-world problems we seldom use a two tail test
for the population variance.

Example 7.4.7
A physician claims that the variance in cholesterol levels of adult men in a certain laboratory is at least 100.

A random sample of 25 adult males from this laboratory produced a sample standard deviation of

cholesterol levels as 12. Test the physician’s claim at 5% level of significance.

Solution
To test

H0 : σ2 = 100 versus Ha : σ2 < 100

for α = 0.05, and 24 degrees of freedom, the rejection region is

RR = {χ2 < χ2
1−α,n−1} = {χ2 < 13.484}.

The observed value of the TS is

χ2 = (n − 1)S2

σ2
0

= (24)(144)

100
= 34.56.



370 CHAPTER 7 Hypothesis Testing

Because the value of the test statistic does not fall in the rejection region, we cannot reject H0 at 5% level

of significance. Here, we assumed that the 25 cholesterol measurements follow the normal distribution.

EXERCISES 7.4

7.4.1. A random sample of 50 measurements resulted in a sample mean of 62 with a sample
standard deviation 8. It is claimed that the true population mean is at least 64.

(a) Is there sufficient evidence to refute the claim at the 2% level of significance?
(b) What is the p-value?
(c) What is the smallest value of α for which the claim will be rejected?

7.4.2. A machine in a certain factory must be repaired if it produces more than 12% defectives
among the large lot of items it produces in a week. A random sample of 175 items from
a week’s production contains 45 defectives, and it is decided that the machine must be
repaired.

(a) Does the sample evidence support this decision? Use α = 0.02.
(b) Compute the p-value.

7.4.3. A random sample of 78 observations produced the following sums:

78∑
i=1

xi = 22.8,

78∑
i=1

(xi − x)2 = 2.05.

(a) Test the null hypothesis that μ = 0.45 against the alternative hypothesis that μ < 0.45
using α = 0.01. Also find the p-value.

(b) Test the null hypothesis that μ = 0.45 against the alternative hypothesis that μ = 0.45
using α = 0.01. Also find the p-value.

(c) What assumptions did you make for solving (a) and (b)?

7.4.4. Consider the test H0 : μ = 35 vs. Ha : μ > 35 for a population that is normally distributed.

(a) A random sample of 18 observations taken from this population produced a sample
mean of 40 and a sample standard deviation of 5. Using α = 0.025, would you reject
the null hypothesis?

(b) Another random sample of 18 observations produced a sample mean of 36.8 and
a sample standard deviation of 6.9. Using α = 0.025, would you reject the null
hypothesis?

(c) Compare and discuss the decisions of parts (a) and (b).

7.4.5. According to the information obtained from a large university, professors there earned an
average annual salary of $55,648 in 1998. A recent random sample of 15 professors from
this university showed that they earn an average annual salary of $58,800 with a sample
standard deviation of $8300. Assume that the annual salaries of all the professors in this
university are normally distributed.
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(a) Suppose the probability of making a type I error is chosen to be zero. Without perform-
ing all the steps of test of hypothesis, would you accept or reject the null hypothesis
that the current mean annual salary of all professors at this university is $55,648?

(b) Using the 1% significance level, can you conclude that the current mean annual salary
of professors at this university is more than $55,648?

7.4.6. A check-cashing service company found that approximately 7% of all checks submitted to the
service were without sufficient funds. After instituting a random check verification system to
reduce its losses, the service company found that only 70 were rejected in a random sample of
1125 that were cashed. Is there sufficient evidence that the check verification system reduced
the proportion of bad checks at α = 0.01? What is the p-value associated with the test? What
would you conclude at the α = 0.05 level?

7.4.7. A manufacturer of washers provides a particular model in one of three colors, white, black,
or ivory. Of the first 1500 washers sold, it is noticed that 550 were of ivory color. Would
you conclude that customers have a preference for the ivory color? Justify your answer. Use
α = 0.01.

7.4.8. A test of the breaking strength of six ropes manufactured by a company showed a mean
breaking strength of 6425 lb and a standard deviation of 120 lb. However, the manufacturer
claimed a mean breaking strength of 7500 lb.
(a) Can we support the manufacturer’s claim at a level of significance of 0.10?
(b) Compute the p-value. What assumptions did you make for this problem?

7.4.9. A sample of 10 observations taken from a normally distributed population produced the
following data:

44 31 52 48 46 39 43 36 41 49

(a) Test the hypothesis that H0 : μ = 44 vs. Ha : μ = 44 using α = 0.10. Draw a box plot
and normal plot for this data, and comment.

(b) Find a 90% confidence interval for the population mean μ.
(c) Discuss the meanings of (a) and (b). What can we conclude?

7.4.10. The principal of a charter school in Tampa believes that the IQs of its students are above
the national average of 100. From the past experience, IQ is normally distributed with a
standard deviation of 10. A random sample of 20 students is selected from this school and
their IQs are observed. The following are the observed values.

95 91 110 93 133 119 113 107 110 89
113 100 100 124 116 113 110 106 115 113

(a) Test for the normality of the data
(b) Do the IQs of students at the school run above the national average at α = 0.01?

7.4.11. In order to find out whether children with chronic diarrhea have the same average hemo-
globin level (Hb) that is normally seen in healthy children in the same area, a random
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sample of 10 children with chronic diarrhea are selected and their Hb levels (g/dL) are
obtained as follows.

12.3 11.4 14.2 15.3 14.8 13.8 11.1 15.1 15.8 13.2

Do the data provide sufficient evidence to indicate that the mean Hb level for children with
chronic diarrhea is less than that of the normal value of 14.6 g/dL? Test the appropriate
hypothesis using α = 0.01. Draw a box plot and normal plot for this data, and comment.

7.4.12. A company that manufactures precision special-alloy steel shafts claims that the variance in
the diameters of shafts is no more than 0.0003. A random sample of 10 shafts gave a sample
variance of 0.00027. At the 5% level of significance, test whether the company’s claim can
be substantiated.

7.4.13. It was claimed that the average annual expenditures per consumer unit had continued to
rise, as measured by the Consumer Price Index annual averages (Bureau of Labor Statistics
report, 1995). To test this claim, 100 consumer units were randomly selected in 1995 and
found to have an average annual expenditure of $32,277 with a standard deviation of $1200.
Assuming that the average annual expenditure of all consumer units was $30,692 in 1994,
test at the 5% significance level whether the annual expenditure per consumer unit had
really increased from 1994 to 1995.

7.4.14. It is claimed that two of three Americans say that the chances of world peace are seriously
threatened by the nuclear capabilities of other countries. If in a random sample of 400
Americans, it is found that only 252 hold this view, do you think the claim is correct? Use
α = 0.05. State any assumptions you make in solving this problem.

7.4.15. According to the Bureau of Labor Statistics (1996), the average price of a gallon of gasoline
in all U.S. cities in the United States in January 1996 was $1.129. A later random sample in
24 cities found the mean price to be $1.24 with a standard deviation of 0.01. Test at α = 0.05
to see whether the average price of a gallon of gas in the cities had recently changed.

7.4.16. A manufacturer claims that the mean life of batteries manufactured by his company is at
least 44 months. A random sample of 40 of these batteries was tested, resulting in a sample
mean life of 41 months with a sample standard deviation of 16 months. Test at α = 0.01
whether the manufacturer’s claim is correct.

7.5 TESTING OF HYPOTHESES FOR TWO SAMPLES

In this section we study the hypothesis testing procedures for comparing the means and variances
of two populations. For example, suppose that we want to determine whether a particular drug is
effective for a certain illness. The sample subjects will be randomly selected from a large pool of
people with that particular illness and will be assigned randomly to the two groups. To one group
we will administer a placebo; to the other we will administer the drug of interest. After a period of
time, we measure a physical characteristic, say the blood pressure, of each subject that is an indicator
of the severity of the illness. The question is whether the drug can be considered effective on the
population from which our samples have been selected. We will consider the cases of independent
and dependent samples.
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7.5.1 Independent Samples
Two random samples are drawn independently of each other from two populations, and the sample
information is obtained. We are interested in testing a hypothesis about the difference of the true
means. Let X11, . . . , X1n be a random sample from population 1 with mean μ1 and variance σ2

1 , and
X21, . . . , X2n be a random sample from population 2 with mean μ2 and variance σ2

2 . Let Xi, i = 1, 2,
represent the respective sample means and S2

i , i = 1, 2, represent the sample variances. In this case,
we shall consider following three cases in testing hypotheses about μ1 and μ2: (i) when σ2

1 and σ2
2

are known, (ii) when σ2
1 and σ2

2 are unknown and n1 ≥ 30 and n2 ≥ 30, and (iii) when σ2
1 and σ2

2 are
unknown and n1 < 30 and n2 < 30. In case (iii) we have the following two possibilities, (a) σ2

1 = σ2
2 ,

and (b) σ2
1 = σ2

2 .

In the large sample case, knowledge of population variances σ2
1 and σ2

2 does not make much differ-
ence. If the population variances are unknown, we could replace them with sample variances as an
approximation. If both n1 ≥ 30 and n2 ≥ 30 (large sample case), we can use normal approximation.
The following box sums up a large sample hypothesis testing procedure for the difference of means
for the large sample case.

SUMMARY OF HYPOTHESIS TEST FOR μ1 − μ2 FOR LARGE SAMPLES (n1& n2 ≥ 30)

To test

H0 : μ1 − μ2 = D0

versus

Ha :

⎧⎪⎨
⎪⎩

μ1 − μ2 > D0, upper tailed test

μ1 − μ2 < D0, lower tailed test

μ1 − μ2 = D0, two-tailed test.

The test statistic is

Z = X 1 − X 2 − D0√
σ2

1
n1

+ σ2
2

n2

.

Replace σi by Si , if σi ,i = 1,2 are not known.
Rejection region is

RR :

⎧⎪⎪⎨
⎪⎪⎩

z > zα, upper tail RR

z < −zα, lower tail RR

|z | > zα/2, two tail RR,

where z is the observed test statistic given by

z = x 1 − x 2 − D0√
σ2

1
n1

+ σ2
2

n2

.
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Assumption: The samples are independent and n1 and n2 ≥ 30.

Decision: Reject H0, if test statistic falls in the RR and conclude that Ha is true with (1 − a)100% confidence.
Otherwise, do not reject H0 because there is not enough evidence to conclude that Ha is true for given α

and more experiments are needed.

Example 7.5.1
In a salary equity study of faculty at a certain university, sample salaries of 50 male assistant professors and

50 female assistant professors yielded the following basic statistics.

Sample mean Sample standard

salary deviation

Male assistant professor $36,400 360

Female assistant professor $34,200 220

Test the hypothesis that the mean salary of male assistant professors is more than the mean salary of female

assistant professors at this university. Use α = 0.05.

Solution
Let μ1 be the true mean salary for male assistant professors and μ2 be the true mean salary for female

assistant professors at this university. To test

H0 : μ1 − μ2 = 0 vs. Ha : μ1 − μ2 > 0

the test statistic is

z = x1 − x2 − D0√
s2
1

n1
+ s2

2
n2

= 36,400 − 34,200√
(360)2

50
+ (220)2

50

= 36.872.

The rejection region for α = 0.05 is {z > 1.645}.

Because z = 36.872 > 1.645, we reject the null hypothesis at α = 0.05. We conclude that the salary of

male assistant professors at this university is higher than that of female assistant professors for α = 0.05.

Note that even though σ2
1 and σ2

2 are unknown, because n1 ≥ 30 and n2 ≥ 30, we could replace σ2
1 and

σ2
2 by the respective sample variances. We are assuming that the salaries of male and female are sampled

independently of each other.

Given next is the procedure we follow to compare the true means from two independent normal
populations when n1 and n2 are small (n1 < 30 or n2 < 30) and we can assume homogeneity in the
population variances, that is, σ2

1 = σ2
2 . In this case, we pool the sample variances to obtain a point

estimate of the common variance.
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COMPARISON OF TWO POPULATION MEANS, SMALL SAMPLE CASE (POOLED t-TEST)

To test

H0 : μ1 − μ2 = D0

versus

μ1 − μ2 > D0, upper tailed test

Ha : μ1 − μ2 < D0, lower tailed test

μ1 − μ2 = D0, two-tailed test.

The test statistic is

T = X 1 − X 2 − D0

Sp

√
1

n1
+ 1

n2

Here the pooled sample variance is

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

Then the rejection region is

RR :

⎧⎪⎪⎨
⎪⎪⎩

t > tα, upper tailed test

t < −tα, lower tail test

|t | > tα/2, two-tailed test

where t is the observed test statistic and tα is based on (n1 + n2 − 2) degrees of freedom, and such that
P(T > tα) = α.

Decision: Reject H0, if test statistic falls in the RR and conclude that Ha is true with (1 − α)100% confidence.
Otherwise, do not reject H0 because there is not enough evidence to conclude that Ha is true for given α.

Assumptions: The samples are independent and come from normal populations with means μ1 and μ2,
and with the (unknown) but equal variances, that is, σ2

1 = σ2
2 .

Now we shall consider the case where σ2
1 and σ2

2 are unknown and cannot be assumed to be equal.
In such a case the following test is often used. For the hypothesis

H0 : μ1 − μ2 = D0 vs. H0 :

⎧⎪⎨
⎪⎩

μ1 − μ2 > D0

μ1 − μ2 < D0

μ1 − μ2 = D0
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define the test statistic Tν as

Tν = X1 − X2 − D0√
S2

1
n1

+ S2
2

n2

where Tν has a t-distribution with ν degrees of freedom, and

ν =
[
(s2

1/n1) + (s2
2/n2)

]2
(s2

1/n1)2

n1 − 1
+ (s2

2/n2)2

n2 − 1

.

The value of ν will not necessarily be an integer. In that case, we will round it down to the nearest
integer. This method of hypothesis testing with unequal variances is called the Smith–Satterthwaite
procedure. Even though this procedure is not widely used, some simulation studies have shown that
the Smith–Satterthwaite procedure perform well when variances are unequal and it gives results that
are more or less equivalent to those obtained with the pooled t-test when the variances are equal.
However, when the sample sizes are approximately equal, the pooled t-test may still be used. Note
that in addressing the question which of the cases (iii)(a) or (iii)(b) to use in a given problem, we
suggest that if the point estimates S2

1 of σ2
1 , and S2

2 of σ2
2 are approximately the same, then it is logical

to assume homogeneity, σ2
1 = σ2

2 and use (iii)(a), whereas if S2
1 and S2

2 are significantly different we
use (iii)(b). More appropriately, we have tests that can be used to test hypotheses concerning σ2

1 = σ2
2

or σ2
1 = σ2

2 , known as the F -test, which we discuss at the end of this subsection.

Example 7.5.2
The intelligence quotients (IQs) of 17 students from one area of a city showed a sample mean of 106 with a

sample standard deviation of 10, whereas the IQs of 14 students from another area chosen independently

showed a sample mean of 109 with a sample standard deviation of 7. Is there a significant difference

between the IQs of the two groups at α = 0.02? Assume that the population variances are equal.

Solution
We test

H0 : μ1 − μ2 = 0 vs. Ha : μ1 − μ2 = 0

Here n1 = 17, x1 = 106, and s1 = 10. Also, n2 = 14, x2 = 109, and s2 = 7.

We have

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

= (16)(10)2 + (13)(7)2

29
= 77.138.
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The test statistic is

T = X1 − X2 − D0

sp

√
1
n1

+ 1
n2

= 106 − 109(√
77.138

)√ 1
17

+ 1
14

= −0.94644.

For α = 0.02, t0.01,29 = 2.462. Hence, the rejection region is t < − 2.462 or t > 2.462.

Because the observed value of the test statistic, T = −0.94644, does not fall in the rejection region, there is

not enough evidence to conclude that the mean IQs are different for the two groups. Here we assume that

the two samples are independent and taken from normal populations.

Example 7.5.3
Assume that two populations are normally distributed with unknown and unequal variances. Two inde-

pendent samples were drawn from these populations and the data obtained resulted in the following basic

statistics:

n1 = 18 x1 = 20.17 s1 = 4.3

n2 = 12 x2 = 19.23 s2 = 3.8

Test at the 5% significance level whether the two population means are different.

Solution
We need to test the hypothesis

H0 : μ1 − μ2 = 0 versus Ha : μ1 − μ2 = 0.

Here n1 = 18, x1 = 20.17, and s1 = 4.3. Also, n2 = 12, x2 = 19.23, and s2 = 3.8.

The degrees of freedom for the t-distribution are given by

ν =
(
s2
1/n1 + s2

2/n2
)2

(s2
1/n1)2

n1 − 1
+ (s2

2/n2)2

n2 − 1

=
(

(4.3)2

18 + (3.8)2

12

)2

(
(4.3)2

18

)2

17 +
(

(3.8)2

12

)2

11

= 25.685.

Hence, we have ν = 25 degrees of freedom. For α = 0.05, t0.025,25 = 2.060. Thus, the rejection region is

t < −2.060 or t > 2.060.

The test statistic is given by

Tν = x1 − x2 − D0√
S2

1
n1

+ S2
2

n2
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= 20.17 − 19.23√
(4.3)2

18
+ (3.8)2

12

= 0.62939.

Because the observed value of the test statistic, Tν = 0.62939, does not fall in the rejection region, we do not

reject the null hypothesis. At α = 0.05 there is not enough evidence to conclude that the population means

are different. Note that the assumptions we made are that the samples are independent and came from two

normal populations. No homogeneity assumption is made.

Example 7.5.4
Infrequent or suspended menstruation can be a symptom of serious metabolic disorders in women. In a

study to compare the effect of jogging and running on the number of menses, two independent subgroups

were chosen from a large group of women, who were similar in physical activity (aside from running),

heights, occupations, distribution of ages, and type of birth control methods being used. The first group

consisted of a random sample of 26 women joggers who jogged “slow and easy” 5 to 30 miles per week,

and the second group consisted of a random sample of 26 women runners who ran more than 30 miles per

week and combined long, slow distance with speed work. The following summary statistics were obtained

(E. Dale, D. H. Gerlach, and A. L. Wilhite, “Menstrual Dysfunction in Distance Runners,” Obstet. Gynecol. 54,

47–53, 1979).
Joggers x1 = 10.1, s1 = 2.1
Runners x2 = 9.1, s2 = 2.4

Using α = 0.05, (a) test for differences in mean number of menses for each group assuming equality of

population variances, and (b) test for differences in mean number of menses for each group assuming

inequality of population variances.

Solution
Here we need to test

H0 : μ1 − μ2 = 0 versus Ha : μ1 − μ2 = 0.

Here, n1 = 26, x1 = 10.1, and s1 = 2.1. Also, n2 = 26, x2 = 9.1, and s2 = 2.4.

(a) Under the assumption σ2
1 = σ2

2 , we have

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

= (25)(2.1)2 + (25)(2.4)2

50
= 5.085.

The test statistic is

T = X1 − X2 − D0

sp

√
1
n1

+ 1
n2
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= 10.1 − 9.1(√
5.085

)√
1

26 + 1
26

= 1.5989.

For α = 0.05, t0.025,50 ≈ 1.96. Hence, the rejection region is t < −1.96 and t > 1.96. Because

T = 1.589 does not fall in the rejection region, we do not reject the null hypothesis. At α = 0.05
there is not enough evidence to conclude that the population mean number of menses for joggers

and runners are different.

(b) Under the assumption σ2
1 = σ2

2 , we have

ν =
(
s2
1/n1 + s2

2/n2
)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

=
(

(2.1)2

26 + (2.4)2

26

)2

(
(2.1)2

26

)2

25 +
(

(2.4)2

26

)2

25

= 49.134.

Hence, we have ν = 49 degrees of freedom. Because this value is large, the rejection region is still

approximately t < − 1.96 and t > 1.96. Hence, the conclusion is the same as that of part (a). In

both parts (a) and (b), we assumed that the samples are independent and came from two normal

populations.

Now we present the summary of the test procedure for testing the difference of two proportions,
inherent in two binomial populations. Here, again we assume that the binomial distribution is
approximated by the normal distribution and thus it is an approximate test.

SUMMARY OF HYPOTHESIS TEST FOR (p1 − p2) FOR LARGE SAMPLES (nipi > 5 AND niqi > 5,
FOR i = 1, 2)

To test

H0 : p1 − p2 = D0

versus

p1 − p2 < D0, upper tailed test

Ha : p1 − p2 > D0, lower tailed test

p1 − p2 = D0, two-tailed test

at significance level α, the test statistic is

Z = p̂1 − p̂2 − D0√
p̂1 q̂1

n1
+ p̂2 q̂2

n2

where z is the observed value of Z .
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The rejection region is

RR :

⎧⎪⎨
⎪⎩

z > zα, upper tailed RR

z < −zα, lower tailed RR

|z | > zα/2, two-tailed RR

Assumption: The samples are independent and

ni pi > 5 and ni qi > 5, for i = 1,2.

Decision: Reject H0 if the test statistic falls in the RR and conclude that Ha is true with (1 − a)100%
confidence. Otherwise, do not reject H0, because there is not enough evidence to conclude that Ha is true
for given α and more experiments are needed.

Example 7.5.5
Because of the impact of the global economy on a high-wage country such as the United States, it is claimed

that the domestic content in manufacturing industries fell between 1977 and 1997. A survey of 36 randomly

picked U.S. companies gave the proportion of domestic content total manufacturing in 1977 as 0.37 and in

1997 as 0.36. At the 1% level of significance, test the claim that the domestic content really fell during the

period 1977–1997.

Solution
Let p1 be the domestic content in 1977 and p2 be the domestic content in 1997.

Given n1 = n2 = 36, p̂1 = 0.37 and p̂2 = 0.36. We need to test

H0 : p1 − p2 = 0 vs. Ha : p1 − p2 > 0.

The test statistic is

z = p̂1 − p̂2√
p̂1q̂2
n1

+ p̂1q̂2
n2

= 0.37 − 0.36√
(0.37)(0.63)

36 + (0.36)(0.64)
36

= 0.08813.

For α = 0.01, z0.01 = 2.325. Hence, the rejection region is z > 2.325.

Because the observed value of the test statistic does not fall in the rejection region, at α = 0.01, there is not

enough evidence to conclude that the domestic content in manufacturing industries fell between 1977 and

1997.

Let X1, . . . , Xn and Y1, . . . , Yn be two independent random samples from two normal populations
with sample variances s2

1 and s2
2, respectively. The problem here is of testing for the equality of the
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variances, H0 : σ2
1 = σ2

2 . We have already seen in Chapter 4 that

F = S2
1/σ2

1

S2
2/σ2

2

follows the F -distribution with ν1 = n1 − 1 numerator and ν2 = n2 − 1 degrees of freedom. Under
the assumption H0 : σ2

1 = σ2
2 , we have

F = S2
1

S2
2

which has an F -distribution with (ν1, ν2) degrees of freedom. We summarize the test procedure for
the equality of variances.

TESTING FOR THE EQUALITY OF VARIANCES

To test

H0 : σ2
1 = σ2

2

versus

Ha :

σ2
1 > σ2

2 , lower tailed test

σ2
1 < σ2

2 , upper tailed test

σ2
1 = σ2

2 , two-tailed test

at significance level α, the test statistic is

F = S2
1

S2
2

.

The rejection region is

RR :

⎧⎪⎨
⎪⎩

f > Fα(ν1,ν2), upper tailed RR

f < F1−α(ν1,ν2), lower tailed RR

f > Fα/2(ν1,ν2) or f < F1−α/2(ν1,ν2), two-tailed RR

where f is the observed test statistic given by f = s2
1

s2
2

.

Decision: Reject H0 if the test statistic falls in the RR and conclude that Ha is true with (1 − α)100%
confidence. Otherwise, keep H0, because there is not enough evidence to conclude that Ha is true for
a given α and more experiments are needed.

Assumption:
(i) The two random samples are independent.
(ii) Both populations are normal.

Recall from Section 4.2 that in order to find F1−α(ν1, ν2), we use the identity F1−α(ν1, ν2) =
(1/Fα(ν2, ν1)).
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Example 7.5.6
Consider two independent random samples X1, . . . , Xn from an N(μ1, σ2

1 ) distribution and Y1, . . . , Yn

from an N(μ2, σ2
2 ) distribution. Test H0 : σ2

1 = σ2
2 versus Ha : σ2

1 = σ2
2 for the following basic statistics:

n1 = 25, x1 = 410, s2
1 = 95, and n2 = 16, x2 = 390, s2

2 = 300

Use α = 0.20.

Solution
Test H0 : σ2

1 = σ2
2 versus Ha : σ2

1 = σ2
2 . This is a two-tailed test.

Here the degrees of freedom are ν1 = 24 and ν2 = 15. The test statistic is

F = s2
1

s2
2

= 95
300

= 0.317.

From the F -table, F0.10(24, 15) = 1.90 and F0.90(24, 15) =(1/F0.10(15, 24)) = 0.50.

Hence, the rejection region is F > 1.90 or F < 0.56. Because the observed value of the test statistic, 0.317,

is less than 0.56, we reject the null hypothesis. There is evidence that the population variances are not equal.

7.5.2 Dependent Samples
We now consider the case where the two random samples are not independent. When two samples
are dependent (the samples are dependent if one sample is related to the other), then each data
point in one sample can be coupled in some natural, nonrandom fashion with each data point in
the second sample. This situation occurs when each individual data point within a sample is paired
(matched) to an individual data point in the second sample. The pairing may be the result of the
individual observations in the two samples: (1) representing before and after a program (such as
weight before and after following a certain diet program), (2) sharing the same characteristic, (3)
being matched by location, (4) being matched by time, (5) control and experimental, and so forth.
Let (X1i, X2i), for i = 1, 2, . . . , n, be a random sample. X1i, and X2j (i = j) are independent. To test
the significance of the difference between two population means when the samples are dependent,
we first calculate for each pair of scores the difference, Di = X1i − X2i, i = 1, 2, . . . , n, between the
two scores. Let μD = E(Di). Because pairs of observations form a random sample D1, . . . , Dn are
independent and identically distributed random variables, if d1, . . . , dn are the observed values of
D1, . . . , Dn, then we define

d = 1
n

n∑
i=1

di and s2
d = 1

n − 1

n∑
i=1

(di − d)2 =

n∑
i=1

d2
i − 1

n

( n∑
i=1

di

)2

n − 1
.

Now the testing for these n observed differences will proceed as in the case of a single sample. If the
number of differences is large (n ≥ 30), large sample inferential methods for one sample case can
be used for the paired differences. We now summarize the hypothesis testing procedure for small
samples.
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SUMMARY OF TESTING FOR MATCHED PAIRS EXPERIMENT

To test

H0 : μD = d0 versus Ha :
μD > d0, upper tail test

μD < d0, lower tail test

μD = d0, two-tailed test

the test statistic: T = D−D0
SD /

√
n

(this approximately follows a Student t-distribution with (n − 1) degrees of

freedom).
The rejection region is ⎧⎪⎨

⎪⎩
t > tα,n−1, upper tail RR

t < −tα,n−1, lower tail RR

|t | > tα/2,n−1, two-tailed RR

where t is the observed test statistic.
Assumptions: The differences are approximately normally distributed.

Decision: Reject H0 if the test statistic falls in the RR and conclude that Ha is true with (1 − α)100%
confidence. Otherwise, do not reject H0, because there is not enough evidence to conclude that Ha is true
for a given α and more data are needed.

Example 7.5.7
A new diet and exercise program has been advertised as remarkable way to reduce blood glucose levels in

diabetic patients. Ten randomly selected diabetic patients are put on the program, and the results after 1

month are given by the following table:

Before 268 225 252 192 307 228 246 298 231 185

After 106 186 223 110 203 101 211 176 194 203

Do the data provide sufficient evidence to support the claim that the new program reduces blood glucose

level in diabetic patients? Use α = 0.05.

Solution
We need to test the hypothesis

H0 : μD = 0 vs. Ha : μD < 0.

First we calculate the difference of each pair given in the following table.

Before 268 225 252 192 307 228 246 298 231 185

After 106 186 223 110 203 101 211 176 194 203

Difference −162 −39 −29 −82 −104 −127 −35 −122 −37 18
(after−before)
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From the table, the mean of the differences is d = −71.9 and the standard deviation sd = 56.2.

The test statistic is

t = d − d0

sd/
√

n
= −71.9

56.2/
√

10
= −4.0457 ≈ −4.05.

From the t-table, t0,05,9 = 1.833. Because the observed value of t = −4.05 < −t0,05,9 = −1.833, we reject

the null hypothesis and conclude that the sample evidence suggests that the new diet and exercise program

is effective.

We can also obtain a (1 − α)100% confidence interval for μD using the formula

(
D − tα/2

Sd√
n

, D + tα/2
Sd√

n

)

where tα/2 is obtained from the t-table with (n − 1) degrees of freedom. The interpretation of the
confidence interval is identical to the earlier interpretation.

Example 7.5.8
For the data in Example 7.5.7, obtain a 95% confidence interval for μD and interpret its meaning.

Solution
We have already calculated d = − 71.9 and sd = 56.2. From the t-table, t0.025,9 = 2.262. Hence, a 95%

confidence interval for μD is (−112.1, −31.7). That is, P(−112.1 ≤ μD ≤ −31.7) = 0.95. Note that

μD = μ1 − μ2, and from the confidence limits we can conclude with 95% confidence that μ2 is always

greater than μ1, that is, μ2 > μ1.

It is interesting to compare the matched pairs test with the corresponding two independent sample
test. One of the natural questions is, why must we take paired differences and then calculate the mean
and standard deviation for the differences—why can’t we just take the difference of means of each
sample, as we did for independent samples? The answer lies in the fact that σ2

D
need not be equal to

σ2
(X1−X2)

. Assume that

E(Xji) = μj, Var(Xji) = σ2
j , for j = 1, 2,

and

Cov(X1i, X2i) = ρσ1σ2

where ρ denotes the assumed common correlation coefficient of the pair (X1i, X2i) for i = 1, 2, . . . , n.
Because the values of Di, i = 1, 2, . . . , n, are independent and identically distributed,

μD = E(Di) = E(X1i) − E(X2i) = μ1 − μ2
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and

σ2
D = Var(Di) = Var(X1i) + Var(X2i) − 2Cov(X1i, X2i)

= σ2
1 + σ2

2 − 2ρσ1σ2.

From these calculations,

E(D) = μD = μ1 − μ2

and

σ2
D

= Var(D) = σ2
D

n
= 1

n
(σ2

1 + σ2
2 − 2ρσ1σ2).

Now, if the samples were independent with n1 = n2 = n,

E(X1 − X2) = μ1 − μ2

and

σ2
(X1−X2)

= 1
n

(σ2
1 + σ2

2 ).

Hence, if ρ > 0, then σ2
D

< σ2
(X1−X2)

. As a result, we can see that the matched pairs test reduces any

variability introduced by differences in physical factors in comparison to the independent samples
test when ρ > 0. It is also important to observe that normality assumption for the difference does not
imply that the individual samples themselves are normal. Also, in a matched pairs experiment, there
is no need to assume the equality of variances for the two populations. Matching also reduces degrees
of freedom, because in case of two independent samples, the degrees of freedom is (n1 + n2 − 2),
whereas for the case of two dependent samples it is only (n − 1).

EXERCISES 7.5

7.5.1. Two sets of elementary school children were taught to read by different methods, 50 by each
method. At the conclusion of the instructional period, a reading test gave results y1 = 74,
y2 = 71, s1 = 9, and s2 = 10. What is the attained significance level if you wish to see if
there is evidence of a real difference between the two population means? What would you
conclude if you desired an α-value of 0.05?

7.5.2. The following information was obtained from two independent samples selected from two
normally distributed populations with unknown but equal variances.

Sample 1 14 15 11 14 10 8 13 10 12 16 15
Sample 2 17 16 21 12 20 18 16 14 21 20 13 20 13

Test at the 2% significance level whether μ1 is lower than μ2.
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7.5.3. In the academic year 1997–1998, two random samples of 25 male professors and 23 female
professors from a large university produced a mean salary for male professors of $58,550
with a standard deviation of $4000 and an average for female professors of $53,700 with a
standard deviation of $3200. At the 5% significance level, can you conclude that the mean
salary of all male professors for 1997–1998 was higher than that of all female professors?
Assume that the salaries of male and female professors are both normally distributed with
equal standard deviations.

7.5.4. It is believed that the effects of smoking differ depending on race. The following table gives
the results of a statistical study for this question.

Number in the Average number of Number of lung
study cigarettes per day cancer cases

Whites 400 15 78
African
Americans

280 15 70

Do the data indicate that African Americans are more likely to develop lung cancer due to
smoking? Use α = 0.05.

7.5.5. A supermarket chain is considering two sources A and B for the purchase of 50-pound bags
of onions. The following table gives the results of a study.

Source A Source B
Number of bags weighed 80 100
Mean weight 105.9 100.5
Sample variance 0.21 0.19

Test at α = 0.05 whether there is a difference in the mean weights.

7.5.6. In order to compare the mean Hemoglobin (Hb) levels of well-nourished and undernour-
ished groups of children, random samples from each of these groups yielded the following
summary.

Number of Sample Sample standard
children mean deviation

Well nourished 95 11.2 0.9
Undernourished 75 9.8 1.2

Test at α = 0.01 whether the mean Hb levels of well-nourished children were higher than
those of undernourished children.

7.5.7. An aquaculture farm takes water from a stream and returns it after it has circulated through
the fish tanks. In order to find out how much organic matter is left in the waste water after
the circulation, some samples of the water are taken at the intake and other samples are
taken at the downstream outlet and tested for biochemical oxygen demand (BOD). BOD is
a common environmental measure of the quantity of oxygen consumed by microorganisms
during the decomposition of organic matter. If BOD increases, it can be said that the waste
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matter contains more organic matter than the stream can handle. The following table gives
data for this problem.

Upstream 9.0 6.8 6.5 8.0 7.7 8.6 6.8 8.9 7.2 7.0
Downstream 10.2 10.2 9.9 11.1 9.6 8.7 9.6 9.7 10.4 8.1

Assuming that the samples come from a normal distribution,
(a) Test that the mean BOD for the downstream samples is less than for the samples

upstream at α = 0.05. Assume that the variances are equal.
(b) Test for the equality of the variances at α = 0.05.
(c) In parts (a) and (b), we assumed samples are independent. Now, we feel this assump-

tion is not reasonable. Assuming that the difference of each pair is approximately
normal, test that the mean BOD for the downstream samples is less than for the
upstream samples at α = 0.05.

7.5.8. Suppose we want to know the effect on driving of a drug for cold and allergy, in a study
in which the same people were tested twice, once after 1 hour of taking the drug and once
when no drug is taken. Suppose we obtain the following data, which represent the number
of cones (placed in a certain pattern) knocked down by each of the nine individuals before
taking the drug and after an hour of taking the drug.

No drug 0 0 3 2 0 0 3 3 1
After drug 1 5 6 5 5 5 6 1 6

Assuming that the difference of each pair is coming from an approximately normal distribu-
tion, test if there is any difference in the individuals’ driving ability under the two conditions.
Use α = 0.05.

7.5.9. Suppose that we want to evaluate the role of intravenous pulse cyclophosphamide (IVCP)
infusion in the management of nephrotic syndrome in children with steroid resistance.
Children were given a monthly infusion of IVCP in a dose of 500 to 750 mg/m2. The
following data (source: S. Gulati and V. Kher, “Intravenous pulse cyclophosphamide—A new
regime for steroid resistant focal segmental glomerulosclerosis,” Indian Pediatr. 37, 2000)
represent levels of serum albumin (g/dL) before and after IVCP in 14 randomly selected
children with nephrotic syndrome.

Pre-IVCP 2.0 2.5 1.5 2.0 2.3 2.1 2.3 1.0 2.2 1.8 2.0 2.0 1.5 3.4
Post-IVCP 3.5 4.3 4.0 4.0 3.8 2.4 3.5 1.7 3.8 3.6 3.8 3.8 4.1 3.4

Assuming that the samples come from a normal distribution:
(a) Test whether the mean Pre-IVCP is less than the mean Post-IVCP at α = 0.05. Assume

that the variances are equal.
(b) Test for the equality of the variances at α = 0.05.
(c) In parts (a) and (b), we assumed that the samples are independent. Now, we feel

this assumption is not reasonable. Assuming that the difference of each pair is
approximately normal, test that the mean Pre-IVCP is less than the Post-IVCP at
α = 0.05.
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7.5.10. Show that S2
D is an unbiased estimator of σ2

D.

7.5.11. Test H0 : σ2
1 = σ2

2 versus Ha : σ2
1 = σ2

2 for the following data.

n1 = 10, x1 = 71, s2
1 = 64 and n2 = 25, x2 = 131, s2

2 = 96.

Use α = 0.10.

7.5.12. The IQs of 17 students from one area of a city showed a mean of 106 with a standard
deviation of 10, whereas the IQs of 14 students from another area showed a mean of 109 with
a standard deviation of 7. Test for equality of variances between the IQs of the two groups at
α = 0.02.

7.5.13. The following data give SAT mean scores for math by state for 1989 and 1999 for 20 randomly
selected states (source: The World Almanac and Book of Facts 2000).

State 1989 1999
Arizona 523 525
Connecticut 498 509
Alabama 539 555
Indiana 487 498
Kansas 561 576
Oregon 509 525
Nebraska 560 571
New York 496 502
Virginia 507 499
Washington 515 526
Illinois 539 585
North Carolina 469 493
Georgia 475 482
Nevada 512 517
Ohio 520 568
New Hampshire 510 518

Assuming that the samples come from a normal distribution:
(a) Test that the mean SAT score for math in 1999 is greater than that in 1989 at α = 0.05.

Assume the variances are equal.
(b) Test for the equality of the variances at α = 0.05.

7.6 CHI-SQUARE TESTS FOR COUNT DATA

In this section, we study several commonly used tests for count data. These are basically large sample
tests based on a χ2-approximation. Suppose that we have outcomes of a multinomial experiment that
consists of K mutually exclusive and exhaustive events A1, . . . , Ak. Let P(Ai) = pi, i = 1, 2, . . . , k.
Then

∑n
i=1 pi = 1. Let the experiment be repeated n times, and let Xi(i = 1, 2, . . . , k) represent

the number of times the event Ai occurs. Then (X1, . . . , Xk) have a multinomial distribution with
parameters n, p1, . . . , pk.
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Let

Q2 =
k∑

i=1

(Xi − npi)
2

(Xi − npi)
2 .

It can be shown that for large n, the random variable Q2 is approximately χ2-distributed with (k − 1)

degrees of freedom. It is usual to demand npi ≥ 5 (i = 1, 2, . . . , k) for the approximation to be valid,
although the approximation generally works well if for only a few values of i (about 20%), npi ≥ 1
and the rest (about 80%) satisfy the condition npi ≥ 5. This statistic was proposed by Karl Pearson
in 1900.

It should be noted that the χ2-tests that we discuss in this section are approximate tests valid for
large samples. Often Xi is called the observed frequency and is denoted by Oi (this is the observed
value in class i), and npi is called the expected frequency and is denoted by Ei (this is the theoretical
distribution frequency under the null hypothesis). Thus, with these notations, we get

Q2 =
k∑

i=1

(Oi − Ei)
2

Ei
.

Example 7.6.1
A plant geneticist grows 200 progeny from a cross that is hypothesized to result in a 3 : 1 phenotypic

ratio of red-flowered to white-flowered plants. Suppose the cross produces 170 red- to 30 white-flowered

plants. Calculate the value of Q2 for this experiment.

Solution
There are two categories of data totaling n = 200. Hence, k = 2. Let i = 1 represent red-flowered and i = 2
represent white-flowered plants. Then O1 = 170, and O2 = 30.

Here, H0 : The flower color population ratio is not different from 3 : 1, and the alternate is Ha : The flower

color population sampled has a flower color ratio that is not 3 red : 1 white.

Under the null hypothesis, the expected frequencies are E1 = (200)(3/4) = 150, and E2 = (200)(1/4) = 50.

Hence,

Q2 =
2∑

i=1

(Oi − Ei)
2

Ei

= (170 − 150)2

150
+ (30 − 50)2

50
= 10.667.

The type of calculation in Example 7.6.1 gives a measure of how close our observed frequencies come
to the expected frequencies and is referred to as a measure of goodness of fit. Smaller values of Q2

values indicate better fit.

One of the most frequent uses of the χ2-test is in comparison of observed frequencies. Unless the
sample size is exactly 100, percentages cannot be used. These are approximate tests. Let the random
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variables (X1, . . . , Xk) have a multinomial distribution with parameters n, p1, . . . , pk. Let n be known.
We will now present some important tests based on the chi-square statistic.

7.6.1 Testing the Parameters of Multinomial Distribution: Goodness-of-Fit
Test

Let an experiment have k mutually exclusive and exhaustive outcomes A1, A2, . . . , Ak. We would
like to test the null hypothesis that all the pi = p(Ai), i = 1, 2, . . . , k are equal to known numbers
pi0, i = 1, 2, . . . , k. We now summarize the test procedure.

TESTING THE PARAMETERS OF A MULTINOMIAL DISTRIBUTION (SUMMARY)

To test

H0 : p1 = p10, . . . , pk = pk 0

versus

Ha : At least one of the probabilities is different from the hypothesized value.

The test is always a one-sided upper tail test.

Let Oi be the observed frequency, Ei = npi0 be the expected frequency (frequency under the null

hypothesis), and k be the number of classes. The test statistic is

Q2 =
k∑

i=1

(Oi − Ei )2

Ei
.

The test statistic Q2 has an approximate chi-square distribution with k − 1 degrees of freedom.

The rejection region is

Q2 ≥ χ2
α,k−1.

Assumption: Ei ≥ 5: Exact methods are available. Computing the power of this test is difficult.

This test is known as the goodness-of-fit test. It implies that if the observed data are very close to the
expected data, we have a very good fit and we accept the null hypothesis. That is, for small Q2 values,
we accept H0.

Example 7.6.2
A TV station broadcasts a series of programs on the ill effects of smoking marijuana. After the series, the

station wants to know whether people have changed their opinion about legalizing marijuana. Given in the

following tables are the data based on a survey of 500 randomly chosen people:
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Before the Series Was Shown

For legalization Decriminalization Existing law No opinion

(fine or imprisonment)

7% 18% 65% 10%

After the Series Was Shown

For legalization Decriminalization Existing law No opinion

(fine or imprisonment)

39% 9% 36% 16%

Here, n = 4, and we wish to test

H0 : p1 = 0.07; p2 = 0.18; p3 = 0.65; p4 = 0.1

versus

Ha : At least one of the probabilities is different from the hypothesized value.

The test is always an upper tail test. Test this hypothesis using α = 0.01.

Solution
We have

E1 = (500)(0.07) = 35; E2 = 90; E3 = 325; E4 = 50.

The observed frequencies are

O1 = (500)(0.39) = 195; O2 = 45; O3 = 180; O4 = 80.

The test statistic is

Q2 =
4∑

i=1

(Oi − Ei)
2

Ei

=
[

(195 − 35)2

35
+ (45 − 90)2

90
+ (180 − 325)2

325
+ (80 − 50)2

50

]

= 836.62.

From the χ2-table, χ2
0.01,3 = 11.3449. Because the test statistic Q2 = 836.62 > 11.3449, we reject H0 at

α = 0.01. Hence, the data suggest that people have changed their opinion after the series on the ill effects

of smoking marijuana was shown.
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Example 7.6.3
A die is rolled 60 times and the face values are recorded. The results are as follows.

Up face 1 2 3 4 5 6

Frequency 8 11 5 12 15 9

Is the die balanced? Test using α = 0.05.

Solution
If the die is balanced, we must have

p1 = p2 = . . . = p6 = 1
6

where pi = P (face value on the die is i), i = 1, 2, . . . , 6. This has the discrete uniform distribution.

Hence,

H0 : p1 = p2 = . . . = p6 = 1
6

versus

Ha : At least one of the probabilities is different from the hypothesized value of 1/6

E1 = n1p1 = (60)(1/6) = 10, . . . , E6 = 10.

We summarize the calculations in the following table:

Face value 1 2 3 4 5 6

Frequency, Oi 8 11 5 12 15 9

Expected value, Ei 10 10 10 10 10 10

The test statistic value is given by

Q2 =
6∑

i=1

(Oi − Ei)
2

Ei
= 6.

From the chi-square table with 5 d.f., χ2
0.05,5 = 11.070.

Because the value of the test statistic does not fall in the rejection region, we do not reject H0. Therefore, we

conclude that the die is balanced.

7.6.2 Contingency Table: Test for Independence
One of the uses of the χ2-statistic is in contingency (dependence) testing where n randomly selected
items are classified according to two different criteria, such as when data are classified on the basis of
two factors (row factor and column factor) where the row factor has r levels and the column factor
has c levels. The obtained data are displayed as shown in the following table, where nij represents
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the number of data values under row i and column j. Our interest here is to test for independence of
two methods of classification of observed events. For example, we might classify a sample of students
by sex and by their grade on a statistics course in order to test the hypothesis that the grades are
dependent on sex. More generally the problem is to investigate a dependency (or contingency) between
two classification criteria.

Levels of column factor
1 2 … c Row total

Row 1 n11 n12 n1c n1

levels 2 n21 n21 n2c n2

.

.
r nr1 nr2 anrc nr

Column total n.1 n.2 n.c N

where N =
c∑

j=1
n.j =

r∑
i=1

ni. =
r∑

i=1

c∑
j=1

nij is the grand total.

We wish to test the hypothesis that the two factors are independent. We summarize the procedure
in the following table for testing that the factors represented by the rows are independent with that
represented by the columns.

TESTING FOR THE INDEPENDENCE OF TWO FACTORS

To test

H0 : The factors are independent

versus

Ha : The factors are dependent

the test statistic is,

Q2 =
r∑

i=1

c∑
j=1

(Oij − Eij )2

Eij

where

Oij = nij

and

Eij = ni nj

N
.

Then under the null hypothesis the test statistic Q2 has an approximate chi-square distribution with
(r − 1)(c − 1) degrees of freedom.
Hence, the rejection region is Q2 > χ2

α,(r−1)(c−1) .

Assumption: Eij ≥ 5.
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Example 7.6.4
The following table gives a classification according to religious affiliation and marital status for 500

randomly selected individuals.

Religious affiliation

A B C D None Total

Marital status Single 39 19 12 28 18 116

With spouse 172 61 44 70 37 384

Total 211 80 56 98 55 500

For α = 0.01, test the null hypothesis that marital status and religious affiliation are independent.

Solution
We need to test the hypothesis

H0 : Marital status and religious affiliation are independent

versus

Ha : Marital status and religious affiliation are dependent.

Here, c = 5, and r = 2. For α = 0.01, and for (c − 1)(r − 1) = 4 degrees of freedom, we have

χ2
0.01,4 = 13.2767

Hence, the rejection region is Q2 > 13.2767.

We have Eij = ninj

N . Thus,

E11 = (116)(211)

500
= 48.952; E12 = (116)(80)

500
= 18.5;

E13 = (116)(56)

500
= 12.992, E14 = (116)(98)

500
= 22.736;

E15 = (116)(55)

500
= 12.76, E21 = (384)(211)

500
= 162.05;

E22 = (384)(80)

500
= 61.44; E23 = (384)(56)

500
= 43.008;

and

E24 = (384)(98)

500
= 75.264; E25 = (384)(55)

500
= 42.24.

The value of the test statistic is

Q2 =
r∑

i=1

c∑
j=1

(Oij−Eij)
2

Eij
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=
[

(39 − 48.952)2

48.952
+ (19 − 18.5)2

18.5
+ (12 − 12.992)2

12.992
+ (28 − 22.736)2

22.736

]

+ (18 − 12.76)2

12.76
+ (172 − 162.05)2

162.05
+ (61 − 61.44)2

61.44
+ (44 − 43.08)2

43.08

+ (70 − 75.264)2

75.264
+ (37 − 42.24)2

42.24

= 7.1351.

Because the observed value of Q2 does not fall in the rejection region, we do not reject the null hypoth-

esis at α = 0.01. Therefore, based on the observed data, the marital status and religious affiliation are

independent.

7.6.3 Testing to Identify the Probability Distribution: Goodness-of-Fit
Chi-Square Test

Another application of the chi-square statistic is using it for goodness-of-fit tests in a different context.
In hypothesis testing problems we often assume that the form of the population distribution is known.
For example, in a χ2-test for variance, we assume that the population is normal. The goodness-of-fit
tests examine the validity of such an assumption if we have a large enough sample. We now describe
the goodness-of-fit test procedure for such applications.

GOODNESS-OF-FIT TEST PROCEDURES FOR PROBABILITY DISTRIBUTIONS

Let X1, . . . ,Xn be a sample from a population with cdf F (x ), which may depend on the set of unknown
parameters θ. We wish to test H0 : F (x ) = F0(x ), where F0(x ) is completely specified.

1. Divide the range of values of the random variables X1 into K nonoverlapping intervals I1, I2, . . . , IK .
Let Oj be the number of sample values that fall in the interval Ij (j = 1, 2, . . . , K ).

2. Assuming the distribution of X to be F0(x ), find P(X ∈ Ij ). Let P(X ∈ Ij ) = πi . Let ej = nπj be the
expected frequency.

3. Compute the test statistic Q2 given by

Q2 =
K∑

i=1

(Oi − Ei )2

Ei
.

The test statistic Q2 has an approximate χ2-distribution with (K − 1) degrees of freedom.
4. Reject the H0 if Q2 ≥ χ2

α, (K −1).

5. Assumptions: ej ≥ 5, j = 1, 2, . . . , K .

If the null hypothesis does not specify F0(x) completely, that is, if F0(x) contains some unknown
parameters θ1, θ2, . . . , θp, we estimate these parameters by the method of maximum likelihood. Using
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these estimated values we specify F0(x) completely. Denote the estimated F0(x) by F̂0(x). Let

π̂i = P
{
X ∈ Ii|F̂0(x)

}
and Êi = nπ̂i.

The test statistic is

Q2 =
K∑

i=1

(Oi − êi)
2

êi
.

The statistic Q2 has an approximate chi-square distribution with (K − 1 − p) degrees of freedom. We
reject H0 if Q2 ≥ χ2

a,(K−1−p).

We now illustrate the method of goodness-of-fit with an example.

Example 7.6.5
The grades of students in a class of 200 are given in the following table. Test the hypothesis

that the grades are normally distributed with a mean of 75 and a standard deviation of 8. Use

α = 0.05.

Range 0–59 60–69 70–79 80–89 90–100

Number of students 12 36 90 44 18

Solution

We have O1 = 12, O2 = 36, O3 = 90, O4 = 44, O5 = 18.

We now compute πi(i = 1, 2, . . . , 5), using the continuity correction factor,

π1 = P{X ≤ 59.5|H0} = P{z ≤ 59.5−75
8 } = 0.0262,

π2 = 0.2189, π3 = 0.4722, π4 = 0.2476, π5 = 0.0351,

and

E1 = 5.24, E2 = 43.78, E3 = 94.44, E4 = 49.52, E5 = 7.02.

The test statistic results in

Q2 =
n∑

i=1

(Oi − ei)
2

ei

= (12 − 5.74)2

5.74
+ (36 − 43.78)2

43.78
+ (90 − 94.44)2

94.44
+ (44 − 49.52)2

49.52
+ (18 − 7.02)2

7.02

= 26.22.
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Q2 has a chi-square distribution with (5 − 1) = 4 degrees of freedom. The critical value is χ2
0.05,4 = 7.11.

Hence, the rejection region is Q2 > 7.11. Because the observed value of Q2 = 26.22 > 7.11, we reject H0

at α = 0.05. Thus, we conclude that the population is not normal.

EXERCISES 7.6

7.6.1. The following table gives the opinion on collective bargaining by a random sample of 200
employees of a school system, belonging to a teachers’ union.

Opinion on Collective Bargaining by Teachers’ Union
For Against Undecided Total

Staff 30 15 15 60
Faculty 50 10 40 100
Administration 10 25 5 40
Column totals 90 50 60 200

Test the hypotheses

H0 : Opinion on collective bargaining is independent of employee classification

versus

Ha : Opinion on collective bargaining is dependent on employee classification

using α = 0.05.

7.6.2. A random sample was taken of 300 undergraduate students from a university. The students
in the sample were classified according to their gender and according to the choice of their
major. The result is given in the following table.

College
Gender Arts and sciences Engineering Business Other Total
Male 75 40 24 66 205
Female 45 12 15 23 95
Total 120 52 39 89 300

Test the hypothesis that the choice of the major by undergraduate students in this university
is independent of their gender. Use α = 0.01.

7.6.3. The speeds of vehicles (in mph) passing through a section of Highway 75 are recorded for a
random sample of 150 vehicles and are given below. Test the hypothesis that the speeds are
normally distributed with a mean of 70 and a standard deviation of 4. Use a = 0.01.

Range 40–55 56–65 66–75 76–85 >85
Number 12 14 78 40 6

7.6.4. Based on the sample data of 50 days contained in the following table, test the hypothesis that
the daily mean temperatures in the city are normally distributed with mean 77 and variance
6. Use α = 0.05.
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Temperature 46–55 56–65 66–75 76–85 86–95
Number of days 4 6 13 23 4

7.6.5. A presidential candidate advertises on TV by comparing his positions on some important
issues with those of his opponent. After a series of advertisements, a pollster wants to know
whether people have changed their opinion about the candidate. The following are the data
based on a survey of 950 randomly chosen people:

Before the Advertisement Was Shown
Support the Oppose the Need to know more Undecided
candidate candidate about the candidate
40% 20% 5% 35%

After the Advertisement Was Shown
Support the Oppose the Need to know more Undecided
candidate candidate about the candidate
45% 25% 2% 28%

Let pi, i = 1, 2, 3, 4, represent the respective true proportions.
Test

H0 : p1 = 0.35; p2 = 0.20; p3 = 0.15; p4 = 0.3

versus

Ha : At least one of the probabilities is different from the hypothesized value.

Test this hypothesis using α = 0.05.

7.6.6. A survey of footwear preferences of a random sample of 100 undergraduate students (50
females and 50 males) from a large university resulted in the following data.

Boots Leather Sneakers Sandals Other
shoes

Female 12 9 12 10 7
Male 10 12 17 7 4

(a) Let pi, i = 1, 2, 3, 4, 5, represent the respective true proportions of students with a
particular footwear preference, and let

H0 : p1 = 0.20; p2 = 0.20; p3 = 0.30; p4 = 0.20; p5 = 0.10

versus

Ha : At least one of the probabilities is different from the hypothesized value.

Test this hypothesis using α = 0.05.
(b) Test the hypothesis that the choice of footwear by undergraduate students in this

university is independent of their gender, using α = 0.05.
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7.7 CHAPTER SUMMARY

In this chapter, we have learned various aspects of hypothesis testing. First, we dealt with hypothesis
testing for one sample where we used test procedures for testing hypotheses about true mean, true
variance, and true proportion. Then we discussed the comparison of two populations through their
true means, true variances, and true proportions. We also introduced the Neyman–Pearson lemma
and discussed likelihood ratio tests and chi-square tests for categorical data.

We now list some of the key definitions in this chapter.

■ Statistical hypotheses
■ Tests of hypotheses, tests of significance, or rules of decision
■ Simple hypothesis
■ Composite hypothesis
■ Type I error
■ Type II error
■ The level of significance
■ The p-value or attained significance level
■ The Smith–Satterthwaite procedure
■ Power of the test
■ Most powerful test
■ Likelihood ratio

In this chapter, we also learned the following important concepts and procedures:

■ General method for hypothesis testing
■ Steps to calculate β

■ Steps to find the p-value
■ Steps in any hypothesis testing problem
■ Summary of hypothesis tests for μ

■ Summary of large sample hypothesis tests for p

■ Summary of hypothesis tests for the variance σ2

■ Summary of hypothesis tests for μ1 − μ2 for large samples (n1 & n2 ≥ 30)

■ Summary of hypothesis tests for p1 − p2 for large samples
■ Testing for the equality of variances
■ Summary of testing for a matched pairs experiment
■ Procedure for applying the Neyman–Pearson lemma
■ Procedure for the likelihood ratio test
■ Testing the parameters of a multinomial distribution (summary)
■ Testing the independence of two factors
■ Goodness-of-fit test procedures for probability distributions

7.8 COMPUTER EXAMPLES

In the following examples, if the value of α is not specified, we will always take it as 0.05.
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7.8.1 Minitab Examples

Example 7.8.1
(t-Test): Consider the data

66 74 79 80 69 77 78 65 79 81

Using Minitab, test H0 : μ = 75 vs. H1 : μ > 75.

Solution
Enter the data in C1. Then

Stat > Basic Statistics > 1-sample t. . . > In Variables: enter C1 > choose Test Mean > enter 75 >
in Alternative: choose greater than and click OK

We obtain the following output.

T-Test of the Mean
Test of mu = 75.00 vs mu > 75.00

Variable N Mean StDev SE Mean T P
C1 10 74.80 6.00 1.90 −0.11 0.54

Example 7.8.2
For the following data:

Sample 1: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample 2: 14 15 10 13 11 7 12 11 12 15 14

Test H0 : μ1 = μ2 vs. H1 : μ1 < μ2. Use α = 0.02.

Solution
Enter sample 1 data in C1 and sample 2 data in C2. Then

Stat > Basic Statistics > 2-sample t. . . > Choose Samples in different columns > in Alternative:
choose less than > in Confidence level: enter 98 > click Assumed equal variances and click OK

We obtain the following output.

Two Sample T-test and Confidence Interval
Two sample T for C1 vs C2
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N Mean StDev SE Mean
C1 13 17.23 2.74 0.76
C2 11 12.18 2.40 0.72

98% CI for mu C1 − mu C2: (2.38, 7.71)
T-Test mu C1 = mu C2 (vs <): T = 4.75 P = 1.0 DF = 22
Both use Pooled StDev = 2.59

If we did not select Assumed equal variances, we will obtain the following output.

Two Sample T-Test and Confidence Interval
Two sample T for C1 vs C2

N Mean StDev SE Mean
C1 13 17.23 2.74 0.76
C2 11 12.18 2.40 0.72

98% CI for mu C1 - mu C2: (2.40, 7.69)
T-Test mu C1 = mu C2 (vs <): T = 4.81 P = 1.0 DF = 21

Example 7.8.3
For the following data:

6.8 5.6 8.5 8.5 8.4 7.5 9.3 9.4 7.8 7.1

9.9 9.6 9.0 9.4 13.7 16.6 9.1 10.1 10.6 11.1

8.9 11.7 12.8 11.5 12.0 10.6 11.1 6.4 12.3 12.3

11.4 9.9 14.3 11.5 11.8 13.3 12.8 13.7 13.9 12.9

14.2 14.0 15.5 16.9 18.0 17.9 21.8 18.4 34.3

Test H0 : μ = 12 versus H1 : μ = 12. Use α = 0.05.

Solution
Enter the data in C1. Then

Stat > Basic Statistics > 1-sample z. . . > in Variables: Type C1 > choose Test Mean and enter 12 >
choose not equal in Alternative, and Type 4.7 for sigma > Click OK

We obtain the following output.

Z-Test
Test of mu = 12.000 vs mu not = 12.000
The assumed sigma = 4.70

Variable N Mean StDev SE Mean Z P
C1 49 12.124 4.700 0.671 0.19 0.85

Here the test statistic is 0.19 and the p-value is 0.85, which is larger than 0.05. Hence, we cannot reject the

null hypothesis.
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Example 7.8.4
(Contingency Table): Consider the following data with five levels and two factors. Test for dependence

of the factors.

Factors Levels

1 2 3 4 5

1 39 19 12 28 18

2 172 61 44 70 37

Solution
In C1 enter the data in column 1 (39 and 172), and continue to C5. Then

Stat > Tables > Chi-Square-Test. . . > in Columns containing the table: Type C1 C2 C3 C4 C5 >
click OK

We will obtain the following output.

Chi-Square Test
Expected counts are printed below observed counts

C1 C2 C3 C4 C5 Total
1 39 19 12 28 18 116

48.95 18.56 12.99 22.74 12.76

2 172 61 44 70 37 384
162.05 61.44 43.01 75.26 42.24

Total 211 80 56 98 55 500

Chi-Sq = 2.023 + 0.010 + 0.076 + 1.219 + 2.152 +
0.611 + 0.003 + 0.023 + 0.368 + 0.650 = 7.135

DF = 4, p-value = 0.129

Example 7.8.5
(Paired t-Test): Consider the data of Example 7.5.7. Using Minitab, perform a paired t-test.

Solution
Enter sample 1 in column C1 and sample 2 in column C2. Then:

Stat > Basic Statistics > Paired t. . . > in First Sample: Type C2, and in the Second sample: Type

C1 > click options > and click less than (if α is other than 0.05, enter appropriate percentage in

Confidence level: and enter appropriate number if it is not zero in Test mean:) > click OK > OK
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We obtain the following output.

Paired T-test and Confidence Interval

Paired T for C2 − C1
N Mean StDev SE Mean

C2 10 171.3 47.1 14.9
C1 10 243.2 40.1 12.7
Difference 10 −71.9 56.2 17.8
95% CI for mean difference: (−112.1, −31.7)
T-Test of mean difference = 0 (vs < 0): T-Value = −4.05
p-value = 0.001

because the p-value 0.001 < 0.05 = α.

7.8.2 SPSS Examples

Example 7.8.6
Consider the data

66 74 79 80 69 77 78 65 79 81

Using SPSS, test H0 : μ = 75 vs. H1 : μ > 75.

Solution
Use the following procedure:

1. Enter the data in column 1.

2. Click Analyze > Compare Means > One-sample t Test. . . , Move var00001 to Test Variable(s),
and change Test Value: 0 to 75. Click OK

We obtain the following output.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean

VAR00001 10 74.8000 5.99630 1.89620

One-Sample Test

Test Value = 75

95% Confidence
Interval of the

Sig. Mean Difference

t df (2-tailed) Difference Lower Upper

VAR00001 −.105 9 .918 −.2000 −4.4895 4.0895

For the one sample t-test H0 : μ = 75 vs. H1 : μ > 75, the t-statistic is −0.105 with 9 degrees of freedom.

The p-value is 0.46 > 0.02. Hence, we will not reject the null hypothesis.
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If we want the computer to calculate the p-value in the previous example, use the following procedure.

1. Enter the test statistic (−0.105) in the data editor using ‘teststat’.

2. Click Transform > compute. . .

3. Type ‘p-value’ in the box called Tarobtain value. In the box called Functions: scroll and click on

CDF.T(q,df) and move to Numeric Expressions.

4. The CDF(q,df) will appear as CDF(?,?) in the Numeric Expressions box. Replace teststat for q and 9
for df (the degree of freedom in this example is 9). Click OK

We obtain the p-value as 0.46.

Example 7.8.7
For the following data

Sample 1: 16 18 21 13 19 16 18 15 20 19 14 21 14

Sample 2: 14 15 10 13 11 7 12 11 12 15 14

Test H0 : μ1 = μ2 vs. H1 : μ1 < μ2. Use α = 0.02.

Solution
In column 1, under the title ‘‘group’’ enter 1s to identify the sample 1 data and 2s to identify sample 2 data.

In column C2, under the title ‘‘data’’ enter the data corresponding to samples 1 and 2. Then:

Analyze > Compare Means > Independent Samples t-test. . . > bring Data to Test Variable(s): and

group to Grouping Variable:, click Define Groups. . . , and enter 1 for sample 1, 2 for sample 2 >
click continue > click Options. . . . Enter 98 in Confidence interval: > click continue > OK

We obtain the following output.

Group Statistics

GROUP N Mean Std. Deviation Std. Error Mean

DATA 1.00 13 17.2308 2.74329 .76085

2.00 11 12.1818 2.40076 .72386

Independent Samples Test
Levene’s Test t-test for
for Equality Equality
of Variances of Means

F Sig. t df Sig. Mean Std. Error 98% Confidence
(2-tailed) Difference Difference Interval of the

Difference
Lower Upper

DATA Equal variances
assumed

.975 .334 4.753 22 .000 5.0490 1.06237 2.38419 7.71372

Equal
variances
not
assumed

4.808 21.963 .000 5.0490 1.05017 2.41443 7.68347
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Looking at the statistical significance values, which are greater than 0.05, we do not reject the null

hypothesis.

Example 7.8.8
(Paired t-Test) For the data of Example 7.5.7, use SPSS to test whether the data provide sufficient

evidence for the claim that the new program reduces blood glucose level in diabetic patients. Use α = 0.05.

Solution
Enter after data in column C1 and before data in column C2. Then:

Analyze > Compare Means > Paired-Sample T-Test > bring after and before to Paired Variables:
so that it will look after-before > click OK

We obtain the following output.

Paired Samples Statistics

Mean N Std. Deviation Std. Error Mean

Pair 1 AFTER 171.3000 10 47.11228 14.89821

BEFORE 243.2000 10 40.12979 12.69015

Paired Samples Correlations

N Correlation Sig.

Pair 1 AFTER & BEFORE 10 .179 .621

Paired Samples Test

Paired

Differences

t df
Sig.

(2-tailed)

Mean
Std.

Deviation

Std. Error

Mean 95% Confidence

Interval of the

Difference

Lower
Upper

Pair 1 AFTER --

BEFORE

−71.9000
56.15544

17.75791 −112.0712 −31.7288 −4.049 9
.003

Because the significance level for the test is 0.003, which is less than α = 0.05, we reject the null hypothesis.

7.8.3 SAS Examples
To conduct a hypothesis test using SAS, we could use proc ttest, or proc means with option of
computing the t-value and corresponding probability. However, to use this, we need a hypothesis
of the form H0 : μ = 0. For testing nonzero values, H0 : μ = μ0, we must create a new variable
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by subtracting μ0 from each observation, and then use the test procedure for this new variable. The
following example illustrates this concept.

Example 7.8.9
(t-Test): The following radar measurements of speed (in miles per hour) are obtained for 10 vehicles

traveling on a stretch of interstate highway.

66 74 79 80 69 77 78 65 79 81

Do the data provide sufficient evidence to indicate that the mean speed at which people travel on this

stretch of highway is at least 75 mph? Test using α = 0.01. Use an SAS procedure to do the analysis.

Solution
In the SAS editor, type in the following commands.

data speed;
title ’Test on highway speed’;
input X @@;
Y=X-75;
datalines;

66 74 79 80 69 77 78 65 79 81
;
PROC TTEST data=speed;
run;

We obtain the following output.

Test on highway speed
The TTEST Procedure
Statistics

Lower CL Upper CL Lower Upper
CL CL

Variable N Mean Mean Mean Std Std Std Std
Dev Dev Dev Err

X 10 70.511 74.8 79.089 4.1245 5.9963 10.947 1.8962
Y 10 −4.489 −0.2 4.0895 4.1245 5.9963 10.947

T-Tests
Variable DF t Value Pr > |t|
X 9 39.45 <.0001
Y 9 −0.11 0.9183

To test H0 : μ = 75, we need to look at the Y-values. The corresponding t-value is −0.11, and because this

is a one-sided test, we need to divide 0.9183 by 2 to obtain the p-value as p = 0.45915. Because the p-value

is larger than 0.01 = α, we cannot reject the null hypothesis.
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One of the easier ways to conduct large sample hypothesis testing using SAS procedures is through
the computation of the p-value. The following example illustrates the procedure.

Example 7.8.10
(z-Test): It is claimed that the average miles driven per year for sports cars is at least 18,000 miles. To check

the claim, a consumer firm tests 40 of these cars randomly and obtains a mean of 17,463 miles with standard

deviation of 1348 miles. What can it conclude if α = 0.01?

Solution
Here we will find the p-value and compare that with α to test the hypothesis. We use the following SAS

procedure:

Data ex888;
z=(17463-18000)/(1348/(SQRT(40)));

pval=probnorm(z);
run;
proc print data=ex888;
title ’Test of mean, large sample’;
run;

We obtain the following output.

Test of mean, large sample

Obs z pval

1 2.51950 .005876079

Because the p-value of 0.005876079 is less than α = 0.01, we reject the null hypothesis. There is sufficient

evidence to conclude that the mean miles driven per year for sport cars is less than 18,000.

Note that in the previous example, the value of z was negative. If the value of z is positive, use
pval=probnorm(-z);, also, if it is a two-sided hypothesis, we need to multiply by 2, so use
pval=probnorm(z)*2; to obtain the p-value.

Example 7.8.11
(Paired t-Test): For the data of Example 7.5.7, use SAS to test whether the data provide sufficient evidence

for the claim that the new program reduces blood glucose level in diabetic patients. Use α = 0.05.

Solution
We can use the following commands.
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data dietexr;
input before after;
diff = after - before;
datalines;

268 106
225 186
252 223
192 110
307 203
228 101
246 211
298 176
231 194
185 203

;
run;
proc means data=dietexr t prt;
var diff;
title ’Test of mean, Paired difference’;
run;

We obtain the following output.

Test of mean, Paired difference
The MEANS Procedure
Analysis Variable : diff
t Value Pr > |t|
−4.05 0.0029

Because the p-value 0.0029 is less than α = 0.05, we reject the null hypothesis.

PROJECTS FOR CHAPTER 7

7A. Testing on Computer-Generated Samples
(a) Small sample test:

Generate a sample of size 20 from a normal population with μ = 10, and σ2 = 4.
(i) Perform a t-test for the test H0 : μ = 10 versus Ha : μ = 10 at level α = 0.05.

(ii) Perform the test H0 : σ2 = 4 versus Ha : σ2 = 4 at level α = 0.05.
Repeat the procedure 10 times, and comment on the results.

(b) Large sample test:
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Generate a sample of size 50 from a normal population with μ = 10, and σ2 = 4. Perform a z-test
for the test H0 : μ = 10 versus Ha : μ = 10 at level α = 0.05. Repeat the procedure 10 times and
comment on the results.

7B. Conducting a Statistical Test with Confidence Interval
Let θ be any population parameter. Consider the three tests of hypotheses

H0 : θ = θ0 vs. Ha : θ > θ0 (1)

H0 : θ = θ0 vs. Ha : θ < θ0 (2)

H0 : θ = θ0 vs. Ha : θ = θ0 (3)

The following procedure can be exploited to test a statistical hypothesis utilizing the confidence
intervals.

Procedure to Use Confidence Interval for Hypothesis Testing
Let θ be any population parameter.

(a) For test (1), that is,

H0 : θ = θ0 vs. Ha : θ > θ0

choose a value for α. From a random sample, compute a confidence interval for θ using
a confidence coefficient equal to 1 − 2α. Let L be the lower end point of this confidence
interval.

Reject H0 if θ0 < L.

That is, we will reject the null hypothesis if the confidence interval is completely to the right
of θ0.

(b) For test (2), that is,

H0 : θ = θ0 vs. Ha : θ < θ0

choose a value for α. From a random sample, compute a confidence interval for θ using
a confidence coefficient equal to 1 − 2α. Let U be the upper end point of this confidence
interval.

Reject H0 if U < θ0.

That is, we will reject the null hypothesis if the confidence interval is completely to the
left of θ0.

(c) For test (3), that is,

H0 : θ = θ0 vs. Ha : θ = θ0
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choose a value for α. From a random sample, compute a confidence interval for θ using a
confidence coefficient equal to 1 − α. Let L be the lower end point and U be the upper end
point of this confidence interval.

Reject H0 if θ0 < L or U < θ0.

That is, we will reject the null hypothesis if the confidence interval does not contain θ0.
(i) For any large data set, conduct all three of these hypothesis tests using a confidence

interval for the population mean.
(ii) For any small data set, conduct all three of these hypothesis tests using a confidence

interval for the population mean.
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English scientist Sir Francis Galton (1822–1911), a cousin of Charles Darwin, made significant
contributions to both genetics and psychology. He is the inventor of regression and a pioneer in
applying statistics to biology. One of the data sets that he considered consisted of the heights of
fathers and first sons. He was interested in predicting the height of son based on the height of father.
Looking at the scatterplots of these heights, Galton saw that the trend was linear and increasing. After
fitting a line to these data (using the techniques described in this chapter), he observed that for fathers
whose heights were taller than the average, the regression line predicted that taller fathers tended to
have shorter sons and shorter fathers tended to have taller sons. There is a regression toward the mean.
That is how the method of this chapter got its name: regression.

8.1 INTRODUCTION

In earlier chapters, we were primarily concerned about inferences on population parameters. In this
chapter, we examine the relationship between one or more variables and create a model that can be
used for predictive purposes. For example, consider the question “Is there statistical evidence to con-
clude that the countries with the highest average blood-cholesterol levels have the greatest incidence
of heart disease?” It is important to answer this if we want to make appropriate lifestyle and medical
choices. We will study the relationship between variables using regression analysis. Our aim is to cre-
ate a model and study inferential procedures when one dependent and several independent variables
are present. We denote by Y the random variable to be predicted, also called the dependent variable
(or response variable) and by xi the independent (or predictor) variables used to model (or predict) Y .
For example, let (x, y) denote the height and weight of an adult male. Our interest may be to find the
relationship between height and weight from a sample measurements of n individuals. The process
of finding a mathematical equation that best fits the noisy data is known as regression analysis. In his
book Natural Inheritance, Sir Francis Galton introduced the word regression in 1889 to describe certain
genetic relationships. The technique of regression is one of the most popular statistical tools to study
the dependence of one variable with respect to another. There are different forms of regression: simple
linear, nonlinear, multiple, and others. The primary use of a regression model is prediction. When using a
model to predict Y for a particular set of values of x1, . . . , xk, one may want to know how large the error
of prediction might be. Regression analysis, in general after collecting the sample data, involves the
following steps.

PROCEDURE FOR REGRESSION MODELING

1. Hypothesize the form of the model as Y = f (x1, . . . , xk ;
β0, β1, . . . , βk ) + ε. Here ε represents the random error term. We assume that E (ε) = 0 but
Var (ε) = σ2 is unknown. From this we can obtain E (Y ) = f (x1, . . . , xk ; β0, β1, . . . , βk ).

2. Use the sample data to estimate unknown parameters in the model.
3. Check for goodness of fit of the proposed model.
4. Use the model for prediction.
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The function f (x1, . . . , xk; β0, β1, . . . , βk)(k ≥ 1) contains the independent or predictor variables
x1, . . . , xn (assumed to be nonrandom) and unknown parameters or weights β0, β1, . . . , βk and ε

representing the random or error variable. We now proceed to introduce the simplest form of a
regression model, called simple linear regression.

8.2 THE SIMPLE LINEAR REGRESSION MODEL

Consider a random sample of n observations of the form (x1, y1), (x2, y2), . . . , (xn, yn), where X is the
independent variable and Y is the dependent variable, both being scalars. A preliminary descriptive
technique for determining the form of relationship between X and Y is the scatter diagram. A scatter
diagram is drawn by plotting the sample observations in Cartesian coordinates. The pattern of the
points gives an indication of a linear or nonlinear relationship between the variables.

In Figure 8.1a, the relationship between x and y is fairly linear, whereas the relationship is somewhat
like a parabola in Figure 8.1b, and in Figure 8.1c there is no obvious relationship between the variables.

Once the scatter diagram reveals a linear relationship, the problem then is to find the linear model
that best fits the given data. To this end, we will first give a general definition of a linear statistical
model, called a multiple linear regression model.

(c) No relationship

y

x

x

y

(a) Linear relationship (b) Quadratic relationship

y

x

■ FIGURE 8.1 Scatter diagram.
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Definition 8.2.1 A multiple linear regression model relating a random response Y to a set of predictor
variables x1, . . . , xk is an equation of the form

Y = β0 + β1x1 + β2x2 + · · · + βkxk + ε

where β0, . . . , βk are unknown parameters, x1, . . . , xk are the independent nonrandom variables, and ε is a
random variable representing an error term. We assume that E(ε) = 0, or equivalently,

E(Y ) = β0 + β1x1 + β2x2 + · · · + βkxk.

To understand the basic concepts of regression analysis we shall consider a single dependent variable
Y and a single independent nonrandom variable x. We assume that there are no measurement errors
in xi. The possible measurement errors in y and the uncertainties in the assumed model are expressed
through the random error ε. Our inability to provide an exact model for a natural phenomenon is
expressed through the random term ε, which will have a specified probability distribution (such as a
normal) with mean zero. Thus, one can think of Y as having a deterministic component, E(Y), and
a random component, ε. If we take k = 1 in the multiple linear regression model, we have a simple
linear regression model.

Definition 8.2.2 If Y = β0 + β1x + ε, this is called a simple linear regression model. Here, β0 is the
y-intercept of the line and β1 is the slope of the line. The term ε is the error component.

This basic linear model assumes the existence of a linear relationship between the variables x and y that
is disturbed by a random error ε. The known data points are the pairs (x1, y2), (x2, y2), . . . , (xn, yn);
the problem of simple linear regression is to fit a straight line optimal in some sense to the set of
data, as shown in Figure 8.2.
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■ FIGURE 8.2 Scatterplot and least-squares regression line.
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Now, the problem becomes one of finding estimators for β0 and β1. Once we obtain the “good”
estimators β̂0 and β̂1, we can fit a line to the data given by the prediction equation Ŷ = β̂0 + β̂1x.
The question then becomes whether this predicted line gives the “best” (in some sense) description
of the data. We now describe the most widely used technique, called the method of least squares, to
obtain the estimators or weights of the parameters.

8.2.1 The Method of Least Squares
As stated (x1, y1), (x2, y2), . . . , (xn, yn) are the n observed data points, with corresponding errors
εi, i = 1, . . . , n. That is,

Yi = β0 + β1xi + εi, i = 1, 2, . . . , n.

We assume that the errors εi, i = 1, . . . , n are independent and identically distributed with E(εi) =
0, i = 1, . . . , n, and Var(εi) = σ2, i = 1, . . . , n. One of the ways to decide on how well a straight
line fits the set of data is to determine the extent to which the data points deviate from the line. The
straight line model for the response Y for a given x is

Y = β0 + β1x + ε.

Because we assumed that E(ε) = 0, the expected value of Y is given by

E(Y) = β0 + β1x.

The estimator of the E(Y), denoted by Ŷ , can be obtained by using the estimators β̂0 and β̂1 of the
parameters β0 and β1, respectively. Then, the fitted regression line we are looking for is given by

Ŷ = β̂0 + β̂1x.

For observed values (xi, yi), we obtain the estimated value of yi as

ŷi = β̂0 + β̂1xi.

The deviation of observed yi from its predicted value ŷi, called the ith residual, is defined by

ei = (
yi − ŷi

) =
[
yi −

(
β̂0 + β̂1xi

)]
.

The residuals, or errors ei, are the vertical distances between observed and predicted values of y′
is

(Figure 8.3).

.

.
.

. .
.

.

y
ei

x

■ FIGURE 8.3 Illustration of ei.
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Definition 8.2.3 The sum of squares for errors (SSE) or sum of squares of the residuals for all of the n data
points is

SSE =
n∑

i=1

e2
1 =

n∑
i=1

[
yi −

(
β̂0 + β̂1xi

)]2

The least-squares approach to estimation is to find β̂0 and β̂1 that minimize the sum of squared
residuals, SSE. Thus, in the method of least squares, we choose β0 and β1 so that SSE is a minimum.
The quantities β̂0 and β̂1 that make the SSE a minimum are called the least-squares estimates of the
parameters β0 and β1, and the corresponding line ŷ = β̂0 + β̂1x is called the least-squares line.

Definition 8.2.4 The least-squares line ŷ = β̂0 + β̂1x is one that satisfies the following property:

SSE =
n∑

i=1

(
yi − ŷi

)2

is a minimum for any other straight line model with

SE =
n∑

i=1

(
yi − ŷi

) = 0

Thus, the least-squares line is a line of the form y = b0 + b1x for which the error sum of squares∑n
i=1(yi − b0 − b1x)2 is a minimum. The minimum is taken over all values of b0 and b1, and

(x1, y1), (x2, y2), . . . , (xn, yn) are observed data pairs.

The problem of fitting a least-squares line now reduces to finding the quantities β̂0 and β̂1 that
minimize the error sum of squares.

8.2.2 Derivation of β̂0 and β̂1
Now we derive expressions for β̂0 and β̂1. If SSE attains a minimum, then the partial derivatives of
SSE with respect to β0 and β1 are zeros. That is,

∂SSE

∂β0
=

∂

{
n∑

i=1
[yi − (β0 + β1xi)]

2

}

∂β0

= −
n∑

i=1

2 [yi − (β0 + β1xi)] (8.1)

= 2

(
n∑

i=1

yi − nβ0 − β1

n∑
i=1

xi

)
= 0

and

∂SSE

∂β1
=

∂

{
n∑

i=1
[yi − (β0 + β1xi)]

2

}

∂β1
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= −
n∑

i=1

2 [yi − (β0 + β1xi)]xi (8.2)

= −2

(
n∑

i=1

xiyi − β0

n∑
i=1

xi − β1

n∑
i=1

x2
1

)
= 0.

Equations (8.1) and (8.2) are called the least squares equations for estimating the parameters of a line.
From (8.1) and (8.2) we obtain a set of linear equations called the normal equations,

n∑
i=1

yi = nβ0 + β1

n∑
i=1

xi (8.3)

and

n∑
i=1

xiyi = β0

n∑
i=1

xi + β1

n∑
i=1

x2
i . (8.4)

Solving for β0 and β1 from Equations (8.3) and (8.4), we obtain

β̂1 =

n∑
i=1

(xi − x) (yi − y)

n∑
i=1

(xi − x)2
=

n
n∑

i=1
xiyi −

n∑
i=1

xi

n∑
i=1

yi

n
n∑

i=1
x2

1 −
(

n∑
i=1

xi

)2 =

n∑
i=1

xiyi −
n∑

i=1
xi

n∑
i=1

yi

n

n∑
i=1

x2
1 −

(
n∑

i=1
xi

)2

n

(8.5)

and

β̂0 = y − β̂1x. (8.6)

To simplify the formula for β̂1, set

Sxx =
n∑

i=1

x2
i −

(
n∑

i=1
xi

)2

n
, Sxy =

n∑
i=1

xiyi −

(
n∑

i=1
xi

)(
n∑

i=1
yi

)

n

we can rewrite (8.5) as

β̂1 = Sxy

Sxx
.

It can be shown (by using the second derivatives) that (8.5) and (8.6) do indeed minimize SSE. Now
we will summarize the procedure for fitting a least-squares line.
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PROCEDURE FOR FITTING A LEAST-SQUARES LINE

1. Form the n data points (x1, y1 ),(x2, y2 ), . . . ,(xn , yn ), and compute the following quantities:∑n
i=1 xi ,

∑n
i=1 x 2

i ,
∑n

i=1 yi ,
∑n

i=1 y 2
i , and

∑n
i=1 xi yi . Also compute the sample means,

x = (1/n)
∑n

i=1 xi and y = (1/n)
∑n

i=1 yi .

2. Compute

Sxx =
n∑

i=1

x 2
1 −

(
n∑

i=1
xi

)2

n
=

n∑
i=1

(
xi − x

)2

and

Sxy =
n∑

i=1

xi yi −

(
n∑

i=1
xi

)(
n∑

i=1
yi

)

n
=

n∑
i=1

(
xi − x

) (
yi − y

)
.

3. Compute β̂0 and β̂1 by substituting the computed quantities from step 1 into the

equations

β̂1 = Sxy

Sxx

and

β̂0 = y − β̂1x .

4. The fitted least-squares line is

ŷ = β̂0 + β̂1x .

5. For a graphical representation, in the xy -plane, plot all the data points and draw the least-squares
line obtained in step 4.

Once we have accomplished the best-fit combination of the two parameters β0 and β1, any
deviation of either parameter away from its optimum value will cause the sum of squares
error to increase. Thus, the optimum combination of the pairs (β̂0, β̂1) forms a global mini-
mum point of the error sum of squares among all possible values of β0 and β1 for the given
data set.
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Example 8.2.1
Use the method of least squares to fit a straight line to the accompanying data points. Give the estimates

of β0 and β1. Plot the points and sketch the fitted least-squares line. The observed data values are given in

the following table.

x −1 0 2 −2 5 6 8 11 12 −3
y −5 −4 2 −7 6 9 13 21 20 −9

Solution
Form a table to compute various terms

xi yi xiyi x2
i

−1 −5 5 1
0 −4 0 0
2 2 4 4

−2 −7 14 4
5 6 30 25
6 9 54 36
8 13 104 64

11 21 231 121
12 20 240 144
−3 −9 27 9∑

xi = 38
∑

yi = 46
∑

xiyi = 709
∑

x2
i = 408

Sxx =
n∑

i=1

x2
1 −

(
n∑

i=1
xi

)2

n
= 408 − (38)2

10
= 263.6

Sxy =
n∑

i=1

xiyi −

(
n∑

i=1
xi

)(
n∑

i=1
yi

)

n
= 709 − (38)(46)

10
= 534.2

x = 3.8 and y = 4.6.

Therefore,

β̂1 = Sxy

Sxx
= 534.2

263.6
= 2.0266
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■ FIGURE 8.4 Simple regression line.

and

β̂0 = y − β̂1x

= 4.6 − (2.0266)(3.8) = −3.1011.

Hence, the least-squares line for these data is

ŷ = β̂0 + β̂1x = −3.1011 + 2.0266x

and its plot is shown in Figure 8.4.

Recall that for the regression line ŷ = β̂0 + β̂1x. we have defined SSE to be

SSE =
n∑

i=1

(
yi − ŷi

)2 =
n∑

i=1

(
yi − β̂0 − β̂1xi

)2
.

We now show that

SSE = Syy − β̂1Sxy, where Syy =
n∑

i=1

y2
1 −

(
n∑

i=1
yi

)2

n
=

n∑
i=1

(yi − y)2.

We know that

SSE =
n∑

i=1

(
yi − β̂0 − β̂1xi

)2

=
n∑

i=1

(
yi − y + β̂1x − β̂1xi

)2
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=
n∑

i=1

[
(yi − y) − β̂1 (xi − x)

]2

=
n∑

i=1

(yi − y)2 + β̂2
1

n∑
i=1

(xi − x)2 − 2β̂1

n∑
i=1

(xi − x) (yi − y)

= Syy + β̂2
1Sxx − 2β̂1Sxy.

Recall that β̂1 = Sxy

Sxx
.

Substituting for β̂1, we obtain

SSE = Syy −
(

Sxy

Sxx

)2
Sxx − 2

Sxy

Sxx
Sxy

= Syy − Sxy

Sxx
Sxy

= Syy − β̂1Sxy.

8.2.3 Quality of the Regression
Once we obtain the linear model, the question is, How well does this line fit the data? We could make
use of the residuals

êi = yi − β̂0 − β̂1xi

to answer the question and to assess the quality of the fit. If our model is good, then the residual êi

should be close to the random error ε with mean zero. Furthermore, the residuals should contain
little or no information about the model, and there should be no recognizable pattern. If we plot the
residuals versus the independent variables on the x-axis, ideally, the plot should look like a horizontal
blur, the residuals showing no relationship to the x-values, as shown by Figure 8.5. Otherwise, these
plots reveal a not very good fit of the given data, as shown by Figure 8.6, and we need to improve our
model specifications. Thus, a symmetric trend in the plot of residuals ei versus xi or ŷi(i = 1, . . . , n)

indicates that the assumed regression model is not correct.

e

y

■ FIGURE 8.5 Good fit.
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e

y

■ FIGURE 8.6 Not a good fit.

Whereas the residual plots give us a visual representation of the quality of fit, a numerical measure
of how well the regression explains the data is obtained by calculating the coefficient of determination,
also called the R2 of the regression. This is discussed in Project 8B. Regression analysis with any
of the standard statistical software packages will contain an output value of the R2. This value will
be between 0 and 1; closer to 1 means a better fit. For example, if the value of R2 is 0.85, the
regression captures 85% of the variation in the dependent variable. This is generally considered good
regression.

8.2.4 Properties of the Least-Squares Estimators for the Model
Y = β0 + β1x + ε

We discussed in Chapter 4 the concept of sampling distribution of sample statistics such as that of
X. Similarly, knowledge of the distributional properties of the least-squares estimators β̂0 and β̂1 is
necessary to allow any statistical inferences to be made about them. The following result gives the
sampling distribution of the least-squares estimators.

Theorem 8.2.1 Let Y = β0 + β1x + ε be a simple linear regression model with ε ∼ N(0, σ2), and let the
errors εi associated with different observations yi(i = 1, . . . , N) be independent. Then

(a) β̂0 and β̂1 have normal distributions.
(b) The mean and variance are given by

E
(
β̂0

)
= β0, Var

(
β̂0

)
=
(

1
n

+ x2

Sxx

)
σ2,

and

E
(
β̂1

)
= β1, Var

(
β̂1

)
= σ2

Sxx
,

where Sxx =
n∑

i=1
x2
i − 1

n

(
n∑

i=1
xi

)2

. In particular, the least-squares estimators β̂0 and β̂1 are unbiased

estimators of β0 and β1, respectively.
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Proof. We know that

β̂1 = Sxy

Sxx

= 1
Sxx

n∑
i=1

(xi − x)
(
Yi − Y

)

= 1
Sxx

[
n∑

i=1

(xi − x) Yi − Y

n∑
i=1

(xi − x)

]

= 1
Sxx

n∑
i=1

(xi − x) Yi

where the last equality follows from the fact that
n∑

i=1
(xi − x) =

n∑
i=1

xi −nx = 0. Because Yi is normally

distributed, the sum
1

Sxx

n∑
i=1

(xi − x)Yi is also normal. Furthermore,

E[β̂1] = 1
Sxx

n∑
i=1

(xi − x)E[Yi]

= 1
Sxx

n∑
i=1

(xi − x)(β0 + β1xi)

= β0

Sxx

n∑
i=1

(xi − x) + β1

Sxx

n∑
i=1

(xi − x)xi

= β1
1

Sxx

n∑
i=1

(xi − x)xi

= β1
1

Sxx

[
n∑

i=1

x2
1 − x

n∑
i=1

xi

]

= β1
1

Sxx

⎡
⎢⎢⎢⎣

n∑
i=1

x2
1 −

(
n∑

i=1

xi

)⎛⎜⎜⎜⎝
n∑

i=1
xi

n

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

= β1
1

Sxx

⎡
⎢⎢⎢⎢⎢⎣

n∑
i=1

x2
1 −

(
n∑

i=1
xi

)2

n

⎤
⎥⎥⎥⎥⎥⎦

= β1
1

Sxx
Sxx = β1.
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For the variance we have,

Var
[
β̂1

]
= Var

[
1

Sxx

n∑
i=1

(xi − x) Yi

]

= 1

S2
xx

n∑
i=1

(xi − x)2 Var [Yi] (since the Yi’s are independent)

= σ2 1

S2
xx

n∑
i=1

(xi − x)2
(
Var (Yi) = Var (β0 + β1 + εi) = Var (εi) = σ2

)

= σ2

Sxx
.

Note that both Y and β̂1 are normal random variables. It can be shown that they are also independent
(see Exercise 8.3.3). Because β̂0 = y − β̂1x is a linear combination of Y and β̂1, it is also normal.
Now,

E
[
β̂0

]
= E

[
Y − β̂1x

]
= E

[
Y
]− xE

[
β̂1

]

= E

[
1
n

n∑
i=1

Yi

]
− xβ1 = 1

n

n∑
i=1

(β0 + β1x) − xβ1

= β0 + xβ1 − xβ1 = β0.

The variance of β̂0 is given by

Var
[
β̂0

]
= Var

[
Y − β̂1x

]
= Var

[
Y
]+ x2Var

[
β̂1

]
(since Y and β̂1 are independent)

= σ2

n
+ x2σ2

Sxx
=
(

1
n

+ x2

Sxx

)
σ2.

If an estimator θ̂ is a linear combination of the sample observations and has a variance that is less than
or equal to that of any other estimator that is also a linear combination of the sample observations,
then θ̂ is said to be a best linear unbiased estimator (BLUE) for θ. The following result states that among all
unbiased estimators for β0 and β1 which are linear in Yi, the least-square estimators have the smallest
variance.

GAUSS–MARKOV THEOREM
Theorem 8.2.2 Let Y = β0 + β1x + ε be the simple regression model such that for each xi fixed, each Yi is an
observable random variable and each ε = εi, i = 1, 2, . . . , n is an unobservable random variable. Also, let the
random variable εi be such that E[εi] = 0, Var(εi) = σ2 and Cov(εi, εj) = 0, if i = j. Then the least-squares
estimators for β0 and β1 are best linear unbiased estimators.
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It is important to note that even when the error variances are not constant, there still can exist unbiased
least-square estimators, but the least-squares estimators do not have minimum variance.

8.2.5 Estimation of Error Variance σ2

The greater the variance, σ2, of the random error ε, the larger will be the errors in the estimation of
model parameters β0 and β1. We can use already-calculated quantities to estimate this variability of
errors. It can be shown that (see Exercise 8.2.1(b)) that

E(SSE) = (n − 2)σ2.

Thus, an unbiased estimator of the error variance, σ2, is σ̂2 = (SSE)/(n − 2). We will denote (SSE)/

(n − 2) by MSE (Mean Square Error).

EXERCISES 8.2

8.2.1. For a random sample of size n,

(a) Show that the error sum of squares can be expressed by

SSE = Syy − β̂1Sxy.

(b) Show that E[SSE] = (n − 2)σ2.

8.2.2. The following are midterm and final examination test scores for 10 students from a calculus
class, where x denotes the midterm score and y denotes the final score for each student.

x 68 87 75 91 82 77 86 82 75 79
y 74 79 80 93 88 79 97 95 89 92

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

8.2.3. The following data give the annual incomes (in thousands of dollars) and amounts (in
thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37
Life insurance 150 175 25 75 250 50 250 100

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

8.2.4. Consider a simple linear model Y = β0 + β1x + ε, with ε ∼ N(0, σ2). Show that

cov(β̂0, β̂1) =
−σ2

n∑
i=1

xi

n
n∑

i=1
x2
i −

(
n∑

i=1
xi

)2 .
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8.2.5. (a) Show that the least-squares estimates of β0 and β1 of a line can be expressed as

β̂0 = y − β̂1x

and

β̂1 =

n∑
i=1

(xi − x) (yi − y)

n∑
i=1

(xi − x)2
.

(b) Using part (a), show that the line fitted by the method of least squares passes through
the point (x, y).

8.2.6. Crickets make their chirping sounds by rapidly sliding one wing over the other. The faster
they move their wings, the higher the number of chirping sounds that are produced. Scien-
tists have noticed that crickets move their wings faster in warm temperatures than in cold
temperatures (they also do this when they are threatened). Therefore, by listening to the
pitch of the chirp of crickets, it is possible to tell the temperature of the air. The following
table gives the number of cricket chirps per 13 seconds recorded at 10 different temperatures.
Assume that the crickets are not threatened.

Temperature 60 66 70 73 78 80 82 87 90 92
Number of chirps 20 25 31 33 36 39 42 48 49 52

Calculate the least-squares regression line for these data and discuss its usefulness.

8.2.7. Consider the regression model

y = β1x + ε

where ε ∼ N(0, σ2). Show that

β̂1 =

n∑
i=1

xiyi

n∑
i=1

x2
i

.

8.2.8. A farmer collected the following data, which show crop yields for various amounts of
fertilizer used.

Fertilizer (pounds/100 sq. ft) 0 4 8 10 15 18 20 25
Yield (bushels) 6 7 10 13 17 18 22 23

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

8.2.9. An economist desires to estimate a line that relates personal disposable income (DI) to
consumption expenditures (CE). Both DI and CE are in thousands of dollars. The following
gives the data for a random sample of nine households of size four.
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DI 25 22 19 36 40 47 28 52 60
CE 21 20 17 28 34 41 25 45 51

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

8.2.10. The following data represent systolic blood pressure readings on 10 randomly selected
females between ages 40 and 82.

Age (x) 63 70 74 82 60 44 80 71 71 41
Systolic (y) 151 149 164 157 144 130 157 160 121 125

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

8.2.11. It isbelievedthatexposuretosolarradiationincreasesthepathogenesisofmelanoma.Suppose
that the following data give sunspot relative number and age-adjusted total incidence (inci-
dence is the number of cases per 100,000 population) for 8 different years in a certain region.

Sunspot relative number 104 12 40 75 110 180 175 30
Incidence total 4.7 1.9 3.8 2.9 0.9 2.7 3.9 1.6

(a) Calculate the least-squares regression line for these data.
(b) Plot the points and the least-squares regression line on the same graph.

8.2.12. It is believed that the average size of a mammal species is a major factor in the period
of gestation (the period of development in the uterus from conception until birth). In
general, it is observed that the bigger the mammal is, the longer the gestation period.
Table 8.2.1 gives adult mass in kilograms and gestation period in weeks of some species
(source: http://www.saburchill.com/chapters/chap0037.html).

Table 8.2.1

Species Adult mass Gestation period
(kg) (weeks)

African elephant 6000 88

Horse 400 48

Grizzly bear 400 30

Lion 200 17

Wolf 34 9

Badger 12 8

Rabbit 2 4.5

Squirrel 0.5 3.5
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Table 8.2.2

Species Gestation
period (weeks)

Indian elephant 89.0

Camel 57.0

Sea lion 51.4

Dog 8.7

Rat 3.0

Hamster 2.3

(a) Calculate the least-squares regression line for these data with adult mass as the
independent variable.

(b) Plot the points and the least-squares regression line on the same graph.
(c) Calculate the least-squares regression line for these data with gestation period as the

independent variable.
(d) Assuming that the regression model of part (c) holds for all mammals, estimate the

adult mass in kilograms for the mammals given in Table 8.2.2.

8.3 INFERENCES ON THE LEAST-SQUARES ESTIMATORS

Once we obtain the estimators of the slope β1 and intercept β0 of the model regression line, we
are in a position to use Theorem 8.2.1 to make inferences regarding these model parameters. Using
the properties of β̂0 and β̂1, in this section we study the confidence intervals and hypothesis tests
concerning these parameters.

From Theorem 8.2.1, we can write

Z1 = β̂1 − β1
σ√
Sxx

∼ N(0, 1).

Also, it can be shown that SSE/σ2 is independent of β̂1 and has a chi-square distribution with n − 2
degrees of freedom. Let the mean square error be defined by

MSE = SSE

n − 2
= 1

n − 2

n∑
i=1

[yi − (β̂0 + β̂1xi)]2.

Then using Definition 4.2.2, we have

tβ1 = Z√(
SSE

σ2

)
n−2

= β̂1 − β1√
MSE
Sxx



8.3 Inferences on the Least-Squares Estimators 429

which follows the t-distribution with n − 2 degrees of freedom.

Similarly, let

Z0 = β̂0 − β0

σ
(

1
n + x2

Syy

) ∼ N(0, 1).

Also, it can be shown that β̂0 and SSE are independent. Hence,

tβ0 = z0√
SSE

σ2
n−2

= β̂0 − β0[
MSE

(
1
n + x2

Sxx

)]1/2

follows the t-distribution with n − 2 degrees of freedom.

From these derivations, we can obtain the following procedure about the confidence intervals for the
slopes β1 and for the intercept β0.

PROCEDURE FOR OBTAINING CONFIDENCE INTERVALS FOR β0 AND β1

1. Compute Sxx , Sxy , Sxy , y , and x as in the procedure for fitting a least-squares line.
2. Compute β̂1, β̂0 using equations β̂1 = (Sxy )/(Sxx ) and β̂0 = y − β̂1x , respectively.
3. Compute SSE by SSE = Syy − β̂1Sxy .

4. Define MSE (mean square error) to be

MSE = SSE

n − 2
,

where n = Number of pairs of observations
(

x1, y1
)

, . . . ,
(

xn , yn
)
.

5. A (1 − α)100% confidence interval for β1 is given by

(
β̂1 − tα/2,n−2

√
MSE

Sxx
, β̂1 + tα/2,n−2

√
MSE

Sxx

)

where ta/2 is the upper tail α/2-point based on a t-distribution with (n − 2) degrees of freedom.

6. A (1 − α)100% confidence interval for β0 is given by

⎛
⎝β̂0 − tα/2, n−2

[
MSE

(
1

n
+ x 2

Sxx

)]2

, β̂0 + tα/2,n−2

[
MSE

(
1

n
+ x 2

Sxx

)]1/2
⎞
⎠ .

We illustrate this procedure for obtaining confidence limits with an example.
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Example 8.3.1
For the data of Example 8.2.1:

(a) Construct a 95% confidence interval for β0 and interpret.

(b) Construct a 95% confidence interval for β1 and interpret.

Solution
The following calculations were obtained in Example 8.2.1:

Sxx = 263.6, Sxy = 534.2, y = 4.6 and x = 3.8.

Also,

β̂1 = 2.0266, β̂0 = −3.1011.

In addition to those calculations, we can compute

n∑
i=1

y2
1 = 1302 and Syy =

n∑
i=1

y2
1 −

(
n∑

i=1
yi

)2

n
= 1302 − (46)2

10
= 1090.4.

Now,

SSE = Syy − β̂1Sxy

= 1090.4 − (2.0266)(534.2)

= 7.79028.

Hence,

MSE = SSE

n − 2
= 7.79028

8
= 0.973785.

Now from the t-table, we have t0.025,8 = 2.306.

(a) A 95% confidence interval for β0 is given by

⎛
⎝β̂0 − tα/2,n−2

[
MSE

(
1
n

+ x2

Sxx

)]1/2

, β̂0 + tα/2,n−2

[
MSE

(
1
n

+ x2

Sxx

)]1/2
⎞
⎠

=
⎛
⎝−3.1011 − (2.306)

[
(0.973785)

(
1
10

+ (3.8)2

263.6

)]1/2

−3.1011 + (2.306)

[
(0.973785)

(
1
10

+ (3.8)2

263.6

)]1/2
⎞
⎠

From which we obtain a 95% confidence interval for β0 as (−3.9846, −2.2176). Thus, we can conclude

with 95% confidence that the true value of the intercept, β0, is between −3.9846 and −2.2176.
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(b) A 95% confidence interval for β1 is given by

(
β̂1 − tα/2,n−2

√
MSE

Sxx
, β̂1 + tα/2,n−2

√
MSE

Sxx

)

=
(

2.0266 − (2.306)

√
0.973785

236.6
, 2.0266 + (2.306)

√
0.973785

236.6

)

from which we obtain a 95% confidence interval for β1 as (1.8864, 2.1668). Thus, we can conclude with

95% confidence that the true value of the slope of the linear regression model is between 1.8864 and 2.1663.

One of the assumptions for linear regression model that we have made is that the variance of the
errors is a constant and independent of x. Errors with this property are called homoscedastic. If the
variance of the errors is not constant, the errors are called heteroscedastic. In the heteroscedastic case,
standard errors and confidence intervals based on the assumption that s2 is an estimate of σ2 may be
somewhat deceptive.

Now we introduce hypothesis testing concerning the slope and intercept of the fitted least-squares
line. We use tβ0 and tβ1 defined earlier as the test statistic for testing hypotheses concerning β0 and
β1, respectively. The usual one- and two-sided alternatives apply. We proceed to summarize these test
procedures.

HYPOTHESIS TEST FOR β0
One-sided test Two-sided test

H0 : β0 = β00 H0 : β0 = β00

(β00 is a specific value of β0)

Ha : β0 > β00 or β0 < β00 Ha : β0 = β00

Test statistic: Test statistic:

tβ0 = β̂0 − β00[
MSE

(
1

n
+ x

Sxx

)]1/2
tβ0 = β̂0 − β00[

MSE

(
1

n
+ x

Sxx

)]1/2

Rejection region: Rejection region:

t > tα, (n−2) (upper tail region) |t | > tα/2,(n−2)

t < −tα, (n−2) (lower tail region)

Decision: If tβ0 falls in the rejection region, reject the null hypothesis at level of significance α.
Assumptions: Assume that the errors εi , i = 1, . . . , n are independent and normally distributed with
E (εi ) = 0, i = 1, . . . , n, and Var (εi ) = σ2, i = 1, . . . , n.

We now illustrate this procedure with the following example.
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Example 8.3.2
Using the data given in Example 8.2.1, test the hypothesis H0 : β0 = −3 versus Ha : β0 = −3 using the

0.05 level of significance.

Solution
We test H0 : β0 = −3 versus Ha : β0 = −3.

Here β00 = −3. The rejection region is t < −2.306 or t > 2.306.

From the calculations of the previous example, we have

tβ0 = β̂0 − β00[
MSE

(
1
n + x2

Sxx

)]1/ 2

= −3.1011 − (−3)[
(0.973785)

(
1
10 + (3.8)2

263.6

)]1/2

= −0.26041.

Because the test statistic does not fall in the rejection region, at α = 0.05, we do not reject H0.

HYPOTHESIS TEST FOR β1
One-sided test Two-sided test

H0 : β1 = β10
(
β10 is a specific value of β1

)
H0 : β1 = β10

Ha : β1 > β10 or β1 < β10 Ha : β1 = β10

Test statistic: Test statistic:

tβ1 = β̂1 − β10√
MSE

Sxx

tβ1 = β̂1 − β10√
MSE

Sxx

Rejection region: Rejection region:

t > tα,(n−2) (upper tail region) |t | > tα/2,(n−2)
t < −tα,(n−2) (lower tail region)

Decision: If tβ1 falls in the rejection region, reject the null hypothesis at confidence level α.
Assumptions: Assume that the errors εi , i = 1, . . . , n are independent and normally distributed with
E (εi ) = 0, i = 1, . . . , n, and Var (εi ) = σ2, i = 1, . . . , n.

The test of hypothesis H0 : β1 = 0 answers the question, Is the regression significant? If β1 = 0, we
conclude that there is no significant linear relationship between X and Y , and hence, the independent
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variable X is not important in predicting the values of Y if the relationship of Y and X is not linear. Note
that if β1 = 0, then the model becomes y = β0 + ε. Thus, the question of the importance of the inde-
pendent variable in the regression model translates into a narrower question of the test of hypothesis
H0 : β1 = 0. That is, the regression line is actually a horizontal line through the intercept, β0.

Example 8.3.3
Using the data given in Example 8.2.1, test the hypothesis H0 : β1 = 2 versus Ha : β1 = 2 using the 0.05

level of significance.

Solution
We test

H0 : β1 = 2 vs. Ha : β1 = 2.

We know that β̂1 = 2.0266.

For α = 0.05 and n = 10, the rejection region is t < −2.306 or t > 2.306. The test statistic is

tβ1 = β̂1 − β10√
MSE

Sxx

= 2.0266 − 2√
2.0266 − 2

263.6

= 0.4376.

Because the test statistic does not fall in the rejection region, at α = 0.05, we do not reject H0. Thus, for

α = 0.05, the given data support the null hypothesis that the true value of the slope, β1, of the regression

line is equal to 2.

Another problem closely related to the problem of estimating the regression coefficients β0 and β1 is
that of estimating the mean of the distribution of Y for a given value of x, that is, estimating β0 +β1x.
For a fixed value of x, say x0, we have the following confidence limits.

A (1 − α)100% confidence interval for β0 + β1x is given by

(
β̂0 + β̂1x

)
± tα/2se

√
1

n
+
(

x0 − x
)2

Sxx

where

se =
√

Syy − (
Sxy

)2

(n − 2)Sxx
.

We could use the data from the previous example to easily calculate a confidence interval for β0 +β1x.
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8.3.1 Analysis of Variance (ANOVA) Approach to Regression
Another approach to hypothesis testing is based on ANOVA. A detailed explanation of this approach
is given in Chapter 10. Here we present necessary steps for regression. The main reason for this
presentation is the fact that most of the major statistical software outputs for regression analysis (see
Section 8.9) are given in the form of ANOVA tables.

It can be verified that (see Exercise 8.3.7)

n∑
i=1

(yi − y)2 =
n∑

i=1

(
yi − ŷi

)2 +
n∑

i=1

(
ŷi − y

)2
.

Denoting

SST =
n∑

i=1

(yi − y)2 , SSE =
n∑

i=1

(
yi − ŷi

)2
, and SSR =

n∑
i=1

(
ŷi − y

)2
,

the foregoing equation can be written as

SST = SSR + SSE.

Note that the total sum of squares (SST ) is a measure of the variation of yi’s around the mean y,
and SSE is the residual or error sum of squares that measures the lack of fit of the regression model.
Hence, SSR (sum of squares of regression or model) measures the variation that can be explained by
the regression model.

We saw that to test the hypothesis H0 : β1 = 0 vs. Ha : β1 = 0, the statistic

tβ1 = β̂1√
MSE

Sxx

was used, where tβ1 follows a t-distribution with (n − 2) degrees of freedom. From Exercise 4.2.18,
we know that

t2β1
= β̂2

1(
MSE

Sxx

)

follows an F -distribution with numerator degrees of freedom 1 and denominator degrees of freedom
(n − 2). We can also verify that

t2β1
= MSR

MSE
.
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Table 8.1 ANOVA Table for Simple Regression

Source of Degrees of Sum of squares Mean sum of F-ratio
variation freedom squares

Regression 1 SSR MSR = SSR

d.f.

MSR

MSE
(model)

Error n − 2 SSE
SSE

d.f.
(residuals)

Total n − 1 SST

Thus, to test H0 : β1 = 0 vs. Ha : β1 = 0, we could use the statistic

MSR

MSE
∼ F(1, n − 2)

and reject H0 if
MSR

MSE
≥ Fα(1, n − 2).

These can be summarized by Table 8.1, known as the ANOVA table.

The last column in the ANOVA table gives the statistic (MSR)/(MSE). It is also customary to give
another column with the p-value of the test.

Example 8.3.4
In a study of baseline characteristics of 20 patients with foot ulcers, we want to see the relationship between

the stage of ulcer (determined using the Yarkony-Kirk scale, a higher number indicating a more severe stage,

with range 1 to 6), and duration of ulcer (in days). Suppose we have the data shown in Table 8.2.

(a) Give an ANOVA table to test H0 : β1 = 0 vs. Ha : β1 = 0. What is the conclusion of the test based

on α = 0.05?

(b) Write down the expression for the least-squares line.

Table 8.2

Stage of Ulcer (x) 4 3 5 4 4 3 3 4 6 3

Duration (d) 18 6 20 15 16 15 10 18 26 15

Stage of Ulcer (x) 3 4 3 2 3 2 2 3 5 6

Duration (d) 8 16 17 6 7 7 8 11 21 24
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Table 8.3

Source of Degrees of Sum of Mean sum F-ratio p-Value
variation freedom squares of squares

Regression 1 570.04 570.04 77.05 0.000
(model)

Error 18 133.16 7.40
(residuals)

Total 19 703.20

Solution
(a) We test H0 : β1 = 0 vs. Ha : β1 = 0. We will use Minitab to generate the ANOVA table (Table 8.3).

Because the p-value is less than 0.001, for α = 0.05, we reject the null hypothesis that β1 = 0 and

conclude that there is a relationship between the stage of ulcer and its duration.

(b) Again, using the Minitab output, we get the least-squares line as

d = 4.61x − 2.40.

EXERCISES 8.3

8.3.1. An experiment was conducted to observe the effect of an increase in temperature on the
potency of an antibiotic. Three one ounce portions of the antibiotic were stored for equal
lengths of time at each of the following Fahrenheit temperatures: 40◦, 55◦, 70◦, and 90◦. The
potency readings observed at the end of the experimental period were

Potency reading, y 49 38 27 24 38 33 19 28 16 18 23
Temperature, x 40◦ 55◦ 70◦ 90◦

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line as a check on your calculations.
(c) Calculate the 95% confidence intervals for β0 and β1, respectively.

8.3.2. Consider the data

x 38 26 48 22 40 15 30 33
y 10 11 16 8 12 5 10 11

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line as a check on your calculations.
(c) Calculate the 95% confidence intervals for β0 and β1, respectively.

8.3.3. Show that Y and β̂1 are independent, under the usual assumptions of a simple linear regression
model.

8.3.4. Using the data of Exercise 8.2.10, calculate the 95% confidence intervals for β0 and β1,
respectively.



8.4 Predicting a Particular Value of Y 437

8.3.5. The following data represent survival time in days after a heart transplant and patient age in
years at the time of transplant for 10 randomly selected patients.

Age at transplant 28 41 46 53 39 36 47 29 48 44
Survival time, in days 7 278 44 48 406 382 1995 176 323 1846

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line.
(c) Calculate the 95% confidence intervals for β0 and β1, respectively.

8.3.6. The following data represent weights of cigarettes (g) from different manufacturers and their
nicotine contents (mg).

Weight 15.8 14.9 9.0 4.5 15.0 17.0 8.6 12.0 4.1 16.0
Nicotine 0.957 0.886 0.852 0.911 0.889 0.919 0.969 1.118 0.946 1.094

(a) Find the least-squares line appropriate for these data.
(b) Plot the points and graph the line. Do you think the linear regression is appropriate?
(c) Calculate the 95% confidence intervals for β0 and β1, respectively.

8.3.7. Show that

n∑
i=1

(
yi − y

)2 =
n∑

i=1

(
yi − ŷi

)2 +
n∑

i=1

(
ŷi − y

)2
.

8.4 PREDICTING A PARTICULAR VALUE OF Y

In the earlier sections, we have seen how to fit a least-squares line for a given set of data. Also using
this line, we could find E(Y ), for any given value of x. Instead of obtaining this mean value, we may
be interested in predicting the particular value of Y for a given x. In fact, one of the primary uses of
the estimated regression line is to predict the response value of Y for a given value of x. Prediction
problems are very important in several real-world problems; for example, in economics one may be
interested in a particular gain associated with an investment.

Let Ŷ0 denote a predictor of a particular value of Y = Y0 and let the corresponding values of x be x0.
We shall choose Ŷ0 to be E(Ŷ |x0). Let Ŷ denote a predictor of a particular value of Y . Then the error
η of the predictor in comparison to a particular value of Y is

η = Y − Ŷ0.
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Both Y and Ŷ are normal random variables, and the error is a linear function of Y and Ŷ . This means
that η itself is normally distributed. Also, because E(Ŷ) = E(Y), we have

E(η) = E(Y |x0) − E
(
Ŷ
) = 0.

Furthermore,

Var(η) = Var
(
Y − Ŷ

) = Var(Y) + Var
(
Ŷ
)− 2Cov

(
Y, Ŷ

)
.

We can consider Y and Ŷ as independent, because we are predicting a different value of Y , not used
in the calculation of Ŷ . Therefore, Cov(Y, Ŷ) = 0. In that case

Var(η) = Var(Y0) + Var
(
Ŷ0
)

= σ2 + σ2

[
1
n

+ (x − x)2

Sxx

]

=
[

1 + 1
n

+ (x − x)2

Sxx

]
σ2.

Hence, the error of predicting a particular value of Y , given x, is normally distributed with mean zero

and variance
[
1 + 1

n
+ (x−x)2

Sxx

]
σ2.

That is,

η ∼ N

(
0,

[
1 + 1

n
+ (x − x)2

Sxx

]
σ2

)
,

and

Z = Y − Ŷ

σ

√[
1 + 1

n + (x−x)2

Sxx

] ∼ N(0, 1).

If we substitute the sample standard deviation S for σ, then we can show that

T = Y − Ŷ

S

√[
1 + 1

n + (x−x)2

Sxx

]

follows the t-distribution with [n − (k + 1)] degrees of freedom. Using this fact, we now give a
prediction interval for the random variable Y , the response of a given situation.

We know that

P
(−tα/2 < T < tα/2

) = 1 − α.
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Substituting for T , we have

P

⎛
⎜⎜⎝−tα/2 <

Y − Ŷ

S

√[
1 + 1

n + (x−x)2

Sxx

] < tα/2

⎞
⎟⎟⎠ = 1 − α

which implies that

P

⎡
⎣Ŷ − tα/2S

√√√√[1 + 1
n

+ (x − x)2

Sxx

]
< Y < Ŷ + tα/2S

√√√√[1 + 1
n

+ (x − x)2

Sxx

]⎤⎦ = 1 − α.

Hence, we have the following.

A (1 − α)100% prediction interval for Y is

Ŷ ± tα/2S

√√√√[1 + 1

n
+
(

x − x
)2

Sxx

]

where tα/2 is based on (n − 2) degrees of freedom and S2 = SSE

n − 2
.

We illustrate this statistical procedure with the following example.

Example 8.4.1
Using the data given in Example 8.2.1, obtain a 95% prediction interval at x = 5.

Solution
We have shown that ŷ = −3.1011 + 2.0266x. Hence, at x = 5, ŷ = 7.0319.

Also x = 3.8, Sxx = 263.6, SSE = 7.79028, and S =
√

7.79028
8 = 2.306.

From the t-table, t0.025,8 = 2.306.

Thus, we have

7.0319 ± (2.306)(0.98681)

√[
1 + 1

10 + (5−3.8)2

263.6

]

which gives the 95% prediction interval as (4.6393, 9.4245).

We can conclude with 95% confidence that the true value of Y at the point x = 5 will be somewhere between

4.6393 and 9.4245.
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EXERCISES 8.4

8.4.1. The following are midterm and final examination test scores for 10 calculus students, where
x denotes the midterm score and y denotes the final score for each student.

x 68 87 75 91 82 77 86 82 75 79
y 74 89 80 93 88 79 97 95 89 92

Obtain a 95% prediction interval for x = 92 and interpret its meaning.

8.4.2. The following data give the annual incomes (in thousands of dollars) and amounts (in
thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37
Life insurance 150 175 25 75 250 50 250 100

Obtain a 90% prediction interval for x = 59 and interpret its meaning.

8.4.3. For the following data, construct a 95% prediction interval for x = 12.

x 1 3 5 7 9 11
y 16 36 43 65 80 88

8.4.4. The data given below are from a random sample of height (in inches) and weight (in pounds)
of seven basketball players.

Height 73 83 77 80 85 71 80
Weight 186 234 208 237 265 190 220

Construct a 99% prediction interval for height equal to 90. Interpret the result and state any
assumptions.

8.4.5. For the data in Exercise 8.2.10, obtain a 95% prediction interval for the age, x = 85, interpret
and state any assumptions.

8.5 CORRELATION ANALYSIS

Using the regression model, we can evaluate the magnitude of change in the dependent variable due
to certain changes in the independent variables. One of the main assumptions we have used is that
the independent variables are known. However, there are problems where the x-values as well as
the y-values are assumed by random variables. This would be the case, for example, if we study the
relationship between secondhand smoking and the incidence of a certain disease. Here, basically, one
treats X as random, and hence the simple linear regression model is

Y = β0 + β1X + ε

This implies that

E(Y |X = x ) = β0 + β1x
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and one looks for dependence of X and Y . Once we have determined that there is a relationship
between the variables, the next question that arises is how closely the variables are associated.
A measure of the amount of linear dependency of two random variables is the correlation. The
correlation coefficient tells us how strongly two variables are linearly related. The statistical method
used to measure the degree of correlation is referred to as correlation analysis. We will assume that
the vector random variable (X, Y) has a bivariate normal distribution. In this case, it can be shown
that

E(Y |X = x ) = β0 + β1x.

At times, our interest may not be in the linear relationship; rather, we may merely want to know
whether X and Y are independent random variables. If (X, Y) has a bivariate normal distribution,
then testing for independence is equivalent to testing that the correlation coefficient, ρ = σxy/(σxσy),
is equal to zero. Note that ρ is positive if X and Y increase together and ρ is negative if Y decreases as X

increases. If ρ = 0, there is no relation between X and Y ; if ρ > 0, there is a positive relation between
X and Y (increasing slope); and when ρ < 0, we have a negative relationship (decreasing slope).
Thus, the correlation coefficient can be used to measure how well the linear regression model fits
the data.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample from a bivariate normal distribution. The
maximum likelihood estimator of ρ is the sample correlation coefficient defined by ρ̂ or r,

r =

n∑
i=1

(
Xi − X

) (
Yi − Y

)
√

n∑
i=1

(
Xi − X

)2 n∑
i=1

(
Yi − Y

)2 (8.7)

= Sxy√
SxxSyy

.

Equivalently, we can rewrite (8.7) by

r =
n

n∑
i=1

XiYi −
n∑

i=1
Xi

n∑
i=1

Yi√√√√√
⎡
⎣n

n∑
i=1

X2
i −

(
n∑

i=1
Xi

)2
⎤
⎦
⎡
⎣n

n∑
i=1

Y2
i −

(
n∑

i=1
Yi

)2
⎤
⎦

.

We can see that −1 ≤ r ≤ 1. The value of r could readily be obtained by the calculations one already
has performed for the regression analysis. Observe that the numerator of r is exactly the same as the
numerator of β̂1 derived in Section 8.2. Because the denominators of both β̂1 and r are nonnegative,
they have the same sign. It can be shown that this estimator is not unbiased. If the value of r is near
or equal to zero, this implies little or no linear relationship between x and y. On the other hand, the
closer r is to 1 or −1, the stronger the linear relationship between x and y. When r > 0, values of
y increase as the values of x increase, and the data set is said to be positively correlated. When r < 0,
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values of y decrease as the values of x increase, and the data set is said to be negatively correlated. In this
book, we use the term correlation only when referring to linear relationships. In actual practice we can
use the value of r to decide whether it is appropriate to develop linear regression models in a given
situation. As a rule of thumb, if r > 0.30 or r < −0.30, we proceed with developing a linear regression
model. However, a much higher or lower value is desirable. For example, if in a given problem where
r = 0.77, it conveys to us that approximately 77% of the data we have are linearly related.

The probability distribution for r is difficult to obtain. For large samples, this difficulty could be
overcome by using the fact that the Fisher z-transform, given by

z = (1/2) ln[(1 + r)/(1 − r)]

is approximately normally distributed with mean μz = (1/2) ln[(1 + ρ)(1 − ρ)] and variance
σz = 1/(n − 3). Thus, for large random samples, we can test hypotheses about ρ using the approximate
test statistic:

Z = z − μz

σz

=
(1/2) ln

(
1+r
1−r

)
− (1/2)

(
1+ρ
1−ρ

)
1√
n−3

.

For example, suppose we are interested in testing the hypothesis that the true value of ρ is a specific
number, say, ρ0, with a certain value of α. We can proceed to make a decision by following the
procedure given next.

HYPOTHESIS TEST FOR ρ

One-sided test Two-sided test

H0 : ρ = ρ0 H0 : ρ = ρ0

Ha : ρ > ρ0 or Ha : ρ = ρ0

Ha : ρ < ρ0

Test statistic: Test statistic:

Z = (1/2) ln
(

1+r
1−r

)
−(1/2)

(
1+ρ0
1−ρ0

)
1√

n − 3

Z = (1/2) ln
(

1+r
1−r

)
−(1/2)

(
1+ρ0
1−ρ0

)
1√

n − 3

Rejection region: Rejection region:

z > za (upper tail region) |z | > za/2

z < −za (lower tail region)

Decision: If Z falls in the rejection region, reject the null hypothesis at confidence level α.
Assumption: (X ,Y ) follow the bivariate normal, and this test procedure is approximate.
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Example 8.5.1
For the data given in Example 8.2.1, would you say that the variables X and Y are independent? Use

α = 0.05.

Solution
We test

H0 : ρ = 0 vs. Ha : ρ = 0.

From Example 8.2.1, we have the following summary:

n∑
i=1

xi = 38;
n∑

i=1

yi = 46;
n∑

i=1

xiyi = 709

and

n∑
i=1

x2
i = 408;

n∑
i=1

y2
i = 1302; n = 10.

Hence,

r =
n

n∑
i=1

XiYi −
n∑

i=1
Xi

n∑
i=1

Yi√√√√√
⎡
⎣n

n∑
i=1

X2
i −

(
n∑

i=1
Xi

)2
⎤
⎦
⎡
⎣n

n∑
i=1

Y2
i −

(
n∑

i=1
Yi

)2
⎤
⎦

= (10)(709) − (38)(46)√[
(10) (408) − (38)2

] [
(10)(1302) − (46)2

]
= 0.99641.

The test statistic is

z =
(
1/2

)
ln
(

1+r
1−r

)
− (

1/2
) (1+ρ0

1−ρ0

)
1√
n−3

=
(1/2) ln

(
1+0.99641
1−0.99641

)
− (1/2)

(
1+0
1−0

)
1√
7

= 8.3618.

For zα/2 = z0.025 = 1.96, the rejection region is |z| > 1.96. Because the observed value of the test statistic

falls in the rejection region, we reject the null hypothesis and conclude that at α = 0.05, the variables X

and Y are dependent.
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EXERCISES 8.5

8.5.1. The table shows the midterm and final examination test scores for 10 students from a
differential equations class, where x denotes the midterm scores and y denotes the final
scores.

x 68 87 75 91 82 77 86 82 75 79
y 74 89 80 93 88 79 97 95 89 92

(a) At 95% confidence level, test whether X and Y are independent.
(b) Find the p-value.
(c) State any assumptions you have made in solving the problem.

8.5.2. The following table gives the annual incomes (in thousands of dollars) and amounts (in
thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37
Life insurance 150 175 25 75 250 50 250 100

(a) At the 98% confidence level, test whether annual income and the amount of life insurance
policies are independent.

(b) Find the attained significance level.
(c) State any assumptions you have made in solving the problem.

8.5.3. Show that

r =
n

n∑
i=1

XiYi −
n∑

i=1
Xi

n∑
i=1

Yi√√√√√
⎡
⎣n

n∑
i=1

X2
i −

(
n∑

i=1
Xi

)2
⎤
⎦
⎡
⎣n

n∑
i=1

Y2
i −

(
n∑

i=1
Yi

)2
⎤
⎦

is not an unbiased estimator of the population coefficient, ρ.

8.5.4. Using the data in Example 8.2.1:
(a) Compute r, the coefficient of correlation.
(b) Would you say that the variables X and Y are independent? Use α = 0.05.
(c) State any assumptions you have made in solving the problem.

8.5.5. A new drug is tested for serum cholesterol-lowering properties on six randomly selected
volunteers. The serum cholesterol values are given in the following table.

Before treatment: 232 254 220 200 213 222
After treatment: 212 240 225 205 204 218

(a) At 95% confidence level, test whether X and Y are independent.
(b) Find the p-value.
(c) Calculate the least-squares regression line for these data.
(d) Interpret the usefulness of the model.
(e) State any assumptions you have made in solving the problem.
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8.6 MATRIX NOTATION FOR LINEAR REGRESSION

Most real-life applications of regression analysis use models that are more complex than the simple
straight-line model. For example, a person’s body weight may depend not just on the person’s eating
habits; it may depend on additional factors such as heredity, exercise, and type of work. Hence, we
may want to incorporate other potential independent variables in the modeling. We now study the
situation where k(> 1) independent variables are used to predict the dependent variable. The model
to be studied is of the form

Y = β0 + β1x1 + β1x2 + · · · + βkxk + ε.

Here, ε ∼ N
(
0, σ2

)
. This model is called a multiple regression model.

Let y1, y2, . . . , yn be n independent observations on Y . Then each observation yi can be written as

yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + ε

where xij is the jth independent variable for the ith observation, i = 1, 2, . . . , n, and ε′
is are indepen-

dent as in the simple linear regression case. It is sometimes advantageous to introduce matrices to
study the linear equations. Let x0 = 1. Define the following matrices:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0 x11 x12 . . x1k

x0 x21 x22 . . x2k

. . . . . .

. . . . . .

. . . . . .

x0 xn1 xn2 . . xnk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

.

.

.

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

.

.

.

βk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

.

.

.

εn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.8)

Thus the n equations representing the linear equations can be rewritten in the matrix form as

Y = Xβ + ε.

In particular, for the n observations from the simple linear model of the form

Y = β0 + β1x + ε

we can write

Y = Xβ + ε,
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where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

.

.

.

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 x1

1 x2

1 .

1 .

1 .

1 xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

.

.

.

εn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and β =
[
β0

β1

]
.

We can see that

X′X =
[

1 1 . . . 1
x1 x2 . . . xn

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 x1

1 x2

. .

. .

. .

1 xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

n
n∑

i=1
xi

n∑
i=1

xi

n∑
i=1

x2
1

⎤
⎥⎥⎥⎦,

where ′ denotes the transpose of a matrix.

Also,

X′Y =

⎡
⎢⎢⎢⎣

n∑
i=1

yi

n∑
i=1

xiyi

⎤
⎥⎥⎥⎦.

Let us now go back to the multiple regression model

Y = β0 + β1x1 + β1x2 + · · · + βkxk + ε.

The least-squares estimators β̂i of βi for i = 0, 1, 2, . . . , k are the ones that minimize the sum of
squares

SSE =
n∑

i=1

e2
i =

n∑
i=1

[
yi −

(
β̂0 + β̂1x1 + β̂2x2 + · · · + β̂kxk

)]2

= (
y − Xβ̂

)′(
y − Xβ̂

)
= y′y − y′Xβ̂ − (

Xβ̂
)′

y + (
β̂X
)′

Xβ̂.

To minimize SSE with respect to β, we differentiate SSE with respect to β and equate it to zero. Thus,

∂

∂β

(
y′y − y′X′β − β′X′y + X′β′Xβ

) = 0

yielding

(X′X)β̂ = X′Y.
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Assuming the matrix (X′X) is invertible, we obtain

β̂ = (X′X−1)X′Y.

Now we summarize the procedure to obtain a multiple linear regression equation.

PROCEDURE TO OBTAIN A MULTIPLE LINEAR REGRESSION EQUATION

1. Rewrite the n observations

Yi = β0 + β1x1i + β1x2i + · · · + βk xki , i = 1, 2, . . . , n

in the matrix notation as

Y = Xβ + ε

where X , Y , and β are defined in (1).

2. Compute (X ′X )−1 and obtain the estimators of β as

β̂ = (X ′X )−1X ′Y .

3. Then the regression equation is

Ŷ = X β̂.

Example 8.6.1
Using the data given in Example 8.2.1, use the matrix approach to solve the problem of operations.

Solution
From the data of Example 8.2.1 we have

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−9
−7
−5
−4

2
6
9

13
21
20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3
1 −2
1 −1
1 0
1 2
1 5
1 6
1 8
1 11
1 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, we can write

X′X =
[

10 38
38 408

]
X′Y =

[
46
709

]
(X′X)−1 =

[
0.1548 −0.0144

−0.0144 0.0038

]
.
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Hence,

β̂ = (X′X)−1(X′Y)

[
0.1548 −0.0144

−0.0144 0.0038

][
46
709

]

=
[

−3.1009
2.0266

]
=
[
β̂0

β̂1

]
.

Thus, the least-squares line is given by

ŷ = −3.1009 + 2.0266X,

which is identical to the regression line we obtained in Example 8.2.1.

Example 8.6.2
The following data relate to the prices (Y ) of five randomly chosen houses in a certain neighborhood, the

corresponding ages of the houses (x1), and square footage (x2).

Price y in thousands Age x1 in Square footage x2 in thousands

of dollars years of square feet

100 1 1

80 5 1

104 5 2

94 10 2

130 20 3

Fit a multiple linear regression model

Y = β0 + β1x1 + β2x2 + ε

to the foregoing data.

Solution
We have

Y =

⎡
⎢⎢⎢⎢⎢⎣

100
80
104
94

130

⎤
⎥⎥⎥⎥⎥⎦ ; X =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1
1 5 1
1 5 2
1 0 2
1 20 3

⎤
⎥⎥⎥⎥⎥⎦ ; X′X =

⎡
⎢⎣ 5 41 9

41 551 96
9 96 19

⎤
⎥⎦ ;

X′Y =
⎡
⎢⎣ 508

4560
966

⎤
⎥⎦
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and

(X′X)−1 =
⎡
⎢⎣ 2.3076 0.1565 −1.8840

0.1565 0.0258 −0.2044
−1.8840 −0.2044 1.9779

⎤
⎥⎦ .

Hence,

(X′X)−1(X′Y) =
⎡
⎢⎣66.1252

−0.3794
21.4365

⎤
⎥⎦ .

Thus, the regression model is

y = 66.12 − 0.3794x1 + 21.4365x2.

8.6.1 ANOVA for Multiple Regression
As in Section 8.3, we can obtain an ANOVA table for multilinear regression (with k independent or
explanatory variables) to test the hypothesis

H0 : β1 = β2 = · · · = βk = 0

versus

Ha : At least one of the parameters βj = 0, j = 1, . . . , k.

The calculations for multiple regression are almost identical to those for simple linear regression,
except that the test statistic (MSR)/(MSE) has an F(k, n − k − 1) distribution. Note that the F -test
does not indicate which of the parameters βj = 0, except to say that at least one of them is not zero.
The ANOVA table for multiple regression is given by Table 8.4.

Table 8.4 ANOVA Table for Multiple Regression

Source of Degrees of Sum of Mean sum of F-ratio
variation freedom squares squares

Regression
(Model)

k SSR MSR = SSR

d.f.

MSR

MSE

Error
(Residuals)

n − k − 1 SSE
SSE

d.f.

Total n − 1 SST
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Example 8.6.3
For the data of Example 8.6.2, obtain an ANOVA table and test the hypothesis

H0 : β1 = β2 = 0 vs. Ha : at least one of the βi = 0, i = 1, 2.

Use α = 0.05.

Solution
We test H0 : β1 = β2 = 0 vs. Ha : At least one of the βi = 0, i = 1, 2. Here n = 5, k = 2. Using Minitab,

we obtain the ANOVA table (Table 8.5). Based on the p-value, we cannot reject the null hypothesis at

α = 0.05.

Table 8.5

Source of Degrees of Sum of Mean sum of F-ratio p-Value
variation freedom squares squares

Regression
(Model)

2 956.5 478.2 2.50 0.286

Error
(Residuals)

2 382.7 191.4

Total 4 1339.2

EXERCISES 8.6

8.6.1. Given the data

X1 X2 y

3 1 4
2 5 3
3 3 6
1 2 5

(a) Write the multiple regression model in matrix form.
(b) Find X′X, (X′X)−1, and X′y.
(c) Estimate β.
(d) Estimate the error variance.

8.6.2. A study is conducted to estimate the demand for housing (y) based on current interest rate
X1 and the rate of unemployment. The data in Table 8.6.1 are obtained.
(a) Fit the multiple regression model

y = β0 + β1x1 + β1x2 + ε.
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Table 8.6.1

Units sold Interest rate (%) Unemployment rate (%)

65 9.0 10.0

59 9.3 8.0

80 8.9 8.2

90 9.1 7.7

100 9.0 7.1

105 8.7 7.2

(b) Test whether the model is significant.

8.6.3. The following data give the annual incomes (in thousands of dollars) and amounts (in
thousands of dollars) of life insurance policies for eight persons.

Annual income 42 58 27 36 70 24 53 37
Life insurance 150 175 25 75 250 50 250 100

Calculate the least-squares regression line for these data using matrix operations.

8.6.4. The following is a random sample of height (in inches) and weight (in pounds) of seven
basketball players.

Height 73 83 77 80 85 71 80
Weight 186 234 208 237 265 190 220

Calculate the least-squares regression line for these data using matrix operations.

8.7 REGRESSION DIAGNOSTICS

In the previous sections, we derived least-squares estimators for the parameters in the linear regression
model. These estimators are useful as long as we can determine (1) how well the model fits the
data and (2) how good our estimates are in providing possible relationships between variables of
interest. Some of these problems are discussed in Chapter 14 in a unified manner. We now briefly
discuss some aspects of the adequacy of the simple linear regression model. In multiple regression,
in addition to the problems discussed here, there are other problems, such as collinearity and model
specification (inclusion of all relevant variables, as well as exclusion of irrelevant variables), that need
to be examined. They are beyond the level of this text. Many graphical methods and numerical tests
dealing with these problems are available in the literature and are often called regression diagnostics.
Most of the major statistical software packages incorporate these tests, making it easier to perform
regression diagnostics so as to detect potential problems.

We have seen that the (ordinary) least-squares regression model must meet the following assumptions.
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1. Linearity. The existence of a linear relationship between x and y is the basis of the simple linear
regression model. A simple method to test for linearity is to draw a scatterplot of data points.
As we explained in Section 8.2, we could also plot residual ei versus xi or Ŷi. A symmetric trend
in the plot of the residuals versus the explanatory variable or the fitted values indicates there
is a problem with the obtained regression model. For a correct model, the residuals should
center around zero across the explanatory variables and the fitted values. The degree of linear
relationship can be ascertained by the correlation coefficient, r, given in Section 8.5 or by
using the value of the coefficient of determination r2, explained in Project 8B. Most statistical
software packages give the value of r2 (refer to outputs given in Section 8.9). The closer the
value of r2 is to 1, the better the least-squares equation ŷ = β̂1x + β̂0 performs as a predictor
of y.

2. Homoscedasticity (homogeneity of variance). This assumption says that the variance of the
error term remains constant across all values of x. In this case we know by the Gauss–Markov
theorem that the least-squares estimators β̂0 and β̂1 are the best linear unbiased estimators of
β0 and β1. A frequently used graphical method is to draw the residuals versus a fitted plot.
This can be easily done using statistical software packages. The graph of residuals ei versus
fitted values Ŷi or explanatory variable xi indicates a change in the spread of residuals as Ŷ or
x changes. It may look like Figure 8.7.
If the variances of yi values are not constant, the inferences we made, such as confidence
intervals on means, prediction, and so forth, are off. The severity of this discrepancy depends
on the degree of the assumption violation. If we see that the pattern of data points only changes
slightly, that will indicate a mild heteroscedasticity. Two numerical tests for heteroscedasticity
are explained in Section 14.4.3.
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■ FIGURE 8.7 Scatterplot of fitted values versus residuals.
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3. Independence of εi and εj, for i �= j. This assumption specifies that the errors associated
with one observation should not be correlated with the errors of any other observation. In
general, whether the two samples are independent of each other is decided by the structure of
the experiment from which they arise. Violation of the independence assumption can occur
in a variety of situations. For example, if we take a survey on a certain issue on children’s edu-
cation from one particular school, these observations may reflect some pattern, thus violating
the independence assumption. If data are collected on the same variable over time, then the
assumption of independence will be violated. Project 12B explains a run test for check of this
assumption. Also, see Section 14.4.4.

4. Normality of the errors. This assumption specifies that the distribution of the εi values should
be normal. This assumption is crucial when sample size is small if the p-value for the test is
to be valid. For large samples, by the Central Limit Theorem this assumption becomes less
important unless the prediction of a single value of y is involved. Thus a test of normality is
necessary mainly when the t-test is used. Section 14.4.1 explains some of the tests for normality.
A simple way is to draw a probability plot for the errors to conform to the assumption of
normality. If we observe nonnormality, one of the ways to overcome the problem is to use
data transformation such as logarithmic transformation, as explained in Section 14.4.2, and
perform the regression analysis on the transformed data. Sometimes nonparametric methods
may be more appropriate, but we will not deal with this topic in this book.

Another important issue is the existence of influential observations, individual observations that have
a strong influence on estimated coefficients. If a single observation substantially changes our results,
we need to do further investigation. The ordinary least-squares method is quite sensitive for out-
lying observations, both for independent variables and for dependent variables, and can have an
adverse effect on the estimate. In higher dimensional data, these outlying observations can remain
unnoticed. This aspect in one explanatory variable case is discussed in Project 8C. One of the sim-
ple ways to identify such observations is to draw a scatterplot. In the scatterplot, if we see a data
point that is farther away from the rest of the data points, that is an indication of possible influential
points.

The natural question is, if we find that the data violate one or more of the assumptions, what can we
do about it? We have already explained that violation of the normality assumption in large samples is
not an issue unless prediction is involved, because prediction depends on normality of an individual
observation. Thus, if the inferences are based on the t- or F -tests or prediction is involved, we may be
able to transform Y to Y ′ to achieve normality. If we have predicted Y ′, then back-transform to predict
Y . If we observe nonlinearity of data, we may be able to transform x to x′ = h(x) such that Y is linear
in x′, or consider a polynomial model in x, in which case the ideas of multiple linear regression may
be utilized. Robust estimates of variances of β0 and β1 or the method of weighted least squares may
be used to deal with the case of nonconstant variance. Often careful experimental design could be
done to remove possible correlation in errors. There are also robust methods available for correlation
analysis. We refer to specialized books on regression methods for further details on these issues. If
we detect influential observations, there are statistical techniques available, such as least trimmed
squares estimators, to deal with outlying observations.
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8.8 CHAPTER SUMMARY

In this chapter, we first derived the least-squares line and its properties. Then we learned about the
confidence intervals for the coefficients in the regression model and did hypothesis tests on the values
of the coefficients. We introduced the matrix notation for linear regression as well as for multiple
regression. We discussed how to predict a particular value of Y for a given value of X. In order to
study the dependence of X and Y , we presented correlation analysis.

The following are some of the key definitions we have used in this chapter.

■ Predictors

■ Response variable

■ Regression analysis

■ Multiple linear regression model

■ Simple linear regression model

■ Sum of squares for errors (SSE)

■ Sum of squares of the residuals

■ Least-squares line

■ Least-squares equations

■ Normal equations

■ Best linear unbiased estimator (BLUE)

■ Correlation analysis

The following important concepts and procedures were discussed in this chapter:

■ Procedure for regression modeling

■ Procedure for fitting a least-squares line

■ Properties of the least-squares estimators for the model Y = β0 + β1x + ε

■ The Gauss–Markov theorem

■ Procedure for obtaining confidence intervals of β0 and β1

■ Procedure to obtain a multiple linear regression equation

■ Prediction interval for the response variable Y

■ Hypothesis testing for correlation, ρ

■ Linearity

■ Homoscedasticity

■ Independence of εi and εj , for i = j

■ Normality of the errors

■ Influential observations
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8.9 COMPUTER EXAMPLES

8.9.1 Minitab Examples

Example 8.9.1
For the data in Example 8.2.1, use the method of least squares to fit a straight line to the accompanying

data points. Give the estimates of β0 and β1. Plot the points and sketch the fitted least-squares line.

Solution
Enter independent variable, x, in C1 and the response variable, y, in C2. Then:

Stat > Regression > Regression. . . > in Response: type C2, and in Predictors: type C1 > click OK

We obtain the following output.

Regression Analysis

The regression equation is
C2 = –3.10 + 2.03 C1

Predictor Coef StDev T P
Constant –3.1009 0.3888 –7.98 0.000
C1 2.02656 0.06087 33.29 0.000

S = 0.9883 R-Sq = 99.3% R-Sq(adj) = 99.2%
Analysis of Variance
Source DF SS MS F P
Regression 1 1082.6 1082.6 1108.34 0.000
Residual Error 8 7.8 1.0
Total 9 1090.4

Unusual Observations
Obs C1 C2 Fit StDev Fit
8 11.0 21.000 19.191 0.538

Residual St Resid
1.809 2.18R

R denotes an observation with a large standardized
residual

From this the estimate of β0 is −3.1009, and the estimate of β1 is 2.02656. Hence, the regression line
is ŷ = −3.1009 + 2.02656x. Now to obtain the fitted regression line, use the following procedure:

Stat > Regression > Fitted Line Plot. . . > in Response(Y ): type C2, and in Predictors(X): type C1 >
click Linear OK
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We obtain the following graph.

Regression plot
Y � �3.1009 � 2.02656x

R�Sq � 99.3%
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If in addition, we need, say, 95% confidence and predictor bands, then use

Stat > Regression > Fitted Line Plot. . . > in Response(Y ): type C2, and in Predictor(X): type C1 > click

Linear > click options. . . > click Display confidence bands and Display predictor bands > in Title:
type a title for the graph and OK > OK

We obtain the following graph.

Regression line with 95% confidence
and predictor bands

Y � �3.1009 � 2.02656x
R�Sq � 99.3%
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8.9.2 SPSS Examples
A detailed explanation of regression methods including diagnostics using SPSS can be obtained at the
site: http://www.ats.ucla.edu/stat/spss/webbooks/reg/. We will just demonstrate a simple case with
an example.

Example 8.9.2
The following is a random sample of height (in inches) and weight (in pounds) of seven basketball players.

Height 73 83 77 80 85 71 80

Weight 186 234 208 237 265 190 220

Calculate the least-squares regression line for these data using SPSS.

Solution
Enter height in column 1 and weight in column 2. Then

Analyze > Regression > Linear. . . > move var00002 to dependent:, and var00001 to

Independent(s): > click OK

We obtain the following output:

Regression: Variables Entered/Removed

Model Variables Entered Variables Removed Method

1 VAR00001 . Enter

a All requested variables entered.

b Dependent Variable: VAR00002

Model Summary:

Model R R Square Adjusted R Square Std. Error of the Estimate
1 .947 .897 .876 9.86006

a Predictors: (Constant), VAR00001

ANOVA:

Model Sum of Squares df Mean Square F Sig.
1 Regression 4223.896 1 4223.896 43.446 .001

Residual 486.104 5 97.221
Total 4710.000 6

a Predictors: (Constant), VAR00001
b Dependent Variable: VAR00002
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Coefficients:

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

Model B Std. Error Beta

1 (Constant) −188.476 62.083 −3.036 .029

VAR00001 5.208 .790 .947 6.591 .001

a Dependent Variable: VAR00002

Looking at the coefficients, we see that β̂0 = −188.476 and β̂1 = 5.208. Hence, the regression line is given

by ŷ = −188.476 + 5.208x. Because the coefficient of determination r2 is 0.897, and the p-value is small,

the model fit looks pretty good.

8.9.3 SAS Examples
For regression analysis, we can use the SAS procs called GLM, which stands for General Linear Model,
and REG, which stands for regression. In the following example we will give a simplified version of
the foregoing procedure. A good explanation of regression methods including diagnostics using SAS
can be obtained at http://www.ats.ucla.edu/stat/sas/webbooks/reg/.

Example 8.9.3
Using the SAS commands, redo Example 8.9.1.

Solution
We can use the following commands.

options nodate nonumber;
data exreg;
INPUT x y @@;
datalines;
–1 –5
0 –4
2 2
–2 –7
5 6
6 9
8 13
11 21
12 20
–3 –9
;
proc reg data=exreg;

title ‘Regression of Y on X’;
model y=x / p clm;
run;
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We obtain the following output.

Regression of Y on X

The REG Procedure
Model: MODEL1

Dependent Variable: y
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 1082.58589 1082.58589 1108.34 <.0001
Error 8 7.81411 0.97676
Corrected Total 9 1090.40000

Root MSE 0.98831 R-Square 0.9928
Dependent Mean 4.60000 Adj R-Sq 0.9919

Coeff Var 21.48508

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 –3.10091 0.38882 –7.98 <.0001

x 1 2.02656 0.06087 33.29 <.0001

Regression of Y on X

The REG Procedure

Model: MODEL1

Dependent Variable: y
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Output Statistics

Dep Var Predicted Std Error

Obs y Value Mean Predict 95% CL Mean Residual

1 –5.0000 –5.1275 0.4278 –6.1141 –4.1409 0.1275

2 –4.0000 –3.1009 0.3888 –3.9975 –2.2043 0.8991

3 2.0000 0.9522 0.3312 0.1885 1.7159 1.0478

4 –7.0000 –7.1540 0.4715 –8.2413 –6.0667 0.1540

5 6.0000 7.0319 0.3210 6.2917 7.7720 –1.0319

6 9.0000 9.0584 0.3400 8.2743 9.8425 –0.0584

7 13.0000 13.1115 0.4038 12.1804 14.0427 –0.1115

8 21.0000 19.1912 0.5383 17.9499 20.4325 1.8088

9 20.0000 21.2178 0.5889 19.8597 22.5758 –1.2178

10 –9.0000 –9.1806 0.5187 –10.3766 –7.9845 0.1806

Sum of Residuals 0

Sum of Squared Residuals 7.81411

Predicted Residual SS (PRESS) 14.18340

By looking at the parameter estimates in the foregoing output, we see that an intercept value of
−3.10091 is the estimate of β0, and the estimate of β1 is 2.02656, corresponding to the variable x.
For each value of x, the actual value and predicted value of y are given as the output statistics.

It is important to note that the presentation of results of analysis in a simple way is as important as the
analysis itself. For example, if one is interested only in a simple linear regression, most of the output
values in the foregoing output may not be necessary. All the values until the parameter estimates are
giving us the analysis of variance results, and all the values in the REG procedure are dealing with
prediction and confidence intervals. For clarity and simplicity of report, we may only need to report
the regression line, and perhaps the graph of the line.

If we need the plot of the points (x, y), add the following commands to the previous program. We
will not give the corresponding graph.

proc plot data=exreg;
title ’Plot of Y Vs. X’;
plot y*x;
run;

If we need the graph of the regression line along with, say, 95% prediction and confidence intervals,
we add the following.
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proc gplot data=exreg;
plot y*x
y*x
y*x / overlay frame vaxis =axis1 haxis=axis2;
symbol1 v = – h = 1.5 i=none c=black;
symbol2 v=none i=rlclm95 c=red;
symbol3 v=none i=rlcli95 c=blue;
axis1 order = (–5 to 14 by 1)
offset = (1)
label = (h =1.5 f=duplex);
axis2 order = (–10 to 20 by 1)
offset = (1)
label = (h =1.5 f = duplex);
title h = 1.5
’Effect of X on Y’;
title2 h = 1.2 f = duplex
’Common regression line with 95% confidence

interval’;
title3 h=1.5 f = duplex
’Regression line is predicted Y=–3.1011

+2.0266X’;
run;

PROJECTS FOR CHAPTER 8

8A. Checking the Adequacy of the Model by Scatterplots
If the regression model is adequate, then the fitted equation can be used to make inferences. Otherwise,
the inferences made will be practically useless. Note that the residuals give all the information on
lack of fit. Figures 8.5 and 8.6 give an indication of good fit and misfit.

(i) Collect a couple of real-life data and find a regression line for each.
(ii) Draw the scatterplot for the residuals ei versus x and determine whether the regression lines

obtained in (i) are a good fit or not.

8B. The Coefficient of Determination
One of the ways to measure the contribution of x in predicting y is to consider how much the
prediction errors were reduced by using the information provided by the variable x. The quantity
called the coefficient of determination measures how well the least-squares equation ŷ = β̂1x + β̂0

performs as a predictor of y. If x contributes no information for predicting y, then the best prediction
for values of y is simply the sample mean y. The resulting sum of squares of deviation for this model
ŷ = y is Syy = ∑n

i=1 (yi − y)2. In the case where x contributes information for predicting y, then we



462 CHAPTER 8 Linear Regression Models

have seen that the sum of squares of deviation for the model ŷ = β̂1x + β̂0 is Syy = ∑n
i=1 (yi − ŷi)

2.
It can be shown that

∑n
i=1 (yi − ŷi)

2 ≤ ∑n
i=1 (yi − y)2.

The coefficient of determination is the proportion of the sum of squares of deviations of the y values
that can be credited to a linear relationship between x and y. This is defined by

r2 = Syy − SSE

Syy

= 1 − SSE

Syy

= 1 −

n∑
i=1

(
yi − ŷi

)2
n∑

i=1
(yi − y)2

.

We can see that 0 ≤ r2 ≤ 1. We can interpret r2 to be the proportion of variability explained by
the regression line. When x contributes no information for predicting y, Syy and SSE will be nearly
equal, and hence r2 will be near to zero. If x contributes information for predicting y, Syy will be
larger than SSE, and hence r2 will be greater than zero. Thus, r2 = 0.75 means that use of ŷ instead of
y to predict y reduced the sum of squares of deviations of the y values about their predicted values ŷ

by 75%. This can also be interpreted as meaning that nearly 75% of the variation is explained by the
independent variable x. In general, about (r2 × 100)% of the sample variation in y can be attributed
to using x to predict y in the linear model. The coefficient of nondetermination is the percent of variation
that is unexplained by the regression equation and is given by 1 − r2.

(i) For Exercises 8.2.2 and 8.2.3, find the coefficient of determination, and discuss the
information contributed by x in predicting y.

(ii) Collect a couple of real-life data and find the corresponding regression lines. Also draw the
scatterplot for ei versus ŷ and determine whether the regression line obtained is a good fit or
not based on the coefficient of determination.

8C. Outliers and High Leverage Points
One of the important aspects of residual analysis is to identify any existence of unusual observations in
a data set. There are two possibilities for a data point to be unusual. It could be in the response variable
(i.e., in the horizontal direction) representing model failure, or in the predictor variable (i.e., in the
vertical direction). It should be noted that unusual observations in the horizontal direction occur
when we assume that the independent variable X in the linear model is random. An observation that
is unusual in the vertical direction is called an outlier. An observation that is unusual in the horizontal
direction is called a high leverage point (or just leverage point).

Consider the following 10 points, which we will call base points, and three additional points
representing an outlier (O), a high leverage point (H), and both (OH), respectively.
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10 Base points O H OH
x −1 0 2 −2 5 6 8 11 12 −3 6 19 19
y −5 −4 2 −7 6 9 13 21 20 −9 30 13 30

Investigate the effect of adding a single aberrant point by running four separate regressions:
(i) regression for 10 base points; (ii) regression for 10 base points plus O; (iii) regression for 10
base points plus H; and (iv) regression for 10 base points plus OH. For each of them, find β̂0 and
β̂1 as well as the coefficient of determination. Discuss the effects of each type of outlier on the
regression line.
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Chapter 9
Design of Experiments

Objective: To study the basic design concepts for experiments and through which we can make
comparisons of treatments with respect to the observed responses.
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Genichi Taguchi
(Source: http://www.amsup.com/BIOS/g_taguchi.html)

Genichi Taguchi (1924–) acquired his statistical skills under the guidance of Prof. Motosaburo
Masuyama, one of the best statisticians of his time. After World War II, Japanese manufacturers were
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struggling to survive with very limited resources. Taguchi revolutionized the manufacturing process
in Japan through cost savings. He understood that all manufacturing processes are affected by outside
influences—noise. However, Taguchi realized methods of identifying those noise sources that have
the greatest effects on product variability. Isolating these factors to determine their individual effects
can be a very costly and time-consuming process. Taguchi devised a way to use the so-called orthog-
onal arrays to isolate these noise factors from all others in a cost-effective manner. He introduced
the loss function to quantify the decline of a customer’s perceived value of a product as its qual-
ity declines. Taguchi referred to the ability of a process or product to work as intended regardless of
uncontrollable outside influences as robustness. This was a novel concept in the design of experiments
with profound influence in manufacturing. His ideas have been adopted by successful manufactur-
ers around the globe because of their results in creating superior production processes at much
lower costs.

9.1 INTRODUCTION

In statistics, we are concerned with the analysis of data generated from an experiment. It is desir-
able to take the necessary time and effort to organize the experiment appropriately so that we have
the right type of data and sufficient amount of data to answer the questions of interest as clearly
and efficiently as possible. This process is called experimental design. We can trace the roots of mod-
ern experimental design to the 1935 publication of the book The Design of Experiments, written by
Sir Ronald A. Fisher. He showed how one could conduct credible experiments in the presence of
many naturally fluctuating conditions such as the soil condition, temperature, and rainfall, in an
agricultural experiment. Because then, the design principles that were developed for agricultural
experiments were successfully adapted to industrial, military, and other applications. In modern
industry it is essential to manufacture parts efficiently and with practically no defects. As a result,
variation reduction in quality characteristics of these parts has become a major focus of quality and
productivity improvement. Dr. Genichi Taguchi pioneered the use of design of experiments (DOE)
in designing robust products—those relatively insensitive to changes in design parameters. Presently,
DOE is used as an essential tool for improving the quality of goods and services. It is important to
note that, unless a sound design is employed, it may be very difficult or even impossible to obtain
valid conclusions from the resulting data. Also, properly designed experiments will generate more
precise data while using substantially fewer experimental runs than ad hoc approaches. In indus-
trial manufacturing, some of the major benefits of DOE are lower costs, simultaneous optimization
of several factors, fast generation and organization of quantitative information, and overall quality
improvement.

It is important to clearly identify the particular questions that an experiment is intended to answer
(that is, the major objective of the experiment) before performing the experiment. These objectives
may be to estimate or predict some unknown parameters, to explore relationships among various
factors, to compare a collection of effects or parameters, or any combinations of these. When the
intention is to compare parameters, the objective may be to corroborate a hypothesis, or to explore
some simple relationships. In any design, it is necessary to identify the populations that are to be
studied and the type of information about these populations that will be needed to answer the desired
questions. While planning an experiment to investigate the primary objectives of the investigation,
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we need to ensure that the measurement process is simple, the cost of the study is reasonable, the
study can be concluded in a reasonable time frame, and the study produces reliable data. Because
of the complex nature of real-world problems, planning an effective experiment is not an easy task.
The important issues confronting one area, say engineering, will be different from those for another
area such as biology or medicine. As a result, the design of experiments can take several forms. In
this chapter, we will follow a general framework. Two of the major distinguishing elements of DOE
are (1) simultaneous variation and evaluation of various factors, and (2) systematic removal of some
of the possible test combinations to cut back experimental time and cost. Thus, a researcher should
ensure that the statistical design is as simple as possible given the objectives of the experiment and
within the practical constraints such as material, labor, and cost. Some other desirable criteria of a
good design are that it provides unbiased estimates of treatment effects and the experimental error.
In addition, it should be able to detect important small differences with sufficient precision, and it
should provide an estimation of uncertainty in the conclusions and the confidence with which the
result can be extended to other analogous situations. The experimental design determines the basic
characteristics of the data collected. These data are then processed using statistical analysis techniques,
with the goals of these analyses being determined by the experimental objectives. Conclusions are
obtained by looking at the results of the statistical analyses.

9.2 CONCEPTS FROM EXPERIMENTAL DESIGN

In this section we introduce some of the basic definitions, methods, and procedures used in the
experimental design. Many of the terms used have an agricultural basis, because the early development
and applications of DOE were in the field of agriculture.

9.2.1 Basic Terminology
The first step in planning an experiment is to formulate a clear statement of objectives of the test
program. The purpose of most statistical experiments is to determine the effect of one or more inde-
pendent variables on the response variable. The main variable of interest in a study is the response
variable, also called an output variable. These are the dependent variables (also referred to as criteria,
effect, or predicted variable) in an experiment that describes the factors we are interested in predicting
or comparing. The response variable is measured with different values of independent variables (rep-
resenting those factors that are assumed to be the causes of the outcome) and analyzed to determine
whether the independent variables have any effect. For example, in an agricultural experiment, the
crop yield could be the response variable, whereas the type of soil, temperature, and rainfall could
be the independent variables. We would like also to identify known or expected sources of variability
in the experimental units, because one of the main aims of a designed experiment is to reduce the
effect of these sources of variability on the answers to questions of interest. Hence, we must make a
list of the factors that may affect the value of the response variable. We must also decide how many
observations should be taken and what values should be chosen for each independent variable in
each individual test run.

Definition 9.2.1 The variables that an experimenter is able to completely control in the DOE are called
independent variables or treatment variables. These are also called input variables, explanatory
variables, or factors.
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Basically, factors are independent variables whose effect on the response variable is a main objective
of the study. These are control variables selected by the analyst for comparison. A factor is a general
category or type of treatment. Factors can be either quantitative or qualitative based on whether the
variable is measured on a numerical scale or not. For example, a rice field is divided into six parts, and
each part is treated with a different fertilizer to see which produces the most rice. Here the response
variable is the amount of rice output. The objective of the study is to compare the effects of different
fertilizers on the rice output. Thus, the type of fertilizer is the factor.

Definition 9.2.2 Independent variables that are unknown or known but nonmanipulable are called
nuisance variables.

A factor can have different levels referred to as the treatment or factor levels. Different treatments
constitute different levels of a factor. Levels are the values at which the factors are set in an experiment.
The level of a variable or treatment means its amount or magnitude. For example, if the experimental
units of a medication were given as 2.5 mg, 5 mg, and 10 mg, those amounts would be three levels of
the treatment. Level is also used for categorical variables, such as drugs I, II, and III, where the three
are different kinds of drugs, not different amounts of the same thing. Suppose four different groups
of students are subjected to four different teaching methods. The students are the experimental units,
the teaching methods are the treatments, and the four types of teaching methods constitute four
levels of the factor “type of teaching.” Note that this is a single-factor experiment, the factor being the
method of teaching.

Definition 9.2.3 Noise is the effect of all the uncontrolled factors in an experiment.

In some experiments, all the noise factors are known; however, in most cases only some of them are
known. When an analyst controls the specification of the treatments and the method of allocating
the experimental units to each of the treatments, the experiment is called designed. For example, n

rats are randomly assigned to one of the five dose levels of an experimental drug under investigation.
The analyst can also decide on the number ni of rats for each dose level such that

∑5
i=1 ni = n.

Sometimes, conducting a designed experiment may not be practical or ethical. For example, if an
analyst wants to know the relationship between fat content in a diet and the cholesterol level, it
would be unethical and costly as well as time consuming to subject human volunteers to different
fat-content diets. However, it is possible to observe the cholesterol levels of people who consume
different diets. Care must be taken to record various other factors, such as exercise habits, age, and
gender, before reporting any association between cholesterol levels and fat content of diets. The
experiment is called observational, if the analyst is just an observer of the treatments on a sample of
experimental units. Note that the experimental units are objects to which treatments are applied.

The crucial difference between an experiment and an observational study for comparing the effects of
treatments is that, in an experiment, the researcher decides which experimental units receive which
treatments, whereas in an observational study, the researcher simply compares experimental units
that happen to be there that have received each of the treatments. Observational studies are often
useful for identifying possible causes of treatment effects, and they are often cheaper. Their main
disadvantage is that they are less conclusive. Only properly designed and executed experiments can
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lead to reliable conclusions. Hence, in general designed experiments are preferred over observational
experiments. In designing the experiment, there are almost always going to be constraints such as
budget, time, and availability of experimental units.

The following example illustrates an observational experiment, where the analyst has control over the
random sampling from the treatment populations as well as the size of each sample, but has no
control over the assignment of the experimental units to the treatments.

Example 9.2.1
In order to compare the risk-taking tendency of the people that invest in mutual funds, samples are taken

of individuals from three income groups—low income class, middle income class, and high income class.

A score is given based on the percentage of their investment allocation on different types of mutual funds,

such as large-cap, mid-cap, small-cap, hybrid, and specialty. The mean score for each income group is

calculated. Identify each of the following elements: response, factors and factor type(s), treatments, and

experimental units.

Solution
The response is the variable of interest, which is the score given to each individual investor. The only factor

investigated is the income class. This is a qualitative variable. The three income classes represent the levels of

this factor. The treatment is the percentage investments in different types of mutual funds, such as large-cap,

mid-cap, small-cap, hybrid, and specialty. The experimental unit is the individual investor.

There are single-factor experiments and multifactor experiments. The previous example was a case of
a single-factor experiment. Single-factor experiments have only one independent variable. Another
example of a single-factor experiment is when we are interested in the effect of size of the screen of
a computer monitor on the reading speed. In this case, the size of the screen is the single factor. If
there are only two sizes, say 15-in. and 17-in. monitors, that we wish to compare, tests such as the
two-sample t-test could be used to compare average reading speed. If there are more than two sizes
of monitors, then the one-way ANOVA methods described in Chapter 10 could be used for analysis
of the resulting data.

Even though the single-factor experiments are simple and elegant, they are costly and not very effective
when there is more than one independent variable. Efficient use of resources is achieved through
multifactor experiments in comparison to conducting many single-factor experiments. A multifactor
experiment involves two or more independent variables and a dependent variable. Also, a greater
range of questions could be answered using multifactor experiments. The resulting data are analyzed
using ANOVA as described in Chapter 10. The following is an example of a multifactor experiment.

Example 9.2.2
In order to study the conditions under which a particular type of commercially raised fish reach maximum

weight, an experiment is conducted at four water temperatures (60◦F, 70◦F, 80◦F, 90◦F) and four water

salinity levels (1%, 5%, 10%, 15%). Fish are raised in tanks with specific salinity levels and temperature
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levels. There are 32 tanks and one of the four temperatures and one of the four salinity levels are assigned

randomly to each tank. The weights are recorded at the beginning of the experiment and after 2 months.

Identify each of the following elements: response, and factors and factor type(s). Write all the treatments

from the factor-level combinations.

Solution
The response is the variable of interest, which is the weight gain of a fish. This experiment has two factors:

water temperatures at four levels and water salinity at four levels. There are 4 × 4 = 16 possible treatments:

(60◦F, 1%) (60◦F, 5%) (60◦F, 10%) (60◦F, 15%)

(70◦F, 1%) (70◦F, 5%) (70◦F, 10%) (70◦F, 15%)

(80◦F, 1%) (80◦F, 5%) (80◦F, 10%) (80◦F, 15%)

(90◦F, 1%) (90◦F, 5%) (90◦F, 10%) (90◦F, 15%)

It should be noted that there may be other factors, such as the density of the fish population, the
initial size of the fish, and the type of feeding, that may affect weight gain of fish.

Definition 9.2.4 The experimental error explains the variation in the responses among experimental units
that are assigned the same treatment and observed under identical experimental conditions.

Experimental error can occur for many reasons, among them (1) the difference in the devices that
record the measurements, (2) the natural dissimilarities in the experimental units prior to their
receiving the treatment, (3) the variation in setting the treatment conditions, and (4) the effect on
the response variable of all extraneous factors other than the treatment factors.

In order to construct confidence intervals on the treatment population means and to test hypotheses, it
is necessary to obtain an estimate of the variance of experimental design. In a single-factor experiment
with k levels, the estimate of the variance of experimental design could be taken as the pooled
variance of responses from experimental units receiving the identical treatments. A large variance of
experimental error will compromise the accuracy of inferences made from the experiments. Also, large
amounts of experimental error make it difficult to determine whether the treatment has produced
an effect or not, so one of the design goals is to reduce the experimental error. Bad execution of a
design can lead to the whole experiment becoming a waste of time and resources. It is necessary
to implement techniques to reduce experimental error in order to obtain more accurate inferences.
One approach to reducing experimental error is to take extra care in conducting the experiment. The
effect of experimental error can be reduced by using more homogeneous experimental materials (if
available), and using the fundamental principles of replication, randomization, and blocking (see
Section 9.2.2).

The one-way analysis of variance (in a single-factor experiment at several levels) enables one to compare
several groups of observations, all of which are independent with the possibility of a different mean
for each group. A test of significance is whether or not all the means are equal. Two-way analysis of
variance is a method of studying the effects of two factors on the response variable.
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There are other terms that are important in different applications. For example, in the medical field,
the terms blinding, double-blind, and placebo are used. In a medical experiment, the comparison of
treatments may be distorted if the patient, the person administering the treatment, and those evalu-
ating it know which treatment is being allocated to which patient. It is therefore necessary to ensure
that the patient, and/or the person administering the treatment, and/or the trial evaluators do not
know (are blind to) which treatment is allocated to whom. If only the patient is unaware of the
treatment, it is called blinding, and if both the patient and the person administering the treatment
are blind to which treatment is being allocated, it is called double-blinding. In order to study the effect
of a particular drug, experimenters divide the study population into two groups and treat one group
with the drug and the other group with a so-called placebo, which could be just sugar pills. In order
to clarify the objective of a design, it is necessary for an experimental designer to consult a wide range
of people, especially those affected by the problem to be solved.

9.2.2 Fundamental Principles: Replication, Randomization, and Blocking
A good design of an experiment makes efficient use of resources to gather the data needed to meet
the goals of the study. There are three fundamental principles that need to be considered in a good
experimental design. They are replication, randomization, and blocking.

Definition 9.2.5 Replication means that the same treatment is applied (i) several times to the same
experimental units, or (ii) one time to several similar experimental units, called replicate units.

Replications are necessary for the estimation of the error variance in an experiment against which
the differences among treatments are assessed. If an experiment is intended to test whether or not
a number of treatments differ in their effects, these treatments must be applied to replicate units of
the experiment. In order to show that two treatments have different mean effects, we need to mea-
sure several samples given the same treatment. For example, observing that one plant of a particular
genotype is more resistant to a disease than another plant of a different genotype does not convey
anything about the difference between the mean disease resistance of the two genotypes. This dif-
ference could have been caused by the environment or the inoculation procedure affecting the two
plants differently. Hence, to make any inference about the mean difference between the genotypes,
we have to test several plants of each type. Thus, increasing the number of replications increases
the reliability of inferences drawn from the observed data. It is necessary to increase the number of
replications to decrease the variance of the treatment effect estimates and also to provide more power
for detecting differences in treatment effects. We should not confuse multiple observations of the
same experimental unit with replication. Replication involves applying the treatment to a number of
experimental units.

Definition 9.2.6 A block is a portion of the experimental unit that is more likely to be homogeneous within
itself than with other units.

Blocking refers to the distribution of the experimental units into blocks in such a way that the units
within each block are more or less homogeneous. The experimenter uses information of the possible
variability among units to group them in such a way that most of the unwanted experimental error
can be removed through the block effect.
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For blocking to be effective, the units should be arranged so that within-block variation is much
smaller than between-block variation. As an example, suppose a researcher wishes to compare the
yields of rice for four different kinds of fertilizers. In order to minimize the effect of environmental
and soil conditions, the field may be divided into smaller blocks and each block is further parceled
into four plots. Each variety of fertilizer is applied in each block with one in each parcel. This method
ensures that the external conditions from plot to plot within a block will be relatively uniform. Then
we can use the ANOVA methods to pool from block to block to obtain the within-block information
about the treatment differences while avoiding between-block differences. The relevant analysis is
given in Section 10.5. Time could also be a block factor, because the concentration or expertise could
alter as one carries out a task, such as determining disease levels or scoring microscope slides.

Definition 9.2.7 Randomization is the process of assigning experimental units to treatment conditions in
an entirely chance manner.

The main objective of randomization is to negate the effects of all uncontrolled extraneous variables.
Usually, randomization is associated with design functions such as random sampling or selection,
random assignment, and random order. Random assignment of experimental units to groups tends to
spread out differences between subjects in unsymmetric or random ways so that there is no tendency
to give an edge to any group. In any well-conducted experiment, randomization eliminates bias
from the experiment, enables us to use statistical tests of significance, and creates valid estimates of
experimental error. For instance, suppose we are measuring the time of flowering of plants in a glass
house or a growth cabinet. If the pots are arranged so that all the plants of one variety are next to each
other, and we observe that one variety flowers earlier than the rest, does this imply that this variety is
inherently earlier-flowering, or does it suggest that the light and temperature conditions in that part
of the cabinet or glass house cause plants to flower early? It is not possible to tell from an experiment
designed in this manner. Randomizing the treatments in time or space is an insurance policy, to take
account of variation that we may or may not know to exist under the conditions of our experiment.
For instance, the levels of light in growth cabinets vary considerably, so randomizing the layout of the
plants of different types is essential to make sure that no one type is consistently exposed to light and
temperature levels that are particularly high or low. Another way of selecting experimental units is
simply to use intact groups, such as all students in a particular statistics classroom. Results obtained
this way may be highly biased and hence not desirable. It should be noted that random assignment
does not completely eliminate the problem of correlated data values.

Now we study some steps that can be used for randomization. Suppose there are N homogeneous
experimental units and k treatments. In order to randomly assign ri experimental units to the ith
treatment with

∑k
i=1 ri = N, we could use the following steps.

PROCEDURE FOR RANDOM ASSIGNMENT

1. Number the experimental units from 1 to N .
2. Use a random number table or statistical software to get a list of numbers that are random

permutations of the numbers 1 to N .
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3. Give treatment 1 to the experimental units having the first r1 numbers in the list. Treatment 2 will
be given to the next r2 numbers in the list, and so on; give treatment k to the last rk units in the list.

The following example illustrates the random assignment procedure.

Example 9.2.3
In order to study the number of hours to relief provided by five different brands (A, B, C, D, E) of pain

reliever, doses are administered to 25 subjects numbered 1 through 25 with each brand administered to

five subjects. Develop a design using the random assignment procedure.

Solution
Using Minitab, we obtained the following random permutations of the numbers from 1 to 25.

1 8 7 12 10 25 23 4 6 3

9 21 5 24 18 16 22 14 17 15

20 13 2 11 19

Using the randomized procedure, we obtain the design given in Table 9.1.

Table 9.1

Subject: 1 8 7 12 10 25 23 4 6 3 9 21

Brand: A A A A A B B B B B C C

Subject 5 24 18 16 22 14 17 15 20 13 2 11 19

Brand C C C D D D D D E E E E E

That is, subject number 8 will get brand A pain reliever, subject 23 will get brand B pain reliever, and so forth.

We can rewrite Table 9.1 as shown in Table 9.2.

Table 9.2

Brand Subject

A 1 8 7 12 10

B 25 23 4 6 3

C 9 21 5 24 18

D 16 22 14 17 15

E 20 13 2 11 19
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It should be noted that once we create the design, the actual data will contain the number of hours to relief

for each individual.

It is important to note that randomization may not be possible in some cases. Observational studies
may be necessary whenever the researcher cannot use controlled randomized experiments. For exam-
ple, if we want to study the effect of smoking on lung cancer, randomization will mean that we should
be able to select a group of people and tell a randomly selected subgroup to smoke and the other
subgroup not to smoke. This is not only practically impossible; it is also unethical to deliberately
expose people to a potentially hazardous substance.

9.2.3 Some Specific Designs
In this subsection, we will introduce three specific designs: completely randomized design, random-
ized complete block design, and Latin square design. The structure of the experiment in a completely
randomized design is presumed to be such that the treatments are assigned to the experimental units
completely at random. Example 9.2.1 is one such a design. In order to create a completely randomized
design, follow the procedure given in Section 9.2.2.

The randomized complete block design is a design in which the subjects are matched according to a
variable that the experimenter wants to control. The subjects are put into groups (blocks) of the same
size as the number of treatments. The elements of each block are then randomly assigned to different
treatment groups so as to reduce the influence of unknown variables. For example, a researcher is
carrying out a study of three different drugs for the treatment of high cholesterol. Suppose she has
45 patients and divides them into three treatment groups of 15 patients each. Using a randomized
block design, the patients are rated and put in blocks of three based on the cholesterol level: The
three patients with the highest cholesterol are put in the first block, those with the next highest levels
are put in the second block, and so on to the 15th block. The three members of each block are
then randomly assigned, one to each of the three treatment groups. If there is very little extraneous,
systematic variation, complete randomization allows differences between the mean effects of the
treatments to be estimated with higher precision than other designs. However, it does not allow for
the possibility that there could be some unknown extraneous factors, so if in doubt, use a randomized
complete block design.

Suppose we have k treatments and N experimental units. Further, assume that the experimental units
can be grouped into b groups containing k experimental units, so that N = bk. We could use the
following steps for a randomized complete block design.

PROCEDURE FOR RANDOMIZATION IN A RANDOMIZED COMPLETE BLOCK DESIGN

1. Group the experimental units into b groups (blocks) containing k homogeneous experimental
units.

2. In group 1, number the experimental units from 1 to k and obtain a random permutation of
numbers 1 to k using a random number generator.
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3. In group 1, the experimental unit corresponding to the first number in the permutation receives
treatment 1, the experimental unit corresponding to the second number in the permutation
receives treatment 2, and so on.

4. Repeat steps 2 and 3 for each of the remaining blocks.

We illustrate the step-by-step procedure just given in the following example.

Example 9.2.4
In order to study the number of hours to relief provided by five different brands (A, B, C, D, E) of pain relievers

for pain resulting from different causes [headache (H), muscle pain (M), pain due to cuts and bruises (CB)],

doses are administered to five subjects each having similar types of pain. Create a randomized complete

block design. Choose, as blocks, the different types of pain (H, M, or CB).

Solution
Using Minitab with k = 5 we have generated the random permutations shown in Table 9.3 for each of the

b = 3 blocks of five numbers and assigned the treatments according to the procedure just explained. As

the table indicates, among persons with headache, subject number 3 is treated with brand A pain killer, and

so forth.

Table 9.3

H M CB

3(A) 5(A) 1(A)

1(B) 4(B) 2(B)

2(C) 3(C) 4(C)

5(D) 1(D) 3(D)
4(E) 2(E) 5(E)

In the previous example, we had only one replication of each treatment per block. This idea can
be generalized to have r replications of each treatment per block. Then the generalized randomized
complete block design, with k treatments, b blocks, and r replications with N = kbr which has kr

homogeneous experimental units, can be randomized as follows.

PROCEDURE FOR A RANDOMIZED COMPLETE BLOCK DESIGN WITH r REPLICATIONS

1. Group the experimental units into b groups (called blocks), each containing rk homogeneous
experimental units.

2. In group 1, number the experimental units from 1 to rk and generate a list of numbers that are
random permutations of the numbers 1 to rk .
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3. In group 1, assign treatment 1 to the experimental units having numbers given by the first r
numbers in the list. Assign treatment 2 to the experiments having next r numbers in the list, and so
on until treatment k receives r experimental units.

4. Repeat steps 2 and 3 for the remaining blocks of experimental units.

The following example illustrates this procedure.

Example 9.2.5
With the following modifications, consider Example 9.2.2. Three groups of subjects are considered, with

each group having 15 subjects. Group I consists of subjects with only headache (H), group II of subjects

only with muscle pain (M), and group III of subjects only pain due to cuts and bruises (CB). Of the 15 with

headache (group I), three are treated with brand A pain killer, three with brand B, and so forth. Subjects

with other types of pain are treated similarly. Here the number of replications is three for each type of drug

and for each type of pain. Create a randomized complete block design with three replications.

Solution
Using Minitab, for the group with headache (H), we generate a random permutation of numbers 1 to 15. The

first three are given pain killer A, the next three B, and so forth. The process is repeated for other types of

pain killers. The design is given in Table 9.4 where ‘‘2(A)’’ means that patient 2 is given brand A pain killer.

Table 9.4

H M CB H M CB

2(A) 8(A) 3(A) 15(C) 9(C) 11(C)

14(A) 13(A) 8(A) 7(D) 4(D) 2(D)

10(A) 5(A) 14(A) 5(D) 11(D) 13(D)

8(B) 2(B) 6(B) 6(D) 15(D) 5(D)

12(B) 1(B) 15(B) 3(E) 7(E) 1(E)

11(B) 10(B) 12(B) 9(E) 12(E) 4(E)

4(C) 3(C) 10(C) 13(E) 6(E) 9(E)

1(C) 14(C) 7(C)

By increasing the number of replications, we can increase the accuracy of estimators of treatment
means and the power of the tests of hypotheses regarding differences between treatment means.
However, because of constraints such as cost, time needed to handle a large number of experimen-
tal units, and even availability of experimental units, it is not realistic to have a large number of
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replications. It is then necessary to determine the minimum number of replications needed to meet
reasonable specifications on the accuracy of estimators or on the power of tests of hypotheses. We
give a simple procedure for determining the number of replications needed.

Let r be the number of replications that we need to determine. Let σ be the experimental standard
deviation, and E be the desired accuracy of the estimator. Then the sample size required to be
(1 − α)100% confident that the estimator is within E units of the true treatment mean, μ, is

r = (zα/2)2σ̂2

E2 .

The values of σ̂ could be obtained from past experiments, from a pilot study, or by using a rough
estimator

σ̂ = (largest observation − smallest observation)/4.

Following is an example for determining the appropriate number of replications.

Example 9.2.6
A researcher wants to know the effect of class sizes on the mean score in a standardized test. She wants to

estimate the treatment means μ1, μ2, μ3, and μ4 such that she will be 95% confident that the estimates

are within 10 points of the true mean score. What is the necessary number of replications to achieve this

goal? It is known from the previous experiments that scores have ranged from 46 to 98.

Solution
A rough estimator of σ is

σ̂ = Range

4
= 98 − 46

4
= 13.

From the normal table, z0.025 = 1.96. The value of E = 10. Thus, the number of replications necessary is

r = (zα/2)2σ̂2

E2 = (1.96)2(13)2

(10)2 = 6.4923 ∼= 7.

Thus, the researcher should use seven replications of each of the treatments to obtain the desired precision.

We have used the randomized complete block design when we wanted to control a single source
of extraneous variation and there is only one factor of interest. When we need to compare k treat-
ment means and there are two possible sources of extraneous variation, a Latin square design is the
appropriate design of experiment.

Definition 9.2.8 A k × k Latin square design contains k rows and k columns. The k treatments are
randomly assigned to the rows and columns so that each treatment appears in every row and column of the
design.

It was the famous mathematician Leonhard Euler who introduced Latin squares in 1783 as a new
kind of magic squares. Even though the idea is fairly elementary, a systematic use of Latin squares to
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the design of experiments was advanced by Ronald A. Fisher only around 1921. Fisher realized that in
a two-dimensional plot of land, the systematic error due to variation in soil and other factors could
be minimized by a suitable Latin square partition of the plot.

The following example illustrates a case in which the experimental problems are affected by two
sources of extraneous variation, the type of car and type of driver used.

Example 9.2.7
A gasoline company is interested in comparing the effect of four gasoline additives (A, B, C, D) on the gas

mileage achieved per gallon. Four cars (I, II, III, IV) and four drivers (1, 2, 3, 4) will be used in the experiment.

Create a Latin square design.

Solution
We can filter out the variability due to type of cars used by ensuring that in each row only one of the

additive types appears. Also, to filter the driver effect, use each additive only once for each driver. One such

randomization results in the Latin square design given in Table 9.5.

Table 9.5

Drivers

Cars 1 2 3 4

I D B A C

II C A D B

III B D C A

IV A C B D

To construct a basic Latin square, one can use the following method, which we will present only for the 4×4
Latin square of Example 9.2.7.

PROCEDURE FOR CONSTRUCTING A 4 × 4 LATIN SQUARE

1. Begin with the first row as A, B, C, D.
2. Generate each succeeding row by taking the first letter of the preceding row and placing it last,

which has the effect of moving the other letters one position to the left.
3. Randomly assign one block factor to the rows and the other to the columns.
4. Randomly assign levels of the row factor, column factor, and treatment to row positions, column

positions, and letters, respectively.
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In step 2 of the foregoing procedure, instead of using the cyclic placement of rows, we can perform a
cyclic placements for the columns. Accordingly, change the procedures in steps 3 and 4.

The following example illustrates a 4 × 4 Latin square design.

Example 9.2.8
Using the previous procedure, construct a Latin square for the case of Example 9.2.7.

Solution
Following the procedure just given, the Latin square in Example 9.2.7, the basic Latin square is represented

by Table 9.6.

Table 9.6

Drivers

Cars 1 2 3 4

I A B C D

II B C D A

III C D A B

IV D A B C

Now one random assignment of cars, I, II, III, IV, is to the rows 4, 3, 2, 1 (this is a random order of numbers

1, 2, 3, 4) of Table 9.6. This gives Table 9.7.

Table 9.7

Drivers

Cars 1 2 3 4

I D A B C

II C D A B

III B C D A

IV A B C D

Now one random assignment of the drivers 1, 2, 3, 4 is to the columns 1, 2, 4, 3 (this is a random order of

numbers 1, 2, 3, 4) of Table 9.7, resulting in the Latin square shown in Table 9.8.
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Table 9.8

Drivers

Cars 1 2 3 4

I D A C B

II C D B A

III B C A D

IV A B D C

Now along with this Latin square, we can represent the corresponding observations (numbers in parentheses

are the gas mileage in miles per gallon) as shown in Table 9.9.

Table 9.9

Drivers

Cars 1 2 3 4

I D(18) A(22) C(25) B(19)

II C(22) D(24) B(26) A(24)

III B(21) C(20) A(22) D(23)

IV A(17) B(24) D(23) C(21)

Note that if we use the notation 1 for additive A, 2 for additive B, 3 for additive C, and 4 for additive
D, the Latin square in the previous example can be rewritten as shown in Table 9.10.

Table 9.10

Drivers

Cars 1 2 3 4

I 4 1 3 2

II 3 4 2 1

III 2 3 1 4

IV 1 2 4 3
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Table 9.11

A B C
C A B
B C A

3 × 3

A B C D E
B A E C D
C D A E B
D E B A C
E C D B A

5 × 5

This representation will be convenient if we need to write down a model. In order to test for the
treatment effects, one could use the ANOVA methods discussed in Chapter 10.

For Latin square experiments involving k treatments, it is necessary to include k observations for each
treatment resulting in a total of k2 observations. Table 9.11 shows two examples of Latin squares for
n = 3, and n = 5.

We have used the Latin square design to eliminate two extraneous sources of variability. In order to
eliminate three extraneous sources of variability, we can use a design called the Greco-Latin square.
Greco-Latin squares are also called orthogonal Latin squares. This design consists of k Latin and k Greek
letters. In this design, we take a Latin square and superimpose upon it a second square with treatments
denoted by Greek letters. In this superimposed square, each Latin letter coincides with exactly one
of each Greek letter. In our gasoline example, if we introduce the effect of, say, four different days,
represented by Greek letters, then Table 9.12 shows the 4 × 4 Greco-Latin square.

Table 9.12

Aα Bβ Cγ Dδ

Bδ Aγ Dβ Cα

Cβ Dα Aδ Bγ

Dγ Cδ Bα Aβ

We will not go into more detail on this design, or on the many other similar designs.

When developing an experimental design, it is important for the researcher to learn more about
the terminology as well as the intricacies of the field in which the experiment will be performed. It
is also important to observe that there are many other practical constraints affecting the design of
experiments. For example, experiments are done by organizations and individuals that have limited
resources of money and time. Appropriating these resources within the constraints is an integral
part of planning an experiment. Also, many problems are approached sequentially in several stages.
Planning for each stage is built on what has been learned before. Dealing with these types of issues
is beyond the scope of this book.
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EXERCISES 9.2

9.2.1. In order to study the conditions under which hash-brown potatoes will absorb the least
amount of fat, an experiment is conducted with four frying durations (2 min, 3 min, 4 min,
5 min) and using four different types of fats (animal fat I, animal fat II, vegetable fat I,
vegetable fat II). The amount of fat absorbed is recorded. Identify each of the following
elements: response, factors, and factor type(s). Write all the treatments from the factor-level
combinations.

9.2.2. A team of scientists is interested in the effects of vitamin A, vitamin C, and vitamin D
on the number of offspring born for a specific species of mice. An experiment is set up
using the same species of mice. The mice are randomly assigned to three groups. Each
mouse in the study gets the same amount of food and daily exercise and is kept at the same
temperature. One group of mice gets extra vitamin A, another group gets extra vitamin C,
and the remaining group gets extra vitamin D. The supplements are added to their food.
The number of offspring are counted and recorded for each group.

(a) What is the response variable?
(b) What is the factor?

9.2.3. Thirty rose bushes are numbered 1 to 30. Three different fertilizers are to be applied to 10
bushes each. Develop a design using the random assignment procedure.

9.2.4. Three different fertilizers are to be applied to five bushes each for three varieties of flower
plants: gardenia (G), rose (R), and jasmine (J). Create a randomized complete block design.
Choose as blocks the different types of plants (G, R, or J).

9.2.5. With the following modifications, consider Exercise 9.2.4. Three groups of flower plants are
considered, with each group having nine plants. Group I consists of gardenia (G), group II
consists of rose (R), and group III consists of jasmine (J). Of the nine gardenias (group I),
three are treated with brand A fertilizer, three with brand B, and three with brand C fertilizer.
Other plant types are treated similarly. Here the number of replications is three for each type
of fertilizer and for each type of plants. Create a randomized complete block design with
three replications.

9.2.6. What are the reasons for using randomization in Exercises 9.2.3 to 9.2.5?

9.2.7. Suppose a food processing company wants to package sliced pineapples in cans. They have
four different processing plants, say, A, B, C, and D. Suppose they have 56 truckloads (num-
bered 1 to 56) of pineapples collected from different parts of the country. In order to get
some uniformity in taste, it is better to randomly assign the trucks to the four plants. Develop
a design using the random assignment procedure.

9.2.8. In Exercise 9.2.1, suppose there are four pans and 24 packets of hash-brown potatoes.
Randomly select six of the 24 packets to be fried with each of the fat types.

(a) Create a randomized complete block design.
(b) Create a Latin square design.
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9.2.9. A chemist is interested in the effects of five different catalysts (A, B, C, D, E) on the reaction
time of a chemical process. There are five batches of new material (1, 2, 3, 4, 5). She decides
to study the effect of each catalyst on each material for 5 days (1, 2, 3, 4, 5). Construct a
Latin square design for this experiment.

9.2.10. Suppose a dating service wants to schedule dates for four women, Anna, Carol, Judy, and
Nancy, with Ed, John, Marcus, and Richard on Thursday, Friday, Saturday, and Sunday in
such a way that each man dates each woman in the 4 days. Create a Latin-square design
displaying a schedule that the dating service could follow.

9.2.11. In order to test the relative effectiveness of four different fertilizer mixtures on an orange crop,
a Florida farmer applies the fertilizer and measures the yield per unit area when it harvests.
The four experiments cannot be carried out on the same plot of land. Devise a Latin square
arrangement of dividing a single plot into a 4 × 4 grid of subplots for administering the
fertilizers (labeled randomly A, B, C, D).

9.2.12. A researcher wants to know the effect of four different types of fertilizers on the mean number
of tomatoes produced. He wants to estimate the treatment means μ1, μ2, μ3, and μ4 such
that he will be 90% confident that the estimates are within five tomatoes of the true mean
number of tomatoes. What is the necessary number of replications to achieve this goal? It
is known from previous experiments that the numbers of tomatoes per plant have ranged
from 20 to 60.

9.3 FACTORIAL DESIGN

In this section, we introduce a treatment design where the treatments are constructed from several
factors rather than just being k levels of a single factor. The treatments are combinations of levels of
the factors. A factorial experiment can be defined as an experiment in which the response variable is
observed at all factor-level combinations of the independent variables. A factorial design is used to
evaluate two or more factors simultaneously. In general, there are three ways to obtain experimental
data: one-factor-at-a-time, full factorial, and fractional factorial. The most efficient design is the frac-
tional factorials. A simple approach for examining the effect of multiple factors is the one-at-a-time
approach. The advantages of factorial designs over one-factor-at-a-time experiments is that they allow
interactions to be spotted. An interaction occurs when the effect of one factor varies with the level of
another factor or with some combination of levels of other factors when there are multiple factors.

The one-way analysis of variance, discussed in the next chapter, enables us to compare several groups
of observations, all of which are independent with the possibility of a different mean for each group.
A test of significance is whether or not all the means are equal. Two-way analysis of variance is a way
of studying the effects of two factors separately, such as their main effects, and together, with their
interaction effect.

9.3.1 One-Factor-at-a-Time Design
In one-factor-at-a-time design, one conducts the experiment with one factor at a time. Here we hold
all factors constant except one and take measurements on the response variable for several levels
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of this one factor, then choose another factor to vary, keeping all others constant, and so forth. We
are familiar with this type of experiment from undergraduate chemistry or physics labs. One of the
drawbacks of this method is that all factors are evaluated while the other factors are at a single setting.
For example, in the case of Example 9.2.2, we would set a fixed temperature and study the effect of
water salinity on fish weight gains, and then set a fixed water salinity and vary temperature. All this is
time consuming.

Example 9.3.1
Consider the following hypothetical data, in which two types of diet (fat, carbohydrates) in two levels (high,

medium) were administered for a week for a sample of individuals. At the end of the week, each subject

was put on a treadmill and time of exhaustion, in seconds, was measured. The objective was to determine

the factor-level combination that will give maximum time of exhaustion. Table 9.13 gives average time to

exhaustion for each combination of diet.

Discuss this as a one-factor-at-a-time experiment to predict average time of exhaustion.

Solution
We can see that the average time of exhaustion decreases when fat content is increased from medium to high

while holding carbohydrate at medium. The average time of exhaustion also decreases when carbohydrate

content is increased from medium to high while holding fat at medium. Thus, it is tempting to predict that

increasing both fat and carbohydrate consumption will result in a lower average time of exhaustion. The

problem with this reasoning is that the prediction is based on the assumption that the effect

Table 9.13

Average time to exhaustion Fat Carbohydrate

88 High Medium

98 Medium Medium

77 Medium High

74 High High

of one factor is the same for both levels of the other factor. Changing the fat content from medium to

high, keeping carbohydrate at medium, and the carbohydrate content from medium to high, keeping fat at

medium, reduced the average time of exhaustion by approximately 10 seconds. The question then is, can we

predict that increasing both fat and carbohydrate content to high will lower the average time of exhaustion

to approximately 67 seconds? To answer this question, we need to administer high levels of both diets to

a sample and observe the average time of exhaustion. If it is 67 seconds, then our observation is correct.

However, what if the observation is 74 seconds? The average time of exhaustion has been lowered, but not

as much. If this happens, we say that the two factors interact. When factors interact, the effect of one factor

on the response is not the same for different levels of the other factor. Hence, the information obtained from

the one-factor-at-a-time approach would lead to an invalid prediction.
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The factor-level combination for a one-factor-at-a-time approach of Example 9.3.1 can be seen from
Figure 9.1.

If there is no interaction, we get Figure 9.2, which shows average time to exhaustion with three given
points and a possible point of around 68 seconds.

Definition 9.3.1 Two factors I and II are said to interact if the difference in mean responses for different
levels of one factor is not constant across levels of the second factor.

If there is interaction, the lines in Figure 9.2 might cross each other, in which case a one-factor-at-a-
time approach may not be the appropriate design. In that case, the following alternative designs will
give more accurate data.

9.3.2 Full Factorial Design
One way to get around the problem of interaction in one-factor-at-a-time design is to evaluate all
possible combinations of factors in a single experiment. This is called a full factorial experiment. The
main benefit of a full factorial design is that every possible data point is collected. The choice of
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optimum condition becomes easy. For example, in an experiment such as the one in Example 9.2.2,
one could conduct a full factorial design. The simplest form of factorial experiment involves two
factors only and is called a two-way layout. A full factorial experiment with n factors and two levels for
each factor is called a 2n factorial experiment. A full factorial experiment is practical if only a few factors
(say, fewer than five) are being investigated. Beyond that, this design becomes time consuming and
expensive.

9.3.3 Fractional Factorial Design
In a fractional factorial experiment, only a fraction of the possible treatments are actually used in the
experiment. A full factorial design is the ideal design, through which we could obtain information
on all main effects and interactions. But because of the prohibitive size of the experiments, such
designs are not practical to run. For instance, consider Example 9.2.2. Now if we were to add say, two
different densities, three sizes of fish, and three types of food, the number of factors becomes five,
and total number of distinct treatments will be 4 × 4 × 2 × 3 × 3 = 288. This method becomes very
time consuming and expensive. The number of relatively significant effects in a factorial design is
relatively small. In these types of situations, fractional factorial experiments are used in which trials
are conducted on only a well-balanced subset of the possible combinations of levels of factors. This
allows the experimenter to obtain information about all main effects and interactions while keeping
the size of the experiment manageable. The experiment is carried out in a single systematic effort.
However, care should be taken in selection of treatments in the experiment so as to be able to answer
as many relevant questions as possible. The fractional factorial design is useful when the number of
factors is large. Because we are reducing the number of factors, a fractional factorial design will not
be able to evaluate the influence of some of the factors independently. Of course, the question is how
to choose the factors and levels we should use in a fractional factorial design. The question of how
fractional factorial designs are constructed is beyond the scope of this book.

EXERCISES 9.3

9.3.1. Suppose a large retail chain decides to introduce clothing in two types of materials’ (ordinary,
fine) qualities. Each store will have two different proportions (40%, 60%) displayed. At the
end of the month, profits from each store for these two types of clothing are recorded.
Table 9.3.1 represents the average profits for each of the quality–proportion combinations.

Table 9.3.1

Average profit Quality Proportion

$10,000 Fine 40%

$25,000 Ordinary 40%

$9500 Ordinary 60%

? Fine 60%

Discuss this as a one-factor-at-a-time experiment to predict the average amount of profit.
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9.3.2. Draw graphs for the data to represent quality–proportion combinations (a) for the one-
factor-at-a-time approach, and (b) for the case where there is no interaction.

9.3.3. Discuss how a fractional factorial design can be performed for the problem in Exercise 9.3.1.

9.3.4. Suppose a researcher wants to conduct a series of experiments to study the effect of fertilizer
and temperature on plant growth. She uses four different brands of fertilizers in three different
settings for the rose plants of the same age and of similar growth.
(a) How many factor-level combinations are possible in this experiment?
(b) Each experiment makes use of one fertilizer–temperature combination (one-factor-at-a-

time design). How should she implement randomization in this experiment?

9.4 OPTIMAL DESIGN

In 1959, J. Kiefer presented a paper to the Royal Statistical Society about his work on the theory of
optimal design. He was trying to answer the major question, “How do we find the best design?” This
work initiated a whole new field of optimal design. The methods of optimal experimental design
provide the technical tools for building experimental designs to attain well-defined objectives with
efficiency and with minimum cost. The cost can be the monetary cost, time, number of experimental
runs, and so on. There are many methods of achieving optimal designs such as sequential (simplex)
or simultaneous experiment designs. In sequential design, experiments are performed in succession
in a direction of improvement until the optimum is reached. Simultaneous experiment designs such
as response surface designs are used to build empirical models. A survey by Atkinson in 1988 contains
many references on optimal design.

In this section, we focus only on one simple example to illustrate the ideas of optimal design in terms
of choosing appropriate sample size. It is not possible to have a single design that is best for securing
information concerning all types of population parameters. Indeed, it is beyond the scope of this
section to present a general theory of optimal design.

9.4.1 Choice of Optimal Sample Size
The sample size estimation is an essential part of experimental design; otherwise, sample size may
be very high or very low. If sample size is too low, the experiment will lack the accuracy to provide
dependable answers to the questions we are investigating. If sample size is too large, time and resources
will be wasted, often for insignificant gain. We now illustrate a simple case of optimal sample size
determination.

Let X11, . . . , X1n1 be a random sample from population 1 with mean μ1 and variance σ2
1 and

X21, . . . , X2n2 be random samples from population 2 with mean μ2 and variance σ2
2 . Assume that

the two samples are independent. Then we know that X1 − X2 is an unbiased estimator of μ1 − μ2

with standard error

σ2
(X1−X2)

= Var(X1 − X2)

= σ2
1

n1
+ σ2

2
n2

.
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Suppose that there is a restriction that the total observations should be n, that is, n1 + n2 = n. Such
a restriction may be due to cost factors or to a shortage of available subjects. An important design
question is how to choose the sample sizes n1 and n2 so as to maximize the information in the data
relevant to the parameter μ1 − μ2. We know that the samples contain maximum information when
the standard error is minimum. Hence, the problem reduces to minimization of Var(X1 − X2). Let
a = n1

n
be the fraction on n observations that is assigned to sample 1. Then n1 = na and n2 = n(1−a),

and we have

Var(X1 − X2) = σ2
1

n1
+ σ2

2
n2

= σ2
1

na
+ σ2

2
n(1 − a)

.

The problem is now reduced to finding an a that minimizes the function g(a) = σ2
1

na
+ σ2

2
n(1−a)

. This

problem that can be solved using calculus. By taking the derivative with respect to a, d
da

g(a) and
equating it to zero, we have

− σ2
1

na2 + σ2
2

n(1 − a)2 = 0.

Multiplying throughout by na2(1 − a)2, we have

−σ2
1 (1 − a2) + σ2

2a2 = 0

which results in the quadratic equation

(σ2
2 − σ2

1 )a2 + 2σ2
1a − σ2

1 = 0.

Using the quadratic formula, we obtain the two roots as

a1 = σ1

σ1 + σ2

and

a2 = σ1

σ1 − σ2
.

However, a2 cannot be the solution because, if σ1 > σ2, then a2 > 1, otherwise a2 < 0; both are not
admissible because a is a fraction. Hence,

a = σ1

σ1 + σ2
and 1 − a = σ2

σ1 + σ2
.

Using the second derivative test, we can verify that this indeed is a minimum for var(X1 − X2). From
this analysis we can see that the sample sizes that maximize the information in the data relevant to
the parameter μ1 − μ2 subject to the constraint n1 + n2 = n are

n1 = σ1

σ1 + σ2
n and n2 = σ2

σ1 + σ2
n.
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As a special case, we can see that when σ2
1 = σ2

2 , the optimal design is to take n1 = n2.

EXERCISES 9.4

9.4.1. A total of 100 sample points were taken from two populations with variances σ2
1 = 4 and

σ2
2 = 9. Find n1 and n2 that will result in the maximum amount of information about

(μ1 − μ2).

9.4.2. Suppose in Exercise 9.4.1 we want to take n = n1 = n2. How large should n be to obtain the
same information as that implied by the solution of Exercise 9.4.1?

9.5 THE TAGUCHI METHODS

Taguchi methods were developed by Genichi Taguchi to improve the implementation of total quality
control in Japan. These methods are claimed to have provided as much as 80% of Japanese quality
gains. They are based on the design of experiments to provide near-optimal quality characteristics
for a specific objective. A special feature of Taguchi methods is that they integrate the methods of
statistical design of experiments into a powerful engineering process. The Taguchi methods are in
general simpler to implement.

Taguchi methods are often applied on the Japanese manufacturing floor by technicians to improve
their processes and their product. The goal is not just to optimize an arbitrary objective function, but
also to reduce the sensitivity of engineering designs to uncontrollable factors or noise. The objective
function used is the signal-to-noise ratio, which is then maximized. This moves design targets toward
the middle of the design space so that external variation affects the behavior of the design as little as
possible. This permits large reductions in both part and assembly tolerances, which are major drivers of
manufacturing cost. Linking quality characteristics to cost through the Taguchi loss function (Taguchi
and Yokoyama, 1994) was a major advance in quality engineering, as well as in the ability to design
for cost. Taguchi methods are also called robust design. In 1982, the American Supplier Institute
introduced Dr. Taguchi and his methods to the U.S. market.

Using a well-planned experimental design, such as a fractional factorial design, it is possible to
efficiently obtain information about the model and the underlying process. Clearly, the purpose of
these methods is to control and ensure the quality of the end product. In the conventional approach,
this is achieved by further testing a few end products that are randomly chosen or using control
charts and making decisions based on certain preset criteria, such as acceptable or unacceptable.
Thus, “quality” of the product is thought of as inside or outside of specifications. Instead, Taguchi
suggested that we should specify a target value, and the quality should be thought of as the variation
from the target.

As an example, suppose we make n observations of the output x1, . . . , xn of a process at times
1, 2, . . . , n, as shown in Figure 9.3.

The control chart consists of a plot of observed output values (xi’s) on the y-axis and the times of
observation, 1, 2, . . . , n on the x-axis, as shown in the figure. The letter T represents the target value. If
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the output value is between TL and TU , the process is deemed to be operating satisfactorily; otherwise
the process is said to be out of control and the output value is considered unsatisfactory.

Some other examples are (1) defining specification limits for acceptance, such as stating that the
diameter of bolts must be between 9.8 mm and 10.2 mm with mean 10 mm, and (2) that the waiting
time in a line should be less than 30 minutes for at least 90% of customers.

In all these situations, the specifications partition the state of the process as acceptable or unacceptable,
that is, it classifies the state as a dichotomy. This is often called the “goal post mentality.”

The basic idea of the Taguchi approach is a shift in mindset from demarking the quality as acceptable
or unacceptable to a more flexible and realistic classification. The traditional approach to quality
control does not take into account the size of departure from the target value. To accommodate the
size of such departure as a significant factor in quality control, let us introduce the concept of loss
function (see Chapter 11). If an output value x differs from the target value T , let L(T, x) denote the
loss incurred, say in dollars. Other possible losses could also be reputation or customer satisfaction.

For the control chart example, we can assign the loss function

L(T, x) =
{

0, if TU < x < TL

L, if x > TL or x < TU

where L is a constant and x is the measured value. This is schematically shown in Figure 9.4.

From Figure 9.4, it is seen that we view outputs x1 and x2 as having equal quality, whereas x2 and
x3 are considered to have vastly differing quality (x2 is acceptable and x3 is not acceptable). A more
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reasonable conclusion would be that x1 has excellent quality, whereas x2 and x3 are similar, both
being poor.

In Taguchi’s approach, the loss function takes into account the size of departure from the target value.
For example, a popular choice for the loss function is

L(T,X) = k(X − T )2,

where

L = loss incurred,
k = constant,
X = actual value of the measured output, and
T = target value.

We can schematically represent the behavior as shown by Figure 9.5.

This form of loss function is called the quadratic loss function. The choice of k depends on the partic-
ular problem. For example, the scaling factor k can be used to convert loss into monetary units to
accommodate comparisons of systems with different capital loss. Or, in product manufacturing, let
D denote the allowed deviation from the target, and let A denote the loss due to a defective product.
Then a choice of k can be k = (A/D)2. As shown earlier, the average loss is E(L) and is given by

E(L) = k[(E(X) − T )2 + σ2] = k[(bias)2 + variance]
where σ2 is the variance of X (measured quality, which is assumed to be random). In Taguchi, the
variation from the target can be broken into components containing bias and product variation. Thus,
if our aim is to minimize the expected loss, E(L), we should not only require E(X) = μ to be close
to T but also should reduce the variance. It turns out that often these requirements are contradictory.
The objective is to choose the design parameters (the factors that influence the quality) optimally to
obtain the best quality product. In practice, the parameters μ and σ2 are not known and are being
estimated by X and S2, respectively. This results in the Taguchi loss function

L = k[(X − T )2 + S2].
This loss function penalizes small deviations from T only slightly, while assessing a larger penalty
for responses far from the target. The expected loss is similar to a mean squared error loss, which we
have seen in regression analysis in the form of least squares.
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Why is controlling both bias and variance important? Suppose you want your community swimming
pool temperature at 80◦F, which is the T here. Suppose the temperature varies between 60◦F and
100◦F. Clearly the average (bias) is zero; however, it will be pretty uncomfortable to swim at 60◦F or
100◦F. Here the bias takes the ideal value of zero, but the variance is large. In another scenario, the
variance may be small, but the average temperature may be farther away from the target value of 80◦F
(for example, the temperature is constant at 60◦F). Hence, we want the pool temperature to be near
to the target value of 80◦F, with as small variance as possible (say, within 1◦F to 2◦F).

Taguchi coined the term design parameters as the generic description for factors that may influence
the quality and whose levels we want to optimize. Taguchi’s philosophy is to “design quality in”
rather than to weed out the defective items after manufacturing. In order to obtain an optimal set of
design parameters that affect the quality of the end product, the Taguchi method utilizes appropriately
designed experiments. More specifically, orthogonal arrays are used for fractional factorial designs.
Taguchi provides tables for these designs so that even a nonspecialist can use them. For two-level
designs (high, low), we have a table for an L4 orthogonal array up to three factors; a table for an L8

orthogonal array up to seven factors; and so forth. Similar tables are available for three-level designs.
We will not describe these design issues in this section. We refer the reader to specialized books on
the subject for further details.

We can summarize the Taguchi approach to quality design as follows:

1. Taguchi’s methods for experimental design are ready made and simple to use in the design of
efficient experiments, even by nonexperts.

2. Taguchi’s approach to total quality management is holistic and tries to design quality into a
product rather than inspecting defects in the final product.

3. Taguchi’s techniques can readily be applied to other fields such as management problems.

EXERCISES 9.5

9.5.1. Suppose the following data represent thickness between and within silicon wafers (in
microns), with a target value of 14.5 microns.

13.688 13.788 14.173 14.557
13.925 14.545 13.797 14.778

Compute the Taguchi loss function.

9.5.2. One of the commonly used performance measures in the Taguchi method is

log

(
(mean)2

s2

)
,

where s2 is the sample variance. In general, the higher the performance measure, the better the
design. This measure is called robustness statistics. For the problem of Exercise 9.5.1, suppose
that we run the experiment by controlling various factors affecting the thickness. Table 9.5.1
shows the data obtained in four different runs.
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Table 9.5.1

Run 1: 14.158 14.754 14.412 14.065 13.802 14.424 14.898 14.187

Run 2: 13.676 14.177 14.201 14.557 13.827 14.514 13.897 14.278

Run 3: 13.868 13.898 14.773 13.597 13.628 14.655 14.597 14.978

Run 4: 13.668 13.788 14.173 14.557 13.925 14.545 13.797 14.778

(a) Using the robustness statistics given earlier, which of the processes gives us an improved
performance?

(b) Another commonly used performance statistic is

− log(s2).

Using this robustness statistic, which of the processes gives us an improved performance?
Compare this with the results of part (a).

9.6 CHAPTER SUMMARY

In this chapter, we have learned some basic aspects of experimental design. Some fundamental
definitions and tools for developing experimental designs such as randomization, replication, and
blocking were introduced in Section 9.2. Basic concepts of factorial design were given in Section 9.3. In
Section 9.4, we saw an example of optimal design. The Taguchi method was introduced in Section 9.5.
In the next chapter, we introduce the analysis component. We have discussed only a very small col-
lection of experimental designs in this chapter. There exist a wide variety of experimental designs to
deal with a large number of treatments and to suit specific needs of research experiments in diverse
fields. It is an exciting and growing area for the interested student to apply and explore.

We list some of the key definitions introduced in this chapter:

■ Response variable (output variable)
■ Independent variables (treatment variables or input variables or factors)
■ Nuisance variables
■ Noise
■ Observational
■ Experimental units
■ Single-factor experiments
■ Multifactor experiments
■ Experimental error
■ Blinding, double-blinding, and placebo
■ Replication
■ Block
■ Randomization
■ Completely randomized design
■ Randomized complete block design
■ k × k Latin square design
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■ Greco-Latin square
■ design parameters

In this chapter, we have also learned the following important concepts and procedures.

■ Procedure for random assignment
■ Procedure for randomization in a randomized complete block design
■ Procedure for a randomized complete block design with r replications
■ Procedure for constructing a 4 × 4 Latin square
■ One-factor-at-a-time design
■ Full factorial design
■ Fractional factorial design
■ Choice of optimal sample size
■ The Taguchi methods

9.7 COMPUTER EXAMPLES

In this chapter, we present Minitab and SAS commands only. SPSS commands can be performed
similarly to Minitab.

9.7.1 Minitab Examples

Example 9.7.1
Obtain a random permutation of numbers 1 to n.

Solution
Enter in C1 the numbers 1 to n, say n = 10. Then

Calc > random data > samples from column. . . >
enter sample 10 > rows from column(s) C1 > Store samples in: C2 > OK

The result is a random permutation of numbers 1 to n(= 10). One such permutation is given by

8 5 9 7 10 6 4 3 2 1

Now if we need to generate blocks of random permutations of numbers 1 to n(=10), in the foregoing steps,

just store samples in C3, C4, . . . .

9.7.2 SAS Examples

Example 9.7.2
For the data of Example 9.2.4, conduct a randomized complete block design using SAS.
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Solution
We represent blocks that are reasons for pain by H = 1, M = 2, and CB = 3. Similarly five brands which are

treatments by A = 1, B = 2, C = 3, D = 4, and E = 5. Then we can use the following code to generate a

randomized complete block design.

options nodate nonumber;
data a;

do block = 1 to 3 ;
do subject = 1 to 5;

x = ranuni(0);
output;

end;
end ;

proc sort; by block x;
data c; set a;

trt = 1 + mod(N − 1, 5); /* mod = remainder of
N/5 */

proc sort; by block subject;
proc print;

var block subject trt;
run;

We get the following output.

Completely randomized 2×3 design, 4 subjects per cell

Obs block subject trt
1 1 1 5
2 1 2 4
3 1 3 3
4 1 4 2
5 1 5 1
6 2 1 2
7 2 2 5
8 2 3 3
9 2 4 4

10 2 5 1
11 3 1 4
12 3 2 5
13 3 3 1
14 3 4 2
15 3 5 3
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Note that the numbers in the column corresponding to a block identify the type of pain, the numbers
in the subject column correspond to the subjects, and the numbers in the column corresponding to
trt identify the brands. Using the corresponding letters, we can rewrite the foregoing table in the
familiar form shown in Table 9.14.

Table 9.14

H M CB

1(E) 1(B) 1(D)

2(D) 2(E) 2(E)

3(C) 3(C) 3(A)

4(B) 4(D) 4(B)

5(A) 4(A) 5(C)

The PLAN procedure constructs experimental designs. The PLAN procedure does not have a DATA=
option in the PROC statement; in this procedure, both the input and output data sets are specified
in the OUTPUT statement. We will use this to construct a Latin square design.

Example 9.7.3
A gasoline company is interested in comparing the effect of four gasoline additives (A, B, C, D) on the gas

mileage achieved per gallon. Four cars (1, 2, 3, 4) and four drivers (I, II, III, IV) will be used in the experiment.

Create a Latin square design.

Solution
We can use the following program, where we represent the additives by 1 = A, 2 = B, 3 = C, and 4 = D.

Options nodate nonumber;
title ’Latin Square design for 4 additives’;
proc plan seed=37432;

factors rows=4 ordered cols=4 ordered/NOPRINT;
treatments tmts=4 cyclic;
output out=g
rows cvals=(’car 1’ ’car 2’ ’car 3’ ’car 4’)
random

cols cvals=(’Driver 1’ ’Driver 2’ ’Driver 3’
’Driver 4’) random

tmts nvals=(1 2 3 4) random;
run;
proc tabulate;

class rows cols;
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var tmts;
table rows, cols*(tmts*f=1.);
keylabel sum=’ ’;

run;

PROJECTS FOR CHAPTER 9

9A. Sample Size and Power
Suppose that the experimenter is interested in comparing the true means of two independent
populations. If two similar treatments are to be compared, the assumption of equality of variances
is not unreasonable. Hence, assume that the common variance of the two populations is σ2, and
the experimenter has a prior estimate of the variance. We learned in Section 9.4 that in this case, the
optimal design will be to take sample sizes n1 and n2 to be equal. Let n = n1 = n2 be the size of
the random sample that the experimenter should take from each population.

Now, suppose that the experimenter has decided to use the one-sided large sample test, H0 : μ1 = μ2

vs. Ha : μ1 > μ2 with a fixed α = P(Type I error). He wants to choose n to be so large that if
μ1 = μ2 + kσ, he will get a fixed power (1 − β) of deciding μ1 > μ2. Recall that power of a test is the
probability of (correctly) rejecting H0 when H0 is false. Find the approximate value of n. Note that,
for a given α, this will be an optimal sample size with a desired value of the power.

In particular, what should be the sample size in the hypothesis testing problem, H0 : μ1 − μ2 = 0
vs. Ha : μ1 − μ2 = 3, if α = β = 0.05. Assume that σ = 7.

9B. Effect of Temperature on Spoilage of Milk
Suppose you have observed that milk in your refrigerator spoils very fast. You may be wondering
whether it has anything to do with the temperature settings. Design an experiment to study the effect
of temperature on spoiled milk, with at least three meaningful settings of the temperature. (i) Write
a possible hypothesis for your experiment. (ii) What are the independent and dependent variables?
(iii) Which variables are being controlled in this experiment? (iv) Discuss how you used the three
basic principles of replication, blocking, and randomization. (v) What conclusions can you make?
Think through any possible flaws in the design that may affect the integrity of your findings.
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John W. Tukey (1915–2000), a chemist-turned-topologist-turned statistician, was one of the most
influential statisticians of the past 50 years. He is credited with inventing the word software. He
worked as a professor at Princeton University and a senior researcher at AT&T’s Bell Laboratories. He
made significant contributions to the fields of exploratory data analysis and robust estimation. His
works on the spectrum analysis of time series and other aspects of digital signal processing have been
widely used in engineering and science. He coined the word bit, which refers to a unit of information
processed by a computer. In collaboration with Cooley, in 1965, Tukey introduced the fast Fourier
transform (FFT) algorithm that greatly simplified computation for Fourier series and integrals. Tukey
authored or coauthored many books in statistics and wrote more than 500 technical papers. Among
Tukey’s most far-reaching contributions was his development of techniques for “robust analysis,”
an approach to statistics that guards against wrong answers in situations where a randomly chosen
sample of data happens to poorly represent the rest of the data set. Tukey also made significant
contributions to the analysis of variance.

10.1 INTRODUCTION

Suppose that we are interested in the effect of four different types of chemical fertilizers on the yield
of rice, measured in pounds per acre. If there is no difference between the different types of fertilizers,
then we would expect all the mean yields to be approximately equal. Otherwise, we would expect the
mean yields to differ. The different types of fertilizers are called treatments and their effects are the
treatment effects. The yield is called the response. Typically we have a model with a response variable
that is possibly affected by one or more treatments. The study of these types of models falls under the
purview of design of experiments, which we discussed in Chapter 9. In this chapter we concentrate on
the analysis aspect of the data obtained from the designed experiments. If the data came from one or
two populations, we could use the techniques learned in Chapters 6 and 7. Here, we introduce some
tests that are used to analyze the data from more than two populations. These tests are used to deal
with treatment effects, including tests that take into account other factors that may affect the response.
The hypothesis that the population means are equal is considered equivalent to the hypothesis that
there is no difference in treatment effects. The analytical method we will use in such problems is
called the analysis of variance (ANOVA). Initial development of this method could be credited to Sir
Ronald A. Fisher who introduced this technique for the analysis of agricultural field experiments. The
“green revolution” in agriculture would have been impossible without the development of theory of
experimental design and the methods of analysis of variance.

Analysis of variance is one of the most flexible and practical techniques for comparing several means.
It is important to observe that analysis of variance is not about analyzing the population variance. In
fact, we are analyzing treatment means by identifying sources of variability of the data. In its simplest
form, analysis of variance can be considered as an extension of the test of hypothesis for the equality
of two means that we learned in Chapter 7. Actually, the so-called one-way analysis of variance is
a generalization of the two-means procedure to a test of equality of the means of more than two
independent, normally distributed populations.
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Recall that the methods of testing H0 : μ1 − μ2 = 0, such as the t-test, were discussed earlier. In
this chapter, we are concerned with studying situations involving the comparison of more than two
population or treatment means. For example, we may be interested in the question “Do the rates
of heart attack and stroke differ for three different groups of people with high cholesterol levels
(borderline high such as 150–199 mg/dL, high such as 200–239 mg/dL, very high such as greater
than 240 mg/dL) and a control group given different dosage levels of a particular cholesterol-lowering
drug (say, a particular statin drug)?” Let us consider four populations with means μ1, μ2, μ3, and μ4,
and say that we wish to test the hypotheses μ1 = μ2 = μ3 = μ4. That is, the mean rate is the same
for all the four groups. The question here is: Why do we need a new method to test for differences
among the four procedure population means? Why not use z- or t-tests for all possible pairs and test
for differences in each pair? If any one of these tests leads to the rejection of the hypothesis of equal
means, then we might conclude that at least two of the four population means differ. The problem
with this approach is that our final decision is based on results of

(4
2

) = 6 different tests, and any
one of them can be wrong. For each of the six tests, let α = 0.10 be the probability of being wrong
(type I error). Then the probability that at least one of the six tests leads to the conclusion that there
is a difference leads to an error 1 − (0.9)6 = 0.46856, which clearly is much larger than 0.10, thus
resulting in a large increase in the type I error rate. Hence, if an ordinary t-test is used to make several
treatment comparisons from the same data, the actual α-value applying to the tests taken as a group
will be larger than the specified value of α, and one is likely to declare significance when there is none.

Analysis of variance procedures were developed to eliminate the increase in error rates resulting from
multiple t-tests. With ANOVA, we are able to set one alpha level and test whether any of the group
means differ from one another. Given a sample from each of the populations, our interest is to answer
the question: Are the observed discrepancies among the different sample means merely due to chance
fluctuations, or are they due to inherent differences among the populations? Analysis of variance
separates the effect of purely random variations from those caused by existing differences among
population means: The phrase “analysis of variance” springs from the idea of analyzing variability in
the data to see how much can be attributed to differences in μ and how much is due to variability in
the individual populations. The ANOVA method incorporates information on variability from all of
the samples simultaneously. At the heart of ANOVA is the fact that variances can be partitioned, with
each partition attributable to a specific source. The method inspects various sums of squares (which
are measures of variation in a sample) calculated from the data. ANOVA looks at two types of sums
of squares: sums of squares within groups and sums of squares between groups. That is, it looks at
each of the distributions and compares the between-group differences (variation in group means)
with the within-group differences (variation in individuals’ scores within groups).

10.2 ANALYSIS OF VARIANCE METHOD FOR TWO TREATMENTS (OPTIONAL)

In this section, we present the simplest form of the analysis of variance procedure, the case of studying
the means of two populations I and II. For comparing only two means, the ANOVA will result in the
same conclusions as the t-test for independent random samples. The basic purpose of this section is to
introduce the concept of ANOVA in simpler terms. Let us consider two random samples of size n1 and
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n2, respectively. That is, y11, y12, . . . , y1n1 from population I and y21, y22, . . . , y2n2 from population
II. Let

y1 = y11 + y12 + · · · + y1n1

n1
(sample mean from population I)

and

y2 = y21 + y22 + · · · + y2n2

n2
(sample mean from population II).

These samples are assumed to be independent and come from normal populations with respective
means μ1, μ2, and variances σ2

1 = σ2
2 . We wish to test the hypothesis

H0 : μ1 = μ2 vs. Ha : μ1 = μ2.

The total variation of the two combined response measurements about y (the sample mean of all
n = n1 + n2 observations) is (SS is used for sum of squares) defined by

Total SS =
2∑

i=1

ni∑
j=1

(
yij − y

)2
. (10.1)

That is,

y = y11 + y12 + · · · + y1n1 + y21 + y22 + · · · + y2n2

n
.

The total sums of squares measures the total spread of scores around the grand mean, y. We can
rewrite (10.1) as

Total SS =
2∑

i=1

ni∑
j=1

(
yij − y

)2

=
n1∑

j=1

(
y1j − y

)2 +
n2∑

j=1

(
y2j − y

)2

=
n1∑

j=1

(
y1j − y1 + y1 − y

)2 +
n2∑

j=1

(
y2j − y2 + y2 − y

)2

=
n1∑

j=1

(
y1j − y1

)2 + n1
(
y1 − y

)2 + 2
(
y1 − y

) n1∑
j=1

(
y1j − y1

)

+
n2∑

j=1

(
y2j − y2

)2 + n2
(
y2 − y

)2 + 2
(
y2 − y

) n2∑
j=1

(
y2j − y2

)
.
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Note that
n1∑

j=1

(
y1j − y1

) = 0 =
n2∑

j=1

(
y2j − y2

)
. We obtain

Total SS =
n1∑

j=1

(
y1j − y1

)2 +
n2∑

j=1

(
y2j − y2

)2

+ n1
(
y1 − y

)2 + n2
(
y2 − y

)2
=

2∑
i=1

ni∑
j=1

(
yij − yi

)2 +
2∑

i=1

ni

(
yi − y

)2
. (10.2)

Define SST, the sum of squares for treatment by

SST =
2∑

i=1

ni (yi − y)2.

The SST measures the total spread of the group means yi with respect to the grand mean, y. Also, SSE
represents the sum of squares of errors given by

SSE =
2∑

i=1

ni∑
j=1

(
yij − yi

)2

=
n1∑

j=1

(
y1j − y1

)2 +
n2∑

j=1

(
y2j − y2

)2
= (n1 − 1)s2

1 + (n2 − 1)s2
2

where s2
1 and s2

2 are the unbiased sample variances of the two random samples. Note that this connects
the sum of squares to the concept of variance we have been using in previous chapters. We can now
rewrite (10.2) as

Total SS = SSE + SST.

It should be clear that the SSE measures the within-sample variation of the y-values (effects), whereas
SST measures the variation among the two sample means. The logic by which the analysis of variance
tests is as follows: If the null hypothesis is true, then SST as compared to SSE should be about the
same, or less. The larger SST, the greater will be the weight of evidence to indicate a difference in the
means μ1 and μ2. The question then is, how large?

To answer this question, let us suppose we have two populations that are normal. That is, let Yij be
N
(
μi, σ

2
)

distributed with values yij . Then the pooled unbiased estimate of σ2 is given by

s2
p = (n1 − 1) s2

1 + (n2 − 1) s2
2

n1 + n2 − 2
= SSE

n1 + n2 − 2
.
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Hence,

σ2 = E
(
s2
p

)
= E

(
SSE

n1 + n2 − 2

)
.

Also, we can write

SSE

σ2 =
n1∑

j=1

(
Y1j − Y1

)2
σ2 +

n2∑
j=1

(
Y2j − Y2

)2
σ2

which has a χ2-distribution with (n1 + n2 − 2) degrees of freedom.

Under the hypothesis that μ1 = μ2, E (SST ) = σ2. Furthermore,

Z = Y1 − Y2√
σ2
(

1
n1

+ 1
n2

) ∼ N (0, 1) .

This implies that

Z2 =
(

1
n1

+ 1
n2

)[
Y1 − Y2

σ2

]
= SST

σ2

has a χ2−distribution with 1 degree of freedom. It can be shown that SST and SSE are independent.
From Chapter 4, we restate the following result.

Theorem 10.2.1 If χ2
1 has υ1 degrees of freedom χ2

2 has υ2 degrees of freedom, and χ2
1 and χ2

2 are inde-

pendent, then F = χ2
1/υ1

χ2
2/υ2

has an F -distribution with υ1 numerator degrees of freedom and υ2 denominator

degrees of freedom.

Using the foregoing result, we have

SST
/
(1) σ2

SSE
/
(n1 + n2 − 2) σ2

= SST /1
SSE/(n1 + n2 − 2)

which has an F -distribution with υ1 = 1 numerator degrees of freedom and υ2 = (n1 + n2 − 2)

denominator degrees of freedom.

Now, we introduce the mean square error (MSE), defined by

MSE = SSE

(n1 + n2 − 2)

= (n1 − 1) s2
1 + (n2 − 1) s2

2
(n1 + n2 − 2)
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and the mean square treatment (MST) given by

MST = SST

1

=
[
n1
(
y1 − y

)2 + n2
(
y2 − y

)2]
.

Under the null hypothesis, H0 : μ1 = μ2, both MST and MSE estimate σ2 without bias. When H0 is
false and μ1 = μ2, MST estimates something larger than σ2 and will be larger than MSE. That is, if
H0 is false, then E(MST ) > E(MSE) and the greater the differences among the values of μ, the larger
E(MST ) will be relative to E(MSE).

Hence, to test H0 : μ1 = μ2 vs. Ha : μ1 = μ2, we use the F -test given by

F = MST

MSE

as the test statistic. Thus, for given α, the rejection region is {F > Fα}. It is important to observe that
compared to the small sample t-test, here we work with variability. Now we summarize the analysis
of variance procedure for the two-sample case.

ANALYSIS OF VARIANCE PROCEDURE FOR TWO TREATMENTS

For equal sample sizes n = n1 = n2, assume σ2
1 = σ2

2 .

We test

H0 : μ1 = μ2 vs. Ha : μ1 = μ2.

1. Calculate: y1, y2,
∑
ij

y 2
ij ,
∑
ij

yij , and find

SST =
2∑

i=1

ni
(

y i − y
)2.

Also calculate

Total SS =
∑

i

∑
j

y 2
ij −

(∑
i

∑
j

yij

)2

n1 + n2
.

Then

SSE = Total SS − SST .
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2. Compute

MST = SST

1

MSE = SSE

n1 + n2 − 2
.

3. Compute the test statistic,

F = MST

MSE
.

4. For a given α, find the rejection region as

RR : F > Fα,

based on 1 numerator and (n1 + n2 − 2) denominator degrees of freedom.
5. Conclusion: If the test statistic F falls in the rejection region, conclude that the sample evidence

supports the alternative hypothesis that the means are indeed different for the two treatments.
Assumptions: Populations are normal with equal but unknown variances.

Example 10.2.1
The following data represent a random sample of end-of-year bonuses for lower-level managerial personnel

employed by a large firm. Bonuses are expressed in percentage of yearly salary.

Female 6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7

Male 8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8

The objective is to determine whether the male and female bonuses are the same. We can answer this

question by connecting the following.

(a) Use the ANOVA approach to test the appropriate hypotheses. Use α = 0.05.

(b) What assumptions are necessary for the test in part (a)?

(c) Test the appropriate hypothesis by using the two-sample t-test for comparing population means.

Compare the value of the t-statistic to the value of the F -statistic calculated in part (a).

Solution
(a) We need to test

H0 : μ1 = μ2 vs. Ha : μ1 = μ2

From the random sample, we obtain the following needed estimates, n1 = n2 = 8:

y1 = 7.8375, y2 = 10.0625,
∑
ij

y2
ij = 1319.34,

∑
ij

yij = 143.20

SST =
2∑

i=1

ni (yi − y2)2 = 19.8025.
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Therefore,

Total SS =
∑

i

∑
j

y2
ij −

(∑
i

∑
j

y2
ij

)2

2n

= 1391.34 − (143.2)2

16
= 109.70.

Then

SSE = Total SS − SST

= 109.7 − 19.8025 = 89.8975,

MST = SST

1
= 19.8025

and

MSE = SSE

2n1 − 2
= 89.8975

14

= 6.42125.

Hence, the test statistic

F = MST

MSE
= 19.8025

6.42125

= 3.0839.

For α = 0.05, F0.05,14 = 4.60. Hence the rejection region is {F > 4.60}. Because 3.0839 is not

greater than 4.60, H0 is not rejected. There is not enough evidence to indicate that the average

bonuses are different for men and women at α = 0.05.

(b) To solve the problem, we assumed that the samples are random and independent with n1 = n2 = 8,

drawn from two normal populations with means μ1 and μ2 and common variance σ2.

(c) The value of MSE is the same as s2 = s2
p = 6.42125. Also, y1 = 7.8375 and y2 = 10.0625. Then,

the t-statistic is

t = y1 − y2√
s2
(

1
n1

+ 1
n2

) = 7.8375 − 10.0625√
6.42125

(
1
8 + 1

8

) = −1.756.

Now, t0.025,14 = 2.415 and the rejection region is {t < −2.145}.

Because −1.756 is not less than −2.45, H0 is not rejected, which implies that there is no significant difference

between the bonuses for the males and the females.

Note also that t2 = F , that is, (−1.756)2 = 3.083 implying that in the two-sample case, the t-test and

F -test lead to the same result.
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It is not surprising that in the previous example, the conclusions reached using ANOVA and two
sample t-tests are the same. In fact, it can be shown that for two sets of independent and normally
distributed random variables, the two procedures are entirely equivalent for a two-sided hypothesis.
However, a t-test can also be applied to a one-sided hypothesis, whereas ANOVA cannot. The purpose
of this section is only to illustrate the computations involved in the analysis of variance procedures
as opposed to simple t-tests. The analysis of variance procedure is effectively used for three or more
populations, which is described in the next section.

EXERCISES 10.2

10.2.1. The following information was obtained from two independent samples selected from two
normally distributed populations with unknown but equal standard deviations. Do the
data present sufficient evidence to indicate that there is a difference in the mean for the two
populations?

Sample 1 1 2 3 3 1 2 1 3 1
Sample 2 2 5 2 4 3 1 2 3 3

(a) Use the ANOVA approach to test the appropriate hypotheses. Use α = 0.05.
(b) Test the appropriate hypothesis by using the two-sample t-test for comparing population

means. Compare the value of the t-statistic to the value of the F -statistic calculated in
part (a).

10.2.2. The following information was obtained from two independent samples selected from two
normally distributed populations with unknown but equal standard deviations. Do the
data present sufficient evidence to indicate that there is a difference in the mean for the two
populations?

Sample 1: 15 13 11 14 10 12 7 12 11 14 15
Sample 2: 18 16 13 21 16 19 15 18 19 20 21 14

(a) Use the ANOVA approach to test the appropriate hypotheses. Use α = 0.01.
(b) Test the appropriate hypothesis by using the two-sample t-test for comparing population

means. Compare the value of the t-statistic to the value of the F -statistic calculated in
part (a).

10.2.3. A company claims that its medicine, brand A, provides faster relief from pain than another
company’s medicine, brand B. A random sample from each brand gave the following times
(in minutes) for relief. Do the data present sufficient evidence to indicate that there is a
difference in the mean time to relief for the two populations?

Brand A: 47 51 45 53 41 55 50 46 45 51 53 50 48
Brand B: 44 48 42 45 44 42 49 46 45 48 39 49

(a) Use the ANOVA approach to test the appropriate hypotheses. Use α = 0.01.
(b) What assumptions are necessary for the conclusion in part (a)?
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(c) Test the appropriate hypothesis by using the two-sample t-test for comparing population
means. Compare the value of the t-statistic to the value of the F -statistic calculated in
part (a).

10.2.4. Table 10.2.1 gives mean SAT scores for math by state for 1989 and 1999 for 20 randomly
selected states (source: The World Almanac and Book of Facts 2000).

Table 10.2.1

State 1989 1999

Arizona 523 525

Connecticut 498 509

Alabama 539 555

Indiana 487 498

Kansas 561 576

Oregon 509 525

Nebraska 560 571

New York 496 502

Virginia 507 499

Washington 515 526

Illinois 539 585

North Carolina 469 493

Georgia 475 482

Nevada 512 517

Ohio 520 568

New Hampshire 510 518

Using the ANOVA procedure, test that the mean SAT score for math in 1999 is greater than
that in 1989 at α = 0.05. Assume that the variances are equal and the samples come from
a normal distribution.

10.2.5. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two sets of independent, normally distributed random
variables with means μ1 and μ2, and the common variance σ2. Show that the two-sample
t-test and the analysis of variance are equivalent for testing H0 : μ1 = μ2 versus Ha : μ1 > μ2.



510 CHAPTER 10 Analysis of Variance

10.3 ANALYSIS OF VARIANCE FOR COMPLETELY RANDOMIZED DESIGN

In this section, we study the hypothesis testing problem of comparing population means for more
than two independent populations, where the data are about several independent groups (different
treatments being applied, or different populations being sampled). We have seen in Chapter 9 that the
random selection of independent samples from k populations is known as a completely randomized
experimental design or one-way classification.

Let μ1 , . . . , μk be the means of k normal populations with unknown but equal variance σ2. The
question is whether the means of these groups are different or are all equal. The idea is to consider
the overall variability in the data. We partition the variability into two parts: (1) between-groups
variability and (2) within-groups variability. If between groups is much larger than that within groups,
this will indicate that differences between the groups are real, not merely due to the random nature
of sampling. Let independent samples be drawn of sizes ni, i = 1, 2, . . . , k and let N = n1 +· · ·+nk.
Let yij be the measured response on the jth experimental unit in the ith sample. That is, Yij is the
jth observation from population i, i = 1, 2, . . . , k, and j = 1, 2, . . . , ni. Let y be the overall mean
of all observations. The problem can be formulated as a hypothesis testing problem, where we need
to test

H0 : μ1 = μ2 = . . . = μk vs. Ha : Not all the μ′
is are equal.

The method of analysis of variance tests the null hypothesis H0 by comparing two unbiased estimates
of the variance, σ2, an estimate based on variations from sample to sample and the other one based
on variations within the samples. We will be rejecting H0 if the first estimate is significantly larger
than the second, so that the samples cannot be assumed to come from the same population.

We can write the total sum of squares of deviations of the response measurements about their overall
mean for the k samples into two parts, from the treatment (SST) and from the error (SSE). This
partition gives the fundamental relationship in ANOVA, where total variation is divided into two
portions: between-sample variation and within-sample variation. That is,

Total SS = SST + SSE.

The following derivations will make computation of these quantities simpler. The total SS can be
written as

Total SS =
k∑

i=1

ni∑
j=1

(
yij − y

)2 =
k∑

i=1

ni∑
j=1

y2
ij − 2y

k∑
i=1

ni∑
j=1

yij + Ny2.

Note that y =
k∑

i=1

ni∑
j=1

yij

N
, and then we have

Total SS =
k∑

i=1

ni∑
j=1

y2
ij − CM
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where CM is the correction factor for the correction for the means and is given by

CM =

(
k∑

i=1

ni∑
j=1

yij

)2

N
= Ny2.

Let

Ti =
ni∑

j=1

yij, be the sum of all the observations in the ith sample

and

Ti =

ni∑
j=1

yij

ni
, the mean of the observations in the ith sample.

We can rewrite y as

y =

k∑
i=1

ni∑
j=1

yij

N
=

k∑
i=1

niT i

N

Now, we introduce SST, the sum of squares for treatment (sometimes known as between group sum
of squares, SSB) by

SST =
k∑

i=1

ni

(
Ti − y

)2
.

We note that
(
Ti

)
is the mean response due to its ith treatment and y is the overall mean. A large

value of
(
Ti − y

)
is likely to be caused by the ith treatment effect being much different from the rest.

Hence SST can be used to measure the differences in the treatment effects.

Thus, the sum of squares of errors (SSE) is

SSE = Total SS − SST.

We must state that the SSE is the sum of squares within groups (thus, sometimes SSE is referred to as
within group sum of squares, SSW) and this can be seen from rewriting the expression as

SSE =
k∑

i=1

ni∑
j=1

(
yij − T i

)2
.

The decomposition of total sum of squares can be easily seen in Figure 10.1.

Figure 10.2 represents one point for each observation against each sample, with SM representing the
sample means and GM representing the grand mean. The dotted line between SMs and GM is the
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SSE (or within group sum
of squares

(yi j �Ti)
2

k

i�1 j�1
�

ni

Total sum of
squares

SST (or between
group sum of squares

ni (Ti � y )2
k

i � 1

�

■ FIGURE 10.1 Decomposition of total SS.
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■ FIGURE 10.2 ANOVA decomposition.

distance between them. Taking this distances, squaring, multiplying by the corresponding sample
sizes, and summing, we get SST. To obtain SSE, we take the distance from each group mean, SM, to
each member of the group, square them, and add them. In addition, to give an idea of within-group
variations, it is customary to draw side-by-side box plots.

As mentioned earlier, SST estimates the variation among the μ′
is, and hence if all the μ′

is were equal,
the Ti

′
s would be similar and the SST would be small. It can be verified that the unbiased estimator

of σ2 based on (n1 + n2 + · · · + nk − k) degrees of freedom is

S2 = MSE = SSE

(n1 + n2 + · · · + nk − k)

= SSE

N − k
.
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Note that the quantity MSE is a measure of variability within the groups. If there were only one group
with n observations, then the MSE is nothing but the sample variance, s2. The fact that ANOVA deals
simultaneously with all the k groups can be seen by rewriting MSE in the following form:

MSE = (n1 − 1) s2
1 + (n2 − 1) s2

2 + · · · + (nk − 1) s2
k

(n1 − 1) + (n2 − 1) + · · · + (nk − 1)
.

The mean square for treatments with (k − 1) degrees of freedom is

MST = SST

k − 1
.

The MST is a measure of the variability between the sample means of the groups. We now summarize
the analysis of variance hypothesis testing method for two or more populations.

ONE-WAY ANALYSIS OF VARIANCE FOR k ≥ 2 POPULATIONS

We test

H0 : μ1 = μ2 = . . . = μk versus

Ha : At least two of the μ′
i s are different.

When H0 is true, we have

E (MST ) = E (MSE )

The greater the differences among the μ′s, the larger the E (MST ) will be relative to E (MSE ).

Test statistic:

F = MST

MSE
.

Rejection region is

RR : F > Fα

with υ1 = (k − 1) numerator degrees of freedom and υ2 = ∑k
i=1 ni − k = N − k denominator degrees of

freedom, where N = ∑k
i=1 ni .

Assumptions: The observations Y ′
ij s are assumed to be independent and normally distributed with mean

μi , i = 1, 2, . . . , k , and variance σ2.

Now we give a five-step computational procedure that we could follow for analysis of variance for
the completely randomized design.

ONE-WAY ANALYSIS OF VARIANCE PROCEDURE FOR k ≥ 2 POPULATIONS

We test

H0 : μ1 = μ2 = . . . = μk versus

Ha : At least two of the μ′
i s are different.
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1. Compute

Ti =
ni∑

j=1

yij , T =
k∑

i=1

ni∑
j=1

yij , and
k∑

i=1

ni∑
j=1

y 2
ij ,

CM =

(
k∑

i=1

ni∑
j=1

yij

)2

N
= T 2

N
, where N =

k∑
i=1

ni ,

Ti = Ti

ni
,

and

Total SS =
k∑

i=1

ni∑
j=1

y 2
ij − CM.

2. Compute the sum of squares between samples (treatments),

SST =
k∑

i=1

T 2
i

ni
− CM

=
k∑

i=1

Ti − CM.

and the sum of squares within samples,

SSE = Total SS − SST

Let

MST = SST

k − 1
,

and

MSE = SSE

n − k
.

3. Compute the test statistic:

F = MST

MSE
.

4. For a given α, find the rejection region as

RR : F > Fα
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with υ1 = (
k − 1

)
numerator degrees of freedom and υ2 =

(∑k
i=1 ni

)
− k = N − k denominator

degrees of freedom, where N = ∑k
i=1 ni .

5. Conclusion: If the test statistic F falls in the rejection region, conclude that the sample evidence
supports the alternative hypothesis that the means are indeed different for the k treatments and are
not all equal.

Assumptions: The samples are randomly selected from the k populations in an independent manner. The
populations are assumed to be normally distributed with equal variances σ2 and means μ1, . . . , μk .

10.3.1 The p-Value Approach
Note that if we are using statistical software packages, the p-value approach can be used for the
testing. Just compare the p-value and α to arrive at a conclusion. Refer to the computer examples in
Section 10.7.

The following example illustrates the ANOVA procedure.

Example 10.3.1
The three random samples in Table 10.1 represent test scores from three classes of statistics taught by

three different instructors and are independently obtained. Assume that the three different populations

are normal with equal variances.

At the α = 0.05 level of significance, test for equality of population means.

Table 10.1

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80

Solution
We test

H0 : μ1 = μ2 = μ3 versus Ha : At least two of the μ′s are different.

Here, k = 3, n1 = 5, n2 = 3, and N = n1 + n2 + n3 = 11.
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Also,

Ti 380 199 257

ni 5 3 3

Ti 76 66.33 85.67

Clearly, the sample means are different. The question we are going to answer is: Is this difference due to just

chance, or is it due to a real difference caused by different teaching styles? For this, we now compute the

following:

CM =

(∑
i

∑
j

yij

)2

N
= (836)2

11
= 63,536

Total SS =
∑

i

∑
j

y2
ij − CM

= 64,558 − 63,536 = 1022

SST =
∑

i

T 2
i

ni
− CM

= (380)2

5
+ (199)2

3
+ (257)2

3
− CM

= 64,096.66 − 63,536 = 560.66

SSE = Total SS − SST

= 1022 − 560.66 = 461.34.

Hence,

MST = SST

k − 1
= 560.66

2
= 280.33,

and

MSE = SSE

N − k
= 461.34

8
= 57.67.

The test statistic is

F = MST

MSE
= 280.33

57.67
= 4.86.

From the F -table, F0.05,2,8 = 4.46.

Therefore, the rejection region is given by

RR : F > 4.46.

Decision: Because the observed value of F = 4.86 falls in the rejection region, we do reject H0 and conclude

that there is sufficient evidence to indicate a difference in the true means.
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If we want the p-value, we can see from the F -table that 0.025 < p-value < 0.05, indicating the rejection

of the null hypothesis with α = 0.05. Using statistical software packages, we can get the exact p-value.

The calculations obtained in analyzing the total sum of squares into its components are usually
summarized by the analysis-of-variance table (ANOVA table), given in Table 10.2.

Sometimes, one may also add a column for the p-value, P(Fk−1,n−k ≥ observed F), in the ANOVA
table.

For the previous example, we can summarize the computations by the ANOVA table shown in
Table 10.3.

10.3.2 Testing the Assumptions for One-Way ANOVA
The randomness assumption could be tested using the Wald–Wolfowitz test (see Project 12B). The
assumption of independence of the samples is hard to test without knowing how the data are collected
and should be implemented during collection of data in the design stage. Normality can be tested
(this should be performed separately for each sample, not for the total data set) using probability
plots or other tests such as the chi-square goodness-of-fit-test. ANOVA is fairly robust against violation
of this assumption if the sample sizes are equal. Also, if the sample sizes are fairly large, the central
limit theorem helps. The presence of outliers is likely to increase the sample variance, thus decreasing

Table 10.2

Source of Degree of Sum of Mean F-
variation freedom squares squares statistic

Treatments k − 1 SST =
k∑

i=1

T 2
i

ni
− CM MST = SST

k−1
MST
MSE

Error n − k SSE = Total SS − SST MSE = SSE
n−k

Total n − k Total SS =
k∑

i=1

ni∑
i=1

(
yij − y

)2

Table 10.3

Source of Degree Sum of Mean F-statistic p-Value
variation of freedom squares square

Treatments 2 560.66 280.33 4.86 0.042

Error 8 461.34 57.67

Total 10 1022
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the value of the F -statistic for ANOVA, which will result in a lower power of the test. Box plots or
probability plots could be used to identify the outliers. If the normality test fails, transforming the
data (see Section 14.4.2) or a nonparametric test such as the Kruskal–Wallis test described in Section
12.5.1 may be more appropriate. If the sample sizes of each sample are equal, ANOVA is mostly
robust for violation of homogeneity of the variances. A rule of thumb used for robustness for this
condition is that the ratio of sample variance of the largest sample variance s2 to the smallest sample
variance s2 should be no more than 3 : 1. Another popular rule of thumb used in one-way ANOVA
to verify the requirement of equality of variances is that the largest sample standard deviation not
be larger than two times the smallest sample standard deviation. Graphically, representing side-by-
side box plots of the samples can also reveal lack of homogeneity of variances if some box plots are
much longer than others (see Figure 10.3e). For a significance test on the homogeneity of variances
(Levene’s test), refer to Section 14.4.3. If these tests reveal that the variances are different, then the
populations are different, in spite of what ANOVA concludes about differences of the means. But this
itself is significant, because it shows that the treatments had an effect.

Example 10.3.2
In order to study the effect of automobile size on the noise pollution, the following data are randomly

chosen from the air pollution data (source: A. Y. Lewin and M. F. Shakun, Policy Sciences: Methodology and

Cases, Pergamon Press, 1976, p. 313). The automobiles are categorized as small, medium, large, and noise

level reading (decibels) are given in Table 10.4.

Table 10.4

Size of automobile

Small Medium Large

820 840 785

Noise level 820 825 775

(decibels) 825 815 770

835 855 760

825 840 770

At the α = 0.05 level of significance, test for equality of population mean noise levels for different sizes of

the automobiles. Comment on the assumptions.

Solution
Let μ1, μ2, μ3 be population mean noise levels for small, medium, and large automobiles, respectively. First

we test for the assumptions. Using Minitab, run tests for each of the samples; we can justify the assumption

of randomness of the sample values. A normality test for each column gives the graphs shown in Figures

10.3a through 10.3c, through which we can reasonably assume the normality. Because the sample sizes are

equal, we will use the one-way ANOVA method to analyze these data.
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Figure 10.3d indicates that the relative positions of the sample means are different, and Figure 10.3e (Minitab

steps for creating side-by-side box plots are given at the end of Example 10.7.1) gives an indication of within-

group variations; perhaps the group 2 (medium-size) variance is larger. Now, we will do the analytic testing.
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■ FIGURE 10.3(a) Normal plot for noise level of small automobiles.
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■ FIGURE 10.3(b) Normal plot for noise level of medium-sized automobiles.
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■ FIGURE 10.3(c) Normal plot for noise level of large automobiles.
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■ FIGURE 10.3(d) Mean decibel levels for three sizes of automobiles.
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■ FIGURE 10.3(e) Side-by-side box plots for decibel levels for three sizes of automobiles.

We test

H0 : μ1 = μ2 = μ3 versus Ha : At least two of the μ′s are different.

Here, k = 3, n1 = 5, n2 = 5, n3 = 5 and N = n1 + n2 + n3 = 15.

Also

Ti 4125 4175 3860

ni 5 5 5

Ti 825 835 772

In the following calculations, for convenience we will approximate all values to the nearest integer.

CM =

(∑
i

∑
j

yij

)2

N
= (12,160)2

15
= 9,857,707

Total SS =
∑

i

∑
j

y2
ij − CM

= 12,893

SST =
∑

i

T 2
i

ni
− CM

= 11,463

SSE = Total SS − SST

= 1430.



522 CHAPTER 10 Analysis of Variance

Hence,

MST = SST

k − 1
= 11,463

2
= 5732

and

MSE = SSE

N − k
= 1430

12
= 119.

The test statistic is

F = MST

MSE
= 5732

119
= 48.10.

From the table, we get F0.05,2,12 = 3.89. Because the test statistic falls in the rejection region, we reject

at α = 0.05 the null hypothesis that the mean noise levels are the same. We conclude that size of the

automobile does affect the mean noise level.

It should be noted that the alternative hypothesis Ha in this section covers a wide range of situations,
from the case where all but one of the population means are equal to the case where they are all
different. Hence, with such an alternative, if the samples lead us to reject the null hypothesis, we are
left with a lot of unsettled questions about the means of the k populations. These are called post hoc
testing. This problem of multiple comparisons is the topic of Section 10.5.

10.3.3 Model for One-Way ANOVA (Optional)
We conclude this section by presenting the classical model for one-way ANOVA. Because the variables
Yij values are random samples from normal populations with E(Yij) = μi and with common variance
Var(Yij) = σ2, for i = 1, . . . , k and j = 1, . . . , ni, we can write a model as

Yij = μi + εij, j = 1, . . . , ni

where the error terms εij are independent normally distributed random variables with E(εij) = 0 and
Var(εij) = σ2. Let αi = μ − μi be the difference of μi (ith population mean) from the grand mean μ.
Then αi can be considered as the ith treatment effect. Note that the αi values are nonrandom. Because
μ = ∑

i (niμi/N), it follows that
∑k

i=1 αi = 0. This will result in the following classical model for
one-way layout:

Yij = μ + αi + εij, i = 1, . . . , k, j = 1, . . . , ni.

With this representation, the test H0 : μ1 = μ2 = . . . . =μk reduces to testing the null hypothesis that
there is no treatment effect, H0 : αi = 0, for i = 1, . . . , k.

EXERCISES 10.3

10.3.1. In an effort to investigate the premium charged by insurance companies for auto insur-
ance, an agency randomly selects a few drivers who are insured by one of three different
companies. These individuals have similar cars, driving records, and levels of coverage.
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Table 10.3.1 gives the premiums paid per 6 months by these drivers with these three
companies.

Table 10.3.1

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474 432

(a) Construct an analysis-of-variance table and interpret the results.
(b) Using the 5% significance level, test the null hypothesis that the mean auto insurance

premium paid per 6 months by all drivers insured for each of these companies is the
same. Assume that the conditions of completely randomized design are met.

10.3.2. Three classes in elementary statistics are taught by three different persons: a regular faculty
member, a graduate teaching assistant, and an adjunct from outside the university. At the
end of the semester, each student is given a standardized test. Five students are randomly
picked from each of these classes, and their scores are as shown in Table 10.3.2.

Table 10.3.2

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

(a) Construct an analysis-of-variance table and interpret your results.
(b) Test at the 0.05 level whether there is a difference between the mean scores for the

three persons teaching. Assume that the conditions of completely randomized design
are met.

10.3.3. Let n1 = n2 = . . . = nk = n′. Show that

k∑
i=1

n′∑
j=1

(
yij − y

)2 =
k∑

i=1

n′∑
j=1

(
yij − Ti

)2 + n

k∑
i=1

(
Ti − y

)2
.
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10.3.4. For the sum of squares for treatment

SST =
k∑

i=1

ni

(
Ti − y

)2
show that

E (SST ) = (k − 1) σ2 +
k∑

i=1

ni (μi − μ)2

where μ = 1
N

k∑
i=1

niμi.

[This exercise shows that the expected value of SST increases as the differences among the
μ′

is increase.]

10.3.5. (a) Show that

SSE =
k∑

i=1

(ni − 1) S2
i =

k∑
i=1

ni∑
j=1

(
Yij − Ti

)2
,

where S2
i = 1

n−1

∑ni

j=1

(
Yij − Ti

)2
provides an independent, unbiased estimator for

σ2 in each of the k samples.
(b) Show that SSE

/
σ2 has a chi-square distribution with N −k degrees of freedom, where

N = ∑k
i=1 ni.

10.3.6. Let each observation in a set of k independent random samples be normally distributed
with means μ1, . . . , μk and common variance σ2. If H0 = μ1 = μ2 = . . . = μk is true,
show that

F = SST /(k − 1)

SSE/(n − k)
= MST

MSE

has an F -distribution with k − 1 numerator and n − k denominator degrees of freedom.

10.3.7. The management of a grocery store observes various employees for work productivity.
Table 10.3.3 gives the number of customers served by each of its four checkout lanes per
hour.

Table 10.3.3

Lane 1 Lane 2 Lane 3 Lane 4

16 11 8 21

18 14 12 16

22 10 17 17

21 10 10 23

15 14 13 17

10 15
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(a) Construct an analysis-of-variance table and interpret the results. Indicate any assump-
tions that were necessary.

(b) Test whether there is a difference between the mean number of customers served
by the four employees at the 0.05 level. Assume that the conditions of completely
randomized design are met.

10.3.8. Table 10.3.4 represents immunoglobulin levels (with each observation being the IgA
immunoglobulin level measured in international units) of children under 10 years of age
of a particular group. The children are grouped as follows: A: ages 1 to less than 3, B: ages
3 to less than 6, C: ages 6 to less than 8, and D: ages 8 to less than 10. Test whether there
is a difference between the means for each of the age groups. Use α = 0.05. Interpret your
results and state any assumptions that were necessary to solve the problem.

Table 10.3.4

A 35 8 12 19 56 64 75 25

B 31 79 60 45 39 44 45 62 20 66

C 74 56 77 35 95 81 28

D 80 42 48 69 95 40 86 79 51

10.3.9. Table 10.3.5 gives rental and homeowner vacancy rates by U.S. region (source: U.S. Census
Bureau) for 5 years.

Table 10.3.5

Rental units 1995 1996 1997 1998 1999

Northeast 7.2 7.4 6.7 6.7 6.3

Midwest 7.2 7.9 8.0 7.9 8.6

South 8.3 8.6 9.1 9.6 10.3

West 7.5 7.2 6.6 6.7 6.2

Test at the 0.01 level whether the true rental and homeowner vacancy rates by area are the
same for all 5 years. Interpret your results and state any assumptions that were necessary
to perform the analysis.

10.3.10. Table 10.3.6 gives lower limits of income (approximated to the nearest $1000 and calculated
as of March of the following year) of the top 5% of U.S. households by race from 1994 to
1998 (Source: U.S. Census Bureau).
Test at the 0.05 level whether the true lower limits of income for the top 5% of U.S.
households for each race are the same for all 5 years.
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Table 10.3.6

Race Year

1994 1995 1996 1997 1998

All Races 110 113 120 127 132

White 113 117 123 130 136

Black 81 80 85 87 94

Hispanic 82 80 86 93 98

10.3.11. Table 10.3.7 gives mean serum cholesterol levels (given in milligrams per deciliter) by race
and age in the United States between 1978 and 1980 (source: “Report of the National
Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of
High Blood Cholesterol in Adults,” Arch. Intern. Med. 148, January 1988).

Table 10.3.7

Race Age

20–24 25–34 35–44 45–54 55–64 65–74

All Races 180 199 217 227 229 221

White 180 199 217 227 230 222

Black 171 199 218 229 223 217

Test at the 0.01 level whether the true mean cholesterol levels for all races in the United
States between 1978 and 1980 are the same.

10.4 TWO-WAY ANALYSIS OF VARIANCE, RANDOMIZED COMPLETE
BLOCK DESIGN

A randomized block design, or the two-way analysis of variance, consists of b blocks of k experimental
units each. In many cases we may be required to measure response at combinations of levels of two
or more factors considered simultaneously. For example, we might be interested in gas mileage per
gallon among four different makes of cars for both in-city and highway driving, or to examine weight
loss comparing five different diet programs among whites, African Americans, Hispanics, and Asians
according to their gender. In studies involving various factors, the effect of each factor on the response
variable may be analyzed using one-way classification. However, such an analysis will not be efficient
with respect to time, effort, and cost. Also, such a procedure would give no knowledge about the likely
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interactions that may exist among different factors. In such cases, the two-way analysis of variance is
an appropriate statistical method to use.

In a randomized block design, the treatments are randomly assigned to the units in each block,
with each treatment appearing exactly once in every block (that is, there is no interaction between
factors). Thus, the total number of observations obtained in a randomized block design is n = bk. The
purpose of subdividing experiments into blocks is to eliminate as much variability as possible, that
is, to reduce the experimental error or the variability due to extraneous causes. Refer to Section 9.2.3
for a procedure to obtain completely randomized block design. The goal of such an experiment is to
test the equality of levels for the treatment effect. Sometimes, it may also be of interest to test for a
difference among blocks. We proceed to give a formal statistical model for the completely randomized
block design.

For i = 1, 2, . . . , k and j = 1, 2, . . . , b, let Yij = μ + αi + βj + εij , where Yij is the observation
on treatment i in block j, μ is the overall mean, αi is the nonrandom effect of treatment i, βj is
the nonrandom effect of block j, and εij are the random error terms such that εij are independent
normally distributed random variables with E

(
εij

) = 0 and Var
(
εij

) = σ2. In this case,
∑

αi = 0,
and

∑
βj = 0.

The analysis of variance for a randomized block design proceeds similarly to that for a completely
randomized design, the main difference being that the total sum of squares of deviations of the
response measurements from their means may be partitioned into three parts: the sum of squares of
blocks (SSB), treatments (SST), and error (SSE).

Let Bj = ∑k
i=1 yij and Bj denote, respectively, the total sum and mean of all observations in block

j. Represent the total for all observations receiving treatment i by Ti = ∑b
j=1 yij , and mean and T i,

respectively. Let

y = average of n = bk observations

= 1
n

b∑
j=1

k∑
i=1

yij

and

CM = 1
n

(
total of all observations

)2

= 1
n

⎛
⎝ b∑

j=1

k∑
i=1

yij

⎞
⎠

2

.

For convenience, we can represent the two-way classification as in Table 10.5.

Note that from the table we can obtain
b∑

j=1

k∑
i=1

yij =
b∑

j=1
Bj . Hence, CM = (1/n)

(∑b
j=1 Bj

)2
.
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Table 10.5

Blocks

1 2 . . . j . . . b Total T i Mean T i

Treatment 1 y11 y12 . . . y1j . . . y1b T1 T 1

Treatment 2 y21 y22 . . . y2j . . . y2b T2 T 2

. . .

. . .

. . .

Treatment i yi1 yi2 . . . yij . . . yib Ti T i

. .

. .

. .

Treatment k yk1 yk2 . . . ykj . . . ykb Tk T k

Total Bj B1 B2 . . . Bj . . . Bb

Mean Bj B1 B2 . . . Bj . . . Bb y

Then for a randomized block design with b blocks and k treatments, we need to compute the following
sums of squares. They are

Total SS = SSB + SST + SSE

=
b∑

j=1

k∑
i=1

(
yij − y

)2 =
b∑

j=1

k∑
i=1

y2
ij − CM

SSB = k

b∑
j=1

(
Bj − y

)2 =

b∑
j=1

B2
j

k
− CM

and

SST = b

k∑
i=1

(
Ti − y

)2 =

k∑
i=1

T 2
i

b
− CM

SSE = Total SS − SSB − SST.

We define

MSB = SSB

b − 1
,

MST = SST

k − 1
,
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Table 10.6

Source d.f. SS MS

Blocks b − 1 SSB
SSB

b − 1

Treatments k − 1 SST
SST

k − 1

Error (b − 1)(k − 1) SSE
SSE

n − b − k + 1= n − b − k + 1

Total n − 1 Total SS

and

MSE = SSE

n − b − k + 1
.

The analysis of variance for the randomized block design is presented in Table 10.6. The column
corresponding to d.f. represents the degrees of freedom associated with each sum of squares. MS
denotes the mean square.

To test the null hypothesis that there is no difference in treatment means, that is, to test

H0 : αi = 0, i = 1, . . . , k versus Ha : Not all α′
is are zero

we use the F -statistic

F = MST

MSE

and reject H0 if F > Fα based on (k − 1) numerator and (n − b − k + 1) denominator degrees of
freedom.

Although blocking lowers the experimental error, it also furnishes a chance to see whether evidence
exists to indicate a difference in the mean response for blocks. In this case we will be testing the
hypothesis

H0 : βj = 0, j = 1, . . . , b versus Ha : Not all β′
j s are zero.

Under the assumption that there is no difference in the mean response for blocks, MSB provides an
unbiased estimator for σ2 based on (b − 1) degrees of freedom. If there is a real difference that exists
among block means, MSB will be larger in comparison with MSE and

F = MSB

MSE

will be used as a test statistic. The rejection region will be if F > Fα based on (b − 1) numerator and
(n − b − k + 1) denominator degrees of freedom.
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We now summarize the foregoing methodology in a step-by-step computational procedure. For a
reasonable data size, we could use scientific calculators for handling the ANOVA calculations. For
larger data sets, the use of statistical software packages is recommended.

COMPUTATIONAL PROCEDURE FOR RANDOMIZED BLOCK DESIGN

1. Calculate the following quantities:

(i) Sum the observations for each row to form row totals:

T1, T2, . . . , Tk , where Ti =
b∑

j=1

yij .

(ii) Sum the observations for each column to form column totals:

B1, B2, . . . , Bb , where Bj =
k∑

i=1

yij .

(iii) Find the sum of all observations:

b∑
j=1

k∑
i=1

yij =
b∑

j=1

Bj .

2. Calculate the following quantities:

(i) Square the sum of the totals for each column and divide it by n = bk to obtain

CM = 1

n

⎛
⎝ b∑

j=1

B2
j

⎞
⎠ .

(ii) Find the sum of squares of the totals of each column and divide it by k to obtain

1

k

b∑
j=1

B2
j

and

SSB =

b∑
j=1

B2
j

k
− CM and MSB = SSB

b − 1
.

(iii) Find the sum of squares of the totals of each row and divide it by b to obtain

k∑
i=1

T 2
i

b
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and

SST =

k∑
i=1

T 2
j

b
− CM and MSB = SST

k − 1
.

(iv) Find the sum of squares of individual observations:

b∑
j=1

k∑
i=1

y 2
ij

Also compute

Total SS =
b∑

j=1

k∑
i=1

y 2
ij − CM.

(v) Using (ii), (iii), and (iv), find

SSE = Total SS − SSB − SST and MSE = SSE

n − b − k + 1
.

3. To test the null hypothesis that there is no difference in treatment means:

(i) Compute the F -statistic,

F = MST

MSE
.

(ii) From the F -table, find the value of Fα, υ1, υ2 , where υ1 = (k − 1) is the numerator and
υ2 = (n − b − k + 1) the denominator degrees of freedom.

(iii) Decision: Reject H0 if F > Fα, υ1, υ2 and conclude that there is evidence to conclude that there
is a difference in treatment means at level α.

4. To test the null hypothesis that there is no difference in the mean response for blocks,

(i) Compute the F -statistic,

F = MSB

MSE
.

(ii) From the F -table, find the value of Fα, υ1, υ2 , where υ1 = (b − 1) is the numerator and
υ2 = (n − b − k + 1) the denominator degrees of freedom.

(iii) Decision: Reject H0 if F > Fα, υ1, υ2 and conclude that there is evidence to conclude there is a
difference in the mean response for blocks at level α.

Assumptions: The samples are randomly selected in an independent manner from n = bk populations.
The populations are assumed to be normally distributed with equal variances σ2. Also, there are no
interactions between the variables (two factors).
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We have already discussed the assumptions and how to verify those assumptions in one-way analysis.
The only new assumption in the randomized blocked design is about the interactions. One of the
ways to verify the assumption of no interaction is to plot the observed values against the sample
number. If there is no interaction, the line segments (one for each block) will be parallel or nearly
parallel; see Figure 9.2. If the lines are not approximately parallel, then there is likely to be inter-
action between blocks and treatments. In the presence of interactions, the analysis of this section
need to be modified. For details on those procedures, refer to more specialized books on ANOVA
methods.

We illustrate the randomized block design procedure with the following example.

Example 10.4.1
A furniture company wants to know whether there are differences in stain resistance among the four

chemicals used to treat three different fabrics. Table 10.7 shows the yields on resistance to stain (a low value

indicates good stain resistance).

At the α = 0.05 level of significance, is there evidence to conclude that there is a difference in mean

resistance among the four chemicals? Is there any difference in the mean resistance among the materials?

Give bounds for the p-values in each case.

Table 10.7

Chemical Material

I II III Total

C1 3 7 6 16

C2 9 11 8 28

C3 2 5 7 14

C4 7 9 8 24

Total 21 32 29 82

Solution
Here T1 = 16, T2 = 28, T3 = 14, and T4 = 24. Also, B1 = 21, B2 = 32, and B3 = 29. In addition,

b = 3, k = 4, and n = bk = 12. Now

CM = 1
n

⎛
⎝ b∑

j=1

Bj

⎞
⎠

2

= 1
12

(82)2 = 560.3333.



10.4 Two-Way Analysis of Variance, Randomized Complete Block Design 533

We can compute the following quantities:

SSB =

b∑
j=1

B2
j

k
− CM = 2306

4
− 560.3333 = 16.1667,

MSB = SSB

b − 1
= 16.1667

2
= 8.0834,

SST =

k∑
i=1

T 2
i

b
− CM = 1812

3
− 560.3333 = 43.6667,

and

MST = SST

k − 1
= 43.6667

3
= 14.5556.

We have
b∑

j=1

k∑
i=1

y2
ij = 632. From this

Total SS =
b∑

j=1

k∑
i=1

y2
ij − CM = 632 − 560.3333 = 71.666

SSE = Total SS − SSB − SST = 71.6667 − 16.1667 − 43.6667

= 11.8333

and

MSE = SSE

n − b − k + 1
= 11.8333

6
= 1.9722.

The F -statistic is

F = MST

MSE
= 14.5556

1.9722
= 7.3804

From the F -table, F0.05,3,6 = 4.76. Because the observed value F = 7.3804 > 4.76, we reject the null

hypothesis and conclude that there is a difference in mean resistance among the four chemicals. Because

the F -value falls between α = 0.025 and α = 0.01, the p-value falls between 0.01 and 0.025.

To test for the difference in the mean resistance among the materials,

F = MSB

MSE
= 8.0834

1.9722
= 4.0987.

From the F -table, F0.05,2,6 = 5.14. Because the observed value of F = 4.098 < 5.14, we conclude that

there is no difference in the mean resistance among the materials. Because the F -value falls between α = 0.10
and 0.05, the p-value falls between 0.05 and 0.10.
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EXERCISES 10.4

10.4.1. Show that

b∑
j=1

k∑
i=1

(
yij − y

)2 =
k∑

i=1

b∑
j=1

(
yij − Ti − Bj − y

)2

+ b

k∑
i=1

(
Ti − y

)2 + k

b∑
j=1

(
Bj − y

)2
.

[Hint: Use the identity yij − y =(yij − Ti − Bj − y
)+ (

Ti − y
)+ (

Bj − y
)
.]

10.4.2. Show the following:
(a) E(MSE) = σ2,

(b) E(MSB) = k
b−1

b∑
j=1

B2
j + σ2,

(c) E(MST ) = b
k−1

k∑
i=1

τ2
i + σ2.

10.4.3. The least-square estimators of the parameters μ, τi’s, and βj ’s are obtained by minimizing
the sum of squares

W =
k∑

i=1

b∑
j=1

(
yij − μ − τi − βj

)2

with respect to μ, τi’s, and βj ’s; subject to the restrictions:
k∑

i=1
τi =

b∑
j=1

βj = 0. Show that the

resultant estimators are

μ̂ = y,

τ̂i = Ti − y, i = 1, 2, . . . , k,

and

β̂j = Bj − y, j = 1, . . . , b.

10.4.4. In order to test the wear on four hyperalloys, a test piece of each alloy was extracted from
each of the three positions of a test machine. The reduction of weight in milligrams due to
wear was determined on each piece, and the data are given in Table 10.4.1.
At α = 0.05, test the following hypotheses, regarding the positions as blocks:
(a) There is no difference in average wear for each material.
(b) There is no difference in average wear for each position.
(c) Interpret your final result and state any assumptions that were necessary to solve the

problem.
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Table 10.4.1 Loss in Weights
Due to Wear Testing of Four
Materials (in mg)

Position

Type of alloy 1 2 3

1 241 270 274

2 195 241 218

3 235 273 230

4 234 236 227

10.4.5. For the data of Exercise 10.3.10, test at the 0.05 level that the true income lower limits of
the top 5% of U.S. households for each race are the same for all 5 years. Also, test at the
0.05 level that the true income lower limits of the top 5% of U.S. households for each year
between 1994 and 1998 are the same.

10.4.6. For the data of Exercise 10.3.11, test at the 0.01 level that the true mean cholesterol levels
for all races in the United States during 1978–1980 are the same. Also, test at the 0.01 level
that the true mean cholesterol levels for all ages in the United States during 1978–1980 are
the same.

10.4.7. In order to see the effect of hours of sleep on tests of different skill categories (vocabulary,
reasoning, and arithmetic), tests consisting of 20 questions each in each category were given
to 16 students, four each based on the hours of sleep they had on the previous night. Each
right answer is given one point. Table 10.4.2 gives the cumulative scores of the each of the
four students in each category.

Table 10.4.2

Hours of sleep Category

Vocabulary Reasoning Arithmetic

0 44 33 35

4 54 38 18

6 48 42 43

8 55 52 50

Test at the 0.05 level whether the true mean performance for different hours of sleep is the
same. Also, test at the 0.05 level whether the true mean performance for each category of
the test is the same.
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10.5 MULTIPLE COMPARISONS

The analysis of variance procedures that we have used so far showed whether differences among several
means are significant. However, if the equality of means is rejected, the F -test did not pinpoint for us
which of the given means or group of means differs significantly from another given mean or group
of means. With ANOVA, when the null hypothesis of equality of means is rejected, the problem is to
see whether there is some way to follow up (post hoc) this initial test H0 : μ1 = μ2 = . . . = μk by
looking at subhypotheses, such as H0 : μ1 = μ2.

This involves multiple tests. However, the solution is not to use a simple t-test repeatedly for every
possible combination taken two at a time. That, apart from introducing many tests, will considerably
increase the significance level, the probability of type I error. For example, to test four samples we
will need

(4
2

) = 6 tests. If each one of the comparisons is tested with the same value of α = P (type
I error), and if all the null hypotheses involving six comparisons are true, then the probability of
rejecting at least one of them is

P(at least one type I error) = 1 − (1 − α)6.

In particular, if α = 0.01, then P(at least one type I error) = 0.077181, which is significantly higher
than the original error value of 0.01.

One way to investigate the problem is to use a multiple comparison procedure. A good deal of work
has been done on problems of multiple comparisons. There are a variety of techniques available
in the literature, such as the Bonferroni procedure, Tukey’s method, and Scheffe’s method. We now
describe one of the more popular procedures called Tukey’s method for completely randomized, one
factor design.

In this multiple comparison problem, we would like to test H0 : μi = μj versus Ha : μi = μj , for all
i = j. Tukey’s method will be used to test all possible differences of means to decide whether at least
one of the differences μi−μj is considerably different from zero. In this comparison problem, Tukey’s
method makes use of confidence intervals for μi − μj . If each confidence interval has a confidence
level 1 − α, then the probability that all confidence intervals include their respective parameters is
less than 1 − α. We now describe this method where each of the k sample means is based on the
common number of observations, n.

Let N = kn be the total number of observations and let

S2 = 1
N − k

k∑
i=1

ni=n∑
j=1

(
Yij − Ti

)2
.

Let T max = max
(
T1, . . . , Tk

)
and T min = min

(
T1, . . . , Tk

)
. Define the random variable

Q = T max − T min

S
√

n
.

The distribution of Q under the null hypothesis H0 : μ1 = . . . = μk is called the Studentized range
distribution, which depends on the number of samples k and the degrees of freedom υ = N − k =
(n − 1)k. We denote the upper α critical value by qα,k,υ. The Studentized range distribution table gives
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values for selected values of k, υ, and α = 0.01, 0.05, and 0.10. The following theorem, due to Tukey,
defines the test procedure.

Theorem 10.5.1 Let Ti, i = 1, 2, . . . , k be the k sample means in a completely randomized design. Let
μi, i = 1, 2, . . . , k be the true means and let ni = n be the common sample size. Then the probability that
all
(
k
2

)
differences μi − μj will simultaneously satisfy the inequalities

(
Ti − Tj

)− qα,k,υ
s√
n

≤ μi − μj ≤ (
Ti − Tj

)+ qα,k,υ
s√
n

,

is (1 − α), where qα,k,υ is the upper α critical value of the Studentized range distribution. If, for a given i and
j, zero is not contained in the preceding inequality, H0 : μi = μj can be rejected in favor of Ha : μi = μj,
at the significance level of α.

Now we give a step-by-step approach to implementing Tukey’s method discussed earlier.

PROCEDURE TO FIND (1–α)100% CONFIDENCE INTERVALS FOR DIFFERENCE OF MEANS WITH
COMMON SAMPLE SIZE N: TUKEY’S METHOD

1. There are
(k

2

)
comparisons of μi versus μj .

2. Compute the following quantities:

Ti =

ni∑
j=1

yij

ni
, i = 1, 2, . . . , k ,

and

s2 = 1

N − k

k∑
i=1

ni =n∑
j=1

(
yij − Ti

)2
, where N = kn.

3. From the Studentized range distribution table, find the upper α critical value, qα, k , υ , where
υ = N − k = (n − 1)k .

4. For each of
(k

2

)
pair (i , j), i = j , compute the Tukey’s interval

((
Ti − Tj

)− qα, k , υ
s√
n

,
(

Ti − Tj
)+ qα, k , υ

s√
n

)
.

5. Let NR denote insufficient evidence for rejecting H0. Create the following table for each of
(k

2

)
pairwise difference μi − μj , i = j , and do not reject if the Tukey interval contains the number 0.
Otherwise reject.

Table 10.8 is used to summarize the final calculations of the Tukey method.

In practice, there are now numerous statistical packages available for Tukey’s purpose. The following
example is solved using Minitab. The necessary Minitab commands are given in Example 10.7.3.
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Table 10.8

μi − μj Ti − Tj Tukey interval Observation Conclusion

μ1 − μ2 T1 − T2 . . . Doesn’t contain 0 Reject

μ1 − μ3 T1 − T3 . . . Contains 0 Do not reject

. . . . .

. . . . .

. . . . .

Example 10.5.1
Table 10.9 shows the 1-year percentage total return of the top five stock funds for five different categories

(source: Money, July 2000). Which categories have similar top returns and which are different? Use 95%

Tukey’s confidence intervals.

Table 10.9

Large-cap Mid-cap Small-cap Hybrid Specialty

110.1 299.8 153.8 68.3 181.6

102.9 139.0 139.8 67.1 159.3

93.1 131.2 138.3 42.5 138.3

83.0 110.5 121.4 40.0 132.6

83.3 129.2 135.9 41.0 135.7

Solution
For simplicity of computation, we will use SPSS (Minitab steps are given in Example 10.7.2). The following is

the output.

One-way

ANOVA
RETURN

Sum of df Mean Square F Sig.
Squares

Between Groups 41243.698 4 10310.925 7.397 .001

Within Groups 27877.580 20 1393.879

Total 69121.278 24
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Post Hoc Tests

Multiple Comparisons

Dependent Variable: RETURN

Tukey HSD

(I) FUND (J) FUND Mean Std. Error Sig. 95% Confidence Interval

Difference Lower Bound Upper Bound

(I-J)

1.00 2.00 −67.4600 23.61253 .066 −138.1175 3.1975

3.00 −43.3600 23.61253 .382 −114.0175 27.2975

4.00 42.7000 23.61253 .396 −27.9575 113.3575

5.00 −55.0200 23.61253 .177 −125.6775 15.6375

2.00 1.00 67.4600 23.61253 .066 −3.1975 138.1175

3.00 24.1000 23.61253 .843 −46.5575 94.7575

4.00 110.1600* 23.61253 .001 39.5025 180.8175

5.00 12.4400 23.61253 .984 −58.2175 83.0975

3.00 1.00 43.3600 23.61253 .382 −27.2975 114.0175

2.00 −24.1000 23.61253 .843 −94.7575 46.5575

4.00 86.0600* 23.61253 .012 15.4025 156.7175

5.00 −11.6600 23.61253 .987 −82.3175 58.9975

4.00 1.00 −42.7000 23.61253 .396 −113.3575 27.9575

2.00 −110.1600* 23.61253 .001 −180.8175 −39.5025

3.00 −86.0600* 23.61253 .012 −156.7175 −15.4025

5.00 −97.7200* 23.61253 .004 −168.3775 −27.0625

5.00 1.00 55.0200 23.61253 .177 −15.6375 125.6775

2.00 −12.4400 23.61253 .984 −83.0975 58.2175

3.00 11.6600 23.61253 .987 −58.9975 82.3175

4.00 97.7200* 23.61253 .004 27.0625 168.3775

* The mean difference is significant at the .05 level.
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Homogeneous Subsets

RETURN

Tukey HSDa

Subset for alpha = .05

FUND N 1 2
4.00 5 51.7800

1.00 5 94.4800 94.4800

3.00 5 137.8400

5.00 5 149.5000

2.00 5 161.9400

Sig. .396 .066

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size = 5.000.

The Tukey intervals for pairwise differences (μi − μj) are in the foregoing computer printout. For example,

the Tukey interval for (μ1 − μ2) is (−138.1, 3.2) and for (μ2 − μ4) is (39.5, 180.8). Also, sample mean

and standard deviation are given in the output. For example, 94.48 is the sample mean of the five data

points of large-cap funds, and 11.97 is the sample standard deviation of the five data points of large-cap

funds.

If the Tukey interval for a particular difference (μj − μi) contains the number zero, we do not reject the H0 :
μi = μj . Otherwise, we reject the H0 : μi = μj . For example the interval for (μ4 − μ2) is (39.5 − 180.8)

and does not contain zero. Hence we reject H0 : μ4 = μ2.

The complete table corresponding to step 5 is produced in Table 10.10, where N.R. represents ‘‘not reject.’’

Table 10.10

μi − μj Ti − Tj Tukey interval Reject or N.R. Conclusion

μ1 − μ2 161.94 − 94.48 (−138.1, 3.2) N.R. μ1 = μ2

μ1 − μ3 137.84 − 94.48 (−114.0, 27.3) N.R. μ1 = μ3

μ2 − μ3 137.84 − 161.94 (−46.6, 94.8) N.R. μ3 = μ2

μ1 − μ4 51.78 − 94.48 (−27.9, 113.3) N.R. μ4 = μ1

μ2 − μ4 51.78 − 161.94 (39.5, 180.8) R μ4 = μ2

μ3 − μ4 51.78 − 137.84 (15.4, 156.7) R μ4 = μ3

μ1 − μ5 149.50 − 94.98 (−125.6, 15.6) N.R. μ5 = μ1

μ2 − μ5 149.50 − 161.94 (−58.2, 83.1) N.R. μ5 = μ2

μ3 − μ5 149.50 − 137.84 (−82.3, 59.0) N.R. μ5 = μ3

μ4 − μ5 149.50 − 51.78 (−168.3, −27.1) R μ5 = μ4
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Based on the 95% Tukey intervals, the average top return of hybrid funds is different from those for mid-cap,

small-cap, and specialty funds. All other returns are similar.

In Tukey’s method, the confidence coefficient for the set of all pairwise comparisons {μi − μj} is
exactly equal to 1 − α when all sample sizes are equal. For unequal sample sizes, the confidence
coefficient is greater than 1 − α. In this sense, Tukey’s procedure is conservative when the sample
sizes are not equal. In the case of unequal sample sizes, one has to estimate the standard deviation
for each pairwise comparison. Tukey’s procedure for unequal sample sizes is sometimes referred to
as the Tukey–Kramer method.

EXERCISES 10.5

10.5.1. A large insurance company wants to determine whether there is a difference in the average
time to process claim forms among its four different processing facilities. The data in Table
10.5.1 represent weekly average number of days to process a form over a period of 4 weeks.

Table 10.5.1

Facility 1 Facility 2 Facility 3 Facility 4

1.50 2.25 1.30 2.0

0.9 1.85 2.75 1.5

1.12 1.45 2.15 2.85

1.95 2.15 1.55 1.15

(a) Test whether there is a difference in the average processing times at the 0.05 level.
(b) Test whether there is a difference, using Tukey’s method to find which facilities are

different.
(c) Interpret your results and state any assumptions you have made in solving the problem.

10.5.2. Table 10.5.2 gives the rental vacancy rates by U.S. region (source: U.S. Census Bureau) for
5 years.

Table 10.5.2

Rental units 1995 1996 1997 1998 1999
Northeast 7.2 7.4 6.7 6.7 6.3

Midwest 7.2 7.9 8.0 7.9 8.6

South 8.3 8.6 9.1 9.6 10.3

West 7.5 7.2 6.6 6.7 6.2
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(a) Test at the 0.01 level whether the true rental vacancy rates by region are the same for all
5 years.

(b) If there is a difference, use Tukey’s method to find which regions are different.

10.5.3. Table 10.5.3 gives lower limits of income (approximated to nearest $1000 and calculated
as of March of the following year) by race for the top 5% of U.S. households from 1994 to
1998. (Source: U.S. Census Bureau.)

Table 10.5.3

Race 1994 1995 1996 1997 1998

All Races 110 113 120 127 132

White 113 117 123 130 136

Black 81 80 85 87 94

Hispanic 82 80 86 93 98

(a) Test at the 0.05 level whether the true lower limits of income for the top 5% of U.S.
households for each race are the same for all 5 years.

(b) If there is a difference, use Tukey’s method to find which is different.
(c) Interpret your results and state any assumptions you have made in solving the problem.

10.5.4. The data in Table 10.5.4 represent the mean serum cholesterol levels (given in milligrams
per deciliter) by race and age in the United States from 1978 to 1980 (source: “Report of
the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and
Treatment of High Blood Cholesterol in Adults,” Arch. Intern. Med. 148, Jan. 1988).

Table 10.5.4

Race Age

20–24 25–34 35–44 45–54 55–64 65–74

All races 180 199 217 227 229 221

White 180 199 217 227 230 222

Black 171 199 218 229 223 217

(a) Test at the 0.01 level whether the true mean cholesterol levels for all races in the United
States during 1978–1980 are the same.

(b) If there is a difference, use Tukey’s method to find which of the races are different with
respect to the mean cholesterol levels.
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10.6 CHAPTER SUMMARY

In this chapter, we have introduced the basic idea of analyzing various experimental designs. In
Section 10.3, we explained the one-way analysis of variance for the hypothesis testing problem for
more than two means (different treatments being applied, or different populations being sampled).
The two-way analysis of variance, having b blocks and k treatments consisting of b blocks of k exper-
imental units each, is discussed in Section 10.5. We also describe one popular procedure called
Tukey’s method for completely randomized, one-factor design for multiple comparisons. We saw in
Chapter 9 that there are other possible designs, such as the Latin square design or Taguchi meth-
ods. We refer to specialized books on experimental design (Hicks and Turner) for more details
on how to conduct ANOVA on such designs. In the final section, we give some computational
examples.

We now list some of the key definitions introduced in this chapter:

■ Completely randomized experimental design
■ Randomized block design
■ Studentized range distribution
■ Tukey–Kramer method

In this chapter, we also learned the following important concepts and procedures:

■ Analysis of variance procedure for two treatments
■ One-way analysis of variance for k ≥ 2 populations
■ One-way analysis of variance procedure for k ≥ 2 populations
■ Procedure to find (1 − α)100% confidence intervals for difference of means with common

sample size n; Tukey’s method
■ Computational procedure for randomized block design

10.7 COMPUTER EXAMPLES

Minitab, SPSS, SAS, and other statistical programming packages are especially useful when we perform
an analysis of variance. As we have experienced in earlier sections, an ANOVA computation is very
tedious to complete by hand.

10.7.1 Minitab Examples

Example 10.7.1
(One-way ANOVA): The three random samples in Table 10.11 are independently obtained from three

different normal populations with equal variances.

At the α = 0.05 level of significance, test for equality of means.
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Table 10.11

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80

Solution
Enter sample 1 data in C1, sample 2 in C2, and sample 3 in C3.

Stat > ANOVA > One-way (unstacked). . . > in Responses (in separate columns): type C1 C2 C3
and click OK

We get the following output:

One-Way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 2 560.7 280.3 4.84 0.042
Error 8 463.3 57.9
Total 10 1024.0

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ----+---------+---------+---------+--
C1 5 76.000 7.517 (-----*------)
C2 3 66.333 9.292 (-------*--------)
C3 3 85.667 5.686 (-------*--------)

-----+---------+--------+---------+--
Pooled StDev = 7.610 60 72 84 96

We can see that the output contains, SS, MS, individual column means, and standard deviation values. Also,

the F -value gives the value of the test statistic, and the p-value is obtained as 0.042. Comparing this p-value

of 0.042 with α = 0.05, we will reject the null hypothesis.

If we want to create side-by-side box plots to graphically test homogeneity of variances, we can do the

following.
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Enter all the data (from all three samples) in C1, and enter the sample identifier number in C2 (that is, 1 if

the data belong to sample 1, 2 for sample 2, and 3 for sample 3).

Graph > Boxplot > in Y column, type C1 and in X column, type C2 > click OK

Then as in Example 10.3.2, interpret the resulting box plots.

Example 10.7.2
Give Minitab steps for randomized block design for the data of Example 10.4.1.

Solution
To put the data into the format for Minitab, place all the data values in one column (say, C2). Let numbers

1, 2, 3, 4 represent the chemicals and numbers 1, 2, 3 represent the fabric material. In one column (say, C1)

place numbers 1 through 4 with respect to the data values identifying the factor (chemical) used. In another

column (say, C3) place corresponding numbers 1 through 3 to identify the second factor (material) used. See

Table 10.12.

Table 10.12

C1 C2 C3
chemical response material

1 3 1

2 9 1

3 2 1

4 7 1

1 7 2

2 11 2

3 5 2

4 9 2

1 6 3

2 8 3

3 7 3

4 8 3
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Then do the following:

Stat > ANOVA > Two-way. . . > in Response: type C2, in Row Factor: type C1, and in Column
factor: type C3 > OK

We will get the following output.

Two-Way Analysis of Variance

Analysis of Variance for Response
Source DF SS MS F P
Chemical 3 43.67 14.56 7.38 0.019
Material 2 16.17 8.08 4.10 0.075
Error 6 11.83 1.97
Total 11 71.67

Note that the output contains p-values for the effect both of the chemicals and of the materials. Because the

p-value of 0.019 is less than α = 0.05, we reject the null hypothesis and conclude that there is a difference in

mean resistance among the four chemicals. For the materials, the p-value of 0.075 is greater than α = 0.05,

so we cannot reject the null hypothesis and conclude that there is no difference in the mean resistance

among the materials.

Example 10.7.3
Give the Minitab steps for using Tukey’s method for the data of Example 10.5.1.

Solution
In order to use Tukey’s method, it is necessary to enter the data in a particular way. Enter all the data points

in column C1; first five from large-cap, next five from mid-cap, and so on, with the last five from specialty.

In column C2, enter the number identifying the data points; the first four numbers are 1 (identifying 1 as the

data belonging to large-cap), next five numbers are 2, and so on; the last five numbers are 5. Then:

Stat > ANOVA > One-way. . . > Comparisons. . . > click Tukey’s, family error rate: and type 5 (to

represent 100α% error) > OK > in Response: type C1, and in Factor: type C2 > OK

We will get the output similar to that given in the solution part of Example 10.5.1. For discussion of the

output, refer to Example 10.5.1.

10.7.2 SPSS Examples

Example 10.7.4
Conduct a one-way ANOVA for the data of Example 10.7.1. Use α = 0.05 level of significance, and test for

equality of means.
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Solution
In SPSS, we need to enter the data in a special way. First name column C1 as Sample, and column C2 as

Values. In the Sample column, enter the numbers to identify from which group the data comes. In this case,

enter 1 in the first five rows, 2 in the next three rows, and 3 in the last three rows. In the Values column,

enter sample 1 data in the first five rows, sample 2 data in the next five rows, and sample 3 data in the last

three rows. Then:

Analyze > Compare Means > One-way ANOVA. . . > Bring Values to Dependent List: and Sample
to Factor: > OK

We will get the following output.

ANOVA VALUES

Sum of Squares df Mean Square F Sig.

Between Groups 560.667 2 280.333 4.840 .042

Within Groups 463.333 8 57.917

Total 1024.000 10

Because Sig. Value 0.042 is less than α = 0.05, we reject the null hypothesis.

Example 10.7.5
Give the SPSS steps for using Tukey’s method for the data of Example 10.5.1.

Solution
First name column C1 as Fund and column C2 as Return. In the Fund column, enter the numbers to identify

from which group the data comes. In this case, the first four numbers are 1 (identifying 1 as the data

belonging to large-cap), the next four numbers are 2, and so on, until the last four numbers are 5. In the

Return column, enter large-cap return data in the first four rows, mid-cap data in the next four rows, and so

on; the last four from speciality. Then:

Analyze > Compare Means > One-way ANOVA. . . > Bring Return to Dependent List: and Fund to

Factor: > Click Post-Hoc. . . > click Tukey > click Continue > OK

We will get the output as in Example 10.5.1.

Interpretation of output is given in Example 10.5.1. When the treatment effects are significant, as in this

example where the p-value is 0.001, the means must then be further examined to determine the nature

of the effects. There are procedures called post hoc tests to assist the researcher in this task. For example,

looking at the output column Sig., we could observe that there are significant differences in the mean returns

between funds 2 and 4, and funds 4 and 5.
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10.7.3 SAS Examples

Example 10.7.6
Using SAS, conduct a one-way ANOVA for the data of Example 10.7.1. Use α = 0.05 level of significance,

and test for equality of means.

Solution
We could use the following code.

Options nodate nonumber;
options ls=80 ps=50;
DATA Scores;
INPUT Sample Value @@;
DATALINES;
1 64 1 84 1 75 1 77 1 80
2 56 2 74 2 69
3 81 3 92 3 84
;
PROC ANOVA DATA=Scores;
TITLE ’ANOVA for Scores’;
CLASS Sample;
MODEL Value=Sample;
MEANS Sample;
RUN;

We will get the following output:

ANOVA for Scores

The ANOVA Procedure

Class Level Information

Class Levels Values

Sample 3 1 2 3

Number of observations 11

The ANOVA Procedure

Dependent Variable: Value

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 560.666667 280.333333 4.84 0.0419
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Error 8 463.333333 57.916667

Corrected
Total 10 1024.000000

R-Square Coeff Var Root MSE Value Mean

0.547526 10.01355 7.610300 76.00000

Source DF Anova SS Mean Square F Value Pr > F

Sample 2 560.6666667 280.3333333 4.84 0.0419

The ANOVA Procedure

Level of ------------Value------------
Sample N Mean Std Dev

1 5 76.0000000 7.51664819
2 3 66.3333333 9.29157324
3 3 85.6666667 5.68624070

Because the p-value 0.0419 is less than α = 0.05, we reject the null hypothesis.

We could have used PROC GLM instead of PROC ANOVA to perform the ANOVA procedure. Usually, PROC

ANOVA is used when the sizes of the samples are equal; otherwise PROC GLM is more desirable. The next

example will show how to do the multiple comparison using Tukey’s procedure.

Example 10.7.7
Give the SAS commands for using Tukey’s method for the data of Example 10.5.1.

Solution
We could use the following code.

Options nodate nonumber;
options ls=80 ps=50;
DATA Mfundrtn;
INPUT Fund Return @@;
DATALINES;
1 110.1 2 299.8 3 153.8 4 68.3 5 181.6
1 102.9 2 139.0 3 139.8 4 67.1 5 159.3
1 93.1 2 131.2 3 138.3 4 42.5 5 138.3
1 83.3 2 129.2 3 135.9 4 41.0 5 135.7
1 83.0 2 110.5 3 121.4 4 40.0 5 132.6
;
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PROC GLM DATA=Mfundrtn;
TITLE ’ANOVA for Mutual fund returns’;
CLASS Fund;
MODEL Return=Fund;
MEANS Fund / tukey;
RUN;

ANOVA for Mutual fund returns

The GLM Procedure

Class Level Information

Class Levels Values

Fund 5 1 2 3 4 5

Number of observations 25

ANOVA for Mutual fund returns

The GLM Procedure

Dependent Variable: Return
Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 41243.69840 10310.92460 7.40 0.0008

Error 20 27877.58000 1393.87900

Corrected Total 24 69121.27840

R-Square Coeff Var Root MSE Return Mean

0.596686 31.34524 37.33469 119.1080

Source DF Type I SS Mean Square F Value Pr > F

Fund 4 41243.69840 10310.92460 7.40 0.0008

Source DF Type III SS Mean Square F Value Pr > F

Fund 4 41243.69840 10310.92460 7.40 0.0008

ANOVA for Mutual fund returns

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for Return
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NOTE: This test controls the Type I experiment wise error rate, but it
generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of Studentized Range 4.23186
Minimum Significant Difference 70.658

Means with the same letter are not significantly different.

Tukey Grouping Mean N Fund

A 161.94 5 2
A
A 149.50 5 5
A
A 137.84 5 3
A

B A 94.48 5 1
B
B 51.78 5 4

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for Value

NOTE: This test controls the Type I experiment wise error rate, but it
generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of Studentized Range 4.23186
Minimum Significant Difference 70.658

Means with the same letter are not significantly different.

Tukey Grouping Mean N Sample

A 161.94 5 2
A
A 149.50 5 5
A
A 137.84 5 3
A

B A 94.48 5 1
B
B 51.78 5 4
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Looking at the p-value of 0.008, which is less than α = 0.05, we conclude that there is a difference in mutual

fund returns.

In the previous example, we used the post hoc test Tukey. We could have used other options such as DUNCAN,

SNK, LSD, and SCHEFFE. The test is performed at the default value of α = 0.05. If we want to specify, say,

α = 0.01, or 0.1, we could have done so by using the command MEANS Fund / Tuckey ALPHA=0.01;.

If we need all the confidence intervals in the Tukey method, in the code just given, we have to modify ‘MEANS

Fund / Tukey;’ to ‘MEANS Fund / LSD TUKEY CLDIFF;’ which will result in the following output.

ANOVA for Mutual fund returns

The GLM Procedure

Class Level Information

Class levels Values

Fund 5 1 2 3 4 5

Number of observations 25

ANOVA for Mutual fund returns

The GLM Procedure

Dependent Variable: Return

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 4 41243.69840 10310.92460 7.40 0.0008

Error 20 27877.58000 1393.87900

Corrected Total 24 69121.27840

R-Square Coeff Var Root MSE Return Mean

0.596686 31.34524 37.33469 119.1080

Source DF Type I SS Mean Square F Value Pr > F

Fund 4 41243.69840 10310.92460 7.40 0.0008

Source DF Type III SS Mean Square F Value Pr > F

Fund 4 41243.69840 10310.92460 7.40 0.0008
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ANOVA for Mutual fund returns

The GLM Procedure

t-tests (LSD) for Return

NOTE: This test controls the Type I comparisonwise error rate, not the
experiment wise error rate.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of t 2.08596
Least Significant Difference 49.255

Comparisons significant at the 0.05 level are indicated by ***.

Difference

Fund Between 95% Confidence
Comparison Means Limits

2 – 5 12.44 –36.81 61.69
2 – 3 24.10 –25.15 73.35
2 – 1 67.46 18.21 116.71 ***
2 – 4 110.16 60.91 159.41 ***
5 – 2 –12.44 –61.69 36.81
5 – 3 11.66 –37.59 60.91
5 – 1 55.02 5.77 104.27 ***
5 – 4 97.72 48.47 146.97 ***
3 – 2 –24.10 –73.35 25.15
3 – 5 –11.66 –60.91 37.59
3 – 1 43.36 –5.89 92.61
3 – 4 86.06 36.81 135.31 ***
1 – 2 –67.46 –116.71 –18.21 ***
1 – 5 –55.02 –104.27 –5.77 ***
1 – 3 –43.36 –92.61 5.89
1 – 4 42.70 –6.55 91.95
4 – 2 –110.16 –159.41 –60.91 ***
4 – 5 –97.72 –146.97 –48.47 ***
4 – 3 –86.06 –135.31 –36.81 ***
4 – 1 –42.70 –91.95 6.55

ANOVA for Mutual fund returns

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for Return

NOTE: This test controls the Type I experiment
wise error rate.
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Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 1393.879
Critical Value of Studentized Range 4.23186
Minimum Significant Difference 70.658

Comparisons significant at the 0.05 level are
indicated by ***.

Difference

Fund Between Simultaneous 95%
Comparison Means Confidence Limits

2 – 5 12.44 –58.22 83.10
2 – 3 24.10 –46.56 94.76
2 – 1 67.46 –3.20 138.12
2 – 4 110.16 39.50 180.82 ***
5 – 2 –12.44 –83.10 58.22
5 – 3 11.66 –59.00 82.32
5 – 1 55.02 –15.64 125.68
5 – 4 97.72 27.06 168.38 ***
3 – 2 –24.10 –94.76 46.56
3 – 5 –11.66 –82.32 59.00
3 – 1 43.36 –27.30 114.02
3 – 4 86.06 15.40 156.72 ***
1 – 2 –67.46 –138.12 3.20
1 – 5 –55.02 –125.68 15.64
1 – 3 –43.36 –114.02 27.30
1 – 4 42.70 –27.96 113.36
4 – 2 –110.16 –180.82 –39.50 ***
4 – 5 –97.72 –168.38 –27.06 ***
4 – 3 –86.06 –156.72 –15.40 ***
4 – 1 –42.70 –113.36 27.96

EXERCISES 10.7

10.7.1. For the data of Exercise 10.5.4, perform a one-way analysis of variance using any of the
software (Minitab, SPSS, or SAS).

10.7.2. For the data of Exercise 10.5.2, perform Tukey’s test using any of the software (Minitab, SPSS,
or SAS).

10.7.3. For the data of Exercise 10.5.4, perform Tukey’s test using any of the software (Minitab, SPSS,
or SAS).

PROJECTS FOR CHAPTER 10

10A. Transformations
The basic model for the analysis of variance requires that the independent observations come from
normal populations with equal variances. These requirements are rarely met in practice, and the extent
to which they are violated affects the validity of the subsequent inference. Therefore, it is important
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for the investigator to decide whether the assumptions are at least approximately satisfied and, if not,
what can be done to rectify the situation. Hence it is necessary to (a) examine the data for marked
departures from the model and, if necessary, (b) apply an appropriate transformation to the data to
bring it more in line with the basic assumptions.

A simple way to check for the equality of the population variances is to calculate the sample variances
and plot against mean as in Figure 10.3. If the graph suggests a relation between sample mean and
variance, then the relation very likely exists between population mean and variance, and hence the
population from which the samples are taken may very well be nonnormal.

If a study of sample means and variances reveals a marked departure from the model, the observations
may be transformed into a new set to which the methods of ANOVA are better suited. Three commonly
used transformations are the following:

(a) The logarithmic transformation: If the graph of sample means against sample variance suggests
a relation of the form

s2 = C
(
X

2
)

,

replace each observation X by its logarithm to the base 10,

Y = log10 X;

or, if some X-values are zero, by Y = log10 (X + 1).
(b) The square root transformation: If the relation is of the form

s2 = CX

replace X by its square root,

Y = √
X

or, if the values of X are very close to zero, by the square root of
(
X + 1/2

)
. This relation is

found in data from Poisson populations, where the variance is equal to the mean.
(c) The angular transformation: If the observations are counts of a binomial nature, and p̂ is the

observed proportion, replace p̂ by

θ = arcsin
√

p̂,

which is the principal angle (in degrees or radians) whose sine is the square root of p̂.
(i) To check for the equality of the population variances, calculate the sample variances

for each of the data sets given in the exercises of Section 10.3 and plot against the
corresponding mean.

(ii) If there is assumptional violation, perform one of the transformations described earlier
and do the analysis of variance procedure for the transformed data.
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10B. Anova with Missing Observations
In the two-way analysis of variance, we assumed that each block cell has one treatment value. However,
it is possible that some observations in some block cells may be missing for various reasons, such as
that the investigator failed to record the observations, the subject discontinued participation in the
experiment, or the subject moved to a different place or died prior to completion of the experiment.
In those cases, this project gives a method of inserting estimates of the missing values.

Let y.. denote the total of all kb observations. If the observation corresponding to the ith row and the
jth column, which is denoted by yij., is missing, then all the sums of squares are calculated as before,
except that the yij term is replaced by

ŷij =
bB′

j + kT ′
i − y′..

(k − 1) (b − 1)
,

where T ′
i denotes the total of b−1 observations in the ith row, B′

j denotes the total of k−1 observations
in the jth column, and y′.. denotes the sum of all kb − 1 observations. Using calculus, one can show
that ŷij minimizes the error sum of squares. One should not include these estimates when computing
relevant degrees of freedom. With these changes, proceed to perform the analysis as in Section 10.4.
For more details on the method, refer to Sahai and Ageel (2000), p. 145.

Perform the test of Example 10.4.1, now with a missing value for material III and chemical C4. Does
the conclusion change?

10C. ANOVA in Linear Models
In order to determine whether the multiple regression model introduced in Section 8.5 is ade-
quate for predicting values of dependent variable y, one can use the analysis of variance F -test. The
model is

Y = β0 + β1x1 + β2x2 + · · · + βkxk + ε,

where ε = (ε1, ε2, . . . , εn) ∼ N
(
0, σ2

)
and εi and εj are uncorrected if i = j. Define the multiple

coefficient of determination, R2, by

R2 = 1 −
∑(

yi − ŷi

)2∑
(yi − y)2 .

The Analysis of Variance F-Test

H0 : β1 = β2 = . . . = βk = 0 versus

Ha : At least one of the parameters, β1, β2, . . . , βk , differs from 0.



Projects for Chapter 10 557

Test statistic:

F = Mean square for model
Mean square for error

= SS
(
model

)
/k

SSE/[n − (k + 1)]

= R2/k(
1 − R2

) /
[n − (k + 1)]

,

where

n = number of observations
k = number of parameters in the model excluding β0.

From the F -table, determine the value of Fα with k numerator d.f. and n − (k + 1) denominator d.f.
Then the rejection region is {F > Fα}.
If we reject the null hypothesis, then the model can be taken as useful in predicting values of y.

For the data of Example 8.5.1, test the overall utility of the fitted model

y = 66.12 − 0.3794X1 + 21.4365X2

using the F -test described earlier.
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The Reverend Thomas Bayes (1702–1761) was a Nonconformist minister. In the 1720s Bayes started
working on the theory of probability. Even though he did not publish any of his works on mathe-
matics during his lifetime, Bayes was elected a Fellow of the Royal Society in 1742. His famous work
titled “Essay toward solving a problem in the doctrine of chances” was published in the Philosophical
Transactions of the Royal Society of London in 1764, after his death. The paper was sent to the Royal
Society by Richard Price, a friend of Bayes. Another mathematical publication on asymptotic series
also appeared after his death.

11.1 INTRODUCTION

Bayesian procedures are becoming increasingly popular in building statistical models for real-world
problems. In recent years, the Bayesian statistical methods have been increasingly used in scientific
fields ranging from archaeology to computing. Bayesian inference is a method of analysis that com-
bines information collected from experimental data with the knowledge one has prior to performing
the experiment. Bayesian and classical (frequentist) methods take basically different outlooks toward
statistical inference. In this approach to statistics, the uncertainties are expressed in terms of proba-
bilities. In the Bayesian approach, we combine any new information that is available with the prior
information we have, to form the basis for the statistical procedure. The classical approach to statistical
inference that we have studied so far is based on the random sample alone. That is, if a probabil-
ity distribution depends on a set of parameters θ, the classical approach makes inferences about θ

solely on the basis of a sample X1, . . . , Xn. This approach to inference is based on the concept of
a sampling distribution. To correctly interpret traditional inferential procedures, it is necessary to
fully understand the notion of a sampling distribution. In this approach, we analyze only one set
of sample values. However, we have to imagine what could happen if we drew a large number of
random samples from the population. For example, consider a normal sample with known variance.
We have seen that a 95% confidence interval for the population mean μ is given by the random
interval

(
X − 1.96σ/

√
n, X + 1.96σ/

√
n
)
. This means that when samples are repeatedly taken from

the population, at least 95% of the random intervals contain the true mean μ. The classical inferential
approach does not use any of the prior information we might have as a result of, say, our familiarity
with the problem, or information from earlier studies. Scientists and engineers are faced with the
problem that there is typically only a single data set, and they need to determine the value of the
parameter at the time the data are taken. The basic question then is, “What is the best estimate of a
parameter one can make from the data using one’s prior information?” Statistical approaches that use
prior knowledge, possibly subjective, in addition to the sample evidence to estimate the population
parameters are known as Bayesian methods.

Bayesian statistics provides a natural method for updating uncertainty in the light of evidence. Data
are still assumed to come from a distribution belonging to a known parametric family. However,
the Bayesian outlook toward inference is founded on the subjective interpretation of probability.
Subjective probability is a way of stating our belief in the validity of a random event. The following
example will illustrate the idea. Suppose we are interested in the proportion of all undergraduate
students at a particular university who take on out-of-campus jobs for at least 20 hours a week.
Suppose we randomly select, say, 50 students from this university and obtain the proportion of
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students who have out-of-campus jobs for at least 20 hours a week. Let us assume that the sample
proportion is 30/50 = 0.6. In a frequentist approach, all of the inferential procedures, such as point
estimation, interval estimation, or hypothesis testing, are based on the sampling distribution.

That is, even though we are analyzing only one data set, it is necessary to have the knowledge of the
mean, standard deviation, and shape of this sampling distribution of the proportion for the correct
interpretation in classical inferential procedures. In the subjective interpretation of probability, the
proportion of undergraduates who work on an out-of-campus job for at least 20 hours a week is
assumed to be unknown and random. A probability distribution, called the prior, that represents
our knowledge or belief about the location of this proportion before any data collected is used.
For instance, the college placement office already may have an opinion on this proportion based
on its earlier experience. The classical approach ignores this prior knowledge, whereas the Bayesian
approach incorporates this knowledge with the current observed data to update the value of this
proportion. That is, after the data are collected our opinion about the proportion may change. Using
Bayes’ rule, we will compute the posterior probability distribution for the proportion, based on our
prior belief and evidence from the data. All of our inferences about the proportion are made by
computing appropriate statistics of the posterior distribution.

The Bayesian approach seeks to optimally merge information from two sources: (1) knowledge that
is known from theory or opinion formed at the beginning of the research in the form of a prior,
and (2) information contained in the data in the form of likelihood functions. Basically, the prior
distribution represents our initial belief, whereas the information in the data is expressed by the like-
lihood function. Combining prior distribution and likelihood function, we can obtain the posterior
distribution. This expresses our revised uncertainty in light of the data. The main difference between
the Bayesian approach and the classical approach is that in the Bayesian setting, the parameter is
viewed as random variables, whereas the classical approach considers the parameter to be fixed but
unknown. The parameter is random in the sense that we can assign to it a subjective probability
distribution that describes our confidence about the actual value of the parameter.

Some of the reasons for Bayesian approaches are as follows: (1) Most Bayesian inferential conclu-
sions are made conditional on the observed data. Unlike the traditional approach, one need not be
concerned with data sets other than the one that is observed. There is no need to discuss sampling
distributions using the Bayesian approach. Also, (2) from a Bayesian viewpoint, it is legitimate to talk
about the probability that the proportion falls in a specific interval, say (0.2, 0.6), or the probability
that a hypothesis is true. Too often, traditional inferential conclusions are misstated; for example, if
a confidence interval computed from a sample for a parameter is (0.2, 0.6), it is common for the stu-
dent to incorrectly state that the population parameter falls in the interval (0.2, 0.6) with probability
at least 0.90. The Bayesian viewpoint provides a convenient model for implementing the scientific
method. The prior probability distribution can be used to state initial beliefs about the population
of interest, relevant sample data are collected, and the posterior probability distribution reflects one’s
new updated beliefs about the population parameter in light of the new data that were collected. All
inferences about the parameter are made by computing appropriate summaries of the posterior prob-
ability distribution. Because of formidable theoretical and computational challenges, the Bayesian
approach has found relatively limited use. Recent advances in Bayesian analysis combined with the
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growing power of computers are making Bayesian methods practical and increasingly popular. The
Markov chain Monte Carlo (MCMC) method described in Section 13.5 is one of the computationally
intensive methods that is often useful in Bayesian estimation.

11.2 BAYESIAN POINT ESTIMATION

The cornerstone of Bayesian methodology is the Bayes theorem. It helps us to update our beliefs in the
form of probability statements about the parameters after the sample has been taken. The conditional
distribution of the parameters after observing the data is called the posterior distribution that integrates
the prior and the sample information. Suppose we have two discrete random variables, X and Y .
Then the joint probability function (pmf) can be written as p(x, y) = p(x |y)pY (y) , and the marginal
probability density function of X is pX(x) = ∑

y p(x, y) = ∑
y p(x |y)pY (y) . Then Bayes’ rule for the

conditional p(y |x) is

p (y |x) = p (x, y)

pX (x)
= p (x |y) pY (y)

pX (x)
= p (x |y) pY (y)∑

y
p (x |y) pY (y)

.

The denominator in this expression is a fixed normalizing factor that ensures that the
∑

y p (y |x) = 1.
If Y is continuous, the Bayes theorem can be stated as

p (y |x ) = p (x |y) pY (y)∫
p (x |y) pY (y) dy

,

where the integral is over the range of values of y. These two equations are the Bayes formulas for
random variables.

In Bayesian terminology, pY (y) represents the probability statement of our prior belief, p(x|y) is
the probability of the data x given our prior beliefs, which is called the likelihood, and the updated
probability p(y|x) is the posterior. Because pX(x) (which is the likelihood accumulated over all possible
prior values) is independent of y, we can express the posterior distribution as proportional (∝) to
[(likelihood) × (prior distribution)], that is,

p(y|x) ∝ p(x|y)p(y).

We use the notation f (x|θ) to represent a probability distribution whose population parameter is
considered to be a random variable. Now one of the problems is of finding a point estimate of
the parameter θ (possibly a vector) for the population with distribution f (x|θ), given θ. Assume
that π(θ) is the prior distribution of θ, which reflect the experimenter’s prior belief about θ. We will
not distinguish between the scalars and vectors, which will be clear based on the specific situation.
Suppose that we have a random sample X = (X1, . . . , Xn) of size n from f (x|θ). Then the posterior
distribution can be written as

f (θ|X1, . . . , Xn) = f (θ, X1, . . . , Xn)

f (X1, . . . , Xn)
= L(X1, . . . , Xn|θ)π(θ)

f (X1, . . . , Xn)
,
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where L(X1, . . . , Xn|θ) is the likelihood function. Letting C represent all terms that do not involve θ

(in this case, C = 1/f (X1, . . . , Xn)), we have

f (θ |X1, . . . , Xn ) = CL(X1, . . . , Xn |θ )π(θ),

For specific sample values X1 = x1, X2 = x2, . . . , Xn = xn, the foregoing equation can be written in a
compact form as

f (θ |x ) ∝ f (x |θ )π(θ), where x = (x1, x2, . . . , xn).

This can be expressed as

(
posterior distribution

) ∝ (
prior distribution

)× (
likelihood

)
.

The full result including the normalization can be written as

(posterior distribution) = [(prior distribution) × (likelihood)] /
[∑

(prior × likelihood)
]

where the denominator is a fixed normalizing factor obtained by the likelihood accumulated over all
possible prior values. We can now give a formal definition.

Definition 11.2.1 The distribution of θ, given data x1, x2, . . . , xn, is called the posterior distribution,
which is given by

π(θ |x ) = f (x |θ )π(θ)

g(x)
, (11.1)

where g (x) is the marginal distribution of X. The Bayes estimate of the parameter θ is the posterior mean.

The marginal distribution g(x) can be calculated using the formula

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
θ

f (x|θ)π(θ), in discrete case

∞∫
−∞

f (x|θ)π(θ)dθ, in continuous case

where π(θ) is the prior distribution of θ. Here, the marginal distribution g (x) is also called the
predictive distribution of X, because it represents our current predictions of the values of X taking
into account both the uncertainty about the value of θ and the residual uncertainty about the random
variable X when θ is known.

In a Bayesian setting, all the information about θ from the observed data and from the prior knowl-
edge is contained in the posterior distribution, π(θ|x). In almost all practical cases, because we are
combining our prior information with the information contained in the data, the posterior distribu-
tion provides a more refined estimation of θ than the prior. All inferences from Bayesian methods are
based on the posterior probability distribution of the parameter θ. Using the explanation given later,
we will take the Bayes estimate of a parameter as the posterior mean.
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Furthermore, consider a Bayesian statistical inference problem where the parameter is a population
proportion. In the Bernoulli trials, the population contains two types called “successes” and “failures.”
The proportion of successes in the population is denoted by θ. We take a random sample of size n

from the population and observe s successes and f failures. The goal is to learn about the unknown
proportion θ on the basis of these data.

In this situation, a model is represented by the population proportion θ. We do not know its
value. In Chapter 5, we have seen that we could use the maximum likelihood estimator (MLE)
for estimating θ, which did not use any prior knowledge we may have about θ. Note that the
maximum likelihood estimate is broadly equivalent to finding the mode of the likelihood. In
a Bayesian setting, we represent our beliefs about location of θ in terms of a prior probabil-
ity distribution. We introduce proportion inference by using a discrete prior distribution for θ.
We can construct a prior by specifying a list of possible values for the proportion θ, and then
assigning probabilities to these values that reflect our knowledge about θ. Then the posterior
probabilities can be computed using the Bayes theorem. The following example illustrates this
concept.

Example 11.2.1
It is believed that cross-fertilized plants produce taller offspring than the self-fertilized plants. In order to

obtain an estimate on the proportion θ of cross-fertilized plants that are taller, an experimenter observes a

random sample of 15 pairs of plants that are exactly the same age. Each pair is grown in the same conditions

with some cross-fertilized and the others self-fertilized. Based on previous experience, the experimenter

believes that the following are possible values of θ and that the prior probability for each value of θ (prior

weight) is π(θ).

θ : 0.80 0.82 0.84 0.86 0.88 0.90

π(θ): 0.13 0.15 0.22 0.25 0.15 0.10

From the experiment, it is observed that in 13 of 15 pairs, cross-fertilized is taller. Create a table with columns

of the prior π(θ), likelihood of L(X1, X2, . . . , Xn|θ) for different values of θ and for the given sample, prior

times likelihood, and posterior probability of θ. Based on the posterior probabilities, what value of θ has the

highest support? Also, find E(θ) based on the posterior probabilities.

Solution
The likelihood of obtaining 13 of 15 taller plants to the different prior values of π are given using the binomial

pdf

(
15
13

)
θ13(1 − θ)2. For example, if the prior value of θ is 0.80, then the likelihood of θ given the

sample is

f (x|θ) =
(

15
13

)
(0.8)13(0.2)2 = 0.2309.
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Table 11.1

Prior values Prior Likelihood of θ Prior times Posterior
of θ π(θ) given sample likelihood probability

of θ

0.80 0.13 0.2309 3.0017×10−2 0.11029

0.82 0.15 0.2578 0.03867 0.14208

0.84 0.22 0.2787 6.1314×10−2 0.22528

0.86 0.25 0.2897 7.2425×10−2 0.2661

0.88 0.15 0.2870 0.4305 0.15817

0.90 0.10 0.2669 0.02669 0.098064

Total 0.27217 0.9998 ≈ 1.0

From Table 11.1 we obtain
∑

(prior × likelihood) = 0.27217. Hence, the normalized value corresponding to

θ = 0.80 is the posterior probability f (θ|x), which is equal to (0.030017/0.27217) = 0.11029. Now, we

can obtain the table of posterior distribution of a proportion π using the discrete prior given in Table 11.1.

When we substitute in Bayes’ rule, the factor

(
15
13

)
would be canceled. Hence, in the calculation of the

likelihood function, we could have just used θ13(1 − θ)2 instead of the full expression

(
15
13

)
θ13(1 − θ)2.

Thus, the Bayesian estimate of θ is

E(θ) = (0.8)(0.11029) + (0.82)(0.14028) + (0.84)(0.22528)

+ (0.86)(0.2661) + (0.88)(0.15817) + (0.9)(0.098065)

= 0.84879 ≈ 0.85.

It may be noted that the MLE of θ is 13/15 = 0.867.

In Example 11.2.1, the priors are called informative priors, because it favored certain values of θ; for
example for the value θ = 0.86, the prior value of π (θ) is 0.25, which is higher than all the rest of the
values. If there was no information or no strong prior opinions, then we could select a noninformative
prior, which would have assigned equal prior probability of 1/6 to each of the possible values of θ.
A noninformative prior (also called a flat or uniform prior) provides little or no information. Based
on the situation, noninformative priors may be quite disperse, may avoid only impossible values of
the parameter, and oftentimes give results similar to those obtained by classical frequentist methods.
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Example 11.2.2
Repeat the Example 11.2.1 using a noninformative prior, π(θ) = 1/6, for each given value of θ.

Solution
Here π(θ) = 1

6 for each value of θ. See Table 11.2.

Table 11.2

Prior Prior Likelihood of Prior times Posterior
values of π(θ) θ given likelihood probability

θ sample of θ

0.80 1/6 0.2309 3.8483×10−2 0.14333

0.82 1/6 0.2578 4.2967×10−2 0.16003

0.84 1/6 0.2787 0.04645 0.173

0.86 1/6 0.2897 4.8283×10−2 0.17982

0.88 1/6 0.2870 4.7833×10−2 0.17815

0.90 1/6 0.2669 4.4483×10−2 0.16567

Total 0.2685 1.0

The Bayesian estimate for the noninformative prior is

E(θ) = (0.8)(0.14333) + (0.82)(0.16003) + (0.84)(0.173)

+ (0.86)(0.17982) + (0.88)(0.17815)

+ (0.9)(0.16567) = 0.85173.

It should be noted that because the choice of priors in Example 11.2.1 is only mildly informative, we
do not see much difference in the values of Bayesian estimates. In general, it is difficult to construct
an acceptable prior, because most often it has to be based on subjective experiences. Therefore, it is
relatively easy to use a “noninformative” prior. For example, if we have no information on the values
of proportion θ, then one type of standard “noninformative” prior is to take the proportion θ as
one of the equally spaced values 0, 0.1, 0.2, . . . , 0.9, 1. We can assign for each value of θ the same
probability, π(θ) = 1/11. This prior is convenient and may work reasonably well when we do not
have many data. It is fairly easy to construct a prior when there exists considerable prior information
about the proportion of interest.

The posterior distribution gives us information regarding the likelihood of values of θ given sample
data. Then the question is how to use this information to estimate θ. Instead of having explicit
probabilities, the prior may be given through an assumed probability distribution. We illustrate the
calculations involved to find the posterior distribution in the following example.
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Example 11.2.3
Let X be a binomial random variable with parameters n and p. Assume that the prior distribution of p is

uniform on [0,1]. Find the posterior distribution, f (p|x).

Solution
Because X is binomial, the likelihood function is given by

f (x|p) =
(

n

x

)
px(1 − p)n−x.

Because p is uniform on [0,1], π(p) = 1, 0 ≤ p ≤ 1.

Then the posterior distribution is given by

f (p|x) ∝ f (x|p)π(p) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n

which is the same as the likelihood.

This example illustrates that if the prior is noninformative (uniform), then the posterior is essentially
the likelihood function. In the case where the prior and posterior are of the same functional form,
we call it a conjugate prior. Bayesian inference becomes simpler when the prior density has the same
functional form as the likelihood (which is the case for the conjugate prior) or when data are an
independent sample from an exponential family (such as normal, Poisson, or binomial).

The following example demonstrates the method of finding posterior distribution for a continuous
random variable.

Example 11.2.4
Suppose that X is a normal random variable with mean μ and variance σ2, where σ2 is known and μ is

unknown. Suppose that μ behaves as a random variable whose probability distribution (prior) is π(μ) and

is also normally distributed with mean μp and variance σ2
p , both assumed to be known or estimated. Find

the posterior distribution f (μ|x).

Solution
Using the Bayes theorem, we have

f (μ|x) = f (x|μ)π(μ)∫
f (x|μ)π(μ)dμ

=
1√
2πσ

e−(x−μ)2/2σ2 1√
2πσp

e
−(μ−μp)2/2σ2

p

∫ 1√
2πσ

e−(x−μ)2/2σ2 1√
2πσp

e
−(μ−μp)2/2σ2

pdμ
(11.2)

= 1
2πσσp

e
−
[

(x−μ)2

2σ2 + (μ−μp)2

2σ2
p

]
.
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Consider the exponential term in (11.2), namely,
(x−μ)2

2σ2 + (μ−μp)2

2σ2
p

.

(x − μ)2

2σ2 + (μ − μp)2

2σ2
p

= 1
2

[
(x − μ)2

σ2 + (μ − μp)2

σ2
p

]

= 1
2

[(
1

σ2 + 1

σ2
p

)
μ2 − 2

(
μp

σ2
p

+ x

σ2

)
μ +

(
x2

σ2 + μ2
p

σ2
p

)]

= 1
2

[
σ2
p + σ2

σ2σ2
p

μ2 − 2

(
μp

σ2
p

+ x

σ2

)
μ +

(
x2

σ2 + μ2
p

σ2
p

)]

= 1
2

σ2
p + σ2

σ2σ2
p

[
μ2 − 2

σ2σ2
p

σ2
p + σ2

(
μp

σ2
p

+ x

σ2

)
μ

+ σ2σ2
p

σ2
p + σ2

(
x2

σ2 + μ2
p

σ2
p

)]

= 1
2

σ2
p + σ2

σ2σ2
p

[
μ2 − 2

(
σ2

σ2
p + σ2 μp + σ2

p

σ2
p + σ2 x

)
μ

+
(

σ2

σ2
p + σ2 μp + σ2

p

σ2
p + σ2 x

)2
⎤
⎦

+ 1
2

σ2
p + σ2

σ2σ2
p

⎡
⎣ x2

σ2 + μ2
p

σ2
p

−
(

σ2
p

σ2
p + σ2 x + σ2

σ2
p + σ2 μp

)2

= 1
2

σ2
p + σ2

σ2σ2
p

[
μ −

(
σ2

σ2
p + σ2 μp + σ2

p

σ2
p + σ2 x

)]2

+ K̃,

where

K̃ = 1
2

σ2
p + σ2

σ2σ2
p

⎡
⎣ x2

σ2 + μ2
p

σ2
p

−
(

σ2

σ2 + σ2
p

μp + σ2
p

σ2 + σ2
p

x

)2
⎤
⎦ .

From the foregoing derivation, we obtain

f (μ|x) = Ke
− 1

2
σ2
p+σ2

σ2σ2
p

[
μ−

(
σ2

σ2
p+σ2 μp+ σ2

p

σ2
p+σ2 x

)]2

,

where K does not contain μ.

This implies that the posterior density f (μ |x ) is the pdf of normal random variable with mean(
σ2

σ2
p + σ2 μp + σ2

p

σ2
p + σ2 x

)
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and variance

σ2σ2
p

σ2
p + σ2 .

If we let τp = 1
σ2

p
and τ = 1

σ2 , then the posterior density can be rewritten as the pdf of normal random

variable with mean 1
τp+τ

(
τpμp + τx

)
and variance 1

τp+τ .

As an example, suppose that μp = 100, σp = 15, and σ = 10, x = 115. Then f (μ |x ) is the pdf of a normal

random variable with

Mean = 100
100 + 225

(100) + 225
100 + 225

(115) = 110.4

and

Variance = (100)(225)

100 + 225
= 69.2.

11.2.1 Criteria for Finding the Bayesian Estimate
In the Bayesian approach to parameter estimation, we use both the prior and observations. This leads
to an estimation strategy based on the posterior distribution. How do we know that the estimate
thus obtained is “good”? To assess the quality of likely estimators, we use a loss function L (θ, a) that
measures the loss incurred by using a as an estimate of θ. Here θ is the parameter being estimated (in
real-world problems it is not known), and a is the estimate of θ. Then the “optimal” or “best” estimate
a = θ̂ is chosen so as to minimize the expected loss E[L(θ, θ̂)], where the expectation is taken over θ

with respect to the posterior distribution f (θ |x). Here we mention two types of commonly used loss
functions: quadratic and absolute error loss functions and the resulting estimates.

(1) A quadratic (or squared error) loss function is of the form L(θ, a) = (a − θ)2. In this case,

E [L(θ, a)] =
∫

L(θ, a)f (θ|x1, . . . , xn)dθ

=
∫

(a − θ)2f (θ|x1, . . . , xn)dθ.

Differentiating with respect to a and equating to zero, we obtain

2
∫

(a − θ) f (θ |x1, . . . , xn ) dθ = 0

This implies

a =
∫

θf (θ |x1, . . . , xn ) dθ.

This is the posterior mean (expected value) of θ, E (θ |x1, . . . , xn). Hence the quadratic loss function is
minimized by taking the estimate of θ, that is, θ̂, to be the posterior mean. In previous examples in
this section, we used this value as the estimate θ̂. Note that what the quadratic loss function displays
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is that if the estimate θ̂ and the true parameter θ are close to each other, the loss we expect is very
small. Likewise, if the difference is larger, the expected loss in estimating θ with θ̂ is going to be large.

(2) An absolute error loss function is of the form L (θ, a) = |a − θ|. In this case,

E [L(θ, a)] =
∫

L(θ, a)f (θ |x1, . . . , xn )dθ

=
a∫

θ=−∞
(a − θ) f (θ |x1, . . . , xn )dθ

+
∞∫

θ=a

(θ − a)f (θ |x1, . . . , xn )dθ

Differentiating with respect to a and equating to zero, we obtain

a∫
θ=−∞

f (θ |x1, . . . , xn ) dθ −
∞∫

θ=a

f (θ |x1, . . . , xn ) dθ = 0

The minimum loss is attained when the values of both integrals are equal to 1
2 . This can be achieved

by taking θ̂ to be the posterior median.

The following can be considered as a general Bayesian procedure for point parameter estimation.

BAYESIAN PARAMETER ESTIMATION PROCEDURE

1. Consider the unknown parameter θ as a random variable.
2. Use a probability distribution(prior) to describe the uncertainty about the unknown parameter.

3. Update the parameter distribution using the Bayes theorem:

P(θ|Data) ∝ P(θ)P(Data|θ),

that is,

(posterior of θ) ∝ (prior of θ).(likelihood).

4. The Bayes estimator of θ is set to be the expected value of the posterior distribution P(θ |Data)
under quadratic loss function.

5. The Bayes estimator of θ is set to be posterior median under absolute error loss function.

From the procedure of Bayesian estimation, it is clear that a bad choice of prior may result in a
bad estimate. Generally, if the priors are based on a previous and trustworthy sample, Bayesian
estimation methods are desirable. A schematic figure of steps involved in the Bayesian estimate is
given in Figure 11.1.
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Prior info,
P(�)

Likelihood
P(Data |�)

Loss
function

Updated
Posterior
P(�|Data)

■ FIGURE 11.1 Bayesian estimation procedure.

In this chapter, we use only the quadratic loss function unless it is explicitly stated otherwise. We
also mention that this loss function is very popular because of its analytic tractability. We now derive
Bayesian point estimates for some specific distributions.

Whereas uniform priors are useful in the noninformative situations, the beta family of distributions
is one of the commonly taken informative priors. Distributions in the beta family take values in the
interval (0, 1). Recall that if X ∼ beta(α, β), then the pdf of X is given by

f (x) =
{

�(α+β)
�(α)�(β) x

α−1 (1 − x)β−1 , 0 ≤ x < 1

0, otherwise, α > 0, β > 0.

The beta pdf can be written as

f (x) = Cxα−1 (1 − x)β−1∝ xα−1 (1 − x)β−1 ,

where C = �(α+β)
�(α)�(β)

. We also know that

E (X) = α

α + β
, and Var (X) = αβ

(α + β)2 ((α + β + 1)
.

Example 11.2.5
Let X1, . . . , Xn be a sample from geometric distribution with parameter p, 0 ≤ p ≤ 1. Assume that the

prior distribution of p is beta with α = 4, and β = 4.

(a) Find the posterior distribution of p.

(b) Find the Bayes estimate under quadratic loss function.

Solution
(a) Because p is Beta(4, 4), the prior density is

� (8)

� (4) � (4)
p3 (1 − p)3 = 140p3 (1 − p)3.
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Because the r.v.’s X′
is have geometric distribution with parameter p, the likelihood is given by

L(X1, . . . , Xn |θ ) =
n∏

i=1

p (1 − p)xi−1 = pn(1 − p)

n∑
i=1

xi−n

.

The product of the likelihood function and the prior is given by

pn(1 − p)

n∑
i=1

xi−n [
140p3 (1 − p)3

]
= 140pn+3 (1 − p)

n∑
i=1

xi−n+3
.

Because, (posterior of p) ∝ (prior ofp) . (likelihood), rewriting the normalizing constant in the

denominator of Equation (11.1) as C, and letting C1 = 140C, the posterior distribution (because

α − 1 = n + 3, and β − 1 = ∑n
i=1 xi − n + 3) is Beta

(
n + 4,

n∑
i=1

xi − n + 4
)

.

(b) Recall that for a Beta(α, β) random variable, the mean is [α/(α + β)]. Because the Bayes estimate

is the posterior mean, the mean of Beta
(
n + 4,

n∑
i=1

xi − n + 4
)

is

n + 4[
n∑

i=1
xi − n + 4

]
+ (n + 4)

= n + 4
n∑

i=1
xi + 8

Note that for large n, the Bayes estimate is approximately n/
∑n

i=1 xi, which is the MLE of p.

In general, for a Bernoulli random variable with unknown probability of success p in [0,1], the usual

conjugate prior is the beta distribution, where the parameters of the beta distribution are chosen to

reflect any prior information that we have.

We will follow the idea of the previous example in a binomial experiment of tossing a coin.

Example 11.2.6
Suppose we are flipping a biased coin, where the probability of heads p could be any value between 0 and

1. Given a sequence of toss samples x1, x2, . . . , xn, we want to estimate P (H) = p. We may have two

sources of information: our prior belief, which we will express as a beta distribution, and the data, which

could come from counts of heads x in n = 20 independent flips of the coin, say x = 13. Suppose that in six

prior tosses, we observed three heads and three tails, which lead us to believe that the value of p is near

0.5. Obtain the posterior distribution of p.

Solution
Here our prior belief or assumption can be written in terms of beta distribution as

π (p) = � (α + β)

� (α) � (β)
pα−1 (1 − p)β−1

where α = 4 and β = 4. That is (noting �(n) = (n − 1)!)

π(p) = 7!
(3!)(3!)p3(1 − p)3.
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Hence, π(p) ∝ p3(1 − p)3. Because the mean of a beta distribution is α/(α + β) and the variance is

αβ/
(
(α + β)2 (α + β + 1)

)
, for the prior,

Mean(p) = 4
4 + 4

= 0.5,

and

Var(p) = (4)(4)

(4 + 4)2(4 + 4 + 1)
= 0.028.

Let X denote the number of heads in 20 flips of this coin. Then X has a binomial distribution, and the pmf

is given by

f (x|p) =
(

20
x

)
px(1 − p)20−x, x = 0, 1, . . . , 20.

This we can write as

f (x|p) ∝ px(1 − p)20−x.

In the 20 flips we have observed 13 heads. Then fix x = 13, and we are interested in the likelihood, which is

the relative value of the function at different values of p:

f (13|p, 20) ∝ p13(1 − p)7.

The posterior probability of p, given x = 13, is

π(p|x = 13) ∝ f (x|p)π(p)

=
(
p13(1 − p)20−13

)
p3(1 − p)3

= p16(1 − p)10.

Thus, the posterior is a beta distribution with α = 17 and β = 11. Consequently, we can now obtain the mean

and variance of p as

Mean(p) = 17
17 + 11

= 0.607

and

Var(p) = (17)(11)

(17 + 11)2(17 + 11 + 1)
= 0.008.

Note that the prior was beta distribution with mean 0.5 and variance 0.028. Figure 11.2 gives the prior and

posterior densities.

Note that if we had ignored the prior and just took the point estimation, then the MLE of p is MLE(p) = p̂ =
13
20 = 0.65. Compare this with the Bayesian estimate of p = 0.607. Because Beta(1, 1) is the Uniform [0, 1],
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■ FIGURE 11.2 Prior and posterior distributions for the proportions.

the method of the previous example can be used for noninformative priors. The method could also be used in

many applications. For example, suppose p represents the proportion of infected individuals in a population,

and x is the number of infected individuals in a sample of size n. Then with a noninformative prior, we can

show that the posterior of p is Beta(x + 1, n − x + 1). This type of setting can be used for estimating the

true proportion of infected individuals in the population.

Example 11.2.7
Suppose for the past million days we have been predicting whether the sun will rise the next morning or

not. Each evening we say that the sun will rise the next morning (R̂), and we were right (R) all these days.

Suppose on the 106 evenings we predicted that the sun will rise on the next day. What is the probability

that the sun will rise the next day?

Solution
The problem can be cast in the following table form.

1 2 . . . 106 106 + 1
R̂ R̂ . . . R̂ R̂

R R . . . R ?

P(R|R̂) = 1 if we use the frequency method of estimation (for example the MLE). Let us now consider the

Bayes method. Suppose the prior is uniform on [0,1]. That is,

π(p) =
⎧⎨
⎩1, if 0 ≤ p ≤ 1

0, otherwise.
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Suppose we predict n times and we succeed x times. Then

f (x|p) =
(

n

x

)
px(1 − p)n−x.

The joint pdf is given by

f (x, p) = f (x|p)π(p)

=
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n; 0 ≤ p ≤ 1.

By the Bayes theorem, the posterior pdf π(p|x) is

π(p|x) = f (x|p)π(p)

1∫
0

f (x|p)π(p)dp

= K(n, x)px(1 − p)n−x, 0 ≤ p ≤ 1, 0 ≤ x ≤ n,

which is a beta probability distribution. Recall that the beta density is given by

f (y) = 1
B(α, β)

yα−1(1 − y)β−1

and E(Y) = α
α+β . Thus,

E [π (p |x )] = x + 1
(x + 1) + (n − x) + 1

= x + 1
n + 2

.

In our example, x = 106, n = 106, which implies that the posterior mean is given by

p̂β = 106 + 1

106 + 2
≈ 1.

Example 11.2.8
Let X1, X2, . . . , Xn be N

(
μ, σ2) random variables with prior π (μ) having N

(
μ0, σ2

0
)

distribution with

known σ2.

(a) Obtain the posterior distribution of μ.

(b) Suppose it is known from past experience that the weight loss for a particular combination of

diet and exercise program (if followed for a month) is normally distributed with mean 10 lb and

standard deviation of 2 lb. A random sample of five persons who went through this program for a

month produced the following weight loss in pounds:

14 8 11 7 11

What is the point estimate of the mean, μ? Assume σ2 = 4.
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Solution
(a) Because π (μ) ∼ N

(
μ0, σ2

0
)

, π (μ) ∝ exp
[
(μ − μ0)2 /σ2

0
]

and we omit the terms that do not

depend on μ. We have from the data x = (x1, . . . , xn), the likelihood function,

L (x1, . . . , xn |μ) = f (x |μ) ∝
n∏

i=1

exp

{
− (xi − μ)2

2σ2

}

= exp

{
−

n∑
i=1

[
(xi − μ)2 /2σ2

]}
,

where μ is determined by the posterior distribution. The product of the likelihood function and the

prior gives the posterior, which is obtained (after some algebra) as follows:

f (μ|x) ∝ π(μ)f (x|μ) ∝ exp
[
− (μ − μ1)2 /2σ2

1

]
where

μ1 =
n
σ2 x + 1

σ2
0
μ0

n
σ2 + 1

σ2
0

and

σ2
1 = 1

n
σ2 + 1

σ2
0

.

Thus, the posterior distribution of μ is N
(
μ1, σ2

1
)

.

(b) Note that the sample mean x = 10.2 lb, and sample standard deviation s = 2.77 lb. Now from

part (a), the posterior distribution of μ is normal with mean

μ1 =
n
σ2 x + 1

σ2
0
μ0

n
σ2 + 1

σ2
0

=
5
22 (10.2) + 1

22 (10)

5
22 + 1

22

= 10.167

and variance

σ2
1 = 1

n
σ2 + 1

σ2
0

= 1
5
22 + 1

22

= 0.66667.

Thus, the point estimate of μ is the posterior mean, 10.167. Figure 11.3 represents the prior and
posterior densities of μ.

Sometimes, the inverse of variance in the normal distribution is called the precision of the normal
distribution and denoted by τ = 1/σ2. Also note that in part (a) of the previous example, if the
prior variance σ2

0 → ∞, then the prior flattens out, π(μ) ∝ c, a constant. This basically amounts to
saying that prior information on μ decreases, that is, all μ are equally probable. This corresponds
to a noninformative prior. Also, in this case as σ2

0 → ∞, σ2
1 → σ2

n
and μ1 → x. Hence, in the limit
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■ FIGURE 11.3 Prior and posterior densities of μ.

(i.e., for noninformative priors), the posterior f (μ|x) will have an N(x, σ2/n) distribution, which is
exactly the same inference as in classical statistics.

In Bayesian inference problems, one of the questions is, which will have relatively more influence,
prior or likelihood? As we observe a large amount of data, it can be shown that the posterior
distribution is almost exclusively determined by the data. That is, asymptotically, observed data will
have a larger influence compared to the choice of prior, and thus the prior will be irrelevant. Hence,
we can make the following general observations. If the prior is noninformative and we have a large
data set, then we can expect that the likelihood will have greater influence. Whereas, if we have a
small data set and an informative prior, then the prior will have a larger influence on the updated
posterior distribution. Bayesian estimators are more complicated to compute than calculating the
maximum likelihood estimates in simple cases. However, in complex settings Bayesian statistics are
often relatively easier to compute.

One of the problems in using Bayesian analysis is choosing an appropriate prior. There are no specific
rules available for this purpose. For instance, the following priors are commonly used in the literature.
If data are in [0,1], we could use uniform or beta distribution. If the data are in [0, ∞), normal (with
nonnegative and relatively large μ), gamma, or log-normal distributions are used. If the data are in
(−∞, ∞), normal or t-distributions are commonly used.

EXERCISES 11.2

11.2.1. Suppose in a casino, two kinds of dice are used, one kind of which 98% are fair, and 2%
are loaded such that five comes up 60% of the time and the rest of the numbers are equally
probable. We pick a die at random and roll it three times. We get three consecutive fives.
What is the probability that the die is loaded?
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11.2.2. It is believed that cross-fertilized plants produce taller offspring than self-fertilized plants.
In order to obtain an estimate on the proportion θ of cross-fertilized plants that are
taller, an experimenter observes a random sample of 15 pairs of plants exactly the same
age, with each pair grown in the same conditions with one cross-fertilized and the
other self-fertilized. Based on previous experience, the experimenter believes that the
following are possible values of π and prior probabilities for each value (prior weight), π(θ):

θ: 0.80 0.82 0.84 0.86 0.88 0.90
π (θ): 0.03 0.40 0.22 0.15 0.15 0.05

From the experiment, it is observed that in 13 of 15 pairs, the cross-fertilized is taller.
(a) Create a table with columns for prior, likelihood of θ given sample, prior times likeli-

hood, and posterior probability of θ. Based on the posterior probabilities, what value
of θ has the highest support? Also, find E(θ) based on the posterior probabilities.

(b) Redo part (a) with a completely noninformative prior, that is, take the prior for the
proportion θ as one of the equally spaced values 0, 0.1, 0.2, . . . , 0.9, 1. Also assign for
each value of θ the same probability, π(θ) = 1/11.

(c) Calculate the MLE of θ and compare it with the Bayesian estimate.

11.2.3. Consider the problem of estimating p in a binomial distribution. Let X be number of
successes in a sample of size n.

(a) Let the prior distribution of p be given by Beta(3,1), that is

π (p) =
{

3p2, 0 < p < 1
0, otherwise.

Find the posterior distribution of p.

⎡
⎢⎣Hint : f (x |p) =

⎧⎪⎨
⎪⎩
(

n

x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n

0, otherwise.

⎤
⎥⎦

(b) Let the prior distribution of p be given by Beta(a,b) (that is, π (p) ∝ pa−1 (1 − p)b−1.
Find the posterior distribution of p.

11.2.4. A biased coin is tossed n times. Let xi be 1 if the ith toss is heads and 0 if it is tails. Assume a
noninformative prior, p (θ) = 1, 0 ≤ θ ≤ 1. Let t be the number of heads obtained. Show
that the posterior distribution of θ is Beta (t + 1, n − t + 1).

11.2.5. Let X1, X2, . . . , Xn be exponential random variables with parameter λ. Let the prior π (λ)

be exponentially distributed with parameter μ, which is a fixed and known constant.

(a) Show that the posterior distribution of λ is Gamma
(
1 +∑n

i=1 xi, n + 1
)
.

(b) Obtain the Bayes estimate of λ.

11.2.6. Let X1, X2, . . . , Xn be Poisson random variables with parameter λ. Assume that λ has a
Gamma (α, β) prior.
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(a) Compute the posterior distribution of λ.
(b) Obtain the Bayes estimate of λ.
(c) Compare the MLE of λ with the Bayes estimate of λ.
(d) Which of the two estimates is better? Why?

11.2.7. Let X1, X2, . . . , Xn be Poisson random variables with parameter λ. Assume that λ has an
exponential distribution with θ = 1 prior.
(a) Compute the posterior distribution of λ.
(b) Show that the Bayes estimate of λ is Gamma

((∑n
i=1 xi + 1

)
, (n + 1)

)
.

11.2.8. It is known that a certain disease has affected 10% of a population. In a random sample of
50 patients typical of the disease group who are exposed to a new treatment, we observe
that 12 patients were hospitalized in a year. Let μ be the rate of population that need
hospitalization. Assume that

μ ∼ Gamma (0.1, 2) and f (x|μ) ∼ Poi (50μ) .

Given that 0.24 is an observation from f (x|μ), find the Bayesian estimator of μ (that is,
obtain E(μ|x)).

11.2.9. Let X1, . . . , Xn be an N(μ, 2) random sample with prior π(μ) having N(0, σ2) distribution
with known σ2. Obtain the posterior distribution of μ.

11.2.10. Let X1, . . . , Xn be an N(μ, 1) random sample with prior π(μ) having the pdf
[
1/π

(
1 + μ2

)]
.

Show that the posterior

π(μ |x ) ∝ exp

{
−n (μ − x)2

2

}
× 1

1 + μ2 .

11.3 BAYESIAN CONFIDENCE INTERVAL OR CREDIBLE INTERVALS

In this section, we want to study the question, “Can we construct an interval where we are confident
that the interval contains the unknown true value of θ?” We have seen how in many situations it
may be preferable to use an interval estimate instead of a point estimate for a population parameter
θ. Such intervals in classical statistics were called confidence intervals. We can extend the concept
of interval estimation to a Bayesian setting. The Bayesian analog of a confidence interval is called a
credible interval and is defined as follows.

Definition 11.3.1 A 100(1 − α)% credible interval for θ is an interval (a, b) such that

P(a ≤ θ ≤ b |x1, . . . , xn ) ≥ (1 − α) 100%

Here α is given small positive number between 0 and 1, and x1, . . . , xn are the sample values.

Note that we read this definition backwards, that is, we are at least (1 − α) 100% confident that the
true value of θ is between a and b, given the sampled information.
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■ FIGURE 11.4 Credible interval for θ.

Because the conditional distribution of θ given X1, . . . , Xn is actually a probability distribution, it
makes sense to talk about the probability that θ is in the interval (a, b). Once we have observed
data, the credible interval is fixed while θ is random. This is in contrast to the classical confidence
interval where the interval is random but θ is a fixed parameter. In the classical case, we would say,
“In the long run, 100(1 − α) % of all such intervals will contain the true parameter θ.” In the Bayesian
approach, we would say, “The probability is at least 100(1 − α) % that θ lies within the specified
interval (a, b).”

As in the classical case, it would be desirable to minimize the length of the credible interval. This
entails choosing only those points with highest values in the density of f (θ |x1, . . . , xn ), as shown in
Figure 11.4.

Definition 11.3.1 can be rephrased as follows using the posterior distribution of θ.

Definition 11.3.2 A 100(1 − α)% credible interval for θ is an interval (a, b) such that

1.
b∫
a

f (θ |x1, . . . , xn ) dθ ≥ 1 − α, if θ is continuous, and the posterior pdf of θ is f (θ |x1, . . . , xn ).

2.
b∑

f (θ |x1, . . . , xn ) ≥ 1 − α, if θ is discrete.

We will now give some examples for computing credible intervals.

Example 11.3.1
Suppose X1, . . . , Xn is a random sample from N

(
μ, σ2)with σ2 = 4. Suppose the prior pdf of μ is N(0, 1),

that is, π (μ) ∼ N (0, 1). Find a 95% credible interval for μ.

Solution
We have seen from Example 11.2.8 that the posterior distribution of μ given x1, . . . , xn is normally distributed

with

Mean = 1

1 + 4
n

x
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and

Variance = 1
1 + n

4
.

Figure 11.3 represents the posterior distribution of μ.

To find the 95% credible interval for μ, we have to find two numbers a and b such that

P (a ≤ X ≤ b) = 0.95

where

X ∼ N

(
μ = x

1 + 4
n

, σ2 = 1
1 + n

4

)
.

We choose a to be −b (b is positive). Using z-scores, we get (X is continuous),

P

⎛
⎜⎜⎝−zα/2 <

μ − 1
1+ 4

n

x√
1

1+ n
4

< zα/2

⎞
⎟⎟⎠ = 1 − α

which can be rearranged as

P

⎛
⎜⎝ 1

1 + 4
n

x − 1√
1 + n

4

zα/2 < μ <
1

1 + 4
n

x + 1√
1 + n

4

zα/2

⎞
⎟⎠ = 1 − α.

Thus, a 95% credible interval for μ is⎛
⎜⎝ 1

1 + 4
n

x − 1√
1 + n

4

zα/2,
1

1 + 4
n

x + 1√
1 + n

4

zα/2

⎞
⎟⎠ .

For convenience, we summarize this procedure in the following steps.
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BAYESIAN CREDIBLE INTERVAL PROCEDURE

1. Consider θ as a random variable with prior pdf (or pmf) π(θ).

2. Update the prior distribution π(θ) using the Bayes theorem. That is find the posterior distribution of

θ by the formula

π(θ |data ) =

⎧⎪⎨
⎪⎩

f (data|θ )π(θ)∫
f (data|θ )π(θ)dθ

, if continuous

f (data|θ )π(θ)∑
f (data|θ )π(θ) , if discrete.

3. Find two numbers a and b such that

b∫
a

π(θ |data)dθ ≥ 1 − α, if continuous

b∑
θ=a

π(θ |data) ≥ 1 − α, if discrete.

Note: The numbers a and b are found such that

a∫
−∞

π(θ |data)dθ = α/2, if continuous

∑
θ≤a

π(θ |data) = α/2, if discrete

and

∞∫
b

π(θ |data)dθ = α/2, if continuous

∑
θ≥b

π(θ |data) = α/2, if discrete.

4. The (1 − α)100% credible interval for θ is the interval (a, b).

In the discrete case, an easy way of finding a credible interval of smallest length is to arrange the
values of θ from most likely to least likely (that is, in the order of the magnitude of the posterior
probabilities), and then put values of θ into the interval until the cumulative posterior probabil-
ity of the set exceeds (1 − α)100%. Such an interval is called a highest posterior density (HPD)
interval. It can be shown that the HPD interval always exists, and it is unique, so long as for all
intervals of probability (1 − α), the posterior density is never uniform in any interval of values of θ.
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Example 11.3.2
For the data of Example 11.2.1, find a 90% credible interval for θ.

Solution
Arranging the values of θ from most likely to least likely, we have Table 11.3. Looking at the ‘‘cumulative

probability’’ column, we see that the probability that θ is in the set {0.86, 0.84, 0.88, 0.82, 0.80} is 0.90192.

So this set is a 90% probability (or credible) interval for θ.

Table 11.3

Prior values Posterior probability Cumulative

of θ of θ probability

0.86 0.2661 0.2661

0.84 0.22528 0.49138

0.88 0.15817 0.64955

0.82 0.14208 0.79163

0.80 0.11029 0.90192

0.90 9.8064 × 10–2 0.99984

EXERCISES 11.3

11.3.1. (a) Suppose X1, . . . , Xn is a random sample from N
(
μ, σ2

)
with σ2 = 9. Suppose the prior

pdf of μ is N (0, 1); that is π (μ) ∼ N (0, 1). Find a 95% credible interval for μ.
(b) The following is a set of random data from a normal distribution with variance 9.

0.92 1.05 5.53 3.64 −4.47 −2.60 0.71 −3.66 1.38 3.87
7.42 1.76 0.01 2.69 1.54 3.97 1.34 −1.63 −1.24 −4.78

Using the results of part (a), compute a 95% credible interval for μ, interpret its meaning,
and state any assumptions you have made.

11.3.2. Suppose that a person believes that his last year’s weight was normally distributed with
mean of 165 lb and standard deviation of 5 lb. That is, the prior pdf of μ is N(165, 25), or
π(μ) ∼ N(165, 25). He expects his current weight X is normally distributed with mean μ

and standard deviation 7 lb. Following are 10 random measurements (in pounds) from this
year.

176 165 180 172 175
179 166 177 184 183

Find a 95% credible interval for μ.
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11.3.3. It is known that a certain disease affects 10% of a population. In a random sample of 50
patients in the disease group who are exposed to a new treatment, we observe that 12 patients
were hospitalized in a year. Let μ be the population rate that needs hospitalization in a year.
Assume μ has a Gamma (0.1, 2) prior. Let μ ∼ Gamma (0.1, 2) and f (x| μ ) ∼ Poi (50μ) .

Given that x = 0.24 is an observation of X, find 95% credible internal for μ. Obtain a
Bayesian credible interval for μ. (If X is the number of patients admitted in a year, assume
X ∼ Poi (50μ), the Poisson approximation of the binomial.) How can we improve on this
estimate?

11.3.4. For an upcoming congressional election, suppose we want to estimate the amount of support
for a particular candidate in a district. By previous experience and voter registration data, we
can assume that the prior distribution of the proportion of support, p, is a beta distribution
with α = 10, and β = 8 (i.e., π (p) ∼ Beta (10, 8)). We conducted a survey of 1000 randomly
selected voters, of whom 600 support the candidate. Obtain a 95% credible interval for p.
What will happen to the credible interval if we reduce the confidence interval? What will
happen to the 95% credible interval if we increase the sample size?

11.3.5. It is recommended that the daily intake of sodium be 2400 mg per day. From a previous
study on a particular ethnic group, the prior distribution of sodium intake is believed to be
normal with mean 2700 mg and standard deviation 250 mg. If a recent survey for this group
resulted in a mean of 3000 mg and standard deviation of 300 mg, obtain a 95% credible
interval for the mean intake of sodium for this ethnic group.

11.3.6. Suppose we have a coin (not necessarily balanced) with p being the probability of heads.
Assume a uniform prior for p. Suppose in 20 tosses of this coin, we obtained 12 heads.
Obtain a 90% credible interval for p.

11.3.7. Suppose that in a particular telephone exchange, the number of calls received per minute has
a Poisson distribution with parameter λ. Assume an exponential prior for λ with parameter 2.
Suppose this exchange had received 25 calls in five minutes. Obtain a 95% credible interval
for λ.

11.4 BAYESIAN HYPOTHESIS TESTING

The Bayesian approach to hypothesis testing for simple hypotheses is pretty straightforward. Deciding
between two hypotheses for a given set of data x reduces to computing their posterior probabilities.
If an explicit loss function is available, the Bayes rule is chosen to minimize the expected value of
the loss function with respect to the posterior distribution. In the absence of a loss function, the
probabilities of type I and type II errors are of little interest to the Bayesian.

In the classical hypothesis testing, we test a null hypothesis (denoted by H0) against an alternative
hypothesis (denoted by H1 or Ha). The test procedure is based on controlling the two types of errors—
type I and type II. The classical test procedures limit the type I error to α and minimize the type II
error. If the type II error is unacceptably high, it is reduced by increasing the sample size.
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In the Bayesian approach, the problem of deciding between the null and alternative is rather
straightforward. Consider the problem of hypothesis testing with

H0 : θ ∈ �0 vs. H1 : θ ∈ �1 (11.3)

where �0, �1 are subsets of the real line. Let X1, . . . , Xn be the sample from a population with pdf
fθ(x).

In the Bayesian hypothesis testing approach we compute the following posterior probabilities:

α0 = P (θ ∈ �0 |x1, . . . , xn ) (11.4)

and

α1 = P (θ ∈ �1 |x1, . . . , xn ). (11.5)

If α0 > α1, we accept the null hypothesis, and if α0 < α1, we reject the null hypothesis. We now
outline the Bayes hypothesis testing procedure for testing hypothesis (11.3).

Let π (θ) be the prior. Also,

π0 = P (θ ∈ �0)

and

π1 = P (θ ∈ �1)

Definition 11.4.1 The ratio π0/π1 is called the prior odds ratio. The ratio α0/α1 (see Equations (11.4)
and (11.5)) is called the posterior odds ratio.

The posterior odds ratio is the ratio of the posterior probabilities, given the data, of the null and alter-
nate hypotheses. The posterior odds ratio will be used in decision making for testing the hypotheses.
We now compute α0 and α1 using the Bayes theorem. That is,

α0 = P (θ ∈ �0 |x1, . . . , xn )

=

⎧⎪⎪⎨
⎪⎪⎩

∫
�0

f (θ |x1, . . . , xn ) dθ, if continuous

∑
θ∈�0

f (θ |x1, . . . , xn ) , if discrete.

Similarly,

α1 = P (θ ∈ �1 |x1, . . . , xn )

=

⎧⎪⎪⎨
⎪⎪⎩

∫
�1

f (θ |x1, . . . , xn ) dθ, if continuous

∑
θ∈�1

f (θ |x1, . . . , xn ) , if discrete.

We reject H0 if the odds ratio (α0/α1) < 1 and accept H0 if (α0/α1) > 1.
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This method of hypothesis testing is called Jeffreys’ hypothesis testing criterion. It basically says that
if the posterior odds ratio is greater than 1, we accept the null hypothesis; otherwise, we reject the
null in favor of the alternative hypothesis.

Because we cannot determine the probability of a single value in the continuous variable case, it
should be noted that for a simple null hypothesis of the form θ equals some specified value cannot
be dealt with easily in the Bayesian framework. Hence, unlike the classical framework, here we mostly
deal with the composite hypotheses for both null and alternative.

Example 11.4.1
A student taking a standardized test is classified as gifted if he or she scores at least 100 out of a possible

score of 150. Otherwise the student is classified as not gifted. Suppose the prior distribution of the scores

of all students is a normal with mean 100 and standard deviation 15. It is believed that scores will vary each

time the student takes the test and that these scores can be modeled as a normal distribution with mean μ

and variance 100. Suppose the student takes the test and scores 115. Test the hypothesis that the student

can be classified as a gifted student.

Solution
The hypothesis testing problem can be phrased as

H0 : θ < 100 vs. Ha : θ ≥ 100.

Referring to the Example 11.2.8, we know that the posterior distribution f (θ|x) is a normal with mean

110.4 and variance 69.2. Because the prior is an N(100, 225), we have π0 = P(θ < 100) = 1/2 and

π1 = P(θ ≥ 100) = 1/2.

We can now compute

α0 = P (θ < 100 |x = 115 )

= P

(
θ − 110.4√

69.2
<

100 − 110.4√
69.2

)

= P

(
z ≤ − 10.4√

69.2

)
= 0.106

and

α1 = P (θ ≥ 100 |x = 115 )

= 1 − P (θ < 100 |x = 115 )

= 1 − 0.106 = 0.894.

Thus, α0/α1 = (0.106/0.894) = 0.119 < 1, and we reject H0.
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BAYESIAN HYPOTHESIS TESTING PROCEDURE

To test H0 : θ ∈ �0 vs. H1 : θ ∈ �1, where �0 and �1 are given sets:
1. Consider θ as a random variable with prior distribution π(θ).
2. Compute the posterior distribution f (θ |x1, . . . , xn ) of θ given x1, . . . , xn , using Bayes’ theorem.

3. Compute α0 and α1 using the following formulas:

α0 = P (θ ∈ �0 |x1, . . . , xn )

=

⎧⎪⎪⎨
⎪⎪⎩

∫
�0

f (θ |x1, . . . , xn ) dθ, if continuous

∑
θ∈�0

f (θ |x1, . . . , xn ) , if discrete

and
α1 = P (θ ∈ �1 |x1, . . . , xn )

=

⎧⎪⎪⎨
⎪⎪⎩

∫
�1

f (θ |x1, . . . , xn ) dθ, if continuous

∑
θ∈�1

f (θ |x1, . . . , xn ) , if discrete.

4. Reject H0 if the posterior odds ratio,
α0

α1
< 1. Otherwise accept.

In the foregoing procedure, we assume that P (θ ∈ �0) and P (θ ∈ �1) are both greater than zero.

EXERCISES 11.4

11.4.1. The following is random data from a normal distribution with variance 9.

0.92 1.05 5.53 3.64 −4.47 −2.60 0.71 −3.66 1.38 3.87
7.42 1.76 0.01 2.69 1.54 3.97 1.34 −1.63 −1.24 −4.78

(a) Test the hypothesis, H0 : μ ≤ 0 vs. Ha : μ > 0. Assume that the prior is N(0, 4), so
that μ ≤ 0 and μ > 0 are equally probable.

(b) Compare your decision with classical hypothesis testing, with α = 0.05.

11.4.2. (a) For the data of Exercise 11.3.2, using the Bayesian method, test the hypothesis
H0 : μ ≤ 170 vs. Ha : μ > 170.

(b) Compare your decision with classical hypothesis testing, with α = 0.05.

11.4.3. It is known that a certain disease affects 10% of a population. Of a random sample of
50 patients in the disease group who are exposed to a new treatment, we observe that 12
patients were hospitalized in a year. Let μ be the population rate that needs hospitalization
in a year. Assume μ has a Gamma(0.1, 2) prior. Let μ ∼ Gamma(0.1, 2) and f (x|μ) ∼
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Poi(50μ). Given that x = 0.24 is an observation of X, test the hypothesis H0 : p ≤
0.10 vs. Ha : p > 0.10. (If X is the number of patients admitted in a year, assume X ∼
Poi (50μ), the Poisson approximation of the binomial.)

11.4.4. For an upcoming congressional election, suppose we want to estimate the amount of
support for a particular candidate in a district. By previous experience and voter registration
data, we can assume that the prior distribution, the proportion of support, p, is a beta
distribution with α = 10, and β = 8 (i.e., π (p) ∼ Beta (10, 8)). We conducted a survey of
1000 randomly selected voters, of whom 600 support the candidate. Test the hypothesis
H0 : p ≥ 0.60 vs. Ha : p < 0.60.

11.4.5. For the data of Exercise 11.3.5, test the hypothesis H0 : μ ≤ 2400 mg vs. Ha : μ > 2400 mg
for this ethnic group.

11.4.6. Suppose we have a coin (not necessarily balanced) with p being the probability of heads.
Assume a uniform prior for p. Suppose in 20 tosses of this coin, we obtained 12 heads.
Test the hypothesis H0 : p ≥ 0.50 vs. Ha : p > 0.50.

11.5 BAYESIAN DECISION THEORY

Bayesian methods in general are more concerned with problems of decision making than with prob-
lems of inference. Decision theory, as the name implies, is concerned with the problem of making
decisions. Statistical decision theory is concerned with optimal decision making under uncertainty
or when statistical knowledge is available only on some of the uncertainties involved in the deci-
sion problem. Uncertainty could be about the true value related to the decision, or, uncertainty
could be about the actual state of the nature. Abraham Wald (1902–1950) laid the foundation for
statistical decision theory. Original works on the decision theory emerged out of game theory con-
siderations. Many books and articles have been written on the various aspects of decision theory. The
Bayesian approach to the decision theory was introduced by Leonard Jimmie Savage in 1954. In this
section, we introduce the general idea of decision theory. We basically deal with analytical procedures
for the decision-making process. This will involve selection of an optimum decision from a choice
of courses of action among two or more alternatives. The Bayesian decision theory quantifies the
trade-offs between different decisions using costs and probabilities that accompany such decisions.

Consider, as an example, a company deciding whether or not to market a new brand of toothpaste
with a whitening agent. Clearly many factors will affect the decision (for example, the proportion of
people who are likely to switch to the new brand, and the likelihood of other competing companies
introducing similar toothpastes). These factors are generally unknown, but estimates can be obtained
from statistical investigations.

The classical statistical approach relies exclusively on the data obtained from these statistical inves-
tigations, ignoring other relevant information such as the company’s past experiences in marketing
similar products. Statistical decision theory tries to combine other relevant information with the
sample information to arrive at the optimal decision. Therefore, a Bayesian setting seems to be more
appropriate for decision theory.
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One piece of relevant information that decision theory considers is the possible consequences of the
decisions. Often these consequences can be quantified. That is, the loss or gain of each decision can
be expressed as a number (called the loss or utility). A loss or utility to a decision maker is the effect
of the interaction of two factors: (1) the decision or action selected by the decision maker; and (2)
the event or state of the world that actually occurs. Classical statistics does not explicitly use a loss
function or a utility (payoff) function.

A second source of information that decision theory utilizes is the prior information. Prior informa-
tion could be based on past experiences of similar situations or on expert opinion. We can follow the
procedure explained next as a guideline for decision making.

GENERAL DECISION THEORY PROCEDURE

1. Identify the objectives of the decision-making process.
2. Identify the set of actions and set of possible events (states of nature).
3. Assign probabilities to the occurrence of each possible state of nature (prior). If more observations

are available, calculate the posterior probabilities to the occurrence of each possible state of
nature.

4. For each possible event, assign a numerical value to the anticipated payoff (or loss) of each course
of action.

5. Compute the expected value of the payoffs (utility or loss function). This could be done by either
using the prior probabilities if there are no observations, or using the posterior probabilities.

6. Select the optimum decision among the available alternative courses of action that maximizes the
expected value of the payoffs.

We now consider an example to illustrate the idea of statistical decision making.

Example 11.5.1
Suppose you own a small stall at a flea market that is open only on weekends. If the weather is good, you

make a profit of $200, and if it is bad, you close your stall and you make no (zero) profit. However, you have

the option of buying, from an insurance company, weather insurance that costs $75. The company pays

you $210 if the weather is bad. Suppose you believe that the probability of good weather on a particular

weekend is p. Compute the expected gain if you insure and if you do not. What is the best course of action?

Arrive at a decision.

Solution
From the information in the problem, we can obtain the utility gain or profit table shown in Table 11.4,

based on our decision to insure or not insure. Suppose that we model the state of weather as good or bad

by means of a random variable defined as follows.

θ =
{

1, if the weather is good

0, if the weather is bad.
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Table 11.4

Weather

Parameter Space → Good Bad
Decision Space ↓D (θ1) (θ2)

Insurance (I)(d1) $125 (200–75) $135 (210–75)

No Insurance (NI)(d2) $200 $0

Suppose for our example we believe that during a particular weekend P(θ = 1) = p, and P(θ = 0) = 1−p.

This can be considered as prior information. The different values of θ are called states of nature. We assign

(perhaps subjectively) a probability structure for the states of nature defined by a prior distribution π(θ). Now

we can compute the expected gain when we insure and when we do not.

Using the values in the table,

Expected gain given we insure = (125) p + (135) (1 − p)

= 135 − 10p

Expected gain when do not insure = (200) p + (0) (1 − p)

= 200p

Hence, insurance is preferable if

135 − 10p > 200p

or

p <
135
210

= 0.643.

That is, we should take the insurance if we believe the probability of good weather is less than 0.643.

In general the states of the nature are represented by θ1, . . . , θn and the possible decisions (actions)
are represented by d1, . . . , dm. Let U

(
dj, θi

)
represent the net gain when the true states of nature is θi

and the decision dj is made. Then we can construct the general utility table shown in Table 11.5.

In Bayesian decision theory, we assume a probability distribution on the states of nature called the
prior distribution. Using this probability distribution, we can find the decision that maximizes the
expected utility. That is, let the states of nature be initially modeled by a random variable θ with
probability function π(θ) such that P(θ = θi) = π(θi), i = 1, . . . , n. Let U denote the utility. Then the
expected utility for decision dj is given by

E
(
U
∣∣dj

) =
n∑

i=1

U
(
dj, θi

)
π
(
θi

)
.
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Table 11.5

States of nature

θ1 θ2 · · · θi · · · θn

d1 U (d1, θ1) U (d1, θ2) U (d1, θi) U (d1, θn)

d2

Decision ·
States

dj U
(
dj, θi

)
·

dm U (d1, θ1) U (dm, θn)

The optimal decision, called the Bayes decision, denoted by d∗, is that which maximizes the expected
utility. That is, d∗ satisfies the following equation:

max
dj

n∑
i=1

U
(
dj, θi

)
π
(
θi

) =
n∑

i=1

U
(
d∗, θi

)
π
(
θi

)
.

This procedure is called the Bayes decision procedure with respect to the assumed or given prior
π (θi) , i = 1, 2, . . . , n.

PROCEDURE TO FIND OPTIMAL DECISION

1. For each decision di , compute
∑n

i−1 U
(

dj , θi
)
π (θi )

2. Find a decision d∗ from the decision space that maximizes the sum in step 1. This is the Bayes
decision.

In determining the Bayes decision, we have assumed a prior distribution π (θ) for the states of nature
{θi}. Naturally the question arises: Can there be information or observations that will help us to
determine π (θ)?

Definition 11.5.1 Observations that can aid us in determining the relative likelihoods of the possible states
of nature are called observables.

We remark that observables enable us to refine and update our initial prior π(θ). The updated prior
is the conditional distribution π(θ|observables), which clearly depends on the observables as well as
the initial prior π(θ). The updated prior is also called the posterior.

For example, to determine the nature of weather we may hear the weather forecast (80% chance of
rain), in which case we may assume P(G) = 0.2, and P(B) = 0.8. However, the weather forecast is
not perfect. Let Ĝ and B̂ denote the meteorologist’s prediction. We may like to know P(G|Ĝ) and
P(G|B̂). That is, what is the probability of the weather being good when the meteorologist predicts
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the weather will be good, and what is the probability that the weather is good when the meteorologist
predicts the weather will be bad?

It may be noted that there is no direct cause-effect relation in G|Ĝ. That is, the prediction of the
weather forecast does not influence the weather. If a probability distribution depends on a set of
parameters θ, the classical approach estimates θ on the basis of an observed sample X1, . . . , Xn.
The samples X1, . . . , Xn are the observables. Thus, observables are used to estimate the parame-
ters, that is, we want the distribution of θ given X1, . . . , Xn or p(θ|X1, . . . , Xn). In our weather
situation, the observable is the weather forecast, whereas the parameter is one of the weather
conditions, good or bad. In P(Ĝ|G) we are asking, “Given that the weather is good, what is
the probability that the weather forecast is correct?” We can imagine that meteorological con-
ditions such as the barometric pressure determine the weather (that is, G = f (m1, . . . , mk),
mi = meterological factor), and in this sense we can consider that G is a parameter. We thus want
P(G|Ĝ).

To compute the posterior P(G|Ĝ), we use the Bayes theorem (which needs a prior distribution, P(G)).
That is,

P(G|Ĝ) = P(Ĝ|G)P(G)

P(Ĝ|G)P(G) + P(Ĝ|B)P(B)
.

Similarly, we can compute P(B|B̂).

Coming back to our weather situation, if P(G) is known and P(Ĝ|G), P(B̂|B) are known, we could
obtain the required posterior distributions P(G|Ĝ) and P(B|B̂). We can now use this distribution to
calculate the expected utilities and choose the decision that maximizes the expected utility.

We now consider an example.

Example 11.5.2
Let us initially assume P(θ = 1) = P(θ = 0) = 1

2 . That is,

P (good weather) = P (bad weather) = 1
2

.

Suppose we have the following record on the meteorologist’s predictions. The meteorologist predicts good

weather (Ĝ), given the weather is good, 2
3 of the time, that is, P(Ĝ|G) = 2/3, and predicts bad weather,

given the weather is bad, 3/4 of the time, that is, P(B̂|B) = 3/4. Thus, given that the meteorologist

predicts good weather, what is the probability that the weather will turn out to be good, and given the

meteorologist predicts bad weather, what is the probability that the weather will turn out to be bad?

Solution
To compute the true probabilities, we use the Bayes theorem.

We are given P(Ĝ|G) = 2
3 and P(B̂|B) = 3

4 , which imply P(B̂|G) = 1
3 and P(Ĝ|B) = 1

4 . Using the Bayes

theorem, we obtain the likelihood of G as
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P(G|Ĝ) = P(Ĝ |G)P(G)

P(Ĝ |G)P(G) + P(Ĝ |B)P(B)

=
(

2
3

) (
1
2

)
(

2
3

) (
1
2

)
+
(

1
4

) (
1
2

) = 8
11

and the likelihood of B is

P(B|B̂) = P(B̂ |B)P(B)

P(B̂ |B)P(B) + P(B̂ |G)P(G)

=
(

3
4

) (
1
2

)
(

3
4

) (
1
2

)
+
(

1
3

) (
1
2

) = 9
13

.

Thus, we have the following updated prior depending upon the meteorologist’s prediction. The updated prior

when the meteorologist predicts good weather is

π(G) = P(G|Ĝ) = 8
11

; π(B) = 1 − π(G) = 3
11

.

Thus, the updated π (G) is actually π
Ĝ

(G). Similarly, the updated prior when the meteorologist predicts bad

weather (that is, π
B̂
(G)) is

π(G) = P(G|B̂) = 4
13

; π(B) = P(B|B̂) = 9
13

.

That is, if the meteorologist predicts good weather, he will be right about 72.7% of the time, and if he predicts

bad weather, he will be right about 69.2% of the time.

Example 11.5.3
Consider Example 11.5.2, with the additional information that the meteorologist has predicted that the

weather will be good on a given weekend. Referring to the utility table (Table 11.5) given in Example 11.5.1,

we ask, what should be our decision—to insure or not to insure—in light of this prediction?

Solution
From Example 11.5.2, we know that the updated prior, given that the meteorologist predicts good weather, is

π (G) = P(G|Ĝ) = 8
11

and π(B) = P(B|Ĝ) = 3
11

.

Using the foregoing prior and the utility table in Example 11.5.2, we can compute the following expected

gains:

Expected gain if we insure = (125)π(G) + (135)π(B)

= (125)
8
11

+ (135)
3
11

= 127.73.
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and

Expected gain if we do not insure = (200)
8
11

= 145.45.

Therefore our decision, given that the meteorologist predicts good weather, is not to insure.

EXERCISES 11.5

11.5.1. Suppose that we will receive $25 if we get two consecutive heads (H) on two flips of a
balanced coin. If only one head appears, we will get $10. On the other hand, if there is no
heads, we will lose $15. If monetary return is the only concern, should we play this game?
Why?

11.5.2. In the previous problem, suppose we suspect the coin is not balanced. We feel that P(H)

is only 0.4. In our last 10 observations, we counted three heads and seven tails. Should we
play the game? Defend your answer.

11.5.3. The owner of a small structural engineering firm in Tampa wants to open a new branch office
in Orlando. The single most influential factor is the projected state of the economy for the
next 4 years. If the economy keeps expanding or at least does not take a turn for the worse,
the owner expects an annual profit of $300,000 by opening the new office. If the economy
experiences a downward trend, then the owner forecasts an annual loss of $200,000. If he
just continues to operate his business in Tampa, he expects a $50,000 annual profit. Suppose
a government forecast indicates that there is a 70% chance of economic expansion or status
quo in the next 4 years and there is a 30% chance that the economy will show a decline.
What is the optimal decision in this problem? Did you make any assumption in obtaining
this optimal decision?

11.5.4. In Exercise 11.5.3, suppose the owner decides to look at the accuracy of past forecasts by the
government. Suppose his study indicates that a forecast of economic expansion came true
only 2/3 of the time, whereas an economic downturn came true 4/5 of the time. Now based
on this new evidence, what is the optimal option for the owner?

11.5.5. Consider the weather Example 11.5.1, discussed earlier. The meteorologist’s prediction
record over the past 15 days is as follows:

Weather
person’s G B B G G G B G G B B G B G G
prediction

How the
weather
turned out
to be

B B B G G B B G B G B G G G G
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(a) Assuming a uniform distribution for the states of nature, obtain an updated prior
(posterior) based on the meteorologist’s record.

(b) Obtain the Bayes decision.

11.5.6. A coin (not necessarily fair) will be tossed once, and you have to predict the outcome. If you
predict the outcome correctly you win $1000. Otherwise, you lose $5.
(a) What are the states of nature? What is the decision space? Write the utility table.
(b) Suppose that you believe that the probability of heads is 2/3. What is your price for the

states of nature? Find the expected gains.
(c) Suppose that you are allowed to toss the coin twice and you find that the first toss results

in heads and the second in tails. What are the observables?
(d) Assume the situation in (c). The coin is going to be tossed again and you have to predict

the outcome. What is your updated prior?
(e) What are your expected gains, and what is your decision for the situation in (d)?

11.5.7. We are given the following utility table:

States of nature
θ1 θ2 θ3

d1 0 10 4
d2 −2 5 1

Determine the Bayes decision assuming a uniform prior for the states of nature.

11.5.8. Suppose that we have an observable X that can take only two values, X1 and X2, for the
situation in Exercise 11.5.7. The distribution of X depends on the states of nature and is as
follows:

θ1 θ2 θ3

X1 0.1 0.5 0.6
X2 0.9 0.5 0.4

That is, P (X = x1|θ1) = 0.1 or P (X = x2|θ3) = 0.4, and so forth.
Suppose you observe X1; what is the updated prior? What is the Bayes decision?

11.5.9. A large lot has p% defectives and you have to predict p. If you predict p correctly you gain
$g, and if the prediction is wrong, you lose $l. It is known that the possible values of p are
p1, p2, . . . , pk.
(a) Set up a utility table.
(b) Suppose you assume a uniform prior for p. That is π (pi) = 1

k
, i = 1, 2, . . . , k. Find an

expression for the Bayes decision.
(c) Suppose you have an observable X such that P (X = x1|pi) = ai, i = 1, 2 . . . , k and

P (X = x1|pi) = 1 − ai, i = 1, 2, . . . , k. Find the updated prior for p. What is the Bayes
decision in this case?
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11.6 CHAPTER SUMMARY

In this chapter we introduced the basic philosophy, definitions, and methods of performing statistical
analysis in a Bayesian setting. The treatment of unknown parameters as if they are random variables
provides a feedback mechanism to update our original beliefs about the parameter(s). The posterior
distribution of the parameter(s) represents our revised belief and is calculated by combining data
and prior knowledge. We also saw a brief explanation of Bayesian decision theory. It should be noted
that there are various other aspects of Bayesian analysis, such as Bayesian regression, in which priors
are used about the regression coefficients as well as about the error variance. It is beyond the scope
of one chapter to deal with all aspects of Bayesian analysis. There are many publications on Bayesian
statistics. We have also briefly studied some elements of decision theory, which has a natural base in
the Bayesian approach.

We now list some of the key definitions introduced in this chapter:

■ Posterior distribution
■ Quadratic loss function
■ Absolute error loss function
■ 100 (1 − α) % credible interval
■ Prior odds ratio
■ Posterior odds ratio
■ Observable

In this chapter, we have also learned the following important concepts and procedures:

■ Bayesian parameter estimation procedure
■ Bayesian credible interval procedure
■ General decision theory procedure
■ Procedure to find optimal decision

11.7 COMPUTER EXAMPLES

A very popular software (and it is free) for the Bayesian computation is WinBUGS, which can be
obtained from http://www.mrc-bsu.cam.ac.uk/bugs/. Computing posterior probability for propor-
tions using the steps we learned in Section 11.2 can be performed using Minitab. Refer to the book,
Bayesian Computation Using Minitab, by Jim Albert (Wadsworth, 1996).

PROJECTS FOR CHAPTER 11

11A. Predicting Future Observations
Suppose we want to predict the value of future observations based on the prior and observed data. In
addition to the posterior distribution f (θ|x), in Bayesian statistics we are interested in the marginal
density of the observations (note that because both θ and x are random, it makes sense to speak about
their joint, marginal, and conditional densities). Using the Bayes theorem, we have seen that g (x) is
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the marginal density function of data at x = (x1, . . . , xn) (for the continuous case) to be

g (x) =
∫

f (x |θ ) π (θ) dθ

where f (x |θ ) π (θ) is the joint density of x and θ. This also can be written as

g (x) = E [f (x|θ)] ,

the expected density of observations with respect to the prior distribution π (θ). With the help of
g (x), we can predict observations.

We are more interested in the density of future observations y, given present data x. However, because
we have already updated the value of θ using the posterior density, this should be reflected in our
prediction:

f (y|x) =
∫

f (y, θ|x) dθ

=
∫

f (y|θ, x) · π (θ|x) dθ

=
∫

f (y|θ) π (θ|x) dθ,

if y and x are conditionally independent given θ. Conditional independence is achieved, for example,
when x = (x1, . . . , xn)

′ and y = (xn+1, . . . , xn+m)′ both are samples from f (x|θ).
We see that the density of future observations is the expected density of observations with respect to
posterior distribution. Consider two different priors for θ.

Uniform [0,2], (2) N
(
1, 1

6

)
. Assume f (x|θ) ∼ N (θ, 1). Find the predictive distributions given the

sample X1, X2, . . . , Xn.
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Chapter 12
Nonparametric Tests

Objective: In this chapter we shall introduce several classical Nonparametric or distribution free tests.
These tests do not require distributional assumptions about the population such as the normality.
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Jacob Wolfowitz
(Source: www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Wolfowitz.html)

Jacob Wolfowitz was born on 19 March 1910 in Warsaw, Russian Empire (now Poland), and died
on 16 July 1981 in Tampa, Florida, USA. Wolfowitz’s earliest interest was nonparametric inference,
and the first joint paper he wrote with Abraham Wald introduced methods of calculating confidence
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intervals that are not necessarily of fixed width. It is in this paper by Wolfowitz in 1942 that the
term nonparametric appears for the first time. Later, he worked on the area of sequential analysis
and published work on sequential estimators of a Bernoulli parameter and results on the efficiency
of certain sequential estimators. He also studied asymptotic statistical theory and worked on many
aspects of the maximum likelihood method. Information theory pioneered by Shannon was another
area to which Wolfowitz made important contributions, culminating in a classic book titled Coding
Theorems of Information Theory (3rd ed. 1978). After working at different places such as the Statistical
Research Group at Columbia University, the University of North Carolina, and the University of
Illinois at Urbana, in 1978 he joined the faculty of the University of South Florida at Tampa. Wolfowitz
was elected to the National Academy of Sciences and the American Academy of Arts and Sciences.
He was also elected a Fellow of the Econometric Society, the International Statistics Institute, and the
Institute of Mathematical Statistics. In 1979 he was Shannon Lecturer of the Institute of Electrical and
Electronic Engineers.

12.1 INTRODUCTION

Most of the tests that we have learned up to this point are based on the assumption that the sam-
ple(s) came from a normal population, or at the least that the population probability distribution(s)
is specified except for a set of free parameters. Such tests are called parametric tests. In general, a
parametric test is known to be generally more powerful than other procedures when the underlying
assumptions are met. Usually the assumption of normality or any other distributional assumption
about the population is hard to verify, especially when the sample sizes are small or the data are mea-
sured on an ordinal scale such as the letter grades of a student, in which case we do not have a precise
measurement. For example, incidence rates of rare diseases, data from gene-expression microarrays,
and the number of car accidents in a given time interval are not normally distributed. Nonparametric
tests are tests that do not make such distributional assumptions, particularly the usual assumption of
normality. In situations where a distributional model for a set of data is unavailable, nonparametric
tests are ideal. Even if the data are distributed normally, nonparametric methods are frequently almost
as powerful as parametric methods. These tests involve only order relationships among observations
and are based on ranks of the variables and analyzing the ranks instead of the original values. Non-
parametric methods include tests that do not involve population parameters at all, such as testing
whether the population is normal. Distribution-free tests generally do make some weak assumptions,
such as equality of population variances and/or the distribution, and are of the continuous type.

Sometimes we may be required to make inferences about models that are difficult to parameterize, or
we may have data in a form that make, say, the normal theory, tests unsuitable. For example, incomes
of families generally follow a very skewed distribution. If we do a sample survey of a large number
of the families in a feeder area, the income distribution may look as in Figure 12.1.

This distribution is clearly difficult to parameterize, that is, to identify a classical probability distri-
bution that will characterize the data’s behavior. Moreover, the mean income of this sample may be
misleading. A better measure of the central tendency is the median income. At least we know that 50%
of the families are below the median and 50% above. Appropriate techniques of inference in these
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■ FIGURE 12.1 Income distribution of families.

situations are based on distribution-free methods. Most of the nonparametric methods use only the
order of magnitude of observations, known as order statistics, in a sample, rather than the observed
values of the random variables.

In general, nonparametric methods are appropriate to estimation or hypothesis testing problems
when the population distributions could only be specified in general terms. The conditions may be
specified as being continuous, symmetric, or identical, differing only in median or mean 3.

The distributions need not belong to specific families such as normal or gamma. Because most of
the nonparametric procedures depend on a minimum number of assumptions, the chance of their
being improperly used is relatively small. Also, nonparametric procedures may be used when the
data are measured on a weak scale such as only count data or rank data. We may ask: Why not
use nonparametric methods all the time? The answer lies in the fact that when the assumptions
of the parametric tests can be verified as true, parametric tests are generally more powerful than
nonparametric tests. Because only ranks are used in nonparametric methods, and even though
the ranks preserve information about the order of the data, because the actual values are not used
some information is lost. Because of this, nonparametric procedures cannot be as powerful as their
parametric counterparts when parametric tests can be used. For brevity and clarity, this chapter is
presented without much theoretical explanation to focus on the methods. Theoretical developments
can be found in many specialized books on the subject.

In this chapter, we study some of the commonly used classical nonparametric methods that are based
on ordering, ranking, and permutations. The modern approaches are based on resampling methods
such as bootstrap and will be discussed in Chapter 13.

12.2 NONPARAMETRIC CONFIDENCE INTERVAL

We have seen that for a large sample, using the Central Limit Theorem, we can obtain a confidence
interval for a parameter within a well-defined probability distribution. However, for small samples,
we need to make distributional assumptions that are often difficult to verify. For this reason, in practice
it is often advisable to construct confidence intervals or interval estimates of population quantities
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that are not parameters of a particular family of distributions. In a nonparametric setting, we need
procedures where the sample statistics used have distributions that do not depend on the population
distribution. The median is commonly used as a parameter in nonparametric settings. We assume
that the population distribution is continuous.

Let M denote the median of a distribution and X (assumed to be continuous) be any observation
from that distribution. Then

P(X ≤ M) = P(X ≥ M) = 1
2

.

This implies that, for a given random sample X1, . . . , Xn from a population with median M, the
distribution of the number of observations falling below M will follow a binomial distribution with
parameters n and p = 1

2 , irrespective of the population distribution. That is, let N− be the number of
observations less than M. Then the distribution of N− is binomial with parameters n and p = 1

2 for
a sample of size n. Hence, we can construct a confidence interval for the median using the binomial
distribution.

For a given probability value α, we can determine a and b such that

P(N− ≤ a) =
a∑

i=0

(
n

i

)(
1
2

)i (1
2

)n−i

=
a∑

i=0

(
n

i

)(
1
2

)n

= α

2

and

P(N− ≥ b) =
n∑

i=b

(
n

i

)(
1
2

)i (1
2

)n−i

=
n∑

i=b

(
n

i

)(
1
2

)n

= α

2
.

If exact probabilities cannot be achieved, choose a and b such that the probabilities are as close
as possible to the value of α/2. Furthermore, let X(1), X(2), . . . , X(a), . . . , X(b), . . . , X(n) be the order
statistics of X1, . . . , Xn as in Figure 12.2.

Then the population median will be above the order statistic, X(b), ( α
2 )100% of the time and below the

order statistic, X(a), ( α
2 )100% of the time. Hence, a (1 − α)100% confidence interval for the median

of a population distribution will be
X(a) < M < X(b).

X(1) X(2) X(a) X(b) X(n�1) X(n)M

■ FIGURE 12.2 Ordered sample.
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We can write this result as P(X(a) < M < X(b)) = 1 − α.

By dividing the upper and lower tail probabilities equally, we find that b = n + 1 − a. Therefore, the
confidence interval becomes

X(a) < M < X(n+1−a).

In practice, a will be chosen so as to come as close to attaining α
2 as possible.

We can summarize the nonparametric procedure for finding the confidence interval for the population
median as follows.

PROCEDURE FOR FINDING (1−α) 100% CONFIDENCE INTERVAL FOR THE MEDIAN M

For a sample of size n :
1. Arrange the data in ascending order.

2. From the binomial table with n and p = 1
2 , find the value of a such that

P (X ≤ a) = α

2
or nearest to

α

2
.

3. Set b = n + 1 − a.
4. Then the confidence interval is such that the lower limit is the ath value and the upper limit is the

bth value of the observations in step 1.
Assumptions: Population distribution is continuous; the sample is a simple random sample.

We illustrate this four-step procedure with an example.

Example 12.2.1
In a large company, the following data represent a random sample of the ages of 20 employees.

24 31 28 43 28 56 48 39 52 32

38 49 51 49 62 33 41 58 63 56

Construct a 95% confidence interval for the population median M of the ages of the employees of this

company.

Solution
For a 95% confidence interval, α = 0.05. Hence, α/2 = 0.025. The ordered data are

24 28 28 31 32 33 38 39 41 43

48 49 49 51 52 56 56 58 62 63

Looking at the binomial table with n = 20 and p = 1
2 , we see that P(X ≤ 5) = 0.0207. Hence, a = 5 comes

closest to achieving α/2 =0.025. Hence, in the ordered data, we should use the fifth observation, 32, for the
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lower confidence limit and the 16th observation (n + 1 − a = 21 − 5 = 16), 56, for the upper confidence

limit. Therefore, an approximate 95% confidence interval for M is

32 < M < 56.

That is, we are at least 95% certain that the true median of the employee ages of this company will be

greater than 32 and less than 56.

Example 12.2.2
A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients. Twenty

patients from this group were given the drug. The changes in heart rates were found to be as follows.

−1 8 5 10 2 12 7 9 1 3

4 6 4 20 11 2 −1 10 2 8

Construct a 98% confidence interval for the mean change in heart rate. Can we assume that the population

has a normal distribution? Interpret your answer.

Solution
First testing for normality, we get the probability plot shown in Figure 12.3.

This shows that the normality assumption may not be satisfied, and thus the nonparametric method is more

suitable (this conclusion is based strictly on the normal probability plot). Using a box plot, we could also test

for outliers. The ordered data are

−1 −1 1 2 2 2 3 4 4 5

6 7 8 8 9 10 10 11 12 20

1

�10 0 10
Data

20

5

P
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nt
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■ FIGURE 12.3
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Looking at the binomial table with n = 20 and p = 1
2 , we see that P (X ≤ 4) = 0.006. Hence, a = 4 comes

closest to achieving α/2 = 0.01. Hence, in the ordered data, we should use the fourth observation, 2, for the

lower confidence limit and the 17th observation (n + 1 − a = 21 − 4 = 17), 10, for the upper confidence

limit. Therefore, an approximate 98% confidence interval for M is

2 < M < 10.

That is, we are at least 98% certain that the true median of the mean change in heart rate will be greater

than 2 and less than 10.

If we perform the usual t-test, we will get the 98% confidence interval as (3.20, 9.0). However, such an interval

is not valid, because the normality assumptions are not satisfied.

EXERCISES 12.2

12.2.1. For the following random sample values, construct a 95% confidence interval for the
population median M:

7.2 5.7 4.9 6.2 8.5 2.7 5.9 6.0 8.2

12.2.2. The following data represent a random sample of end-of-year bonuses for the lower-level
managerial personnel employed by a large firm. Bonuses are expressed in percentage of
yearly salary.

6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7 8.6 6.9
8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8 3.2 4.6

Construct a 98% confidence interval for the median bonus expressed in percentage of
yearly salary of this firm. Also, draw a probability plot and test for normality. Can this be
considered a random sample?

12.2.3. Air pollution in large U.S. cities is monitored to see if it conforms to requirements set by
the Environmental Protection Agency. The following data, expressed as an air pollution
index, give the air quality of a city for 10 randomly selected days.

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

(a) Draw a probability plot and test for normality.
(b) Construct a 95% confidence interval for the actual median air pollution index for this

city and interpret its meaning.

12.2.4. A random sample from a population yields the following 25 values:

90 87 121 96 106 107 89 107 83 92
117 93 98 120 97 109 78 87 99 79
104 85 91 107 89

Give a 99% confidence interval for the population median.
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12.2.5. In an experiment on the uptake of solutes by liver cells, a researcher found that six deter-
minations of the radiation, measured in counts per minute after 20 minutes of immersion,
were:

2728 2585 2769 2662 2876 2777

Construct a 99% confidence interval for the population median and interpret its meaning.

12.2.6. The nominal resistance of a wire is 0.20 ohm. A testing of the wire randomly chosen from
a large collection of such wires yields the following resistance data.

0.199 0.211 0.198 0.201 0.197 0.200 0.198 0.208

Obtain a 95% confidence interval for the population median.

12.2.7. In order to measure the effectiveness of a new procedure for pruning grapes, 15 workers
are assigned to prune an acre of grapes. The effectiveness is measured in worker-hours per
acre for each person.

5.2 5.0 4.8 4.5 3.9 6.1 4.2 4.4 5.5 5.8
4.2 5.3 4.9 4.7 4.9

Obtain a 99% confidence interval for the median time required to prune an acre of grapes
for this procedure and interpret its meaning.

12.2.8. The following data give the exercise capacity (in minutes) for 10 randomly chosen patients
being treated for chronic heart failure.

15 27 11 19 12 21 11 17 13 22

Obtain a 95% confidence interval for the median exercise capacity for patients being treated
for chronic heart failure.

12.2.9. The data given below refer to the in-state tuition costs (in dollars) of 15 randomly selected
colleges from a list of the 100 best values in public colleges (source: Kiplinger’s Magazine,
October 2000).

3788 4065 2196 7360 5212 4137 4060 3956
3975 7395 4058 3683 3999 3156 4354

Obtain a 95% confidence interval for the median in-state tuition costs and interpret its
meaning.

12.3 NONPARAMETRIC HYPOTHESIS TESTS FOR ONE SAMPLE

In this section, we study two popular tests for testing hypotheses about the population location,
or median using the sign test and the Wilcoxon signed rank test. The comparison of medians rather
than means is a technicality that is not important unless the data are skewed substantially. In such
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cases, medians are somewhat more accurate than means for comparing the locations of probability
distributions. Further discussions on nonparametric tests can be found in many references, such as
those by W. J. Conover and by E. L. Lehmann. Before using nonparametric tests, it is desirable to test
for normality of the data using normal probability plots, and for the existence of outliers using box
plots, and run tests for test of randomness of the data. When we make any particular choice of method,
test for the assumptions made. These assumption checks are relatively easier using statistical software
packages. Many of the examples in this chapter are given more for illustration of the nonparametric
methods than for assumption violations of parametric tests or for comprehensive assumption testing
techniques. Also, when we use statistical software packages, generally, the p-value of the test will be
given in the output. In order to make a decision on a particular hypothesis, we just need to compare
the p-value with the chosen value of α. We are going to explain a more traditional approach instead
of using the p-value approach in the discussion; however the computer example section will illustrate
the p-value approach.

12.3.1 The Sign Test
In this section, we describe a test that is the nonparametric alternative to the one-sample t-test and
to the paired-sample t-test. Let M be the median of a certain population. Then we know that

P(X ≤ M) = 0.5 = P(X > M).

We consider the problem of testing the null hypothesis

H0 : M = m0 versus Ha : M > m0.

Assume that the underlying population distribution is continuous so that P(X ≤ M) = 0.5. Let Xi

be the ith observation and let N+ be the number of observations that are greater than m0. N+ will
be our test statistic. We will reject H0 if, n+ the observed value of N+, is too large. This test is called
the sign test. A test at significance level α will reject H0 if n+ ≥ k, where k is chosen such that

P(N+ ≥ k when M = m0) = α.

Similarly, if the alternative is of the form Ha : M = m0, the critical region is of the form N+ ≤ k or
N+ ≥ k1, where P(N+ ≤ k) + P(N+ ≥ k1) = α.

In order to determine such a k and k1, we need to determine the distribution of N+. The test works on
the principle that if the sample were to come from a population with a continuous distribution, then
each of the observations falls above the median or below the median with probability 1

2 . Hence, the
number of sample values falling below the median follows a binomial distribution with parameters
n and p = 1

2 , n being the sample size. If a sample value equals the hypothesized median m0, that
observation will be discarded and the sample size will be adjusted accordingly (we remark that
such values should be very few). Thus, when H0 is true, N+ will have a binomial distribution with
parameters n and p = 1

2 . For this reason, some authors call this test the binomial test. The following
box summarizes the test procedure and the corresponding critical regions.
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SIGN TEST

H0 : M = m0

Alternative Hypothesis Critical Region

Ha : M > m0 N+ ≥ k , where
n∑

i=k

(
n

i

)(
1

2

)n
= α

Ha : M < m0 N+ ≤ k , where
k∑

i=0

(
n

i

)(
1

2

)n
= α

Ha : M = m0 N+ ≥ k1, where
n∑

i=k1

(
n

i

)(
1

2

)n
= α

2

or

N+ ≤ k , where
k∑

i=0

(
n

i

)(
1

2

)n
= α

2

If α or α/2 cannot be achieved exactly, choose k (or k and k1) so that the probability comes as close to α (or
α/2) as possible.

We now summarize the procedure of the sign test in the case of an upper tail alternative. The other
two cases are similar.

HYPOTHESIS TESTING PROCEDURE BY SIGN TEST

We test

H0 : M = m0 vs. H1 : M > m0.

1. Replace each value of the observation that is greater than m0 by a plus sign and each sample value
less than m0 by a minus sign. If the sample value is equal to m0, discard the observation and adjust
the sample size n accordingly.

2. Let n+ be the number of +’s in the sample. For n and p = 1
2 , from the binomial table, find

γ = P (N+ ≥ n+ ).

3. Decision: If γ is less than α, H0 must be rejected. Based on the sample, we will conclude that the
median of the population is greater than m0 at the significance level α. Otherwise do not reject H0.

Assumptions: The population distribution is continuous. The number of ties is small (less than 10% of the
sample).
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Note that the approach described in the foregoing procedure is nothing but the p-value method for
hypothesis testing regarding a median using the sign test. Recall that the p-value is the probability
of observing a test statistic as extreme or more extreme than what was really observed, under the
assumption that the null hypothesis is true. In the sign test, we had assumed that the median is
M = m0, so 50% of the data should be less than m0 and 50% of the data greater than m0. Thus, we
expect half of the data to result in plus signs and half to result in minus signs. Hence, we can think of
the data as following a binomial distribution with p = 1/2 under the null hypothesis. The p-value is
computed from its definition given by the formula

p-value = P(N+ ≥ n+) =
n∑

i=k

(
n

i

)(
1
2

)n

= γ.

The p-value method is to reject the null hypothesis if the computed p-value is greater than α. These
binomial probabilities can be obtained from the binomial tables, or statistical software packages. The
following example illustrates how we apply the three-step procedure.

Example 12.3.1
For the given data from an experiment

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test the hypothesis that H0 : M = 1.4 versus Ha : M >1.4 at α = 0.05.

Solution
We test

H0 : M = 1.4 versus Ha : M > 1.4.

Replacing each value greater than 1.4 with a plus sign and each value less than 1.4 with a minus sign, we

have

+ − + + − − + − +.

Thus, n+ = 5. From the binomial table with n = 9 and p = 1
2 , we have

P(N+ ≥ 5) = 0.50.

Thus, the p-value is 0.5. Because α = 0.05 < 0.50, the null hypothesis is not rejected. We conclude that the

median does not exceed 1.4.

When the sample size n is large, we can apply the normal approximation to the binomial distribu-
tion. That is, the test statistic N+ is approximately normally distributed. Thus, under H0, N+ will
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have approximate normal distribution with mean np = n
2 and variance of np (1 − p) = n

4 . By the
z-transform, we have

Z = N+ − n/2√
n/4

= 2N+ − n√
n

∼ N(0, 1).

We could utilize this test if n is large, that is, if np ≥ 5 and n(1 − p) ≥ 5. Hence, under H0, because
p = 1/2, if n ≥ 10, we could use the large sample test. The following table summarizes the large
sample sign test.

A SIGN TEST FOR A LARGE RANDOM SAMPLE

When the sample size is large (n ≥ 10), we can use the normal approximation to a binomial. This leads to
the large sample sign test:

H0 : M = m0

versus
Alternative Hypothesis Rejection Region
Ha : M > m0 z ≥ zα

Ha : M < m0 z ≤ −zα

Ha : M = m0 |z | ≥ zα/2

The test statistic is

Z = 2N+ − n√
n

.

Decision: Reject H0, if the test statistic falls in the rejection region, and conclude that Ha is true with
(1 − α)100% confidence. Otherwise, do not reject H0 because there is not enough evidence to conclude
that Ha is true for a given α, and more experiments are needed.

Assumptions: (i) Population distribution is continuous. (ii) Sample size greater than or equal to 10 (after
the removal of ties). (iii) The number of ties is small (less than 10% of the sample size).

We illustrate this procedure with the following example.

Example 12.3.2
In order to measure the effectiveness of a new procedure for pruning grapes, 15 workers are assigned to

prune an acre of grapes. The effectiveness is measured in worker-hours/acre for each person.

5.2 5.0 4.8 3.9 6.1 4.2 4.4 5.5 5.8 4.5

4.2 5.3 4.9 4.7 4.9

Test the null hypothesis that the median time to prune an acre of grapes with this method is 4.5 hours

against the alternative that it is larger. Use α = 0.05.
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Solution
We test

H0 : M = 4.5 versus H0 : M > 4.5.

Replacing each value greater than 4.5 with a plus sign and each value less than 4.5 with a minus sign, we

have

+ + + − + − − + + − + + + + .

Because there is one observation that is equal to 4.5, we must discard it and take n = 14.

Thus N+ = 10, using the large sample approximation, the test statistic is

Z = 2N+ − n√
n

= 20 − 14√
14

= 1.6.

For α = 0.05, from the standard normal table, the value of z0.05 = 1.645. Hence, the rejection region is

z > 1.645. Because the observed value of the test statistic does not fall in the rejection region, we do not

reject the null hypothesis at α = 0.05 and conclude that the median time to prune an acre of grapes is 4.5

hours.

12.3.2 Wilcoxon Signed Rank Test
In the sign test, we have considered only whether each observation is greater than m0 or less than
m0 without giving any importance to the magnitude of the difference from m0. An improved version
of the sign test is the Wilcoxon signed rank test, in which one replaces the observations by their
ranks of the ordered magnitudes of differences, |xi − m0|. The smallest observation is ranked as 1,
the next smallest will be 2, and so on. However, the Wilcoxon signed rank test requires an additional
assumption that the continuous population distribution is symmetric with respect to its center. Thus,
if the data are ordinal, the Wilcoxon test cannot be used.

HYPOTHESIS TESTING PROCEDURE BY WILCOXON SIGNED RANK TEST

We test

H0 : M = m0 versus H1 : M = m0.

1. Compute the absolute differences zi = |xi − m0 | for each observation. Replace each value of the
observation that is greater than m0 by a plus sign and each sample value that is less than m0 by a
minus sign. If the sample value is equal to m0, discard the observation and adjust the sample size
n accordingly.

2. Assign each zi a value equal to its rank. If two values of zi are equal, assign each zi a rank equal to
the average of ranks each should receive if there were not a tie.

3. Let W + be the sum of the ranks associated with plus signs and W − be the sums of ranks with
negative signs.
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4. Decision: If m0 is the true median, then the observations should be evenly distributed about m0.

For a size α critical region, reject H0 if

W + ≤ c1, where P (W + ≤ c1) = α

2
,

or

W + ≥ c2, where P (W + ≥ c2) = α

2
.

Assumptions: The population distribution is continuous and symmetrical. The number of ties is small,
less than 10% of the sample size.

The exact distribution of W+ is considerably complicated and we will not derive it. However, for
certain values of n, the distribution is given in the Wilcoxon signed rank test table.

For the Wilcoxon signed rank test, the rejections region based on the alternative hypothesis is given
next.

For

Ha : M > m0, rejection region is W+ ≥ c, where P(W+ ≥ c) = α,

and for

Ha : M < m0, rejection region is W+ ≤ c, where P(W+ ≤ c) = α.

We illustrate the Wilcoxon signed rank test with the following examples.

Example 12.3.3
For the given data that resulted from an experiment

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test the hypothesis that H0 : M = 1.4 versus Ha : M = 1.4. Use α = 0.05.

Solution
We test

H0 : M = 1.4 versus Ha : M = 1.4.

Here, α = 0.05, and m0 = 1.4. The results of steps 1 to 3 are given in Table 12.1.

Thus, we have W+ = 29 and n = 9. From the Wilcoxon signed-rank test table in the appendix, we should

reject H0 if W+ ≤ 6 or W+ ≥ 38 with actual size of α = 0.054. Because W+ = 29 does not fall in the

rejection region, we do not reject the null hypothesis that M = 1.4.
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Table 12.1

xi zi = |xi − 1.4| Sign Rank

1.51 0.11 + 5.5

1.35 0.05 − 3

1.69 0.29 + 9

1.48 0.08 + 4

1.29 0.11 − 5.5

1.27 0.13 − 7

1.54 0.14 + 8

1.39 0.01 − 1.5

1.45 0.01 + 1.5

Example 12.3.4
Air pollution in large U.S. cities is monitored to see whether it conforms to requirements set by the Environ-

mental Protection Agency. The following data, expressed as an air pollution index, give the air quality of a

city for 10 randomly selected days.

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

Test the hypothesis that H0 : M = 65 versus Ha : M < 65. Use α = 0.05.

Solution
We test

H0 : M = 65 versus Ha : M < 65.

Here, α = 0.05, and m0 = 65.

The results of steps 1 to 3 are given in Table 12.2.

Thus, W+ = 3, and n = 10. Using the Wilcoxon signed rank test table, we should reject H0 if W+ ≤ 10 with

actual size of α = 0.042. Because the observed value of W+ falls in the rejection region, we reject H0 and

conclude that the sample evidence suggests that we conclude the median air pollution index is less than 65.

The Wilcoxon signed rank test is a nonparametric alternative to the one-sample t-test. The question
then is, how do we decide which one to choose? Choose the one-sample t-test if it is reasonable
to assume that the population follows a normal distribution. Otherwise, choose the Wilcoxon non-
parametric test. However, the Wilcoxon test will have less power. For example, a normal probability
plot of the data of Example 12.3.4 is given in Figure 12.4. Looking at this figure, we can see that the
normality assumption is a suspect. It may make more sense to use the nonparametric method.
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Table 12.2

xi zi = |xi − 65| Sign Rank

57.3 7.7 − 10

58.1 6.9 − 9

58.7 6.3 − 8

66.7 1.7 + 3

58.8 6.2 − 7

61.9 4.1 − 5

59.0 6.0 − 6

64.4 0.6 − 2

62.6 2.4 − 4

64.9 0.1 − 1

57 58 59 60 61 62
Index
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ro
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Normal probability plot

Average: 61.22
Std Dev: 3.32158
N: 10

Kolmogorov-Smirnov Normality Test
D�: 0.248 D�: 0.131 D: 0.248
Approximate P-Value: 0.081

0.001
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■ FIGURE 12.4 Normal probability for air pollution index.

When sample size n is sufficiently large, under the assumption of H0 being true, the distribution of
W+ is approximately normal with mean

E(W+) = 1
4

n(n + 1)
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and variance

Var(W+) = n(n + 1)(2n + 1)

24
.

Hence, the test statistic is given by

Z = W+ − 1
4n(n + 1)√

n(n + 1)(2n + 1)/24

which is approximately the standard normal distribution. This approximation can be used when
n > 20.

SUMMARY OF THE WILCOXON SIGNED RANK TEST FOR LARGE SAMPLES (N > 20)

We test

H0 : M = m0

versus

M > m0, upper tailed test

Ha : M < m0, lower tailed test

M = m0, two-tailed test.

The test statistic:

Z =
W + − 1

4
n(n + 1)

√
n(n + 1)(2n + 1)/24

.

Rejection region:

⎧⎪⎨
⎪⎩

z > zα, upper tail RR

z < −zα, lower tail RR

|z | > zα/2, two tail RR.

Decision: Reject H0, if the test statistic falls in the RR, and conclude that Ha is true with (1 − α)100%
confidence. Otherwise, do not reject H0, because there is not enough evidence to conclude that Ha is true
for a given α and more experiments are needed.

Assumptions: (i) The population distribution is continuous and symmetric about 0. (ii) Sample size is
greater than or equal to 20. (iii) The number of ties is small, < 10% of the sample size.

We illustrate the Wilcoxon signed rank test with the following example.
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Example 12.3.5
The following data give the monthly rents (in dollars) paid by a random sample of 25 households selected

from a large city.

425 960 1450 655 1025 750 670 975 660 880

1250 780 870 930 550 575 425 900 525 1800

545 840 765 950 1080
Using the large sample Wilcoxon signed rank test, test the hypotheses that the median rent in this city is

$750 against the alternative that it is higher with α = 0.05.

Solution
We test

H0 : M = 750 versus Ha : M > 750.

Here α = 0.05, and m0 = 750. The results of steps 1 to 3 are given in Table 12.3 (where the asterisk indicates

zi = 0).

Table 12.3

xi zi = |xi − 750| Sign Rank

425 325 − 19.5

960 210 + 15

1450 700 + 23

655 95 − 6

1025 302 + 18

750 0 ∗ ignore

670 80 − 3

975 225 + 16.5

660 90 − 4.5

880 130 + 8

1250 500 + 22

780 30 + 2

870 120 + 7

930 180 + 11

550 200 − 12.5

(continued)
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Table 12.3 (continued)

xi zi = |xi − 750| Sign Rank

575 175 − 10

425 325 − 19.5

900 150 + 9

525 225 − 16.5

1800 1050 + 24

545 205 − 14

840 90 + 4.5

765 15 + 1

950 200 + 12.5

1080 330 + 21

Here, for n = 24, W+ = 172.5, and the test statistic is

Z =
W+ − 1

4
n(n + 1)

√
n(n + 1)(2n + 1)/24

=
172.5 −

(
1
4

)
(24)(25)√

(24)(25)(49)

24

= 0.64286.

For α = 0.05, the rejection region is z > 1.645. Because the observed value of the test statistic does not fall

in the rejection region, we do not reject the null hypothesis. There is not enough evidence to conclude that

the median rent in this city is more than $750.

The rank tests are useful for situations when you suspect that the data do not follow the normal
population. It is important to note that ignoring the tied observations reduces the effective sample
size, which in turn reduces the power of the test (see Example 7.1.4 for the effect of n on the value of β).
This loss is not significant if there are only a few ties. However, if the ties are 10% or more, hypothesis
testing using rank tests becomes considerably conservative. That is, they yield error probabilities that
are significantly high.

12.3.3 Dependent Samples: Paired Comparison Tests
The sign test and the Wilcoxon signed rank test can also be used for paired comparisons. The exper-
imental procedure typically consists of taking “before” and “after” type or otherwise matched as in
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the paired t-test case readings for each unit. Suppose there are n pairs of before and after observations
and we are interested in testing the equality of the two medians. One way to test such observations is
to consider the difference between the two observations for a unit to be a single observation on that
unit. Thus, we can treat the sample as being n observations on a population of differences. For this
new sample of differences, the testing problem becomes

H0 : M = 0 versus Ha : M > 0(or M < 0, or M = 0).

Hence, the basic procedure could be summarized to first find the difference between the two units for
each of the observations, and then follow the testing procedures explained earlier for the sign test or
the Wilcoxon signed rank test. Both small sample and large sample cases can be handled as before.
In the following example, we illustrate this concept for a large sample sign test.

Example 12.3.6
A dietary program claims that 3 months of its diet will reduce weight. In order to test this claim, a random

sample of eight individuals who went through this program for 3 months is taken. The following table gives

weight in pounds.

Before 180 199 175 226 189 205 169 211

After 172 191 172 230 178 199 171 201

Using a 5% significance level, is there evidence to conclude that the program really reduces the population

median weight?

Solution
Let M denote the median of the population of difference of weights. We will use the difference as

‘‘after’’−’’before.’’ Then we will test

H0 : M = 0 versus Ha : M < 0.

We will use the large sample sign test. Replacing each value of the difference that is greater than zero by a

+ sign and less than zero by a − sign, we have

Difference −8 −8 −3 4 −11 −6 2 −10
Sign − − − + − − + −

For n = 8 and N+ = 2, the test statistic is given by

Z = 2N+ − n√
n

= 4 − 8√
8

= −1.414.

For α = 0.05, z0.05 = 1.645, and the rejection region is z < − 1.645. Because the observed value of the test

statistic does not fall in the rejection region, we do not reject the null hypothesis. Thus, there is not enough

evidence to conclude that the new program reduces the weight.
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EXERCISES 12.3

12.3.1. It was reported that the median interest rate on 30-year fixed mortgages in a certain large city
is 7.75% on a particular day, with zero points. A random sample of nine lenders produced
the following data of interest rates in percentage.

7.625 7.375 8.00 7.50 7.875 8.00 7.625 7.75 7.25

Test the hypothesis that the median interest rate in this city is different from 7.75%, using
(a) the sign test, and (b) the Wilcoxon signed rank test. Use α = 0.01. Compare the two
results.

12.3.2. It is believed that a typical family spends 35% of its income on food and groceries. A sample
of eight randomly selected families yielded the following data.

30 29 39 49 36 33 37 35

Test the hypothesis that the median percentage of family income spent for food and groceries
is 35 against the alternative that it is less than 35. Use α = 0.05.

12.3.3. The SAT scores (out of a maximum possible score of 1600) for a random sample of 10
students who took this test recently are:

1355 765 890 1089 986 1128 1157 1065 1224 567

Test the hypothesis that the median SAT score is 1000 against the alternative that it is greater
using α = 0.05. Use both the sign test and the Wilcoxon signed rank test. Explain if the
conclusions are different.

12.3.4. The regulatory board of health in a particular state specifies that the fluoride levels in water
must not exceed 1.5 parts per million (ppm). The 20 measurements given here represent
the randomly selected daily early morning readings on fluoride levels in water at a certain
city.

0.88 0.82 0.97 0.95 0.84 0.90 0.87 0.78 0.75 0.83
0.71 0.92 1.11 0.81 0.97 0.85 0.97 0.91 0.78 0.87

Test the hypothesis that the median fluoride level for this city is 0.90 against the alternative
that the median is different from 0.9 at α = 0.01, using (a) the large sample sign test, and
(b) the Wilcoxon signed rank test. Interpret the results.

12.3.5. The following data give the weights (in pounds) for a random sample of 20 NFL players.

285 178 311 276 192 232 259 189 298 211
269 285 296 193 288 254 246 234 274 229

Test the hypothesis that the median weight of NFL players is 250 pounds against the alter-
native that it is greater at α = 0.05, using (a) the large sample sign test and (b) the Wilcoxon
signed rank test.
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12.3.6. The following data give the amount of money (in dollars) spent on textbooks by 18 students
for the last academic year at a large university.

510 425 190 298 157 260 320 615 455
490 188 115 230 610 220 155 315 110

Test the hypothesis that the median amount spent on books at this university is $325 against
the alternative that it is different using the large-sample sign test. Use α = 0.05.

12.3.7. It is desired to study the effect of a special diet on systolic blood pressure. The following
sample data are obtained for eight adults over 40 years of age before and after 6 months of
this diet.

Before 185 222 235 198 224 197 228 234
After 188 217 229 190 226 185 225 231

At 95% confidence level, is there evidence to conclude that the new diet reduces the systolic
blood pressure in individuals of over 40 years old? Test (a) using the sign test, and (b) using
the Wilcoxon signed rank test. Interpret the results.

12.3.8. In an effort to study the effect on absenteeism of having a day-care facility at the workplace
for women with newborn babies (less than 1 year old), a large company compared the
number of absent days for a year for seven women with newborn children before and after
instituting a day-care facility.

Before 20 18 35 22 17 24 15
After 16 9 22 28 19 13 10

At 99% confidence level, is there evidence to conclude that having a day-care facility at the
workplace reduces absenteeism for women with newborn children?

12.4 NONPARAMETRIC HYPOTHESIS TESTS FOR TWO INDEPENDENT
SAMPLES

In this section we learn how to test the equality of the medians of two independent samples from
two populations. This is especially useful when one studies the treatment effects, such as the effect of
a certain drug to treat a given medical condition when we have two groups—an experimental group
and a control group—or the effect of a particular type of teaching method. We will describe the median
test, which corresponds to the sign test, and the Wilcoxon rank sum test.

12.4.1 Median Test
Let m1 and m2 be the medians of two populations 1 and 2, respectively, both with continuous
distributions. Assume that we have a random sample of size n1 from population 1 and a random
sample of size n2 from population 2. The median test can be summarized as follows.
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HYPOTHESIS TESTING PROCEDURE USING MEDIAN TEST

We test

m1 > m2, upper tailed test

H0 : m1 = m2 versus Ha : m1 < m2, lower tailed test

m1 = m2, two-tailed test.

1. Combine the two samples into a single sample of size n1 + n2, keeping track of each observation’s
original population. Arrange the n1 + n2 observations in increasing order and find the median of
this combined sample. If the median is one of the sample values, discard those observations and
adjust the sample size accordingly.

2. Define N1b to be the number of observations of a sample from population 1 (under H0 we would
expect this number to be around n1/2).

3. Decision: If H0 is true, then we would expect N1b to be equal to some number around n1/2. For

Ha : m1 > m2, rejection region is N1b ≤ c , where P(N1b ≤ c ) = α, for Ha : m1 < m2, rejection

region is N1b ≥ c , where P(N1b ≥ c ) = α, and for Ha : m1 = m2, rejection region is N1b ≥ c1,

or N1b ≤ c2, where

P(N1b ≥ c1 ) = α

2
and P(N1b ≤ c2 ) = α

2
.

Assumptions: (i) Population distribution is continuous. (ii) Samples are independent.

Let n1 + n2 = 2k. Under H0, N1b has a hypergeometric distribution given by

P(N1b = n1b) =

(
n1

n1b

)(
n2

k − n1b

)
(

n1 + n2

k

) , n1b = 0, 1, 2, . . . , n1,

with the assumption that
(

i
j

)
= 0, if j > i. Note that the hypergeometric distribution is a discrete

distribution that describes the number of “successes” in a sequence of n draws from a finite population
without replacement. Thus, we can find the values of c, c1, and c2, required earlier. This calculation
can be tedious. To overcome this, we can use the following large sample approximation valid for
n1 > 5 and n2 > 5. First classify each observation as above or below the sample median as shown in
Table 12.4.

It can be verified that the expected value and variance of N1a are given by

E(N1a) = Nan1

n
and Var(N1a) = Nan1n2Nb

n2(n − 1)
.
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Table 12.4

Below Above Totals

Sample 1 N1b N1a n1

Sample 2 N2b N2a n2

Total Nb Na n1 + n2 = n

Thus, for a large sample we can write

z = N1a − E(N1a)√
Var(N1a)

∼ N(0, 1).

Hence, we can follow the usual large sample rejection region procedure, which is summarized next.

SUMMARY OF LARGE SAMPLE MEDIAN SUM TEST (n1 > 5 AND n2 > 5)

We test

H0 : m1 = m2 versus Ha :

⎧⎪⎪⎨
⎪⎪⎩

m1 > m2, upper tailed test

m1 < m2, lower tailed test

m1 = m2, two-tailed test.

The test statistic:

z = N1a − E (N1a)√
Var (N1a)

,

where

E(N1a) = NaN1

n

and

Var(N1a) = N1n1n2Nb

n2(n − 1)
.

Rejection region:

⎧⎪⎪⎨
⎪⎪⎩

z > zα, upper tail RR

z < −zα, lower tail RR

|z | > zα/2, two tail RR.
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Decision: Reject H0, if the test statistic falls in the RR , and conclude that Ha is true with (1 − α)100%
confidence. Otherwise, do not reject H0, because there is not enough evidence to conclude that Ha is true
for a given α and more experiments are needed.

Assumptions: (i) Population distributions are continuous. (ii) n1 > 5 and n2 > 5.

We illustrate this procedure with the following example.

Example 12.4.1
Given below are the mileages (in thousands of miles) of two samples of automobile tires of two different

brands, say I and II, before they wear out.

Tire I: 34 32 37 35 42 43 47 58 59 62 69 71 78 84

Tire II: 39 48 54 65 70 76 87 90 111 118 126 127

Use the median test to see whether the tire II gives more median mileage than tire I. Use α = 0.05.

Solution
We test

H0 : m1 = m2 versus H0 : m1 < m2.

Because the sample size assumption is satisfied, we will use the large sample normal approximation. The

results of steps 1 and 2, using the notation A for above the median and B for below the median, are given

in Table 12.5.

Table 12.5

Sample values Population Above/below the median

32 I B

34 I B

35 I B

37 I B

39 II B

42 I B

43 I B

47 I B

48 II B

(continued)
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Table 12.5 (continued)

Sample values Population Above/below the median

54 II B

58 I B

59 I B

62 I B

65 II A

69 I A

70 II A

71 I A

76 II A

78 I A

84 I A

87 II A

90 II A

111 II A

118 II A

126 II A

127 II A

The median is 63.5. Thus, we obtain Table 12.6.

Table 12.6

Below Above Totals

Sample 1 N1b = 10 N1a = 4 n1 = 14

Sample 2 N2b = 3 N2a = 9 n2 = 12

Total Nb = 13 Na = 13 n1 + n2 = n = 26
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Also,

EN1a = Nan1

n
= (13)(14)

26
= 7

and

Var(N1a) = Nan1n2Nb

n2(n − 1)
= (13)(13)(14)(12)

16,900
= 1.68.

Hence, the test statistic is

z = N1a − E(N1a)√
Var(N1a)

= 4 − 7√
16,900

= −0.023.

For α = 0.05, z0.05 = 1.645. Hence, the rejection region is {z < −1.645}. Because the observed value
of z does not fall in the rejection region, we do not reject H0 and conclude that there is not enough
evidence to conclude that there is any difference in the median mileage for the two types of tires.

12.4.2 The Wilcoxon Rank Sum Test
The Wilcoxon rank sum test is used for comparing the medians of two independent populations,
as in the two-sample t-test in the parametric case. For accurate results, it is necessary to assume
that the variances of the populations are equal. This test is quite similar to the Wilcoxon signed
rank test. Whereas the one-sample Wilcoxon signed rank test requires an additional assumption that
the population distribution is symmetric, such an assumption is not necessary for the two-sample
Wilcoxon rank sum test. This test can be applied for skewed distributions. The test is almost as
powerful as the parametric version when the population distributions are close to normal. Many
statistical software packages do not give the Wilcoxon rank sum test; instead the Mann–Whitney test
is given. It should be noted that the Wilcoxon rank sum test is equivalent to the Mann–Whitney
U-test. We will not separately describe the Mann–Whitney test; however, in practice just perform the
Mann–Whitney test if the software has only that test.

Assume that we have n1 observations randomly sampled from population I and n2 observations
randomly sampled from population II with n1 ≤ n2. The Wilcoxon rank sum test procedure can be
summarized as follows.

HYPOTHESIS TESTING PROCEDURE BY WILCOXON RANK SUM TEST

We test

H0 : m1 = m2 versus H1 : m1 = m2.

1. Combine the two samples into a single sample of size n1 + n2, keeping track of each observation’s
original population. Arrange the n1 + n2 observations in ascending order and assign ranks.

2. Sum the ranks of observations from population II and call it R .

3. Let the test statistic be W = R − 1

2
n2(n2 + 1).
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4. Decision: If H0 is false, one would expect that the value of W would be very small or very large. For

a size α critical region, reject H0 if

W ≤ c1, where P (W ≤ c1) = α

2
,

or

W ≥ c2, where P (W ≥ c2) = α

2
.

Note: The exact distribution of W is given in the Wilcoxon rank sum test table in the appendix for
small values of n1 and n2.

In the Wilcoxon rank sum test, based on the alternative hypothesis, we have the following rejection
regions.

For

Ha : m1 > m2, rejection region is W ≥ c, where P(W ≥ c) = α,

and for

Ha : m1 < m2, rejection region is W ≤ c, where P(W ≤ c) = α.

We will illustrate the foregoing procedure with the following example.

Example 12.4.2
Comparison of the prices (in dollars) of two brands of similar automobile tires resulted in the data in

Table 12.7.

Table 12.7

Tire I: 85 99 100 110 105 87

Tire II: 67 69 70 93 105 90 110 115

Use the Wilcoxon rank sum test with α = 0.05 to test the null hypothesis that the two population medians

are the same against the alternative hypothesis that the population medians are different.

Solution
Here we need to test

H0 : m1 = m2 versus Ha : m1 = m2.

The sample sizes are n1 = 6, and n2 = 8. Combining step 1 and step 2, we have the results shown in

Table 12.8.
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Table 12.8

Value 67 69 70 85 87 90 93 99 100 105 105 110 110 115

Population II II II I I II II I I I II I II II

Rank 1 2 3 4 5 6 7 8 9 10.5 10.5 12.5 12.5 14

The sum of ranks of observations from population II is R = 56. Hence, the test statistic is

W = R − 1
2

n2(n2 + 1)

= 56 − 1
2

(8)(9) = 20.

For α = 0.05, the rejection region is W ≤ 9 or W > 38, with the actual α being 0.0592. Because the

observed value of the test statistic does not fall in the rejection region, H0 is not rejected. Thus, we do not

have enough evidence to conclude that the median prices are different for these two brands of automobile

tires.

When the sample sizes are large and when H0 is true, the distribution of the Wilcoxon rank sum test
can be approximated by the normal distribution. It can be shown that under H0, when both n1 and
n2 are greater than 10, the distribution of W is approximately normal with

E(W) = n1n2

2
and Var (W) = n1n2(n1 + n2 + 1)

12
.

For a large random sample, we can summarize the test procedure as follows.

SUMMARY OF LARGE SAMPLE WILCOXON RANK SUM TEST (n1 > 10 AND n2 > 10)

We test

H0 : m1 = m2 versus Ha :

⎧⎪⎪⎨
⎪⎪⎩

m1 > m2, upper tailed test

m1 < m2, lower tailed test

m1 = m2, two-tailed test.

The test statistic:

Z = W − n1n2/2√
n1n2(n1 + n2 + 1)/12

.

Rejection region: ⎧⎪⎪⎨
⎪⎪⎩

z > zα, upper tail RR

z < −zα, lower tail RR

|z | > zα/2, two tail RR.
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Assumption: The samples are independent and n1 > 10 and n2 > 10.

Decision: Reject H0, if the test statistic falls in the RR , and conclude that Ha is true with (1 − α)100%
confidence. Otherwise, do not reject H0, because there is not enough evidence to conclude that Ha is true
for a given α and more data are needed.

We will use the foregoing procedure to solve the following problem.

Example 12.4.3
In an effort to determine the immunoglobulin D (IgD) levels of a certain ethnic group, a large number of

blood samples representing both sexes for 12-year-olds were taken. The following sample data give the

IgD levels (in mg/100 mL).

Male: 9.3 0.0 12.2 8.1 5.7 6.8 3.6 9.4 8.5 7.3 9.7

Female: 7.1 0.0 5.9 7.6 2.8 5.8 7.2 7.4 3.5 3.3 7.5 7.0

Use the large sample Wilcoxon rank sum test with the significance level α = 0.01 to test the hypothesis

that there is no difference between the sexes in the median level of IgD.

Solution
We need to test

H0 : m1 = m2 versus Ha : m1 = m2.

Here, n1 = 11, and n2 = 12, and the results of step 1 and step 2 are given in Table 12.9, where we use M

or F to identify the population from which the data are coming.

The sum of the ranks for females is R = 114.5, and

W = R − 1
2

n2(n2 + 1)

= 114.5 − 1
2

(12)(13) = 36.5.

Table 12.9

Value 0 0 2.8 3.3 3.5 3.6 5.7 5.8 5.9 6.8 7 7.1

M or F M F F F F M M F F M F F

Rank 1.5 1.5 3 4 5 6 7 8 9 10 11 12

Value 7.2 7.3 7.4 7.5 7.6 8.1 8.5 9.3 9.4 9.7 12.2

M or F F M F F F M M M M M M

Rank 13 14 15 16 17 18 19 20 21 22 23
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Therefore, the test statistic results in

Z = W − n1n2/2√
n1n2(n1 + n2 + 1)/12

= 36.5 − (11)(12)/2√
(11)(12)(24)/12

= −1.815 ≈ −1.82.

For α = 0.01, we have zα/2 = z0.005 = 2.575. Hence, the rejection region is z < −2.575 or z > 2.575.

Because the test statistic does not fall in the rejection region, we do not reject H0 at α = 0.01 and conclude

that there is not enough evidence to conclude that there is any difference between the sexes in the median

level of IgD.

With a slight modification of the ranking system in the Wilcoxon rank sum test, we could test for the
equality of variances when the normality assumption of the F -test fails.

EXERCISES 12.4

12.4.1. The following data give the winning proportions of the top six football teams from each
of the two conferences of the NFL.

American Conference 0.818 0.727 0.909 0.818 0.727 0.545
National Conference 0.636 0.545 0.636 0.636 0.818 0.455

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis
that the two samples contain populations with identical medians against the alternative
hypothesis that the medians are not equal. State any assumptions you have made to solve
the problem.

12.4.2. Comparison of two protective methods against corrosion yielded the following maximum
depths of pits (in thousandths of an inch) in pieces of similar metals subjected to the
respective treatments:

Method I: 68 75 69 75 70 69 72
Method II: 61 65 57 63 58

Use the Wilcoxon rank sum test at the significance level of 0.01 to test the null hypothesis
that the two samples have identical medians against the alternative hypothesis that the
medians are not equal.

12.4.3. Show that when H0 is true, the mean and variance of the Wilcoxon rank sum test with
sample sizes n1 and n2 are

E(W) = n1n2

2
and Var(W) = n1n2(n1 + n2 + 1)

12
.
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12.4.4. In order to make inferences about the temporal muscles of the cat, a certain dose of tubocu-
rarine is injected into a random sample of nine cats. The following data give the tetanus
frequency (in hertz) in the temporal (T) muscles before and after injection of tubocurarine.

T before 24 33 27 23 31 28 31 24 19
T after 27 38 34 32 37 28 35 28 41

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis
that the median tetanus frequency (in hertz) in the temporal (T) muscles is larger after
injection of tubocurarine. State any assumptions you made to solve the problem.

12.4.5. In a study of the net conversion of progesterone in rat liver, the following samples were
attained for the net conversion in rats 3 to 4 weeks old:

Male: 16.9 16.0 13.5 13.1 14.2 11.6 12.8 17.3 13.8 9.8 16.0 15.9 16.7 15.1
Female: 13.8 11.2 7.5 10.4 15.8 14.5 9.5 9.8 5.1 5.5 6.5 7.2

Use the large sample Wilcoxon rank sum test at the significance level of 0.05 to test the
hypothesis that the median net conversion of progesterone in male rats is larger than that
in female rats. What would be your conclusion if you were to use the median test?

12.4.6. Two groups of randomly selected 1-acre plots were treated with two different brands of
fertilizer. The following data give the yields of corn (in bushels) from each of these plots.

Fertilizer I: 89 93 105 94 92 96 93 101
Fertilizer II: 85 88 94 87 86 91

Use the data to determine whether there is a difference in yields for two brands of fertilizers.
Use α = 0.01. State any assumptions you made to solve the problem.

12.4.7. The following information is obtained from two independent samples.

Sample 1: 15 8 12 4 10 8 13 7 12 6 14 11
Sample 2: 18 13 15 19 17 13 17 16

Test at 1% significance level that the median for sample 1 is less than the median for sample
2 and interpret the meaning of your result.

12.5 NONPARAMETRIC HYPOTHESIS TESTS FOR k ≥ 2 SAMPLES

In this section we learn how to compare the medians of more than two independent samples and
to determine whether medians of the groups differ. These tests are nonparametric alternatives to the
ANOVA methods discussed in Chapter 10. We study the Kruskal–Wallis test and Friedman test. Both of
these methods test the equality of the treatment medians.
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12.5.1 The Kruskal–Wallis Test
The Kruskal–Wallis test is a generalization of the Wilcoxon rank sum test for two independent samples
to several independent samples. This test is a nonparametric alternative to one-way ANOVA. The
Kruskal–Wallis test is almost as powerful as the one-way ANOVA when the data are from a normal
distribution, and more powerful in case of nonnormality or in the presence of outliers. We now
describe this test.

Suppose that we have k populations, with θi being the median of the population i and k independent
random samples from these populations. Let the samples from the ith population be ni. We wish to
test the equality of the medians of different groups—that is, to test the hypothesis

H0 : θ1 = θ2 = · · · = θk = 0 versus Ha : Not all θ′s equal 0.

We shall show that the hypothesis θ1 = · · · = θk is equivalent to the hypothesis H0 : θ1 = θ2 = · · · =
θk = 0. Let θ1 = · · · = θk = t (same number). Then the observations yij − t (i = 1, 2, . . . , k) will be
from a population with median zero. Because the Kruskal–Wallis test procedure depends only on the
ranks of yij values in the combined sample and the ranks of (yij − t) values are identical to those of
yij values, the two hypotheses are equivalent.

We summarize the Kruskal–Wallis procedure to solve this type of problem in the following steps.

KRUSKAL–WALLIS TEST PROCEDURE

1. Combine and rank all N =
n∑

i=1
ni observations yij in ascending order. Also keep track of the groups

from which the observations came. Assign average ranks in case of ties. Let

rij = rank(yij ).

2. Calculate the group sum,

ri =
ni∑

i=1

rij , i = 1, 2, . . . , k

and the group averages

ri = ri

ni
, i = 1, 2, . . . , k .

3. Let

r =
k∑

i=1

ri = N(N + 1)

2

(this can be used as a check for accuracy of your calculation of r ′
i s) and let

r = r

N
= N + 1

2
.
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4. Calculate the Kruskal−Wallis test statistic

H = 12

N(N + 1)

k∑
i=1

ni (ri − r )2

or the convenient computational form of H ,

H = 12

N(N + 1)

k∑
i=1

r 2
i

ni
− 3(N + 1).

Note that to compute the convenient form of H , there is no need to calculate ri and r .

5. Reject H0 if

H ≥ c ,

where the constant c is chosen to achieve a specified value for α.

The exact distribution of H is complicated. It depends on the sample sizes, n1, n2, . . . , nk, and so it
is not practical to tabulate its values beyond a small number of cases. When k or N is large, the exact
distribution of H under the null hypothesis can be approximated by the chi-square distribution with
(k − 1) degrees of freedom. To this effect, we state the Kruskal–Wallis theorem without proof.

Theorem 12.5.1 When H0 : θ1 = θ2 = · · · = θk is true, then as N becomes large, the statistic

H = 12
N(N + 1)

k∑
i=1

ni (ri − r)2

has an asymptotic distribution that is chi-square with (k − 1) degrees of freedom.

Thus, for approximate large samples the Kruskal–Wallis test for a given α is to reject H0 if

H > χ2
α(k − 1).

The chi-square approximation is acceptable when the group sample sizes ni > 5 with k ≥ 3. However,
for convenience, we will use the chi-square approximation for all values of ni. For this test, we follow
the procedure described earlier except that for finding the rejection region, we use the chi-square
table.

The following example illustrates how we use the foregoing procedure to test the appropriate
hypothesis for three populations.

Example 12.5.1
In an effort to investigate the premium charged by insurance companies for auto insurance, an agency

randomly selects a few drivers who are insured with three different companies. Assume that these persons
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Table 12.10

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432

have similar autos, driving records, and level of coverage. Table 12.10 gives the premiums paid per 6 months

by these drivers with these three companies. Using the 5% level of significance, test the null hypothesis that

the median auto insurance premium paid per 6 months by all drivers insured with each of these companies

is the same.

Solution
Here we need to test

H0 : M1 = M2 = M3 = 0 versus Ha : Not all M′
is equal 0,

where Mi is the true median of the auto insurance premium paid to company i, i = 1, 2, 3.

Here n1 = 4, n2 = 3, and n3 = 5. Hence, there are N =
3∑

i=1
ni = 12 observations. Let Y denote the

observations in ascending order. Table 12.11 gives the combined data in ascending order while keeping track

of the groups and their ranks.

Table 12.11

Premium 294 318 330 336 348 360 378 396 432 438 474 522

Group 3 1 3 1 2 2 3 1 3 1 3 2

Rank 1 2 3 4 5 6 7 8 9 10 11 12

Thus, the group rank sums are

r1 = 24, r2 = 23, and r3 = 31.

As a check for accuracy of these calculations, note that

r1 + r2 + r3 = 78 = N(N + 1)

2
= (12)(13)

2
.



634 CHAPTER 12 Nonparametric Tests

The test statistic is given by

H = 12
N(N + 1)

k∑
i=1

r2
i

ni
− 3(N + 1)

= 12
(12)(13)

(
(24)2

4
+ (23)2

3
+ (31)2

5

)
− 3(13)

= 0.42564.

From the chi-square table, χ2
0.05(2) = 5.991, and hence the rejection region is H ≥ 5.991. Because the

observed value of H does not fall in the rejection region, we do not reject H0 and conclude that there is no

evidence to show that the median auto insurance premiums paid per 6 months by all drivers insured in each

of these companies are different.

12.5.2 The Friedman Test
The Friedman test, named after the Nobel laureate economist Milton Friedman, tests whether several
treatment effects (measured as locations) are equal for data in a two-way layout. We will assume that
there are k different treatment levels and l blocks. In each block, assign one experimental unit to each
treatment level. We want to test whether the true medians for different treatment levels are the same
in each block—that is, to test

H0 : True medians at different levels are all equal

versus

Ha : Not all the medians are equal.

Rather than combine the entire sample as in the Kruskal–Wallis statistic, here we order the
y-values within each block and then assign each its rank. In order to eliminate the differences due
to blocks, we take the sum of ranks for each treatment level. The following gives a summary of the
procedure.

THE FRIEDMAN TEST PROCEDURE

1. Rank observations from k treatments separately within each block. Assign average ranks in case of
ties. Let Rij = rank(Yij ), the rank of the observation for treatment level i in block j .

2. Calculate the rank sums

Ri =
l∑

j=1

Rij , i = 1, 2, . . . , k .
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3. Calculate the Friedman statistic

S = 12

lk (k + 1)

k∑
i=1

(
Ri − l(k + 1)

2

)2

or a convenient computational form,

S = 12

lk (k + 1)

k∑
i=1

R2
i − 3l(k + 1).

4. Reject H0 if S ≥ c , where the constant c is chosen to achieve a specified value for α.

The exact distribution of S is complicated. Here, for k = 3, 4, 5, and for various values of l, the
Friedman distribution has been calculated and its values are given in the table in the Appendix A7.
We will illustrate this four-step procedure with an example.

Example 12.5.2
Three classes in elementary statistics are taught by three different persons, a regular faculty member, a

graduate teaching assistant, and an adjunct from outside the university. At the end of the semester, each

student is given a standardized test. Five students are randomly picked from each of these classes, and their

scores are given in Table 12.12. Test whether there is a difference between the scores for the three persons

teaching with α = 0.05.

Table 12.12

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

Solution
Here we need to test

H0 : Median for the three persons scores are all equal

Ha : The medians are not equal

We are given α = 0.05, k = 3, and l = 5. To compute the value of the statistic S, we first assign ranks for

each student as shown in Table 12.13. Ha : Note that they are not all equal.
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Table 12.13

Faculty Teaching assistant Adjunct

3 2 1

2 3 1

3 2 1

1 2 3

3 2 1

Thus, we have

R1 = 12, R2 = 11, and R3 = 7,

and the test statistic is given by

S = 12
lk(k + 1)

k∑
i=1

R2
i − 3l(k + 1)

= 12
(5)(3)(4)

(
(12)2 + (11)2 + (7)2

)
− (3)(5)(4) = 2.8.

From the Friedman table, the rejection region is S≥5.20 at an exact significance level of 0.092. Because the

computed value of the test statistic does not fall in the rejection region, we do not reject H0 and conclude

that there is no difference in scores based on who teaches the course.

When the number of blocks, l, becomes large, the Friedman test statistic has an approximate chi-square
distribution under the null hypothesis. That is:

Theorem 12.5.2 When H0 : θ1 = θ2 = · · · = θ3 is true then, as l becomes large,

S = 12
lk(k + 1)

k∑
i=1

(
Ri − l(k + 1)

2

)2

has an asymptotic distribution that is chi-squared with (k − 1) degrees of freedom.

Thus, for an approximate large random sample, the Friedman test for given α is to reject H0 if S >

χ2
α(k − 1).

When the values of k and l exceed the values given in the Friedman table, we could use the chi-square
approximation, which gives acceptable results. We proceed to illustrate the Friedman test with the
following example.
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Example 12.5.3
In the previous example, we now randomly select 10 student grades from each class, resulting in the data

shown in Table 12.14.

Table 12.14

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

45 74 88

99 23 77

86 61 18

82 60 66

74 77 55

Test whether there is a difference between the scores for the three persons teaching. Use α = 0.05.

Solution
Here we need to test

H0 : The true median scores for the three instructors are all equal

versus

Ha : They are not all equal.

We are given α = 0.05, k = 3, and l = 10. We use the chi-square approximation to solve the problem. To

compute the value of the statistic S we first assign ranks for each student as shown in Table 12.15.

The Friedman test statistic is

S = 12
lk(k + 1)

k∑
i=1

R2
i − 3l(k + 1)

= 12
(10)(3)(4)

(
(24)2 + (20)2 + (16)2

)
− (3)(10)(4) = 3.2.
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Table 12.15

Faculty Teaching assistant Adjunct

3 2 1

2 3 1

3 2 1

1 2 3

3 2 1

1 2 3

3 1 2

3 2 1

3 1 2

2 3 1

Total 24 20 16

From the chi-square table, χ2
0.05(2)= 5.992. Hence, the rejection region is S ≥ 5.992. The computed value

of the test statistic does not fall in the rejection region, and we do not reject H0. We conclude that there is

no difference in scores based on who teaches the course.

Friedman’s test is an alternative to the repeated measures ANOVA, when assumptions such as that of
normality or equality of variance are not satisfied. Because this test, like many other nonparametric
tests, does not make a distribution assumption, it is not as powerful as the ANOVA.

EXERCISES 12.5

12.5.1. Table 12.16 shows a random sample of observations on children under 10 years of age, each
observation being the IgA immunoglobulin level measured in international units from a
large number of blood samples, and the population is studied in blocks in terms of age
groups (the upper value is not included) as I: (1 to 3), II: (3 to 6), III: (6 to 8), and IV:
(8 to 10). Test for the hypothesis of equality of true medians for IgA level in each block (age
level), (a) with the 5% level and (b) with the 1% level of significance. Compare the results
obtained.

12.5.2. In an effort to study the effect of four different preventive maintenance programs on down-
times (in minutes) for a certain period of time in a production line, a factory runs four
parallel production lines, and each line has five different types of machine. The different



12.5 Nonparametric Hypothesis Tests for k ≥ 2 Samples 639

Table 12.16

I 6 37 19 14 51 68 27 75

II 32 65 76 42 45 41 38 63

III 73 75 59 90 37 32 63 80

IV 81 42 48 60 98 100 79 45

maintenance programs are randomly assigned to each of the four production lines so as to
treat the various machines as blocks. Results are shown in Table 12.17.

Table 12.17

Machine Method 1 Method 2 Method 3 Method 4

I 181 124 126 181

II 185 122 125 160

III 67 65 68 69

IV 121 66 120 68

V 62 60 62 65

Test the hypothesis, H0 : True medians of the four maintenance programs are equal versus
Ha: Not all are equal. [Hint: In the Friedman test, k = 4, and l = 6.] State any assumptions
you have made to solve this problem.

12.5.3. Show that, when k = 2, the Kruskal–Wallis statistics,

H = 12
N(N + 1)

k∑
i=1

r2
i

ni
− 3(N + 1)

becomes equivalent to the Wilcoxon rank sum test.

12.5.4. A consumer testing agency is interested in determining whether there is a difference in the
mileage for three brands of gasoline. To test this, four different vehicles are driven with each
of these gasolines. Results are shown in Table 12.18.

Test whether there is a difference between the three gasoline medians at the 0.05 level.

12.5.5. In order to study the effect of fertilizers, five groups of 1-acre plots were randomly selected.
One group was not treated with any fertilizers and the remaining four groups were treated
with four different brands of fertilizers. Table 12.19 gives the yields of corn (in bushels)
from each of these plots.
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Table 12.18

Gasoline

Vehicle A B C

I 19 25 22

II 26 33 39

III 20 28 25

IV 18 30 21

Table 12.19

None: 58 27 36 41 48 36 50 50 39

Fertilizer I: 69 67 57 63 49 65 78 69

Fertilizer II: 95 92 92 89 100 88 79 97 75

Fertilizer III: 102 111 92 103 102 94 100 112 96

Fertilizer IV: 127 115 112 122 114 107 116 112 108

Use the data to determine whether there is a difference in yields for different fertilizers. Use
α = 0.01.

12.5.6. In order to compare grocery prices of four different grocery stores on a particular day in
November 1999, 11 randomly selected items with same brands are given in Table 12.20.
Use the data to determine whether there is a difference in prices at these four grocery store
chains. Use α = 0.01. State any assumptions you have made to solve this problem.

12.6 CHAPTER SUMMARY

In this chapter, we first learned about nonparametric approaches to interval estimation and non-
parametric hypothesis tests for one sample, such as the sign test, the Wilcoxon signed rank test,
and dependent sample paired comparison tests. Then nonparametric hypothesis tests for two inde-
pendent samples such as the median test and Wilcoxon rank sum test were considered. Later the
Kruskal–Wallis test and the Friedman test were explained for more than two samples.

It is natural to ask, “Why do we substitute a set of nonnormal numbers, such as ranks, for the original
data?” Few data are truly normal. Rank tests are some times called “approximate” tests. They are most
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Table 12.20

Product Store A Store B Store C Store D

Bread (20 oz) $1.39 $1.39 $1.39 $1.39

Red apple (1 lb) 1.29 1.29 0.99 0.68

Large eggs (1 dozen) 0.69 0.88 0.89 0.89

Orange Juice (64 oz) 3.29 2.99 2.79 2.69

Cereal (15 oz) 3.59 3.19 3.19 3.58

Canned corn (15.25 oz) 0.50 0.53 0.50 0.49

Crystals sugar (5 lb) 1.99 2.09 1.99 1.89

2% milk (1 gal) 3.19 3.19 3.09 3.09

Frozen pizza (21.5 oz) 3.00 4.59 3.50 3.50

Puppy Chow (4.4 lb) 4.59 3.69 3.69 3.99

Diapers (56-pack) 12.99 12.99 12.99 11.88

useful in instances when we suspect that the data are not normal, and we either cannot transform
the data to make them more normal, or do not like to do so. One of the simple ways to check for
appropriateness of use of nonparametric tests is to simply construct a stem-and-leaf display or a
histogram for the sample data and see whether they look symmetric and approximately bell shaped.
If this is not so, we may often be better off using a nonparametric approach.

Since the 1940s, many nonparametric procedures have been introduced, and the number of proce-
dures continues to grow. The nonparametric tests presented in this chapter represent only a small
portion of available nonparametric tests. There are many references available in the bibliography for
further reading on the subject.

In this chapter, we have also learned the following important concepts and procedures.

■ Procedure for finding (1 − α)100% confidence interval for the median M

■ Hypothesis testing procedure by sign test
■ A large sample sign test
■ Hypothesis testing procedure by Wilcoxon signed rank test
■ Summary of large sample Wilcoxon signed rank test (n > 20)

■ Summary of large sample median sum test (n1 > 5 and n2 > 5)
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■ Hypothesis testing procedure by Wilcoxon rank sum test
■ Summary of large sample Wilcoxon rank sum test (n1 > 10 and n2 > 10)

■ Kruskal–Wallis test procedure
■ Friedman test procedure

12.7 COMPUTER EXAMPLES

In this section, we illustrate some nonparametric procedures using statistical software packages.

12.7.1 Minitab Examples

Example 12.7.1
(One-sample sign): For the data

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test H0 : M =1.4 versus Ha : M > 1.4, using sign test.

Solution
Enter data in C1. Then

Stat > Nonparametric > 1-Sample Sign. . . > in Variables: type C1 > click Test median: type 1.4
> in Alternative: click greater than > click OK

We will get the following output.

Sign Test for Median

Sign test of median = 1.400 versus > 1.400

N Below Equal Above P Median

C1 9 4 0 5 0.5000 1.450

Looking at the p-value of 0.500, we will not be able to reject the null hypothesis for any reasonable values

of α.

We can obtain the nonparametric confidence interval using the following procedure. Enter in variable,
C1, and then

Stat > Nonparametric > 1-Sample Sign. . . > in Variables: type C1 > click Confidence interval > in

level: enter appropriate, say, 95.0 > Click OK
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Example 12.7.2
(One-sample Wilcoxon): For the data

1.51 1.35 1.69 1.48 1.29 1.27 1.54 1.39 1.45

test H0 : M = 1.4 versus Ha : M = 1.4, using one-sample Wilcoxon test.

Solution
We will give only Sessions commands; the Windows procedure is similar to the previous example.

Stat > Nonparametric > 1-Sample Wilcoxon. . . > in Variables: type C1 > click Test median: type

1.4 > in Alternative: click not equal > click OK

We will get the following output.

Wilcoxon Signed Rank Test

Test of median = 1.400 versus median not = 1.400

N N for Wilcoxon P Estimated
Test Statistic Median

C1 9 9 29.0 0.477 1.435

Looking at the p-value of 0.447, we will not be able to reject the null hypothesis for any reasonable values

of α.

Example 12.7.3
(Two-sample sign test): For the data

Sample 1 180 199 175 226 189 205 169 211

Sample 2 172 191 172 230 178 199 171 201

test H0 : M = 0 versus Ha : M < 0, using the two-sample sign test, where M is the median of the

difference. Use α = 0.05.

Solution
After entering sample 1 data in C1 and sample 2 data in C2, we can use the following sequence:

Calc > Calculator. . . > in Store result in variable: type C3 > in Expression: type C2-C3 > click OK

We will get the pairwise difference of the two samples. For these values, we will apply the one-sample sign

test.

Stat > Nonparametric > 1-sample sign. . . > in Variables: type C3 > click Test median : and in

Alternative: choose less than > click OK
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We will get the following output:

Sign Test for Median

Sign test of median = 0.00000 versus < 0.00000

N Below Equal Above P Median

C3 8 6 0 2 0.1445 −7.000

Because the p-value is 0.1445, which is greater than 0.05, we will not reject the null hypothesis.

Example 12.7.4
(Kruskal–Wallis test): In an effort to investigate the premium charged by insurance companies for auto

insurance, an agency randomly selects a few drivers who are insured by three different companies. Assume

that these persons have similar cars, driving records, and levels of coverage. Table 12.21 gives the premiums

paid per 6 months by these drivers with these three companies.

Using the 5% significance level, test the null hypothesis that the median auto insurance premium paid per

6 months by all drivers insured in each of these companies is the same. Use Minitab.

Solution
Enter data for company I in C1, for company II in C2, and for company III in C3. First stack the data while

keeping track of the companies in the following way.

Manip > Stack/Unstack > Stack Columns. . . > in Stack the following columns: type C1 C2 C3 >

in Stored data in: type C4 > in Store subscripts in: type C5 > Click OK

Now we can use Kruskal−Wallis as follows.

Stat > Nonparametric > Kruskall–Wallis. . . > in Response: type C4 > in Factor: type C5 > click

OK

We will get the output shown in Table 12.22.

Because the p-value of 0.808 is larger than α = 0.05, we cannot reject the null hypothesis.

Table 12.21

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432
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Table 12.22 Kruskal–Wallis Test

Kruskal–Wallis Test on C4

C5 N Median Ave rank Z

1 4 366.0 6.0 −0.34

2 3 360.0 7.7 0.65

3 5 378.0 6.2 −0.24

Overall 12 6.5

H = 0.43 DF = 2 P = 0.808

∗ NOTE ∗ One or more small samples

Example 12.7.5
(Friedman test): For the following data, conduct a Friedman test.

93 61 87 75 92 45 99 86 82 74

88 90 76 82 58 74 23 61 60 77

86 56 73 90 47 88 77 18 66 55

Solution
Enter each row of data in C1, C2, and C3 respectively. Then stack the data in C1, C2, C3 in the

following way.

Manip > Stack/Unstack > Stack Columns. . . > in Stack the following columns: type C1 C2 C3 >

in Stored data in: type C4 > in Store subscripts in: type C5 > Click OK

In C6, enter numbers 1 through 10 in the first 10 rows, enter numbers 1 through 10 in the next 10 rows, and

enter numbers 1 through 10 in the following 10 rows. Now we can use the Friedman test as follows.

Stat > Nonparametric > Friedman. . . > in Response: type C4 > in Treatment: C5 > in Blocks:
type C6 > click OK

We will get the output shown in Table 12.23.

Because the p-value is 0.202, for any value of α < 0.202, we cannot reject the null hypothesis.
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Table 12.23 Friedman Test for C4 by C5 Blocked by C6
S = 3.20 DF = 2 P = 0.202

C5 N Est median Sum of ranks

1 10 81.500 24.0

2 10 72.000 20.0

3 10 68.000 16.0

Grand median = 73.833

12.7.2 SPSS Examples

Example 12.7.6
(Wilcoxon rank sum test): For the data of Example 12.4.2, use the Wilcoxon rank sum test at the sign-

ificance level of 0.05 to test the null hypothesis that the two population medians are the same against the

alternative hypothesis that the population medians are different. Use an SPSS procedure.

Solution
Because the SPSS pull-down menu does not have the Wilcoxon rank sum test, we will use the Mann−Whitney

U-test. The Mann−Whitney U-test is equivalent to the Wilcoxon rank sum test, although we calculate it in a

slightly different way. For the same data set, any p-values generated from one test will be identical to those

generated from the other. The following gives the steps to follow. Enter tire brands as 1 to identify brand 1

and 2 to identify brand 2, in C1. Enter the corresponding prices in C2. Name C1 as Brand and C2 as Price.

Then click

Analyze > Non-parametric Tests > 2 Independent Samples. . . > move Brand to Grouping
Variable: and Price to Test Variable list: > click Define Groups. . . > enter 1 in Group 1:, and 2 in

Group 2: > click continue > choose Mann-Whitney U > OK

We get the following output:

Mann–Whitney Test

Ranks

BRAND N Mean Rank Sum of Ranks

PRICE 1.00 6 8.17 49.00

2.00 8 7.00 56.00

Total 14
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Test Statistics

PRICE

Mann-Whitney U 20.000

Wilcoxon W 56.000

Z −.518

Asymp. Sig. (2-tailed) .605

Exact Sig. [2*(1-tailed Sig.)] .662

(a) Not corrected for ties.

(b) Grouping Variable: BRAND

In the first table just shown, ranks show the mean ranking of tire brand I and tire brand II. The Mann−Whitney

test is used to assess whether the distribution of ranks is statistically significant. Under the null hypothesis,

the distribution of ranks should be the same for both groups. Looking at the second table, the calculated

value of the Mann-Whitney U is 20. The value U represents the amount by which the ranks for tire brand I

and tire brand II deviate from what we would expect under the null hypothesis. For a 0.05 significance level,

we can reject the null hypothesis if the 2-tailed significance (see Asymp. sig in the second table) is less than

0.05. In this case, because Asymp. Sig. (2-tailed)=0.605, we do reject the null hypothesis.

Example 12.7.7
(Kruskal–Wallis test): For the data of Example 12.5.1, conduct the Kruskal–wallis test using SPSS.

Solution
Enter insurance companies as 1 to identify company I, 2 to identify company II, and 3 to identify company

III, in C1. Enter the corresponding premiums in C2. Name C1 as Company, and C2 as Premium. Then:

Analyze > Nonparametric Tests > K Independent Samples. . . > move Premium to Test Variable
List: and Company to Grouping variable: > click Define Rage. . . > enter 1 in Minimum, and 3 in

Maximum > click continue > click Kruskal–Wallis H > OK

We get the following output.

Kruskal−Wallis Test

Ranks

COMPANY N Mean Rank

PREMIUM 1.00 4 6.00

2.00 3 7.67

3.00 5 6.20

Total 12
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Test Statistics

PREMIUM

Chi-Square .426

df 2

Asymp. Sig. .808

(a) Kruskal−Wallis Test

(b) Grouping Variable: COMPANY

Comparing the value in asymptotic significance of 0.808 with α = 0.05, we will not reject the null hypothesis.

If we need to do a Friedman test, say for the data of Example 12.7.5, enter each row of data in C1,
C2, and C3, respectively. Then use the following sequence to obtain the appropriate output.

Analyze > Nonparametric Tests > K Related Samples. . . > move each of the three columns to Test
Variables: > check in Test Type Friedman > OK

12.7.3 SAS Examples
To perform the nonparametric tests, use the SAS statement PROC NPAR1WAY. In the procedure, if
we include the EXACT statement, the program will compute the exact p-value computations for the
Wilcoxon rank sum test.

Example 12.7.8
(Wilcoxon rank sum test): Comparison of the prices (in dollars) of two brands of similar tires gave the

following data.

Tire I: 85 99 100 110 105 87

Tire II: 67 69 70 93 105 90 110 115

Use the Wilcoxon rank sum test at the significance level of 0.05 to test the null hypothesis that the two

population medians are the same against the alternative hypothesis that the population medians are

different. Use the SAS procedure.

Solution
We can use the following procedure.

options nodate nonumber;

DATA tprice;
INPUT Brand Price @@;
CARDS;
1 85 1 99 1 100 1 110 1 105 1 87
2 67 2 69 2 70 2 93 2 105 2 90 2 110 2 115
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;
/* Nonparametric statistics/Wilcoxon Rank-
Sum */
PROC NPAR1WAY DATA=tprice WILCOXON;
CLASS Brand;
VAR Price;
EXACT WILCOXON;
run;

We will get the following output.

Paired Wilcoxon Rank-Sum Test for Mean Comparison
(Also called as Mann-Whitney Test)

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Price
Classified by Variable Brand

Sum of Expected Std Dev Mean
Brand N Scores Under H0 Under H0 Score
--------------------------------------------------
1 6 49.0 45.0 7.728924 8.166667
2 8 56.0 60.0 7.728924 7.000000

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic (S) 49.0000

Normal Approximation
Z 0.4528
One-Sided Pr > Z 0.3253
Two-Sided Pr > |Z| 0.6507

t Approximation
One-Sided Pr > Z 0.3291
Two-Sided Pr > |Z| 0.6581

Exact Test
One-Sided Pr >= S 0.3200
Two-Sided Pr >= |S - Mean| 0.6407

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 0.2678
DF 1
Pr > Chi-Square 0.6048

The sum of ranks of both brands are given. The exact two-tailed p-value for this test is 0.6407, which is

greater than α = 0.05. Hence, we will not reject the null hypothesis.
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Example 12.7.9
(Kruskal–Wallis test): For the data of Example 12.7.4, perform the Kruskal–Wallis test using SAS.

Solution

We can use the following code.

options nodate nonumber;

DATA insprice;
INPUT Company Price @@;
CARDS;
1 396 1 438 1 336 1 318
2 348 2 360 2 522
3 378 3 330 3 294 3 474 3 432
;

proc npar1way data = insprice;
class company;
var Price;

run;

We will get the following output.

The SAS System

The NPAR1WAY Procedure

Analysis of Variance for Variable Price
Classified by Variable Company

Company N Mean
-----------------------------
1 4 372.00
2 3 410.00
3 5 381.60

Source DF Sum of Squares Mean Square F Value Pr>F
--------------------------------------------------
Among 2 2605.80 1302.900000 0.2371 0.7937
Within 9 49459.20 5495.466667

The SAS System
The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Price
Classified by Variable Company

Sum of Expected Std Dev Mean
Company N Scores Under H0 Under H0 Score
--------------------------------------------------
1 4 24.0 26.00 5.887841 6.000000
2 3 23.0 19.50 5.408327 7.666667
3 5 31.0 32.50 6.157651 6.200000
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Kruskal--Wallis Test
Chi-Square 0.4256
DF 2
Pr > Chi-Square 0.8083

The SAS System

The NPAR1WAY Procedure

Median Scores (Number of Points Above Median) for
Variable Price

Classified by Variable Company

Sum of Expected Std Dev Mean
Company N Scores Under H0 Under H0 Score
--------------------------------------------------
1 4 2.0 2.00 0.852803 0.500000
2 3 1.0 1.50 0.783349 0.333333
3 5 3.0 2.50 0.891883 0.600000

Median One-Way Analysis

Chi-Square 0.4889
DF 2
Pr > Chi-Square 0.7831

The SAS System

The NPAR1WAY Procedure

Van der Waerden Scores (Normal) for Variable Price
Classified by Variable Company

Sum of Expected Std Dev Mean
Company N Scores Under H0 Under H0 Score
--------------------------------------------------
1 4 –0.492781 0.0 1.386378 –0.123195 2 3
1.036137 0.0 1.273470 0.345379 3 5 –0.543356 0.0
1.449909 –0.108671

Van der Waerden One-Way Analysis

Chi-Square 0.6626
DF 2
Pr > Chi-Square 0.7180

The SAS System

The NPAR1WAY Procedure

Savage Scores (Exponential) for Variable Price
Classified by Variable Company
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Sum of Expected Std Dev Mean
Company N Scores Under H0 Under H0 Score
--------------------------------------------------
1 4 –0.817316 0.0 1.468604 –.204329 2 3
1.266775 0.0 1.348999 0.422258 3 5 –0.449459 0.0
.535903 –0.089892

Savage One-Way Analysis
Chi-Square 0.9178
DF 2
Pr > Chi-Square 0.6320

The SAS System
The NPAR1WAY Procedure

Kolmogorov-Smirnov Test for Variable Price
Classified by Variable Company

EDF at Deviation from Mean
Company N Maximum at Maximum
------------------------------------------------
1 4 0.500000 0.333333
2 3 0.000000 –0.577350
3 5 0.400000 0.149071
Total 12 0.333333

Maximum Deviation Occurred at Observation 3
Value of Price at Maximum = 336.0

Kolmogorov-Smirnov Statistics (Asymptotic)
KS 0.197203 KSa 0.683130

Cramer-von Mises Test for Variable Price
Classified by Variable Company

Summed Deviation
Company N from Mean
--------------------------------------
1 4 0.032407
2 3 0.086806
3 5 0.028009

Cramer-von Mises Statistics (Asymptotic)
CM 0.012269 CMa 0.147222

Looking at the p-value (0.8083) in the Kruskal−Wallis test, we cannot reject the null hypothesis.

PROJECTS FOR CHAPTER 12

12A. Comparison of Wilcoxon Tests with Normal Approximation
(i) For the Wilcoxon signed rank test, compare the results from the Wilcoxon signed rank test

table with the normal approximation using several sets of data of various sample sizes.
Also, if the sample size is very small, compare the results from the Wilcoxon signed rank
test with a small sample t-test.

(ii) For the Wilcoxon rank sum test, compare the results from the Wilcoxon rank sum test
table with the normal approximation using several sets of data (from pairs of samples) of
various sample sizes. Also, if the sample sizes are very small, compare the results from the
Wilcoxon rank sum test with small sample t-test for two samples.
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12B. Randomness Test (Wald–Wolfowitz Test)
When we have no control over the way in which the data are selected, it is useful to have a technique
for testing whether the sample may be looked on as random. The condition of randomness is essen-
tial for all of the analysis explained in this book: that is, whether a sequence of random variables
X1, . . . , Xn are independent based on a set of observations x1, . . . , xn of these random variables.
Here we will give a method based on the number of runs displayed in the sample events. This is a
nonparametric procedure. The run test is used to test the randomness of a sample at 100(1 − α)%
confidence level.

Given a sequence of two symbols, say H and T , a run is defined as a succession of identical symbols
contained between different symbols or none at all. The total number of runs in a sequence of n

trials serves as an indication whether the arrangement is random or not. If a sequence contains n1

symbols of one kind and n2 symbols of another kind and both n1 and n2 are greater than 10 (this
is a rule of thumb; for more accuracy we can also take both n1 and n2 as greater than 20), then
the sampling distribution of the total number of runs, R, has an asymptotic normal distribution
with mean

μR = 2n1n2

n1 + n2
+ 1

and variance

σ2
R = 2n1n2 (2n1n2 − n1 − n2)

(n1 + n2)2 (n1 + n2 − 1)
.

For example, if we have the following symbols

HHH T HH T T T T HH T T T

there are six runs indicated by the underlines and n1 =7 and n2 =8. If the sample contains numerical
data, the run test is used by counting runs above and below the median. Denoting the observations
above the median by the letter A and observations below the median by the letter B, we can determine
the run as before. For example, if we have data values

2 5 11 13 7 22 6 8 15 9

then the median is 8.5. Hence, we get the following arrangement of values above and below the
median:

BB AA B A BB AA.

Hence, there are six runs with n1 =5 and n2 =5.

Now we can formulate the test of randomness as a hypothesis testing problem as described in the
following procedure.
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PROCEDURE FOR TEST OF RANDOMNESS USING RUN TEST

To test

H0 : Arrangement of sample values is random

versus

Ha : Data are not random.

1. Compute the median of the sample.
2. Going through the sample values, replace any observation with A if the value is above the median,

or B if the value is below the median. Discard any ties.

3. Compute n1, n2, and R . Also, compute the mean and variance of R .

μR = 2n1n2

n1 + n2
+ 1

σ2
R = 2n1n2(2n1n2 − n1 − n2 )

(n1 + n2)2(n1 + n2 − 1)
.

4. Compute the test statistic:

Z = R − μR

σR
.

5. Rejection region:

|z | > zα/2.

6. Decision: If the test statistic falls in the rejection region, reject H0 and conclude that the sample is
not random with (1 − α) 100% confidence.

Assumption: n1 ≥ 10 and n2 ≥ 10.

Note: Sometimes the same procedure is used with the median replaced by the mean of the sample.
That is, if the observation is above the sample, use A, and if it is below the sample, use B. We use this
procedure for large samples. For small sample sizes, to determine the upper and lower critical values,
a special table is needed. Some statistical software packages have the ability to use the run test for
randomness. For example, in Minitab we can use following procedure.

Enter the data that we want to test for randomness in C1. Then:

Stat > Nonparametric > Runs Test. . . > In variables: enter C1 > OK

Default in Minitab is a run test with the mean. If we prefer median, type the value of the median by
first clicking Above and below:.
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Example 12.B.1
The following table gives radon concentration in pCi/L obtained from 40 houses in a certain area.

2.9 0.6 13.5 17.1 2.8 3.8 16.0 2.1 6.4 17.2

7.9 0.5 13.7 11.5 2.9 3.6 6.1 8.8 2.2 9.4

15.9 8.8 9.8 11.5 12.3 3.7 8.9 13.0 7.9 11.7

6.2 6.9 12.8 13.7 2.7 3.5 8.3 15.9 5.1 6.0

Test using Minitab (or some other software) whether the data are random at 95% confidence level.

Solution
Running the data with Minitab, we get the following output.

radon
K = 8.3400

The observed number of runs = 17
The expected number of runs = 20.9500

19 Observations above K 21 below
The test is significant at 0.2046

Cannot reject at alpha = 0.05

Thus the data set is a random sample at 95% confidence level.

EXERCISE

Pick a couple of data sets from this book or your own and test for randomness using (i) hand
calculations, and (ii) a statistical software package.
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Chapter 13
Empirical Methods

Objective: In this chapter we introduce several empirical methods that are being increasingly used
in statistical computations as an alternative or as an improvement to classical statistical methods.
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Stanislaw Ulam
(Source: http://scienceworld.wolfram.com/biography/Ulam.html)

Stanislaw Ulam (1909–1986) was a Polish-American mathematician who was born in Lwów, Poland,
and came to the United States in 1936. He worked at Princeton University. He was involved with

Mathematical Statistics with Applications
Copyright © 2009 by Academic Press, Inc. All rights of reproduction in any form reserved. 657
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the Manhattan Project to build the first atomic bomb. Ulam solved the problem of how to initiate
fusion in the hydrogen bomb. Ulam was interested in astronomy, physics, and mathematics from an
early age. He obtained his Ph.D. from the Polytechnic Institute in Lwów in 1933, where he studied
under a famous mathematician named Banach. Ulam’s writing included A Collection of Mathematical
Problems (1960), Sets, Numbers and Universes (1974), and Adventures of a Mathematician (1976). His
major contribution to statistics is through the introduction of the Monte Carlo methods along with
Metropolis in 1949. These methods are widely used in solving mathematical problems using statistical
sampling. Monte Carlo methods became widely popular with the ever-increasing power of computers
and the development of specialized mathematical and statistical software.

13.1 INTRODUCTION

In statistics, major efforts are made to develop and study accurate statistical models that are able to
describe natural phenomena. The dilemma is whether to use the standard model that may allow
closed-form solutions, or to describe the phenomenon more accurately, which would often preclude
the computation of explicit answers. Obtaining methods that result in useful qualitative and quan-
titative understanding of realistic complex systems is difficult, and obtaining exact analytical tools
is not practical either. Because of this problem, practitioners have relied on simulation-based meth-
ods. Computer simulation methods are becoming tools of choice for problems in statistics. Most of
the empirical methods discussed in this chapter had been in existence in the statistical literature as
possible numerical methods for some time. Because of the difficulty of computing by hand, these
methods did not gain much popularity. These numerical techniques became popular and practical
with the advent of high-quality pseudo random number generators and high-speed computers. Mod-
ern statistics is increasingly being equipped with theoretical concepts complemented with effective
computational tools to handle the challenges that arise in science and technology. The methods pre-
sented in this chapter could be effectively used for Bayesian computation and for problems arising in
such diverse areas as environmental modeling, epidemiology, finance, genetics, image analysis, and
statistical physics.

It is important to note that the literature on these simulation methods is growing, and it is impossible
to present the whole picture in a single chapter. The purpose of this chapter is only to introduce some
basic and popular computational methods. There are many specialized books for further study.

13.2 THE JACKKNIFE METHOD

It was Tukey who in 1958 gave the name “jackknife” (sometimes also known as the Quenouille–
Tukey jackknife) to a general statistical method, invented by Maurice Quenouille in 1956, for testing
hypotheses and finding confidence intervals where traditional methods are not applicable or not well
suited. In general usage, a jackknife is a large clasp knife that has a multitude of small pull-out tools.
Because this method could be used for small tasks without resorting to other tools, it was named the
jackknife. The jackknife method could also be used with multivariate data. However, here we will only
present the method for univariate data. The jackknife procedure is very useful when outliers are present
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in the data or the dispersion of the distribution is wide. In the jackknife method, we systematically
recompute the statistic, leaving out one observation at a time from the observed sample. This is used
to estimate the variability of statistic from the variability of that statistic between subsamples. This
avoids the parametric assumptions that we used in obtaining the sampling distribution of the statistic
to calculate standard error. Thus, this can be considered as a nonparametric estimate of the parameter.
Initially, the jackknife method was introduce for bias reduction (thus improving a given estimator)
and is a useful method for variance estimation. In this section, we study only how to compute a
jackknife estimate and a confidence interval. We do not discuss how it reduces bias or any other
theoretical properties.

Let X1, . . . , Xn be a random sample from a population with finite variance. Then the sample mean is

X = 1
n

n∑
i=1

Xi.

If one of the observations, say, the kth observation, is taken out (or missing), then

X−k = 1
n − 1

(
n∑

i=1

Xi − Xk

)
= 1

n − 1

n∑
k =i=1

Xi.

Now, if we know the overall sample mean X and we calculated X−k, then we can obtain the deleted
observation Xk by using the formula

Xk = nX − (n − 1)X−k.

In general, suppose that the population parameter θ is estimated by a function of the sample values
θ̂ (X1, . . . , Xn), represented by θ̂, and let θ̂−k be the corresponding estimate by removing the kth
observation. Note that here θ is any parameter; it need not be the population mean. Then the set of
“pseudo-values” θ̂∗

k , k = 1, 2, . . . , n is obtained by

θ̂∗
k = nθ̂ − (n − 1)θ̂∗−k.

The average of these pseudo-values

θ̂∗ = 1
n

n∑
k=1

θ̂∗−k,

is the jackknife estimate of the parameter θ.

Let s∗2
be the sample variance of these pseudo-values. Then, the variance of θ̂∗ is estimated by s∗2

/n,
and a (1 − α) 100% jackknife confidence interval for θ is given by

θ̂∗ ± tα/2
s∗√
n

where tα/2 is evaluated with (n − 1) degrees of freedom.
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A PROCEDURE FOR JACKKNIFE POINT AND INTERVAL ESTIMATION

1. Generate a random sample X1, . . . , Xn from a population.
2. First remove X1 from the sample (so the new sample will be X2, . . . , Xn ) and compute the estimator

θ̂−1 (such as the sample mean); then remove X2 (the resulting sample will be X1, X3, . . . , Xn ) and
compute the estimator θ̂−2, and so on until the last sample is X1, . . . , Xn−1, with the estimator
being θ̂−n .

3. The jackknife point estimate of θ is

θ̂∗ = 1

n

n∑
k=1

θ̂∗
−k .

4. Calculate the sample variance of the values θ̂−i , i = 1, . . . , n, and denote the variance by s∗2
.

5. A (1 − α)100% jackknife confidence interval for θ is given by

θ̂∗ ± tα/2
s∗
√

n
.

Example 13.2.1
A random sample of n = 6 from a given population resulted in the following data:

7.2 5.7 4.9 6.2 8.5 2.8

(a) Find a jackknife point estimate of the population mean μ.

(b) Construct a 95% jackknife confidence interval for the population mean μ.

Solution
(a) Here n = 6. Table 13.1 represents the original sample and the six jackknife samples.

Table 13.1

Original Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

7.2 5.7 7.2 7.2 7.2 7.2 7.2

5.7 4.9 4.9 5.7 4.9 4.9 4.9

4.9 6.2 6.2 6.2 5.7 6.2 6.2

6.2 8.5 8.5 8.5 8.5 5.7 8.5

8.5 2.8 2.8 2.8 2.8 2.8 5.7

2.8

Using Minitab descriptive statistics, we obtained the summary of the analysis given in Table 13.2.

Now taking the mean and standard deviation of the means of the six jackknife samples, we get

μ̂∗ = 5.883, and the standard deviation s∗ = 0.392. Thus the jackknife point estimate of μ is

μ̂∗ = 5.883, which is the same as the mean of the original sample. However, we can see that the

standard deviation resulting from the jackknife is only 0.392, compared to 1.959 for the original

sample.
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Table 13.2

Variable N Mean Median TrMean StDev SE Mean

Original 6 5.883 5.950 5.883 1.959 0.800

Sample 1 5 5.620 5.700 5.620 2.068 0.925

Sample 2 5 5.920 6.200 5.920 2.188 0.978

Sample 3 5 6.080 6.200 6.080 2.123 0.949

Sample 4 5 5.820 5.700 5.820 2.183 0.976

Sample 5 5 5.360 5.700 5.360 1.656 0.741

Sample 6 5 6.500 6.200 6.500 1.395 0.624

(b) A 95% jackknife confidence interval for μ is

μ̂∗ ± tα/2
s∗√
n

= 5.883 ± 2.571
0.392√

6

resulting in (5.471, 6.2944). Compare this with Example 6.3.1, where we got the confidence interval

as (3.827, 7.939). Thus, through the jackknife method, we get a much tighter confidence interval

for μ.

The jackknife method of resampling is also known as the “leave-one-out” method because it uses all
observations but one in each subsample. Here, every observation is left out exactly once. Note that
in the jackknife method, sampling is done without replacement. This procedure can also be used for
other statistical procedures such as hypothesis testing and regression.

EXERCISES 13.2

13.2.1. The following data represent the total ozone levels measured in Dobson units at randomly
selected locations on earth on a particular day.

269 246 388 354 266 303
295 259 274 249 271 254

(a) Find a jackknife point estimate of the population mean μ ozone level.
(b) Construct a 95% jackknife confidence interval for the population mean μ.
(c) Compare the confidence interval obtained in part (b) with that in Example 6.3.3.

13.2.2. A drug is suspected of causing an elevated heart rate in a certain group of high-risk patients.
Twenty patients from those group were given the drug. The changes in heart rates were found
to be as follows.

−1 8 5 10 2 12 7 9 1 3
4 6 4 12 11 2 −1 10 2 8
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Construct a 98% jackknife confidence interval for the mean change in heart rate. Interpret
your answer.

13.2.3. Air pollution in large U.S. cities is monitored to see whether it conforms to requirements set
by the Environmental Protection Agency. The following data, expressed as an air pollution
index, give the air quality of a city for 10 randomly selected days.

57.3 58.1 58.7 66.7 58.6 61.9 59.0 64.4 62.6 64.9

Construct a 95% jackknife confidence interval for the actual average air pollution index for
this city and interpret.

13.2.4. The mileage (in thousands) for a random sample of 10 rental cars from a large rental
company’s fleet is listed.

7 13 5 5 11 15 7 9 13 8
Find a 95% jackknife confidence interval for the population mean mileage of the rental cars
of this company.

13.2.5. The following data represent cholesterol levels (in mg/dL) of 10 randomly selected patients
from a large hospital on a particular day.

360 352 294 160 146 142 318 200 142 116
Determine a 95% jackknife confidence interval for σ2. Compare this with the confidence
interval obtained in Example 6.4.2.

13.2.6. Air pollution in large U.S. cities is monitored to see whether it conforms to requirements set
by the Environmental Protection Agency. The following data, expressed as an air pollution
index, give the air quality of a city for five randomly selected days.

56.23 57.12 57.7 63.92 59.40

Construct a 99% jackknife confidence interval for the actual variance of the air pollution
index for this city and interpret.

13.2.7. It is known that some brands of peanut butter contains impurities within an acceptable
level. A test conducted on 12 randomly selected jars of a certain brand of peanut butter
resulted in the following percentages of impurities:

1.9 2.7 2.1 2.8 2.3 3.6 1.4 1.8 2.1 3.2 2.0 1.9

(a) Construct a 95% jackknife confidence interval for the average percentage of impurities
in this brand of peanut butter.

(b) Give an approximate 95% jackknife confidence interval for the population variance.
(c) Interpret your results.

13.2.8. The following is a random sample taken from the data that represents the time intervals in
days between earthquakes that either registered magnitudes greater than 7.5 on the Richter
scale or produced more than 1000 fatalities during the time period December 1902 to March
1977.

263 1901 121 832 150 99
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(a) Construct a 95% jackknife confidence interval for the average number of days between
earthquakes of this type.

(b) Give an approximate 95% jackknife confidence interval for the population variance of
number of days between earthquakes of this type.

13.3 AN INTRODUCTION TO BOOTSTRAP METHODS

In this section, we describe some aspects of a relatively recent statistical technique known as the
bootstrap method that can be used when the statistical distribution is unknown or the assumptions
of normality are not satisfied. This is a general method for estimating sampling distributions. The
concept of the bootstrap was introduced by Bradley Efron in 1979 and further developed by Efron
and Tibishirani in 1993. We often try to determine the exact (sampling) distribution in an inferential
procedure, such as the sampling distribution of the sample mean, the median, or the variance, to
be used in computing confidence intervals and for testing hypotheses. However, as we have seen,
this is often the most difficult part of the work, because the sampling distribution depends on the
population distribution, which is often unknown. This is the reason why asymptotic methods are
quite frequently used for hypothesis testing and interval estimation. The bootstrap procedure pro-
vides us with a simple method for obtaining an approximate sampling distribution of the statistic,
conditional on the observed data. However, it should be noted that the distribution thus obtained is
only approximate. It is not as “good” as the exact distribution, because we have only a sample from
the population. However, often, a bootstrap sampling distribution is easier to compute. Bootstrap
methods are computer-intensive methods that use simulation to calculate standard errors, confidence
intervals, and significance tests. The methods are applied by researchers in business, econometrics, life
sciences, medical sciences, social sciences, and other areas where statistics is being utilized. The boot-
strap method uses computer-generated pseudo-random numbers. So the same situations might give
similar but possibly different results. Also, it is computationally more involved to obtain results than
by using the asymptotic distribution. The advantage is that the results are conditional on observed
data, not based on large sample approximations. How does bootstrap help in reality? For instance,
suppose we have 10 years of monthly return data on a particular stock. If we were to use these data to
predict the future return, say through linear regression, we would be assuming that the future is going
to behave similarly to what happened in the past. We know from experience that such an assumption
may not give us a good prediction and the underlying parametric assumptions may not hold. By
creating bootstrap samples from these available data, what we are creating is not what happened, but
rather what could have happened in the past from what did happen. For example, to see how resam-
pling affects sample mean, a particular mutual fund had the following total return (in percentage)
for the past five 5 years:

Year 1 2 3 4 5
Total return 40.7 10.8 29.2 9.9 0.7

In this case, the average return for the past 5 years is 18.26%. A two-times resampling (what could
have happened) resulted in the following outcomes.

Year 1 2 3 4 5
Total return 29.2 40.7 9.9 10.8 10.8
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Here, the average is 20.28%. The next one gave the following:

Year 1 2 3 4 5
Total return 0.7 0.7 40.7 0.7 9.9

The resulting average return is 10.54%. A realistic future prediction method should depend on these
possible fluctuations that could have happened in different scenarios.

Most of the inferential procedures we learned are based on a single sample drawn from the population.
Bootstrap methods, in contrast, generate repeated subsamples from the single original sample itself
and make inferences without assuming any particular functional form for the population distribution.
Because this has the effect of sampling with replacement, we can create as many subsamples as we
wish. These subsamples will have the same sample size and values as the original sample, except that
many values in each of the subsamples will be repeated because of sampling with replacement. It
should be noted that the effectiveness of a bootstrap procedure depends on the original sample being
representative of the population. If the original sample is not representative, the conclusions drawn
from the bootstrap methods will be completely inappropriate.

Using the jackknife method, the size of resamples is confined to (n − 1), and the number of total
possible samples is only n, the original sample size. The resampling strategy based on bootstrap
has no such limitations in terms of the number and magnitude of replications possible. The only
limitation comes from the computing resources, and these new sets of samples can be treated as a
virtual population.

Example 13.3.1
Suppose that the population distribution is an N

(
1, σ2). Estimate σ2.

Solution
Because we know the functional form of the distribution, we could use the estimation procedures discussed

in Chapter 5. There is no need for the bootstrap method. These steps are as follows.

Step 1. If we have a random sample from N
(
1, σ2) of size n use it. Otherwise, generate a random sam-

ple X1, . . . , Xn from N
(
μ, σ2). This could be done using the method described in Project 4A of

Chapter 4.

Step 2. Estimate σ2 by using, the method of maximum likelihood, yielding

σ̂2
ml = 1

n

n∑
i=1

(
Xi − X

)2
.

Note that the maximum likelihood procedure requires the knowledge of the functional form of the
distribution; see the derivation in Chapter 5. Suppose the form of the population distribution is not
known but we do have a random sample X1, . . . , Xn from a distribution. Now we will describe how
we can estimate σ2 using the bootstrap method.
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Let X1, . . . , Xn be a random sample from a probability distribution F with μ = E(Xi) and σ2 =
Var(Xi). Then the standard error of X is defined as σ2/n. In general the population distribution F is
unknown. A simple estimate of F is the empirical (or sample) cumulative distribution function defined by

F̂ (x) = #{Xi ≤ x}
n

= Proportion of X′
is ≤ x.

This F̂ is a step function with the size of the jump being 1/n at each ordered Xi.

Now the bootstrap method of estimating the standard error of X could be summarized by the
following steps.

Step 1. Use the sample X1, . . . , Xn and find F̂ , the empirical cumulative distribution function
of F .

Step 2. Generate a sample {X∗
11, X∗

12, . . . , X∗
1n} from F̂ . From this sample, compute X

∗
1.

Step 3. Repeat step 2, (N − 1) times to obtain samples {X∗
i1, X∗

i2, . . . ., X∗
in}, i = 1, 2, . . . , N and

find X
∗
2, X

∗
3, . . . ., X

∗
N . Now calculate X

∗ = 1
N

∑N
i=1 X

∗
i . This is the bootstrap mean.

Step 4. Then the bootstrap estimate of Var
(
X
)
, denoted by σ̂2

bs, is given by

σ̂2
bs = 1

N − 1

N∑
i=1

(
X

∗
i − X

∗)2
.

Observe that once we have the subsample means X
∗
1, . . . , X

∗
N , the formulas for calculating the boot-

strap mean and bootstrap variance are the same as those for calculating the mean and variance of a
given sample.

Note that when F̂ is taken to be the empirical cumulative distribution function, generating a sample
from F̂ is equivalent to generating a sample from {X1, . . . , Xn} with replacement. As a result, we
obtain the following algorithm.

BOOTSTRAP ALGORITHM FOR ESTIMATING THE STANDARD ERROR OF X

1. Draw N random samples with replacement from the original sample X1, . . . , Xn , with each
observation having the same probability of being drawn (1/n). Let these bootstrap samples be
denoted by {{X ∗

i1, X ∗
i2, . . . , X ∗

in}, i = 1, 2, . . . , N}.

2. Calculate the sample means of each of these bootstrap samples and the overall sample mean by

X
∗
i = 1

n

n∑
j=1

X ∗
ij and X

∗ = 1

N

N∑
i=1

X
∗
ij .

3. Compute

σ̂2
bs = 1

N − 1

N∑
i=1

(
X

∗
i − X

∗)2
.

4. Then the bootstrap estimate of Var
(

X
)

is σ̂2
bs , or equivalently, the standard error of X is

√
σ̂2

bs .
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It is not necessary that the size of the bootstrap sample also must be n or the samples have to be
obtained with replacement. However, it is suggested that the best results are obtained when the
repeated samples are the same size n as the original sample and when the samples are obtained with
replacement. The number of bootstrap samples N could be in the hundreds or more, depending only
on the capacity of the software that we are using to generate these samples.

Example 13.3.2
The following data represent the total ozone levels measured in Dobson units at randomly selected locations

on Earth on a particular day.

269 246 388 354 266 303

295 259 274 249 271 254

Generate N = 6 bootstrap samples of size 12 each and find the bootstrap mean and standard deviation

(standard error).

Solution
Using Minitab (see Example 13.7.1 for the steps) we have created 200 bootstrap samples of size 12. we obtain

the following summary results.

X
∗ = 285.74

and

σ̂2
bs = 153.02 and σ̂bs = 12.37.

Note that the mean of the original sample is 285.7, but the standard deviation is 43.9. Even though the means

of the original sample and the bootstrap means are very close, their standard deviations are substantially

different.

In real applications, one of the difficulties is to estimate the standard errors of more complicated
statistics. We can now generalize the bootstrap method for those situations. Let θ̂ = θ̂ (X1, . . . , Xn)

be a sample statistic that estimates of the parameter θ of an unknown distribution F using some
procedure. We wish to estimate the standard error of θ̂ using the bootstrap procedure, which is
summarized next.

GENERAL BOOTSTRAP PROCEDURE TO ESTIMATE THE STANDARD ERROR OF θ̂

1. Draw N samples with replacement from the original sample, (X1, . . . , Xn ). Denote these
bootstrap samples by {X ∗

i1, X ∗
i2, . . . , X ∗

in}, i = 1, 2, . . . , N .

2. Compute θ̂1, θ̂2, . . . , θ̂N , where
θ̂∗

i = θ̂i (Xi1, Xi2, . . . , Xin ).

The procedure for computing θ̂∗
i is the same procedure as that used to compute θ̂ original sample

X1, . . . , Xn . Also, compute

θ̂∗ = 1

N

N∑
i=1

θ̂∗
i .
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3. The bootstrap estimator of standard error (BSE) of θ̂ is given by

[
̂BSE(θ̂)

]
=

√√√√√ N∑
i=1

(
θ̂∗

i − θ̂∗
)2

N − 1
.

It is clear that these algorithms are considerably computer intensive and it is necessary to have suitable
software to implement them. The accuracy of the bootstrap approximation depends on the accuracy
of F̂ as an estimate of F and how large a bootstrap sample is used to estimate the standard error of
θ̂. We will leave the computation to Project 13A. We now give a theoretical example.

Example 13.3.3
Let X1, . . . , Xn be a sample from a Poisson distribution with parameter λ. Let

θ = P{X ≤ 1} = e−λ(1 + λ).

Obtain a bootstrap estimate of θ.

Solution
It can be shown that the maximum likelihood estimator of θ is

θ̂ml = e−X
(
1+X

)
.

In order to estimate the bias of θ, take N bootstrap samples from {X1, . . . , Xn}. Let

θ̂i = e−Xi
(
1 + Xi

)−
{
#X′

is ≤ 1
}

n
.

Then the bootstrap estimate of the bias of θ is

θ̂bias = θ̂1 + · · · + θ̂N

N
.

One might now use

e−Xi
(
1 + Xi

)− θ̂bias

as an estimator of θ.

13.3.1 Bootstrap Confidence Intervals
We could use the repeated sampling method to construct bootstrap confidence intervals. We now
give a procedure to obtain this.

PROCEDURE TO FIND BOOTSTRAP CONFIDENCE INTERVAL FOR THE MEAN

1. Draw N samples (N will be in the hundreds, and if the software allows, in the thousands) from the
original sample with replacement.
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2. For each of the samples, find the sample mean.
3. Arrange these sample means in order of magnitude.
4. To obtain, say, a 95% confidence interval, we will find the middle 95% of the sample means. For this,

find the means at the 2.5% and 97.5% quartile. The 2.5th percentile will be at the position
(0.025)(N + 1), and the 97.5th percentile will be at the position (0.975)(N + 1). If any of these
numbers are not integers, round to the nearest integer. The values of these positions are the lower
and upper limits of the 95% bootstrap interval for the true mean.

It should be noted that every time we do this procedure, we may get a slightly different bootstrap
interval. We now give an example.

Example 13.3.4
For the data given in Example 13.3.2, obtain a 95% bootstrap confidence interval for μ.

Solution
We took N = 200 samples of size 12. Thus 0.025 × 201 = 5.025 ≈ 5 and 0.975 × 201 = 195.975 ≈ 196.

Thus, taking the 5th and 196th values of sorted (in ascending order) sample means, we get the 95% bootstrap

confidence interval for μ as

(263.8, 311.5).

1. Comparing the classical confidence interval we obtained in Example 6.3.3, which is (257.81, 313.59),

the bootstrap confidence interval of Example 13.3.4 has smaller length, and thus less variability. In

addition, we saw in Example 6.3.3 that the normality assumption necessary for the confidence interval

there was suspect. In the bootstrap method, we did not have any distributional assumptions.

2. Because the bootstrap methods are more in tune with nonparametric methods, sometimes it makes

sense to obtain a confidence interval about the median rather than the mean. With a slight modifi-

cation of the procedure that we have described for the bootstrap confidence interval for the mean,

we can obtain the bootstrap confidence interval for the median.

PROCEDURE TO FIND BOOTSTRAP CONFIDENCE INTERVAL FOR THE MEDIAN

1. Draw N samples (N will be in the hundreds, and if the software allows, in the thousands) from the
original sample with replacement.

2. For each of the samples, find the sample median.
3. Arrange these sample medians in order of magnitude.
4. To obtain, say, a 95% confidence interval we will find the middle 95% of the sample medians. For

this, find the medians at the 2.5% and 97.5% quartile. The 2.5th percentile will be at the position
(0.025)(N + 1), and the 97.5th percentile will be at the position (0.975)(N + 1). If any of these
numbers are not integers, round to the nearest integer. The values of these positions are the lower
and upper limits of the 95% bootstrap interval for the median.
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In practice, how many bootstrap samples should be taken? The answer depends on two things: how
much the result matters, and what type of computing power is available. In general, it is better to start
with 1000 subsamples. With the computational power available now, even taking 10,000 replications
is not much of a problem. There are many works in the literature on bootstrap hypothesis testing and
regression. These are beyond the scope of this chapter.

EXERCISES 13.3

13.3.1. For the data of Exercise 13.2.2, generate N = 8 bootstrap samples of size 20 each and find
the bootstrap mean and standard deviation (standard error).

13.3.2. For the data of Exercise 13.2.5, generate N = 12 bootstrap samples of size 10 each and find
the bootstrap mean and standard deviation (standard error).

13.3.3. For the data of Exercise 13.3.3, obtain a 95% bootstrap confidence interval for μ.

13.3.4. For the data of Exercise 13.2.6, (a) obtain a 95% bootstrap confidence interval for μ, and
(b) obtain a 95% bootstrap confidence interval for the population median.

13.3.5. For the data of Exercise 13.2.8, (a) obtain a 95% bootstrap confidence interval for μ, and
(b) obtain a 95% bootstrap confidence interval for the population median.

13.4 THE EXPECTATION MAXIMIZATION ALGORITHM

In this section, we introduce an algorithm, called the expectation maximization (EM) algorithm that
is widely used to compute maximum likelihood estimates when some elements of the data set are
either missing or unobservable. In real-life problems, observing the complete data is the exception
rather than the rule. For example, in lifetime studies, when n items are placed on a given test, we
may have the failure times of only n1 < n items while for the rest of (n − n1) items we only know the
censored failure time, that they survived a particular failure time T (fixed beforehand). For example,
we may want to know whether the lifetime of a certain brand of fluorescent light bulbs is at least 24
months. For this purpose, let us say we randomly test 100 light bulbs of this brand. In this case, our
data will contain all the months within which the bulbs burned out, and some that survived for 24
months. After 24 months, we may not follow when these bulbs burn out; all we know is that these
bulbs lasted for 24 months. Such a data is an example of censored data. We can consider the censored
failure times of (n − n1) items as the unobservable data values.

Another common problem is of missing data. For example, suppose we were to take a survey on some
socioeconomic problems from a random sample of families from a city in 2000 and then a follow-up
study on the same families in 2005. This may result in many missing values in the follow-up study,
because it is possible that we may not be able to locate some of the families. Missing values can also
occur if some of the respondents refuse to answer certain questions. We have seen in Section 5.3 that
sometimes it is not possible to obtain closed-form solutions for MLE. In the completely observed
case, there are other algorithms, such as Newton–Raphson, that can be used to numerically obtain the
estimates. With missing values, those algorithms cannot be used. The name EM algorithm was coined
by Dempster, Laird, and Rubin in 1977. This is a general iterative algorithm to obtain the MLE when
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the data set is incomplete. The EM algorithm is a formalization of an intuitive idea of estimating
parameters with missing data: (i) replace missing values with estimated values as true values, (ii)
estimate parameters, (iii) repeat.

Let X1, . . . , Xn1 be the n1 observed data values, and let y1, . . . , yn−n1 be the (n − n1) unobserved data
values. Assume that X′

i s are iid random variables with pdf f (x |θ ) and X′
is and Y ′

i s are independent,
that is, data are missing at random.

We denote the random vector by X and the corresponding data vector by x.

The joint pdf of X1, . . . , Xn1 is represented by f (x|θ), where θ is the parameter vector with values in
� ⊂ Rp, a p-dimensional Euclidean space. Let g(x, y|θ) denote the pdf of the complete data set x
and y, that is, the vector (x, y) represents the conceptualized complete data set. Let h(y|θ, x) be the
conditional pdf of the unobserved data y given θ and the observed data x. The likelihood function
for the observed data x is, by definition,

L (θ; x) = f (x |θ ).

The likelihood function for the combined data (x, y) is again by definition given by

Lc

(
θ; x, y

) = g
(
x, y |θ ).

The problem is to find the maximum likelihood estimator that maximizes the likelihood function
L(θ, x), at the same time using Lc(θ; x, y).

From the foregoing definitions, we have the conditional pdf of the missing (or unobserved) data y,
given x:

h
(
y |θ, x

) = g
(
x, y |θ )

f (x |θ )

or equivalently

f (x |θ ) = g
(
x, y |θ )

h
(
y |θ, x

) . (13.1)

Let θ0 ∈ � be a given θ-value. Because h
(
y |θ0, x

)
is a pdf, we have

∫
h
(
y |θ0, x

)
dy = 1.

Thus,

ln L(θ; x) = ln L(θ; x)

∫
h
(
y |θ0, x

)
dy

=
∫

ln L(θ; x)h
(
y |θ0, x

)
dy (as ln L(θ; x)is independent of y).
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Because L(θ, x) = f (x |θ ), we have

ln L(θ; x) =
∫

ln f (x |θ ) h
(
y |θ0, x

)
dy

=
∫ [

ln g
(
x, y |θ )− ln h

(
y|θ, x

)]
h
(
y |θ0, x

)
dy (from (1))

=
∫

ln g
(
x, y |θ )h(y |θ0, x

)
dy −

∫
ln h

(
y |θ, x

)
h
(
y |θ0, x

)
dy

= Eθ0 [ln g(x, y) |θ ] − Eθ0

[
ln h

(
y |θ, x

)]
, (13.2)

where the expectation is taken with respect to the conditional distribution of y given θ0 and x. Let us
now consider maximizing this with respect to θ. This maximization is the maximization step (M-step)
in the EM algorithm.

Let θ0 be an initial estimate of θ. The choice of this initial value θ0 could be done randomly or
heuristically based on any prior knowledge about the optimal value of the parameter. For instance,
suppose we have to estimate mean and variance of a normal distribution. One good starting point
could be to take the sample mean x and sample variance s2 based on a subset of data containing no
missing values.

Let

Q
(
θ
∣∣θ0, x

) = Eθ0

[
ln Lc

(
θ; x, y

)]
= Eθ0

[
ln g

(
x, y

∣∣θ)]
Here, θ0 is used only to compute the expectation; we should not substitute for θ in the complete
data log-likelihood. Let θ̂(1) be the maximizer that maximizes Q(θ |θ0, x ) with respect to θ. That is,
Q(θ̂(1) |θ0, x ) ≥ Q(θ |θ0, x ) for all θ ∈ �. Then θ̂(1) is the first-step estimator of θ. Continuing the
procedure we obtain a sequence of estimators θ̂(m), which under appropriate conditions converges to
the maximum likelihood estimate with likelihood Lc(θ; x, y).

STEPS FOR EXPECTATION MAXIMIZATION ALGORITHM

1. θ̂(n) is the estimate of the parameter θ on the nth step.

2. Expectation step (E-step). Compute

Q(θ|θ̂(n) , x) = E
θ̂(n)

[
ln g(x; y |θ )

]
where the expectation is with respect to the conditional pdf of y given θ̂(n) and x (i.e., with respect
to h(y|θ̂(n) , x)).

3. Maximization step (M-step). Find θ̂(n+1) ∈ � such that

θ̂(n+1) = max
θ

Q
(
θ

∣∣∣θ̂(n) , x
)

.

4. Repeat until convergence criteria are met.
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Thus, in the EM algorithm, each iteration involves two steps: the expectation step (E-step), followed by
the maximization step (M-step). In the E-step, we find the conditional expectation of the unobserved
or missing data given the observed data and the current estimated parameters. That is, the E-step
constitutes the calculation of

Q
(
θ
∣∣θ̂(n), x

)
= E

θ̂(n)

[
ln g

(
x, y

∣∣θ)]

=
∫

ln g
(
x, y |θ )h(y ∣∣θ(n), x

)
dy

(which is the sum if discrete), where the integration is over the range of values that y can take. The
M-step constitutes maximization of Q(θ|θ̂(n), x) with respect to θ. This procedure improves the log-
likelihood at every iteration, that is, the log-likelihood is nondecreasing for every iteration. Thus,
for the sequence (θ̂(n)) obtained through the EM algorithm, we have L(θ̂(n+1); x) ≥ L(θ̂(n); x) with
equality holding if and only if Q(θ̂(n+1)|θ̂(n), x) = Q(θ̂(n)|θ̂(n), x). When we have filled the completed
data set, the parameter θ can be estimated by maximizing the log likelihood estimating procedure
(M-step). It can be shown that under some conditions (such as that ln f (x|θ) is bounded, or that
Q(θ|θ0, x) is continuous in both θ and θ0), θ̂(n) converges in probability as n → ∞ to the maximum
likelihood estimate based on the complete likelihood Lc(θ; x, y).

For computational purposes, the E-step and M-step are alternated repeatedly until the difference
L(θ̂(n+1), x) − L(θ̂(n), x) is less than δ, a small but prescribed quantity. Another possible convergence
criterion is to stop the iteration when the distance between θ̂(n+1) and θ̂n becomes arbitrarily small.
In practice, it may be necessary to run the EM algorithm a number of times with different (random)
starting points to ensure that the global maximum is obtained.

In general, the E-step and M-step could be complex. Even though the EM algorithm is applicable to
any model, it is particularly effective if the data come from an exponential family. It turns out that,
in this case, the log-likelihood is linear in the sufficient statistic for θ. For the E-step, simply compute
the expectation of the complete data sufficient statistic given the observed data. By substituting the
conditional expectations of the sufficient statistics computed in the E-step for the sufficient statistics
that occurs in the expression obtained for the complete data maximum likelihood estimators of θ,
we can obtain the next iterate in the M-step. Thus, when the complete data set is from an exponential
family, both the E-step and the M-step are simplified.

Let z = (x, y) be the complete observation vector. A particular case in which g(x, y|θ) = g(z, θ) is
from an exponential family:

g(z, θ) = a(x) exp{k′(θ)t(x)}/c(θ)
where t(x) is a vector of sufficient statistics with complete data, k′(θ) is a vector function of the
parameter vector θ, and a(x) and c(θ) are scalar functions. Recall that the members of the exponential
family include many popular distributions, such as the normal, multivariate normal, Poisson, and
multinomial distributions. In this case, the E-step can be written as

Q(θ|θ(n), x) = Eθ(n)
[ln a(x) |x ] + k′(θ)t(n) − ln c(θ)
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where t(n) = Eθ(n) [t(Z)|x] is an estimator of the sufficient statistic. The M-step maximizes theQ-function
with respect to θ. Because Eθ(n)

[ln a(x)|x] does not depend on θ, we can rewrite the steps as follows:

E-step: Compute t(n) = Eθ(n) [t(Z)|x].
M-step: Find θ̂(n+1) ∈ � such that

θ̂(n+1) = max
θ

[
k′(θ)t(n) − ln c(θ)

]
.

The following example gives an EM algorithm for a special case of censored survival times. In the
following example, the survival function is defined as the probability that an individual survives
beyond time y, that is, S(y) = P(Y > y).

Example 13.4.1
Let x = (

x1, . . . , xn1

)
be observed data and the censored observations at T are y = (

y1, . . . , yn2

)
(that is,

the survival time is at least T ). Let the mean survival time be θ, and the probability density be given by

f (x|θ) = θ−1 exp(−x/θ) , x > 0.

(a) Obtain the MLE, θ̂ML.

(b) Obtain an EM algorithm.

(c) Consider the following censored data, which represent the number of years 20 patients survived

after a major surgery, where a + symbol represents that we know only that this patient survived for

4 years and no further information.

4+ 12 12 1 4+ 3 3 5 2 0

5 1 4+ 0 3 13 13 1 0 4

Using the algorithm developed in part (b), run for 50 iterations with initial value of θ0 being the observed

sample mean, x, and with θ0 = 0. Comment on the results.

Solution
The joint pdf of the uncensored observation, x, is

f (x|θ) = 1
θn

exp

(
−

n1∑
i=1

xi/θ

)

For the right censored (at T ) observations yi, i = 1, . . . , n2, the pdf can be calculated as follows:

K

∞∫
T

1
θ
e−y/θdy = 1

implies that K = eT/θ . Thus, the pdf of yi is given by

h(y|θ, x) = eT/θ

θ
e−y/θ = 1

θ
e

1
θ
(T−y), y ≥ T.
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(a) The likelihood, Lc(θ, x, y), can also be written in the form

Lc(θ, x, y) = 1
θn1

e
−

n1∑
i=1

(xi/θ)[1 − F( T )]n2

= 1
θn1

e
−

n1∑
i=1

(xi/θ)

e− n2T

θ

Thus,

ln Lc(θ, x, y) = −n1 ln θ −

n1∑
i=1

xi

θ
− n2T

θ
.

Differentiating with respect to θ, and equating to zero,

∂

∂θ
ln Lc(θ, x, y) = −n1

θ
+

n1∑
i=1

xi

θ2 + n2T

θ2 = 0.

This implies

n1θ =
n1∑
i=1

xi + n2T

or

θ̂ = 1
n1

n1∑
i=1

xi + n2

n1
T = x + n2

n1
T.

Hence, the MLE is

θ̂ML = X + n2

n1
T.

(b) Because g(x, y|θ) denote the pdf of the complete data, and we assumed the pdf of all the data

(censored or not) follows exponential distribution, we have

g
(
x, y

∣∣θ) = 1
θn1

e
−

n1∑
i=1

(xi/θ) 1
θn2

e
−

n2∑
i=1

yi/θ

,

we get

ln g
(
x, y

∣∣θ) = −n1ln θ −
n1∑
i=1

xi

θ
− n2 ln θ −

n2∑
i=1

yi

θ
.

For the E-step of the EM algorithm, we first compute

Eθ0Y = eT/θ0

∞∫
T

y
1
θ0

e−y/θ0dy

= T + θ0 (using the integration by parts).
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So, we get

Q
(
θ
∣∣θ0, x

) = Eθ0

[
g
(
x, y

∣∣θ)]

= Eθ0

[
−n1 ln θ −

n1∑
i=1

xi

θ
− n2 ln θ −

n2∑
i=1

yi

θ

]

= −n1 ln θ −
n1∑
i=1

xi

θ
− n2 ln θ − 1

θ

n2∑
i=1

Eθ0(yi)

= −n1 ln θ −
n1∑
i=1

xi

θ
− n2 ln θ − 1

θ
n2 (T + θ0)

= −n1 ln θ −
n1∑
i=1

xi

θ
− n2 ln θ − n2T + n2θ0

θ
.

For the M-step, we differentiate Q(θ |θ0, x ) with respect to θ,

∂

∂θ
Q
(
θ
∣∣θ0, x

) = ∂

∂θ

[
−n1 ln θ −

n1∑
i=1

xi

θ
− n2 ln θ − n2T + n2θ0

θ

]

= −n1

θ
+

i=1∑
n1

xi

θ2 − n2

θ
+ n2T + n2θ0

θ2 = 0

[n1 + n2] θ =
n1∑
i=1

xi + n2T + n2θ0

θ̂1 = 1
[n1 + n2]

n1∑
i=1

xi + n2T

[n1 + n2]
+ n2

[n1 + n2]
θ0

= n1

[n1 + n2]
x + n2T

[n1 + n2]
+ n2

[n1 + n2]
θ0.

Thus, for the general n, the algorithm is

θ̂(n+1) = n1

[n1 + n2]
x + n2T

[n1 + n2]
+ n2

[n1 + n2]
θ̂(n).

Now putting θ(k+1) = θ(k) = θ∗ in the previous equation and solving for θ∗, we have that the EM

sequence {θ(k)} has the MLE θ̂ML as its unique limit point, as k → ∞. That is, θ∗ = θ̂ML.

(c) We used the following MATLAB code to run the algorithm with starting value θ0 as the sample

mean, that is 4.5. Here T = 4. We run it for 50 iterations.
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A(1) = 4.5
for n = 2: 50
A(n) = 4.41∗(17./20)+3∗4/20+(3./20)∗A(n−1)
end

Following is the output.

4.5000 5.0235 5.1020 5.1138 5.1156 5.1158 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159

Thus θ̂ = 5.1159.

To run with θ0 = 0, in the previous code, just change A(1) = 0. We get the following output.

0.0000 4.3485 5.0008 5.0986 5.1133 5.1155

5.1158 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159 5.1159 5.1159 5.1159 5.1159

5.1159 5.1159

With θ0 = x = 4.5, it took six iteration steps to converge, whereas with θ0 = 0, it took seven steps to

converge. Note that in both cases, θ̂ = 5.1159 = θ̂ML.

Example 13.4.1 is a simple case, where there is no need for iterative computation of θ̂ML. However,
this demonstrates how the EM algorithm would work. These types of problems are abundant in the
medical field. For example, we may be interested in the survival times of n patients after a treatment. For
practical reasons, we may be observing only for a fixed duration, such as 10 years. In Example 13.4.1,
the vector x will represent the time of death for the n1 individuals. For the remaining n2 = n − n1

individuals, the only data we have state that they survived for more than 4 years. Thus the value of
T is 4. There is a possibility that during these experimental times, we may lose contact with some
individuals, perhaps because they moved to some other place or they simply refused to participate in
this experiment. In those cases, we will know only that the individual survived until we lost contact.
This generalization of Example 13.4.1 to where the survival time data are different for each observation
is given in Exercise 13.4.5.
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We now give a similar example with a normal sample.

Example 13.4.2
Let x = (

x1, . . . , xn1

)
be observed data from a normal population with mean θ and variance 1. Let the

censored observations at T be y = (y1, . . . , yn2) (that is, the survival time is at least T ) from the same

population. Assume that the two sets of observations {xi} and {yi} are independent. Write down an EM

algorithm to estimate θ.

Solution
For the uncensored observed sample x1, . . . , xn1 , the likelihood function is

L(θ|x) = fx (x |θ ) = 1(√
2π
)n1

e
− 1

2

n1∑
i=1

(xi−θ)2

.

Furthermore, the complete likelihood for both the samples is

Lc

(
θ
∣∣x, y

) = 1(√
2π
)n1

e
− 1

2

n1∑
i=1

(xi−θ)2
1(√

2π
)n2

e
− 1

2

n2∑
i=1

(yi−θ)2

. (13.3)

From the definition of Q(θ |θ0, x ), we obtain

Q(θ |θ0, x ) = Eθ0

[
lnLc

(
θ
∣∣x, y

)]
(13.4)

where the expectation is taken with respect to the conditional pdf

h(y |θ0, x, T ) = 1√
2π

e−(y−θ0)2/2 1
1 − FY (T, θ0)

= 1√
2π

e−(y−θ0)2/2 1
1 − � (T − θ0)

,

where

FY (T, θ0) =
T∫

−∞

1√
2π

e−(y−θ0)2/2dy =
T−θ0∫
−∞

1√
2π

e−u2/2du = � (T − θ0).

Thus, from (13.4) and (13.5),

Q
(
θ
∣∣θ0, x

) = Eθ0

n1∑
i=1

ln
[

1√
2π

e− (xi−θ)2

2

]
+ Eθ0 ln

⎡
⎢⎣ 1(√

2π
)n2

e− (yi−θ)2

2

⎤
⎥⎦
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= −n1

2
ln (2π) −

n1∑
i=1

(xi − θ)2

2

+ n2

∞∫
T

ln

⎡
⎢⎣ 1(√

2π
)n2

e− (yi−θ)2

2

⎤
⎥⎦× 1√

2π
e−(y−θ0)2/2 1

1 − � (T − θ0)
dy.

Now taking the derivative with respect to θ,

∂Q

∂θ
=

n1∑
i=1

(xi − θ)2 + n2√
2π

∞∫
T

(y − θ)
e−(y−θ0)2/2

1 − �(T − θ0)
dy

=
n1∑
i=1

xi − n1θ + n2

[1 − �(T − θ0)]
�(T − θ0) − n2(θ − θ0).

Solving
∂Q

∂θ
= 0, and letting n = n1 + n2, we obtain

θ =

n1∑
i=1

xi

n
+ n2

n
θ0 + n2�(T − θ0)

1 − �(T − θ0)
. (13.5)

From (13.5), we obtain the EM algorithm as

θ̂m+1 =

n1∑
i=1

xi

n
+ n2

n
θ̂m +

n2�
(
T − θ̂m

)
1 − �

(
T − θ̂m

)
where � is the cumulative distribution function of a standard normal random variable.

We have seen that the incomplete data could occur as a result of missing data, or the complete data
may contain variables that are not observable (hidden). The following is an example of the latter
situation.

Example 13.4.3
Suppose that in a set of n twin pairs of children, n1 are male twin pairs, n2 are female twin pairs, and

n3 = n − (n1 + n2) are opposite-sex twin pairs. Let p be the probability that a twin pair is identical and q

be the probability that a child is male. It is not known which pairs of same-sex twins are identical. Obtain an

EM sequence for θ = (p, q).

Solution
We have n = (n1 + n2 + n3), and θ = (p, q) is the parameter vector. Let x = (n1, n2, n3) be the observed

data. Because we don’t know which pairs of the same sex are identical, postulate the complete data set as

z = (n11, n12, n21, n22, n3), where n11 is the number of male identical pairs, n21 is the number of female
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identical pairs, and n12 and n22 are the nonidentical pairs for males and females, respectively. Here, the

complete data, z, has a multinomial distribution with the likelihood given by

L(z, θ) = f (z|θ)

=
(

n

n11, n12, n21, n22, n3

)
(pq)n11

[
(1 − p)q2

]n12
[p(1 − q)]n21

×
[
(1 − p)(1 − q)2

]n22
[2(1 − p)(1 − q)q]n3

where the identical twins involve one choice of sex and the nonidentical twins involve two choices of sex.

The log-likelihood for the complete data is

ln f (x |θ ) = (n11 + n21) ln p + (n12 + n22 + n3) ln(1 − p)

+ (n11 + 2n12 + n3) ln q + (n21 + 2n22 + n3)

× ln (1 − q) + constant.

For the E-step, use Bayes’ rule to obtain the following:

n
(k)
11 = E

(
n11

∣∣x, θ(k)

) = n1
p(k)q(k)

p(k)q(k) + (
1 − p(k)

) (
q(k)

)2
n
(k)
12 = E

(
n12

∣∣x, θ(k)

) = n1

(
1 − p(k)

) (
q(k)

)2
p(k)q(k) + (

1 − p(k)

) (
q(k)

)2
n
(k)
21 = E

(
n21

∣∣x, θ(k)

) = n2
p(k)

(
1 − q(k)

)
p(k)

(
1 − q(k)

)+ (
1 − p(k)

) (
1 − q(k)

)2
n
(k)
22 = E

(
n22

∣∣x, θ(k)

) = n2

(
1 − p(k)

) (
1 − q(k)

)2
p(k)

(
1 − q(k)

)+ (
1 − p(k)

) (
1 − q(k)

)2 .

Thus, the Q-function is given by

Q
(
θ, θ(k)

) =
(
n
(k)
11 + n

(k)
21

)
ln p +

(
n
(k)
12 + n

(k)
22 + n3

)
ln (1 − p)

+
(
n
(k)
11 + 2n

(k)
21 + n3

)
ln q +

(
n
(k)
21 + 2n

(k)
22 + n3

)
× ln (1 − q) + constant.

It can be verified that the M-step gives the following:

p(k+1) = n
(k)
11 + n

(k)
21

n

q(k+1) = n
(k)
11 + 2n

(k)
12 + n3

n + n
(k)
12 + n

(k)
22

.
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Substituting for the log-likelihoods by log-posteriors, the EM algorithm can also be used for compu-
tations related to Bayesian analysis to find the posterior mode of θ. In the context of incomplete data
coming from mixtures of parametric families, the EM algorithm provides a very powerful numerical
technique. In this book, we will not go into the mixture models. The steps necessary to compute
the required quantities depend on the particular application, and thus in general how to code the
EM algorithm is not clear. There are special cases available in some software packages such as SAS
using PROC MI with EM option when the data come from a multivariate normal distribution. It is
desirable to search the literature on the particular software you are using to find out the availability
of “EM codes” to suit the particular application in which you are interested. Also, another difficulty
with implementation of EM algorithm is that in each E-step, we require computation of the con-
ditional expectation. To overcome this difficulty, Wei and Tanner in 1990 proposed an algorithm
called MCEM (Monte Carlo EM) based on the Monte Carlo approach explained in Section 13.5. This
basically involves simulating m variables, Y1, . . . , Ym, from the conditional distribution h

(
y|θ(n), x

)
and then maximizing the approximate complete data likelihood

Q̂
(
θ|θ̂(n), x

)
= 1

m

m∑
i=1

[
ln g

(
x, y |θ )].

We will not go into the details of these methods. The student may refer to Wei and Tanner’s paper for
further details.

EXERCISES 13.4

13.4.1. Suppose that Y is a noise-corrupted observation of a signal S. That is, Y = S + N, where S

is independent of N. Assume that for a known σ, N ∼ N
(
0, σ2

)
and S ∼ N

(
0, θ2

)
, where θ

is unknown. Given the observation Y = y:

(a) Obtain the MLE, θ̂ML.
(b) Obtain an EM algorithm.

13.4.2. Let X1, . . . , Xn be an observed random sample and X(n1+1), . . . , Xn be the missing (at
random) observations. Assume that Xi are iid from an N

(
μ, σ2

)
distribution.

(a) Show that
(∑n

i=1 xi,
∑n

i=1 x2
i

)
are sufficient statistics for θ = (

μ, σ2
)
.

(b) Obtain the EM sequence for θ = (
μ, σ2

)
.

(c) Consider a censored normal sample with n = 10, with the largest three being censored
[Gupta].

1.613 1.644 1.663 1.732 1.740 1.763 1.778

Using the results of part (a), obtain an EM estimate of θ = (
μ, σ2

)
with an arbitrary starting

point.

13.4.3. In Example 13.4.3, suppose that q is the probability that a child is a female. Obtain an EM
sequence for θ = (p, q).
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13.4.4. Let x = (
x1, . . . , xn1

)
and censored observations

(
xn1+1, . . . , xn

)
(that is, in the ith

experiment, if i > n1, the survival time is at least yi). Let the new complete censored data yi

be such that

yi =
⎧⎨
⎩xi, i ≤ n1

yi, i > n1.

Let the mean survival time be θ and the probability density of y be

f (y|θ) = θ−1 exp(−y/θ), y > 0

and let the survival function be defined as the probability that an individual survives beyond
time y, that is, S(y) = P(Y > y). Thus,

S(y) = exp(−y/θ), y > 0.

(a) Obtain the MLE, θ̂ML.
(b) Obtain an EM algorithm.

13.4.5. Let x = (
x1, . . . , xn1

)
be observed data and the censored observations be y = (

y1, . . . , yn2

)
(that is, in the ith experiment, if i > n1, the survival time is at least yi). Let the mean survival
time be θ, and the probability density be given by

f (x |θ ) = 1√
2π

exp
(

−1
2

(x − θ)2
)

.

(a) Obtain the MLE, θ̂ML.
(b) Obtain an EM algorithm.

13.5 INTRODUCTION TO MARKOV CHAIN MONTE CARLO

In this section, we give a brief introduction to Markov chain Monte Carlo (MCMC ) methods. Among
the computational simulation methods, MCMC is enormously useful for realistic statistical modeling.
Markov chain Monte Carlo methods were initially developed and used in physics. These methods
have had profound influence on statistics over the past two decades, especially in Bayesian inference.
MCMC methods are used to solve problems in many diverse areas such as archaeology, biology,
biophysics, computational chemistry, computer graphics, finance, nuclear medicine, transport theory,
and zoology. These methods have enabled researchers to exploit a degree of complexity and realism
in modeling and analysis of problems in these areas that were previously beyond reach. The name
Monte Carlo method was coined by Stan Ulam and John von Neumann, who introduced this method
to solve neutron shielding and other related problems at Los Alamos in the early 1940s.
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The popular MCMC procedures make use of two standard algorithms: the Metropolis algorithm, and
the Gibbs sampler. In the Metropolis approach, all the parameters are varied at once. In the Gibbs
method, each variable of the target pdf is changed one at a time. An improvement on Metropolis,
called the Metropolis–Hastings algorithm, was introduced by Hastings in 1970. There are other hybrid
methods, such as the Hamiltonian method that alternates between Gibbs and Metropolis procedures.
In our present study, we will explain only the first three methods, namely, the Metropolis algorithm,
the Metropolis–Hastings algorithm, and the Gibbs sampler.

The objective of MCMC techniques is to generate random variables having certain distributions called
target distributions with pdf π(x). The simulation of standard distributions is readily available in many
statistical software packages, such as Minitab. In cases where the functional form of π(x) is not known,
MCMC techniques become very useful. The basic idea of MCMC methods is to find a Markov chain
with a stationary distribution that is the same as the desired probability distribution π(x); this is the
target distribution. Run the Markov chain for a long time (say, K iterations) and observe in which state
the chain is after these K iterations. The probability that the chain is in state x will be approximately
the same as the probability that the discrete random variable equals x.

In Bayesian analysis, whether we are finding a posterior distribution or a Bayesian estimate (usually,
the posterior mean), integration is involved. We know from calculus that obtaining closed-form solu-
tions for integrations becomes almost impossible (too difficult) for all but some simple functions.
A standard approach to numerical integration of a function f (x) is to first divide the range of integra-
tion R into n segments x1, . . . , xn, calculate the value of f (x) at each of these points f (x1) , . . . , f (xn),
multiply the values by the length of each segment, and sum these rectangles to approximate the
integral, which is the area under the curve. The error in this approximation is reduced by increasing
the number of segments n.

In Monte Carlo integration, instead of taking x1, . . . , xn as fixed deterministic numbers, we proceed to
draw a random sample from a uniform distribution over the range of integration R, then evaluate
f (xi) for each xi and take the average. This assumes that the range R is bounded. If R is not bounded,
then f (x) can be integrated when it can be written as the product of another function h(x) and a
distribution function π(x) from which we can draw values of x (that is, x1, . . . , xn is drawn from the
distribution π(x)). That is, ∫

f (x)dx =
∫

h(x)π(x)dx

where integration is over the range R. Then, the integral can be approximated with averaging the
f (xi) values, that is,

∫
f (x)dx ≈ 1

n

n∑
i=1

h(xi),

where we assume that xi values are a random sample from π(x) and in the range R. When π(x) is a stan-
dard distribution, many statistical software packages, such as Minitab, can generate random samples
from this distribution. In those cases, a general coding to evaluate this integral can be written as
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sum =̇ 0
For i = 1 to n

{Draw xi from π(x )
sum =̇ sum + h(xi )}

return sum/n

In the preceding coding, by multiplying h(xi) by the indicator function of R (that is, IR (xi) = 1,
if xi ∈ R, and zero otherwise), we can avoid the assumption that xi values are in the range R. For
instance, let X1, . . . , Xn be a random sample generated from a target pdf, π(x). Then the expectation
of any function f (X) can be estimated using the Monte Carlo method by

Eπf(X) =
∫

f (x)π(x)dx ≈ 1
n

n∑
i=1

f (xi) = f

where Eπ denotes the expectation with respect to the pdf π(x). By the law of large numbers, it
follows that

1
n

n∑
i=1

f (Xi) → Eπ [f (X)] as n → ∞

provided X1, . . . , Xn are independent. We can verify that f is an unbiased estimate of Eπf . In
addition, the sampling distribution of f is approximately normal, with variance σ2/n, where σ2 is
estimated by

s2 = 1
n

n∑
i=1

(
f (xi) − f

)2
.

For example, in a Bayesian setting, an estimate of the posterior mean can be obtained by taking
f (x) = x, and the variance can be obtained by taking f (x) = (x − x)2, if π(x) is the posterior
distribution (recall that in Chapter 11, we used the notation π (θ |x) for the posterior distribution).
Using the sampling distribution of f , we can also construct point and interval estimates for Eπf .

Observe that the heart of the Monte Carlo method is to obtain random samples from the target
distribution π(x). One of the problems encountered using this approach is that, while it is easy to
generate samples from standard distributions using popular statistical software packages, it is very
difficult (sometimes not feasible) to do so from any distribution that is not standard (see Project
4A for a method of generating random samples from a given distribution). For these reasons, the
ordinary Monte Carlo method can be implemented in only a very few cases for Bayesian inference.
That is where the Markov chain Monte Carlo method plays a crucial role.

Using the MCMC methods, we will construct a Markov chain {Xn} with a limiting distribution as the
target distribution, π(x). Let us first introduce the concept of Markov chains. For a brief description
of Markov chains, refer to Appendix A2. We call a sequence of random variables {Xn} a Markov chain
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(MC) with state space S if

P
(
Xn = xn

∣∣Xn−1 = xn−1, . . . , X1 = x1
) = P

(
Xn = xn

∣∣Xn−1 = xn−1
)
.

That is, the probability distribution of future states of a MC depends only on the present state and not
on the past states. However, it is important to note that a Markov chain {Xn} is a dependent sequence
of random variables; thus, the independence assumption inherent in a random sample cannot be
used. The transition probability function of a discrete parameter Markov chain is defined as

pm,n(x, y) = P(Xn = y|Xm = x ), x, y in S.

We simply denote this transition probability by p(x, y). When the number of elements in the state
space S is finite, we can form a matrix P with the (x, y)th element being p(x, y). This matrix is called
a one-step transition probability matrix. π(x) is called an invariant (limiting) distribution if it satisfies the
equation

π(x) =
∑
y∈S

π(y)p(y, x).

We say that the chain satisfies the reversibility or detailed balanced condition if π(x)p(x, y) = π(y)p(y, x)

holds for some π(.). It can be shown that such a π(x) that satisfies the reversibility condition is
invariant. Basically, if a Markov chain is reversible and its limiting distribution exists, then the limiting
distribution is the invariant distribution.

The results explained for discrete Markov chains can be extended to continuous time defined in a
continuous state space. The stationary or the equilibrium distribution π(x) of a continuous Markov
chain satisfies

π(x) =
∫

p(y, x)π(y)dy.

Assume that the samples are generated from a Markov chain whose equilibrium distribution is the
target distribution, π(x). We know by the law of large numbers that

1
n

n∑
i=1

f (Xi) → Eπ[f (X)] as n → ∞

provided X1, . . . , Xn are independent. It turns out that, if we generate a Markov chain X1, . . . , Xn

from the target distribution π(x), the result

1
n

n∑
i=1

f (Xi) → Eπ[f (X)] as n → ∞

still holds. In this sense, the chain {Xi} resulting from an MCMC algorithm with stationary dis-
tribution π is similar to the use of a random sample from π. The analytical details are beyond
the scope of this book. Instead, we focus on the question: How do we construct a Markov chain
whose stationary distribution is our target distribution, π(x)? The answer is given by the Metropolis–
Hastings algorithm, and the two special cases: the Metropolis algorithm, and the Gibbs sampler.
A Markov chain Monte Carlo method for simulating a distribution π can be defined as any method
that produces an ergodic Markov chain {Xi} whose stationary distribution is π. We start with the
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Metropolis algorithm. Subsequently, we will explain both the Metropolis–Hastings algorithm and
the Gibbs sampler. MCMC methods are increasingly being used for simulation of complex probability
models, for computation of integrals, and optimization.

13.5.1 Metropolis Algorithm
One of the simplest algorithms in MCMC calculations is the Metropolis algorithm, introduced by
the Greek-American mathematician Nicholas Constantine Metropolis and colleagues in 1953. This
work was mentioned in Computing in Science and Engineering as being among the top 10 algorithms
having the “greatest influence on the development and practice of science and engineering in the 20th
century.” In this case, we make a trial perturbation from the current position in a parameter space by
randomly selecting a trial step from a symmetric probability distribution called candidate-generating
density or proposal density q(x, y) (in the discrete case, it is a symmetric matrix called the nominating
matrix A = (aij), with aij = aji). The q(x, y) depends only on the current state x and the new proposed
state y (that is, q(x, y) = qx(y) is a function of the next proposed state y that is allowed to depend on
the current state x). Thus, starting at x, q(x, y) can be regarded as the conditional density of landing
at y in one transition step. The trial step is either accepted or rejected on the basis of the probability
of the new position relative to the previous one.

We now give the Metropolis algorithm for a discrete distribution. We want to obtain a sample from
a distribution {πj}, where π(j) = P(Xk+1 = j), and we have a symmetric nominating matrix A; then
we can write the Metropolis algorithm in five steps as follows.

METROPOLIS ALGORITHM (DISCRETE CASE)

For k = 0, start with an arbitrary point, xk = i .
1. Generate j from the probability distribution {aij , j = 1, 2, . . .}.

2. Set

r = π( j)

π(i)
.

3. If r ≥ 1 set xk+1 = j (acceptance),
otherwise generate u from Uniform (0, 1),
if u < r set xk+1 = j (acceptance),
else xk+1 = xk (rejection); (note that the value of xk+1 becomes the next state).

4. Set k = k + 1, go to step 1.

Each of the accepted points is considered to be a sample value from the target distribution {πj}.
The continuous case of the Metropolis algorithm is given next.

METROPOLIS ALGORITHM (CONTINUOUS CASE)

1. Start with an arbitrary point, x0.
2. Select a new position x∗ = xk + �x , where �x is randomly chosen from a symmetric distribution.
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3. Calculate the ratio

r = π
(

x∗)
π
(

xk
)

where π(x ) is the target distribution.

4. Accept the trial position, that is, set

xk+1 = x∗, if r ≥ 1.

Otherwise generate u from Uniform (0,1)
If u < r set xk+1 = x∗
else set xk+1 = xk .

5. Set k = k + 1, go to step 2.

If the proposal step size is dx, we could use the proposal distribution as U(−dx, dx); for example,
if the step size is 1, then randomly choose �x ∼ U(−1, 1). For further discussion on selection of
the proposal distribution, read Subsection 13.5.4. The Metropolis algorithm generates a set of states
that is a Markov chain because each state xk+1 depends only on the previous state xk. Using Markov
chain techniques, it can be shown that the equilibrium distribution of the chain constructed by the
Metropolis algorithm is indeed π

(
x∗). Note that in the Metropolis algorithm, it is not necessary

to have the pdf; instead, all that is necessary is to know the ratio π
(
x∗) /π(xk). Thus, none of the

multiplicative constants in the pdf π plays a role in the algorithm.

This algorithm works well in most applications. Following is a simple example to show how the
Metropolis algorithm works.

Example 13.5.1
Using the Metropolis algorithm, generate a random sample from a Poisson distribution with mean λ. For

the nominating matrix, use the symmetric matrix with elements

a00 = 1/2, aij =

⎧⎪⎪⎨
⎪⎪⎩

1/2, j = i − 1

1/2, j = i + 1

0, otherwise.

Solution
The nominating probability matrix is a one-step transition matrix (see Appendix A2),

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 0 0 0 . . .

1/2 0 1/2 0 0 . . .

0 1/2 0 1/2 0 . . .

0 0 1/2 0 1/2 . . .

. . . . . .

. . . . . .

. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we apply the Metropolis algorithm for generating samples from Poisson (λ) in the following steps.
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Step 1. Start with xn−1 = i.

Step 2. Generate j from A = {aij}. How do we do it? We can do this using the following procedure:

For i = 0,

Generate u1 from U(0, 1).

If u1 ≥ 1
2 , set j = i + 1 else set j = i − 1.

For i = 0,

If u1 < 1
2 , set j = 0

else set j = 1.

Step 3. Set

r = π(i)

π(i)
= e−λλj/j!

e−λλi/i! = i!λj

j!λi
= i!λj−i

j! .

Set

r =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = 0, j = 0
λ
j , if j = i + 1
i
λ , if j = i − 1.

Step 4. Acceptance/rejection:

If r ≥ 1, set xn = j (i.e., accept the new statej).

Otherwise, generate u2 from U(0, 1)

if u2 < r, set xn = j (i.e., accept the new statej)

else set xn = xn−1 (i.e., reject the new state j and keep the current state i).

Step 5. Set n = n + 1, go to step 2.

In Example 13.5.1, let us say we want to generate a random sample from Poisson with λ = 2 and we
are at state i = 3 in the iteration step (n − 1). If our proposed new state is j = 4, then r = 2/4 = 1/2.
Suppose we obtained the value of u2 as 0.672772. Because this value is larger than 1/2, we reject the
proposed new state 4 and stay at state 3 for the iteration step n (if you generate a new u2, your decision
might be different). Instead, suppose our proposed step was j = 2; then r = i/λ = 3/2 > 1, and we
will immediately accept our new state as j = 2 (no need to generate a uniform random number; if
you did, it would have been smaller than 3/2 anyway) for the iteration step n.

Example 13.5.2
Let π(x) = c exp (−f (x)) be the form of the target distribution function. Write a general Metropolis

algorithm to generate a sample from π.

Solution
Let q(x, y) be any symmetric distribution. Starting from an arbitrary x(0), we can write the Metropolis

algorithm through the following steps.
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Step 1. Let x(t) be the current state.

Step 2. Generate y from the distribution q(x, y).

Because,

r = π(y)

π
(
x(t)

) = c exp (−f (y))

c exp
(−f

(
x(t)

)) = exp
(− (

f (y) − f
(
x(t)

))
,

calculate the change in f , �f = f (y) − f
(
x(t)

)
.

Step 3. Generate a random number from the uniform distribution, U(0, 1). If u ≤ exp(−�f), set

x(t+1) = y (accept the proposed new state), otherwise set x(t+1) = x(t) (reject the proposed new

state).

Step 4. Continue (i.e., go to step 1).

Note that in the previous example, the normalizing constant in π(x) is not important, because it
cancels in the ratio. In fact this is true in all Metropolis and Metropolis–Hastings algorithms. In
the special case, where q(x, y) = q (|y − x|), the Metropolis algorithm is also called the random-walk
Metropolis. Another special choice is q(x, y) = q(y); this is called the independence sampler. In all
of these cases, it is important to observe that whereas the target distribution is independent of the
positions, the proposal functions depend on where we are. For example, let π(x) be standard normal
density, and let the proposal density be of the form

q(x, y) ∝ exp

(
− (y − x)2

2 (.25)2

)
.

The Figure 13.1 gives a representation of the target distribution and some representative proposals. For
each point x of the target distribution, we generate a y from the corresponding proposal distribution.
Then, according to the accept/reject rule that we specified earlier, we will make a decision whether to
treat this new value y as being from the target distribution.

13.5.2 The Metropolis–Hastings Algorithm
The Metropolis–Hastings (M-H) algorithm is a generalization of the Metropolis algorithm, in which
we need not assume symmetry of the nominating matrix A (or for proposal density q(x, y)). The
acceptance probability is given by

α(i, j) = min
{

π(j)aji

π(i)aij
, 1
}
.

This algorithm is the basic building block of MCMC methods. The Metropolis–Hastings algorithm is
widely used in applied statistics and is very useful for sampling from complicated, high-dimensional
probability distributions. Now we present the steps involved in the Metropolis–Hastings algorithm
in the discrete case.
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■ FIGURE 13.1 Target and proposal densities.

METROPOLIS–HASTINGS ALGORITHM (DISCRETE CASE)

For k = 0, start with an arbitrary point, xk = i .
1. Generate j from the nominating distribution {aij , j = 1, 2, . . .}.
2. Set

r = π(j)aji

π(i)aij
.

3. If r ≥ 1 set xk+1 = j .
Otherwise generate u from U(0, 1)
if u < r , set xk+1 = j
else set xn = xn−1.

4. Set k = k + 1, go to step 1.

In the preceding algorithm, if we calculate α(i, j) = min{r, 1}, basically, we accept the proposed
new step j if u < α(i, j); otherwise we stay at the current step i. The resulting Markov chain from
both Metropolis and Metropolis–Hastings algorithms would have the transition probability matrices
defined by

p (i, j) = aijα (i, j) for i = j

p (i, i) = 1 −
∑
j =i

aijα (i, j).

In the continuous case, for any given π(x), the Metropolis–Hastings algorithm takes the following
form. To start the algorithm, we choose an arbitrary proposal distribution q(x, y) so that it is easy to
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obtain a sample from this distribution. Define the acceptance/rejection function as

α(x, y) = min
{

π (y) q (y, x)

π(x)q(x, y)
, 1
}
.

If both π(x) and π(y) are zero, set α(x, y) = 0.

METROPOLIS–HASTINGS ALGORITHM (CONTINUOUS CASE)

Step 1. Start with an arbitrary point, x0.
Step 2. Given a current state x (t ) , draw y from the proposal distribution q(x , y ).
Step 3. Draw u from U[0, 1].

Step 4. If u < α
(

x (t ) , y
)

, set x (t+1) = y , otherwise set x (t+1) = x (t ) .
Step 5. Set t = t + 1, go to step 2.

Note that if the q(x, y) is symmetric (i.e., q(x, y) = q(y, x)), then the Metropolis–Hastings algorithm
reduces to the Metropolis algorithm. In practice, there are other forms of acceptance/rejection func-
tions suggested. Observe that in the Metropolis–Hastings algorithm, as in the Metropolis algorithm,
it is not necessary to have the pdf; instead, all that is necessary is to know the ratio π(y)/π(x). Thus,
none of the multiplicative constants in the pdf, π, plays a role in the algorithm.

Because of the versatility of this method, there are many generalizations of the Metropolis–Hastings
algorithm in the literature. It is also necessary to impose some conditions both on π and on the
proposal distribution q for π to be the limiting distribution of the Markov chain {X(t)} produced by
the M-H algorithm. We do not want a large ratio of the proposed new values to be rejected. Discussion
of these issues is beyond the scope of this book.

Example 13.5.3
Using the Metropolis–Hastings algorithm, generate a sample from the following distribution. Let � =
{2, 3, . . . , 11, 12}, which represents the sum of the up faces of two balanced dice, and let the distribution

be given by

Sum i 2 3 4 5 6 7 8 9 10 11 12

π(i) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Using the nominating matrix

a22 = a(12)(12) = 1/2, aij =

⎧⎪⎪⎨
⎪⎪⎩

1/2, j = i − 1

1/2, j = i + 1, i, j ∈ �

0, otherwise

write the M-H algorithm to generate samples from the distribution π.

Solution
Suppose we start with state i ∈ �, say at 5 (starting at any other state is ok).
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Step 1. Generate j from the nominating distribution {aij, j = 1, 2, . . .}. Thus, j = i − 1 or i + 1, and

in this case j has to be 4 or 6. We can follow the same procedure as in Example 13.5.1 to choose

between i − 1 and i + 1. Let us say, we got j = i + 1, here 6.

Step 2. Set r = π(j)aji

π(i)aij
. In this case, r = π(6)

π(5)
= 5/36

4/36
= 5

4
.
(

If we had chosen 4, then, r = π(4)

π(5)
= 3

4
.
)

Step 3. If r ≥ 1 set xn = j. Here r > 1; hence, we accept the new state, xn = 6. Otherwise generate u

from U(0, 1) if u < r, set xn = j else set xn = xn−1.

Step 4. Set n = n + 1, and go to step 1.

Example 13.5.4
Write a Metropolis–Hastings algorithm to generate samples from N(0, 1) based on the proposal U[−1, 1].
Solution
Note that in order for y to be generated based on U[−1, 1], we need y − x(t) ∼ U[−1, 1]. Thus, y ∼ U[
x(t) − 1, x(t) + 1

]
. Figure 13.2 shows the target distribution as the standard normal, and the representative

proposals that are uniform at points x(t) = −2 and 2.

Target

Proposals

�6 �4 �2

1

0 2 4 6

■ FIGURE 13.2 Normal target and uniform proposal distributions.

Now, the M-H algorithm can be obtained in the following way.

Set

α
(
x(t), y

)
= min

{
π(y)q(y, x)

π(x)q(x, y)
, 1
}

= min
{(

exp
{(

x(t)2 − y2
)
/2
}) x + 1

y + 1
, 1
}
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Generate u ∼ U[0, 1]

If u < α
(
x(t), y

)
, set x(t+1) = y, otherwise set x(t+1) = x(t). Continue.

Observe that in order to generate normal random variables, it is not necessary to use M-H algorithms.
Most of the statistical software packages will give us a random sample from the normal distribution.
Example 6.5.2 (originally suggested by Hastings in 1970) is given for demonstration of the M-H
algorithm. The algorithm is effective in general cases, for instance, to generate a sample from a gamma
distribution. In Gamma(α, β), if α is an integer, we can use the method of Project 4A to generate a
random sample. However, if α is not an integer, we could use Gamma([α], β) (here [α] denotes the
integer part of α) as the proposal distribution, and follow the steps of the M-H algorithm to generate
a sample from Gamma(α, β) (see Exercise 13.5.3).

13.5.3 Gibbs Algorithm
The name Gibbs algorithm (or Gibbs sampler) was coined by Geman and Geman in 1984. In the Gibbs
sampler, only one parameter is varied at a time, while all others are held fixed. The parameter then
is randomly drawn from a conditional probability density function, the probability distribution of
one parameter, given all other parameters; π (xi|x−i), where x−i is the full set of parameters excluding
only the single component xi. Let x = (x1, . . . , xk) be k(≥ 2)-dimensional. Recall from Chapter 3
that these conditional densities can be obtained as follows:

π
(
xi

∣∣x−i

) = π
(
xi

∣∣x1, . . . , xi−1, xi+1, . . . , xk

)
= π

(
x1, . . . , xi−1, xi, xi+1, . . . , xk

)
∫

π
(
x1, . . . , xi−1, xi, xi+1, . . . , xk

)
dxi

.

The basic assumption under which the Gibbs algorithm works is that we could easily draw a random
sample from these conditional pdfs. Thus, the Gibbs algorithm is a particular case of Metropolis–
Hastings algorithms. For example, at the ith step, yi is generated from the nominating density qi(xi, yi)

where qi depends on the current state xi. The candidate yi is accepted with probability

αi(xi, yi) = min
{

πi(yi) qi(yi, xi)

πi(xi) qi (xi, yi)
, 1
}
.

If yi is accepted, we will set the ith component of xn, xn,i = yi; otherwise set xn,i = xn,i. The remaining
components of x n are not changed in step i. This is repeated for each i, at the end of which the entire
vector x n would have been updated. Thus, if we are in state x at time t, at time t + 1 we either remain
at x or go to y by modifying only one component of x. It is important to use the most recent values

of updated components to update the next component. That is, given x(t) =
(
x
(t)
1 , . . . , x

(t)
k

)
at time t,

generate

x
(t+1)
1 ∼ π

(
x1
∣∣x(t)

2 , x
(t)
3 , . . . , x

(t)
k

)
x
(t+1)
2 ∼ π

(
x2
∣∣x(t+1)

1 , x
(t)
3 , . . . , x

(t)
k

)
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x2
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x(2)

x(1)

x(0)

x(3)

x1
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■ FIGURE 13.3 Gibbs updating procedure.

x
(t+1)
3 ∼ π

(
x3
∣∣x(t+1)

1 , x
(t+1)
2 , x

(t)
4 , . . . , x

(t)
k

)
.

.

.

x
(t+1)
k ∼ π

(
xk

∣∣x(t+1)
1 , x

(t+1)
2 , . . . , x

(t+1)
k−1

)
.

For instance, let k = 2. The Gibbs sampler updates in the following manner. Start at x(0) =
(
x
(0)
1 , x

(0)
2

)
;

first update x
(0)
1 to x

(1)
1 , using this updated value x

(1)
1 and x

(0)
2 , update x

(0)
2 to x

(1)
2 , resulting in the

updated vector x(1). Repeat this procedure to obtain x(2), x(3), . . . . Figure 13.3 depicts this updating
procedure.

The conditional densities f1, . . . , fk are called the full conditionals. In the Gibbs sampler, only these
conditional densities are needed for simulation. Thus, this procedure becomes very efficient when
the vector x is large, because all of the simulations can be done as univariate.

The following example of bivariate density is popularly used in the literature to illustrate the Gibbs
sampler. It is the case where the joint density is complex, because one variable (x) is discrete, while the
other variable (y) is continuous. However, the conditional densities are simple known distributions,
binomial and beta distributions, respectively. It is then easier to simulate these distributions, thus
demonstrating the power of the Gibbs sampler.

Example 13.5.5
(a) Write a Gibbs sampler for generating samples from the following bivariate density:

f (x, y) =
(

n

x

)
y x+α−1(1 − y)n−x+β−1, for x = 0, 1, . . . , n

and 0 ≤ y ≤ 1.
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(b) Starting with y0 = 1/4, n = 15, and α = 1, β = 2, obtain the first three realizations of the Gibbs

sequence.

Solution
(a) From Exercise 3.3.14, we know that

f (x |y ) ∝
(

n

x

)
yx(1 − y)n−x.

That is, the conditional distribution of x (treating y as a constant) is binomial with parameters n

and y, 0 ≤ y ≤ 1. Also,

f (y |x ) ∝ yx+α−1(1 − y)n−x+β−1.

Thus, the conditional distribution of y given x is a beta distribution with parameters x + α and

n− x+β. The Gibbs sampler for generating bivariate samples from f (x, y) is then given as follows:

For i = 1, . . . , n, repeat:

1. Generate yi from fY |X(.|x(i−1)), that is from Beta (xi−1 + α, n − xi−1 + β).

2. Generate xi from fX|Y (.|y(i)), that is from binomial(n, yi).

3. Return (xi, yi).

(b) We proceed with the following steps.

(i) For y0 = 1/4, x0 is obtained from generating a random variable from binomial with n = 15,

y0 = 1/4, that is, from B(15, 1/4), resulting in a value of 4 (generated using Minitab; you may

get a different value when you do it). Thus, x0 = 4,

(ii) Generate y1 randomly from

Beta (x0 + α, n − x0 + β) = Beta (4 + 1, 15 − 4 + 2)

= Beta(5, 13)

resulting in y1 = 0.53 (approximated to second digit). Now x1 ∼ B(15, 0.53), resulting in

x1 = 6.

(iii) Generate y2 randomly from

Beta (x1 + α, n − x1 + β) = Beta(7, 11)

resulting in y2 = 0.30. Now x2 ∼ B (15, 0.30), resulting in x2 = 3.

Thus, a particular realization of the Gibbs sampler for the first three iterations is (4, 0.25), (6, 0.53), and

(3, 0.30).

From Exercise 13.5.8, it can be observed that at the beginning, the values of the chain are highly
dependent on the choice of the initial value y0. In practice, it is necessary to run a sufficient number
of iterations to remove the effect of the starting values. Even though the Gibbs sampler is a special case
of the Metropolis–Hastings algorithm, it is important to observe that unlike the M-H algorithm, every
sample generated by the Gibbs algorithm is accepted. Also, we should have at least a two-dimensional
problem for the Gibbs sampler to be used.

From the previous discussions, we can see that a general description of an MCMC method can be
summarized in the following algorithm.
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Initialize X0

For i = 1; . . . ; N repeat
x = Xi−1;
Generate Y from a nominating density, q(x; y );
Calculate the acceptance rate, α(x; y );
Generate U from the uniform U(0; 1);
If (U < α(x; y )) set X(i) = y ,
Else set X(i) = x ;
End;

If we choose a nominating density q(x, y) and an acceptance rate α(x, y) such that the reversibility
condition

π(x)α(x, y)q(x, y) = π(y)α(y, x)q(y, x),

is satisfied, then the foregoing procedure generates a Markov chain with limiting distribution π(x).
In order to use Gibbs sampling for Bayesian analysis, we must have an explicit analytical posterior
conditional distribution.

13.5.4 MCMC Issues
Two major issues in MCMC are convergence and burn-in. Because in all three MCMC algorithms
we start the sequence from an arbitrary point, any particular sequence may take some time to pass
through the transient stage, and the effect of the starting value is very small and can be ignored—that
is, it attains convergence. In practice, we will have to run the algorithm for a few thousand iterations
so that the effect of this initial state is negligible. The samples obtained during this burn-in period
should be discarded for the subsequent analysis as they do not represent the target pdf. By monitoring
the sequence itself, we can determine whether the sequence has reached the convergence. A simple
way to decide how much burn-in is necessary is to create scatterplots of Xi versus Xj , i = j. When
the wild variations stop, then it is safe to assume that the chain has reached stationarity.

Another major issue in the implementation of MCMC algorithms is the choice of proposal density.
In the continuous case, popular choices among others are the multivariate normal density and the
multivariate t with specified parameters. Even in these cases, there is the question of appropriate size
of the spread, or scale of the proposal density. The size of the acceptance ratio is another issue. If
the ratio is too small, the samples will get stuck (because almost all proposed new states will be
rejected), and if the ratio is too high, the samples will show tracking. A general rule of thumb is that
the acceptance ration should be within 30% to 60%. If not, adjust the step size (for a small ratio,
decrease the step size, and for a high ratio, increase the step size). There are many pulications devoted
to these issues.

For the Bayesian computation, MCMC allows us to sample from any posterior. Because of the avail-
ability of specialized software packages, such as BUGS, it is practical to code up for a particular
problem.
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There are many references including books on MCMC methods; some of these are listed in the
references at the end of this book. A good nontechnical discussion on various aspects of MCMC can
be found at http://www.amstat.org/publications/tas/kass.pdf. For a good discussion including some
technical details, refer to.http://www.csss. washington.edu/Papers/wp9.pdf.

EXERCISES 13.5

13.5.1. For Example 13.5.1, let λ = 3. Starting with initial state x0 = 6, compute relevant quantities
performing 10 iterations of the algorithm.

13.5.2. Using the Metropolis–Hastings algorithm, generate a random sample from a geometric
distribution with mean θ. Use the nominating distribution {aij, j = 1, 2, . . .} such that

aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 j = i − 1, i + 1, and i = 1, 2, 3, . . .

1
2 j = 0, 1 and i = 0

0 otherwise.

[Recall that if X is geometric with parameter θ, then P(X = x) = (1 − θ)xθ, for
x = 0, 1, 2, . . .]

13.5.3. Write down the Metropolis–Hastings algorithm to generate a sample from Gamma(α, β)

using the proposal density as Gamma([α], [α]/α).

13.5.4. Write down the Metropolis–Hastings algorithm for simulating a Markov chain with
stationary distribution π = (1/6, 2/3, 1/6), using the “proposal” transition matrix

Q =
⎛
⎜⎝1/2 1/2 0

1/2 0 1/2
0 1/2 1/2

⎞
⎟⎠ .

13.5.5. In tossing three fair coins, let the random variable X be defined as X = number of tails.
Then the distribution of X is given by

x 0 1 2 3
π(x) 1/8 3/8 3/8 1/8

Write down the Metropolis or Metropolis–Hastings algorithm for simulating a Markov
chain with stationary distribution π(x). Use any nominating matrix.

13.5.6. Write a Metropolis algorithm to generate samples from a target distribution, π(x) ∝
exp

(
− x2

2

)
, based on the proposal

qx(y) = exp

(
− (y − x)2

2(0.4)2

)
.
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13.5.7. Write a general Metropolis or Metropolis–Hastings algorithm to generate a sample from a
target distribution π, where π is an exponential random variable with parameter θ.

13.5.8. Write a general Metropolis or Metropolis–Hastings algorithm to generate a sample from
a target distribution π, where π(x) ∝ x34(1 − x)38(2 + x)125. Use the proposal density as
q(x, y) = 1 on the interval [0, 1].

13.5.9. For the bivariate density given in Example 13.5.5, starting with three different values of y0,
say, 1/3, 1/2, and 2/3 n = 15, and α = 1, β = 2, obtain the first three realizations of the
Gibbs sequence. Comment on the influence of the initial values.

13.5.10. Consider a problem of sampling bivariate random variables with joint density given by

f (x, y) =
{

ce−(x+y+4xy), x ≥ 0, y ≥ 0

0, otherwise.

(a) Find f (x |y ) and f (y |x).
(b) Write a Gibbs procedure to generate samples from this distribution. Discuss why it is

easier to use the Gibbs sampler for this case.
(c) Starting from an arbitrary point, obtain the first three sample points.

13.5.11. Suppose the target distribution is

(X, Y) ∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
.

Then write the Gibbs sampler to generate a sample from this distribution. In particular,
say, we start with (X, Y) = (12, 12) and ρ = 0.7. What is the Gibbs procedure to generate
a sample from a binormal distribution?

13.5.12. Suppose the target distribution is

(X, Y) ∼ N

((
μ

μ

)
,

(
2 1
1 1

))
.

Then write the Gibbs sampler to generate a sample from this distribution.

13.6 CHAPTER SUMMARY

In this chapter, we introduced some empirical methods that are becoming increasingly popular in
modern statistical analysis. The methods presented must be viewed as introductory in nature and
by no means most efficient or general. Because of ever-evolving applications and advancements
in technology, most of the methods presented here also evolve. Also, based on the situation, it is
necessary to write computer codes to run the algorithms introduced in this chapter. Our hope is that
students will explore these topics in more detail by referring to specialized books and publications.

In this chapter, we also learned the following important concepts and procedures:
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■ The jackknife method
■ General bootstrap procedure to estimate the standard error of θ̂

■ Bootstrap confidence intervals
■ EM algorithm
■ Markov chain Monte Carlo methods
■ Metropolis algorithm
■ Metropolis–Hastings algorithm
■ Gibbs sampler

13.7 COMPUTER EXAMPLES

Most of the procedures described in this chapter could be implemented using Minitab, SAS, or SPSS
only in special cases. For instance, there are special macros available to run Monte Carlo methods
for each of these software packages. In SAS, we could use the so-called MI (multiple imputation)
procedure for MCMC as well as EM methods if the data are multivariate normal. Unlike the many
methods discussed in earlier chapters, in general there are no simple pull-down menus available to
use the methods discussed in this chapter.

There are other specialized programs that will do a good job of implementing the methods dis-
cussed in this chapter. BUGS (Bayesian inference Using Gibbs Sampling) is free software that has
proven to be effective in MCMC computations, and the details are at the Web site: http://www.mrc-
bsu.cam.ac.uk/bugs/. Most of the procedures discussed in this chapter can also be implemented in
“R,” which is also free software that can be downloaded from http://www.rproject.org/.

Example 13.7.1
For the data of Example 13.3.2, give the Minitab steps.

Solution
Enter the data in C1. Enter 0.08 (≈ 1/12) 12 times in C2. Then

Calc > Random Data > Discrete. . . > Generate [ enter 200] rows of data > Store in column(s):
enter C3-C14 > values in: enter C1 > Probabilities in: enter C2 > click OK

We will get 200 rows of data stored in 12 columns. Because the data are generated randomly from the

original data with replacement, we will consider the row data (C3–C14) as the sample size and the 200

columns as the number of samples. Thus N = 200, and n = 12. Now for each row we can find the mean,

X
∗
i by doing the following.

Calc > Row Statistics. . . > click Mean > in Input variables: enter C3-C14 > store results in: enter

C15 > click OK

We will get 200 values representing the sample means. To get the bootstrap mean,
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Stat > Basic Statistics > Display Descriptive Statistics. . . > Variables: enter C15 > click OK

The value in the mean is the bootstrap mean, and the value in the standard deviation is the bootstrap

standard deviation.

If we want to get say, a 95% confidence interval, first sort the sample means in ascending order:

Manip > Sort. . . > Sort column(s): enter C15 > store sorted column(s) in: enter C16 > sorted by
column: enter C15 > click OK

Calculate the values of 0.025 × (N + 1) = 0.025 × 201 = 5.025 and 0.975 × (N + 1) = 0.975 × 201 =
195.975. Approximating these values to the nearest integer, we get 5 and 196, respectively. The lower

confidence limit will be the fifth entry in the sorted means, and upper confidence limit will be the 196th value

in the sorted means.

If we want to obtain a confidence interval for the median, we follow very much the same steps as
before, but instead of using the mean in the procedure, we substitute the median. For example:

Calc > Row Statistics. . . > click Median > in Input variables: enter C3-C14 > store results in: enter

C15 > click OK

The rest of the steps are similar.

13.7.1 SAS Examples
There are %JACK and %BOOT macros available to do jackknife and bootstrap computations.
A good site with example programs from SAS institute is http://ftp.sas.com/techsup/download/
stat/jackboot.html. Sometimes, PROC IML could also be used to bootstrap. In the case of multi-
variate normal data, PROC MI with the EM option will perform the EM algorithm in SAS; refer
to http://support.sas.com/rnd/app/da/new/802ce/stat/chap9/index.htm for technical details. Refer
to http://support.sas.com/rnd/app/da/new/802ce/stat/chap9/sect8.htm for a table that summarizes
the options available for the MCMC statement. Example SAS codes could be obtained from a simple
search of the Web for almost all the procedures explained in this chapter.

PROJECTS FOR CHAPTER 13

13A. Bootstrap Computation
Use any statistical computer programs to generate random numbers. By specifying a particular dis-
tribution, such as normal with mean 0 and variance 1 or other similar distributions, we can then
generate numbers that follow this distribution. (This can be done either directly, if your software
allows, or by the method described in Project 4A.)
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(a) Use such a package to generate 200 numbers from an N(0,1) distribution. Then calculate the
sample mean and sample variance. (They will be slightly off from the actual mean and vari-
ance. From this, we can draw the conclusion that the estimates of data parameters which are
computed using the data set are not necessarily the true parameters, but often are reasonable
guesses.) Using these values, calculate an estimate of the standard error.

(b) Now for the same data, pretend that we are not really sure what the distribution is. Then, we
could consider letting the observed data specify what the distribution is. This is the essence
of bootstrapping. In particular, sample, with replacement from a distribution that we have
observed (the empirical distribution of the data), in order to study the possible estimates that
might have resulted from a similar sample (same data observations, but in possibly different
quantities). Using the bootstrap algorithm described in Section 13.3, obtain a bootstrap
estimate of the standard error and compare this with the estimate obtained in part (a).
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Florence Nightingale (1820–1910) is most remembered as a pioneer of nursing and a reformer
of hospital sanitation methods. Her statistical contributions caused Karl Pearson to acknowledge
Nightingale as a “prophetess” in the development of applied statistics. Nightingale used data as a
tool for improving medical and surgical practices. During the Crimean War, she plotted the incidence
of preventable deaths in the military and introduced polar-area charts to demonstrate the unneces-
sary deaths due to unsanitary conditions. With her analysis, Florence Nightingale showed the need
for reform and revolutionized the idea that social phenomena could be objectively measured and
subjected to mathematical analysis. In addition, she developed a Model Hospital Statistical Form
for hospitals to collect and generate data and statistics. She became a Fellow of the Royal Statistical
Society in 1858 and an honorary member of the American Statistical Association in 1874.

14.1 INTRODUCTION

Basically, there can be three major problems in applying the statistical methods that we have studied in
the previous chapters to real-world problems. These involve sources of bias, errors in methodology, and
the interpretation of the analytical results. Bias occurs in situations or conditions that affect the validity
of statistical results. In order for the statistical inferences to be valid, the observed sample must be
representative of the target population, and the observed variables must conform to assumptions
that underlie the statistical procedures to be used. Of course the statistical methodology chosen
must be also appropriate for the problem under study. We must be careful with the interpretation of
the statistical results. For example, in a regression problem, a cause-and-effect relationship may not
be warranted, or in a hypothesis testing problem, we may not accept the null hypothesis, without
exploring the probability of type II error. If we present the results graphically, the graphs should be
accurate and should reflect the data variations clearly.

In this textbook, we have assumed that a data set is available to us: Either it is a small data set that we
can handle without much effort, or it is in a computer-readable file. In practical situations, the proper
handling of a statistical data set is not an easy task. Going from a stack of disorganized hard copy to
online data that are trustworthy, that is, to input, debug, and manipulate the data, is a problem one
will face even before one starts the statistical analysis. Here, we will not be dealing with these issues.
Interested readers should refer to the references at the end of this book for further study on these
aspects.

It is not our aim to discuss comprehensively all the problems that come up in applications. Most of
the material presented in this chapter has already been discussed in various parts of the book. The
purpose of this chapter is to present some methods in a unified way and to discuss generally the
various ways in which the techniques developed in previous chapters could be applied to real-world
data. Because the material in this chapter is a collection of available techniques, we will not follow
the more rigorous pattern of previous chapters, and no proofs will be given.

14.2 GRAPHICAL METHODS

We first present some useful graphical methods that were not introduced in Chapter 1 on descriptive
statistics. Graphical analysis is a very important aspect of any statistical study. Before attempting a
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complex statistical analysis, summarize the data with a graph. Graphical displays of data analysis help
in data exploration, analysis, and presentation and in communication of results. In data analysis, one
of the significant steps is to summarize and plot the data. Graphs help in the communication of final
results and recommendations inferred from quantitative models. A statistical model is often suggested
by an initial graphical analysis. Adequacy of statistical models depends on the model conditions.
Because the violations of these model assumptions may sometimes occur as nonlinearities, graphical
methods provide an easy and perhaps very effective method of detection. Some examples of graphical
displays are the histograms, dotplots, box plots, and scatterplots. Methods of graphing multivariate
data are more complex and include scatterplot matrices, and icon plots. These are beyond the level
of this book.

If we have a data set with one variable (univariate), we first create a dotplot and summary of basic
statistics. In a dotplot, we plot the data as dots (one dot for each observation) above the horizontal
axis that covers the entire range of observations (see Figure 14.1). The dotplot will provide us with an
idea of the distribution of the data and any unusual behavior of the data that may not be apparent
from summary statistics such as mean, median, or standard deviation. The dotplots allow us to
visualize the entire distribution of the data set by listing each possible outcome and the frequency of
the variable. Other ways of summarizing univariate data, such as histograms, have been discussed in
Chapter 1. The histogram differs from the dotplot in that it groups data into categories. We illustrate
these problems with several examples.

Example 14.2.1
The following data give the lifetime of 30 light bulbs (rounded to nearest hour) of a particular type.

1122 922 1146 1120 1079 905 1095 977 1138 966

1150 977 1137 1088 1139 1055 1082 1053 1048 1132

1088 996 1102 1028 1130 1002 990 1052 1116 1135

Construct a dotplot.

Solution
Figure 14.1 is the dotplot for these data.

910 945 980 1015 1050 1085 1120 1155

■ FIGURE 14.1 Dotplot for lifetime of light bulbs.

The dotplot suggests a distribution that is skewed toward the right, because most of the observations are

located to the right.

Some of the graphing methods can also be applied to compare two variables—for example, their
frequency distributions. For instance, dotplots could also be used to compare bivariate (two variables)
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■ FIGURE 14.2 Scatterplot.

or multivariate (many variables) data. When we have independent samples, side-by-side box plots could
be used for comparing two sample distributions in terms of their centers, dispersions, and skewnesses.

When there are two variables, a scatterplot is used as one of the basic graphic tools to examine the
relationship between two variables.

The scatterplot in Figure 14.2 for two variables x and y indicates a possible linear relation between x

and y. The strength of the relationship between two variables is often represented through a correlation
statistic. It should be noted that the correlation coefficient is a single number that is easy to calculate
and comprehend, though it only measures the strength of a linear relationship and hence is often
used as the primary statistic of interest. However, scatterplots provide information about the strength
of association, not necessarily linear, between variables. In addition, scatterplots help us understand
other aspects of the data, such as the range. Given n observations on two variables, X and Y , we plot
a character or symbol at n points representing (xi, yi). If two or more observations in a scatterplot are
identical, the plotted symbols will coincide, masking possibly important information.

Example 14.2.2
The following data give the cholesterol levels before a certain treatment and after 4 months of the treatment.

Before 235 212 277 262 162 212 226 252 185 276

216 315 289 283 234 223 275 282 311 285

After 233 214 200 266 146 212 238 284 191 247

244 268 241 289 220 202 221 196 212 247

Draw a scatterplot. Also find the correlation between before- and after-treatment values.
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Solution
Figure 14.3 is a scatterplot of the data.

Looking at the scatterplot in Figure 14.3, we see a trend in the cholesterol levels before and after the treatment.

Correlation of before- and after-treatment data is measured by r, where

r =

n∑
i=1

(xi − x) (yi − y)

√∑
(xi − x)2∑ (yi − y)2

.
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A
fte

r

250
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300

175 200 225
Before

250 275 300 325

■ FIGURE 14.3 Scatterplot for cholesterol levels.

The quantile-quantile (QQ) plot is another useful technique in comparing bivariate data. In a
QQ plot, the quantiles of the two samples are plotted against each other. For two distributions
that are almost the same, their quantiles would be nearly equal. As a result, the quantiles would plot
along the 45-degree line. Deviation of plots from this line can be used to draw inferences about how
the two samples differ from one another. If the two sample sizes n1 and n2 are equal, then we can
draw the QQ plot by graphing the order statistics x(i) and y(i) against each other. If the two samples
are not of the same size, then we can use the following procedure to create the QQ plot. If n1 >n2,
then draw the (1/(ni + 1))th quantiles of the two samples against each other. For a large sample,
they are the order statistics, x(1) < . . . < x(n1). For the smaller sample sizes, the pth quantile value is
obtained by using the following formula:

x̃p =
⎧⎨
⎩

xp(n+1), if p(n + 1), is an integer

x(m) + [p(n + 1) − m]
(
x(m+1) − x(m)

)
, if p(n + 1), is a fraction

(14.1)
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where m denotes the integer part of p(n + 1). It should be noted that a QQ plot is not useful for
paired data because the same quantiles based on the ordered observations do not, in general, come
from the same pair.

Example 14.2.3
Draw a QQ plot for the data given in Example 14.2.2.

Solution
Here n1 = n2 = 20. First sort the data in ascending order.

Before 162 185 212 212 216 223 226 234 235 252

262 275 276 277 282 283 285 289 311 315

After 146 191 196 200 202 212 212 214 220 221

233 238 241 244 247 247 266 268 284 289

Because the QQ plot points lie mostly below the 45-degree line, we may conjecture that the cholesterol level

before is generally higher than that after.

0 50 100 150 200 250 300 350

100

250

300

150

200

50

■ FIGURE 14.4 Q-Q plot for cholestrol levels.
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We saw in Chapter 1 that box plots could be used for identification of outliers. To summarize, we
emphasize that graphical procedures, although preliminary, are an integral part of any statistical
analysis.

EXERCISES 14.2

14.2.1. In order to study any possible relationship between expense and return, the following data
give percentage of expense ratio and total 1-year return for randomly selected stock mutual
funds for the year 2000 (source: Money, February 2000).

% expense
ratio

1.03 1.80 1.90 1.53 1.03 2.06 3.20 0.49 1.10 1.07

1.48 1.30 1.23 1.22 1.60 1.50 1.81 1.75 0.97 1.28

% return 7.3 9.5 32.2 11.0 19.5 7.3 25.1 10.2 1.5 7.9
18.9 26.1 3.4 3.7 23.5 2.9 14.5 14.9 22.7 21.9

Draw a scatterplot. Also find the sample correlation of percent expense ratio and percent
return.

14.2.2. In order to study any possible relationship between age and change in systolic blood pressure
(BP) (mm Hg) in 24 hours in response to a treatment, the following data were obtained
from 11 individuals.

Age 70 51 65 70 48 70 45 48 35 48 30
Systolic
BP change

−28 −10 −8 −15 −8 −10 −12 3 1 −5 5

(a) Draw a scatterplot.
(b) Find the sample correlation of age and systolic BP.
(c) Fit a least-squares regression line.
(d) Interpret (a), (b), and (c).

14.2.3. The following data represent 15 randomly selected state finances: revenue and expenditures
(in millions of dollars) for the fiscal year 1997 (source: The World Almanac and Book of Facts
2000).

Revenue: 9,439 8,845 14,520 24,028 39,038 5,215 20,128 7,467
26,538 5,537 6,494 2,818 49,318 4,229 7,724

Expenditure: 5,722 7,685 13,862 21,975 35,302 4,441 16,200 7,145
25,791 4,808 5,130 2,426 39,296 4,002 6,818

(a) Draw a scatterplot.
(b) Find the sample correlation between revenue and expenditure.
(c) Draw a QQ plot.
(d) Interpret (a), (b), and (c).
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14.2.4. The following data give birth rates (per 1000 population) for 20 selected states in 1998
(source: The World Almanac and Book of Facts 2000).

14.4 16.3 13.5 14.6 13.7 15.6 10.9 12.8 13.0 14.2
13.4 13.9 15.9 13.3 14.1 15.7 15.2 13.9 15.4 11.3

Construct a dotplot and interpret.

14.2.5. The following data give the median prices (rounded to nearest $1000) of single-family
homes for 18 randomly selected U.S. cities in 1998 (source: The World Almanac and Book of
Facts 2000).

128 146 109 90 105 152 79 89 109
93 108 128 188 158 93 78 123 137

Construct a dotplot and interpret.

14.3 OUTLIERS

All statistical procedures make assumptions about a population and the sample values obtained from
the population. Before we proceed to analyze the data, we must check to see if there are any outliers,
that is, data points that do not belong in the data set or are not in line with the rest of the data.

Outliers are observations that appear to have an abnormal value as compared with the rest of the
values in the data set; that is, the value of an outlier is either much higher or significantly lower than
any other value in the data set. An outlier could be a discordant observation or a contaminant. A
discordant observation is one that appears surprising or discrepant to the investigator and is to some
extent subjective. A contaminant is an observation that is from a different distribution than the rest
of the data. Outliers may occur as a result of some limitations on measuring techniques or recording
errors. They may also be due to the sample not being entirely from the same population. Extreme
values in a data set could also be due to a skewed population. It should be noted that sometimes
a data point that is labeled as an outlier may really be indicative of a novel phenomenon. In these
cases, an extreme observation may not be classified as an outlier.

The presence of outliers can dramatically affect the estimate of the mean and variance of the sample,
especially if the sample size is small. As a result, any test statistic computed from such data would be
unreliable, and so would be the statistical inferences. For example, presence of outliers might lead to
an incorrect conclusion that the variances of two samples are not equal if the outlier is the result of
a recording or measurement error.

In a controlled experiment, such as in a laboratory setting, good record keeping with a clear under-
standing of the phenomenon under investigation and information about all the data will minimize
the occurrence of outliers due to recording errors.

There are basically two methods that are employed in dealing with outliers. One method is to use
statistical testing procedures to detect outliers, possibly removing them from the data set and letting
the analysis deal only with the rest of the data. The second method is to use statistical procedures that
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are immune or only minimally sensitive to the presence of outliers. We now present some commonly
used tests for labeling outliers.

In data analysis, it is necessary to label suspected outliers for further study. For normally distributed
data, we give three simple methods to identify an outlier: z-score, modified z-score, and box plot.

In a z-test, first find the z-scores of the entire data set and label any observation with a z-score greater
than 3 or less than −3 as an outlier. Recall that for the observed values x1, . . . , xn, the z-score is
defined by

zi = xi − x

s

where s is the sample standard deviation of the sample, that is,

s =
√√√√ 1

n − 1

n∑
i=1

(xi − x)2.

Because both the sample mean and the sample standard deviation are affected by the outliers, this
labeling method is not very reliable.

In a modified z-score test, the median of absolute deviation about the median (MAD) is used. Let

MAD = median (|xi − m|)

where m is the median of the observations. Then

zi = (xi − x)

MAD
.

An observation is labeled as an outlier if the corresponding modified z-score is greater than 3.5. A
normal plot may be used for testing normality for the data.

If we want a reasonably robust distribution-free test, an observation x0 is labeled as an outlier if

|x0 − m|
MAD

> 5.

Here, the choice of 5 is somewhat arbitrary.

A box plot (also called box-and-whisker plot) gives a method of labeling outliers through a graphical
representation. We have seen the method of construction of box plots in Chapter 1. A box plot consists
of a box, whiskers, and outliers. We draw a line across the box at the median. For example, in Minitab,
the bottom of the box is at the first quartile (Q1) and the top is at the third quartile (Q3). The whiskers
are the lines that extend from the top and bottom of the box to the adjacent values, the lowest and
highest observations still inside the region defined by the lower limit Q1 − 1.5(Q3 − Q1) and the
upper limit Q1 + 1.5(Q3 − Q1). Outliers are points outside the lower and upper limits, plotted with
asterisks (*).
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Example 14.3.1
The following data give the hours worked by 25 employees of a company in a randomly selected week.

45 40 39 36 42 40 55 58 42 41

48 50 47 54 40 34 18 40 60 56

42 43 46 43 54

Label all possible outliers using:

(a) z-score test, distribution-free test, and modified z-score test.

(b) Box plot.

Solution

(a) We can create Table 14.1, where dfree z stands for the distribution-free scores, and modified stands

for the modified z-scores.

Table 14.1

Data z-Score dfree z Modified

45 0.05355 0.12 0.12

40 −0.50427 1.13 −1.13

39 −0.61583 1.38 −1.38

36 −0.95053 2.13 −2.13

42 −0.28114 0.63 −0.63

40 −0.50427 1.13 −1.13

55 1.16919 2.62 2.62

58 1.50389 3.75 3.37

42 −0.28114 0.63 −0.63

41 −0.39271 0.88 −0.88

48 0.38824 0.87 0.87

50 0.61137 1.37 1.37

47 0.27668 0.62 0.62

54 1.05763 2.37 2.37

40 −0.50427 1.13 −1.13

(continued)
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Table 14.1 (continued)

Data z-Score dfree z Modified

34 −1.17366 2.63 −2.63

18 −2.95868 6.63 −6.63

40 −0.50427 1.13 −1.13

60 1.72701 3.87 3.87

56 1.28076 2.87 2.87

42 −0.28114 0.63 −0.63

43 −0.16958 0.38 −0.38

46 0.16512 0.37 0.37

43 −0.16958 0.38 −0.38

54 1.05763 2.37 2.37

By the z-score test, there are no outliers. Using the distribution-free test, the 18 is the only outlier. By

the modified z-score test, 18 and 60 are possible outliers.

(b) The box plot is given in Figure 14.5.

60

50

40

30

20

C
1

■ FIGURE 14.5 Box plot for hours of work per week.

Hence the observation 18 is identified as an outlier using the box plot.

Once we identify the outliers, then the question is what to do with them. If we can rule out recording
errors as the source of outliers, the situation becomes more difficult. It is often impossible to say
whether an outlier is really an extreme value within a skewed population or whether it represents
a value drawn from a different population. As we indicated earlier, an outlier can be a legitimate
observation representing special feature of the sample population. In those cases, discarding the
outliers may simplify the statistical analysis, although it also reduces the usefulness of such analysis.
Understanding the experiment that generated the data might help in determining whether to discard
or keep the outliers.
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Once we decide to include the outliers, there are two possible ways to deal with them. One is to
transform the data, such as by taking the natural logarithm, so as to reduce the undue influence of
the outliers. Another possibility is to perform the analysis twice, with and without outliers, and report
both results.

If we have bivariate data, a scatterplot may reveal any possible outliers; see Figure 14.27. There are
other methods available to detect multivariate data.

EXERCISES 14.3

14.3.1. Motor vehicle thefts are a big problem in cities. Table 14.3.1 displays data on motor vehicle
thefts per 100,000 population in the year 1997 for 15 randomly selected large U.S. cities
(source: Statistical Abstracts of the United States, 1999).

Table 14.3.1

Chicago, IL 1215.1 San Antonio, TX 830.0

Columbus, OH 1109.9 Charlotte, NC 780.1

Nashville, TN 1536.5 Tucson, AZ 1403.3

Albuquerque, NM 1797.8 Atlanta, GA 1869.7

Sacramento, CA 1630.5 St. Louis, MO 2152.8

Toledo, OH 939.7 Tampa, FL 1410.0

Birmingham, AL 1219.7 Anchorage, AK 532.8

Norfolk, VA 519.9

Label all possible outliers using:
(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.3.2. For the data of Example 14.2.1, label all possible outliers using:
(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.3.3. The following data represent test scores of 36 randomly selected students from a large
mathematics class.

67 63 39 80 64 95 90 93 21 36 44 66
100 66 72 34 78 66 68 98 74 81 71 100
60 50 81 66 90 89 86 49 77 63 58 43
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Label all possible outliers using:
(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.3.4. The following data represent the number of days in 1997 on which selected U.S. metropoli-
tan areas failed to meet acceptable air-quality standards at trend sites (source: The World
Almanac and Book of Facts 2000).

26 55 30 8 9 15 0 12 3 50 16
47 0 63 3 0 19 23 3 32 15 20

106 2 15 1 14 0 1 44 28

Label all possible outliers using:
(a) (i) z-Score test, (ii) distribution-free test, and (iii) modified z-score test.
(b) Box plot.

14.4 CHECKING ASSUMPTIONS

With some exceptions, checking data for agreement with assumptions is not a topic that is strongly
emphasized in other textbooks at this level. Even in more advanced books, this step is frequently omit-
ted. In order for the inferences to work correctly, the measured variables must conform to assumptions
that underlie the statistical procedures to be applied. In hypothesis testing such as the t-tests and
ANOVA, we made some fundamental assumptions that the random samples need to satisfy for the
tests to yield correct results.

As an example the basic assumptions underlying a t-test are:

(i) The sample comes from a normal population.
(ii) The sample is random. In case of two sample tests (excluding paired tests), the measurements

in one sample are independent of those in the other sample.
(iii) When we are given two random samples, most of the results assume the equality of popu-

lation variances, that is, σ2
1 = σ2

2 . This assumption is called the homogeneity of variances.
The test for equality of variance may have to be performed first if we doubt the equality of
the variance.

Likewise, analysis of variance is based on a model that requires the following three primary
assumptions:

(i) The samples come from normal populations.
(ii) Each of the samples is randomly selected from each group, and the samples are independent

of each other.
(iii) The population variances for all the samples are equal. That is, if we have k populations with

variances σ2
i , i = 1, 2, . . . , k, then σ2

1 = σ2
2 = . . . = σ2

k .

When we say we have a random sample, we implicitly assume that the data are identically distributed.
The presence of outliers in an observed sample may affect such an assumption. We now explain a
few tests for checking these assumptions such as the assumptions of normality, data transformations,
and equality of variances.
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14.4.1 Checking the Assumption of Normality
We start with the assumption of normality. Let us consider the example of randomly selected scores
of 28 calculus students.

Example 14.4.1
Given in the following table are the test scores of 28 randomly selected students from a calculus 1 class.

86 95 82 53 98 85 87 80 49 71 99 40 96 97

94 89 69 23 72 76 78 91 96 77 77 91 35 47

Construct a dotplot and a histogram, and compute the percentage of observations that fall in the intervals

x ± s, x ± 2s, and x ± 3s.

Solution
The dotplot is shown in Figure 14.6.

24 36 48 60 72 84 96

■ FIGURE 14.6 Dotplot of student scores.

The histogram is shown in Figure 14.7.
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■ FIGURE 14.7 Histogram for student scores.

We have x = 71.18 and s = 20.99. Also, 57% of the random sample (i.e., 16 observations) fall in the interval

71.18 ± 20.99 = (50.19, 92.17). There are 27 observations, or about 96%, that fall in 71.18 ± 41.98 =
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(29.2, 113.16), and all the observations fall in 71.18 ± 62.97 = (8.21, 134.94). This suggests that the data

set is approximately normally distributed. This procedure is the empirical rule.

For the previous example, we have seen that the dotplot does not suggest any normality. A histogram
also does not suggest any normality (see Figure 14.7). However, if we used the empirical rule as a test
for normality, the data suggest normality. Clearly this leads to a conflicting situation with a simple
theoretical check suggesting normality, while visual displays suggest nonnormality. In this case more
sophisticated procedures are warranted.

Sometimes, skewness and kurtosis can be used to test for tilt in and peakedness of a distribution.
After getting skewness and kurtosis from the descriptive statistics, divide these by the standard errors.
If both skew and kurtosis are within the ±2 range, the data can be considered normal.

We mention some sophisticated testing procedures for two of the most important of the parametric
assumptions when running single-factor trials, namely, normality and homogeneity of variance. We
have already seen in Project 4C how to construct a normal probability plot and to check for normality.
In this chapter, we will use the Minitab normal plot to check for normality. Figure 14.8 graphs a normal
probability plot (using Minitab) for Example 14.4.1.

We see that the test scores follow the straight line on the normal probability plot pretty well. The
serious departures occur for the last four scores, because the values fall well above the line. This
suggests normality with possible outliers.
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■ FIGURE 14.8 Normal probability plot of student scores.
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■ FIGURE 14.9 Normal probability plot for the lifetime of light bulbs.

It should be noted that for skewed data, in the normal probability plot, positively skewed data fall
below the straight line, whereas the negatively skewed data rise above the straight line. A normal
probability plot for the lifetime of 30 light bulbs in Example 14.2.1 is given in Figure 14.9.

This graph suggests that the data may not be normal and are more toward negatively skewed.
Figure 14.10 is a normal probability plot for 30 data points generated from a standard normal
distribution.

In this textbook, we have presented only simple graphical tests for testing of normality. We should
mention that in the literature, a variety of procedures for testing for normality are available, including
the Kolmogorov–Smirnov test, the Shapiro–Wilks W test, and the Lilliefors test. Some of these tests
are incorporated in statistical software packages such as Minitab and could be performed as easily
as the graphical tests. If the sample size is very small, with any of these tests it may be difficult
to detect assumption violations. It is important to keep in mind that these tests are only rough
indicators of assumption violations. For small sample sizes, even when the tests show that none of
the test assumptions is violated, a normality test may not have sufficient power to detect a significant
departure from normality, though it is present.

14.4.2 Data Transformation
Data transformation uses mathematical operations (filters) on each of the observations, transform-
ing the original scores into a new set of scores. An appropriate transformation may (i) reduce the
influence of outliers, (ii) make data, from a nonnormal distribution, more normal, and/or (iii) make
the variances of different data sets more homogeneous. Some of the more commonly used transfor-
mations are (i) power transformations such as square root, (ii) logarithm, (iii) reciprocal, and (iv)
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■ FIGURE 14.10 Normal probability plot of data from a standard normal distribution.

arcsine. Used correctly, data transformation can be a useful tool for the practitioner. Some of these
transformations can be put into a popular class of transformations called the Box–Cox power law
transformation

y = xλ − 1
λ

where λ can be optimally adjusted from 0 to 1. For example, as λ → 0, we obtain the y = ln x

(logarithmic filter) transformation, and when λ = 1/2, we get the square root transformation.

As we have seen in Project 9A, it is sometimes possible to use appropriate data transformations to
transform nonnormal data into approximately normal data. Then we can use this normality property
to perform statistical analysis on these transformed values. For instance, if the distribution of data
has a long tail (which could be seen by drawing a histogram of observations) or a few laggards on
the right (which could be seen by drawing a dotplot of observations), the

√
x or ln x transforms will

pull larger values down further than they pull the smaller or center values. Sometimes it is necessary
to try several different transformations (trial and error) in order to find one that is more appropriate.

Example 14.4.2
Consider the following data from an experiment.

1.15 3.84 0.01 2.06 3.28 2.61 0.59 3.19 1.32 1.07

7.80 1.74 0.25 0.21 3.42 4.52 0.43 0.38 0.07 1.26

4.03 7.28 0.85 3.24 0.62
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(a) Draw a histogram and normal plot.

(b) Take the transform y=√
x and draw a histogram and normal plot for the transformed data.

Solution
(a) The histogram and normal plots for the data are shown in Figures 14.11 and 14.12.

86420

9

8

7

6

5

4

3

2

1

0

C3

F
re

qu
en

cy

■ FIGURE 14.11 A histogram of the data.
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■ FIGURE 14.12 Normal probability plot of the data.

These graphs clearly show that the data do not follow a normal distribution.

(b) The histogram and normal plot for the transformed data are shown in Figures 14.13 and 14.14.

With this transformation (filter), we can see that the filtered data follow normality.
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■ FIGURE 14.13 Histogram of the transformed data.

We have only pointed out transformations in single-variable cases. The transformation methods are
also useful in multivariable and multi-factor studies; however, these involve more difficult analysis.

14.4.3 Test for Equality of Variances
Now we discuss the tests for equality of variances, that is, the tests for heteroscedasticity. Our recom-
mendation is that, in a real-world problem, after accounting for outliers one should conduct tests for
normality and heterogeneity of variance routinely before analyzing any data. Here, we give two tests.
One, for the two-sample case, is based on the F -test, and for the multisample case we give Levene’s test
based on analysis of variance procedures. Albert Madansky’s book Prescriptions for Working Statisticians
(Springer-Verlag, 1988) gives various other tests for normality and heteroscedasticity.

(a) Testing Equality of Variances for Two Normal Populations
The following procedure has already been discussed in the hypothesis testing chapter. For the sake of
completeness, here we again briefly discuss this procedure. Let X11, . . . , X1n1 be a random sample from
an N(μ1, σ2

1 ) distribution and X21, . . . , X2n2 be a random sample from an N(μ2, σ2
2 ) distribution.

Assume that the X1i
′s and X2j

′s are independent of each other for all i, j. Let

xi = 1
ni

ni∑
j=1

xij, i = 1, 2.

Assuming that μ1 and μ2 are unknown, we can test the hypothesis that σ2
1 = σ2

2 based on the ratio

F = s2
1

s2
2

=

n1∑
j=1

(
x1j − x1

)2
/(n1 − 1)

n2∑
j=1

(
x2j − x2

)2
/(n2 − 1)

.
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■ FIGURE 14.14 Normal probability plot of the transformed data.

We know that (n1 − 1)s2
1/σ2

1 has a χ2(n1 − 1) distribution and (n2 − 1)s2
2/σ2

2 has a χ2(n2 − 1)

distribution. Therefore, under the null hypothesis H0 :σ2
1 =σ2

2 , the statistic F has an F(n1 − 1, n2 − 1)

distribution.

Based on the alternate hypothesis, we will reject the equality of variance assumption if the test statistic
falls into the appropriate tail of the F-distribution. For example, if Ha : σ2

1 > σ2
2 with α = 0.05, we

would reject H0 when F >F0.95(n1 − 1, n2 − 1), and if Ha : σ2
1 < σ2

2 with α=0.05, we would reject
H0 when F ≤ F0.05(n1 − 1, n2 − 1). When Ha : σ2

1 = σ2
2 with α = 0.05, we would reject H0 when

F ≥ F0.975(n1 − 1, n2 − 1) or F ≤ F0.025(n1 − 1, n2 − 1). It should be noted that in the case of a
two-sided alternative, this procedure is not the best one in the sense of minimizing the type II error.
However, for simplicity, we will not discuss the optimal two-tailed procedure.

Example 14.4.3
An aquaculture farm takes water from a stream and returns it after it has circulated through the fish tanks.

Suppose the owner thinks that, because the water circulates rather quickly through the tank, there is little

organic matter in the effluent. To find out, some samples of the water are taken at the intake and other

samples are taken at the downstream outlet, and tests are performed for biochemical oxygen demand

(BOD). If BOD increases, it can be said that the effluent contains more organic matter than the stream can

handle. Table 14.2 gives the data for this problem.

(a) Using normal plots, check for normality of each sample.

(b) Test for the equality of variances of the BOD for the downstream and upstream samples at α = 0.05.



14.4 Checking Assumptions 721

Solution
(a) The normal plots are shown in Figures 14.15 and 14.16.

The BOD data for the downstream and upstream samples are approximately normal.

Table 14.2

Upstream Downstream

7.863 8.132

5.714 9.128

5.871 7.574

6.479 8.678

7.124 9.336

7.539 8.798

6.682 8.457

5.877 9.756

6.227 8.548

6.771 7.992
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■ FIGURE 14.15 Normal plot of upstream data.
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■ FIGURE 14.16 Normal plot of downstream data.

(b) We test H0 :σ2
1 =σ2

2 versus Ha :σ2
1 =σ2

2 . We have n1 =n2 =10, and α=0.05. Because the normal

plots of each sample conform with the normality assumption, we can use the F -statistic:

F = s2
1

s2
2

= (0.729)2

(0.654)2 = 1.2425.

From the F -table, the rejection region is {F ≤F0.025(9, 9)= 0.248} or {F > F0.975(9, 9) = 4.03}.

Because the observed value of the test statistic does not fall in the rejection region, we conclude

based on the sample evidence that the variances of the two populations are equal.

(b) Test for Equality of Variances, k ≥ 2 Populations
Generalizing to k populations, let Xi1, Xi2, . . . , Xini , i = 1, 2, . . . , k, be k random samples from
N(μi, σ

2
i ) distributions, with both μ′

is and σ′
is unknown. Also assume that Xij, Xkl are independent

for all (i, j), (k, l). We wish to test the hypothesis H0 : σ2
1 = σ2

2 = . . . = σ2
k against Ha : At least one

of the σ2
i is different. There are many tests available. One of the basic graphical procedures is to

use a side-by-side box plots (see Example 10.3.1). We describe Levene’s test based on the analysis of
variance (source: Levene, 1960).

Let yij = |xij − xi|. Now perform an analysis of variance test for equality of the means of the yij . Let

n =
k∑

i=1

ni, yi. =
ni∑

j=1

yij/ni and y.. =
k∑

i=1

ni∑
j=1

yij/

k∑
i=1

ni.
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The analysis of variance statistic is

z =

k∑
i=1

ni (yi. − y..)2
/

(k − 1)

k∑
i=1

ni∑
j=1

(
yij − yi.

)2/
(n − k)

= MST

MSE
.

Recall that MST (mean square for treatments) and MSE (mean square error) were defined in Section
10.3; the MST is a measure of the variability between the sample means of the groups and the MSE
is a measure of variability within the groups. For a 95% confidence level, the rejection region is
{z > F0.95(k − 1, n − k)}.
It should be noted that the yij is not independent, but the analysis of variance method is found to be
robust against the deviation from this assumption of independence.

Example 14.4.4
The three random samples in Table 14.3 are independently obtained from three different normal

populations.

Table 14.3

Sample 1 Sample 2 Sample 3

64 56 81

84 74 92

75 69 84

77

80

At the α = 0.05 level of significance, test for equality of variances.

Solution
We test H0 : σ2

1 = σ2
2 = σ2

3 versus Ha : Not all the σ2
i are equal. For this sample, x1 = 76, x2 = 66.33,

and x3 = 85.67. Also n=11, and k=3. Letting yij = ∣∣xij − xi

∣∣, we obtain the following yij values:

12 10.33 4.67000

8 7.67 6.33000

1 2.67 1.67000

1

4
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The test statistic is

z =

k∑
i=1

ni (yi. − y..)2
/

(k − 1)

k∑
i=1

ni∑
j=1

(
yij − yi.

)2/
(n − k)

= MST

MSE
= 5.5

16.5
= 0.33.

From the F -table, the 95% point is F0.05(2, 8) = 4.46. Hence the rejection region is {z > 4.46}. Because

the observed value of z = 0.33 does not fall in the rejection region, the null hypothesis is not rejected, and

we conclude that the assumption of equality of variances seems to be justified.

Through our tests, if we find that the homogeneity of variance of the data is violated significantly,
then nonparametric tests are more appropriate. Another popular test for equality of variance is
Bartlett’s test.

14.4.4 Test of Independence
Almost all the results in this book assume that we have independent random samples. In the sit-
uation where we suspect that the sample data may not be independent, perform a run test as
described in Project 12B to test for independence. There are parametric procedures available to test
independence; however, the run test is independent of the distributional assumptions and simpler
to perform. In general, whether the two samples are independent of each other is decided by the
structure of the experiment from which they arise. In case of correlated samples, such as a set of
pre- and posttest observations on the same subject that are not independent, a two-sample paired
test may be more appropriate. Another popular method used to check for independence is the
chi-squared test of independence; see Section 7.6.2. For time series data, the Durbin–Watson test
(http://www.alchemygroup.net/Permutation%20Durbin–Watson%20Final.pdf) is effective.

In practical sampling situations, the underlying populations are unlikely to be exactly normally
distributed with homogeneity of variances. Both t-tests and ANOVA are robust for reasonable depar-
tures in some of these assumptions. However, these tests may not be robust with respect to certain
other assumption violations. For example, ANOVA is quite sensitive to the violation of independence
assumption. These factors need to be given special attention in data analysis.

EXERCISES 14.4

14.4.1. The scores of 25 randomly selected students from a large calculus class are given below.

47 73 90 22 68 86 94 32 88 86
80 97 48 70 61 82 67 73 78 55
63 59 42 46 90
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(a) Test the data for normality.
(b) If the data are not normal, try a suitable transformation (filter) to make the transformed

data normal.

14.4.2. Refer to Example 14.3.1. Suppose we use the transformation yi = ln xi for each observation.
(a) Test whether the transformed data are normal.
(b) Determine whether the data value 18 is still an outlier in the transformed data set.

14.4.3. The data shown in the following table relate to the concealed weapons permits issued in
13 randomly selected Florida counties in 1996.

31,603 20,873 15,963 10,294 8,956 7,901 6,820
5,695 5,485 4,827 3,969 3,278 1,731

(a) Test whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data normal.

14.4.4. The following table represents a summary by state for Medicare enrollment (in thousands)
for 15 randomly selected states in 1998 (source: Statistical Abstracts of the United States,
1999).

665 3,757 623 757 541 448 478 2,728 103 771
224 86 623 1,373 713

(a) Test to determine whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data approximately

normal.
(c) Test for outliers. If an observation is extreme, would you classify it as an outlier?

14.4.5. Given in the following table are 15 randomly selected state expenditures (in millions of
dollars) for the fiscal year 1997 (source: The World Almanac and Book of Facts 2000).

5,722 7,685 13,862 21,975 35,302 4,441 16,200 25,791
4,808 5,130 2,426 39,296 4,002 6,818 7,145

(a) Test the data for normality.
(b) If the data are not normal, try a suitable transformation to make the transformed data

approximately normal.

14.4.6. For the data of Exercise 14.3.4,
(a) Test whether the data are normal.
(b) If not, try a suitable transformation to make the transformed data approximately

normal.

14.4.7. The following data give in-city mileage per gallon for 25 small and midsize cars (source:
Money Magazine, March 2001).

25 23 20 20 27 26 20 32 25 22
24 21 28 20 22 19 21 29 23 32
23 52 24 24 22
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(a) Test to determine whether the data are normal.

(b) If not, try a suitable transformation to make the transformed data approximately
normal.

(c) Test for outliers. If an observation is extreme, would you classify it as an outlier?

14.4.8. The following table gives in-state tuition costs (in dollars) for 15 randomly selected colleges
taken from a list of the 100 best values in public colleges (source: Kiplinger’s Magazine,
October 2000).

3788 4065 2196 7360 5212 4137 4060 3956 3975 7395
4058 3683 3999 3156 4354

(a) Test for outliers.
(b) Test whether the data are normal.

14.4.9. For the data of Exercise 14.2.1, test for equality of variances.

14.4.10. For the data of Exercise 14.2.3, test for equality of variances.

14.4.11. The following data represent a random sample of end-of-year bonuses for lower-level
managerial personnel employed by a large firm. Bonuses are expressed in percentage of
yearly salary.

Female 6.2 9.2 8.0 7.7 8.4 9.1 7.4 6.7
Male 8.9 10.0 9.4 8.8 12.0 9.9 11.7 9.8

Test for equality of variances. State any assumptions you have made, and interpret your
result.

14.4.12. In an effort to investigate the premium charged by insurance companies for auto insurance,
an agency randomly selects a few drivers who are insured by three different companies.
These individuals have similar cars, driving records, and level of coverage. Table 14.4.1
gives the premiums paid per 6 months by these drivers with these three companies.

Table 14.4.1

Company I Company II Company III

396 348 378

438 360 330

336 522 294

318 474

432

Test for equality of variances. State any assumptions you have made, and interpret your
result.
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14.4.13. Three classes in elementary statistics are taught by three different persons, a regular faculty
member, a graduate teaching assistant, and an adjunct from outside the university. At the
end of the semester, each student is given a standardized test. Five students are randomly
picked from each of these classes, and their scores are as shown in Table 14.4.2.

Table 14.4.2

Faculty Teaching assistant Adjunct

93 88 86

61 90 56

87 76 73

75 82 90

92 58 47

Test for equality of variances. State any assumptions you have made, and interpret your
result.

14.5 MODELING ISSUES

A model is a theoretical description in the language of mathematical statistics of a physical phe-
nomenon. Even though interpretations can be developed by analogy, past experience, or intuition,
the scientific approach requires a model for the phenomenon of interest. Models are simplifications
(or approximations) of real-world situations and are designed to make it easier to identify and to
understand relationships among variables. A good model is crucial for accurate estimation, forecast-
ing, or predicting. If the observed data show a good fit to the estimates obtained through the model,
we consider the model to be an adequate representation of the real-world phenomenon. If not, the
model must be improved, to incorporate additional variables or modify the equations defining the
relationships. In statistical modeling, it is important not to lose perspective on the essential purpose
of the modeling effort. The emphasis should be on making these models work on real data sets in
lieu of spending a large amount of time on the capabilities of the models. Even though the study of
properties and abilities of models is important, equally important is an ability to know when and
how to fit models to a particular data set. A regression line is a two-parameter model that depicts a
linear dependence of one variable on another. Again, it is not our objective to discuss all the issues
related to statistical modeling. We will only discuss briefly some simple issues relevant to modeling.

14.5.1 A Simple Model for Univariate Data
Suppose that we have a data set that characterizes a phenomenon of interest. Suppose our problem is
to create a statistical model for the data set in the form of a probability distribution from which the
data set came. First we create a dotplot and summary of the basic statistics. The dotplot will provide
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us with an idea of the probability distribution of the data and any unusual behavior of the data that
will not be apparent from the basic statistics such as sample mean, and sample standard deviation.
Having identified the probability distribution of the sample statistic, we can proceed to obtain 95%
confidence limits on parameters such as the mean and variance. In addition, we can obtain a 95%
prediction interval of the next observation using the expression

y ± (t − value)s

√
1 + 1

n
.

Note that the prediction interval is always wider than the corresponding confidence interval. The
confidence interval provides a measure of reliability for estimating a parameter. The prediction interval
provides a measure of reliability for the prediction of an observation. Thus, the prediction interval
needs to account for estimation error as well as the natural variability of a single observation. These
steps can be considered as the first modeling effort for univariate data. Note that if we have a small
sample size, using a t-value in the confidence interval and/or prediction interval supposes a modeling
assumption of normality for the corresponding population. The preliminary verification of this is
done by the dotplot. For more detailed verification of this modeling assumption, use the normal
plots.

Example 14.5.1
Consider the following data from an experiment:

0.15 0.14 0.15 0.14 0.26 0.00 0.00 0.47 0.35 0.16

0.15 0.15 0.23 0.13 0.19 0.15 0.22 0.53 0.17 0.23

0.22 0.16 0.12 0.13 0.11 0.14 0.18 0.15 0.14 0.21

0.13 0.12 0.13 0.13 0.21 0.22 0.18 0.20 0.22 0.16

0.17 0.00 0.23 0.21 0.18 0.05 0.16 0.13 0.23 0.18

0.14 0.29 0.21 0.22 0.11 0.16 0.23 0.13 0.07 0.17

0.08 0.14 0.06 0.08 0.07 0.11 0.12 0.14 0.16 0.12

0.10 0.27 0.19 0.13 0.27 0.16 0.07 0.09 0.04 0.53

0.29 0.15 0.12 0.11 0.10 0.14 0.14 0.16 0.16 0.17

0.36 0.46 1.21 0.39 0.01 0.52 0.09 0.18 0.16 0.16

0.14 0.15 0.09 0.09 0.13 0.13 0.08 0.14 0.20 0.09

0.09 0.16 0.08 0.10 0.34 0.24 0.15 0.44 0.08 0.08

0.16 0.14 0.18 0.23 0.19 0.11 0.19 0.10 0.14 0.11

0.14 0.17 0.17 0.17 0.05 0.12 0.14 0.11 0.20 0.14

0.23 0.03 0.10 0.29 0.13 0.26 0.13 0.15 0.27 0.14

0.50 0.16 0.15 0.18 0.16 0.14 0.13 0.08 0.20 0.17

0.17 0.16 0.15 0.11 0.13 0.76 0.18 0.19 0.09 0.12

0.11 0.12 0.08 0.26 0.23 0.20 0.19 0.19 0.16 0.11

0.12 0.13 0.32 0.05 0.18 0.12 0.13 0.50 0.13 0.04

0.00 −0.11 0.18 0.15 0.14 0.15 0.02 0.20
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(a) Obtain a dotplot.

(b) Calculate the basic statistics, sample mean, sample median, and sample standard deviation.

(c) Obtain a 95% confidence interval for the true mean.

(d) Obtain a 95% prediction interval.

Solution
(a) Each dot in Figure 14.17 represents three points.

0.00 0.18 0.36 0.54 0.72 0.90 1.08

■ FIGURE 14.17 Dotplot of the data.

(b) We can use Minitab’s describe command to obtain the following.

N MEAN MEDIAN TRMEAN STDEV SEMEAN

C1 198 0.17038 0.15121 0.15982 0.13610 0.00967

MIN MAX Q1 Q3

−0.39575 1.22076 0.12059 0.19284

(c) Again using Minitab commands, we can obtain (where data are stored in C1),

MTB > ZInterval 95.0 0.136 c1.

THE ASSUMED SIGMA = 0.136

N MEAN STDEV SE MEAN 95.0 PERCENT C.I.

C1 198 0.17038 0.13610 0.00967 (0.15143, 0.18933)

(d) For the prediction interval use the large sample formula y ± (
zα/2

)
s

√
1 + 1

n , to obtain the 95%

prediction interval for the true mean as (0.097, 0.4387).
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14.5.2 Modeling Bivariate Data
When a scatterplot of bivariate data exhibits a linear pattern, the modeling is usually done using linear
regression to study their linear relationship as explained in Chapter 8. Clearly a linear relationship
is desirable because it is easy to interpret, departure from linearity is easy to detect, and predicting
dependent values from independent variables is straightforward. However, when a scatterplot shows
a curved nonlinear pattern, then finding a “good” model that fits the observed data may not be very
easy. Sometimes, instead of fitting a curve we may be able to transform the data so as to make the
scatterplots of the transformed data look more linear.

A popular statistical method used to straighten a plot is the so-called power transformation. The
power transformation is defined by specifying an exponent, k, which could be a positive or negative
real number, then computing each transformed value as the original value to the power k. Note that
k=1/2 gives the square root transform. When k = 0, every transformed value is equal to 1. Instead
it is customary to think of k = 0 as corresponding to a logarithmic transformation so as to unify
the transformation concept. The power k = 1 corresponds to no transformation at all. Observe that
these are the same transformations we have explained in Subsection 14.4.2 to transform nonnormal
data into normal transformed data. The shape of the scatterplots should suggest an appropriate
transformation. The four curves in Figure 14.18 represent possible shapes of scatterplots that are
usually encountered in practice.

y

x
1

y

x
3

y

x
4

y

x
2

■ FIGURE 14.18 Possible shapes of a scatterplot.

We can use the following as a general guideline for making transformations. If we have a scatterplot
that looks like plot 1 of Figure 14.18, then to straighten the plot, we should use a power k < 1 for
x (the independent variable) and/or use a power k >1 for y (the dependent variable). Similarly, for
curve 2, k>1 for x and/or k<1 (such as

√
y or ln y) for y. For curve 3, take k>1 for x (such as x2 or x3)

and/or k>1 for y. Finally, for curve 4, take k<1 for x and/or k>1 for y. Once we straighten the data
through transformations, obtain the least-squares equation of the line as explained in Chapter 8. By
reversing the transformation (or solving for y in the transformed equation) we can obtain the original
nonlinear relationship between x and y.

Example 14.5.2
For the following bivariate data:

x 0 4 8 10 15 18 20 25

y 2.4 2.6 3.1 3.6 4.1 4.2 4.6 4.7
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(a) Draw a scatterplot.

(b) Use appropriate transformation (if necessary) to linearize the scatterplot.

(c) Fit the data to an appropriate curve.

Solution
(a) The scatterplot is shown in Figure 14.19.

5.0

4.5

4.0

3.5

3.0

2.5

0 5 10 15 20 25

■ FIGURE 14.19 Scatterplot of the data.

This looks more like curve 4.

(b) Let us use the transformation x′ = ln x and y′ = y2. We will get the scatterplot shown in Figure 14.20.

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0
1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

■ FIGURE 14.20 Scatterplot of the transformed data.

This looks more linear.

(c) The regression line for the transformed data is y′ = 8.86x′ − 6.96. Therefore, for the original data,

y2 = 8.86 ln x − 6.96. The fitted curve is shown in Figure 14.21.
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Looking at Figure 14.21, we can see that the data are only slightly nonlinear. In addition, using the equation,

for a given value of x we can predict the value of the response variable y. For instance, if x = 1.5, we

estimate y2 to be −3.3676.

2

1

0C
5

C3

�1

�2

1.4 2.4 3.4

■ FIGURE 14.21 Fitted curve.

There are various other modeling issues that one may encounter in applications. For example, in
multiple regression modeling, an investigator may have data on number of predictor variables that
might be incorporated into a model. Some of these variables may be irrelevant or may duplicate
the information provided by other variables. The problem then is how to detect and eliminate the
duplicating variables. However, for the sake of brevity and level of presentation, we will not go into
these issues of model selection.

EXERCISES 14.5

14.5.1. For the data of Exercise 14.4.5:
(a) Obtain a dotplot.
(b) Describe the data, such as mean, median, and standard deviation.
(c) Obtain a 95% confidence interval for the mean.
(d) Obtain a 95% prediction interval.
(e) Explain your solutions and state any assumptions.

14.5.2. For the gas mileage data of Exercise 14.4.7:
(a) Obtain a dotplot.
(b) Describe the data, such as mean, median, and standard deviation.
(c) Obtain a 95% confidence interval for the mean.
(d) Obtain a 95% prediction interval.

14.5.3. The following represents the midterm and final exam scores for 35 randomly selected
students from a large mathematics class.
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Midterm: 67 63 39 80 64 95 90 93 21 36
44 66 66 72 34 78 66 68 98 43
74 81 71 100 60 50 81 66 90 89
86 49 77 63 58

Final: 29 33 100 33 55 20 10 5 67 64
71 25 34 66 28 34 16 27 32 20
14 21 16 62 50 14 61 11 14 41
52 35 37 51 43

(a) Draw a scatterplot.
(b) Use appropriate transformation (if necessary) to linearize the scatterplot.
(c) Fit the data to an appropriate curve and explain the usefulness.

14.5.4. For the state finance data of Exercise 14.2.3:
(a) Draw a scatterplot.
(b) Fit a least-squares line.
(c) Explain your solutions and state any assumptions.

14.5.5. Table 14.5.1 gives in-state tuition costs (in dollars) and 4-year graduation rate (%) for 15
randomly selected colleges taken from a list of the 100 best values in public colleges (source:
Kiplinger’s Magazine, October 2000).

Table 14.5.1

In-state tuition: 3788 4065 2196 7360 5212 4137 4060 4354

Graduation rate: 45 64 40 58 38 20 39 48

In-state tuition: 3956 3975 7395 4058 3683 3999 3156

Graduation rate: 40 20 45 39 39 20 9 48

(a) Draw a scatterplot.
(b) Fit a least-squares line and graph it.
(c) Looking at the scatterplot of part (a), do you think the least-squares line is a good

choice? Discuss.

14.6 PARAMETRIC VERSUS NONPARAMETRIC ANALYSIS

Up until Chapter 11, we basically assumed that random variables belong to specific probabil-
ity distributions, such as a normal distribution or binomial distribution. The members of those
distributions are associated by different parameters such as means or variances. Most of our efforts
were concentrated on making some inferences about the unknown parameters. In this vein, we looked
at point estimators, confidence intervals, and hypothesis testing problems. In practice the assumption
that observations come from a particular family of distributions such as normal or exponential may
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be quite sensible. As we have already mentioned, slight violations of these assumptions in many
practical cases may not significantly affect statistical inferences. However, this is not always true. Fur-
thermore, sometimes we may want to make inferences that have nothing to do with parameters. We
may not even have precise measurement data, but only the rank order of observations. For example,
if we want to study the performance of students at an institution, we may not have the precise scores
the students obtained; instead we may only have their letter grades such as A, B, C, D, and F. Even if
we have precise measurements, we may not be able to assume a distribution, such as normality. Still,
we may be able to say that the distribution is symmetric, or skewed, or has some other characteristics.
Basically, if there is doubt about the parametric assumptions, or the data are not suitable for para-
metric inference, or we are not interested in inference about parameters, a nonparametric test that
is valid under weaker assumptions is preferable. It should be noted that weaker assumptions do not
mean that nonparametric methods are assumption free. The inference that can be made depends on
valid assumptions that are made.

When using nonparametric tests, a common question is “Why substitute a set of nonnormal numbers,
such as ranks, for the original data?” Rank tests are often useful in circumstances when we have no
idea about the population distribution. We suspect that the data are not normal, and either we cannot
transform the data to make them more normal, or we do not wish to do so. Few data are truly normal,
despite the robustness of common parametric tests; unless we are quite sure that the nonnormality is
a minor problem and would not affect the conclusions, we may often be better off using a rank test.
However, there is a small penalty for using delete rank tests. If the original data are really normal, in
the long run, the rank tests will be about 95.5% as efficient as a Student t-test would have been. This
means that in such situations, the t-test will require about 95 samples compared to 100 for the rank
test. But when data are far from normal, the rank tests will require fewer samples than the t-test; in
fact, we should not use the t-test in such cases.

Basically, if we know the distribution of the underlying population, we can use parametric tests.
Otherwise, for a given data set, we first perform the normality test as explained in Section 14.3. If
normality fails, in general, we can use nonparametric methods for data analysis.

Another situation in which we can use nonparametric tests is when the data contain some outliers. A
box plot or a normal plot, as explained in Section 14.3, will reveal the existence of outliers. However,
in many applied areas such as in most bioavailability data, there will appear to be outliers. It is not
feasible to determine whether these are skewed or contaminated distributions. They are not errors.
In those situations, a conservative approach will be to use nonparametric methods. For example,
because the statistic for the rank sum test is resistant to outliers, it will not be seriously affected by
the presence of outliers unless the number of outliers becomes large relative to the sample size.

It should be noted that we ought to be careful even when we use nonparametric tests. For example,
if the data for one or both of the samples to be analyzed by a rank sum test come from a population
whose distribution violates the assumption that the distributional shapes are the same, then the rank
sum test on the original data may provide misleading results or may not be the most powerful test
available. Transforming the data (for example, a logarithmic transformation pulls in long tails) to
obtain normality and then performing a two-sample t-test, or using another nonparametric test, may
be more appropriate for the analysis. In general, nonparametric methods are appropriate when the
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sample sizes are small. When the data set is large, say n > 100, it often makes little sense to use
nonparametric statistics.

Finally, we must conclude that we do not perform nonparametric tests on a given set of data unless it is
necessary, that is, if we cannot assume a classical probability distribution that characterizes the given
data. Also, parametric statistical analysis is, in general, more powerful than the nonparametric analysis.
We will end this section with a quote from W. J. Conover: “Nonparametric methods use approx-
imate solutions to exact problems, while parametric methods use exact solutions to approximate
problems.”

EXERCISES 14.6

14.6.1. Consider the following data.

0.01 0.012 0.016 0.018 0.036 0.042 0.036 0.048

0.072 0.042 0.22 0.096 0.76 0.055 0.13 0.016

(a) Test for normality and comment whether a parametric or nonparametric test is
appropriate.

(b) Try a suitable transformation (filter) to make the transformed data normal, if possible,
and then use a parametric procedure.

14.6.2. For the Medicare data of Exercise 14.4.4, if parametric procedures are not appropriate, use
a nonparametric procedure.

14.7 TYING IT ALL TOGETHER

Now we will give some real data on which we will use standard methods to analyze the given data.
Software reliability is a major aspect in any kind of software development. One of the ways to do
this is to observe time to failure and/or time between failure (TBF). If the defects are fixed, we would
expect, on average, the TBF to increase. Based on that data, one studies reliability of the software. There
are a variety of methods to analyze the software reliability problems. Here we will not dwell on the
reliability issues. We will only do some simple data analysis on a set of software failure data. The fol-
lowing data represent software failure times in the Apollo 8 software system. They were obtained
from www.dacs.dtic.mil/databases/sled/swrel.shtml. It is assumed that these failure times are
random.

Example 14.7.1
The following data set consists of 26 software failure times taken from testing of the Apollo 8 software

system.

T: 9 21 32 36 43 45 50 58 63

70 71 77 78 87 91 92 95 98

104 105 116 149 156 247 249 250
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TBF: 9 12 11 4 7 2 5 8 5

7 1 6 1 9 4 1 3 3

6 1 11 33 7 91 2 1

(a) Obtain a dotplot and describe the TBF data.

(b) Identify any outliers and test for normality with and without outliers for TBF data. If the data are not

normal, does any simple transformation make the data normal?

(c) Obtain a 95% confidence interval for TBF.

(d) For estimation problems, does a parametric or nonparametric method seem more appropriate for

the data?

(e) Obtain a scatterplot between T and TBF and discuss its usefulness.

Solution
(a) The dotplot for the TBF data is shown in Figure 14.22.

0 12 24 36 48 60 72 84

■ FIGURE 14.22 Dotplot of TBF data.

The following is the result of the describe command from Minitab.

TBF N MEAN MEDIAN TRMEAN STDEV SEMEAN

26 9.62 5.50 6.58 17.79 3.49

TBF MIN MAX Q1 Q3

1.00 91.00 2.00 9.00

(b) We will use the box plot shown in Figure 14.23 to identify the outliers.
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■ FIGURE 14.23 Box plot of TBF data.

From the box plot the observations 33 and 91 are outliers.

Figures 14.24 and 14.25 show the normal plots with and without outliers.
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Anderson-Darling Normality Test
A-Squared: 5.075
p-value: 0.000

Average: 9.61539
Std Dev: 17.7878
N of data: 26
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Normal plot with outliers

■ FIGURE 14.24 Normal probability plot of TBF data with outliers.

A-Squared: 0.504
p-value: 0.184

Anderson-Darling Normality TestAverage: 5.25
Std Dev: 3.50466
N of data: 24
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■ FIGURE 14.25 Normal probability plot of TBF data without outliers.
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A-Squared: 0.576
p-value: 0.121

Anderson-Darling Normality TestAverage: 1.56762
Std Dev: 1.10478
N of data: 26
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Normal plot of ln (TBF)

■ FIGURE 14.26 Normal probability plot of transformed TBF data with outliers.

It is clear that the data with outliers are not normal, whereas if we remove the outliers, the data

become normal.

Figure 14.26 gives the normal plot by taking the natural log of the TBF data with outliers. The figure

shows that the data become approximately normal.

(c) It is clear that to obtain a small sample confidence interval, to satisfy the assumption of normality, we

need to take the data without the outliers. Hence a 95% confidence interval for TBF with the outliers

removed is (3.77, 6.73). Running a nonparametric Wilcoxon test in Minitab for the 95% confidence

interval with outliers gave the following.

ESTIMATED ACHIEVED

TBF N MEDIAN CONFIDENCE CONFIDENCE INTERVAL

26 6.00 94.9 (4.00, 8.00)

(d) If we are analyzing the data without outliers or the log-transformed data, parametric methods are

better. With the original data, because the normality assumption may not be appropriate, we need

to use nonparametric methods.

(e) Figure 14.27 gives the scatterplot of T and TBF.
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■ FIGURE 14.27 Scatterplot of T and TBF.

Example 14.7.2
Table 14.4 gives dealer cost and sticker price for four-door base models of 25 small and midsize cars (source:

Money Magazine, March 2001).

(a) Obtain a dotplot and describe the sticker price data.

(b) Identify any outliers and test for normality with and without outliers for sticker price data. If the

data are not normal, does any simple transformation make the data normal?

(c) Obtain a 95% confidence interval for sticker price.

(d) For estimation problems, do parametric or nonparametric methods seem more appropriate for the

data?

(e) Obtain a scatterplot between dealer cost and sticker price.

(f ) Fit a least-squares regression line and run a residual model diagnostic using Minitab.

Table 14.4

Model Dealer cost Sticker price

(in dollars) (in dollars)

Acura Integra GS 19,479 21,600

Chevy Cavalier 12,398 13,260

Chevy Impala LS 21,251 23,225

Chrysler Concord LX 20,834 22,510

(continued)
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Table 14.4 (continued)

Model Dealer cost Sticker price
(in dollars) (in dollars)

Dodge Neon SE 11,856 12,715

Ford Escort 12,277 12,970

Ford Taurus SE 17,606 19,035

Honda Civic DX 11,723 12,960

Honda Accord 2.3 LX 16,727 18,790

Hyundai Sonata 13,805 14,999

Kia Sephia 9,914 10,595

Mazda 626 LX V6 18,181 19,935

Mitsubishi Mirage ES 12,534 13,627
Mercury Sable GS 17,777 19,185

Nissan Maxima GXE 19,430 21,249

Oldsmobile Intrigue GL 22,097 24,150

Pontiac Grand Am GT 18,790 20,535

Saturn SL 9,936 10,570

Subaru Impreza L 14,695 15,995

Toyota Corolla LE 12,042 13,383

Toyota Camry LE 18,169 20,415

Toyota Prius 18,793 19,995

VW Jetta GLS 15,347 16,500

VW Passat GLS 19,519 21,450

Volvo S40 22,090 23,500

Solution

(a) The dotplot for the sticker price is shown in Figure 14.28.

The following summary statistics are obtained by the describe command in Minitab.

N MEAN MEDIAN TRMEAN STDEV SEMEAN

St.price 25 17726 19035 17758 4278 856

MIN MAX Q1 Q3

St.price 10570 24150 13322 21350
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10800 12600 14400 16200 18000 19800 21600 23400

■ FIGURE 14.28 Dotplot for the sticker price.

(b) The box plot for the sticker price is shown in Figure 14.29.

According to this, there are no outliers. The normal plot is shown in Figure 14.30.

This is approximately normal.
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■ FIGURE 14.29 Box plot for the sticker price.
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Average: 17.7259
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N of data: 2.5

Anderson-Darling Normality Test
A-squared: 0.721

p-value: 0.052
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■ FIGURE 14.30 Normal plot for the sticker price.

(c) The 95% confidence interval for the sticker price is

N MEAN STDEV SE MEAN 95.0 PERCENT C.I.

St.price 25 17726 4278 856 (15960, 19492)
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(d) Because there are no outliers and the data look approximately normal, parametric tests seems to be

appropriate for these data.

(e) The scatterplot for dealer cost versus sticker price is shown in Figure 14.31.

(f ) Figure 14.32 shows the fitted regression line.

An analysis of residuals by Minitab gives Figure 14.33.
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■ FIGURE 14.31 Scatterplot for dealer cost versus sticker price.
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■ FIGURE 14.32 Regression line for dealer cost versus sticker price.
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■ FIGURE 14.33 Residuals versus fit.

By looking at the residuals versus fits, we can see that we have a good fit, and hence the model looks

appropriate.

EXERCISES 14.7

14.7.1. Table 14.7.1 gives revenue (in thousands) for public elementary and secondary schools, by
state, for 1997–1998 and corresponding pupils per teacher for that state for 20 randomly
selected states (source: The World Almanac and Book of Facts 2000).

(a) Obtain a dotplot and describe the pupils per teacher data.
(b) Identify any outliers and test for normality with and without outliers for the pupils per

teacher data. If the data are not normal, does any simple transformation make the data
normal?

(c) Obtain a 95% confidence interval for pupils per teacher.
(d) Obtain a scatterplot between total revenue and pupils per teacher.
(e) Fit a regression line between total revenue and pupils per teacher.
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Table 14.7.1

State Total revenue Pupils per teacher

Arizona 4,388,915 19.8

Connecticut 5,112,950 14.2

Alabama 4,030,356 16.3

Indiana 7,006,752 17.2

Kansas 3,090,829 14.9

Oregon 3,119,028 20.1

Nebraska 1,688,662 14.5

New York 27,690,556 15.0

Virginia 6,661,612 14.7

Washington 6,722,916 20.2

Illinois 13,649,628 16.8

North Carolina 7,127,549 15.9

Georgia 8,579,628 16.2

Nevada 1,754,717 18.5

Ohio 12,694,407 16.7

New Hampshire 1,365,391 15.6

14.7.2. Table 14.7.2 gives the dealer cost and sticker price for luxury cars and sports utility vehicles
with popular options (source: Money Magazine, March 2001).
(a) Obtain a dotplot and describe the sticker price data.

(b) Identify any outliers and test for normality with and without outliers for sticker
price data. If the data are not normal, does any simple transformation make the data
normal?

(c) Obtain a 95% confidence interval for sticker price.

(d) Do parametric or nonparametric methods seem more appropriate for the data?

(e) Obtain a scatterplot between dealer cost and sticker price.

(f ) Fit a least-squares regression line and run a residual model diagnostics using Minitab.

14.7.3. For the college tuition data of Exercise 14.5.5, fit a least-squares regression line and run a
residual model diagnostics using Minitab.
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Table 14.7.2

Model Dealer cost Sticker price

(in dollars) (in dollars)

Acura TL 3.2 26,218 29,030

Audi A6 4.2 45,385 50,754

BMW 525i 33,800 37,245

Cadillac DeVille DHS4 43,825 47,603

Infiniti I30 Touring 28,604 32,065

Jaguar XJ8 52,535 58,171

Lexus GS430 41,881 48,581

Mercedes-Benz C320 35,067 36,950

SAAB 9-3 Viggen 35,270 38,690

Volvo S80T-6 39,315 41,768

BMW X5 4.4i 45,994 50,774

Chevrolet Blazer LT 26,958 29,725

Dodge Durango 26,845 29,370

GMC Jimmy SLE 26,637 29,370

Honda CR-V LX 17,578 19,190

Isuzu Trooper LS 27,901 31,285

Jeep Cherokee SE 21,392 23,130

Lexus LX470 54,785 63,474

Mercedes-Benz ML430 42,243 45,337

Nissan Pathfinder SE 27,203 29,869

Pontiac Aztek GT 22,912 24,995

Subaru Forester S 21,990 24,190

Suzuki Vitara JS 16,063 17,079

Toyota RAV4 18,786 20,630
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14.7.4. The following data give the area (in square feet) and the sale prices (approximated to the
nearest $1000) of homes that were sold in a particular city in a 6-week period of 2003.

Area: 1123 1028 1490 2172 2300 1992 3200 3063 3720
7228 720 943 904 912 1031 1152 1482 1426
1491 1184 1650 1392 1755 2062 2495 3253 5152
1270 1723 1161 1220 837 1446 2442 2300 2518

Price: 75 75 102 149 152 154 327 425 625
775 53 57 66 68 75 86 90 93
95 95 104 105 135 159 169 253 725
67 85 110 65 74 95 156 183 207

(a) Obtain a dotplot and describe the home price data.
(b) Identify any outliers and test for normality with and without outliers for home price

data. If the data are not normal, does any simple transformation make the data normal?
(c) Obtain a 95% confidence interval for home price.
(d) Do parametric or nonparametric methods seem more appropriate for the data?
(e) Obtain a scatterplot between the square-foot area of a home and its price.
(f ) Fit a least-squares regression line and run a residual model diagnostics using Minitab.

14.8 CONCLUSION

We have briefly discussed some of the problems that arise in applied data analysis. However, this
discussion is not exhaustive. There are various other special problems that can arise in applied data
analysis. For example, if one or both of the sample sizes are small, it may be hard to detect violations
of some of the assumptions. For small samples, violation of assumptions such as inequalities of
variances is hard to discover. Also, for small sample sizes, possible outliers whose detection may be in
doubt may have undue influence on the inferences. It is better to avoid such problems in the design
stage of an experiment, when suitable sample sizes can be determined before we start collecting data.

Differences in distributional shapes can influence the testing procedures of two or more samples. In
those cases, utilizing a transformation may settle that problem and may also promote normality as
well as correct the problem of inequality of variances. There are also many issues related to simula-
tion that are discussed in Chapter 13 in the utilization of empirical methods—for instance, in the
application of MCMC methods, the issues of burn-in, choice of the correct proposal function, and
convergence. These are beyond the scope of this book.

Combining the issues discussed in this chapter with the rest of the material of this textbook should
give the student a good footing in the theory of statistics as well as the ability to deal with many
real-world problems.



Appendix I
Set Theory

In this appendix, we present some of the basic ideas and concepts of set theory that are essential
for a modern introduction to probability and statistics. The origin of set theory is credited to Georg
Cantor, when he proved the uncountability of the real line in 1873. A set is defined as a collection of
well-defined distinct objects. These objects of a set are called elements or members. The elements of a
set can be anything: the alphabet, numbers, people, other sets, and so forth. Sets are conventionally
denoted with capital letters, A, B, C, and so on. A universal set, denoted by S, is the collection of all
possible elements under consideration. If a is an element of a set A, we write a ∈ A. If a is not an
element of A, we write a /∈ A.

A set is described either by listing its elements or by stating the properties that characterize the elements
of the set. For example, to specify the set A of all positive integers less than 12, we may write

A =

⎧⎪⎨
⎪⎩

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
{all positive integers less than 12}

{x : x < 12, a is a positive integer}.

Sets are classified as finite or infinite. A set is finite if it contains exactly n objects, where n is a
nonnegative integer. A set is infinite if it is not finite. For example, if A is a set containing all positive
integers less than or equal to 50, then A is a finite set. If B is a set containing all the positive integers,
it is an infinite set.

Describing a set by stating its properties is the practical way to represent a set with a large or infinite
number of elements.

A set B is a subset of a set A if every element of B is also an element of A. We denote this by writing
B ⊆ A, which is read “A contains B” or “B is contained in A.” For example, if A is the set of real numbers
and

B = {x : x ≤ 5, x a positive integer},
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it is clear that B is a subset of A. Also, every subset is a subset of itself. Two sets A and B are
equal, A = B, if and only if A ⊆ B and B ⊆ A. Thus, two sets A and B are said to be equal if
they have the same members. A set B is a proper subset of a set A if every element of B is an
element of A and A contains at least one element that is not an element of B. We denote this
relationship by B ⊂ A. In the previous example, we have B ⊂ A. The set, which contains no ele-
ments, is called the empty set (or null set) and is denoted by φ. The null set φ is a subset of
every set.

A Venn diagram is used for visual representation of sets. In the Venn diagram, the universal set, S, is
represented by a rectangle. The subsets are represented by circles inside this rectangle.

S
A B

■ FIGURE AI.1 A Venn diagram.

AI.1 SET OPERATIONS

Union, ∪: The union of two sets A and B is the set of all elements that belong to A or B (or both;
elements that belong to both sets are included only once) and is denoted by A ∪ B.

A ∪ B = {x : x ∈ A or x ∈ B}.

S

A U B

■ FIGURE AI.2 Union of two sets.

Intersection, ∩: The intersection of two sets A and B is the set of all elements that belong to both
A and B and is denoted by A ∩ B. A ∩ B = {x ∈ S : x ∈ A and x ∈ B}.

If A ∩ B = φ, then the sets A and B are said to be disjoint or mutually exclusive sets.
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S

A B

U

■ FIGURE AI.3 Intersection of two sets.

Complement: The complement of a set A is the set of all elements that belong to S but not to A.
Ac = {x : x ∈ S; x /∈ A}.

S

Ac

■ FIGURE AI.4 Complement of a set.

The difference of any two sets, A and B, denoted by A\B, is equal to A ∩ Bc. Thus, Ac = S\A. It should
be noted that (Ac)c = A. The symmetric difference between any two sets, A and B, denoted by A�B, is
the set of elements in A or B, but not both, that is, (A\B) ∪ (B\A).

PROPERTIES OF SETS

If A, B, and C are the subsets of the universal set S , then they satisfy the following properties.

Commutative law

A ∪ B = B ∪ A

A ∩ B = B ∩ A

Associative law

A ∪ (B ∪ C ) = (A ∪ B) ∪ C = A ∪ B ∪ C

A ∩ (B ∩ C ) = (A ∩ B) ∩ C
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Distributive law

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ),

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

Idempotent law

A ∪ A = A, A ∩ A = A

Identity law

A ∪ S = S , A ∩ S = A;

A ∪ Ø = A, A ∩ Ø = Ø

Complement law

A ∪ Ac = S , A ∩ Ac = Ø

De Morgan’s laws

(A ∪ B )c = Ac ∩ Bc

(A ∩ B )c = Ac ∪ Bc

The two sets A and B are said to be in one-to-one correspondence (denoted by 1:1) if each element a ∈ A

is paired with one and only one element b ∈ B in such a manner that each element of B is paired
with exactly one element of A. For example, if A = {a1, a2, a3, a4} and B = {1, 2, 3, 4}, then A and B

have a 1:1 correspondence.

A set whose elements can be put into a one-to-one correspondence with the set of all positive integers
is referred to as being a countably infinite set. Also, a set is said to be countable, denumerable, or enumerable
if it is finite or countably infinite. The product or Cartesian product of sets A and B is denoted by
A × B and consists of all ordered pairs (a, b), where a ∈ A and b ∈ B, that is,

A × B = {(a, b) : a ∈ A, b ∈ B}.

For example, if A = {a1, a2, a3} and B = {1, 2}, then

A × B = {(a1, 1), (a1, 2), (a2, 1), (a2, 2), (a3, 1), (a3, 2)}.

The notion of a Cartesian product can be extended to any finite number of sets; that is,
A1 × A2 × . . . × An is the set of all ordered n-tuples, (a1, a2, . . . , an), where

a1 ∈ A1, a2 ∈ A2, · · · , an ∈ An.



Appendix II
Review of Markov Chains

A stochastic or random process is defined as a family of random variables, {X(t)}, describing an empirical
process, the development of which in time is governed by probabilistic laws. The state space, S, of
the stochastic process is the set of all possible values that the random variable X(t) can take. The
parameter t is often interpreted as time and may be either discrete or continuous. When the set of
possible values of t forms a countable set, the process {X(t), t = 0, 1, 2, . . .}, is discrete. If t forms an
interval of real line, the process {X(t), t ≥ 0} is said to be continuous. In the discrete case, the state
space can be finite or infinite.

Among many different discrete stochastic processes, we are interested in a special class called Markov
chains. The basic concepts of Markov chains were introduced in 1907 by the Russian mathematician
A. A. Markov.

Let i1, i2, . . . represent the states of the chain. The sequence of random variables X1, X2, . . . is called
a Markov chain if

P
(
Xn = ikn

∣∣X1 = ik1 , . . . , Xn−1 = ikn−1

) = P
(
Xn = ikn

∣∣Xn = ikn−1

)
.

An intuitive interpretation is that a stochastic process {X(t)} has the Markov property if the conditional
probability of any future state, given the present and past states, is independent of the past states and
depends only on the present state. Thus, a Markov chain can be used to model the position of an
object in a discrete set of possible states over time, in which the subsequent position is chosen at
random from a distribution that depends only on the current location of the chain and not on any
previous locations of the chain.

The conditional probabilities that the chain moves to state j at time n, given that it is in state i at time
n − 1, are called transition probabilities and are denoted by pij ,

pij = P
(
Xn = j

∣∣Xn−1 = i
)
,
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with the subscript ij of p indicating the direction of transition i → j. Sometimes, pij may also
be represented by p(i, j), and if we need to represent the time points, then we use the notation,
pn−1,n(i, j) = P(Xn = j|Xn−1 = i).

Two basic assumptions we make are that (i) pij ≥ 0 for all i and j; the transition probabilities are
nonnegative. Also, (ii) for every i,

∞∑
j=1

pij = 1

⎛
⎝ n∑

j=1

pij = 1 if the state space is finite

⎞
⎠ ,

that is, the chain makes a transition to some state in the state space.

If the transition probabilities pij depend only on the states i and j and not on the time n, then the
conditional probabilities are called stationary. Markov chains with stationary probabilities are called
(time) homogeneous Markov chains. We shall consider only homogeneous Markov chains.

The behavior of homogeneous Markov chains is described by the transition or stochastic matrices of
the processes where the transition probabilities are arranged as elements of a matrix. The transition
or stochastic matrix of a chain having transition probabilities i, j = 1, 2, . . . n is

P =
⎛
⎜⎝

p11 . . . p1n
...

. . .
...

pn1 · · · pnn

⎞
⎟⎠.

In the infinite state space case, we represent the transition matrix in the following manner:

⎛
⎜⎜⎜⎜⎜⎝

p11 . . . p1n · · ·
...

. . .
...

pm1 pmn · · ·· · ·
...

...

⎞
⎟⎟⎟⎟⎟⎠.

Each element of the matrix is nonnegative, and each row sums to 1. If we look at any particular row,
say the mth row, then we can see the probabilities of going from state m to the various other states
including the state m.

Example AII.1
Four quarterbacks are warming up by throwing a football to one another. Let 1, 2, 3, and 4 denote the four

quarterbacks. It has been observed that 1 is as likely to throw the ball to 2 as to 3 and 4. Player 2 never

throws to 3 but splits his throws between 1 and 4. Quarterback 3 throws twice as many passes to 1 as to 4

and never to 2, but 4 throws only to 1. This process forms a Markov chain because the player who is about
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to throw the ball is not influenced by the player who had the ball before him. The one-step transition

matrix is ⎛
⎜⎜⎜⎝

0 1/3 1/3 1/3
1/2 0 0 1/2
2/3 0 0 1/3
1 0 0 0

⎞
⎟⎟⎟⎠.

Following is a standard example of a chain with infinite state space.

Example AII.2
Consider a chain with state space S = (0, 1, 2, 3, . . .) and transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

r0 p0 0 0 · · ·
q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·
0 0 q3 r3 p3 · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

where pi, qi, ri ≥ 0 for all i ≥ 0, p0 + r0 = 1, and pi + qi + ri = 1 for all i ≥ 1. Thus, for this Markov chain,

the transition probabilities are: p00 = r0, p01 = p0, and for i, j = 0,

Pij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi, j = i + 1
ri, j = i

qi, j = i − 1
0, otherwise.

This chain is known as the random walk chain (with barrier at 0).

The following example gives a transition matrix for the random walk chain in a special case. We can
think of this as a chain resulting from tossing of a fair coin. If we are not at state zero, then if heads
comes up, we take a step to the right and if tails comes up, we take a step to the left. If at state 0, we
remain at zero for a tails outcome and move a step to the right for heads.

Example AII.3
Consider a Markov chain with state space S = (0, 1, 2, 3, . . .) and the transition probabilities given by

p00 = 1/2, pij =

⎧⎪⎨
⎪⎩

1/2, j = i − 1
1/2, j = i + 1
0, otherwise.
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This results in the symmetric transition matrix with elements

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 0 0 0 . . .

1/2 0 1/2 0 0 . . .

0 1/2 0 1/2 0 . . .

0 0 1/2 0 1/2 . . .

· · · · · ·
· · · · · ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The n-step transition probability, p(n)
ij , is defined as the probability that the chain is in state i and will go to

state j in n steps. If pij is the one-step transition probability, p(n)
ij can be obtained as follows. Let i be the

state of the process at time, m, that is Xm = i. Then, the n-step transition probability is

p
(n+m)
ij = P

(
Xn+m = j |X0 = i

)

=
∞∑

k=0

P
(
Xn+m = j, Xn = k |X0 = i

)

=
∞∑

k=0

P
(
Xn+m = j |Xn = k, X0 = i

)
P(Xn = k |X0 = i )

=
∞∑

k=0

pm
kjp

n
ik.

This can be rewritten in the matrix notation as

P(n+m) = P(m)P(n) = P(n)P(m).

This is known as the Chapman–Kolmogorov equation.

The following example shows how to compute an n-step transition matrix.

Example AII.4
Consider the one-step transition matrix given in Example 1,

⎛
⎜⎜⎜⎝

0 1/3 1/3 1/3
1/2 0 0 1/2
2/3 0 0 1/3
1 0 0 0

⎞
⎟⎟⎟⎠.
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The two-step transition matrix, P2, is

P2 = P.P =

⎛
⎜⎜⎜⎝

0 1/3 1/3 1/3
1/2 0 0 1/2
2/3 0 0 1/3
1 0 0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

0 1/3 1/3 1/3
1/2 0 0 1/2
2/3 0 0 1/3
1 0 0 0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

13/18 0 0 5/18
1/2 1/6 1/6 1/6
1/3 2/9 2/9 2/9
0 1/3 1/3 1/3

⎞
⎟⎟⎟⎠.

The three-step transition matrix, P3, is

P3 = P2P =

⎛
⎜⎜⎜⎝

5/18 13/54 13/54 13/54
13/36 1/6 1/6 11/36
13/27 1/9 1/9 8/27
13/18 0 0 5/18

⎞
⎟⎟⎟⎠.

For instance, the third row of P3,

(13/27 1/9 1/9 8/27),

denotes that, after three throws, the ball is in the hands of players 1, 2, 3, and 4, with respective probabilities

13/27, 1/9, 1/9, and 8/27.

A transition matrix, P , all entries of which are positive, is called a positive transition matrix. A state j of
a Markov chain is accessible from a state i if p

(n)
ij > 0 for some n ≥ 0. If state j is accessible from state i,

and state i is accessible from state j, the states are said to communicate. If all the states communicate,
then the Markov chain is called irreducible. A state i is periodic (of period d) if the only way to revisit
it is through steps of length k.d for some value of k and a fixed value of d > 1. Thus, the period, d,
is the greatest common divisor of the number of steps n needed for the chain, starting at state i, to
revisit the state i:

d = GCD {n ≥ 1pn
ii > 0}.

If a state is not periodic, then it is called aperiodic. A state i is recurrent if it will be revisited by the
chain with probability 1. That is,

P
(
Xn = i for infinitely many n |X0 = i

) = 1.

If a state is not recurrent, it is called transient. Recurrent, aperiodic states are called ergodic. It is
necessary to impose an extra condition for ergodicity, that the expected recurrence time be finite.
This is satisfied for recurrent states in a finite-state Markov chain. A Markov chain is called ergodic if
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every state is ergodic. It is clear that a finite state Markov chain with a positive transition matrix is
ergodic.

The following result is of fundamental importance.

Theorem AII.1 For an ergodic Markov chain, limn→∞ p
(n)
ij = πj exists, and this limit is independent of the

initial state i. Let the vector π with elements (πj) be the limiting or the stationary distribution of the chain.
Then, this stationary probability vector is the unique solution of the equation

π = πP

and satisfies the normalization condition
∑

j∈S πj = 1.

If, at any transition step n, the distribution of the chain is the same as π obtained in Theorem AII.1,
we say that the chain has reached the steady state. Thus, the vector π would be the unique steady-state
probability vector of the Markov chain.

Analogous to the law of large numbers for a sequence of independent random variables, for Markov
chains we can obtain the following so-called ergodic theorem.

Theorem AII.2 For any ergodic Markov chain {Xn} with stationary distribution π:

1
n

n∑
k=1

f(Xk) →
∑
i∈S

f(i) πi = Ef(X) w.p.1.

The validity of the Markov chain Monte Carlo method lies in this ergodic theorem.



Appendix III
Common Probability Distributions

In this appendix, we present some common probability distributions that are useful in
statistical methods that we have used in this book. There is a much greater variety of distribu-
tions that are very important in a particular area of applications. A good reference can be found
at http://www.causascientia.org/math_stat/Dists/Compendium.pdf. We give the density function,
mean, variance, and moment-generating function (mgf). For some distribution functions, if the
mgf is complicated, we just leave it out and refer the reader to one of the references in the book.
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Name pfd Mean Variance mgf

Bernoulli
distribution

f(x, p) =
⎧⎨
⎩

p, x = 1
1 − p, x = 0

0, otherwise.
0 < p < 1

p p(1 − p)
q + pe t,

q = 1 − p

Binomial
f(x, n, p) =

(
n

x

)
pxqn−x,

x = 0, 1, . . . , n

np npq (q + pe t) n

Hyper-
geometric

Geometric
f(x, p) = qx−1 p, x = 1, 2, . . .

0 < p ≤ 1

1
p

q

p2

pe t

1 − qe t

f(x, N, m, n) =

(
m

x

)⎛
⎝N − m

n − x

⎞
⎠

(
N

n

) ,

N = 0, 1, 2, . . . , m = 0, 1, . . . , N,

n = 0, 1, . . . , N

nm

N

n
(m

N

) (
1 − m

N

)
(N − n)

N − 1

757
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Negative
binomial

Name pfd Mean Variance mgf

f(x, r, p) =
(

x + r − 1
x

)
prqx

x = 0, 1, 2, . . .

r
q

p
r

q

p2

(
p

1 − qet

)r

Poisson
f(x, λ) = λxe−λ

x! ,

x = 0, 1, 2, . . .

λ λ exp(λ(et − 1))

Beta
f(x, α, β) =

(
�(α + β)

�(α)�(β)

)
xα−1(1 − x)β−1,

0 < x < 1

α

α + β

αβ

(α + β)2(α + β + 1)

Chi-square
f(x, ν) = 2ν/2x ν−1e−x 2/2

�(x/2)
,

x ≥ 0, ν > 0(degrees of freedom)

√
2

�((ν + 1)/2)

�(ν/2)
ν − μ2

Exponential
f(x, λ) =

{
λe−λx, x ≥ 0

0, otherwise,

λ > 0

1
λ

1
λ2

(
1 − t

λ

)−1

Gamma
f(x, α, β) = xα−1 βαe−βx

�(α)
,

x > 0, α > 0, β > 0

α

β

α

β2

(
1 − t

β

)−α

,

t < β

Laplace
f(x, μ, σ) = 1

2σ
exp

(
−|x − μ|

σ

)
,

−∞ < x, μ

μ 2σ2

Normal
f
(
x, μ, σ2

) = 1

σ
√

2π
exp

(
(x − μ)2

2σ2

)
,

−∞ < x, μ < ∞, σ > 0

μ σ2 exp
(

μt + σ2t2

2

)

Uniform
f(x, a, b) = 1

b − a
,

a ≤ x ≤ b

a + b

2
(b − a)2

12
etb − eta

t(b − a)
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Table AIV.1 Cumulative Binomial Probabilities, P(X ≤ x) = ∑x
i=0 p(i)

n = 2 p =
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

x = 0 0.980 0.903 0.810 0.640 0.490 0.360 0.250 0.160 0.090 0.040 0.010 0.003 0.000

1 1.000 0.998 0.990 0.960 0.910 0.840 0.750 0.640 0.510 0.360 0.190 0.098 0.020

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 3

x = 0 0.970 0.857 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001 0.000 0.000

1 1.000 0.993 0.972 0.896 0.784 0.648 0.500 0.352 0.216 0.104 0.028 0.007 0.000

2 1.000 1.000 0.999 0.992 0.973 0.936 0.875 0.784 0.657 0.488 0.271 0.143 0.030

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 4

x = 0 0.961 0.815 0.656 0.410 0.240 0.130 0.063 0.026 0.008 0.002 0.000 0.000 0.000

1 0.999 0.986 0.948 0.819 0.652 0.475 0.313 0.179 0.084 0.027 0.004 0.000 0.000

2 1.000 1.000 0.996 0.973 0.916 0.821 0.688 0.525 0.348 0.181 0.052 0.014 0.001

3 1.000 1.000 1.000 0.998 0.992 0.974 0.938 0.870 0.760 0.590 0.344 0.185 0.039

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n = 5

x = 0 0.951 0.774 0.590 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000 0.000 0.000

1 0.999 0.977 0.919 0.737 0.528 0.337 0.188 0.087 0.031 0.007 0.000 0.000 0.000

2 1.000 0.999 0.991 0.942 0.837 0.683 0.500 0.317 0.163 0.058 0.009 0.001 0.000

3 1.000 1.000 1.000 0.993 0.969 0.913 0.813 0.663 0.472 0.263 0.081 0.023 0.001

4 1.000 1.000 1.000 1.000 0.998 0.990 0.969 0.922 0.832 0.672 0.410 0.226 0.049

(continued)
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Table AIV.1 (continued)

p =
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

n = 6
x = 0 0.941 0.735 0.531 0.262 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000 0.000

1 0.999 0.967 0.886 0.655 0.420 0.233 0.109 0.041 0.011 0.002 0.000 0.000 0.000

2 1.000 0.998 0.984 0.901 0.744 0.544 0.344 0.179 0.070 0.017 0.001 0.000 0.000

3 1.000 1.000 0.999 0.983 0.930 0.821 0.656 0.456 0.256 0.099 0.016 0.002 0.000

4 1.000 1.000 1.000 0.998 0.989 0.959 0.891 0.767 0.580 0.345 0.114 0.033 0.001

5 1.000 1.000 1.000 1.000 0.999 0.996 0.984 0.953 0.882 0.738 0.469 0.265 0.059

n = 7

x = 0 0.932 0.698 0.478 0.210 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000 0.000

1 0.998 0.956 0.850 0.577 0.329 0.159 0.063 0.019 0.004 0.000 0.000 0.000 0.000

2 1.000 0.996 0.974 0.852 0.647 0.420 0.227 0.096 0.029 0.005 0.000 0.000 0.000

3 1.000 1.000 0.997 0.967 0.874 0.710 0.500 0.290 0.126 0.033 0.003 0.000 0.000

4 1.000 1.000 1.000 0.995 0.971 0.904 0.773 0.580 0.353 0.148 0.026 0.004 0.000

5 1.000 1.000 1.000 1.000 0.996 0.981 0.938 0.841 0.671 0.423 0.150 0.044 0.002

6 1.000 1.000 1.000 1.000 1.000 0.998 0.992 0.972 0.918 0.790 0.522 0.302 0.068

n = 8

x = 0 0.923 0.663 0.430 0.168 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000 0.000

1 0.997 0.943 0.813 0.503 0.255 0.106 0.035 0.009 0.001 0.000 0.000 0.000 0.000

2 1.000 0.994 0.962 0.797 0.552 0.315 0.145 0.050 0.011 0.001 0.000 0.000 0.000

3 1.000 1.000 0.995 0.944 0.806 0.594 0.363 0.174 0.058 0.010 0.000 0.000 0.000

4 1.000 1.000 1.000 0.990 0.942 0.826 0.637 0.406 0.194 0.056 0.005 0.000 0.000

5 1.000 1.000 1.000 0.999 0.989 0.950 0.855 0.685 0.448 0.203 0.038 0.006 0.000

6 1.000 1.000 1.000 1.000 0.999 0.991 0.965 0.894 0.745 0.497 0.187 0.057 0.003

7 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.983 0.942 0.832 0.570 0.337 0.077

n = 9

x = 0 0.914 0.630 0.387 0.134 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000 0.000

1 0.997 0.929 0.775 0.436 0.196 0.071 0.020 0.004 0.000 0.000 0.000 0.000 0.000

2 1.000 0.992 0.947 0.738 0.463 0.232 0.090 0.025 0.004 0.000 0.000 0.000 0.000

3 1.000 0.999 0.992 0.914 0.730 0.483 0.254 0.099 0.025 0.003 0.000 0.000 0.000

4 1.000 1.000 0.999 0.980 0.901 0.733 0.500 0.267 0.099 0.020 0.001 0.000 0.000

5 1.000 1.000 1.000 0.997 0.975 0.901 0.746 0.517 0.270 0.086 0.008 0.001 0.000

6 1.000 1.000 1.000 1.000 0.996 0.975 0.910 0.768 0.537 0.262 0.053 0.008 0.000

7 1.000 1.000 1.000 1.000 1.000 0.996 0.980 0.929 0.804 0.564 0.225 0.071 0.003

8 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.990 0.960 0.866 0.613 0.370 0.086
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Table AIV.1 (continued)

p =
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

n = 10

x = 0 0.904 0.599 0.349 0.107 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000

1 0.996 0.914 0.736 0.376 0.149 0.046 0.011 0.002 0.000 0.000 0.000 0.000 0.000

2 1.000 0.988 0.930 0.678 0.383 0.167 0.055 0.012 0.002 0.000 0.000 0.000 0.000

3 1.000 0.999 0.987 0.879 0.650 0.382 0.172 0.055 0.011 0.001 0.000 0.000 0.000

4 1.000 1.000 0.998 0.967 0.850 0.633 0.377 0.166 0.047 0.006 0.000 0.000 0.000

5 1.000 1.000 1.000 0.994 0.953 0.834 0.623 0.367 0.150 0.033 0.002 0.000 0.000

6 1.000 1.000 1.000 0.999 0.989 0.945 0.828 0.618 0.350 0.121 0.013 0.001 0.000

7 1.000 1.000 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.322 0.070 0.012 0.000

8 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.624 0.264 0.086 0.004

9 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.893 0.651 0.401 0.096

n = 15

x = 0 0.860 0.463 0.206 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.990 0.829 0.549 0.167 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 1.000 0.964 0.816 0.398 0.127 0.027 0.004 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.995 0.944 0.648 0.297 0.091 0.018 0.002 0.000 0.000 0.000 0.000 0.000

4 1.000 0.999 0.987 0.836 0.515 0.217 0.059 0.009 0.001 0.000 0.000 0.000 0.000

5 1.000 1.000 0.998 0.939 0.722 0.403 0.151 0.034 0.004 0.000 0.000 0.000 0.000

6 1.000 1.000 1.000 0.982 0.869 0.610 0.304 0.095 0.015 0.001 0.000 0.000 0.000

7 1.000 1.000 1.000 0.996 0.950 0.787 0.500 0.213 0.050 0.004 0.000 0.000 0.000

8 1.000 1.000 1.000 0.999 0.985 0.905 0.696 0.390 0.131 0.018 0.000 0.000 0.000

9 1.000 1.000 1.000 1.000 0.996 0.966 0.849 0.597 0.278 0.061 0.002 0.000 0.000

10 1.000 1.000 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.164 0.013 0.001 0.000

11 1.000 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.352 0.056 0.005 0.000

12 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.602 0.184 0.036 0.000

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.833 0.451 0.171 0.010

14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.794 0.537 0.140

n = 20

x = 0 0.818 0.358 0.122 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.983 0.736 0.392 0.069 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.999 0.925 0.677 0.206 0.035 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.984 0.867 0.411 0.107 0.016 0.001 0.000 0.000 0.000 0.000 0.000 0.000

(continued)
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Table AIV.1 (continued)

p =
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

4 1.000 0.997 0.957 0.630 0.238 0.051 0.006 0.000 0.000 0.000 0.000 0.000 0.000

5 1.000 1.000 0.989 0.804 0.416 0.126 0.021 0.002 0.000 0.000 0.000 0.000 0.000

6 1.000 1.000 0.998 0.913 0.608 0.250 0.058 0.006 0.000 0.000 0.000 0.000 0.000

7 1.000 1.000 1.000 0.968 0.772 0.416 0.132 0.021 0.001 0.000 0.000 0.000 0.000

8 1.000 1.000 1.000 0.990 0.887 0.596 0.252 0.057 0.005 0.000 0.000 0.000 0.000

9 1.000 1.000 1.000 0.997 0.952 0.755 0.412 0.128 0.017 0.001 0.000 0.000 0.000

10 1.000 1.000 1.000 0.999 0.983 0.872 0.588 0.245 0.048 0.003 0.000 0.000 0.000

11 1.000 1.000 1.000 1.000 0.995 0.943 0.748 0.404 0.113 0.010 0.000 0.000 0.000

12 1.000 1.000 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.032 0.000 0.000 0.000

13 1.000 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.087 0.002 0.000 0.000

14 1.000 1.000 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.196 0.011 0.000 0.000

15 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.370 0.043 0.003 0.000

16 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.589 0.133 0.016 0.000

17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.794 0.323 0.075 0.001

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.931 0.608 0.264 0.017

19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.878 0.642 0.182

n = 25

x = 0 0.778 0.277 0.072 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.974 0.642 0.271 0.027 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.998 0.873 0.537 0.098 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.966 0.764 0.234 0.033 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 1.000 0.993 0.902 0.421 0.090 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 1.000 0.999 0.967 0.617 0.193 0.029 0.002 0.000 0.000 0.000 0.000 0.000 0.000

6 1.000 1.000 0.991 0.780 0.341 0.074 0.007 0.000 0.000 0.000 0.000 0.000 0.000

7 1.000 1.000 0.998 0.891 0.512 0.154 0.022 0.001 0.000 0.000 0.000 0.000 0.000

8 1.000 1.000 1.000 0.953 0.677 0.274 0.054 0.004 0.000 0.000 0.000 0.000 0.000

9 1.000 1.000 1.000 0.983 0.811 0.425 0.115 0.013 0.000 0.000 0.000 0.000 0.000

10 1.000 1.000 1.000 0.994 0.902 0.586 0.212 0.034 0.002 0.000 0.000 0.000 0.000

11 1.000 1.000 1.000 0.998 0.956 0.732 0.345 0.078 0.006 0.000 0.000 0.000 0.000

12 1.000 1.000 1.000 1.000 0.983 0.846 0.500 0.154 0.017 0.000 0.000 0.000 0.000

13 1.000 1.000 1.000 1.000 0.994 0.922 0.655 0.268 0.044 0.002 0.000 0.000 0.000

14 1.000 1.000 1.000 1.000 0.998 0.966 0.788 0.414 0.098 0.006 0.000 0.000 0.000

15 1.000 1.000 1.000 1.000 1.000 0.987 0.885 0.575 0.189 0.017 0.000 0.000 0.000



APPENDIX IV Probability Tables 763

Table AIV.1 (continued)

p =
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

16 1.000 1.000 1.000 1.000 1.000 0.996 0.946 0.726 0.323 0.047 0.000 0.000 0.000

17 1.000 1.000 1.000 1.000 1.000 0.999 0.978 0.846 0.488 0.109 0.002 0.000 0.000

18 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.926 0.659 0.220 0.009 0.000 0.000

19 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.971 0.807 0.383 0.033 0.001 0.000

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.910 0.579 0.098 0.007 0.000

21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.967 0.766 0.236 0.034 0.000

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.902 0.463 0.127 0.002

23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.973 0.729 0.358 0.026

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.928 0.723 0.222
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Table AIV.2 Standard Norms Table

Area between 0 and z

0 z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
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Table AIV.3 t-Table

Right Tail Probabilities

t(p.df)

df\p 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005

1 0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192
2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991
3 0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240
4 0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103
5 0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688
6 0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588
7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079
8 0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413
9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869
11 0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370
12 0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178
13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208
14 0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405
15 0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728
16 0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150
17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651
18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216
19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834
20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495
21 0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193
22 0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921
23 0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676
24 0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454
25 0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251
26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066
27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896
28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739
29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594
30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460
∞ 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905
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Table AIV.4 Chi-Square Probabilities

x 2

df\p 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 4 × 10−5 16 × 10−5 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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Table AIV.5 Percentage Point of F -Distributions

0 F�

�

(continued)
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Table AIV.5 (continued)
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Table AIV.5 (continued)

(continued)
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Table AIV.5 (continued)
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Table AIV.5 (continued)

(continued)
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Table AIV.5 (continued)
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Table AIV.5 (continued)

(continued)
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Table AIV.5 (continued)
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Table AIV.5 (continued)

(continued)
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Table AIV.6 Wilcoxon Signed Rank Test P (W+ ≤ c)

n

c 3 4 5 6 7 8 9 10 11

0 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 0.000
1 0.250 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001
2 0.375 0.188 0.094 0.047 0.023 0.012 0.006 0.003 0.001
3 0.625 0.312 0.156 0.078 0.039 0.020 0.01 0.005 0.002
4 0.750 0.438 0.219 0.109 0.055 0.027 0.014 0.007 0.003
5 0.875 0.562 0.312 0.156 0.078 0.039 0.020 0.01 0.005
6 1.000 0.688 0.406 0.219 0.109 0.055 0.027 0.014 0.007
7 0.812 0.500 0.281 0.148 0.074 0.037 0.019 0.009
8 0.875 0.594 0.344 0.188 0.098 0.049 0.024 0.012
9 0.938 0.688 0.422 0.234 0.125 0.064 0.032 0.016

10 1.000 0.781 0.500 0.289 0.156 0.082 0.042 0.021
11 0.844 0.578 0.344 0.191 0.102 0.053 0.027
12 0.906 0.656 0.406 0.230 0.125 0.065 0.034
13 0.938 0.719 0.469 0.273 0.150 0.080 0.042
14 0.969 0.781 0.531 0.320 0.180 0.097 0.051
15 1.000 0.844 0.594 0.371 0.213 0.116 0.062
16 0.891 0.656 0.422 0.248 0.138 0.074
17 0.922 0.711 0.473 0.285 0.161 0.087
18 0.953 0.766 0.527 0.326 0.188 0.103
19 0.969 0.812 0.578 0.367 0.216 0.120
20 0.984 0.852 0.629 0.410 0.246 0.139
21 1.000 0.891 0.680 0.455 0.278 0.160
22 0.922 0.727 0.500 0.312 0.183
23 0.945 0.770 0.545 0.348 0.207
24 0.961 0.809 0.590 0.385 0.232
25 0.977 0.844 0.633 0.423 0.260
26 0.984 0.875 0.674 0.461 0.289
27 0.992 0.902 0.715 0.500 0.319
28 1.000 0.926 0.752 0.539 0.350
29 0.945 0.787 0.577 0.382
30 0.961 0.820 0.615 0.416
31 0.973 0.850 0.652 0.449
32 0.980 0.875 0.688 0.483
33 0.988 0.898 0.722 0.517
34 0.992 0.918 0.754 0.551
35 0.996 0.936 0.784 0.584
36 1.000 0.951 0.812 0.618
37 0.963 0.839 0.650
38 0.973 0.862 0.681
39 0.980 0.884 0.711
40 0.986 0.903 0.740

(continued)
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Table AIV.6 (continued)

n

c 3 4 5 6 7 8 9 10 11

41 0.990 0.920 0.768
42 0.994 0.935 0.793
43 0.996 0.947 0.817
44 0.998 0.958 0.840
45 1.000 0.968 0.861
46 0.976 0.880
47 0.981 0.897
48 0.986 0.913
49 0.990 0.926
50 0.993 0.938
51 0.995 0.949
52 0.997 0.958
53 0.998 0.966
54 0.999 0.973
55 1.000 0.979
56 0.984
57 0.988
58 0.991
59 0.993
60
61 0.997
62 0.998
63 0.999
64 0.999
65 1.000

1.000
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Table AIV.6 Wilcoxon Signed Rank Test: P(W+ ≤ c) (continued)

n

c 12 13 14 15 16 17 18 19 20

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
6 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
7 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
8 0.006 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000
9 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000

10 0.010 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000
11 0.013 0.007 0.003 0.002 0.001 0.000 0.000 0.000 0.000
12 0.017 0.009 0.004 0.002 0.001 0.001 0.000 0.000 0.000
13 0.021 0.011 0.005 0.003 0.001 0.001 0.000 0.000 0.000
14 0.026 0.013 0.007 0.003 0.002 0.001 0.000 0.000 0.000
15 0.032 0.016 0.008 0.004 0.002 0.001 0.001 0.000 0.000
16 0.039 0.020 0.010 0.005 0.003 0.001 0.001 0.000 0.000
17 0.046 0.024 0.012 0.006 0.003 0.002 0.001 0.000 0.000
18 0.055 0.029 0.015 0.008 0.004 0.002 0.001 0.000 0.000
19 0.065 0.034 0.018 0.009 0.005 0.002 0.001 0.001 0.000
20 0.076 0.040 0.021 0.011 0.005 0.003 0.001 0.001 0.000
21 0.088 0.047 0.025 0.013 0.007 0.003 0.002 0.001 0.000
22 0.102 0.055 0.029 0.015 0.008 0.004 0.002 0.001 0.001
23 0.117 0.064 0.034 0.018 0.009 0.005 0.002 0.001 0.001
24 0.133 0.073 0.039 0.021 0.011 0.005 0.003 0.001 0.001
25 0.151 0.084 0.045 0.024 0.012 0.006 0.003 0.002 0.001
26 0.170 0.095 0.052 0.028 0.014 0.007 0.004 0.002 0.001
27 0.190 0.108 0.059 0.032 0.017 0.009 0.004 0.002 0.001
28 0.212 0.122 0.068 0.036 0.019 0.010 0.005 0.003 0.001
29 0.235 0.137 0.077 0.042 0.022 0.012 0.006 0.003 0.002
30 0.259 0.153 0.086 0.047 0.025 0.013 0.007 0.004 0.002
31 0.285 0.170 0.097 0.053 0.029 0.015 0.008 0.004 0.002
32 0.311 0.188 0.108 0.060 0.033 0.017 0.009 0.005 0.002
33 0.339 0.207 0.121 0.068 0.037 0.020 0.010 0.005 0.003
34 0.367 0.227 0.134 0.076 0.042 0.022 0.012 0.006 0.003
35 0.396 0.249 0.148 0.084 0.047 0.025 0.013 0.007 0.004
36 0.425 0.271 0.163 0.094 0.052 0.028 0.015 0.008 0.004
37 0.455 0.294 0.179 0.104 0.058 0.032 0.017 0.009 0.005
38 0.485 0.318 0.195 0.115 0.065 0.036 0.019 0.010 0.005
39 0.515 0.342 0.213 0.126 0.072 0.040 0.022 0.011 0.006
40 0.545 0.368 0.232 0.138 0.080 0.044 0.024 0.013 0.007
41 0.575 0.393 0.251 0.151 0.088 0.049 0.027 0.014 0.008
42 0.604 0.420 0.271 0.165 0.096 0.054 0.030 0.016 0.009

(continued)
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Table AIV.6 (continued)

n

c 12 13 14 15 16 17 18 19 20

43 0.633 0.446 0.292 0.180 0.106 0.060 0.033 0.018 0.01
44 0.661 0.473 0.313 0.195 0.116 0.066 0.037 0.020 0.011
45 0.689 0.500 0.335 0.211 0.126 0.073 0.041 0.022 0.012
46 0.715 0.527 0.357 0.227 0.137 0.080 0.045 0.025 0.013
47 0.741 0.554 0.380 0.244 0.149 0.087 0.049 0.027 0.015
48 0.765 0.580 0.404 0.262 0.161 0.095 0.054 0.030 0.016
49 0.788 0.607 0.428 0.281 0.174 0.103 0.059 0.033 0.018
50 0.810 0.632 0.452 0.300 0.188 0.112 0.065 0.036 0.020
51 0.830 0.658 0.476 0.319 0.202 0.122 0.071 0.040 0.022
52 0.849 0.682 0.500 0.339 0.217 0.132 0.077 0.044 0.024
53 0.867 0.706 0.524 0.360 0.232 0.142 0.084 0.048 0.027
54 0.883 0.729 0.548 0.381 0.248 0.153 0.091 0.052 0.029
55 0.898 0.751 0.572 0.402 0.264 0.164 0.098 0.057 0.032
56 0.912 0.773 0.596 0.423 0.281 0.176 0.106 0.062 0.035
57 0.924 0.793 0.620 0.445 0.298 0.189 0.114 0.067 0.038
58 0.935 0.812 0.643 0.467 0.316 0.202 0.123 0.072 0.041
59 0.945 0.830 0.665 0.489 0.334 0.215 0.132 0.078 0.045
60 0.954 0.847 0.687 0.511 0.353 0.229 0.142 0.084 0.049
61 0.961 0.863 0.708 0.533 0.372 0.244 0.152 0.091 0.053
62 0.968 0.878 0.729 0.555 0.391 0.259 0.162 0.098 0.057
63 0.974 0.892 0.749 0.577 0.410 0.274 0.173 0.105 0.062
64 0.979 0.905 0.768 0.598 0.430 0.290 0.185 0.113 0.066
65 0.983 0.916 0.787 0.619 0.450 0.306 0.196 0.121 0.071
66 0.987 0.927 0.805 0.640 0.470 0.322 0.209 0.129 0.077
67 0.990 0.936 0.821 0.661 0.490 0.339 0.221 0.138 0.082
68 0.992 0.945 0.837 0.681 0.510 0.356 0.234 0.147 0.088
69 0.994 0.953 0.852 0.700 0.530 0.373 0.248 0.156 0.095
70 0.995 0.960 0.866 0.719 0.550 0.391 0.261 0.166 0.101
71 0.997 0.966 0.879 0.738 0.570 0.409 0.275 0.176 0.108
72 0.998 0.971 0.892 0.756 0.590 0.427 0.290 0.187 0.115
73 0.998 0.976 0.903 0.773 0.609 0.445 0.305 0.198 0.123
74 0.999 0.980 0.914 0.789 0.628 0.463 0.320 0.209 0.131
75 0.999 0.984 0.923 0.805 0.647 0.482 0.335 0.221 0.139
76 1.000 0.987 0.932 0.820 0.666 0.500 0.351 0.233 0.147
77 1.000 0.989 0.941 0.835 0.684 0.518 0.367 0.245 0.156
78 1.000 0.991 0.948 0.849 0.702 0.537 0.383 0.258 0.165
79 0.993 0.955 0.862 0.719 0.555 0.399 0.271 0.174
80 0.995 0.961 0.874 0.736 0.573 0.416 0.284 0.184
81 0.996 0.966 0.885 0.752 0.591 0.433 0.297 0.194
82 0.997 0.971 0.896 0.768 0.609 0.449 0.311 0.205
83 0.998 0.975 0.906 0.783 0.627 0.466 0.325 0.215
84 0.998 0.979 0.916 0.798 0.644 0.483 0.340 0.226
85 0.999 0.982 0.924 0.812 0.661 0.500 0.354 0.237
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Table AIV.6 (continued)

n

c 12 13 14 15 16 17 18 19 20

86 0.999 0.985 0.932 0.826 0.678 0.517 0.369 0.249
87 0.999 0.988 0.940 0.839 0.694 0.534 0.384 0.261
88 1.000 0.990 0.947 0.851 0.710 0.551 0.399 0.273
89 1.000 0.992 0.953 0.863 0.726 0.567 0.414 0.285
90 1.000 0.993 0.958 0.874 0.741 0.584 0.430 0.298
91 1.000 0.995 0.964 0.884 0.756 0.601 0.445 0.311
92 0.996 0.968 0.894 0.771 0.617 0.461 0.324
93 0.997 0.972 0.904 0.785 0.633 0.476 0.337
94 0.997 0.976 0.912 0.798 0.649 0.492 0.351
95 0.998 0.979 0.920 0.811 0.665 0.508 0.364
96 0.998 0.982 0.928 0.824 0.680 0.524 0.378
97 0.999 0.985 0.935 0.836 0.695 0.539 0.392
98 0.999 0.987 0.942 0.847 0.710 0.555 0.406
99 0.999 0.989 0.948 0.858 0.725 0.570 0.420

100 1.000 0.991 0.953 0.868 0.739 0.586 0.435
101 1.000 0.992 0.958 0.878 0.752 0.601 0.449
102 1.000 0.994 0.963 0.888 0.766 0.616 0.464
103 1.000 0.995 0.967 0.897 0.779 0.631 0.478
104 1.000 0.996 0.971 0.905 0.791 0.646 0.493
105 1.000 0.997 0.975 0.913 0.804 0.660 0.507
106 0.997 0.978 0.920 0.815 0.675 0.522
107 0.998 0.981 0.927 0.827 0.689 0.536
108 0.998 0.983 0.934 0.838 0.703 0.551
109 0.999 0.986 0.940 0.848 0.716 0.565
110 0.999 0.988 0.946 0.858 0.729 0.580
111 0.999 0.989 0.951 0.868 0.742 0.594
112 0.999 0.991 0.956 0.877 0.755 0.608
113 1.000 0.992 0.960 0.886 0.767 0.622
114 1.000 0.993 0.964 0.894 0.779 0.636
115 1.000 0.995 0.968 0.902 0.791 0.649
116 1.000 0.995 0.972 0.909 0.802 0.663
117 1.000 0.996 0.975 0.916 0.813 0.676
118 1.000 0.997 0.978 0.923 0.824 0.689
119 1.000 0.997 0.980 0.929 0.834 0.702
120 1.000 0.998 0.983 0.935 0.844 0.715
121 0.998 0.985 0.941 0.853 0.727
122 0.999 0.987 0.946 0.862 0.739
123 0.999 0.988 0.951 0.871 0.751
124 0.999 0.990 0.955 0.879 0.763
125 0.999 0.991 0.959 0.887 0.774
126 0.999 0.993 0.963 0.895 0.785
127 1.000 0.994 0.967 0.902 0.795

(continued)
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Table AIV.6 (continued)

n

c 12 13 14 15 16 17 18 19 20

128 1.000 0.995 0.970 0.909 0.806
129 1.000 0.995 0.973 0.916 0.816
130 1.000 0.996 0.976 0.922 0.826
131 1.000 0.997 0.978 0.928 0.835
132 1.000 0.997 0.981 0.933 0.844
133 1.000 0.998 0.983 0.938 0.853
134 1.000 0.998 0.985 0.943 0.861
135 1.000 0.998 0.987 0.948 0.869
136 1.000 0.999 0.988 0.952 0.877
137 0.999 0.990 0.956 0.885
138 0.999 0.991 0.960 0.892
139 0.999 0.992 0.964 0.899
140 0.999 0.993 0.967 0.905
141 1.000 0.994 0.970 0.912
142 1.000 0.995 0.973 0.918
143 1.000 0.996 0.975 0.923
144 1.000 0.996 0.978 0.929
145 1.000 0.997 0.980 0.934
146 1.000 0.997 0.982 0.938
147 1.000 0.998 0.984 0.943
148 1.000 0.998 0.986 0.947
149 1.000 0.998 0.987 0.951
150 1.000 0.999 0.989 0.955
151 1.000 0.999 0.990 0.959
152 1.000 0.999 0.991 0.962
153 1.000 0.999 0.992 0.965
154 0.999 0.993 0.968
155 0.999 0.994 0.971
156 1.000 0.995 0.973
157 1.000 0.995 0.976
158 1.000 0.996 0.978
159 1.000 0.996 0.980
160 1.000 0.997 0.982
161 1.000 0.997 0.984
162 1.000 0.998 0.985
163 1.000 0.998 0.987
164 1.000 0.998 0.988
165 1.000 0.999 0.989
166 1.000 0.999 0.990
167 1.000 0.999 0.991
168 1.000 0.999 0.992
169 1.000 0.999 0.993
170 1.000 0.999 0.994
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Table AIV.6 (continued)

n

c 12 13 14 15 16 17 18 19 20

171 1.000 1.000 0.995
172 1.000 0.995
173 1.000 0.996
174 1.000 0.996
175 1.000 0.997
176 1.000 0.997
177 1.000 0.998
178 1.000 0.998
179 1.000 0.998
180 1.000 0.998
181 1.000 0.999
182 1.000 0.999
183 1.000 0.999
184 1.000 0.999
185 1.000 0.999
186 1.000 0.999
187 1.000 0.999
188 1.000 1.000
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Table AIV.7 Wilcoxon Rank Sum Test
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Table AIV.7 (continued)

(continued)
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Table AIV.7 (continued)
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Table AIV.7 (continued)

(continued)
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Table AIV.7 (continued)
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Table AIV.7 (continued)

(continued)



790 APPENDIX IV Probability Tables

Table AIV.7 (continued)
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Table AIV.7 (continued)

(continued)
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Table AIV.8 Friedman Test
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Table AIV.8 (continued)

(continued)
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Table AIV.8 (continued)
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Table AIV.8 (continued)

(continued)
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Index

A
A priori probabilities. See Prior

probabilities
Absolute error loss function, for Bayesian

estimate, 570
Acting additively, 128
Alternative hypothesis

Bayesian hypothesis testing,
584–588

definition of, 338
errors and, 341–342, 341t
examples for, 340
exercises for, 348–349
necessity of, 340
sample size and, 346–348

Analysis of Variance (ANOVA), 499–557
approach to regression, 434–436,

435t
example for, 435–436, 435t, 436t

assumptions of, 713
completely randomized design,

510–526, 512f
decomposition of, 510–512, 512f
example for, 518–522, 518t, 519f,

520f, 521f
exercises for, 522–526
model for, 522
procedure for, 513–515b
p-value approach, 515–517, 517t
testing assumptions of, 517–522

computer examples for, 543–554
Minitab, 543–546
SAS, 548–554
SPSS, 546–547

decomposition of, 511–512, 512f
introduction to, 500–501
Kruskal–Wallis test v., 631
for Latin squares, 481
multiple comparisons, 536–542,

538t
example for, 538–541
exercises for, 541–542
Tukey’s method, 537b, 538t

for multiple linear regression model,
449–450, 449t

example for, 450, 450t
projects for, 554–557

in linear models, 556–557
with missing observations, 556
transformations, 554–555

randomized complete block design,
526–535, 528t, 529t

computational procedure for,
530–531b

decomposition of, 527–529
example for, 532–533
exercises for, 534–535

for single-factor experiments, 469
summary for, 543
t-test v., 501, 506–508, 536
for two treatments, 501–509

example for, 506–507
exercises for, 50–509
MSE and MST, 504–505
procedure for, 505–506b
SSE and SST, 502–504

Analysis of variance F -test, 556–557
Angular transformations, for ANOVA,

555
ANOVA. See Analysis of Variance
Aperiodic state, 755
Area sampling. See Cluster sampling
ASEs. See Averaged squared errors
Associative law, 749–750b
Asymptotic properties, 285–286
Atkinson, 487
Average deviation, 30
Averaged squared errors (ASEs), 287
Axiomatic probability, 57–58, 57b

B
Bar graph

definition of, 13
example for, 13, 13t, 14f
SAS examples for, 48–50

Bayes, Reverend Thomas, 559–560
Bayes’ rule

application of, 77b
definition of, 76–77, 562
example for, 77–78

Bayesian analysis
Gibbs algorithm for, 695
MCMC in, 682

Bayesian confidence interval. See
Credible intervals

Bayesian decision theory, 588–595
example for, 589–590
exercises for, 594–595
observables in, 591–592

example for, 592–594
optimal decision, 591
predicting future observations,

596–597
procedure for, 589b
states of nature with, 590–591, 591t

Bayesian estimate
criteria for finding, 569–577
definition of, 563
example for

informative prior, 564–565, 565t
noninformative prior, 566, 566t

Bayesian hypothesis testing, 584–588
example for, 586
exercises for, 587–588
Jeffreys’ hypothesis testing criterion,

585–586
odds ratio, 585
procedure for, 587b

Bayesian inference
introduction to, 560–562
population parameters and, 564

Bayesian inference Using Gibbs
Sampling (BUGS), 698

Bayesian point estimation, 562–579
criteria for finding Bayesian estimate,

569–577
loss functions, 569–570

derivation of, 562–564, 571
example for

informative prior, 564–565, 565t
noninformative prior, 566, 566t
posterior distribution, 567–569,

571–576, 574f
probability distribution, 574–575
quadratic loss function, 571–572
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Bayesian point estimation (continued)
exercises for, 577–579
introduction to, 560–562
posterior distribution, 563
procedure for, 570, 570b, 571f

Bell-shaped curve
example of, 32, 33f
histogram and, 19–20
normal probability distribution and,

125, 126f
Bernoulli population

efficiency example for, 275–276
unbiased estimators and, 247

Bernoulli random variable
law of large numbers for, 167
method of moments and, 228–229
mixture distribution and, 180–181
probability function of, 115
sufficient estimators and, 252–253

Beta distribution, 136
Between group sum of squares. See Sum

of squares for treatment
Bias

definition of, 247
jackknife method for, 659
in loss function, 491–492
in MSE, 250–251
occurrence of, 702

Biased estimators, 247
Binomial experiment, 115
Binomial probability distribution,

114–119
definition of, 101
examples for, 116–118
hypothesis testing with, 367–368
normal approximation to, 213–216,

214f
continuity correction for, 214–215,

214–215b, 215f
example for, 215–216

Poisson approximation to, 121,
121b

of random variable, 101
recursive calculation of, 182

Binomial random variable
definition of, 101
examples for, 116–118
expected value of, 118–119, 118b
mean of, 101–102, 118–119, 118b
moment-generating function of,

118–119, 118b
SAS examples for, 178–180
variance of, 118–119, 118b

Binomial theorem, 116
Birthday problem, 67–68, 112
Bivariate data, modeling, 730–732,

730f
Blinding, 471
Block, 471–472
Blocking, 471–472
Bonferroni procedure, 536
Bootstrap confidence interval, 667–669

procedure to find
for mean, 667–668b, 668
for median, 668b

Bootstrap method
computation of, 699–700
confidence interval, 667–669
description of, 663–664
example for, 664
jackknife method v., 664
standard error and, 663, 665–666,

665b, 666–667b
example for, 666–667

Box plots, 33–35, 34f
for ANOVA, 518–522, 521f
definition of, 33
example for, 34–35, 35f

tying it all together, 735–743, 736f,
741f

for hypothesis testing, 365–366,
366f

Minitab examples for, 44–45, 45f
for outliers, 709
procedure for construction of, 33b
SAS examples for, 48–50
side-by-side, 704

Box-and-whisker plots. See Box plots
BUGS. See Bayesian inference Using

Gibbs Sampling

C
“Cannot reject,” with Minitab, 46
Categorical data. See Qualitative data
cdf. See Cumulative distribution function
Census study, 8
Center of data, with histogram, 19–20
Central kth moment. See kth moment

about its mean
Central Limit Theorem (CLT), 125,

168–171, 168b
definition of, 168–169, 168b
examples for, 169–171
large sample approximations and,

212–213

large sample confidence interval,
300

normal approximation to binomial
distribution and, 214

in statistics, 171
Student t-distribution v., 198

Chapman–Komogorov equation,
753–754

Chebyshev, Pafnuty, 164
Chebyshev’s theorem, 164–165, 164b

consistency test with, 267–268
definition of, 164
examples for, 165–166
proof of, 164–165

Chi-square distribution
confidence interval for population

variance and, 315–320, 316f
definition of, 135, 135f
examples for, 195–196

probability, 197–198
sample variance, 197

exercises for, 204–207
Friedman test and, 636

example for, 637–638, 637t, 638t
Neyman–Pearson lemma and,

353–354
sampling distributions associated

with normal populations,
192–198, 194f, 195f

summary for, 198b
Chi-square random variable

degrees of freedom of, 193
F -distribution and, 202
from gamma random variable, 193
mean, variance, and mgf of, 136b
from standard normal random

variable, 193, 194f
Chi-square tests

for count data, 388–398
exercises for, 397–398
goodness of fit, 389
multinomial distribution testing,

390–392
test for independence, 392–395
testing to identify probability

distribution, 395–397
for goodness of fit, 395–397
Kruskal–Wallis test and, 632
for observed frequency, 389–390

Claimed mean, in hypothesis testing,
364

Class boundaries, 17
Class mark, 17
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Classical probability
computing method for, 56, 56b
definition of, 56b

Clinical studies, 4
CLT. See Central Limit Theorem
Cluster sampling, 11
Coefficient of determination, 422,

461–462
Combinations formula, 65–66b, 66

example for, 66
Commutative law, 749–750b
Complement, 749, 749f
Complement law, 749–750b
Completely randomized design

ANOVA, 510–526, 512f
decomposition of, 510–512,

512f
example for, 518–522, 518t,

519f, 520f, 521f
exercises for, 522–526
model for, 522
procedure for, 513–515b
p-value approach, 515–517,

517t
testing assumptions of, 517–522

definition of, 474
example for, 469
Minitab example, 543–545
SAS example, 548–549
SPSS example, 546–547
for two or more populations,

513–515b
Computer examples

for ANOVA, 543–554
Minitab, 543–546
SAS, 548–554
SPSS, 546–547

for Bayesian computation, 596
for descriptive statistics, 41–51

Minitab, 41–46
SAS, 47–50
SPSS, 46–47

for empirical methods, 698–699
for experimental design, 494–497

Minitab, 494
SAS, 494–497

for hypothesis testing, 399–408
Minitab, 399–403
SAS, 405–408
SPSS, 403–405

for interval estimation, 330–333
Minitab, 330–332
SAS, 333

SPSS, 332
for linear regression models,

455–461
Minitab, 455–456
SAS, 458–461
SPSS, 457–458

for nonparametric tests, 642–652
Minitab, 642–646
SAS, 648–652
SPSS, 646–648

for point estimation, Minitab,
283–285

for probability theory, 108–111,
175–180

Minitab, 109–110, 175–177
SAS, 110–111, 178–180
SPSS, 110, 177

for sampling distributions, 219–221
Minitab, 219
SAS, 219–221
SPSS, 219

Computers, statistics and, 39–40
Conditional expectation

definition of, 147
example for, 148

Conditional probability density function,
Gibbs algorithm and, 692

Conditional probability distribution
definition of, 71, 144
example for, 72–73, 144–146,

145f
exercises for, 78–83
properties of, 72b

Confidence coefficient, 292
Confidence interval

bootstrap method and, 663,
667–669

calculation of, 292–293
example for, 293–295

computer examples for, 330–333
Minitab, 330–332
SAS, 333
SPSS, 332

concerning two population
parameters, 321–329

difference of two means, 321–324,
321b, 322b

exercises for, 327–329
for probability, 325–326,

325b
for variance, 326–327, 326b

conducting a statistical test with,
409–410

definition of, 292
example for tying it all together,

735–743
exercises for, 298–300
in hypothesis testing, 409–410

for dependent samples, 384
jackknife, 659
large sample, 300–310

for difference of two means,
321–322, 321b

example for, 300–303
exercises for, 306–310
margin of error and sample size,

303–306
Minitab examples for, 331
procedure for calculation of,

300b
projects for, 334–335
for proportion, 302–303, 325,

325b
nonparametric, 601–606, 602f

example for, 603–605
exercises for, 605–606
median for, 602–603, 602f
procedure for finding, for median,

603b
pivotal method for, 293–298, 295f,

296f
example for, 296–298
procedure for, 296b

for population variance, 315–320,
316f

examples for, 317–318
exercises for, 318–320
procedure for, 317b

projects for, 334–336
based on sampling distributions,

334
large sample confidence intervals,

334–335
prediction interval from normal

population, 336
simulation of coverage of small

confidence intervals, 334
for regression coefficients, 429b

example for, 430–431
for simple model for univariate data,

727–729, 729f
small sample, 310–315

examples for, 311–312
exercises for, 313–315
procedure for, 310–311b, 311

Conjugate prior, 567
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Consistency, 266–269, 266f
definition of, 266
examples for

sample mean, 267
sample variance and MLEs,

268–269
exercises for, 279–282
test for, 267–268, 267b

procedure for, 268b
of unbiased estimator, 266b
uniqueness and, 269

Contingency, investigation of,
392–395

Contingency table, Minitab example for,
402

Continuous random variable
cumulative distribution function for

definition of, 86
examples for, 87–90, 87f, 88f, 89f,

90f
properties of, 87b

definition of, 86
expected value of

definition of, 93
examples of, 93–94, 94f

Metropolis algorithm for, 685–686b
M-H algorithm for, 689–690, 690b
Neyman–Pearson lemma and,

350–352
Poisson probability distribution and,

122
posterior distribution for, 567–569
probability density function for

definition of, 86
examples, 87–90, 87f, 88f, 89f,

90f
simulations of, 221–222

Control plot, for Taguchi methods,
489–490, 490f, 491f

Correlation
definition of, 149, 441
probability distribution of, 442

Correlation analysis, 440–444
definition of, 441
exercises for, 444

Correlation coefficient
definition of, 149, 441
hypothesis test for, 442b

example for, 443
linear regression model and,

441–442
properties of, 149b

Count data, chi-square tests for,
388–398

exercises for, 397–398
goodness of fit, 389
multinomial distribution testing,

390–392
test for independence, 392–395
testing to identify probability

distribution, 395–397
Countable, 750
Countably infinite, 750
Counting random variable, 119
Counting techniques, probability

calculation and, 63–71
exercises for, 69–71

Coupon collector’s problem, 181
Covariance

definition of, 148
example for, 149–150
properties of, 149b

Cramér–Rao inequality, 273b, 274
Cramér–Rao procedure, to test efficiency,

274b
example for, 274–275

Credible intervals, 579–584, 580f
definition of, 579–580
examples for, 580–581, 581f

with HPD, 583
exercises for, 583–584
highest posterior density, 582
procedure for, 581, 582b

Cross-sectional data
definition of, 5
example for, 6, 6t, 7t

Cumulative distribution function (cdf)
for continuous random variables

definition of, 86
examples for, 87–90, 87f, 88f, 89f,

90f
properties of, 87b

for discrete random variables
definition of, 84
examples for, 85–86, 85f, 86f

find pdf with, 155
find with Poisson probability

distribution, 156
method of distribution functions for,

155b, 156
Minitab examples for, 175–177

Cumulative relative frequency
definition of, 17
example of, 17–18

D
Data

graphical representation of, 13–26
bar graph, 13–14, 13t, 14f
box plots, 704
dotplot, 703
exercises for, 20–26, 707–708
Pareto graph, 14, 15f
pie chart, 15, 15t, 16f
quantile quantile plot, 705–706
scatterplot, 704–705, 704f, 705f
stem-and-leaf plot, 16–17, 16t

numerical description of, 26–39
box plots, 33–35
exercises for, 35–39
grouped data, 30–33

Data collection, 3
general procedures for, 3b

Data types, in descriptive statistics,
5–8

de Méré, Chevalier, 54
de Moivre, Abraham, 125, 183–184
De Morgan’s laws, 749–750b
Degrees of freedom, 192
Density function, of normal probability

distribution, 125
Denumerable, 750
Dependency, investigation of, 392–395
Dependent event

definition of, 74
example for, 74

Dependent samples, hypothesis testing
for, 382–385

confidence interval, 384
exercises for, 385–388
matched pairs, 382, 383–384, 383b

Dependent variable, in regression
analysis, 412

Descriptive statistics, 1–51
basic concepts of, 3–8

data types, 5–8
exercises for, 7–8

computer examples for, 41–51
exercises for, 50–51
Minitab, 41–46
SAS, 47–50
SPSS, 46–47

computers and statistics, 39–40
definition of, 2, 5
graphical representation of data,

13–26
bar graph, 13–14, 13t, 14f



Index 807

exercises for, 20–26
Pareto graph, 14, 15f
pie chart, 15, 15t, 16f
stem-and-leaf plot, 16–17, 16t

introduction to, 2–3
data collection, 3

numerical description of data, 26–39
box plots, 33–35
exercises for, 35–39
grouped data, 30–33

probability theory and, 54
projects for, 51
sampling schemes, 8–12

errors in, 11–12
exercises for, 12
sample size, 12

summary of, 40–41
Design of experiment (DOE), 465–497

completely randomized design
definition of, 474
example for, 469

computer examples for, 494–497
Minitab, 494
SAS, 494–497

concepts from, 467–483
exercises for, 482–483
fundamental principles, 471–474
specific designs, 474–481
terminology, 467–471

elements of, 467
factorial design, 483–487

definition of, 483
exercises for, 486–487
fractional, 486
full, 485–486
one-factor-at-a-time design,

483–485, 485f
Greco-Latin squares, 481, 481t
introduction to, 466–467
Latin square design

definition of, 477
example for, 478, 478t
history of, 477–478
procedure for constructing, 478b,

479–480, 479t, 480t
observational study v., 468
optimal design, 487–489

sample size selection, 487–489
projects for, 497
randomized complete block design

definition of, 474
examples for, 475

procedure for, 474–475b
with replications, 475–476b,

476–477
summary for, 493–494
Taguchi methods, 489–493, 490f,

491f
exercises for, 492–493

variance in, 470–471
Design parameters, 492
Difference

of set, 749
symmetric, 749

Discrete distribution, sufficient statistic
for, 259–260

Discrete random variable
cumulative distribution function for,

84
definition of, 84
example for, 84–85
expected value of

definition of, 92
examples of, 93–94, 94f, 96

Metropolis algorithm for, 685b
M-H algorithm for, 689b
Poisson probability distribution and,

120
probability mass function for, 84
uniform distribution of, 96

Disjoint. See Mutually exclusive
Distribution functions. See Cumulative

distribution function; Probability
distribution functions

Distributional model, histogram and,
19–20

Distributive law, 749–750b
DOE. See Design of experiment
Dominant trait, 73
Dotplot

example of, 703
tying it all together, 735–743, 736f,

741f
for normality, 714–715, 714f
for simple model for univariate data,

727–729, 729f
use of, 703

Double-blind, 471

E
Efficiency, 270–277

Cramér–Rao inequality, 273b, 274
Cramér–Rao procedure to test, 274b

example for, 274–275

definition of, 270
efficient estimator, 274, 274b
examples for

Bernoulli population, 275–276
Poisson distribution, 275
with sample mean and variance,

270–272
exercises for, 279–282
relative

definition of, 272
example for, 272–273

relative test for, 270b
uniformly minimum variance

unbiased estimator, 273
Efficient estimator, 274, 274b
Efron, Bradley, 663
80/20 rule. See Pareto effect
Elements, 747
EM algorithm. See Expectation

maximization algorithm
Empirical distribution function, 288–289
Empirical mean. See Sample mean
Empirical methods, 657–700

bootstrap methods, 663–669
confidence interval, 667–669
description of, 663–664
example for, 664
jackknife method v., 664
standard error and, 663, 665–667,

665b, 666–667b
computer examples for, 698–699
expectation maximization algorithm,

669–681
examples for, 673–679
exercises for, 680–681
log-likelihood function and, 680
overview of, 670–671
steps of, 671–673, 671b
use of, 669–670

introduction to, 658
jackknife method, 658–663

exercises for, 661–663
history of, 658
procedure for point and interval

estimation, 660–661, 660b, 660t,
661t

use of, 658–659
Markov chain Monte Carlo, 681–697

algorithms for, 682
in Bayesian analysis, 682
with Bayesian estimation, 562
construction of, 683–685
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Empirical methods (continued)
exercises for, 696–697
Gibbs algorithm, 682, 692–695,

693f, 695b
issues in, 695–696
Metropolis algorithm, 682,

685–686b, 685–688, 689f
Metropolis–Hastings algorithm,

682, 688–692, 689b, 690b
Monte Carlo integration, 682, 683b
objective of, 682
references for, 696

projects for, 699–700
summary for, 697–698

Empirical rule, 32b
Enumerable, 750
Ergodic

definition of, 755
Markov chain, 755–756

Ergodic theorem, 756
Erland distribution, 131
Error probabilities

example for, 342–344
statistical decision and, 340–342,

341t
Error variance, in linear regression

models, estimation of, 425
Errors

in hypothesis testing, 340–342,
341t

normality of, 453
in sample data, 11–12

E-step. See Expectation step
Estimates, 227
Estimators. See also Maximum likelihood

estimators
biased, 247
definition of, 227
least-squares

derivation of, 416–421, 420f
Gauss–Markov theorem, 424b
inferences on, 428–437, 435t
for multiple linear regression

model, 446
properties of, 422–425

method of maximum likelihood for,
235–246

exercises for, 244–246
likelihood function in, 235–236
maximum likelihood estimators,

236
method of moments for, 227–235

definition of, 228b

exercises for, 233–235
generalized, 233
Poisson distribution, 232–233
population parameters, 228–230
population probability density

function, 231–232
procedure for, 228b
for sample mean and variance,

230–231
properties of, 246–282

unbiased estimators, 247–252
sufficiency, 252

Euler, Leonhard, 477–478
Expectation maximization (EM)

algorithm, 669–681
example for

censored survival times, 673–676
normal sample, 677–678
unknown variables, 678–679

exercises for, 680–681
log-likelihood function and, 680
overview of, 670–671
steps of, 671–673, 671b
use of, 669–670

Expectation step (E-step), of EM
algorithm, 671–673

Expected frequency, 389
Expected value

of binomial random variable,
118–119, 118b

of continuous random variables
definition of, 93
examples of, 93–94, 94f

of discrete random variables
definition of, 92
examples for, 93–94, 94f, 96–98

with joint probability function, 146
example for, 147

MCMC and, 683
with median test, 621
Minitab examples for, 109–110
properties of, 95b, 146b
of sample variance, 188–189
SAS examples for, 110–111
SPSS examples for, 110
of uniform random variable, 123b,

124
Experiment

binomial, 115
definition of, 55

Experimental design, 465–497
completely randomized design

definition of, 474

example for, 469
computer examples for, 494–497

Minitab, 494
SAS, 494–497

concepts from, 467–483
exercises for, 482–483
fundamental principles, 471–474
specific designs, 474–481
terminology, 467–471

elements of, 467
factorial design, 483–487

definition of, 483
exercises for, 486–487
fractional, 486
full, 485–486
one-factor-at-a-time design,

483–485, 485f
Greco-Latin squares, 481, 481t
introduction to, 466–467
Latin square design

definition of, 477
example for, 478, 478t
history of, 477–478
procedure for constructing, 478b,

479–480, 479t, 480t
observational study v., 468
optimal design, 487–489

sample size selection, 487–489
projects for, 497
randomized complete block design

definition of, 474
examples for, 475
procedure for, 474–475b
with replications, 475–476b,

476–477
single-factor and multifactor,

469–470
summary for, 493–494
Taguchi methods, 489–493, 490f,

491f
exercises for, 492–493

variance in, 470–471
Experimental error

analysis of variance for, 470–471
definition of, 470

Experimental units
definition of, 468
example for, 469

Explanatory variable. See Independent
variable

Exponential probability distribution
definition of, 133, 134f
examples for, 134–135
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generating samples from, 181
random variable simulation with, 221
SAS example for, 220–221

Exponential random variables
definition of, 133
mean, variance, and mgf of, 134b

F
Factor levels

definition of, 468
examples for, 469–470

Factorial design, 483–487
definition of, 483
exercises for, 486–487
fractional, 486
full, 485–486
one-factor-at-a-time design,

483–485, 485f
definition of, 483–484
example for, 484, 485f

Factorization theorem, for joint
sufficiency, 258b

examples for, 259–260
Factors. See also Independent variable

definition of, 467–468
examples for, 469–470

F -distribution, 202–204, 202f, 203f
definition of, 202
example for, 204
exercises for, 204–207
regression analysis and, 434
theorem for, 203–204

Fermant, Pierre, 54
Finance, 4
Finite population correction factor, 187
Finite population, in sampling

distributions, 187–189
Finite set, 747
Fisher information, 276–277
Fisher, Sir Ronald, 1–2, 235, 478, 500
Fisher z-transform, 442
Fractional factorial design, 486
Frequency interpretation of probability,

67
examples for, 67–69

Frequency probability, 57b
Frequency table

creation of, 17
definition of, 17
guidelines for construction of,

18–19b
SAS examples for, 48–50

Friedman test, 634–638
chi-square distribution and, 636

example for, 637–638, 637t, 638t
example for, 635–636, 635t, 636t
Minitab example for, 645–646
procedure for, 634–635b

F -test, analysis of variance, 556–557
Full conditionals, 693
Full factorial design, 485–486

G
Galton, Sir Francis, 411–412
Gamma density, 131
Gamma function, 131
Gamma probability distribution,

131–136, 132f, 134f, 135f
definition of, 131
examples of, 132–133
maximum likelihood estimators

with, 242–243
method of moments and, 229–230
plotting of, 131, 132f

Gamma random variable
chi-square random variable from,

193
mean, variance, and mgf of, 132b

Gauss, Carl Friedrich, 54, 113–114,
125

Gaussian distribution, 125
central limit theorem and, 169

Gauss–Markov theorem, for least-squares
estimators, 424b

Generalized method of moments
(GMM), 233

Genetics, probability and statistics in,
73–74

example for, 73–74, 74t
Hardy–Weinberg Law, 112, 116–117

Geometric distribution, maximum
likelihood estimators with,
237–238

Gibbs algorithm
assumption for, 692–693, 693f
example for, 693–694
for MCMC, 682, 692–695, 693f
summary of, 695b

Gibbs sampler. See Gibbs algorithm
GM. See Grand mean
GMM. See Generalized method of

moments
Goodness of fit

for ANOVA, 517

chi-square test, 395–397
definition of, 389
example for, 389, 396–397
probability distributions, 395b
test for, 390–392

examples for, 390–392
summary of, 390b

Grand mean (GM), in ANOVA, 511–512,
512f

Graphical representation, 13–26,
702–708, 704f, 706f

bar graph, 13–14, 13t, 14f
box plots, 704
dotplot, 703
exercises for, 20–26, 707–708
Pareto graph, 14, 15f
pie chart, 15, 15t, 16f
quantile quantile plot, 705–706

example of, 706
scatterplot, 704, 704f

example for, 704–705, 705f
stem-and-leaf plot, 16–17, 16t

Greco-Latin squares, 481, 481t
Green revolution, 500
Grouped data

definition of, 17
mean of, 30–31, 30t, 31t
numerical measures for, 30–33
variance of, 30

H
Hardy–Weinberg Law, 112, 116

example for, 116–117
Heteroscedastic errors, 431
High leverage points, in linear regression

models, 462–463
Highest posterior density (HPD), 582

example for, 583
Histogram

data transformation and, 717–719,
718f, 719f

definition of, 18
dotplot v., 703
empirical rule and, 32b
example of, 19, 20f
guidelines for construction of,

18–19b
Minitab examples for, 43, 43f, 219
for normality, 714–715, 714f
SPSS examples for, 46
use of, 18

Homogeneous Markov chains, 752
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Homoscedastic errors, 431
Homoscedasticity, least-squares

regression model and, 452, 452f
HPD. See Highest posterior density
Hypothesis testing, 337–410. See also

Nonparametric hypothesis test
Bayesian, 584–588

example for, 586
exercises for, 587–588
Jeffreys’ hypothesis testing criterion,

585–586
odds ratio, 585
procedure for, 587b

chi-square tests for count data,
388–398

exercises for, 397–398
goodness of fit, 389
multinomial distribution testing,

390–392
test for independence, 392–395
testing to identify probability

distribution, 395–397
computer examples for, 399–408

Minitab, 399–403
SAS, 405–408
SPSS, 403–405

confidence interval for, 409–410
for correlation coefficient, 442b

example for, 443
error probabilities in, 340–342,

341t
examples for, 340

error probabilities, 342–346
exercises for, 348–349
general method for, 339b
introduction to, 338–349

sample size, 346–348
likelihood ratio tests, 355–361

definition of, 357b
examples for, 357–360
exercises for, 360–361
procedure for, 359b
UMP tests, 355–356

Neyman–Pearson lemma, 349–355
example for, 352–353
exercises for, 355
procedure for applying, 353b
theorem for, 350–352

nonparametric
for multiple samples, 630–640
for one sample, 606–620
for two samples, 620–630

projects for, 408–410

conducting a statistical test with
confidence interval, 409–410

testing on computer-generated
samples, 408–409

for regression coefficients, 431b,
432b

example for, 432–433
for single parameter, 361–372

examples for, 365–368, 366f
exercises for, 370–372
large sample, 368b
nonparametric, 606–620
p-value, 361–363
summary of, 364–365b
testing, 363–372
variance, 368–369b

statistical hypothesis, 338–339, 339b
statistical inference and, 561
steps in any, 363b
summary for, 399
for two samples, 372–388

dependent samples, 382–385
equality of variances, 380–382,

381b
exercises for, 385–388
independent samples, 373–382
large sample hypothesis testing,

373–374b, 374
nonparametric, 620–630
small sample of two population

means, 375–379, 375b
for two proportions, 379–380b,

379–381
Wilcoxon signed rank test procedure,

611–612b

I
Idempotent law, 749–750b
Identically distributed, 184
Identity law, 749–750b
Impossible event, 55
Independence sampler, 688
Independent event, 74
Independent random variables

distribution of, 160–161, 161f
examples for, 144–146, 145f
pdf and, 144
in Student t-distribution, 200

Independent samples
hypothesis testing for, 373–382

equality of variances, 380–382,
381b

example for, 394–395
exercises for, 385–388
large sample hypothesis testing,

373–374b, 374
for large samples, 373–374b
small sample population means,

375–379, 375b
of two factors, 392–395
for two proportions, 379–380b,

379–381
test for, 724

Independent variable
definition of, 467
example for, 469
in regression analysis, 412

Inferential statistics
definition of, 5
probability theory and, 54

Infinite set, 747
Influential observations, least-squares

regression model and, 453
Informal probability, 55b
Informative priors, in Bayesian point

estimation, example of, 564–565,
565t

Input variable. See Independent variable
Interquartile range (IQR)

definition of, 27
example for, 28–29

Intersection, 748, 749f
Interval estimation, 291–336

computer examples for, 330–333
Minitab, 330–332
SAS, 333
SPSS, 332

concerning two population
parameters, 321–329

difference of two means, 321–324,
321b, 322b

exercises for, 327–329
for probability, 325–326, 325b
for variance, 326–327, 326b

confidence interval
calculation of, 292–293
definition of, 292

definition of, 292
introduction to, 292–300

exercises for, 298–300
jackknife method procedure for, 660b

example for, 660–661, 660t, 661t
large sample confidence interval,

300–310
example for, 300–303
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exercises for, 306–310
margin of error and sample size,

303–306
procedure for calculation of, 300b
for proportion, 302–303, 325, 325b

for population variance, 315–320,
316f

examples for, 317–318
exercises for, 318–320
procedure for, 317b

projects for, 334–336
based on sampling distributions,

334
large sample confidence intervals,

334–335
prediction interval from normal

population, 336
simulation of coverage of small

confidence intervals, 334
small sample confidence intervals,

310–315
examples for, 311–312
exercises for, 313–315
procedure for, 310–311b, 311

statistical inference and, 561
summary for, 330

Interval estimator
definition of, 292
purpose of, 292

Invariance property, of maximum
likelihood estimators, 243

IQR. See Interquartile range
Irreducible Markov chain, 755

J
Jackknife confidence interval, 659
Jackknife estimate, 659
Jackknife method, 658–663

bootstrap method v., 664
exercises for, 661–663
history of, 658
procedure for point and interval

estimation, 660b
example for, 660–661, 660t, 661t

use of, 658–659
Jacobian of transformation, 159
Joint probability density function, 159

of order statistics, 208, 210
Joint probability distributions, 141–154,

145f
conditional expectation, 147–148
covariance and correlation, 148–150

definition of, 141
exercises for, 150–154
expected value, 146–147, 146b
independent random variables,

144–146, 145f
marginal pmf, 143–144
MLE with, 244

Joint probability function
with Bayes theorem, 562

example for, 574–575
definition of, 141
examples for, 142
expected value with, 146

example for, 147
Jointly sufficient

definition of, 257
examples for, 258–260
factorization criteria for, 258b

K
Khintchine, A., 167
Kiefer, J., 487
Komogorov, Andrei, 54
Kruskal–Wallis test, 631–634

for ANOVA, 518
chi-square approximation, 632
example for, 632–634, 633t
Friedman test v., 634
Minitab example for, 644–645
procedure for, 631–632b
SAS example for, 650–652
SPSS example for, 647–648
theorem of, 632

kth moment about its mean, 99
kth moment about the origin

definition of, 99
in method of moments, 227–228

kth order statistic
definition of, 207–208
probability density function of, 208

example for, 209
Kurtosis, 98–105

definition of, 99

L
Laboratory experiments, 4
Laplace, Pierre, 54, 125
Large sample approximations, 212–218

exercises for, 216–218
normal approximation to binomial

distribution, 213–216, 214f, 215f

Large sample confidence interval,
300–310

for difference of two means,
321–322, 321b

example for, 300–302
exercises for, 306–310
margin of error and sample size,

303–306
examples for, 305–306

Minitab examples for, 331
procedure for calculation of, 300b
projects for, 334–335
for proportion, 302–303, 325b

example for, 303, 325
Large sample hypothesis testing,

364–365b
independent samples, 373–374b

example for, 374
median test, 622–623b
sign test, 610b
Wilcoxon rank sum test, 627–628b

example for, 628–629, 628t
Wilcoxon signed rank test, 615b

Latin square design
ANOVA for, 481
definition of, 477
example for, 478, 478t
history of, 477–478
procedure for constructing, 478b

example for, 479–480, 479t, 480t
Law of large numbers, 166–167b,

166–168
for Bernoulli random variable, 167
definition of, 166–167b
example for, 167–168
proof of, 167

Law of total probability, 75b
example for, 75–76

Laws of probability, 2
Least-squares estimators

derivation of, 416–421, 420f
Gauss–Markov theorem, 424b
inferences on, 428–437

ANOVA approach to, 434–436,
435t

exercises for, 436–437
for multiple linear regression model,

446
properties of, 422–425

Least-squares line
definition of, 416
procedure for fitting, 418b

example for, 419–420, 420f
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Least-squares regression model
error independence, 453
example for, 739–743, 743f
homoscedasticity and, 452, 452f
linearity and, 452
normality of errors, 453

“Leave-one-out” method, 661
Leptokurtic, 99
Level, in experimental design, 468
Level of significance, 341
Levene’s test, ANOVA and, 518, 722
Likelihood function

Bayesian inference and, 561
Bayesian point estimation and,

562–563, 565, 576–577, 577f
example for, 564–565, 565t

definition of, 235–236
EM algorithm and, 670–671
example for, 236
likelihood ratio and, 356
for uniform probability distribution,

24f, 240
Likelihood ratio, 355–361

definition of, 356
LRTs, 357b

Likelihood ratio tests (LRTs), 355–361
definition of, 357b
examples for, 357–360
exercises for, 360–361
procedure for, 359b
UMP tests, 355–356

Lilliefors test, 222
Limit theorems, 163–173

central limit theorem, 168–171,
168b

Chebyshev’s theorem, 164–166,
164b

exercises for, 171–173
law of large numbers, 166–167b,

166–168
Linear regression models, 411–463

ANOVA in, 556–557
computer examples for, 455–461

Minitab, 455–456
SAS, 458–461
SPSS, 457–458

correlation analysis, 440–444
exercises for, 444

inferences on least-squares
estimators, 428–437

ANOVA approach to, 434–436,
435t

exercises for, 436–437

introduction to, 412–413
matrix notation for, 445–451

exercises for, 450–451
multiple linear regression model

ANOVA for, 449–450, 449t, 450t
definition of, 414
exercises for, 450–451
least-squares estimators for, 446
matrix examples for, 447–448
model for, 445
procedure to obtain equation,

447b
sum of squares for errors for,

446–447
predicting a particular value of Y ,

437–440
example for, 439
exercises for, 440

projects for, 461–463
coefficient of determination,

461–462
outliers and high leverage points,

462–463
scatterplots for checking adequacy,

461
regression diagnostics, 451–453
simple, 413–428, 413f, 414f

derivation of estimators, 416–421,
420f

estimation of error variance, 425
exercises for, 425–428
least-squares estimator properties,

422–425
method of least squares, 415–416,

415f
quality of regression, 421–422,

421f, 422f
summary for, 454

Linearity, least-squares regression model
and, 452

Logarithmic transformations, for
ANOVA, 555

Log-likelihood function, 237
EM algorithm and, 680

Log-normal distribution, 129–130
examples for, 130–131

Loss function, 489–491, 490f
for Bayesian estimate, 569–570
bias and variance in, 491–492
quadratic, 491, 491f

Loss, in Bayesian decision theory, 589
Lower quartile

definition of, 27

example for, 28–29
LRTs. See Likelihood ratio tests

M
Maclaurin’s expansion, with Poisson

random variable, 120
Margin of error

definition of, 303
large sample confidence interval and,

303–306
examples for, 305–306

Marginal probability density function
with Bayes theorem, 562
definition of, 143
examples for, 143–146, 143t, 145f

Marginal probability mass function
definition of, 143
examples for, 144–146, 145f

Markov, A.A., 751
Markov chain Monte Carlo (MCMC),

681–697
algorithms for, 682
in Bayesian analysis, 682
in Bayesian estimation, 562
Chapman–Komogorov equation,

753–754
construction of, 683–685
exercises for, 696–697
Gibbs algorithm, 692–695, 693f

assumption for, 692–693, 693f
example for, 693–694
for MCMC, 682, 692–695, 693f
summary of, 695b

issues in, 695–696
Metropolis algorithm, 682, 685–688

for continuous distribution,
685–686b

for discrete distribution, 685b
example for, 686–688
in MCMC, 682, 685–688
target distribution from, 688, 689f

Metropolis–Hastings algorithm, 682,
688–692

continuous case, 689–690, 690b
discrete case, 689b
example for, 690–692
generalizations of, 690
in MCMC, 682, 688–692
use of, 688

Monte Carlo integration, 682, 683b
objective of, 682
random walk chain, 753–754
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references for, 696
review for, 751–756
transition matrices for, 752

examples for, 752–755
transition probabilities for, 751

example for, 753–754
Masuyama, Motosaburo, 465
Matched pairs test

hypothesis testing and, 382,
383–384, 383b

two independent sample test v.,
384–385

Mathematical expectation. See Expected
value

Mathematical statistics, 2
MATLAB, for statistics analysis, 39
Matrix notation, for linear regression,

445–451
Maximization step (M-step), of EM

algorithm, 671–673
Maximum likelihood equations, 240

bootstrap method and, 664
example for, 240–242

Maximum likelihood estimators (MLEs)
Bayesian inference and, 564

example for, 564–565, 565t
consistency of, 268–269
definition of, 236
EM algorithm and, 670–671
examples for

with gamma distribution, 242–243
with geometric distribution,

237–238
with maximum likelihood

equations, 240–242
with Poisson distribution, 238–239
with random sample, 239–240,

240f
invariance property of, 243
large sample confidence interval and,

302–303
likelihood ratio and, 356
method for, 237, 237b
Minitab example for, 284–285
sufficient statistic and, 260

example for, 261
unbiased estimators and, 252

MCMC. See Markov chain Monte Carlo
Mean

alternate method of estimating, 287
Bayesian point estimation, 575–576
of binomial random variable,

101–102, 118–119, 118b

bootstrap confidence interval
procedure to find, 667–668b

example for, 668
of chi-square distribution, 192
of chi-square random variables,

136b
definition of, 26
example for, 28
of exponential random variables,

134b
of gamma random variable, 132b
grouped

definition of, 30
example for, 30–31, 30t, 31t

large sample confidence interval for
difference of two, 321–322, 321b

Minitab examples for, 43–44
for nonparametric tests, 600–601,

601f
of normal random variable, 126b
of Poisson random variable, 120,

120b
sample, 185
SAS example for, 220–221
small sample confidence interval for

difference of two, 322b, 323–324
SPSS examples for, 46–47
statistical inference and, 561
of Student t-distribution, 199–200
sufficiency of, 256–259
of uniform random variable, 123b,

124
Mean square block (MSB), ANOVA and

randomized complete block
design, 529–535

Mean square error (MSE)
ANOVA and completely randomized

design, 505–506b, 512–513
example for, 518–522

ANOVA and randomized complete
block design, 529–535

definition of, 250, 428, 504
loss function and, 491
null hypothesis and, 505

Mean square treatment (MST)
ANOVA and completely randomized

design, 505–506b, 513
example for, 518–522

ANOVA and randomized complete
block design, 529–535

definition of, 505
null hypothesis and, 505

Median

bootstrap confidence interval
procedure to find, 668b

definition of, 27
example for, 28–29
grouped

definition of, 31
example for, 32, 32t

Minitab examples for, 43–44
for nonparametric tests, 600–602,

601f
in order statistics, 208
sample, 185
SPSS examples for, 46–47

Median test, 620–625, 622t, 624t
large sample, 622–623b

example for, 623–624, 623t,
624t

Minitab example for, 643–644
procedure for, 621b

Members, 747
Mendel, Gregor, 73
Mesokurtic, 99
Method of distribution functions,

154–156, 158
find cdf with, 155b, 156

Method of least squares, for linear
regression models, 415–416,
415f

Method of maximum likelihood,
235–246

exercises for, 244–246
likelihood function in, 235–236

example for, 236
maximum likelihood estimators,

236
examples for, 237–243, 240f
method for, 237, 237b

Method of moments, 227–235
definition of, 228b
examples for

for mean and variance, 230–231
Poisson distribution, 232–233
for population parameters,

228–230
population probability density

function, 231–232
exercises for, 233–235
generalized, 233
maximum likelihood estimators

with, 240
procedure for, 228b
unbiased estimators and, 250
uniqueness of, 232
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Metropolis algorithm
for continuous distribution,

685–686b
for discrete distribution, 685b
example for, 686–688
in MCMC, 682, 685–688
target distribution from, 688, 689f

Metropolis–Hastings (M-H) algorithm
continuous case, 689–690, 690b
discrete case, 689b
example for, 690–692
generalizations of, 690
Gibbs algorithm and, 694
in MCMC, 682, 688–692
use of, 688

mgf. See Moment-generating function
M-H algorithm. See Metropolis–Hastings

algorithm
Microsoft Excel, for statistics analysis,

39
Milk, temperature and spoilage of,

497
Minimal sufficiency, 277–279

definition of, 277
examples for, 277–279
exercises for, 279–282

Minimum variance unbiased estimator
(MVUE)

definition of, 251
example for, 279

Minitab
ANOVA examples, 543–546

completely randomized design,
543–545

randomized complete block design,
545–546

Tukey’s method, 546
Bayesian computation examples, 596
descriptive statistics examples, 41–46

box plots, 44–45, 45f
histogram, 43, 43f
stem-and-leaf, 42–43
test of randomness, 45–46

empirical method examples,
698–699

experimental design examples,
494

hypothesis testing examples,
399–403

interval estimation examples,
330–332

large sample, 331
small sample, 330–331

linear regression model examples,
455–456

nonparametric tests examples,
642–646

Friedman test, 645–646
Kruskal–Wallis test, 644–645
median test, 643–644
sign test, 642
Wilcoxon signed rank test, 643

point estimation examples, 283–285
probability theory examples,

109–110, 175–177
randomness test examples, 45–46,

654–655
resources for, 41–42
sampling distribution examples, 219
for statistics analysis, 39

Mixture distribution, 180–181
MLEs. See Maximum likelihood

estimators
Mode

definition of, 28
example for, 28
SPSS examples for, 46–47

Model building, 727–733
bivariate data, 730–732, 730f

example for, 730–732, 731f, 732f
exercises for, 732–733
simple model for univariate data,

727–729
example for, 728–729, 729f

in statistics, 3
Modified z-score test, for outliers, 709
Moment-generating function (mgf),

92–107
of Bernoulli random variable, 115
of binomial random variable,

118–119, 118b
of chi-square random variables,

136b
definition of, 100

joint distribution, 150
examples for, 101–105
of exponential random variables,

134b
of gamma random variable, 132b
of normal random variable, 126b,

191
of Poisson random variable, 120,

120b
properties of, 104b
of uniform random variable, 123b,

124

Moments, 92–107
Monte Carlo integration, 682, 683b
More efficient estimator, 272
Most powerful test, 350
MSB. See Mean square block
MSE. See Mean square error
MST. See Mean square treatment
M-step. See Maximization step
Multifactor experiments

definition of, 469
example for, 469–470

Multinomial coefficients, 67, 67b
Multinomial distribution, testing

parameters of, 390–392
examples for, 390–392
summary of, 390b

Multiphase sampling, 11
Multiple comparisons, with ANOVA,

536–542, 538t
example for, 538–541
exercises for, 541–542
Tukey’s method, 537b, 538t

Multiple linear regression model
ANOVA for, 449–450, 449t

example for, 450, 450t
definition of, 414
exercises for, 450–451
least-squares estimators for, 446
matrix examples for, 447–448
model for, 445
procedure to obtain equation, 447b
sum of squares for errors for,

446–447
Multiple mode presence, with histogram,

19–20
Multiplication principle, 64b

example for, 64
Multivariate, 40
Mutually exclusive, 55
Mutually independent, 74
MVUE. See Minimum variance unbiased

estimator

N
Negatively correlated, 441–442
Newton–Raphson in one dimension,

288
Neyman, Jerzy, 337–338
Neyman–Fisher factorization criteria,

254–256, 254b
Neyman–Pearson lemma, 349–355

example for, 352–353
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chi-square test, 353–354
exercises for, 355
likelihood ratio and, 356
likelihood ratio test and, 358
procedure for applying, 353b
theorem for, 350–352

Nightingale, Florence, 701–702
Noise, 468
Nomial data, 5
Noninformative priors, in Bayesian point

estimation, 565
example of, 566, 566t

Nonparametric confidence interval,
601–606, 602f

exercises for, 605–606
median for, 602–603, 602f

example for, 603–605
procedure for finding, 603b

Nonparametric hypothesis test
for multiple samples, 630–640

exercises for, 638–640
Friedman test, 634–638
Kruskal–Wallis test, 631–634

for one sample, 606–620
exercises for, 619–620
paired comparison tests, 617–618
sign test, 607–611
Wilcoxon signed rank test, 611–617

for two samples, 620–630
exercises for, 629–630
median test, 620–625, 622t, 624t
Wilcoxon rank sum test, 625–629

Nonparametric tests, 599–655
computer examples for, 642–652

Minitab, 642–646
SAS, 648–652
SPSS, 646–648

introduction to, 600–601, 601f
nonparametric confidence interval,

601–606, 602f
example for, 603–605
exercises for, 605–606
median for, 602–603, 602f
procedure for finding, for median,

603b
nonparametric hypothesis test for

multiple samples, 630–640
exercises for, 638–640
Friedman test, 634–638
Kruskal–Wallis test, 631–634

nonparametric hypothesis test for
one sample, 606–620

exercises for, 619–620

paired comparison tests,
617–618

sign test, 607–611
Wilcoxon signed rank test, 611–617

nonparametric hypothesis test for
two samples, 620–630

exercises for, 629–630
median test, 620–625, 622t, 624t
Wilcoxon rank sum test, 625–629

parametric tests v., 733–735
projects for, 652–655

randomness test, 653–655
Wilcoxon tests v. normal

approximation, 652
summary for, 640–642, 641t

Nonsampling errors, 12
Normal approximation

to binomial distribution, 213–216,
214f

continuity correction for, 214–215,
214–215b, 215f

example for, 215–216
Wilcoxon tests v., 652

Normal distribution, precision of,
576–577

Normal populations
confidence interval of, 295

project for, 336
EM algorithm for, example for,

677–678
large sample approximations and,

212–213
sampling distributions associated

with, 191–207
chi-square distribution, 192–198,

194f, 195f
exercises for, 204–207
F -distribution, 202–204, 202f, 203f
student t-distribution, 198–201,

199f, 200f
Normal probability distribution,

125–131, 126f, 128f, 129f
definition of, 125
estimators and estimates of, 227
examples for, 126–128
plotting of, 128–129, 128f, 129f
SAS example for, 219–220

Normal probability plot
for ANOVA, 518–522, 519f, 520f
for assumption testing, 714–716,

715f, 716f, 717f
data transformation and, 717–719,

718f, 720f

example for tying it all together,
735–743, 737f, 738f, 741f

for hypothesis testing, 365–366, 366f
SAS examples for, 48–50

Normal random variable
definition of, 104, 125
examples for, 104–105, 126–128
mean and variance of, 126b
mgf of, 126b, 191

Normality
checking assumptions of, 714–716,

715f, 716f, 717f
of errors, 453
in hypothesis testing, 364
test for, 222–223, 517

Normal-score plot, 222
construction of, 223b

Nuisance variables, 468
Null hypothesis

ANOVA for, 510
Bayesian hypothesis testing, 584–588
definition of, 338
errors and, 341–342, 341t
examples for, 340

testing, 365–366, 366f
two population means, 376–379

exercises for, 348–349
MST and MSE, 505
necessity of, 340
p-value and, 362

example for, 362–363
sample size and, 346–348
sign test, 607
two population means, 375–376,

375b
Null subset, 55
Numerical description, of data, 26–39

box plots, 33–35
exercises for, 35–39
grouped data, 30–33

Numerical unbiasedness and consistency,
287

O
Observables

for Bayesian decision theory, 591–592
examples for, 592–594

definition of, 591
predicting future, 596–597

Observational experiment
definition of, 468
designed experiment v., 468
randomization and, 474
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Observed frequency, 389
chi-square tests for, 389–390

One-factor-at-a-time design, 483–485,
485f

definition of, 483–484
example for, 484, 485f

One-to-one correspondence, 750
One-way analysis of variance, 470. See

also Completely randomized
design

Optimal decision
in Bayesian decision theory, 591
procedure to find, 591b

Optimization algorithms, 243
Order statistics, 207–212

definition of, 207–208
distribution of, 209
example for, 208
exercises for, 210–212
joint pdf of, 208, 210

Ordinal data, 5
Orthogonal Latin squares. See

Greco-Latin squares
Outliers, 708–713

box plot for, 709
dealing with, 711–712
definition of, 708
detecting, 708–709
example for, 710–711, 710–711t, 711f

tying it all together, 735–743, 737f
exercises for, 712–713
histogram for, 19–20
in linear regression models, 462–463

P
p-Value, 361–363

approach to ANOVA, 515–517, 517t
definition of, 361
examples for, 362–363
large sample hypothesis test for, 368b
reporting test results as, 362
for sign test, 609
steps to find, 361b

Paired comparison tests, 617–618
Paired t-Test

Minitab example for, 402–403
SPSS example for, 405, 407–408

Pairwise independent, 74
Parametric tests

definition of, 600
nonparametric tests v., 733–735

Pareto effect, 14

Pareto graph
definition of, 14
example of, 14, 15f
uses of, 14–15

Pareto, Vilfredo, 14
Partition, 75
Pascal, Blaise, 54
pdf. See Probability density function
Pearson, Karl, 291–292
Permutation, 65, 65b
Pie chart, 15, 15t, 16f
Pivotal method

for confidence interval, 293–298,
295f, 296f

example for, 296–298
procedure for, 293–298, 295f, 296f

exercises for, 298–300
for large sample confidence interval,

300
Pivotal quantity, sampling distributions

of, 293–294
Placebo, 471
Platokurtic, 99
pmf. See Probability mass function
Point estimation, 225–289

Bayesian, 562–579
computer examples for, 283–285
introduction to, 226–227
jackknife method procedure for, 660b

example for, 660–661, 660t,
661t

method of maximum likelihood,
235–246

exercises for, 244–246
likelihood function in, 235–236
maximum likelihood estimators,

236
method of moments, 227–235

definition of, 228b
exercises for, 233–235
generalized, 233
Poisson distribution, 232–233
for population parameters,

228–230
population probability density

function, 231–232
procedure for, 228b
for sample mean and variance,

230–231
point estimator properties, 246–282

consistency, 266–269
efficiency, 270–277
exercises for, 262–265, 279–282

minimal sufficiency and UMVUEs,
277–279

sufficiency, 252–262
unbiased estimators, 247–252

projects for, 285–289
alternate method of estimating

mean and variance, 287
asymptotic properties, 285–286
averaged squared errors, 287
empirical distribution function,

288–289
Newton–Raphson in one

dimension, 288
numerical unbiasedness and

consistency, 287
robust estimation, 286

statistical inference and, 561
summary for, 282–283

Point estimators. See also Estimators;
Unbiased estimators

computer examples for, 283–285
consistency, 266–269, 266f

definition of, 266
examples for, 267–269
exercises for, 279–282
test for, 267–268, 267b, 268b
of unbiased estimator, 266b
uniqueness and, 269

efficiency, 270–277
Cramér–Rao inequality, 273b,

274
Cramér–Rao procedure to test,

274b
definition of, 270
efficient estimator, 274, 274b
examples for, 270–272, 274–276
exercises for, 279–282
relative, 272–273
relative test for, 270b
uniformly minimum variance

unbiased estimator, 273
minimal sufficiency and UMVUEs,

277–279
definition of, 277
examples for, 277–279
exercises for, 279–282

projects for, 285–289
alternate method of estimating

mean and variance, 287
asymptotic properties, 285–286
averaged squared errors, 287
empirical distribution function,

288–289
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Newton–Raphson in one
dimension, 288

numerical unbiasedness and
consistency, 287

robust estimation, 286
sufficiency

examples for, 252–254, 256–261
exercises for, 262–265
jointly sufficient, 257, 258b
Neyman–Fisher factorization

criteria, 254–256, 254b
in point estimation, 252–262
Rao–Blackwell theorem, 262, 262b
sufficient statistic and maximum

likelihood estimators, 260
verification of, 256b

summary for, 282–283
unbiased estimators, 247–252

definition of, 247
examples for, 247, 249–251
exercises for, 262–265
mean square error, 250
Rao–Blackwell theorem and, 262
sample mean as, 247–248
sample variance as, 248

Poisson probability distribution,
119–122

binomial probability distribution
and, 121, 121b

continuous random variable and,
122

definition of, 102
discrete random variable and, 120
efficiency example for, 275
example for, 102
find cdf with, 156
generating samples from, 181
maximum likelihood estimators

with, 238–239
method of moments and, 232
recursive calculation of, 182

Poisson random variable
definition of, 119
mean, variance, and mgf of, 120,

120b
probability and, 120–121

Poisson, Siméon–Denis, 119
Political polls, 4
Population, 4
Population mean

in hypothesis testing, 364
large sample confidence interval and,

301–302

small sample hypothesis testing of
two, 375–376, 375b

example for, 376–379
Population moment, method of

moments for, 228
Population parameters

Bayesian inference and, 564
example for, 564–565, 565t

confidence interval concerning two,
321–329

difference of two means, 321–324,
321b, 322b

exercises for, 327–329
for probability, 325–326, 325b
for variance, 326–327, 326b

large sample confidence interval,
difference of two means,
321–322, 321b

method of moments for, 228
examples for, 228–230
procedure for, 228b

small sample confidence interval,
difference of two means, 322b,
323–324

statistical hypothesis and, 338
Population probability density function,

method of moments and,
231–232

Population variance
confidence interval for, 315–320,

316f
examples for, 317–318
exercises for, 318–320
procedure for, 317b

in hypothesis testing, 364
Positive transition matrix, 755
Positively correlated, 441
Posterior distribution

in Bayesian point estimation,
562–563, 566

example for, 567, 571–576, 574f
for continuous random variable,

567–569
credible intervals and, 580–581, 581f
definition of, 563

Posterior median, in Bayesian estimate,
570

Posterior odds ratio, 585
Posterior probability

Bayesian inference and, 561
Bayesian point estimation and, 564

example for, 564–565, 565t
definition of, 74, 77

Power, 349
Precision, of normal distribution,

576–577
Predictor variable. See Independent

variable
Prior information, in Bayesian decision

theory, 589
Prior odds ratio, 585
Prior probabilities

Bayesian inference and, 561
Bayesian point estimation and,

562–563, 576–577, 577f
example for, 564–565, 565t

definition of, 77
Probability density function (pdf)

conditional, 144
continuous

definition of, 86
examples for, 87–90, 87f, 88f, 89f,

90f
of F -distribution, 202, 202f
find with cdf, 155
joint, 159
of kth order statistic, 208

example for, 209
of log-normal distribution, 129–130
marginal, 143
Minitab examples for, 175–176
random variable functions and,

156–157
Student t-distribution and, 198

Probability distribution. See also
Binomial probability
distribution; Conditional
probability distribution;
Exponential probability
distribution; Gamma probability
distribution; Joint probability
distributions; Normal probability
distribution; Poisson probability
distribution; Standard normal
probability distribution; Uniform
probability distribution

Bayesian point estimation, 574–575
of correlation, 442
of order statistic, 209
of sample statistic, 185
statistical hypothesis and, 338
testing to identify, 395–397

Probability distribution functions,
114–141

binomial probability distribution,
114–119
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Probability distribution functions
(continued)

gamma probability distribution,
131–136, 132f, 134f, 135f

method of, 154–156
normal probability distribution,

125–131, 126f, 128f, 129f
Poisson probability distribution,

119–122
references for, 114
uniform probability distribution,

122–125, 122f
Probability function (pf). See also

Probability mass function
of Bernoulli random variable, 115
binomial distribution, 101
of univariate random variable, 146

Probability integral transformation,
157–158

definition of, 157
example for, 157–158

Probability mass function (pmf)
discrete

definition of, 84
examples for, 85–86, 85f, 86f

marginal, 143
Probability plots, for ANOVA, 517–518
Probability theory, 2

basic properties of, 58b
examples for, 58–60, 59t

chi-square distribution, example for,
197

computer examples for, 108–111,
175–180

Minitab, 109–110, 175–177
SAS, 110–111, 178–180
SPSS, 110, 177

computing method for, classical
approach, 56, 56b

conditional
definition of, 71
example for, 72–73
exercises for, 78–83
independence, and Bayes’ rule,

71–83
properties of, 72b

counting techniques and calculation
in, 63–71

exercises for, 69–71
definition of, 54

axiomatic, 57–58, 57b
classical, 56b
frequency, 57b

informal, 55b
frequency, 57b
frequency interpretation of, 67

examples for, 67–69
in genetics, 73–74
informal, 55b
introduction to, 53–54, 114
joint probability distributions,

141–154, 145f
exercises for, 150–154

law of total, 75b
example for, 75–76

laws of, 2
limit theorems, 163–173

central limit theorem, 168–171,
168b

Chebyshev’s theorem, 164–166,
164b

exercises for, 171–173
law of large numbers, 166–167b,

166–168
moments and moment-generating

functions, 92–107
exercises for, 105–107
skewness and kurtosis, 98–105

Poisson random variable and,
120–121

projects for, 112, 180–182
random events and, 55–63

exercises for, 60–63
in random variable, 84
random variable functions, 154–163

exercises for, 161–163
method of distribution functions,

154–156, 158
pdf, 156–157
probability integral transformation,

157–158
transformation method, 159–161

random variables and probability
distributions, 83–92

exercises for, 90–92
special distribution functions,

114–141
binomial probability distribution,

114–119
exercises for, 136–141
gamma probability distribution,

131–136, 132f, 134f, 135f
normal probability distribution,

125–131, 126f, 128f, 129f
Poisson probability distribution,

119–122

selection of, 136
uniform probability distribution,

122–125, 122f
of Student t-distribution, 199–200,

200f
summary for, 107–108, 173–174
of type I and type II errors, 341

PROC UNIVARIATE
examples for, 48–50
to test for normality, 180

Proper subset, 748
Proportion

hypothesis testing for, 379–380b
example for, 380

large sample confidence interval for,
302–303, 325b

example for, 303, 325
Proportion inference, in Bayes inference,

564
Proportional stratified sampling, 10, 10t

Q
QQ plot. See Quantile quantile plot
Quadratic loss function, 491, 491f

for Bayesian estimate, 569–571
example for, 571–572

Qualitative data, 5
Quality control, 4
Quantile quantile plot (QQ plot), 128,

128f, 705–706
example of, 706
with SAS, 180

Quantitative data, 5
Quenouille-Tukey jackknife. See

Jackknife method

R
R, for statistics analysis, 39
Random events, probability and, 55–63
Random experiment, 55
Random process, 751
Random sample

definition of, 184
maximum likelihood estimators

with, 239–240, 240f
in MCMC, 683
median test for large, 622–623b

example for, 623–624, 623t, 624t
obtaining from different

distributions, 221–222
sample mean of, as unbiased

estimator, 247–248
example for, 249
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sign test for large, 610b
example for, 610–611

sufficient estimators and, 253–254
Wilcoxon rank sum test for large,

627–628b
example for, 628–629, 628t

Random variables. See also Continuous
random variable; Discrete
random variable

Bernoulli
law of large numbers for, 167
method of moments and, 228–229
mixture distribution and, 180–181
probability function of, 115
sufficient estimators and, 252–253

binomial
definition of, 101
examples for, 116–118
expected value of, 118–119, 118b
mean of, 101–102, 118–119, 118b
moment-generating function of,

118–119, 118b
SAS examples for, 178–180
variance of, 118–119, 118b

binomial probability distribution of,
101

Chebyshev’s theorem and, 165
chi-square

degrees of freedom of, 193
F -distribution and, 202
from gamma random variable, 193
mean, variance, and mgf of, 136b
from standard normal random

variable, 193, 194f
conditional probability distribution

of, 144
continuous

cumulative distribution function,
86–90, 87b, 87f, 88f, 89f, 90f

definition of, 86
expected value of, 93–94, 94f
probability density function for,

86–90, 87f, 88f, 89f, 90f
counting, 119
definition of, 83
discrete

cumulative distribution function
for, 84

definition of, 84
example for, 84–85
expected value of, 92–94, 94f, 96
probability mass function for, 84
uniform distribution of, 96

examples for, 83
exercises for, 90–92
expectation of function of, 95b
exponential

definition of, 133
mean, variance, and mgf of, 134b

as a function, 85, 85f
functions of, 154–163

exercises for, 161–163
method of distribution functions,

154–156, 158
pdf, 156–157
probability integral transformation,

157–158
transformation method, 159–161

gamma
chi-square random variable from,

193
mean, variance, and mgf of, 132b

independent
distribution of, 160–161, 161f
examples for, 144–146, 145f
pdf and, 144
in Student t-distribution, 200

with joint probability function, 142
kth moment about the mean, 99
kth moment about the origin of, 99
Minitab examples for, 109–110
moment-generating function of,

100–105
normal

definition of, 104, 125
examples for, 104–105, 126–128
mean and variance of, 126b
mgf of, 126b, 191

Poisson
definition of, 119
mean, variance, and mgf of, 120,

120b
probability and, 120–121

Poisson distribution, 102
probability in, 84
in sample, 184
simulation

with exponential probability
distribution, 221

with uniform probability
distribution, 221–222

standard deviation of, 95
standard normal

chi-square random variable from,
193, 194f

definition of, 103

example for, 103–104
in sampling distribution, 192

statistical hypothesis and, 338
uniform, mean, variance and mgf of,

123b, 124
univariate, probability function of,

146
variance of

definition, 95
examples, 96

Random walk chain, 753–754
Randomization

definition of, 472
example for, 473–474, 473t
procedure for, 472–473b

in randomized complete block
design, 474–475b

Randomized complete block design
ANOVA, 526–535, 528t, 529t

computational procedure for,
530–531b

decomposition of, 527–529
example for, 532–533
exercises for, 534–535

definition of, 474
examples for, 475
Minitab example for, 545–546
procedure for, 474–475b
with replications

determining minimum number of,
476–477

examples for, 476
procedure for, 475–476b

Randomness test, 653–655
example for, 655
Minitab examples for, 45–46,

654–655
procedure for, 654b
Wald–Wolfowitz test as, 517, 653

Random-walk Metropolis, 688
Rao, Calyampudi Radhakrishna,

225–226
Rao–Blackwell theorem, 262, 262b
Recessive trait, 73
Recurrent state, 755
Recursive calculation, of binomial and

Poisson probabilities, 182
Regression analysis, 412

procedure for, 412b
quality of, 421–422, 421f, 422f
use of, 412

Regression coefficients
confidence interval for, 429b
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Regression coefficients (continued)
example for, 430–431

hypothesis testing for, 431b, 432b
example for, 432–433

Regression diagnostics, 451–453
error independence, 453
homoscedasticity, 452, 452f
linearity, 452
normality of errors, 453

Regression models
correlation analysis in, 440
examples for, 739–743, 742f
procedure for, 412b

Relative efficiency
definition of, 272
example for, 272–273

Relative frequency
definition of, 17
example of, 17–18

Relatively more efficient
definition of, 270
procedure to test for, 270b

Replacement
sampling with

objects not ordered, 66
objects ordered, 64–65

sampling without
objects not ordered, 65–66
objects ordered, 65

Replication, 471
Representative sample, 8
Response variable

definition of, 467
examples for, 469–470

Robust design, 489
Robust estimation, 286
Robustness, ANOVA and, 518
Robustness statistics, 492–493, 493t
Rules of decision, 338
Run test, with Minitab, 45–46

S
Sample, 184
Sample data

definition of, 4
errors in, 11–12
size of, 12

Sample mean (SM), 185
in ANOVA, 511–512, 512f
consistency of, 267
distribution of, 185
efficiency of, 270–272
example for, 186–188

hypothesis testing with, 367
large sample approximations and,

212–213
method of moments for, 230–231
of random sample as unbiased

estimator, example for, 249
theorem for, 186

Sample median, 185
example for, 208

Sample moment, method of moments
for, 228

Sample point, 55
Sample size

definition of, 184
hypothesis testing and, 346–348
large sample approximations and,

212–213
large sample confidence interval and,

303–306
examples for, 305–306

in optimal experimental design,
487–489

Sample space, 55
Sample standard deviation

ANOVA and, 518
in hypothesis testing, 364
hypothesis testing with, 367

Sample statistic, 185
Sample variance, 185

consistency of, 268–269
example for, 186–188

with chi-square distribution, 197
expected value of, 188–189
theorem for, 186
as unbiased estimator, 248

Sampling
with replacement

objects not ordered, 66
objects ordered, 64–65

without replacement
objects not ordered, 65–66
objects ordered, 65

Sampling distributions, 183–223
associated with normal populations,

191–207
chi-square distribution, 192–198,

194f, 195f
exercises for, 204–207
F -distribution, 202–204, 202f, 203f
student t-distribution, 198–201,

199f, 200f
bootstrap methods for, 663
computer examples for, 219–221

Minitab, 219
SAS, 219–221
SPSS, 219

confidence interval based on, 334
definition of, 184–185
exercises for, 189–191
finite population, 187–189
introduction to, 184–191
large sample approximations,

212–218
exercises for, 216–218
normal approximation to binomial

distribution, 213–216, 214f, 215f
order statistics, 207–212

exercises for, 210–212
of pivotal quantity, 293–294
power and, 350
projects for, 221–223

simulating random variables,
221–222

simulation experiments, 222
test for normality, 222–223

statistical inference and, 560
summary for, 218

Sampling errors, 12
Sampling schemes, 8–12
SAS

ANOVA examples, 548–554
completely randomized design,

548–549
Tukey’s method, 549–554

commands for, 47–48, 50
descriptive statistics examples, 47–50
empirical method examples,

698–699
experimental design examples,

494–497
general format of program in, 47b
hypothesis testing examples,

405–408
interval estimation examples, 333
linear regression model examples,

458–461
nonparametric tests examples,

648–652
Kruskal–Wallis test, 650–652
Wilcoxon rank sum test, 648–649

probability theory examples, 110–111,
178–180

references for, 50
sampling distribution examples,

219–221
for statistics analysis, 39
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Savage, Leonard Jimmie, 588
Scale parameter, 131
Scatter diagram, for linear regression

model, 413, 413f
Scatterplots, 704, 704f

for bivariate data model building,
730–732, 731f

for checking adequacy, 461
example for, 704–705, 705f

tying it all together, 735–7343,
739f, 742f

Scheffe’s method, 536
Sequential experimental design, 487
Set

definition of, 747
operations of, 748–750

complement, 749, 749f
difference, 749
intersection, 748, 749f
union, 748, 748f

properties of, 749–750b
Set theory, 747–750

set definition, 747
set operations, 748–750
set properties, 749–750b

Shape parameter, 131
Side-by-side box plots, 704

for variance test for equality,
722

Sign test, 607–611
application of, 608b
for large random sample, 610b

example for, 610–611
Minitab example for, 642
paired comparisons, 617–618
procedure for, 608b
p-value method and, 609
Wilcoxon signed rank test v., 611

Signal-to-noise ratio, Taguchi methods
and, 489

Significance tests, bootstrap method and,
663

Simple linear regression model,
413–428, 413f, 414f

definition of, 414, 414f
derivation of estimators, 416–421,

420f
estimation of error variance, 425
exercises for, 425–428
least-squares estimator properties,

422–425
method of least squares, 415–416,

415f

quality of regression, 421–422, 421f,
422f

Simple random sample
advantages of, 8b
definition of, 8
effectiveness of, 9
example for, 8

Simple regression line, 420, 420f
Simulation experiments, 222
Simultaneous experimental design, 487
Single-factor experiments

definition of, 469
example for, 469

Size, of sample data, 4, 12
Skewness, 98–105

definition of, 99
with histogram, 19–20

SM. See Sample mean
Small sample confidence intervals,

310–315
for difference of two means, 322b,

323–324
examples for, 311–312
exercises for, 313–315
Minitab examples for, 330–331
procedure for, 310–311b, 311
simulation of coverage of, 334

Small sample hypothesis testing,
364–365b

example for, 365–366, 366f
population means, 375–376, 375b

example for, 376–379
Smith-Satterthwaite procedure, 376
Splus, for statistics analysis, 39
Spread of data, with histogram, 19–20
SPSS

ANOVA examples, 538–541, 546–547
completely randomized design,

546–547
Tukey’s method, 547

descriptive statistics examples, 46–47
histogram, 46
stem-and-leaf, 46

hypothesis testing examples,
403–405

interval estimation examples, 332
linear regression model examples,

457–458
nonparametric tests examples,

646–648
Kruskal–Wallis test, 647–648
Wilcoxon rank sum test, 646–647

probability theory examples, 110, 177

sampling distribution examples, 219
for statistics analysis, 39

Square root transformations, for ANOVA,
555

Squared error loss function. See
Quadratic loss function

SS. See Sum of squares
SSB. See Sum of squares of blocks
SSE. See Sum of squares for errors
SSR. See Sum of squares of regression
SST. See Sum of squares for treatment
Standard deviation

definition of, 26
of discrete random variables

definition of, 95
examples, 96–98

example for, 28
Minitab examples for, 43–44
SPSS examples for, 46–47
statistical inference and, 561

Standard error
bootstrap method and, 663,

665–666, 665b, 666–667b
example for, 666–667

definition of, 186, 665
Standard normal probability distribution

CLT and, 169
Minitab examples for, 219
Student t-distribution and, 199

Standard normal random variable
chi-square random variable from,

193, 194f
definition of, 103
example for, 103–104
in sampling distribution, 192

State space, 751
States of nature, 77
Statistic

definition of, 185
sufficiency of, 252

Statistical applications
checking assumptions, 713–727

ANOVA, 713
data transformations, 716–719
exercises for, 724–727
normality, 714–716, 715f, 716f, 717f
test of independence, 724
t-test, 713
variance equality, 719–724

conclusion, 746
graphical methods, 702–708, 704f,

706f
bar graph, 13–14, 13t, 14f
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Statistical applications (continued)
box plots, 704
dotplot, 703
exercises for, 20–26, 707–708
Pareto graph, 14, 15f
pie chart, 15, 15t, 16f
quantile quantile plot, 705–706
scatterplot, 704–705, 704f, 705f
stem-and-leaf plot, 16–17, 16t

introduction to, 702
modeling issues, 727–733

bivariate data, 730–732, 730f, 731f,
732f

exercises for, 732–733
simple model for univariate data,

727–729, 729f
outliers, 708–713

box plot for, 709
dealing with, 711–712
definition of, 708
detecting, 708–709
example for, 710–711, 710–711t,

711f
exercises for, 712–713

parametric v. nonparametric analysis,
733–735

tying it all together, 735–746
exercises for, 743–746

Statistical concepts, 2
Statistical decisions, 338

Bayesian decision theory v., 588–589
Statistical hypothesis

definition of, 338
elements of, 339b

Statistical inference
Bayesian inference v., 560
definition of, 5

Statistical methods
definition of, 2
uses of, 2–3

Statistical software, 39–40
Statistics

central limit theorem in, 171
Chebyshev’s theorem for, 165
computers and, 39–40
in decision making, 338
definition of, 2–3
in genetics, 73–74

StatXact, for statistics analysis, 39
Steady state, 756
Stem-and-leaf plot

definition of, 16
example of, 16, 16t

Minitab examples for, 42–43
SAS examples for, 48–50
SPSS examples for, 46
use of, 17

Stochastic matrix, 752
Stochastic process, 751
Stratified sampling

definition of, 9
examples for, 10, 10t
steps for selecting, 9–10b
uses of, 11b

Student t-distribution, 198–201, 199f,
200f

definition of, 198
examples for, 201
exercises for, 204–207
graphical behavior of, 199, 199f
regression analysis and, 434

Studentized range distribution, 536–537
Subjective probability, Bayesian inference

and, 560–561
Subset

definition of, 747
proper, 748

Sufficiency
examples for

Bernoulli random variables,
252–253

factorization theorem, 259–260
jointly sufficient, 258–259
mean, 256–259
minimal, 277–279
random sample, 253–254
sufficient statistic and maximum

likelihood estimators, 261
exercises for, 262–265
jointly sufficient

definition of, 257
factorization criteria for, 258b

minimal, 277–279
Minitab example for, 283–284
Neyman–Fisher factorization criteria,

254–256, 254b
in point estimation, 252–262
Rao–Blackwell theorem, 262,

262b
sufficient statistic and maximum

likelihood estimators, 260
verification of, 256b

Sufficient estimator, 252
Sufficient statistic

definition of, 252
for discrete distribution, 259–260

maximum likelihood estimators and,
260

example for, 261
Sum of squares (SS), ANOVA and,

502–503
Sum of squares for errors (SSE)

ANOVA
completely randomized design and,

510–512, 518–522
randomized complete block design

and, 526–535
for two treatments, 502–504

calculation for, 420–421
definition of, 416, 503
independence of, 504
least-squares estimators and,

428–429
for multiple linear regression model,

446–447
regression analysis and, 434

Sum of squares for treatment (SST)
ANOVA

completely randomized design and,
502–503, 510–512, 518–522

randomized complete block design
and, 526–535

for two treatments, 502–504
definition of, 503
independence of, 504
regression analysis and, 434

Sum of squares of blocks (SSB), ANOVA
and randomized complete block
design, 526–535

Sum of squares of regression (SSR),
regression analysis and, 434

Survival times, EM algorithm for,
example for, 673–676

Symmetric difference, of set, 749
Systematic sample, 9, 9b

T
Taguchi, Genichi, 465–466, 489
Taguchi loss function, 489–492, 490f

bias and variance in, 491–492
quadratic, 491, 491f

Taguchi methods, 489–493, 490f, 491f
exercises for, 492–493

t-Distribution. See Student t-distribution
Temperature, spoilage of milk and, 497
Test for normality, 222–223

with SAS, 180
Tests of hypothesis, 338
Tests of significance, 338
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Time series data
definition of, 6
example for, 6, 7t

Total probability
example for, 77–78
law of, 75b

Total SS. See Total sum of squares
Total sum of squares (Total SS)

ANOVA and completely randomized
design, 502–503, 510–513

example for, 518–522
ANOVA and randomized complete

block design, 528–535
decomposition of, 510–511, 512f

Transformation method, 159–161
definition of, 159

Transformations
for ANOVA, 554–555
checking assumptions of, 716–719

example for, 717–719, 718f, 719f,
720f

Transient state, 755
Transition matrix, 752

examples for, 752–755
positive, 755

Transition probabilities, 751
Treatment variable

definition of, 467–468
examples for, 469–470

Tree diagram, 64, 64f
Trial, 55
Trimmed mean, example of, 29
t-Test

ANVOA v., 501, 506–508, 536
assumptions of, 713
Minitab example for, 400
sign test v., 607
SPSS example for, 406–407
Wilcoxon rank sum test v., 625
Wilcoxon signed rank test v.,

613–615, 614f
Tukey, John Wilder, 499–500
Tukey’s method, 536

example for, 538–541
implementation of, 537b, 538t
Minitab example for, 546
SAS example, 549–554
SPSS example, 547

Two independent sample test, matched
pairs test v., 384–385

Two-way analysis of variance, 470. See
also Randomized complete block
design

Type I error
Bayesian hypothesis testing, 584–588
definition of, 341, 341t
examples for, 342–344
exercises for, 348–349
sample size and, 346–348

Type II error
Bayesian hypothesis testing, 584–588
calculation of, 345b
definition of, 341, 341t
examples for, 342–346
exercises for, 348–349
sample size and, 346–348

U
Ulam, Stanislaw, 657–658
UMP tests. See Uniformly most powerful

tests
UMVUE. See Uniformly minimum

variance unbiased estimator
Unbiased estimators, 247–252

consistency of, 266b
definition of, 247
examples for

Bernoulli population, 247
calculation of, 249–250
method of moments, 250
proof of, 251
sample mean as, 249
uniqueness of, 249

exercises for, 262–265
mean square error, 250
Minitab example for, 283–284
Rao–Blackwell theorem and, 262
sample mean as, 247–248
sample variance as, 248

Uniform probability distribution,
122–125, 122f

definition of, 122
of discrete random variable, 96
examples for, 123–125
likelihood function for, 24f, 240
mean, variance and mgf of uniform

random variable, 123b, 124
random variable simulation with,

221–222
Uniform random variable, mean,

variance and mgf of, 123b, 124
Uniformly minimum variance unbiased

estimator (UMVUE), 277–279
definition of, 273, 279
examples for, 277–279

Uniformly most powerful (UMP) tests,
for composite hypotheses,
355–356

Union, 748, 748f
Univariate data, simple model for,

727–729
Univariate random variable, probability

function of, 146
Universal set, 747
Upper quartile

definition of, 27
example for, 28–29

Utility, in Bayesian decision theory, 589

V
Variables. See specific variables
Variance

alternate method of estimating, 287
Bayesian point estimation, 575–576
of binomial random variable,

101–102, 118–119, 118b
of chi-square distribution, 192
of chi-square random variables, 136b
confidence interval for, 326–327,

326b
definition of, 26

grouped, 30
of discrete random variables

definition of, 95
examples of, 96–98

examples for, 28
in experimental design, 470–471
of exponential random variables,

134b
of gamma random variable, 132b
hypothesis test for, 368–369b

equality of, 380–382, 381b
jackknife method for, 659
large sample confidence interval and,

302
of least-squares estimator, 424
in loss function, 491–492
with median test, 621
method of moments for, 230–231
in MSE, 250–251
of normal random variable, 126b
of Poisson random variable, 120,

120b
properties of, 95b
sample, 185
SPSS examples for, 46–47
of Student t-distribution, 199–200
test of equality of, 719–724
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Variance (continued)
for more than two normal

populations, 722–724
for two normal populations,

719–722
of uniform random variable, 123b,

124
Venn diagram, 748, 748f

W
Wald, Abraham, 588
Wald–Wolfowitz test, for testing

randomness assumption, 517
Wilcoxon rank sum test, 625–629

distribution of, 627
example for, 626–627, 626t, 627t
for large samples, 627–628b

example for, 628–629, 628t
normal approximation v., 652
procedure for, 625–626b
rejection regions, 626
SAS example for, 648–649
SPSS example for, 646–647

Wilcoxon signed rank test, 611–617
examples for, 612–613, 613t, 614t
hypothesis testing procedure by,

611–612b
for large samples, 615b

example for, 616–617, 616–617t
Minitab example for, 643
normal approximation v., 652
paired comparisons, 617–618
sign test v., 611
t-test v., 613–615, 614f
usefulness of, 617

Wolfowitz, Jacob, 599–600

Z
z-Test

for outliers, 709
SAS example for, 407
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