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Examples of Mathematical Models

Linear signal models for discrete and continuous
time, including transfer function and state space
representations. Applications of these models to SP
problems such as prediction, spectrum estimation,
and so on

Adaptive filtering models and applications to
prediction, system identification, and so forth

The Gaussian random variable, and other probability
density functions, including the important idea of
conditioning upon an observation

Hidden Markov models

o Model the dynamics of systems probabilistically
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Why 1s modeling important?

Our world 1s complicated

o To describe it mathematically requires complicated
mathematics

E.g. high-order differential equation

o E.g. suppose you are ask to design a filter h[n]
satisfying some design specifications such as transition
bandwidth, passband frequency, stopband frequency;,
filter order, ...

Hence, design is usually done in frequency using H(el?)

0 How many points in H(e!?) do you need to design?

o This is an impossible problem to solve as there are uncountable
number of points in [0, 7]
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Problem Specifications and Variable
Parametrization

Suppose the desired response is
( 1, O<w<aw,
D(w)=14 0, o, <o<r

(don't care, w, <<,

Change the variable from H (') to amplitude response H, (")
H, (€)= Zh[n]e (=M)e

:Zb[n]cosna), M = (N-1)

2

assuming Type-I linear phase and

’Zh{(N _1)—n}, n=0

b[n]:<
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Problem Formulation

Then the filter design problem can be formulated as a LS problem

: N2 dw
T[!]? R[D(a))—Ho(eJ )J —
R: 0<w< 7, but excluding transition band.

Integration can be approximated by summation.

Now problem only needs to solve a finite number of variables.

Filter designed using A
I+3, LS has much better

-8 magnitude frequency '
response than one
using Kaiser

windowing method

0
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Other Motivations for Using Mathematics

Given a sequence of output data from a system,
how can the parameters of the system be
determined If the input signal i1s known

o What if the input signal is not known?

o What if system is nonlinear?

x(n) Unknown linear
= —71® time-invariant
an) system

hy(n) or y(n)

Model
matching for
0<n<gand

n>q

%—» e(n)
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Other Motivations for Using Mathematics

Determine a “minimal”
representation of a system

Given a signal from a system,

determine a predictor for the signal

o Forward and/or backward

Determine an optimal and/or
efficient smoothing method

o E.g. Image smoothing

Determine a means of efficiently
coding (representing) a signal
modeled as the output of an LTI
system

Develop computational efficient
algorithms

Develop adaptive technique to
obtain desirable output of system
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forward and/or
backward

e
‘

Prediction

[ Smoothing

| I >N

f[n] How do we predict
A




Complex-Valued Linear Discrete-Time
Models: ARMA and MA

Autoregressive moving average (ARMA) model

y[n]=-ayy[n-1]-a'y[n-2]---—a,y[n-p]

+by f[n]+b f[n-1]+---+b, f[n—q]
P q
< > ay[n-k]=> b f[n-kK]
k=0 k=0
Moving average (MA) model
y[n]=byf[n]+b f[n-1]+---+b f[n—q]

Qy[n]:kzq;b;f[n—k]

IEE 5335: Mathematical Methods
and Algorithms for Signal Processing

Vector notation

- f[n]

Define f[n] = f [n:—l]

= y[n]=b"f[n]

f [n.—Q]_

and b=

nel oUI
|




Complex-Valued Linear Discrete-Time
Models: AR

Autoregressive (AR) model

y[n]=-ay[n-1]-a y[n-2]----—a y[n-p]+b; fn]

< y[n]=bf [n]—kzp;a;y[n—k]

Define
y[n-1] (3,
y[n]= y[n:—Z] and a=|
Y[n_p]_ |3y

H

= y[nj:bgf [n]-a"y[n]
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System Function and Impulse Response

Assuming initial conditions are zero

Zak z7Y (z Zb*z “F(z) < Y(z)A(z)=F(z)B(z)
ARMA System functlon
q q
bz bz
IR TONP 1O

F(2) Zp:a;z"‘ 1+Zp:a;z‘k A2)
k=0 k=1

(usually assume system is normalized so that a, =1)
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All-pole System function (IR system)

q
b*z‘k
Y(z k b
H(Z):F(Z)_ k= _ 0

> _
1+Za:z‘ A(2)

All-zero system functlon (FIR system)
Y(z) &y
H(z)=——+<=)> bz"=B(z
( ) F:(:Z) Eg; k
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System Function and Impulse Response

H(z)=2, f[k]h[n-K]
k
Factoring H (z) into monomial factors using roots
of numerator and denominator

b;‘lill—ziz‘1 ,
H(2) =—< _ iﬁzi
lkll— pz"

IEE 5335: Mathematical Methods

/ £ and Algorithms for Signal Processing

11



Stochastic MA and AR Models

f [n] . assumed to be a white discrete-time random process, usually zero mean
b, : setto 1, with input power determined by the variance of the signal
E(f [n]):O, vn

E(f[m]f*[n]):{"?ﬂ m=

0, otherwise

SP often involves comparing two signals, one way for comparison is
by correlation. When the signal is comparing with itself, the correlation
is called autocorrelation function. For zero-mean WSS signal y[n],

r, [£-k]2E(y[n-k]y [n—¢])or r, [k]=E(y[n]y [n-k])
(Note the convention: first argument minus second)
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Autocorrelation Function

Note: r, [k]=r,[-k] (more details later)
For real-valued random process, r,, [k]=r,, [-k] (even function)

For MA process
y[n]= f[n]+b f[n-1]+---+b f[n—q]
=1, [k]=E(y[n]y" [n-K])
= E[(f[n]+b f[n=2]+-+b;f [n-a])( " [n-k]+b; " [n-1-k]+---+b, " [n-q-K])]

q
= I [k]+|b1|2 Vi [k]+'"+‘bqr i [k] - O-ff Z|bk|2
k=1
For AR process
ynJ+ayln-1]+-+ay[n-p]=f[n]
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Autocorrelation Function

For AR process
y[n]+ay[n-1]+---+ajy[n—p]

fin] 1
whitt | A7) > yin]

Multply by y"[n—¢] on both sides and take expectation:
p p

e[ Saivin-Kly -1 Sain, -k =E(1 )y [n-1])
k=0 k=0

r [f] for /=0 . . .
)W O for ¢ >0 because f | n| is white-noise process
{ 0, for/>0 ! n] P )

For/>0
0=r, [(]=E[(y[n]+&y[n-1]++a,y[n—p])y [n-7]]
=r,[(]+ar, [(-1]+--+ayr, [/-p]
=r,[f]=-ar, [(-1]---—a,r,[(-p]
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Yule-Walker Equations: Solving System 1D
Problem

Stacking 7/ =1,2,..., p equations, we have

i ryy[o] ryy[_l] ryy[_(p_l)] _—af_ _ryy[l]_
ryy.[l] I‘W.[O] I’yy[—(.p—Z)] _a; _ rw[2]
I R S R A ]

Conjugating both sides: _:212 . rrw[[;]]
L R | R RV I 1 T I
ry*y.[l] r;/.[o] ry*y[—(.p—Z)] 8 | _ r;/.[z]  Rw_r

o1 glp-2] - nl] &) L5 lel
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Observations about YW Equations

R=R"

o Elgenvalues are real and eigenvectors corresponding to
distinct eigenvalues are orthogonal/orthonormal. If R
is real, then R is symmetric, i.e. R'=R

R 1s a Toeplitz matrix, 1.e. r = r;;

o Values of R depend only on the difference between the
Index values

Has efficient algorithm to solve for solution
0 Power efficient in hardware implementation

= IEE 5335: Mathematical Methods
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Realization

A controller canonical form (from control) can be written by realizing that the transfer
function can be written as

8(2)
H(z)= Y()W(2) (Zb;z"] = = B(z)H, (2)=H,(2)H, (2).

- A(} (2) \i= (1+;a;zkj
Since W ( (1+kz_;‘a:z j_ (z) & w[n]+aw[n-1]+---+a,w[n—p]=f[n] or

= w[n]= f[n]-aw[n-1]----—a w[n-p]

since B(2) =2 = v (2)=w (2)8(2)

W(z)

» < y[n|=w[n]*b[n]=byw[n]+bw[n-1]+---+bw[n-q]

IEE 5335: Mathematical Methods
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Realization: AR part of Transter Function

w[n]+aw[n-1]+---+aw[n- p]=f[n

f[n] >m P> Z_l\ > Z_l > 000 —P Z-l > Z_]_
_ _a: ¢
_a; «——
—ap_l <
—a. |

Eels)? IEE 5335: Mathematical Methods
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Realization ot Complete Transt

Function

[n]+aw[n-1]+---+aw[n-p]=f[n]
n]=w[n]*b[n]=byw[n]+bw[n-1]+---F

—>_b,
—>
W[ril w[n-2]
f[n] | 71 > 71 peee—p 71 y[n]
] _a: Assumes
_a;
_ap—l
—a, <

»  Signal processing practitioners usually attempt
to analyze characteristics of a system by
ONLY looking at the relationship between the
input and output

*  Transfer function

IEE 5335: Mathematical Methods
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Imagine opening your system (a black box), which can now be
modeled using a bunch of integrators (delay elements in discrete
time) and putting a logic probe in each of the interconnect

e Concatenation of these signals {w[n-k]}, Vk makes up the
state of the system

19



State-Space Form

—> b
—» b,
x,[n] Xp1[N]
p p-1
\ \ X,[Nn]
fln] —p 71 » 71 peee—p 71 \‘
* Assumes
_a2
—a, | 14
—ap <

Consider relabeling the interconnect signals (states) as {x,[n]}, fork=1,2, ...,p

IEE 5335: Mathematical Methods
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State-Space Representation

X, [n]’s are known as the state variables. Note that the transfer function can be written as

k=0 8, +>,a.z"

Assuming p =g, note that
X [n+1]=x,[n]
X, [n+1] =%, [n]
Xy [N+1]=x,[n]

(x,[n+1]= f[n]-ax,[n]-ax,,[n]-—a; % [n]-a;x[n]  (stateequation)
— Jy[n]=byx [n]+b, %, [n]+---+byx  [n]+ 0 x, [n] (input-output equation)

+hy ( f[n]-a;x,[n]-a;x,,[n]---—a;x [n])

IEE 5335: Mathematical Methods
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State-Space Representation

% [n]

Define the state vector x[n]= , containing state variables x, [n], VK,

aul

o 0o 1 0 0 - 0 0
0 pr_Eg{af o o0 1 0 - 0 0
pa| | ca| P T% | gap ang Al P L
X e 0 0 0 o - 0 1
S LRTRA &, e, 4, -4, o -a
If b, =0, CT:[b; b;—l bl*],then A is called a companion matrix
x[n+1]= Ax[n]+bf [n]
= T State-space equation
y[n]=c"x[n]+df [n]

Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay
elements in discrete time) and putting a logic probe in each of the interconnect

» Concatenation of these signals {x,[n]}, Yk makes up the state of the system

IEE 5335: Mathematical Methods
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Non-uniqueness of State-Space Equation

Letx =Tz, T: px p invertible matrix, then
Tz[n+1]=ATz[n]+bf [n] =
y[n]=c"Tz[n]+df [n]

z[n+1]=T*ATz[n]|+ T bf [n]
y[n]=c'Tz[n]+df [n]

Terminologies (which will be explained later)
T'AT is a similarity transformation of A, they share identical eigenvalues

IEE 5335: Mathematical Methods
__ and Algorithms for Signal Processing 23



Time-varying State-Space Model

When system is time-varying, the state-space representation becomes
x[n+1]=A[n]|x[n]+b[n] f [n]
y[n]=c"[n]x[n]+d[n] f[n]
so (A[n],b[n],c" [n],d[n]) on the time index n is shown

IEE 5335: Mathematical Methods
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Transtformed State-Space Model

Taking the z-transform of the time-invariant SS model
zx(z)=Ax(z)+bF(2)
Y(z)=c'x(z)+dF(z)
Then the state equation becomes
(zlIo —A)x(z):bF(z)
:>x(z)=(z|IO —A)_le(z).
Substituting, then the output equation
Y(z)=c"(21,~A) bF(z)+dF(2)

=[cT (21, —A)_1b+d}F(z).

Then the transfer function becomes

H(z)=Y(Z) =cT(zIp—A)_1b+d

IEE 5335: Mathematical Methods
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Solution for State-Space Ditference

Eq_uation

Recall the state-space difference equation
x|[n+1]=Ax[n]+bf [n]
y[n]=c'x[n]+df [n]
Also initial condition x[-1], and for n>0,
x|0] = Ax[-1]+bf [0]
x[1] = Ax[0]+bf [1]
= A(Ax[-1]+bf [0])+bf [1]
= A’x[-1]+ Abf [0]+ bf [1]

x[n] :A”+1x[—1]+kzn;)Akbf [n—K]

IEE 5335: Mathematical Methods
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Solution for State-Space Ditference

Eq_uation

y[n] :CTA“+1X[—1]+an(;cTAkbf [n—k]+df [n]

Quantities of ¢" Ab are known as the Markov parameters of the system.
e Note: x|n] is a linear function of x[-1] and f [n—k], so it is also a Gaussian process
(more on random process later)

IEE 5335: Mathematical Methods
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State-Space Model: MIMO Extension

MIMO extension:

x[n+1]=Ax[n]+Bu|[n]

y[n]=Cx[n]+Duln]

If there are p state variables and ¢ inputs and m outputs, then
A:pxp, B:px/t, C:mxp, D:mx/

Simple algebra will show that

x[n]= A™x[-1]+ > A*Bu[K]
k=0

y[n]=CA™x[-1]+ > CA*Bu[K]+ Du[n]
k=0

Quantities of CA*B are known as the Markov parameters of the system.

IEE 5335: Mathematical Methods
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State Equation Example: Two DC Power
Supplies

Assume outputs are independent of each othen, then a reasonable model would be the
scalar model for each output

x [n]=ax[n—-1]+u,[n]
X, [n]=a,x,[n—1]+u,[n],

where X, [-1] ~ NV (4,07 ), %,[-1] ~ N (4,02, ), u,[n] and u, [n] are zero-mean

WGN with variance afl and ‘752’ respectively. All RVs are independent of each other.

o e R e N e

Also, since u [n] Is a vector WGN with zero mean and covariance
E(u | E ' 1 a2 0
E(u[m]uT [I‘l]) :li (ul -m]ul[n]) (ul[m- U, [n]) :[O-lll :|5[m_n]’
_|ow O %l | oe 0
0 Q{ 0 Guzj and X-_l]_[xz[—l]} N ij,_ ) GiD.

= (UZ :m]ul [n]) E (uz [m U, [n])_
IEE 5335: Mathematical Methods
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State Equation Example: Vehicle Tracking

e Goal: Estimate and track range and bearing of vehicle (assuming x — y Cartesian coordinates)
e Assume constant velocity, perturbed by only wind gusts, slight speed corrections
e Model these perturbations as noise inputs, leading to velocity equations

v [n]=v,[n—1]+u,[n]

v, [n]=v,[n-1]+u,[n].
» Note that without the noise perturbations u, [n] and u, [n], the velocities would be constant,
and the vehicle would be modeled as traveling in a straight line as indicated by the dashed line
in Fig. 13.21
e The position equation at time n can then be written as

r[n]=r[n-1]+v,[n-1]A

r,[n]=r,[n-1]+v, [n-1]A,
where A is the sampling period.
e The (discrete-time) velocity equations models the vehicle to be traveling at the velocity at

n—1 and then changing abruptly at n. This is an approximation to the true continuous behavior

IEE 5335: Mathematical Methods
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State Equation Example: Vehicle Tracking

Ty
ryin] [ T' ~ Vehicle track
Rinl/
: S, Initial position
ry(=1] from e 'E """""""""""" -4
Bin) A
7z(n| re[—1] Tr

Figure 13.21 Typical track of vehicle moving in given direction at
constant speed
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State Equation Example: Vehicle Tracking

el

r.In
Define the signal vector as x[n] =" [ ] from the velocity and position equations, we see that

v, [n]

vy [n]]
r[n]] [T 0 A 0r[n-1]] [ O ]
r[n]| |0 1 0 A|r[n-1] N 0
v,([n]| |0 0 1 0fv[n-1]]| |u,]n]
v, [n]| [0 0 0 1]v,[n-1]| |u[n]]

< x[n]=Ax[n-1]+u[n].

The measurments are noisy observations of the range and bearing
ﬁ[n]z R[n]+w[n]
B[n]= B[n]+w, [n].

This can be written in general formas y[n]= h(x[n])+w[n], where

e [n]+ e [n]
Cx[n]= h(x[n]): arctanm

_ n(n] |

IEE 5335: Mathematical Methods
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Example: System Estimation: One LS
Approach

,’ w(n] ‘: Output
: ! :may/may not be
nj, or . ) 1 affected b
ﬂhlr U.nkno.wn “_near hy[n] or x[n]; * ' additive noi);e
. f[N]—» time-invariant NN [n]=x[n] + w[n]
nown Modeled as system STl z[n]
SEquUeNCe A& yeterministic or e[n]
(pilot) random? B
Mod_el ﬁd [n] ory[n]
White noise —> AnI;al\t/(l:,Zl(gga)

Using ARMA model to model the unknown system :
ﬁd[n] ory[n]=-a/y[n-1]-a/y[n-2]----—a,y[n-p]
+by f [n]+b f [n—1]+---+b; f[n—q]

Assuming: p q
ssuming e yol==ay[n—k]+« b f[n—k]

o f [n] is known
e System: ARMA(p, Q)
= can setup equation Ax =b to solve for parameters

IEE 5335: Mathematical Methods
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Example: System Estimation: One LS
Approach

To ensure we deal

Recall y[n]:—zp:a:y[n—k]+zq:b:f [n_k] Wit&acausal y[n]
y[p-1] y[p-2] - y[O flp] f[p-1] - f[p-a] | n=p
a-| vl ylp=1 [l flp+a]  flp] o flp+l-g]
YIN-Y yIN-2) e yIN-p] fN] fN- - f[N-q] | n=n
oy
] DR
X= 3, and b= [p+1]
b s
' z[N]
b

If N large = over-determined system = LS solution possible

IEE 5335: Mathematical Methods
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E.g. Linear Prediction (Useful for Speech
Coding and Recognition)

1

P
1+> az"
k=1
Speech is often modeled as output of such system driven by either a zero-mean
uncorrelated signal in the case of unvoiced speech (such as "f", "s" known as

fricatives) or by a periodic pulse sequence in the case of voiced speech (vowels)
due to the "peaky" nature of human speech signal (in time).

Assume we are told of an AR (p) system H (z) =

From H (Z) = y[n]z—zp:aky[n—k]+ f [n]:_aTy[n_1]+ ; [n]=—a2y[n]
3 Biun

o y[n-1] : ;
a, |andy[n]2| y[n-2] =h, [n]=y[n]=-aay[n] A

AT .
Goal is to find a. or & so that e[n] = z[n]-y[n] is minimized

11>

a.p _y[n._ p]_

IEE 5335: Mathematical Methods
__ and Algorithms for Signal Processing 35



Application for Speech Recognition (big

data example)

Suppose there are several classes of signals to be
distinguished (for example, several speech sounds to be
recognized).

Each signal will have its own set of prediction
coefficients

o Signal 1 has a,

o Signal 2 has a,, ...

An unknown input signal can be reduced (by estimating
the prediction coefficients that represent it) to a vector a

o Then a can be compared with a,, a,, and so on...to determine
which signal the unknown input is most similar to

IEE 5335: Mathematical Methods
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Inverse Problem: Another Perspective of
Prediction

1 P A fln i i
H(z)= y[n] 1 X [ ]_ Drive this to some
fin]—Lp| (2 1+Zp:akz—k —> ﬁ(z)—“;akz €[Nl small value in
k=1 some sense

Assumed Inverse system

system that that is

needs to be estimated

identified

IEE 5335: Mathematical Methods
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Inverse Problem: Another Perspective of
Prediction

If Y(z)=H(z)F(z) = F(z):Y(z)H(Z)

= f[n]=y[n]+a'y[n-1]
In this case, y[n] is regarded as input, then f [n] is output of an inverse system.
If we have an estimated system

H(z)

1 Y (z)

1+Zp:akz‘k F(2)
k=1

P

f[n]=y[n]+a"y[n-1]
so that is close to f [n] in some sense. This is known as an inverse problem.

IEE 5335: Mathematical Methods
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Nonparametric Spectrum Analysis

From DSP, we know we can perform DFT on
“any” signals to get a picture of the spectrum

x(tyan pproximations

N "Analysis" Equation
=l 1 & - i%ZxWhy these
4o )| X[k]:TZx[n]e N equZtions
2 N n=0 .
€0 ] are written
this way?

\\%a "Synthesis" Equation

140

N-1 27
()= DX [k
Not very accurate =0

o Exploiting a priori knowledge of signal is better

IEE 5335: Mathematical Methods
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Parameter Fourter Analysis

Assume we know the signal s[n|=acos 2z f,n+bsin2z f;n, forn=0,1,...,N -1,

where f, =k /N, withk =1,...,N/2-1. Estimate8=[a b] .

s[0] 1 0
s[1] cos 2r f, sin 2 f,

s[N-1]| |cos2zf,(N~-1) sin2zf,(N-1)]
\l_f| J
It can shown that H is orthogonal, i.e.
. N-1 k _ k
hih, = Zcos(Z;;—njsm (Zn—nj =0
n=0 N N

N
2

= HTHz(N/Z)lIO
hIhlzh;hz =

IEE 5335: Mathematical Methods
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Parametric Fourier Analysis

. | & .
0=|.|=(H'H) H'x
_b_
B 2 N-1
WZX[H]COS(ZE—H)
=M
2 x[n]sin(Zn—nj
B N n=0

IEE 5335: Mathematical Methods
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General Adaptive Filter Configuration

Select parameters to achieve the
“best” match between the
desired signal d[n] and filter

output — optimizing the d[n]
performance function such as .
o Least-squares error fIn]—p ﬁcgnﬂtive y[n] > e[n]
o Mean-squared error Hlter B
Characteristics of AF (
o Can automatically adjust (or

adapt) in the face of changing || Adaptive

environments and changing algorithm
system requirements

o Can be trained to perform specific
filtering or decision-making tasks

o Should have some “adaptation
algorithm” (learning algorithm)
for adjusting system’s parameters

IEE 5335: Mathematical Methods
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Applications of AF: System Identification
and Interference Cancellation

fn] — Unknown dn]

_>
system B
e[n] *
w1 T
_ Adehst\lv\e

Filte
IV
Pl

fin] = n[n] Adapti y[n]
— ® me *_ >
noise / eln]

) d[n]

Signal = x[n]

Q% |EE 5335: Mathematical Methods
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Applications of AF: Inverse Modeling and

Predictors
d[n]
delay
yIn] -f f[n]
fn] Unkrour > Ag%ffe S>> eln
d[n]
yn] - f[n] _
fln]— delay > Af;%fe — e[n]

IEE 5335: Mathematical Methods
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small value in
some sense

Drive this to some
small value in
some sense
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Random Variable (RV)

Table 5.2 Possible Random Variables (RV)

Qutcome: S; RV No. 1: X; {(5) RV No. 2: X, (5;}

A random variable is a function PR P T
that assigns a numerical value S = uils Xi(52) = — | xa(5:) = V2
each possible outcome in S, I.e.
S— 9 (field of real number)

o More convenient to work with a - |
numerlcal Value than H““p,e:lr‘:te ;Iig:jurr?als;:prc%cnlmion of sample

nonnumerical value )
Can be discrete or continuous — ‘ ‘ \
(example of discrete RV on top Lo EN e
right, continuous RV on bottom T TR
r|ght) e o i
Convention
o Capital letters denote RVs ﬁ
o Lowercase letters denote values o
the RVs take on 1
E.g. fy(x) distribution function for D SN SNV S
RV X with value x T

: IEE 5335: Mathematical Methods
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CDF and PDF

Functions which relates the probability of an
event to a numerical value assigned to an event

Parameter vs. nonparameteric

o There are several different parametric PDFs

o Nonparametric
Estimated directly from data
Easily adaptable

: IEE 5335: Mathematical Methods
e F and Algorithms for Signal Processing
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Probability (Cumulative) Distribution
Functions

e A way to probabilistically describe an RV

F, (x) 2p ( X < x) From 2., Fy(X) is continuous from
2 right, so the jump amount = P,

Properties of F, (x)

1. 0<Fy (x) <1, with Fy (—0) =0, Fy (0) =1 /

2. F, (x) is continuous from the right, that is, PO_P(X_XO){E
XILT Fo (X)=F (%) /—
. . . . 0 X *
3. F, (x) is a nondecreasing function of x, i.e. Figure 5.5 ’
F, (Xl) <F, ( Xz) if X, <X, Illustration of the jump property of Fy(x).

IEE 5335: Mathematical Methods
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Probability Density Functions (PDF)

More convenient to express statistical averages using PDFs
dF, (X
fy (X)=— ()

dx
Properties of f, (x)

LE(X)=] 1 (1)dn = f(x)=

2. _[X f(x)dx=1

dF, (x)
dx

>0

Xy

3.P(X <X <X)=F(%)-F(x)= ' fy (x)dx
4.1, (x)dx=P(x—dx< X <x)

IEE 5335: Mathematical Methods
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Example: Discrete PDF and CDFE

Figure 5.6
The cdf and pdf for a coin-tossing
. - experiment.
F (x
2 falr coins are tossed o
41 —_—
4 I
X: # of heads  I—
2L
4 i I
i
4 | |
Outcome X P(X=x) P et
fox) Some texts use pmf where the
TT X1:O 1/4 Dirac delta’s are represented

simply as Kronecker delta’s

Area = 1

TH !
HT Area = 41—1
HH X3=3 Ya

(b) pdf

IEE 5335: Mathematical Methods
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Example: Cont. PDF and CDF

Consider the pointer-spinning experiment. Assume any one stopping point is not
favored over any other and that the RV © is defined as the angle that the pointer
makes with the vertical, modulo 2z. Thus @ is limited to [0,27) and for any two
angles 6, and 6, in [0,27), we have
P(6,-A0<0<6,)=P(6,-A0<O<0,) (equally likely assumption)
= 1o (6,)=1,(6,), 0<6,,6,<2r.

1

—, 0<0< 2,
= f,(0)=1{2z i

0, otherwise

Area under PDF curve is the probability.

fol6) Folth Figure 5.7
The (a) pdf and (b} cdf for a pointer-
Lo spinning experiment.
1
2z | l | | |
0 T 2 v 0 2r o

(a) (b)

IEE 5335: Mathematical Methods
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Joint CDFs and PDFs

Characterized by two or more RVs
Foo (X, ¥)=P(X <xY <y)

P(x <X <X,¥, <Y< yz):jyizj: frr (X, y)dxdy

= F,, (oo,oo):_[y _[X fuy (X, y)dxdy =1
= v (X y)dxdy =P(x—dx< X <x,y—dy<Y <y)

Figure 5.8
The dart-throwing experiment.

IEE 5335: Mathematical Methods
£ and Algorithms for Signal Processing
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Marginal CDFs and PDFs

Can obtain cdf or pdf of one of the RVs from joint RVs
Fy (X, y)=P(X <X,Y <o0)=F,, (X,)

R (X y)=P(X <Y <y)=Fy ()
Fy (%) jj fr (X', y")dXdy’
(Y)

R (Y j j fuy (X', y")dXdy"
Since f, (x) = dFd)f )andf (y)= _dFd}Ey)
= f, (X ):_f v (x,y')dy" and fY(y):L o (X, y)dX

IEE 5335: Mathematical Methods
£ and Algorithms for Signal Processing
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Conditional CDFs and PDFs

Conditional RV:

Far () =Far (XY =)= FXI;Y((XQ)y)
fx\Y (X‘ y) X‘Y (2)‘(Y y) fX;Y((Xy;/)

Bayes Theorem:

_f(xy) _ fo (Y] X =X) (x) fux (¥1%) F (%)
fx\Y (X‘y)— fY(y)y | fv(y) = fv(y)
where f, (y|x)dx=P(y-dy<Y <y given X =x).

IEE 5335: Mathematical Methods
/ and Algorithms for Signal Processing
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Statistical Independence

Two RVs are stat. independent if values one takes on do not influence
the values that the other takes on.

If X and Y are not independent, then using Bayes' rule
for (X, y) = fy (%) fyix (y|x) =T () LY (X| y)'

IEE 5335: Mathematical Methods
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Example: Statistical Independence

Two RVs Xand Y have joint pdf
Ae ) X y>0
fxv (X, y) = { y

0, otherwise.
A can be found by noting that
Fyv (OO’ OO) = Iy _[X fyy (X’ Y)dXdy =1

Since J'OOO ': Ae P Vdxdy =1 = A=2

j: 2e P Ydy, x>0 |2, x20 )
0, x<0

f, (x):_.y frv (X, y)dy:{

0, x<0
e’,y=>0

f(y)=] fx (xy)dx= { Conditional prob’s are

0, 0
, V< Zequal to respective
fo (X]y)= fa (% y) _J2e™, x>0 | marginals & X and Y
xy XY= f,(y) |0, x<O0 are independent.
fo (Xy) Je,y>0 ;
e
J

IEE 5335: Mathematical Methods
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Example: Statistical Independence

Fyrlx ¥) fx(x) )
2
2
1+ |
0 \
1 | ;
y G 9 ’
(a) (b) (c)
Figure 5.9
Joint and marginal pdfs for two random variables. (a) Joint pdf. (b) Marginal pdf for X. (c) Marginal pdf

for Y.

Ae ) % y>0
f X, y — ' ’
o () {O, otherwise.

"0 x>0 (26, x>0
fx(x):J.y fXY(X’y)dy:{{; x<0:{0’ x<0

IEE 5335: Mathematical Methods
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Sum of Two Statistically Indep. RVs

The density of the sum of
two statistically
Independent RVs is the
convolution of their
Individual density
functions.

Suppose X, and Y are
three independent RVS
where W =X +Y, then

fu (W) = ,[y fy (y) fx (w=y)dy
fy (W), f(x), and f,(y) are
pdfs of W, X, and Y,
respectively

IEE 5335: Mathematical Methods
and Algorithms for Signal Processing

<
J
=

(W)=P(W <w)=P(X +Y <w)
:L Iwi fy v (X,y) dxdy

:J'y f, (y)J‘XV:o f, (x) dxdy (stat. indep.)

Differentiating we get the result
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Statistical Averages

Sometimes full description of RVs, 1.e. knowing
Its CDF or PDF are not required

Sometimes only partial information Is needed

o One type of partial information of a set of RVs
statistical average or mean value

: IEE 5335: Mathematical Methods
e F and Algorithms for Signal Processing
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Average ot Discrete RV

Expectation of M RVs, x,,..., X,, With respective probabilities B, ...

M
u 2 E[X]=2 %P,
j=1
Justification:
Let experiment be perform N number of time, with N large

: : nX +-++N X <& N
Arithmetic mean: 22 m ”‘:Zx—J

N =N

n.
By relative frequency interpretation: lim - =P,

N —o N J

X +-+N X <«
= v => x,P.
j=1

IEE 5335: Mathematical Methods
' and Algorithms for Signal Processing
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Average ot Cont. RV

Expectation of x, to x,, with pdf f, (x) Suppose we break up this interval into
subintervals of size Ax (assume small). The probability that X lies between
X. —AX t0 X; 1S
P(x, —Ax< X <x)= f, (x)Ax, fori=0,...,M.
Hence, approximated X by a discrete RV that takes on values x, to x,,
with probabilities f, (x,)AXx,..., f, (X, ) Ax.

lim
Ax—0

M -~
= u 2E[X]* D % f, (%)AX = _[X xf, (x)dx
i=1

IEE 5335: Mathematical Methods
and Algorithms for Signal Processing
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Properties ot Expectation

E[-] Is a linear operator
o Sometimes need to perform E(tr(-)). tr(-) is also linear
operator = E(tr(-)) = tr(E(-))
o Additive
E[X+Y] = E[X] + E[Y] for any 2 RV
o Homogenelity
E[cX] = cE[X], for any constant c

IEE 5335: Mathematical Methods
£ and Algorithms for Signal Processing

61



Average of a Function of a RV

LetY =g(X).

D yiP(y;) discrete RV
w SE[Y]=4 .
_[y yf, (y)dx, cont. RV

r" moment of X, forr=0,1,2,.... LetY =g(X)=X"

D X{P(x), discrete RV
& 2E[X"]=17
jx x'f, (x)dx, cont. RV

r" central moment of X, forr=0,1,2,.... LetY =g(X)=(X -z )

m 2E[(X - ) |

Special case: variance: r =2
var[X]2m, 2| (X - ) |~ E[X* |- 2 07

IEE 5335: Mathematical Methods
and Algorithms for Signal Processing

62



Average of a Function of a RV

r™ joint moment of X and Y, fori, j=0,1,2,...
D> X YIP(X,Y,),  discrete RV
i,

gij 2 E[Xin:I:< =
L yxiyj f (X, y)dxdy, cont. RV

Correlation: &, = E[XY]

Note:

Independent: E,, (XY)=E, (X)E,(Y)
Uncorrelated: E,, [ (X = )(Y =2, ) | =0
Orthogonal: E(XY)=0

Implications:

e If X and Y are independent and have zero mean, implies X and Y are uncorrelated and orthogonal.
e [f X and Y are uncorrelated and have zero mean, implies they are orthogonal.

e Hence, independence is the strongest of the three properties.

IEE 5335: Mathematical Methods
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Average of a Function of a RV

r™ joint central moment of X and Y, fori, j=0,1,2,...

my 2 E[(X—a, ) (Y =11, ]

Covariance:
Cov[X,Y]&2m, 2E[(X = )(Y =t ) | = E[XY ]= sy 1ty

Correlation coefficient for X and Y:
m, Cov[X,Y]

2 2
m20 m02 Gx O-Y

IEE 5335: Mathematical Methods
__ and Algorithms for Signal Processing

64



Conditional Expectation

Conditional expectation of X givenY =y

E[X|Y J=E[X]Y =y]= xf, (X]Y = y)dx

Expectation of functionsof X : Y =g(X)

E[Y]=E[9(X)]=], 9(x)  (x)dx

IEE 5335: Mathematical Methods
__ and Algorithms for Signal Processing
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‘ Removing Conditional Expectation Via
Expectation

Since E,, (X|Y) isa function of Y, it is also a RV.

E, [Exw (X|Y)] = jy jx xfyy (X y)dx f, (y) dy

— . X:y fX|Y (X| y) fY (y)dy dx

J X

= x[ f, (XY)dy dx

J X Jy

= [ xf, (X)dx

J X

:Ex[x]

Q% |EE 5335: Mathematical Methods
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Conditional Expectation

This is an "expectation” version of the total probability theorem.

In many cases, we can simplify a problem by conditioning or "fixing"
one RV and performing an expectation. Then remove the conditioning
In a second step by taking the expectation w.r.t. the conditioning RV.

More generally:

E[g(X)]=E, [EXW (g(x)|Y)]

IEE 5335: Mathematical Methods
and Algorithms for Signal Processing
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Special Average: Characteristic Function

Letg(X)=e'"
O(w)2 E[ej“’x ] =_[X f, (x)e’dx
fx(x):% D (w)e "y

Note:

e This is Fourier transform of f, (x) if we have ™

e Sometimes it is more convenient to use the variable s in place
of jw, the result becomes moment generating function.

Obtaining moments of a RV:

Setw=0: = E[X]=(-]) Y

IEE 5335: Mathematical Methods
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Chebyshev Inequality and the Law of
Large Numbers

Let X be a RV with mean x, and finite variance 2. Then for any & >0,

2
P(\X — Ly, \ > 5) < (;—;( (Chebyshev Inequality)

Let X,, X,,..., X, bei.i.d. (independent and identically distributed)
RVs with mean u, and variance o each. Let the sample mean be

- 1
My = Wé X;.-
Then, for any fixed 6 >0,
lim P(|y — f1x|25)=0. (LLN)
Intuitively, this means the estimator, s, , will converge to z, in probability.
If the above limit equals O, 4, is called a consistent estimator of x, .

IEE 5335: Mathematical Methods
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Useful PDFs

Discrete RVs

o Binomial distribution
Related to chance experiments with two mutually exclusive outcomes with probability p and 1-p
Model number of times event A has occurred in n trials (events are indep)

o Poisson distribution

Related to chance experiment in which an event whose probability of occurrence in a very small time
interval AT is P=aAT, where « is a constant

Model the probability of k events occurring in time T
Commonly used to model arrival time of packets in packet switching networks

Continuous RVs

o Normal (Gaussian) distribution

Commonly used to model large number of indep. random events when distribution of each event is
unknown

Sum of large number of independent RVs converges to a Gaussian distribution
o Rayleigh distribution

(see above)
o Rician distribution

Commonly used to model distribution of power profile of wireless channel when direct line-of-sight
(LOS) exists

X = sqrt(x,2+x,%), where x;~N(14,0%), X,~N(,,0?) are indep. RV

IEE 5335: Mathematical Methods
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Useful PDFs

Continuous RVs

o Chi-Squared (central and noncentral)
Commonly encounter in detector design

xZ with v degrees of freedom
X :Zlef, X, ~ N (0 or z,1) and indep.
o F-distribution ('éentral and noncentral)
Commonly encounter in detector design

F PDF: ratio of 2 indep. > RVs
X /v,

X, /v,

= IEE 5335: Mathematical Methods
£ and Algorithms for Signal Processing

X =

A =0: central F —dist.

X ~ 7, (4), %, ~ z, and indep.
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Gaussian (Normal) Distribution

1—dimensional:

Marginal distribution:

Joint CDFs and PDFs: F, (X)=Fy (X,0)=F,, (X,Y <)

Fyy (X' y): P(X <X Y < y) K (y): Fyv (OO' y): Fyv (X < o, y)
0°F,, (X,y _

o (1y) = ) b (=], o (x¥)y

P(x <X <X, Yy, <Y < yz):_"yyl2 : frv (X, y)dxdy

IEE 5335: Mathematical Methods
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‘ 2-D (Brvariate) Gaussian Distribution

[(X—,ux)lax:r —2,0[(X—,ux)/o‘x][(y—,uy)IO'y]+[(y—,uy)/()'y]2

foo(XYy)= exp| —

XY( ) 272'(7X0'y 1—,02 [ 2(1—,02)
where

,uX:E[X], ,uyzE[Y], o-f:var[X], ajzvar[Y]

E[(X-m)E(Y-s)] cov[x.Y]

2 _2
Gxo-y ,[UXO'y

p:

Q% |EE 5335: Mathematical Methods
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2D (Bivariate) Gaussian Distribution

4
02 3
2
- [ ?’;"“‘h\
-
' o (©)
; &)
1 —
=2
-3
-4
-4 3 =2 =] i | 2 3 4
¥
4
3 | .
5
£ 1 4 T
2
-Eq‘ Y 0 3 I -
= . ) /,ﬁ—w
-1
— %
o { /;fC"_}‘\R\ ) g ! s
\Eﬁfﬂ—fg/ é‘- Y 0p—
-3 C—— | -1 - /(
-4 \/
-4 -3 =2 -1 0 I 2 3 4 -2 =
X 3 _//
-4
4 -3 2 -1 0 1 2 3 4
X
Figure 5.18
Bivariate Gaussian pdfs and corresponding contour plots. (a) my = 0, my = 0, rr': =1, af = 1 and
p=0.)m =1, m=-2 0> =2’ =1landp=0(c)m=0.m=0,0>=1 0, =1 and
[ p=09. 1 ' ' '

____________
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‘ N-dimensional Gaussian Distribution

fy (x)=

1 T 1
(27[)N/2 (detC)l/Z EXp[_E(X_HX) C (X_NX)}

n =E[x]=

C=E [(x -1, )(x—p, )T } (applied element-wise)

Q% |EE 5335: Mathematical Methods
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Central Limit Theorem

2

Let X,, X,,..., X, be indep. RVs with zero mean and variance &.,07,...,0%.

Lets, = o/ +---+o.. If forany fixed ¢ > 0, there exists a sufficient large
N such that
o; <egs,, fork=1...,N,
then the normalized RV
X+ X, 44+ Xy
SN

Z, =

converges to the standard normal (Gaussian) PDF.

IEE 5335: Mathematical Methods
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(-Function

Gaussian Q-Function:

Normalized Normal distribution of N (yx,o-f)

1/27r0 eXp{

X— U alo, 1 y
lety = X — — __expl| - d
ety =="2) [am 7= p( 2] y

Consider P, —a< X < u, +a) J.Wa

12(x yx)z}dx

_ alo, 1 y2
= 2_[0 ﬁexp(—7j dy

' — y
(since area under PDF=1) :1—2_[ exp| ——
J_

2
~1-20 (i]
O-X

oy

2

y° 1 u
where ex —— |dy = exp| —— |, foru>1
Q(u f p( Jy = p( 2]

has been computed numerlcally.

IEE 5335: Mathematical Methods
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Normalized Distribution Function: F(x)

and (Q(x)

Normalized cumulative distribution function: #, =0, o, =1

F (x g g

)=l e
F(—x)=1-F(x)
A related function: F(x)=1-Q(x)

Q(X)=% [ ede
Q(-x)=1-Q(x)

IEE 5335: Mathematical Methods
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TABLE B-1
Values of F(x) for 0 < x < 3.89 in steps of 0.01

x 00 01 02 03 04 05 06 07 .08 09

0.0 .S000 5040 .S080 5120 L5160 5199 5239 5279 5319 5359
0.1 5398 5438 5478 5517  .5557 5596  .5636 5675 5714 5753
02 5793 5832 5871 5910 .5948 S987 6026 6064 6103 6141
0.3 6179 6217 6255 6293 6331 6368 6406 6443 L6480 6517
04 6554 L6591 L6628 6664 L6700 6736 6772 6808 6844 6879
0.5 6915 6950  _RORS 7019 7054 TORK 7123 7157 7190 7224
0.6 7257 7291 7324 7357 7380 7422 (7454 7486 ST 7549
0.7 7580 L7611 7642 7673 7704 1734 7764 J794 7823 7852
0.8 7881 7910 7939 7967 .7995 8023 8051 8078 8106 8133
09 8159 B186 K212 8238 8264 8289 8315 8340 8365 B389
1.0 8413 8438 8461 8485 8508  .8531 8554 8577 8599 8621
175 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830
12 8849 .8869 B8RE 8907 8925 8944 8962 8980 8997 9015

13 9032 9049 9066 9082 9099 911 9131 9147 9162 9177 : :

1.4 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 N Ormal Ized Cu maltlve
1S 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441

16 9452 9463 9474 9484 9495 9505 9515 9525 9535 9545 - - - -

17 9554 9564 9573 9582 9591 9599 9608 9616 9625  .9633 d IStri but| on fu nction
I8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706

1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767
20 9773 9778 9783 9788 9793 9798 9803 9808 9812 9817 F X
2.1 9821 9826 9830 9834 9838 9842 9846 9850 9854 9857

22 981 9864 9868 9871 9875 9878 9881 9884 9887 9890
23 9893 9896 9898 9901 9904 9906 9909 9911 9913 9916
24 9918 9920 9922 9925 9927 9929 9931 9932 9934 9936 F ( X) =1-— Q ( X)
25 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952
26 9953 9955 9956 9957 9959 9960 9961 9962 9963 9964
27 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
28 9974 9975 9976 9977 9977 9978 9979 9979 9980 998l
29 9981 9982 9982 9983 9984 9984 9985 9985 9986 9986
30 9987 9987 9987 9988 9988 9989 9989 9989 9990 9990
31 9990 9991 9991 9991 9992 9992 9992 9992 9993 9993
32 9993 9993 9994 9994 9994 9994 9994 9995 9995 9995
33 9995 9995 9996 9996 9996 999 9996 9996 9996 9997
34 9997 9997 9997 9997 9997 9997 9997 9997 9998 9998
35 9998 9998 9998 9998 9998 9998 9998 9998 9998 9998
36 9998 9999 9999 9999 9999 9999 9999 9999 9999 9999
37 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999
38 9999 9999 9999 9999 9999 9999 9999 10000 10000  1.0000
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Stochastic Process

Random Processes (Stochastic Processes)

o Informal definition

The outcomes (events) of a chance experiment are mapped into
functions of time (waveforms)

Cf. Random variables: outcomes are mapped into numbers
o Each waveform is called a sample function, or a realization. The
totality of all sample functions is called an ensemble

o Chance experiment that gives rise to this ensemble is called a
random/stochastic process
o Formal definition

Every outcome ¢ we assign, according to a certain rule, a time
function X(t,¢). X(t,&;) signifies a single time function

X(t;,¢) denotes a single RV
X(t;,&;) Is a number

: IEE 5335: Mathematical Methods
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Gen. No. =01
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t

-~

Figure 6.1

A statistically identical set of
binary waveform generators
with typical outputs.

\oltage at the terminals of a

noise generator. 10
ensemble experiments
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Statistical Description of Random
Process

A random process Is statistically specified by its
Nt order joint pdf’s that describes a typical
sample function at times t > ty_; > ... > t;, for
any N where
Fyaxa. xn(aliXo tos o Xty) = P(xg-dx; < Xy <X at
time t;, X,-dx, < X, <x, attime t,, ..., X-dXy < Xy
< Xy at time ty)

where X =X(t,,¢), for n=1,...N

= IEE 5335: Mathematical Methods
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x| \ X . Figure 6.2
' Typical sample functions of a

’ A - . .
Noise o A /\\Y \Y/ \ random process and illustration

Gen.1 [—o v\/{ \—! of the relative-frequency
: | interpretation of its joint pdf.

(a) Ensembile of sample func-
tions. (b) Superposition of the
sample functions shown in (a).

~

Noise —0° /]

Gen.2 pP—o

: Xe. N
(o0 ~ «—— Random process from
Nowse == /l‘\q /\ | e\ . realization ¢y,
Gen. M o | LRV A \¢
{ >
(a) . .
X(t;,¢€) is a random variable
oy . ‘ﬁ N /,{‘h‘\\ A //\
-{; // N i N v, ‘\\t\ - - ) )
VAL WY Joint probability (from relative frequency) is the
\number of sample functions that pass through
Frua Oty Xoty) = PO-ax, < X, < X at f fz the slits placed at t=t, and t=t, in both barriers
time t;, X,-dx, < X, < X, at time t,) (b) divided by the total number of M of sample

functions as M becomes large w/o bound

IEE 5335: Mathematical Methods
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Stationarity and Wide-Sense Stationarity

Statistical stationarity in the strict sense ~ «»
or stationarity

o Joint pdfs depend only on the time o 0
differences t,-t, t-t, ..., ty-t;
Not dependent on time origin
o Mean and variance independent of time 0 2 o, e 3 10 Nonstationary

o Correlation coefficient or covariance

)
_/

depends only on difference, e.g. t,-t; PrOCEsses
Wide-sense stationarity (WSS)
o Joint pdfs are dependent on time origin
o Mean and variance independent of time
o Correlation coefficient or covariance
depends only on difference, e.g. t,-t;
Stationarity =» WSS
o Converse is not necessarily true wn o A Stationary
Exception: Gaussian random process processes
(Why’)) ~10 | ! } | |

Figure 6.3
Sample functions of nonstationary processes contrasted with a sample function of a stationary process.
(a) Time-varying mean. (b) Time-varying variance. (c) Stationary.

= IEE 5335: Mathematical Methods
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Ensemble Average (Expectation)

Mean: s, (t)=E[x(t)] _[af
Variance: o2 (t)= E{‘X(t)—@r} = E[‘X(t)‘z]_‘@r
Covariance:

= Cxx (tl’tz) :C:x (tZ’tl)

Autocorrelation:

e (tt) = E[ x(t) X (t,) |

- .[az -[al ", fxlxz (al’tl; aZ’tZ)daldaZ
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Ensemble Average (Vector Random
Process)

Mean: p, (t)=E[x(t)]=x(t)

Variance: o (t)= E{[x(t)—@]H [x(t)—@}

Covariance;

C,(tL.t,)= E{[x(tl)—x(tl)][x(tz)—x(tz)

Autocorrelation:

R, (tt,)=E| x(t)x" (t,)]

IEE 5335: Mathematical Methods
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Ensemble Average (Expectation) for

WSS Process

WSS:
Mean: 1, (t)=E| x(t)]=constant
Variance: oy, (t)= constant

Covariance:
120 T x|
- E [x(t) X (t —Z’)] = x(t)x(t _T)*

Autocorrelation:
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Ensemble Average for Vector WSS Process

WSS:
Mean: p, (t)=E| x(t) | =constant
Variance: o, (t)=E| x" (t)x(t)|=constant

Covariance:

C, (r)2 E{[x(t)_ﬁ][x(t_f)_x(t-f)]H}
—E[x(t)x" (t-7)]-x(Ox(t-7)

Autocorrelation:

R,(7)=E [x(t)xH (t —r)]
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Froodicity

Ergodic processes are processes for which time and ensemble averages are interchangeable.
For example, for real-valued WSS processes:

u=E[x()]=(x(1))

h (7) = E[x(t)x(t+7)]=(x(t)x(t+7)),
where (v(t))£ T“ﬂ.l%ﬂ v(t)dt.

Note:
e All time and ensemble averages are interchangeable, not just the above.
e Ergodicity = strict-sense stationarity
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Example 1: Ergodicity

Consider a random process with sample function
n(t)=Acos(2z ft+6),
where f, is a constant and ® is a RV with pdf
1
i (0)=122 157
0, otherwise
Calculate its ensemble and time-average.

E[n(t)] =%fﬂ Acos(27z ft+60)do=0

N
o (t)= E[nz(t)]=ifﬂ[Acos(2nfot+e)Tde (n(t) =lim ] | Acos(27 f,t+0)dt =0

2n 2 R S LS
<n (t)>:I|m—  A’cos® (27 fit+0)dt

1 ¢»
=—|" A’cos’(2zft+6)do T2l
27[[_” cos® (27 fot+0) .
2 -
:ir [1+cos(4xft+20)]do 2
A r E[n(t)]=(n(t))=constant and o7, (t) = (n’ (t)) = constant,
2
_ A It may be stationary and ergodic.
2
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Example 2: Ergodicity
2 T
Suppose f,(8)=1 7’ ‘Q‘SZ.
0, otherwise
Calculate its ensemble and time-average.

zl4

E[n(t)]z3 Acos(2z ft+0)d6

72' -rl4
!4 _2\/§A

-rl4 T

=£Asin(27z fot+0)
T

cos(27 f,t)

r(0)= E[n2 (t)] =Ejﬂlj4|:ACOS(27Z f0t+9)]2 do
Ty
A [ [1+cos(4nf,t+26)]do
T Y7
2 2

A
= 7+7cos(47z fot)

Process Is not stationary as first and second moment depends on t, hence
it is for different time origin.
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Summary for Ergodic Process

1. Mean: g, (t)=E[ x(t)]=(x(t)) is the DC component

2. x(t) =<x(t)>2 is the DC power
3. 1,(0)=x’ (t):<x2 (t)> is the total power

2

4. o2 (t)=x*(t)=x(t) =(x*(t))=(x(t))" is the power in the
alternating current (time-varying) component

5. Total power X*(t) = o2 (t)+<x(t)>2 is the AC power plus the
DC power
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Power Spectral-Density Functions (PSD)
and Cross-Spectral Density

The PSD of a wide-sense stationary random process is the Fourier transform
of the autocorrelation function. For continuous-time random process

S, (1Q)=] 1, (r)e ¥ dr.
Since r,, (7) is symmetric, the PSD is a real-valued function of . Since

real-valued power cannot be negative, the PSD must satisfy S, () >0,
VvQ. Then average power of a random process is

r, (0)=E[x(t)x (t)]=E[]x(t)]

1 . - 1 ¢ .
— | S, (jQ)e*dQl =—| S_(jQ)dQ
<:>27Z'J.Q xx(J )e s 230 xx(J )
Cross-Spectral Density: S, (jQ)= j r, (7)e " dz
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Bilateral LLaplace Transtorm of the
Autocorrelation Function

Note: s=o+ JQ (entire complex plane). Define

S, (s)2[ r, (r)e™dr

JT

S,(s)2 [ r,(r)e~dzr

JT

For real-valued random process, since autocovariance is real and even, its
Laplace transform will be even

SXX (S)

Ifs= jo S, (~iQ)

(-s).

S,, (=S
S, (1Q2).
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Discrete-Time PSD and its Laplace
Transform Representation

For discrete-time, PSD: S, (eiw) = 3r, [K]e
k

Cross-Spectral Density: S, (ejw) _ Z r, k ook
k

Define S, ()23 r, [K]z
k

For real-valued process

and S.(e77)=5,(e")

Q% |EE 5335: Mathematical Methods
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Uncorrelated, Orthogonal, Independent
Random Processes

Given two random processes X (t) and Y (t)
(1) Uncorrelated

if Ry, (t,t,)=m, (t)m (L), Vi,
(2) Orthogonal

if R, (t,t,)=0, Vi,t,
(3) Independence: if

Frr (X0 Yoot %o, You b X0 Vi By )

= (Xt %6 X% ) Ty (Yot Voo b Vo b))

Remarks:
(1) Independence = Uncorrelated

(2) Uncorrelated = (X (t)—m, (t)) and (Y (t)—m, (t)) are orthogonal
(3) (Uncorrelated and either m, (t)=0orm, (t)=0) = orthogonal
(4) Uncorrelated and Gaussian = Independent
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Linear Systems and Random Processes
Given h(t) is LTI, and y(t)=h(t)*x(t)

Mean ofy( ):

)=E[h(t)*x(t)]= EU X(t- u)du} j h(u)E[ x(t-u)|du

()] h(u)du =, (t)H (0)

Cross-correlation

rxy(tl’t) [ ( )y (tz } [ j h t —Uu du}
=L E[x )]du

I M (4 t+u)du
If x(t) isWSS, let z =t, -,

r, (7)= J'u h"(u)r, (z+u)du=h"(-7)*r,(7)
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Linear Systems and Random Processes

Similarly

() = E[Y(6)X (4)]=E| [, n(u)x(t-u)du X' (t,)
= [ h( E[x t,—u)x"(t,) |du

—_[ . (t,—t,—u)du
If x(t) is WSS, let 7 =t, —t,

ryx(r):j h(u)r, (7: u)du=h(z)*r, ()
J=E[y(t)y (t-7)]= E[y(t)juh*(u)x*(t-u-r)du}
h(u)E[y “(t-u- r)]du

()

u I u+r du

)
jh
h"(-7)* y()
" (=z)*h(z)*r,(7)
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Linear Systems and Power Spectral
Densities

ry (7) =1 (=7) "1, (7) =S, (iQ)=H"(jQ)s. (i)

(1) =h(0) 1o (7) =1, (-7) 38, (JQ)=H(jQ)S. (i)

Since r,, (-7) =1, (z) and # {1, (-7)} = S, (jQ) =S, (- Q)

fy (7) =" (7)1, (7) <5, (iQ)=H"(iQ)s, (i2)
=h"(-7)*h(7)*r,(7) =

Il
B
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Markov and Hidden Markov Models
(HMM)

HMM IS a stochastic model that 1s used to model
time-varying random phenomena

o E.g. speech signal, video sequence
o Can be understood in terms of state-space models
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Markov Models

Used to model evolution of
random phenomena that can
be in discrete states as a
function to time,

o Transition from one state to the
next is random

E.g. A system can be in one
of the S distinct states

o At each step of discrete time it
can move to another state at
random, with probability of the
transition at the time t
dependent only upon the state
of the system at time t

I.e. only the previous state is
relevant

: IEE 5335: Mathematical Methods
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Markov Models

-rom state 1 to state 1 1S
nossible with
orobability 0.5

Denote S[t] denote the
state at time t, where It
takes on one of the
values 1,2, ..., S.

Initial state Is selected

according to a

probability 7z

. =P(S[1] =1), 1=1,
S

: IEE 5335: Mathematical Methods
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Markov Models

Probability of transition depends ONLY upon the current state
o P(S[t+1]=j|S[t] =i, S[t-1] =k, S[t-2] =4 ...) = P(S[t+1] = | S[t] = i)
This structure of probability is called the Markov property, and

the random sequence of state values S[0], S[1], S[2], ... Is called
a Markov sequence or a Markov chain

Sequence Is the output of the Markov model

Can determine the probability of arriving in the next state by
adding up all the probabilities of the ways of arriving there, I.e.

P(S[t+1]=j)=P(S[t+1]= i[S[t]=1)P(S[t]=1)+ P(S[t+1] = j|S[t]= 2) P(S[t] = 2)
+o+P(S[t+1]= j|S[t]=S)P(S[t]=$)

Note that this is just the law of total probability

: IEE 5335: Mathematical Methods
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Partitions and Total Probability

Suppose the events A, A,,..., A, form a partition of a sample space S, that is,
the events A's are mutually exclusive and their union is S. Suppose B is any
other event. Then

=(ANB)U(A,NB)uU---U(A NB),

where A " B are also mutually exclusive. Then
P(B)=P(ANB)+P(A NB)+---+P(A NB).
From the multiplication theorem,
P(B)=P(A)P(B|A)+P(A)P(B|A)++P(A)P(B|A,).

This is known as the law of total probability.
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Markov Models

Can be written in matrix form. Define

P(S[n]=) | [P(Y) P(y2) - P(Us)

| P(sln-2)| /Pl Pl2) - p(2s)

. witha; =P(i| j) £ P(s[t+1]=i[S[t] = j).

p[n]

[P(sin]=s)]  [P(sz) P(s[2) -
From the previous example:
05 0.3 0.2]

02 0 0.7
03 0.7 01

A:
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Markov Models

A steady-state probability assignment is one that does not
change from one time step to the next, so the probability
must satisfy the equation

Ap=p
This Is an eigenequation, with eigenvalue = 1.
By law of total probability, each column of Asumto 1

Definition: An mxm matrix P, such that 72, p;; =

1 (each row sums to 1) and each element of P iIs
nonnegative, is called a stochastic matrix. If the rows and
columns each sum to 1, then P is doubly stochastic

: IEE 5335: Mathematical Methods
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Markov Models

IS the transpose of a stochastic matrix. The vector

P(SIL) P(s[2) - P(S]s)
z contains the initial probabilities. Thus, we can write the probabilistic update equation is
p[t+1]=Ap[t], withp[0]=m.

Or,
p[t+1]=Ap[t]+ns,
with p[t]=0 for t <0. Note that the above is similar to the state equation
x[n+1] = Ax[n]+bf [n].
Note that the “state” represented by p[t+1] = Ap[t]+=d, is actually the vector
of probabilities p[t], not the state of the Markov sequence S [t]

= IEE 5335: Mathematical Methods
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Relationship to Markov Models and HMM

Pick a ball from 3 urns

Each urn contains 3 types of colored balls: black green,
and red

At each instant of time, an urn Iis selected by genie at
random according to the state it was in at the previous
time instant

Genie — magic creature which could do everything |
Ball iIs then drawn at random from the urn at time t
Observation = ball selected

Actual state 1s hidden

o State of the system before the ball was chosen =» the state of the
system after

= IEE 5335: Mathematical Methods
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Relationship to Markov Models and
HMM: State Diagram

0.2
0> Urn1 Urn 2
3 black 5 black
2 green P1 ( y) 7 green P2 ( Y)
1 red 0.3 3 red
0.2 0.7

0.3 0.7

Urn 3
2 black
2 green Ps ( y)

2 red
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Relationship to Markov Models and HMM

To further clarify the relationship,

p[t+1]=Ap[t]+=ns,

provides for the state update of the Markov system.

However, in most linear system, the state vector X[t]
Is not directly observable, instead, It Is observed only
through the observation matrix C (assuming D = 0),

l.e. y[t]

In an H

= Cx([t]
MM, the state 1s hidden from direct

observation

Instead

, each state has a probability distribution

assoclated with it

: IEE 5335: Mathematical Methods
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Relationship to Markov Models and HMM

In the HMM, we do not observe the “state” p|[t]
o Instead, each state has a probability distribution associated with it

When HMM moves into state s

1]

at time t, the observed output

y[t] is an outcome of a random variable Y[t] that is selected

according to the distribution f(y

1]

represent using the notation f(y

S

IS[t] = s), which we will

t]=s) = 1,(y)

In the urn example, the output probabilities depend on the

contents of the urns

A sequence of outputs from an HMM is y[0], y[1], V[2], ...
The underlying state information is hidden

Distribution in each state can be of any type
o Each state could have its own distribution
o In practice, distribution of each state is the same, but with different

parameters
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Summary: HMM

Denote the state at time t as St].
Initial state is selected according to probability 7, = P(S[1]=i), i=12,...,S
(assume P(S[t]=i)=0, fort<0).

Transition probability depends ONLY on current state:
P(S[t+1]=j|s[t]=i,S[t-1]=k,S[t-2]=1,...)=P(S[t+1]= j|S[t]=i)
Then, the probability of arriving in the next state is
P(s[t+1]=j)=P(S[t+1]= j|s[t]=1)P(s[t]=1)

+P(s[t+1]= j|S[t]=2)P(S[t]=2)
Foet P(S[t+1]: j‘S[t]:S)P(S[t]

:s)
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Summary: HMM State Transition

Can be written in matrix form. Define

P(S[=1)| [Py P@2) - P(US)]

o[t]2 P(S[f]zz) Al P(:Z|1) P(?|2) N P(2:|S) - with a, = P (i }) 2 P(S[t+1] =i|S[t] = j).
P(s[t]=5) P(S|L) P(S[2) - P(S[s)

From urn example:
05 03 0.2

A=/02 0 0.7
03 0.7 0.1]

= p[t+1]=Ap[t]+ =4,
with = = p[0]
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Summary: HMM Input-Output

Let M denote the number of possible outcomes from all states
Let Y [t] be the random variable output at time t, with outcome y|t]
Then probability of each possible output is

P(Y[t]=i)=P(Y[t]=i|s[t]=1)P(S[t]=1)+P(Y[t]= i|s[t]=2)P(S[t] =2)
++P(Y[t] = j|S[t]=S)P(S[t]=5)
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Summary: HMM Input-Output

Can be written in matrix form. Define

Cp(v[=1)] | POYIN=Ys[=1)  P(YI=Ys[t]=2) - P(Y[t]=Ys[t]=5) |
qz| POI=2) | o| POYIO=2s[0=1)  Pvi=dsi=2) - P(Y[]=Zs[d=s) |
P(Y[t]=M)] P(Y[t]=M|[s[t]=1) P(Y[t]=M|s[t]=2) - P(Y[t]=M|s[t]=5)

with ¢; = P(Y [t]=i|S[t] = j).
From urn example, with S =1 (black), =2 (green), =3 (red):

1/2 1/3 1/3
C=(1/3 7/15 1/3

1/6 1/5 1/3

= q[n]=Cp|[n]
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State-Space vs. HMM

State-space: HMM:
x[n+1]= Ax[n]+Bu[n] p[n+1]=Ap[n]+ns,, witha=p[0]
y[n]=Cx[n]+ Du[n] q[n]=Cp[n]

Recall solution for state-space is

x[n]= A™x[-1]+ > A*Bu[n—k]
k=0

y[n]=CA™x[-1]+ 3 CA*Bu[n—k]+ Du[n].
k=0

= Hence, A“ models dynamics of system by treating the system as a Markov process.
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Example: Speech Modeling for Speech
Recognition

Patterns In speech signal occurring sequentially in
time

Each word or sound (phoneme) to be recognized is
represented by an HMM

o Output 1s some feature vector that is derived from the
speech data

o Random variability in the feature vector and the amount of
time each feature is produced is modeled by the HMM

o Variability in the duration of the word is modeled by the
Markov model

o Variability in the outputs is modeled by the random
selection from within each state

: IEE 5335: Mathematical Methods
e F and Algorithms for Signal Processing 117



Example

Given a small vocabulary system with N words

a There are N HMMs: (A, 7, C)

o 1 denotes a particular state

Training phase

o Each is trained to represent the parameters for that word

Testing phase
o Sequence of feature vectors is computed (front end part)

o The likelihood (probability) that this sequence of feature
¥ectorshwas produced by the HMM (A,, 7;, C;) Is computed
oreach i

o HMM that produces the highest probability selects the
recognized word

: IEE 5335: Mathematical Methods
e F and Algorithms for Signal Processing 118



Issues for HMM

Training:
o How can the parameters (A, &, C) be estimated based
upon observations of the data?

In other words, how can we train the parameters of the models
In the pattern recognition problem?

Testing

o How can we determine how well the observed data fits
the model that has been trained?

o How can we determine the sequence of states of the
underlying Markov model?
l.e. How do we discover the hidden states?
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