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Examples of  Mathematical Models

 Linear signal models for discrete and continuous 
time, including transfer function and state space 
representations.  Applications of these models to SP 
problems such as prediction, spectrum estimation, 
and so on

 Adaptive filtering models and applications to 
prediction, system identification, and so forth

 The Gaussian random variable, and other probability 
density functions, including the important idea of 
conditioning upon an observation

 Hidden Markov models
 Model the dynamics of systems probabilistically
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Why is modeling important?

 Our world is complicated
 To describe it mathematically requires complicated 

mathematics
 E.g. high-order differential equation

 E.g. suppose you are ask to design a filter h[n] 
satisfying some design specifications such as transition 
bandwidth, passband frequency, stopband frequency, 
filter order, …
 Hence, design is usually done in frequency using H(ejω)

 How many points in H(ejω) do you need to design?
 This is an impossible problem to solve as there are uncountable 

number of points in [0,π]
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Problem Specifications and Variable 
Parametrization
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Problem Formulation
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Filter designed using 
LS has much better 
magnitude frequency 
response than one 
using Kaiser 
windowing method



Other Motivations for Using Mathematics

 Given a sequence of output data from a system, 
how can the parameters of the system be 
determined if the input signal is known
 What if the input signal is not known?
 What if system is nonlinear?
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Other Motivations for Using Mathematics

 Determine a “minimal” 
representation of a system

 Given a signal from a system, 
determine a predictor for the signal
 Forward and/or backward

 Determine an optimal and/or 
efficient smoothing method
 E.g. Image smoothing

 Determine a means of efficiently 
coding (representing) a signal 
modeled as the output of an LTI 
system

 Develop computational efficient 
algorithms

 Develop adaptive technique to 
obtain desirable output of system
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Complex-Valued Linear Discrete-Time 
Models: ARMA and MA
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Complex-Valued Linear Discrete-Time 
Models: AR 
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System Function and Impulse Response
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System Function and Impulse Response
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Stochastic MA and AR Models
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SP often involves comparing two signals, one way for comparison is
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Autocorrelation Function
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Autocorrelation Function
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Yule-Walker Equations: Solving System ID 
Problem
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Observations about YW Equations

 R=RH

 Eigenvalues are real and eigenvectors corresponding to 
distinct eigenvalues are orthogonal/orthonormal.  If R
is real, then R is symmetric, i.e. RT= R

 R is a Toeplitz matrix, i.e. rij = ri-j
 Values of R depend only on the difference between the 

index values
 Has efficient algorithm to solve for solution

 Power efficient in hardware implementation
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Realization
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Realization: AR part of  Transfer Function
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Realization of  Complete Transfer 
Function
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state of the system

y[n]bp
*

w[n-1] w[n-2]

w[n-p]

*
1a−

*
2a−

*
1pa −−

*
pa−

*
0b

*
1b

*
2pb −

*
1pb −

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

* *
1

* * *
0 1

1

* 1
p

q

w n a w n a w n p f n

y n w n b n b w n b w n b w n q

+ − + + − =

= = + − + + −





Assumes 
p = q



State-Space Form
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State-Space Representation
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xk[n]’s are known as the state variables.  Note that the transfer function can be written as



State-Space Representation
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Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay 
elements in discrete time) and putting a logic probe in each of the interconnect

• Concatenation of these signals {xk[n]}, ∀k makes up the state of the system

State-space equation

A is called a companion matrix



Non-uniqueness of  State-Space Equation
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Time-varying State-Space Model
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Transformed State-Space Model
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Solution for State-Space Difference 
Equation
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Solution for State-Space Difference 
Equation
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State-Space Model: MIMO Extension
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State Equation Example: Two DC Power 
Supplies
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State Equation Example: Vehicle Tracking
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 Goal: Estimate and track range and bearing of vehicle (assuming  Cartesian coordinates)
 Assume constant velocity, perturbed by only wind gusts, slight speed corrections
 Model these perturbation
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 the n

x x x

y y y

v n v n u n

v n v u nn

= − +

= − +

• [ ] [ ]oise perturbations  and , the velocities would be constant,

and the vehicle would be modeled as traveling in a straight line as indicated by the dashed line
in Fig. 13.21
 The position equation at

x yu n u n

•

[ ] [ ] [ ]
[ ] [ ] [ ]

                                                  

                                              

 time  can then be written as
1 1

1 ,

where  is the sam

    

pling period.
 e

1

Th  

x x x

y y y

n
r n r n v n

r n r n v n

= − + − ∆

= − + ∆

∆
•

−

(discrete-time) velocity equations models the vehicle to be traveling at the velocity at
1 and then changing abruptly at .  This is an approximation to the true continuous behaviorn n−



State Equation Example: Vehicle Tracking
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State Equation Example: Vehicle Tracking
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[ ]

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

 from the velocity and position equations, we see that

1 0 0
0 1 0

                                       

Def

  

ine the signal vect

0 0 1 0
0 0 0 1

or as 

x

y

x

y

x

y

x

y

r n
r n

n
v n
v n

r n
r n
v n
v n

 
 
 =  
 
  

  ∆
   ∆  =  
 
   

x

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ]

01
01

1
1

                                     1 .
The measurments are noisy observations of the range and bearing

                       

x

y

xx

yy

r n
r n

u nv n
u nv n

n n n

 −  
    −    +    −
     −      

⇔ = − +x Ax u

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]( ) [ ]

ˆ                                 
ˆ                                                        .

This can be written in general form as   ,  where

                                 

RR n R n w n

n n w n

n n n
ββ β

= +

= +

= +y h x w

[ ] [ ]( )
[ ] [ ]

[ ]
[ ]

2 2

                
arctan

x y

y

x

r n r n
n n r n

r n

 +
 

⇒ =  
 
  

Cx h x



Example: System Estimation: One LS 
Approach
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Unknown linear 
time-invariant 

system
f[n]

Model 
matching:

ARMA(p,q)

hd[n] or x[n]

e[n]

w[n] Output 
may/may not be 

affected by 
additive noise

z[n] z[n]=x[n] + w[n]Modeled as 
deterministic or 

random?

[ ]
Assuming:
  is known 
 System: ARMA( , )

 can setup equation  to solve for parameters

f n
p q

•

•
⇒ =Ax b

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

* * *
1 1

* * *
0 1

* *

1 0

Using ARMA model to model the unknown system :

1 2

 

ˆ

   

 or 

       1
p

q

p q

k k
k k

d y n ah n y n a y n a y n p

b f n b f n b f n q

a y ny n k b f n k
= =

= − − − − − − −

+ + − + + −

− +−⇔ −= ∑ ∑





[ ] [ ]ˆ  or dh n y n

δ[n], or 
other 
known 
sequence 
(pilot) 

White noise



Example: System Estimation: One LS 
Approach
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[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ]
[ ]

[ ]

*
1
*
2

*

*
0
*
1

*

1 2 0 1
1 1 1 1

1 2 1

1
  and  p

q

y p y p y f p f p f p q
y p y p y f p f p f p q

y N y N y N p f N f N f N q

a
a

z p
a z p
b
b z N

b

 − − − −
 − + + − =
 
 

− − − − −  
 −
 − 
   
   − +   = =   
   
    
 
 
  

A

x b

 

 

       

 







If  large  over-determined system  LS solution possibleN ⇒ ⇒

[ ] [ ] [ ]* *

1 0
Recall   

p q

k k
k k

y a y n k b fn n k
= =

− − + −= ∑ ∑
n = p

n = N

To ensure we deal 
with a causal y[n]



E.g. Linear Prediction (Useful for Speech 
Coding and Recognition)
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( ) ( )

1

1Assume we are told of an AR  system 
1

Speech is often modeled as output of such system driven by either a zero-mean
uncorrelated signal in the case of unvoiced speech (such as "f", "s" kn

p
k

k
k

p H z
a z−

=

=
+∑

( ) [ ] [ ] [ ] [ ] [ ] [ ]
1

own as
fricatives) or by a periodic pulse sequence in the case of voiced speech (vowels)
due to the "peaky" nature of human speech signal (in time).

From          1
p

T T
k a

k
H z y n a y n k f n n f n n

=

⇒ = − − + = − − + = −∑ a y a y

a [ ]

[ ]
[ ]
[ ]

[ ]

1

2

1
1

 and 2a

p

f n
a y n
a n y n

a y n p

  
   −  
   −
  
  
   −   

y 




[ ] [ ] [ ]
[ ] [ ]  [ ]ˆGoal is to find  or  so that 

ˆ

 is minimized

T
a

T

d

a

n n

e

h n y

n z n y n

⇒ = −=

= −

a y

a a







Application for Speech Recognition (big 
data example)
 Suppose there are several classes of signals to be 

distinguished (for example, several speech sounds to be 
recognized).

 Each signal will have its own set of prediction 
coefficients
 Signal 1 has a1
 Signal 2 has a2, …

 An unknown input signal can be reduced (by estimating 
the prediction coefficients that represent it) to a vector a
 Then a can be compared with a1, a2, and so on…to determine 

which signal the unknown input is most similar to
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Inverse Problem: Another Perspective of  
Prediction
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f[n] y[n]
e[n]

Assumed 
system that 
needs to be 
identified

Drive this to some 
small value in 

some sense

( )

1

1 
1

p
k

k
k

H z
a z−

=

=
+∑  ( )



1

1 1
p

k
k

k
a z

H z
−

=

= +∑
 [ ]f n

Inverse system 
that is 

estimated



Inverse Problem: Another Perspective of  
Prediction
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( ) ( ) ( ) ( ) ( ) ( )
[ ] [ ] [ ]

[ ] [ ]

( )

1

1If      

1

In this case,  is regarded as input, then  is output of an inverse system.
If we have an estimated system

1                                      
1

T

p
k

k
k

Y z H z F z F z Y z
H z

f n y n n

y n f n

H z
a z−

=

= ⇒ =

⇒ = + −

= =
+∑

a y

( )
( )

 [ ] [ ] [ ]
[ ]

then choose           1

so that is close to  in some sense.  This is known as an inverse problem.

T

Y z
F z

f n y n n

f n

= + −a y



Nonparametric Spectrum Analysis

 From DSP, we know we can perform DFT on 
“any” signals to get a picture of the spectrum

 Not very accurate
 Exploiting a priori knowledge of signal is better
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[ ] [ ]

[ ] [ ]

21

0

21

0

"Analysis" Equation

1

"Synthesis" Equation

1

N j kn
N

n

N j kn
N

k

X k x n e
N

x n X k e
N

π

π

− −

=

−

=

=

=

∑

∑

Why these 
equations
are written
this way?



Parameter Fourier Analysis
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[ ]
[ ]

[ ]
[ ]

[ ] ( ) ( )

0 0

0

0 0

0 0

Assume we know the signal cos 2 sin 2 ,  for 0,1, , 1,

where / ,  with 1, , / 2 1.  Estimate .

1 00
cos 2 sin 21

       

cos 2 1 sin 2 11

T

s n a f n b f n n N

f k N k N a b

s
f fs

f N f Ns N

π π

π π

π π

= + = −

= = − =

   
   
   =
   
   − −−    
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( )

1

1 2
0

1 1 2 2

It can shown that  is orthogonal, i.e.

cos 2 sin 2 0
      / 2        

2

N
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Tn
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T T

a
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k kn n
N N N
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π π
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=
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    ⇒ =

= =
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H
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Parametric Fourier Analysis
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[ ]
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1

1

0

1
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ˆˆ
ˆ

2 cos 2
2  

2 sin 2
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N
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n
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    = =
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General Adaptive Filter Configuration

 Select parameters to achieve the 
“best” match between the 
desired signal d[n] and filter 
output – optimizing the 
performance function such as
 Least-squares error
 Mean-squared error

 Characteristics of AF
 Can automatically adjust (or 

adapt) in the face of changing 
environments and changing 
system requirements

 Can be trained to perform specific 
filtering or decision-making tasks

 Should have some “adaptation 
algorithm” (learning algorithm) 
for adjusting system’s parameters
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Adaptive
Filter

f[n]

Adaptive 
algorithm

y[n]
e[n]

d[n]



Applications of  AF: System Identification 
and Interference Cancellation
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Unknown 
system

f[n]

Adaptive
Filter

d[n]

e[n]

Adaptive
Filter

noise

y[n]

e[n]

Signal =  x[n]

d[n]

f[n] = η[n]



Applications of  AF: Inverse Modeling and 
Predictors
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f[n] y[n]
e[n]Unknown 

system
Drive this to some 

small value in 
some sense

 [ ]f n

delay
d[n]

Adaptive
Filter

f[n] y[n]
e[n]

Drive this to some 
small value in 

some sense

 [ ]f n
delay

d[n]

Adaptive
Filter



Random Variable (RV)

 A random variable is a function 
that assigns a numerical value 
each possible outcome in S, i.e. 
S→ℜ (field of real number)
 More convenient to work with a 

numerical value than 
nonnumerical value

 Can be discrete or continuous 
(example of discrete RV on top 
right, continuous RV on bottom 
right)

 Convention
 Capital letters denote RVs
 Lowercase letters denote values 

the RVs take on
 E.g. fX(x) distribution function for 

RV X with value x
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CDF and PDF

 Functions which relates the probability of an 
event to a numerical value assigned to an event

 Parameter vs. nonparameteric
 There are several different parametric PDFs
 Nonparametric 

 Estimated directly from data 
 Easily adaptable

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 46



Probability (Cumulative) Distribution 
Functions
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( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

( )
0

0

  A way to probabilistically describe an RV
                 

  

1.  0 1,  with 0,  1

2.  is continuous from the right, that is,

  lim

3.  is a nondecre

X

X

X X X

X

X Xx x

X

F x P X x

F x

F x F F

F x

F x F x

F x

+→

•

≤

≤ ≤ −∞ = ∞ =

=

Properties of



( ) ( )1 2 1 2

asing function of , i.e.

    if X X

x

F x F x x x≤ <

From 2., FX(x) is continuous from 
right, so the jump amount = P0



Probability Density Functions (PDF)
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( ) ( )

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

2

1
1 2 2 1

More convenient to express statistical averages using PDFs

                           

  

1.    0

2. 1

3. 

4. 

X
X

X

X
X X X

x
x

X X Xx

X

dF x
f x

dx
f x

dF x
F x f d f x

dx

f x dx

P x X x F x F x f x dx

f x dx P x dx

η
η η

=

= ⇒ = ≥

=

≤ ≤ = − =

= − <

∫

∫
∫

Properties of

( )X x≤



Example: Discrete PDF and CDF

 2 fair coins are tossed
 X: # of heads
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Outcome X P(X=xj)

TT x1=0 ¼
TH
HT
HH x3=3 ¼

Some texts use pmf where the 
Dirac delta’s are represented 
simply as Kronecker delta’s



Example: Cont. PDF and CDF
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Consider the pointer-spinning experiment.  Assume any one stopping point is not
favored over any other and that the RV  is defined as the angle that the pointer
makes with the vertical, modulo 2 .  Thuπ

Θ

[ )
[ )

( ) ( )
( ) ( )

1 2

1 1 2 2

1 2 1 2

s  is limited to 0,2  and for any two

angles  and  in 0,2 ,  we have

         (equally likely assumption)

                             ,  0 , 2 .

                  

P P

f f

π

θ θ π

θ θ θ θ θ θ

θ θ θ θ πΘ Θ

Θ

−∆ < Θ ≤ = −∆ < Θ ≤

⇒ = ≤ <

( )
1 ,  0 2 ,

           2
0,     otherwise

Area under PDF curve is the probability.

f
θ π

θ πΘ

 ≤ <⇒ = 




Joint CDFs and PDFs
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

1 1

2

1 2 1 2

Characterized by two or more RVs
, ,

,
,

, ,

, , 1

, ,

XY

XY
XY

y x

XYy x

XY XYy x

XY

F x y P X x Y y

F x y
f x y

x y

P x X x y Y y f x y dxdy

F f x y dxdy

f x y dxdy P x dx X x y dy Y y

= ≤ ≤

∂
=

∂ ∂

< ≤ < ≤ =

⇒ ∞ ∞ = =

⇒ = − < ≤ − < ≤

∫ ∫

∫ ∫



Marginal CDFs and PDFs
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

Can obtain cdf or pdf of one of the RVs from joint RVs
        , , ,

        , , ,

               ,

               , .

Since 

X XY

Y XY

x

X XYy

y

Y XYx

F x y P X x Y F x

F x y P X Y y F y

F x f x y dx dy

F y f x y dx dy
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= ≤ ≤ ∞ = ∞

= ≤ ∞ ≤ = ∞

′ ′ ′ ′=

′ ′ ′ ′=

∫ ∫

∫ ∫

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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,   and  ,

X Y
X Y

X XY Y XYy x

dF x dF y
x f y

dx dy

f x f x y dy f y f x y dx
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= =

′ ′ ′ ′⇒ = =∫ ∫



Conditional CDFs and PDFs
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( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

Conditional RV:
,

                 

,
         

Bayes Theorem:

,
            

where    given .

       

XY
X Y X Y

Y

X Y XY
X Y

Y

X XY X Y XXY
X Y

Y Y Y

Y X
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F x Y F x Y y

F y
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x f y
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∂
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Statistical Independence
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( ) ( ) ( )
( ) ( ) ( )

Two RVs are stat. independent if values one takes on do not influence
the values that the other takes on.
                   ,     or

                                    ,

    
XY X Y

P X x Y y P X x P Y y

F x y F x F y

⇒ ≤ ≤ = ≤ ≤

=

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

                                 ,

If  and  are not independent, then using Bayes' rule

                          , .

XY X Y

XY X YY X X Y

f x y f x f y

X Y
f x y f x f y x f y f x y

=

= =



Example: Statistical Independence
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( )
( )

( ) ( )
( )

( ) ( )

2

2

0 0

Two RVs and  have joint pdf

,  , 0              ,
0,        otherwise.

 can be found by noting that

         , , 1

Since 1    2

2
,

x y
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XY XYy x

x y
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,
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∫

∫ Conditional prob’s are 
equal to respective 
marginals  X and Y
are independent.



Example: Statistical Independence
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2 2
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,  , 0,
0,        otherwise.

2 ,  0 2 ,  0
,
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x y

XY

x y x
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Ae x yf x y
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e y
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 ≥= 
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 ≥
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<

∫∫

∫



Sum of  Two Statistically Indep. RVs

 The density of the sum of 
two statistically 
independent RVs is the 
convolution of their 
individual density 
functions.

 Suppose X, and Y are 
three independent RVS 
where W = X + Y, then

fW(w), fX(x), and fY(y) are 
pdfs of W, X, and Y, 
respectively
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( ) ( ) ( )W Y Xy
f w f y f w y dy= −∫

x

y

x+ y = w

y=w

x=w
x+ y ≤ w

( ) ( ) ( )

( )

( ) ( )

,          ,  

             (stat. indep.)

Differentiating we get the result

W

w y

X Yy x

w y

Y Xy x

F w P W w P X Y w

f x y dxdy

f y f x dxdy

−

=−∞

−

=−∞

= ≤ = + ≤

=

=

∫ ∫

∫ ∫



Statistical Averages

 Sometimes full description of RVs, i.e. knowing 
its CDF or PDF are not required

 Sometimes only partial information is needed
 One type of partial information of a set of RVs  

statistical average or mean value
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Average of  Discrete RV
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[ ]
1 1

1

Expectation of  RVs, , ,  with respective probabilities , ,

                                       

Justification:
Let experiment be perform  number of time, 

Arithmeti
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=
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c mean:  

By relative frequency interpretation:  lim
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Average of  Cont. RV
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( )0Expectation of  to  with pdf .  Suppose we break up this interval into
subintervals of size  (assume small).  The probability that  lies between

 to  is
                               

M X

i i

x x f x
x X

x x x
P x

∆
−∆

( ) ( )

( ) ( )

[ ] ( )


( )
0

0

0

lim

1

,  for 0, , .
Hence, approximated  by a discrete RV that takes on values  to 
with probabilities , , .

                       
x

i i X i

M

X X M

M

x i X i Xx
i

x X x f x x i M
X x x

f x x f x x

E X x f x x xf x dxµ
∆ →

=

− ∆ < ≤ ≈ ∆ = …

∆ ∆

⇒ ≈ ∆ =∑ ∫







Properties of  Expectation

 E[⋅] is a linear operator
 Sometimes need to perform E(tr(⋅)).  tr(⋅) is also linear 

operator  E(tr(⋅)) = tr(E(⋅))
 Additive

 E[X+Y] = E[X] + E[Y] for any 2 RVs

 Homogeneity
 E[cX] = cE[X], for any constant c
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Average of  a Function of  a RV
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   cont. RV
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Special case:  variance:  2
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Average of  a Function of  a RV
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 joint moment of  and Y,  for , 0,1, 2,

, ,         discrete RV
                    

, ,     cont. RV

Correlation:   

Note:
Independent:  

th

i j
m i m

i j i j
ij

i j
XYx y

XY

r X i j

x y P x y
E X Y

x y f x y dxdy

E XY

E XY E

ξ

ξ

=


  =  



=

∑

∫









( ) ( )
( )( )

( )
Uncorrelated: 0

Orthogonal:  0

Implications:
 If  and  are independent and have zero mean, implies  and  are uncorrelated and orthogonal.
 If  and  are uncorrelated and ha

X Y

XY X Y

X E Y

E X Y

E XY

X Y X Y
X Y

µ µ− − =  
=

•
• ve zero mean, implies they are orthogonal.
 Hence, independence is the strongest of the three properties.•
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( ) ( )

[ ] ( )( ) [ ]11

 joint central moment of  and Y,  for , 0,1, 2,

                       

Covariance:   

        ,

Correlation coefficient for  and :

               

th

i j
ij X Y

X Y X Y

r X i j

m E X Y

Cov X Y m E X Y E XY

X Y

µ µ

µ µ µ µ

=

 − − 

− − = −  
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( )

( )

[ ] ( ) ( ) ( )

Conditional expectation of  given 

    

Expectation of functions of :   

           

X Yx

Xx

X Y y

E X Y E X Y y xf x Y y dx

X Y g X

E Y E g X g x f x dx

=

  =  =  = =   

=

= =  

∫

∫



Removing Conditional Expectation Via 
Expectation
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( )
( ) ( ) ( )

( ) ( )

( )

( )

Since  is a function of , it is also a RV.

  

                        

                        

                       

        

X Y

Y YX Y X Yy x

YX Yx y

XYx y

Xx

E X Y Y

E E X Y xf x y dx f y dy

x f x y f y dy dx

x f XY dy dx

xf X dx

  = 

=

=

=

∫ ∫

∫ ∫

∫ ∫

∫
[ ]               XE X=



Conditional Expectation
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This is an "expectation" version of the total probability theorem.
In many cases, we can simplify a problem by conditioning or "fixing"
one RV and performing an expectation.  Then remove the conditionin

( ) ( )( )

g
in a second step by taking the expectation w.r.t. the conditioning RV.

More generally:   

                          Y X YE g X E E g X Y =    



Special Average:  Characteristic Function
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( )

( ) ( )

( ) ( )

( )

Let 

              

1                     
2

Note:
 This is Fourier transform of  if we have 
 Sometimes it is more convenient to use the variable  

j X

j X j x
Xx

j x
X v

j X
X

g X e

E e f x e dx

f x e dv

f x e
s

ω

ω ω

ω

ω

ω

ω
π

−

−

=

 Φ = 

= Φ

•

•

∫

∫



( ) ( )

[ ] ( ) ( )
0

in place
   of , the result becomes .

Obtaining moments of a RV:

                          

      Set 0 :       

                            

jvx
Xx

j

j xf x e dx
d

E X j
d

E X

ω

ω

ω
ω

ω
ω

ω
=

∂Φ
=

∂Φ
= ⇒ = −

⇒

∫

moment generating function

( ) ( )
0

n
nn

nj
d

ω

ω
ω

=

∂ Φ
  = − 



Chebyshev Inequality and the Law of  
Large Numbers
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( )

2

2

2

Let  be a RV with mean  and finite variance .  Then for any 0,

                                   (Chebyshev Inequality)

X X

X
X

X

P X

µ σ δ

σµ δ
δ

>

− ≥ ≤

1 2
2

1

Let , , ,  be i.i.d. (independent and identically distributed)

RVs with mean  and variance  each.  Let the sample mean be
1ˆ                                 .

Then, for any fixed 0,

N

X X
N

X i
i

X X X

X
N

µ σ

µ

δ
=

=

>

∑



( )ˆ                               lim 0.   (LLN)

ˆIntuitively, this means the estimator, , will converge to  in probability.
ˆIf the above limit equals 0,  is called a consistent estimato

X XN

X X

X

P µ µ δ

µ µ
µ

→∞
− ≥ =

r of .Xµ



Useful PDFs

 Discrete RVs
 Binomial distribution

 Related to chance experiments with two mutually exclusive outcomes with probability p and 1-p
 Model number of times event A has occurred in n trials (events are indep)

 Poisson distribution
 Related to chance experiment in which an event whose probability of occurrence in a very small time 

interval ∆T is P=α∆T, where α is a constant
 Model the probability of k events occurring in time T
 Commonly used to model arrival time of packets in packet switching networks

 Continuous RVs
 Normal (Gaussian) distribution

 Commonly used to model large number of indep. random events when distribution of each event is 
unknown

 Sum of large number of independent RVs converges to a Gaussian distribution
 Rayleigh distribution

 (see above)
 Rician distribution

 Commonly used to model distribution of power profile of wireless channel when direct line-of-sight 
(LOS) exists

 x = sqrt(x1
2+x2

2), where x1~N(µ1,σ2), x2~N(µ2,σ2) are indep. RV
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Useful PDFs

 Continuous RVs
 Chi-Squared (central and noncentral)

 Commonly encounter in detector design

 F-distribution (central and noncentral)
 Commonly encounter in detector design
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( )

2

2

1

 with  degrees of freedom

,  ~ 0 or ,1  and indep.i i i
i

x x x N

ν

ν

χ ν

µ
=

=∑

( )
1 2

2

2 21 1
1 2

2 2

 PDF:  ratio of 2 indep.  RVs
/ ,   ~ ,   ~  and indep.
/

                                  0 :  central dist.

F
xx x x
x

F

ν

ν ν

χ
ν χ λ χ
ν

λ

=

= −



Gaussian (Normal) Distribution
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( ) ( )

[ ] ( )

( ) ( )

( ) ( )

( ) ( )2 2

1 1

2

2 2

22

2

1 2 1 2

1 dimensional:

1 1                        exp
2 2

where ,   

Joint CDFs and PDFs:
, ,

,
,

, ,

X

XY

XY
XY

y x

XYy x

f x x

E X E X

F x y P X x Y y

F x y
f x y

x y

P x X x y Y y f x y dxdy

µ
πσ σ

µ σ µ

−

 
= − − 

 
 − 

= ≤ ≤

∂
=

∂ ∂

≤ ≤ ≤ ≤ = ∫ ∫

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

Marginal distribution:
, ,

, ,

,

X XY XY

Y XY XY

X XYx

F x F x F x Y

F y F y F X y

f x f x y dy

= ∞ = ≤ ∞

= ∞ = ≤ ∞

= ∫



2-D (Bivariate) Gaussian Distribution
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[ ] [ ] [ ] [ ]
( ) ( ) [ ]

22

22

2 2

2 2

/ 2 / / /1, exp
2 12 1

where 
,   ,   var ,   var

,

x x x x y y y y
XY

x y

x y x y

x y

x y x y

x x y y
f x y

E X E Y X Y

E X E Y Cov X Y

µ σ ρ µ σ µ σ µ σ

ρπσ σ ρ

µ µ σ σ

µ µ
ρ

σ σ σ σ
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= = = =
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2-D (Bivariate) Gaussian Distribution
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N-dimensional Gaussian Distribution
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( ) ( )

[ ]
( )

( )

( )( )

1
/ 2 1/ 2

1

1 1exp
22 det

  (applied element-wise)

T
N

N

T

f

E x
E

E x

E

π
− = − − −  

 
 =  
  

 − − 

X x x
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x x
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Central Limit Theorem
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2 2 2
1 2 1 2

2 2 2
1

2

Let , , ,  be indep. RVs with zero mean and variance , , , .

Let .  If for any fixed 0,  there exists a sufficient large
 such that 

                                        

N N

N N

k

X X X
s

N

σ σ σ

σ σ ε

σ

+ + >

<

 

 

1 2

,   for 1, , ,
then the normalized RV

                                        

converges to the standard normal (Gaussian) PDF.

N

N
N

N

s k N

X X XZ
s

ε =

+ + +









Q-Function
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2
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2/

/

Gaussian -Function:  

Normalized Normal distribution of ,
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1(let )                  exp
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+

−
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∫

∫
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has been computed numerically.

u u
 
− 
 





Normalized Distribution Function: F(x) 
and Q(x)
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( ) ( )
( ) ( )

( )

2

2

/ 2

Normalized cumulative distribution function: 0,  1
1                         
2

                               1

A related function:  1
1                         
2

x x

x
F x e d

F x F x

F x Q x

Q x e

ξ

ξ

µ σ

ξ
π

π

−

−∞

−

= =

=

− = −

= −

=

∫

( ) ( )
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                             1

x
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Q x Q x

ξ
∞

− = −

∫
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( )
( ) ( )

Normalized cumaltive
distribution function
            

   1

F x

F x Q x= −



Stochastic Process

 Random Processes (Stochastic Processes)
 Informal definition

 The outcomes (events) of a chance experiment are mapped into 
functions of time (waveforms)

 Cf. Random variables: outcomes are mapped into numbers
 Each waveform is called a sample function, or a realization.  The 

totality of all sample functions is called an ensemble
 Chance experiment that gives rise to this ensemble is called a 

random/stochastic process
 Formal definition

 Every outcome ζ we assign, according to a certain rule, a time 
function X(t,ζ). X(t,ζi) signifies a single time function

 X(tj,ζ) denotes a single RV
 X(tj,ζi) is a number
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Voltage at the terminals of a 
noise generator.  10 
ensemble experiments



Statistical Description of  Random 
Process
 A random process is statistically specified by its 

Nth order joint pdf’s that describes a typical 
sample function at times tN > tN-1 > … > t1, for 
any N where 

FX1X2…XN(x1,t1;x2,t2; …; xN,tN) = P(x1-dx1 < X1 ≤ x1 at 
time t1, x2-dx2 < X2 ≤ x2  at time t2, …, xN-dxN < XN

≤ xN at time tN)
where Xn≡X(tn,ζ), for n=1,…N

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 82



IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 83

Random process from 
realization ζM.

X(tj,ζ) is a random variable

Joint probability (from relative frequency) is the 
number of sample functions that pass through 
the slits placed at t=t1 and t=t2 in both barriers 
divided by the total number of M of sample 
functions as M becomes large w/o bound

FX1X2(x1,t1;x2,t2) = P(x1-dx1 < X1 ≤ x1 at 
time t1, x2-dx2 < X2 ≤ x2  at time t2)



Stationarity and Wide-Sense Stationarity

 Statistical stationarity in the strict sense 
or stationarity
 Joint pdfs depend only on the time 

differences t2-t1, t3-t1, …, tN-t1
 Not dependent on time origin

 Mean and variance independent of time
 Correlation coefficient or covariance 

depends only on difference, e.g. t2-t1
 Wide-sense stationarity (WSS)

 Joint pdfs are dependent on time origin
 Mean and variance independent of time
 Correlation coefficient or covariance 

depends only on difference, e.g. t2-t1
 Stationarity WSS

 Converse is not necessarily true
 Exception:  Gaussian random process 

(Why?)
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Nonstationary 
processes

Stationary 
processes



Ensemble Average (Expectation)
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Variance:  
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Ensemble Average (Vector Random 
Process)
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Ensemble Average (Expectation) for 
WSS Process
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Ensemble Average for Vector WSS Process
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WSS:

Mean:  constant

Variance:  constant

Covariance:

             

                       

Autocorrelation:
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Ergodicity
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( ) ( )

Ergodic processes are processes for which time and ensemble averages are interchangeable.
For example, for real-valued WSS processes:

                                              

         

x E x t x tµ = =  

( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2 22                      

                            ,

1where lim .
2

Note:  
  All time and ensemble averages are interchangeable, not just t

xx
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T
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E x t x t x t x t

r E x t x t x t x t

v t v t dt
T

σ

τ τ τ

−→∞

   = − = −  

= + = +  

•

∫

he above.
  Ergodicity  strict-sense stationarity• ⇒



Example 1: Ergodicity
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0

Consider a random process with sample function
                         cos 2 ,
where  is a constant and  is a RV with pdf

1 ,   
                        .2

0,  otherwise
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ensemble and time-average.
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It may be stationary and ergodic.
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Example 2: Ergodicity
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2 ,   
Suppose  .4

0,  otherwise
Calculate its ensemble and time-average.
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Process is not stationary as first and second moment depends on ,  hence
it is for different time origin.

A f t d

A A f t

t

π

π
π θ θ

π

π
π

−
= + +  

= +

∫

∫



Summary for Ergodic Process
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1.  Mean:   is the DC component

2.   is the DC power

3.  0  is the total power

4.   is the power in the

alternating current (time-varying) component

5.  
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Power Spectral-Density Functions (PSD) 
and Cross-Spectral Density
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( ) ( )

The PSD of a wide-sense stationary random process is the Fourier transform
of the autocorrelation function.  For continuous-time random process

                                  .

Sinc

j
xx xxS j r e dτ

τ
τ τ− ΩΩ = ∫
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e  is symmetric, the PSD is a real-valued function of .  Since

real-valued power cannot be negative, the PSD must satisfy 0,
.  Then average power of a random process is

                     

xx

xx

r

S

τ Ω

Ω ≥

∀Ω

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2*

0

          0

1 1                              
2 2

Cross-Spectral Density:    
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Bilateral Laplace Transform of  the 
Autocorrelation Function
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Discrete-Time PSD and its Laplace 
Transform Representation
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For discrete-time, PSD:            

Cross-Spectral Density:            
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Uncorrelated, Orthogonal, Independent 
Random Processes
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Markov and Hidden Markov Models 
(HMM)
 HMM is a stochastic model that is used to model 

time-varying random phenomena
 E.g. speech signal, video sequence
 Can be understood in terms of state-space models
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Markov Models

 Used to model evolution of 
random phenomena that can 
be in discrete states as a 
function to time,
 Transition from one state to the 

next is random
 E.g. A system can be in one 

of the S distinct states
 At each step of discrete time it 

can move to another state at 
random, with probability of the 
transition at the time t
dependent only upon the state 
of the system at time t
 i.e. only the previous state is 

relevant
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Markov Models

 From state 1 to state 1 is 
possible with 
probability 0.5

 Denote S[t] denote the 
state at time t, where it 
takes on one of the 
values 1,2, …, S.

 Initial state is selected 
according to a 
probability π

 πi = P(S[1] = i),  i = 1, 
2, …, S
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Markov Models

 Probability of transition depends ONLY upon the current state
 P(S[t+1] = j | S[t] = i, S[t-1] = k, S[t-2] = l, …) = P(S[t+1] = j | S[t] = i)

 This structure of probability is called the Markov property, and
the random sequence of state values S[0], S[1], S[2], … is called
a Markov sequence or a Markov chain

 Sequence is the output of the Markov model
 Can determine the probability of arriving in the next state by

adding up all the probabilities of the ways of arriving there, i.e.

 Note that this is just the law of total probability
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Partitions and Total Probability
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Suppose the events , , ,  form a partition of a sample space , that is,
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Markov Models

 A steady-state probability assignment is one that does not 
change from one time step to the next, so the probability 
must satisfy the equation 

Ap=p
 This is an eigenequation, with eigenvalue = 1.
 By law of total probability, each column of A sum to 1
 Definition: An m×m matrix P, such that ∑𝑗𝑗=1𝑚𝑚 𝑝𝑝𝑖𝑖𝑖𝑖 =

1 (each row sums to 1) and each element of P is 
nonnegative, is called a stochastic matrix.  If the rows and 
columns each sum to 1, then P is doubly stochastic

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 106



Markov Models
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Relationship to Markov Models and HMM

 Pick a ball from 3 urns
 Each urn contains 3 types of colored balls:  black green, 

and red
 At each instant of time, an urn is selected by genie at 

random according to the state it was in at the previous 
time instant

 Genie – magic creature which could do everything
 Ball is then drawn at random from the urn at time t
 Observation = ball selected
 Actual state is hidden

 State of the system before the ball was chosen  the state of the 
system after
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Relationship to Markov Models and 
HMM: State Diagram
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Relationship to Markov Models and HMM

 To further clarify the relationship, 

provides for the state update of the Markov system.
 However, in most linear system, the state vector x[t] 

is not directly observable, instead, it is observed only 
through the observation matrix C (assuming D = 0), 
i.e. y[t] = Cx[t]

 In an HMM, the state is hidden from direct 
observation

 Instead, each state has a probability distribution 
associated with it
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Relationship to Markov Models and HMM

 In the HMM, we do not observe the “state” p[t]
 Instead, each state has a probability distribution associated with it

 When HMM moves into state s[t] at time t, the observed output 
y[t] is an outcome of a random variable Y[t] that is selected 
according to the distribution f(y[t]|S[t] = s), which we will 
represent using the notation  f(y|S[t]=s) = fs(y)

 In the urn example, the output probabilities depend on the 
contents of the urns

 A sequence of outputs from an HMM is y[0], y[1], y[2], …
 The underlying state information is hidden
 Distribution in each state can be of any type

 Each state could have its own distribution
 In practice, distribution of each state is the same, but with different 

parameters
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Summary: HMM
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Summary: HMM State Transition
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Summary: HMM Input-Output
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Summary: HMM Input-Output
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State-Space vs. HMM
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Example: Speech Modeling for Speech 
Recognition
 Patterns in speech signal occurring sequentially in 

time
 Each word or sound (phoneme) to be recognized is 

represented by an HMM
 Output is some feature vector that is derived from the 

speech data
 Random variability in the feature vector and the amount of 

time each feature is produced is modeled by the HMM
 Variability in the duration of the word is modeled by the 

Markov model
 Variability in the outputs is modeled by the random 

selection from within each state
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Example

 Given a small vocabulary system with N words
 There are N HMMs: (Ai, πi, Ci)
 i denotes a particular state

 Training phase
 Each is trained to represent the parameters for that word

 Testing phase
 Sequence of feature vectors is computed (front end part)
 The likelihood (probability) that this sequence of feature 

vectors was produced by the HMM (Ai, πi, Ci) is computed 
for each i

 HMM that produces the highest probability selects the 
recognized word
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Issues for HMM

 Training:
 How can the parameters (A, π, C) be estimated based 

upon observations of the data?
 In other words, how can we train the parameters of the models 

in the pattern recognition problem?

 Testing
 How can we determine how well the observed data fits 

the model that has been trained?
 How can we determine the sequence of states of the 

underlying Markov model?
 I.e. How do we discover the hidden states?
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