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Examples of  Mathematical Models

 Linear signal models for discrete and continuous 
time, including transfer function and state space 
representations.  Applications of these models to SP 
problems such as prediction, spectrum estimation, 
and so on

 Adaptive filtering models and applications to 
prediction, system identification, and so forth

 The Gaussian random variable, and other probability 
density functions, including the important idea of 
conditioning upon an observation

 Hidden Markov models
 Model the dynamics of systems probabilistically
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Why is modeling important?

 Our world is complicated
 To describe it mathematically requires complicated 

mathematics
 E.g. high-order differential equation

 E.g. suppose you are ask to design a filter h[n] 
satisfying some design specifications such as transition 
bandwidth, passband frequency, stopband frequency, 
filter order, …
 Hence, design is usually done in frequency using H(ejω)

 How many points in H(ejω) do you need to design?
 This is an impossible problem to solve as there are uncountable 

number of points in [0,π]
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Problem Specifications and Variable 
Parametrization
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Problem Formulation
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Other Motivations for Using Mathematics

 Given a sequence of output data from a system, 
how can the parameters of the system be 
determined if the input signal is known
 What if the input signal is not known?
 What if system is nonlinear?

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 6

Unknown linear 
time-invariant 

system

x(n)
= 
δ(n)

Model 
matching for 
0 ≤ n ≤ q and

n > q

hd(n) or y(n)

e(n)



Other Motivations for Using Mathematics

 Determine a “minimal” 
representation of a system

 Given a signal from a system, 
determine a predictor for the signal
 Forward and/or backward

 Determine an optimal and/or 
efficient smoothing method
 E.g. Image smoothing

 Determine a means of efficiently 
coding (representing) a signal 
modeled as the output of an LTI 
system

 Develop computational efficient 
algorithms

 Develop adaptive technique to 
obtain desirable output of system
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Complex-Valued Linear Discrete-Time 
Models: ARMA and MA
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Complex-Valued Linear Discrete-Time 
Models: AR 
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System Function and Impulse Response
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System Function and Impulse Response
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Stochastic MA and AR Models
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Autocorrelation Function
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Autocorrelation Function

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 14

[ ]

[ ] [ ] [ ] [ ] [ ]( )

[ ] [ ]

[ ] [ ]

*

* * * *

0 0

Multply by on both sides and take expectation:

,  for 0
       (0 for 0 because  is white-noise process)

0,    for 0
For 0

0

p p

k k yy
k k

fy

fy

y n

E a y n k y n a r k E f n y n

r
f n

r E y n a

= =

−

 
− − = − = − 

 
 =

= >
>

>

= = +

∑ ∑



  

 







 [ ] [ ]( ) [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

* * *
1

* *
1

* *
1

1

              1

                          1

p

yy yy p yy

yy yy p yy

y n a y n p y n

r a r a r p

r a r a r p

 − + + − − 
= + − + + −

⇒ = − − − − −

 

   

   

[ ] [ ] [ ] [ ]* *
1

For AR process
1 py n a y n a y n p f n+ − + + − =f[n]

white
y[n]

( )
1

A z



Yule-Walker Equations: Solving System ID 
Problem
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Observations about YW Equations

 R=RH

 Eigenvalues are real and eigenvectors corresponding to 
distinct eigenvalues are orthogonal/orthonormal.  If R
is real, then R is symmetric, i.e. RT= R

 R is a Toeplitz matrix, i.e. rij = ri-j
 Values of R depend only on the difference between the 

index values
 Has efficient algorithm to solve for solution

 Power efficient in hardware implementation
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Realization
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Realization: AR part of  Transfer Function
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Realization of  Complete Transfer 
Function
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State-Space Form
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State-Space Representation
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xk[n]’s are known as the state variables.  Note that the transfer function can be written as



State-Space Representation
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Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay 
elements in discrete time) and putting a logic probe in each of the interconnect

• Concatenation of these signals {xk[n]}, ∀k makes up the state of the system

State-space equation

A is called a companion matrix



Non-uniqueness of  State-Space Equation
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Time-varying State-Space Model
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Transformed State-Space Model
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Solution for State-Space Difference 
Equation
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[ ] [ ] [ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]( ) [ ]

Recall the state-space difference equation
    1

                                 
         

Also initial condition 1 ,  and for 0, 

0 1 0

1 0 1

      1 0 1
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n n f n
y n n df n

n

f

f

f f

+ = +
= +

− ≥

= − +

= +

= − + +

=

x Ax b
c x

x

x Ax b

x Ax b

A Ax b b

[ ] [ ] [ ]

[ ] [ ] [ ]

2

1

0

1 0 1

1
n

n k

k

f f

n f n k+

=

− + +

= − + −∑

A x Ab b

x A x A b



Solution for State-Space Difference 
Equation
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[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

1

0
1

Quantities of  are known as the Markov parameters of the system.
 Note:  is a linear function of 1  and , so it is also a Gaussian process

(more on random pro

n
T n T k

k
T k

y n f n k df n

n f n k

+

=

= − + − +

• − −

∑c A x c A b

c A b
x x

cess later)



State-Space Model: MIMO Extension
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[ ] [ ] [ ]
[ ] [ ] [ ]

MIMO extension:
1

If there are  state variables and  inputs and  outputs, then
:  ,    :  ,    :  ,    :  

n n n

n n n
p m

p p p m p m

+ = +

= +

× × × ×

x Ax Bu

y Cx Du

A B C D


 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

1

0

1

0

Simple algebra will show that

1

1

Quantities of  are known as the Markov parameters of the system.

n
n k

k
n

n k

k
k

n k

n k n

+

=

+

=

= − +

= − + +

∑

∑

x A x A Bu

y CA x CA Bu Du

CA B



State Equation Example: Two DC Power 
Supplies
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[ ] [ ] [ ]1 1 1 1

Assume outputs are independent of each othen, then a reasonable model would be the
scalar model for each output
                                        1

                                   

x n a x n u n= − +

[ ] [ ] [ ]
[ ] ( ) [ ] ( ) [ ] [ ]

[ ]
[ ]

1 1 2 2

1 2

2 2 2 2

2 2
1 2 1 2

2 2

1 1

2 2

     1 ,

where 1 ~ , , 1 ~ , ,   and  are zero-mean 

WGN with variance  and , respectively.  All RVs are independent of each other.

0
Then  

0

x x x x

u u

x n a x n u n

x x u n u n

x n a
x n a

µ σ µ σ

σ σ

= − +

− −

   
=  
 

 

[ ]
[ ]

[ ]
[ ] [ ] [ ] [ ]

[ ]

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ]( ) [ ]1

2

1

1 1

2 2

2
1 1 1 2

2
2 1 2 2

2

1 1 0
1 .

1 0 1

Also, since  is a vector WGN with zero mean and covariance

0
    ,

0

0
so  

0

uT

u

u

u

x n u n
n n n

x n u n

n

E u m u n E u m u n
E m n m n

E u m u n E u m u n

σ
δ

σ

σ

σ

   −  
+ ⇔ = − +     −      

   
= = −   
     

=

x Ax Bu

u

u u

Q [ ] [ ]
[ ]

1 1

22 2

2
1

2 2
2

01
  and  1 ~ , .

1 0
x x

x x

x
x

µ σ
µ σ

      −
 − =       −            

x 



State Equation Example: Vehicle Tracking
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 Goal: Estimate and track range and bearing of vehicle (assuming  Cartesian coordinates)
 Assume constant velocity, perturbed by only wind gusts, slight speed corrections
 Model these perturbation

x y• −
•
•

[ ] [ ] [ ]
[ ] [ ] [ ]

s as noise inputs, leading to velocity equations
                                                  

                                           

1

1 .

 Note that without

       

 the n

x x x

y y y

v n v n u n

v n v u nn

= − +

= − +

• [ ] [ ]oise perturbations  and , the velocities would be constant,

and the vehicle would be modeled as traveling in a straight line as indicated by the dashed line
in Fig. 13.21
 The position equation at

x yu n u n

•

[ ] [ ] [ ]
[ ] [ ] [ ]

                                                  

                                              

 time  can then be written as
1 1

1 ,

where  is the sam

    

pling period.
 e

1

Th  

x x x

y y y

n
r n r n v n

r n r n v n

= − + − ∆

= − + ∆

∆
•

−

(discrete-time) velocity equations models the vehicle to be traveling at the velocity at
1 and then changing abruptly at .  This is an approximation to the true continuous behaviorn n−



State Equation Example: Vehicle Tracking
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State Equation Example: Vehicle Tracking
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[ ]

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

 from the velocity and position equations, we see that

1 0 0
0 1 0

                                       

Def

  

ine the signal vect

0 0 1 0
0 0 0 1

or as 

x

y

x

y

x

y

x

y

r n
r n

n
v n
v n

r n
r n
v n
v n

 
 
 =  
 
  

  ∆
   ∆  =  
 
   

x

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ]

01
01

1
1

                                     1 .
The measurments are noisy observations of the range and bearing

                       

x

y
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r n
r n

u nv n
u nv n

n n n

 −  
    −    +    −
     −      

⇔ = − +x Ax u

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]( ) [ ]

ˆ                                 
ˆ                                                        .

This can be written in general form as   ,  where
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ββ β
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= +y h x w

[ ] [ ]( )
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x y

y

x
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 +
 

⇒ =  
 
  
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Example: System Estimation: One LS 
Approach
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Unknown linear 
time-invariant 

system
f[n]

Model 
matching:

ARMA(p,q)

hd[n] or x[n]

e[n]

w[n] Output 
may/may not be 

affected by 
additive noise

z[n] z[n]=x[n] + w[n]Modeled as 
deterministic or 

random?

[ ]
Assuming:
  is known 
 System: ARMA( , )

 can setup equation  to solve for parameters

f n
p q

•

•
⇒ =Ax b

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

* * *
1 1

* * *
0 1

* *

1 0

Using ARMA model to model the unknown system :

1 2

 

ˆ

   

 or 

       1
p

q

p q

k k
k k

d y n ah n y n a y n a y n p

b f n b f n b f n q

a y ny n k b f n k
= =

= − − − − − − −

+ + − + + −

− +−⇔ −= ∑ ∑





[ ] [ ]ˆ  or dh n y n

δ[n], or 
other 
known 
sequence 
(pilot) 

White noise



Example: System Estimation: One LS 
Approach
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a
a

z p
a z p
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 

       

 







If  large  over-determined system  LS solution possibleN ⇒ ⇒

[ ] [ ] [ ]* *

1 0
Recall   

p q

k k
k k

y a y n k b fn n k
= =

− − + −= ∑ ∑
n = p

n = N

To ensure we deal 
with a causal y[n]



E.g. Linear Prediction (Useful for Speech 
Coding and Recognition)
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( ) ( )

1

1Assume we are told of an AR  system 
1

Speech is often modeled as output of such system driven by either a zero-mean
uncorrelated signal in the case of unvoiced speech (such as "f", "s" kn

p
k

k
k

p H z
a z−

=

=
+∑

( ) [ ] [ ] [ ] [ ] [ ] [ ]
1

own as
fricatives) or by a periodic pulse sequence in the case of voiced speech (vowels)
due to the "peaky" nature of human speech signal (in time).

From          1
p
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k
H z y n a y n k f n n f n n
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⇒ = − − + = − − + = −∑ a y a y

a [ ]

[ ]
[ ]
[ ]

[ ]

1

2

1
1

 and 2a
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a y n p

  
   −  
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  
   −   

y 




[ ] [ ] [ ]
[ ] [ ]  [ ]ˆGoal is to find  or  so that 

ˆ

 is minimized

T
a

T

d

a

n n

e

h n y

n z n y n

⇒ = −=

= −

a y

a a







Application for Speech Recognition (big 
data example)
 Suppose there are several classes of signals to be 

distinguished (for example, several speech sounds to be 
recognized).

 Each signal will have its own set of prediction 
coefficients
 Signal 1 has a1
 Signal 2 has a2, …

 An unknown input signal can be reduced (by estimating 
the prediction coefficients that represent it) to a vector a
 Then a can be compared with a1, a2, and so on…to determine 

which signal the unknown input is most similar to
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Inverse Problem: Another Perspective of  
Prediction
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f[n] y[n]
e[n]

Assumed 
system that 
needs to be 
identified

Drive this to some 
small value in 

some sense

( )

1

1 
1

p
k

k
k

H z
a z−

=

=
+∑  ( )



1

1 1
p

k
k

k
a z

H z
−

=

= +∑
 [ ]f n

Inverse system 
that is 

estimated



Inverse Problem: Another Perspective of  
Prediction
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( ) ( ) ( ) ( ) ( ) ( )
[ ] [ ] [ ]

[ ] [ ]

( )

1

1If      

1

In this case,  is regarded as input, then  is output of an inverse system.
If we have an estimated system

1                                      
1

T

p
k

k
k

Y z H z F z F z Y z
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f n y n n

y n f n
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a z−

=

= ⇒ =

⇒ = + −

= =
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a y

( )
( )
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[ ]

then choose           1

so that is close to  in some sense.  This is known as an inverse problem.

T

Y z
F z

f n y n n

f n

= + −a y



Nonparametric Spectrum Analysis

 From DSP, we know we can perform DFT on 
“any” signals to get a picture of the spectrum

 Not very accurate
 Exploiting a priori knowledge of signal is better
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[ ] [ ]

[ ] [ ]

21

0

21

0

"Analysis" Equation

1

"Synthesis" Equation
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X k x n e
N

x n X k e
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π
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=

−

=

=

=
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∑

Why these 
equations
are written
this way?



Parameter Fourier Analysis
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[ ]
[ ]

[ ]
[ ]

[ ] ( ) ( )

0 0

0

0 0

0 0

Assume we know the signal cos 2 sin 2 ,  for 0,1, , 1,

where / ,  with 1, , / 2 1.  Estimate .

1 00
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cos 2 1 sin 2 11

T

s n a f n b f n n N

f k N k N a b

s
f fs

f N f Ns N

π π

π π

π π

= + = −

= = − =

   
   
   =
   
   − −−    

H

θ





 


 

( )

1

1 2
0

1 1 2 2

It can shown that  is orthogonal, i.e.
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Parametric Fourier Analysis
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( )

[ ]

[ ]

1

1

0

1

0

ˆˆ
ˆ

2 cos 2
2  

2 sin 2

T T

N

nT
N

n

a

b
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General Adaptive Filter Configuration

 Select parameters to achieve the 
“best” match between the 
desired signal d[n] and filter 
output – optimizing the 
performance function such as
 Least-squares error
 Mean-squared error

 Characteristics of AF
 Can automatically adjust (or 

adapt) in the face of changing 
environments and changing 
system requirements

 Can be trained to perform specific 
filtering or decision-making tasks

 Should have some “adaptation 
algorithm” (learning algorithm) 
for adjusting system’s parameters
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Adaptive
Filter

f[n]

Adaptive 
algorithm

y[n]
e[n]

d[n]



Applications of  AF: System Identification 
and Interference Cancellation
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Unknown 
system

f[n]

Adaptive
Filter

d[n]

e[n]

Adaptive
Filter

noise

y[n]

e[n]

Signal =  x[n]

d[n]

f[n] = η[n]



Applications of  AF: Inverse Modeling and 
Predictors

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 44

f[n] y[n]
e[n]Unknown 

system
Drive this to some 

small value in 
some sense

 [ ]f n

delay
d[n]

Adaptive
Filter

f[n] y[n]
e[n]

Drive this to some 
small value in 

some sense

 [ ]f n
delay

d[n]

Adaptive
Filter



Random Variable (RV)

 A random variable is a function 
that assigns a numerical value 
each possible outcome in S, i.e. 
S→ℜ (field of real number)
 More convenient to work with a 

numerical value than 
nonnumerical value

 Can be discrete or continuous 
(example of discrete RV on top 
right, continuous RV on bottom 
right)

 Convention
 Capital letters denote RVs
 Lowercase letters denote values 

the RVs take on
 E.g. fX(x) distribution function for 

RV X with value x
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CDF and PDF

 Functions which relates the probability of an 
event to a numerical value assigned to an event

 Parameter vs. nonparameteric
 There are several different parametric PDFs
 Nonparametric 

 Estimated directly from data 
 Easily adaptable
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Probability (Cumulative) Distribution 
Functions
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( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

( )
0

0

  A way to probabilistically describe an RV
                 

  

1.  0 1,  with 0,  1

2.  is continuous from the right, that is,

  lim

3.  is a nondecre

X

X

X X X

X

X Xx x

X

F x P X x

F x

F x F F

F x

F x F x

F x

+→

•

≤

≤ ≤ −∞ = ∞ =

=

Properties of



( ) ( )1 2 1 2

asing function of , i.e.

    if X X

x

F x F x x x≤ <

From 2., FX(x) is continuous from 
right, so the jump amount = P0



Probability Density Functions (PDF)
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( ) ( )
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

2

1
1 2 2 1

More convenient to express statistical averages using PDFs

                           

  

1.    0

2. 1

3. 

4. 

X
X

X

X
X X X

x
x

X X Xx

X

dF x
f x

dx
f x

dF x
F x f d f x

dx

f x dx

P x X x F x F x f x dx

f x dx P x dx

η
η η

=

= ⇒ = ≥

=

≤ ≤ = − =

= − <

∫

∫
∫

Properties of

( )X x≤



Example: Discrete PDF and CDF

 2 fair coins are tossed
 X: # of heads
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Outcome X P(X=xj)

TT x1=0 ¼
TH
HT
HH x3=3 ¼

Some texts use pmf where the 
Dirac delta’s are represented 
simply as Kronecker delta’s



Example: Cont. PDF and CDF
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Consider the pointer-spinning experiment.  Assume any one stopping point is not
favored over any other and that the RV  is defined as the angle that the pointer
makes with the vertical, modulo 2 .  Thuπ

Θ

[ )
[ )

( ) ( )
( ) ( )

1 2

1 1 2 2

1 2 1 2

s  is limited to 0,2  and for any two

angles  and  in 0,2 ,  we have

         (equally likely assumption)

                             ,  0 , 2 .

                  

P P

f f

π

θ θ π

θ θ θ θ θ θ

θ θ θ θ πΘ Θ

Θ

−∆ < Θ ≤ = −∆ < Θ ≤

⇒ = ≤ <

( )
1 ,  0 2 ,

           2
0,     otherwise

Area under PDF curve is the probability.

f
θ π

θ πΘ

 ≤ <⇒ = 




Joint CDFs and PDFs
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

1 1

2

1 2 1 2

Characterized by two or more RVs
, ,

,
,

, ,

, , 1

, ,

XY

XY
XY

y x

XYy x

XY XYy x

XY

F x y P X x Y y

F x y
f x y

x y

P x X x y Y y f x y dxdy

F f x y dxdy

f x y dxdy P x dx X x y dy Y y

= ≤ ≤

∂
=

∂ ∂

< ≤ < ≤ =

⇒ ∞ ∞ = =
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∫ ∫

∫ ∫



Marginal CDFs and PDFs
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

Can obtain cdf or pdf of one of the RVs from joint RVs
        , , ,

        , , ,

               ,

               , .

Since 

X XY

Y XY

x

X XYy

y

Y XYx

F x y P X x Y F x
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F x f x y dx dy
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= ≤ ≤ ∞ = ∞

= ≤ ∞ ≤ = ∞

′ ′ ′ ′=

′ ′ ′ ′=

∫ ∫

∫ ∫

( ) ( ) ( ) ( )
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,   and  ,

X Y
X Y

X XY Y XYy x

dF x dF y
x f y

dx dy
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′ ′ ′ ′⇒ = =∫ ∫



Conditional CDFs and PDFs

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 53

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
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( ) ( )
( )
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Conditional RV:
,

                 

,
         

Bayes Theorem:

,
            

where    given .

       

XY
X Y X Y

Y

X Y XY
X Y

Y

X XY X Y XXY
X Y

Y Y Y
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F x y
F x Y F x Y y

F y

F x Y y f x y
f x y

x f y
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∂ =
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∂
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Statistical Independence
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( ) ( ) ( )
( ) ( ) ( )

Two RVs are stat. independent if values one takes on do not influence
the values that the other takes on.
                   ,     or

                                    ,

    
XY X Y

P X x Y y P X x P Y y

F x y F x F y

⇒ ≤ ≤ = ≤ ≤

=

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

                                 ,

If  and  are not independent, then using Bayes' rule

                          , .

XY X Y

XY X YY X X Y

f x y f x f y

X Y
f x y f x f y x f y f x y

=

= =



Example: Statistical Independence

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 55

( )
( )

( ) ( )
( )
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2

2

0 0

Two RVs and  have joint pdf

,  , 0              ,
0,        otherwise.

 can be found by noting that

         , , 1

Since 1    2

2
,
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XY XYy x
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X Y
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A
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,
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∫

∫ Conditional prob’s are 
equal to respective 
marginals  X and Y
are independent.



Example: Statistical Independence
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,  , 0,
0,        otherwise.

2 ,  0 2 ,  0
,
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,  0
,
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x y x

X XYy
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Y XYx

Ae x yf x y

e x e x
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e y
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y
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∞ − + −

−

 ≥= 

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∫∫
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Sum of  Two Statistically Indep. RVs

 The density of the sum of 
two statistically 
independent RVs is the 
convolution of their 
individual density 
functions.

 Suppose X, and Y are 
three independent RVS 
where W = X + Y, then

fW(w), fX(x), and fY(y) are 
pdfs of W, X, and Y, 
respectively
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( ) ( ) ( )W Y Xy
f w f y f w y dy= −∫

x

y

x+ y = w

y=w

x=w
x+ y ≤ w

( ) ( ) ( )

( )

( ) ( )

,          ,  

             (stat. indep.)

Differentiating we get the result

W

w y

X Yy x

w y

Y Xy x

F w P W w P X Y w

f x y dxdy

f y f x dxdy

−

=−∞

−

=−∞

= ≤ = + ≤

=

=

∫ ∫

∫ ∫



Statistical Averages

 Sometimes full description of RVs, i.e. knowing 
its CDF or PDF are not required

 Sometimes only partial information is needed
 One type of partial information of a set of RVs  

statistical average or mean value
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Average of  Discrete RV
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[ ]
1 1

1

Expectation of  RVs, , ,  with respective probabilities , ,

                                       

Justification:
Let experiment be perform  number of time, 

Arithmeti
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∑
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Average of  Cont. RV
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( )0Expectation of  to  with pdf .  Suppose we break up this interval into
subintervals of size  (assume small).  The probability that  lies between

 to  is
                               

M X

i i

x x f x
x X

x x x
P x

∆
−∆

( ) ( )

( ) ( )

[ ] ( )


( )
0

0

0

lim

1

,  for 0, , .
Hence, approximated  by a discrete RV that takes on values  to 
with probabilities , , .

                       
x

i i X i

M

X X M

M

x i X i Xx
i

x X x f x x i M
X x x

f x x f x x

E X x f x x xf x dxµ
∆ →

=

− ∆ < ≤ ≈ ∆ = …

∆ ∆

⇒ ≈ ∆ =∑ ∫







Properties of  Expectation

 E[⋅] is a linear operator
 Sometimes need to perform E(tr(⋅)).  tr(⋅) is also linear 

operator  E(tr(⋅)) = tr(E(⋅))
 Additive

 E[X+Y] = E[X] + E[Y] for any 2 RVs

 Homogeneity
 E[cX] = cE[X], for any constant c
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Average of  a Function of  a RV
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Let .  

,   discrete RV
                        .

,     cont. RV

 moment of ,  for 0,1, 2, .  Let 
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   cont. RV

 central moment of ,  for 0,1, 2, .  Let 

                                     

Special case:  variance:  2
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Average of  a Function of  a RV
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( )

,

,

11

 joint moment of  and Y,  for , 0,1, 2,

, ,         discrete RV
                    

, ,     cont. RV

Correlation:   

Note:
Independent:  

th

i j
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i j i j
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

( ) ( )
( )( )

( )
Uncorrelated: 0

Orthogonal:  0

Implications:
 If  and  are independent and have zero mean, implies  and  are uncorrelated and orthogonal.
 If  and  are uncorrelated and ha

X Y

XY X Y

X E Y

E X Y

E XY

X Y X Y
X Y

µ µ− − =  
=

•
• ve zero mean, implies they are orthogonal.
 Hence, independence is the strongest of the three properties.•



Average of  a Function of  a RV
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[ ] ( )( ) [ ]11

 joint central moment of  and Y,  for , 0,1, 2,

                       

Covariance:   

        ,

Correlation coefficient for  and :
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Conditional Expectation
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Conditional expectation of  given 

    

Expectation of functions of :   
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Removing Conditional Expectation Via 
Expectation
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Since  is a function of , it is also a RV.
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Conditional Expectation
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This is an "expectation" version of the total probability theorem.
In many cases, we can simplify a problem by conditioning or "fixing"
one RV and performing an expectation.  Then remove the conditionin

( ) ( )( )

g
in a second step by taking the expectation w.r.t. the conditioning RV.

More generally:   

                          Y X YE g X E E g X Y =    



Special Average:  Characteristic Function

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 68

( )

( ) ( )

( ) ( )

( )

Let 

              

1                     
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Note:
 This is Fourier transform of  if we have 
 Sometimes it is more convenient to use the variable  
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Chebyshev Inequality and the Law of  
Large Numbers

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 69

( )

2

2
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Let  be a RV with mean  and finite variance .  Then for any 0,

                                   (Chebyshev Inequality)
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− ≥ ≤

1 2
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Let , , ,  be i.i.d. (independent and identically distributed)

RVs with mean  and variance  each.  Let the sample mean be
1ˆ                                 .
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δ
=

=

>

∑



( )ˆ                               lim 0.   (LLN)

ˆIntuitively, this means the estimator, , will converge to  in probability.
ˆIf the above limit equals 0,  is called a consistent estimato
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→∞
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Useful PDFs

 Discrete RVs
 Binomial distribution

 Related to chance experiments with two mutually exclusive outcomes with probability p and 1-p
 Model number of times event A has occurred in n trials (events are indep)

 Poisson distribution
 Related to chance experiment in which an event whose probability of occurrence in a very small time 

interval ∆T is P=α∆T, where α is a constant
 Model the probability of k events occurring in time T
 Commonly used to model arrival time of packets in packet switching networks

 Continuous RVs
 Normal (Gaussian) distribution

 Commonly used to model large number of indep. random events when distribution of each event is 
unknown

 Sum of large number of independent RVs converges to a Gaussian distribution
 Rayleigh distribution

 (see above)
 Rician distribution

 Commonly used to model distribution of power profile of wireless channel when direct line-of-sight 
(LOS) exists

 x = sqrt(x1
2+x2

2), where x1~N(µ1,σ2), x2~N(µ2,σ2) are indep. RV
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Useful PDFs

 Continuous RVs
 Chi-Squared (central and noncentral)

 Commonly encounter in detector design

 F-distribution (central and noncentral)
 Commonly encounter in detector design
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Gaussian (Normal) Distribution
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1 dimensional:
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2 2

where ,   

Joint CDFs and PDFs:
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2-D (Bivariate) Gaussian Distribution
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2-D (Bivariate) Gaussian Distribution
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N-dimensional Gaussian Distribution

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 75

( )
( ) ( )

( ) ( )

[ ]
( )

( )

( )( )

1
/ 2 1/ 2

1

1 1exp
22 det

  (applied element-wise)

T
N

N

T

f

E x
E

E x

E

π
− = − − −  

 
 =  
  

 − − 

X x x

x

x x

x x μ C x μ
C

μ x

C x μ x μ

 





Central Limit Theorem
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Let , , ,  be indep. RVs with zero mean and variance , , , .

Let .  If for any fixed 0,  there exists a sufficient large
 such that 

                                        

N N

N N

k

X X X
s

N

σ σ σ

σ σ ε

σ

+ + >

<

 

 

1 2

,   for 1, , ,
then the normalized RV

                                        

converges to the standard normal (Gaussian) PDF.

N

N
N

N

s k N

X X XZ
s

ε =

+ + +









Q-Function
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Normalized Distribution Function: F(x) 
and Q(x)
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Normalized cumulative distribution function: 0,  1
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A related function:  1
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Normalized cumaltive
distribution function
            

   1
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F x Q x= −



Stochastic Process

 Random Processes (Stochastic Processes)
 Informal definition

 The outcomes (events) of a chance experiment are mapped into 
functions of time (waveforms)

 Cf. Random variables: outcomes are mapped into numbers
 Each waveform is called a sample function, or a realization.  The 

totality of all sample functions is called an ensemble
 Chance experiment that gives rise to this ensemble is called a 

random/stochastic process
 Formal definition

 Every outcome ζ we assign, according to a certain rule, a time 
function X(t,ζ). X(t,ζi) signifies a single time function

 X(tj,ζ) denotes a single RV
 X(tj,ζi) is a number
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Voltage at the terminals of a 
noise generator.  10 
ensemble experiments



Statistical Description of  Random 
Process
 A random process is statistically specified by its 

Nth order joint pdf’s that describes a typical 
sample function at times tN > tN-1 > … > t1, for 
any N where 

FX1X2…XN(x1,t1;x2,t2; …; xN,tN) = P(x1-dx1 < X1 ≤ x1 at 
time t1, x2-dx2 < X2 ≤ x2  at time t2, …, xN-dxN < XN

≤ xN at time tN)
where Xn≡X(tn,ζ), for n=1,…N
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Random process from 
realization ζM.

X(tj,ζ) is a random variable

Joint probability (from relative frequency) is the 
number of sample functions that pass through 
the slits placed at t=t1 and t=t2 in both barriers 
divided by the total number of M of sample 
functions as M becomes large w/o bound

FX1X2(x1,t1;x2,t2) = P(x1-dx1 < X1 ≤ x1 at 
time t1, x2-dx2 < X2 ≤ x2  at time t2)



Stationarity and Wide-Sense Stationarity

 Statistical stationarity in the strict sense 
or stationarity
 Joint pdfs depend only on the time 

differences t2-t1, t3-t1, …, tN-t1
 Not dependent on time origin

 Mean and variance independent of time
 Correlation coefficient or covariance 

depends only on difference, e.g. t2-t1
 Wide-sense stationarity (WSS)

 Joint pdfs are dependent on time origin
 Mean and variance independent of time
 Correlation coefficient or covariance 

depends only on difference, e.g. t2-t1
 Stationarity WSS

 Converse is not necessarily true
 Exception:  Gaussian random process 

(Why?)
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Nonstationary 
processes

Stationary 
processes



Ensemble Average (Expectation)

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 85

( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( )

2 222

*

1 2 1 1 2 2

**
1 2 1 2

2 1

Mean:  ,

Variance:  

Covariance:

             ,

                            

             ,

x X

xx

xx

xx

t E x t x t f t d

t E x t x t E x t x t

c t t E x t x t x t x t

E x t x t x t x t

c t t E x t

α
µ α α α

σ

= = =  

 = − = −
 

   = − −   

 = − 

=

∫

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( )

1 2
2 1

*

2 2 1 1

**
2 1 2 1

*
1 2 2 1

*
1 2 1 2

1 2 1 1 2 2 1 2

                           

, ,
Autocorrelation:

             ,

                           , ; ,

xx xx

xx

X X

x t x t x t

E x t x t x t x t

c t t c t t

r t t E x t x t

f t t d d
α α

α α α α α α

   − −   

 = − 
⇒ =

 =  

= ∫ ∫



Ensemble Average (Vector Random 
Process)
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Ensemble Average (Expectation) for 
WSS Process
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Ensemble Average for Vector WSS Process
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Ergodicity
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( ) ( )

Ergodic processes are processes for which time and ensemble averages are interchangeable.
For example, for real-valued WSS processes:
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  Ergodicity  strict-sense stationarity• ⇒



Example 1: Ergodicity
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It may be stationary and ergodic.
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Example 2: Ergodicity
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0,  otherwise
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2 cos 2

2 2 2             sin 2 cos 2

20 cos 2nn

f

E n t A f t d

AA f t f t

r E n t A f t d

π

π

π

π

π

π

πθ
θ π

π θ θ
π

π θ π
π π

π θ θ
π

Θ

−

−

−

 ≤= 


= +  

= + =

 = = +   

∫

( )

( )

2 / 4

0/ 4

2 2

0

               1 cos 4 2

               cos 4
2

Process is not stationary as first and second moment depends on ,  hence
it is for different time origin.

A f t d

A A f t

t

π

π
π θ θ

π

π
π

−
= + +  

= +

∫

∫



Summary for Ergodic Process
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1.  Mean:   is the DC component

2.   is the DC power

3.  0  is the total power

4.   is the power in the

alternating current (time-varying) component
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Power Spectral-Density Functions (PSD) 
and Cross-Spectral Density
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The PSD of a wide-sense stationary random process is the Fourier transform
of the autocorrelation function.  For continuous-time random process
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Bilateral Laplace Transform of  the 
Autocorrelation Function
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Discrete-Time PSD and its Laplace 
Transform Representation
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Uncorrelated, Orthogonal, Independent 
Random Processes
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Linear Systems and Random Processes

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 97

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* * *
1 2 1 2 1 2

* *
1

Given  is LTI, and *

Mean of :

*

         0

Cross-correlation

,

               

y u u

x xu

xy u

h t y t h t x t

y t

t E h t x t E h u x t u du h u E x t u du

t h u du t H

r t t E x t y t E x t h u x t u du

h u E x t x

µ

µ µ

=

 = = − = −        

= =

  = = −    

=

∫ ∫

∫

∫
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

2

*
1 2

1 2

* *

               

If  is WSS, let 

         *

u

xxu

xy xx xxu

t u du

h u r t t u du

x t t t

r h u r u du h r

τ

τ τ τ τ

 − 

= − +

= −

= + = −

∫
∫

∫



Linear Systems and Random Processes
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Linear Systems and Power Spectral 
Densities
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Markov and Hidden Markov Models 
(HMM)
 HMM is a stochastic model that is used to model 

time-varying random phenomena
 E.g. speech signal, video sequence
 Can be understood in terms of state-space models
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Markov Models

 Used to model evolution of 
random phenomena that can 
be in discrete states as a 
function to time,
 Transition from one state to the 

next is random
 E.g. A system can be in one 

of the S distinct states
 At each step of discrete time it 

can move to another state at 
random, with probability of the 
transition at the time t
dependent only upon the state 
of the system at time t
 i.e. only the previous state is 

relevant
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Markov Models

 From state 1 to state 1 is 
possible with 
probability 0.5

 Denote S[t] denote the 
state at time t, where it 
takes on one of the 
values 1,2, …, S.

 Initial state is selected 
according to a 
probability π

 πi = P(S[1] = i),  i = 1, 
2, …, S
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Markov Models

 Probability of transition depends ONLY upon the current state
 P(S[t+1] = j | S[t] = i, S[t-1] = k, S[t-2] = l, …) = P(S[t+1] = j | S[t] = i)

 This structure of probability is called the Markov property, and
the random sequence of state values S[0], S[1], S[2], … is called
a Markov sequence or a Markov chain

 Sequence is the output of the Markov model
 Can determine the probability of arriving in the next state by

adding up all the probabilities of the ways of arriving there, i.e.

 Note that this is just the law of total probability
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Partitions and Total Probability

B
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Markov Models

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 105

[ ]

[ ]( )
[ ]( )

[ ]( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) [ ] [ ]( )

Can be written in matrix form.  Define
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Markov Models

 A steady-state probability assignment is one that does not 
change from one time step to the next, so the probability 
must satisfy the equation 

Ap=p
 This is an eigenequation, with eigenvalue = 1.
 By law of total probability, each column of A sum to 1
 Definition: An m×m matrix P, such that ∑𝑗𝑗=1𝑚𝑚 𝑝𝑝𝑖𝑖𝑖𝑖 =

1 (each row sums to 1) and each element of P is 
nonnegative, is called a stochastic matrix.  If the rows and 
columns each sum to 1, then P is doubly stochastic
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Markov Models
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 contains the initial probabilities.  Thus, we can write the probabilistic update equation is
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of probabilities , not the state of the Markov sequence 
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Relationship to Markov Models and HMM

 Pick a ball from 3 urns
 Each urn contains 3 types of colored balls:  black green, 

and red
 At each instant of time, an urn is selected by genie at 

random according to the state it was in at the previous 
time instant

 Genie – magic creature which could do everything
 Ball is then drawn at random from the urn at time t
 Observation = ball selected
 Actual state is hidden

 State of the system before the ball was chosen  the state of the 
system after
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Relationship to Markov Models and 
HMM: State Diagram

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 109

Urn 1
3 black
2 green
1 red

( )1p y
Urn 2
5 black
7 green
3 red

( )2p y

Urn 3
2 black
2 green
2 red

( )3p y

0.5

0.2

0.3

0.2

0.3

0.7

0.7

0.1



Relationship to Markov Models and HMM

 To further clarify the relationship, 

provides for the state update of the Markov system.
 However, in most linear system, the state vector x[t] 

is not directly observable, instead, it is observed only 
through the observation matrix C (assuming D = 0), 
i.e. y[t] = Cx[t]

 In an HMM, the state is hidden from direct 
observation

 Instead, each state has a probability distribution 
associated with it

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 110

[ ] [ ]1 tt t δ+ = +p Ap π



Relationship to Markov Models and HMM

 In the HMM, we do not observe the “state” p[t]
 Instead, each state has a probability distribution associated with it

 When HMM moves into state s[t] at time t, the observed output 
y[t] is an outcome of a random variable Y[t] that is selected 
according to the distribution f(y[t]|S[t] = s), which we will 
represent using the notation  f(y|S[t]=s) = fs(y)

 In the urn example, the output probabilities depend on the 
contents of the urns

 A sequence of outputs from an HMM is y[0], y[1], y[2], …
 The underlying state information is hidden
 Distribution in each state can be of any type

 Each state could have its own distribution
 In practice, distribution of each state is the same, but with different 

parameters
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Summary: HMM

IEE 5335: Mathematical Methods 
and Algorithms for Signal Processing 112

[ ]
[ ]( )

[ ]( )( )

[ ] [ ] [ ]

Denote the state at time  as .

Initial state is selected according to probability 1 ,   1, 2, ,

assume 0,  for 0 .

Transition probability depends ONLY on current state:

1 , 1

i

t S t

P S i i S

P S t i t

P S t j S t i S t k

π = = =

= = ≤

+ = = − =



[ ]( ) [ ] [ ]( )

[ ]( ) [ ] [ ]( ) [ ]( ) [ ] [ ]( ) [ ]( )
[ ] [ ]( ) [ ]( )

, 2 , 1

Then, the probability of arriving in the next state is

1 1 1 1 1 2 2

                            1

S t P S t j S t i

P S t j P S t j S t P S t P S t j S t P S t

P S t j S t S P S t S

− = = + = =

+ = = + = = = + + = = =

+ + + = = =

 





Summary: HMM State Transition
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Summary: HMM Input-Output
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Summary: HMM Input-Output
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State-Space vs. HMM
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Example: Speech Modeling for Speech 
Recognition
 Patterns in speech signal occurring sequentially in 

time
 Each word or sound (phoneme) to be recognized is 

represented by an HMM
 Output is some feature vector that is derived from the 

speech data
 Random variability in the feature vector and the amount of 

time each feature is produced is modeled by the HMM
 Variability in the duration of the word is modeled by the 

Markov model
 Variability in the outputs is modeled by the random 

selection from within each state
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Example

 Given a small vocabulary system with N words
 There are N HMMs: (Ai, πi, Ci)
 i denotes a particular state

 Training phase
 Each is trained to represent the parameters for that word

 Testing phase
 Sequence of feature vectors is computed (front end part)
 The likelihood (probability) that this sequence of feature 

vectors was produced by the HMM (Ai, πi, Ci) is computed 
for each i

 HMM that produces the highest probability selects the 
recognized word
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Issues for HMM

 Training:
 How can the parameters (A, π, C) be estimated based 

upon observations of the data?
 In other words, how can we train the parameters of the models 

in the pattern recognition problem?

 Testing
 How can we determine how well the observed data fits 

the model that has been trained?
 How can we determine the sequence of states of the 

underlying Markov model?
 I.e. How do we discover the hidden states?
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