Mathematical Topics Embraced by Signal Processing

> Carrson C. Fung Dept. of Electronics Engineering National Chiao Tung University



#### Examples of Mathematical Models

- Linear signal models for discrete and continuous time, including transfer function and state space representations. Applications of these models to SP problems such as prediction, spectrum estimation, and so on
- Adaptive filtering models and applications to prediction, system identification, and so forth
- The Gaussian random variable, and other probability density functions, including the important idea of conditioning upon an observation
- Hidden Markov models
  - Model the dynamics of systems probabilistically



# Why is modeling important?

• Our world is complicated

- To describe it mathematically requires complicated mathematics
  - E.g. high-order differential equation
- E.g. suppose you are ask to design a filter *h*[*n*] satisfying some design specifications such as transition bandwidth, passband frequency, stopband frequency, filter order, ...
  - Hence, design is usually done in frequency using  $H(e^{j\omega})$ 
    - □ How many points in  $H(e^{j\omega})$  do you need to design?
    - □ This is an impossible problem to solve as there are uncountable number of points in  $[0, \pi]$



#### Problem Specifications and Variable Parametrization

Suppose the desired response is

$$D(\omega) = \begin{cases} 1, & 0 \le \omega \le \omega_p \\ 0, & \omega_s \le \omega \le \pi \\ \text{don't care, } & \omega_p < \omega \le \omega_s \end{cases}$$

Change the variable from  $H(e^{j\omega})$  to amplitude response  $H_0(e^{j\omega})$ 

$$H_0(e^{j\omega}) = \sum_{n=0}^{N-1} h[n] e^{-j(n-M)\omega}$$
$$= \sum_{n=0}^M b[n] \cos n\omega, \quad M = \frac{(N-1)}{2}$$

assuming Type-I linear phase and

$$b[n] = \begin{cases} 2h\left[\frac{(N-1)}{2} - n\right], & n \neq 0\\ h\left[\frac{(N-1)}{2}\right], & n = 0 \end{cases}$$



#### Problem Formulation

Then the filter design problem can be formulated as a LS problem

$$\min_{b[n]} \int_{R} \left[ D(\omega) - H_0(e^{j\omega}) \right]^2 \frac{d\omega}{\pi},$$

*R*:  $0 \le \omega \le \pi$ , but excluding transition band. Integration can be approximated by summation.

Now problem only needs to solve a finite number of variables.





#### Other Motivations for Using Mathematics

- Given a sequence of output data from a system, how can the parameters of the system be determined if the input signal is known
  - What if the input signal is not known?
  - What if system is nonlinear?





#### Other Motivations for Using Mathematics

- Determine a "minimal" representation of a system
- Given a signal from a system, determine a predictor for the signal
  - □ Forward and/or backward
- Determine an optimal and/or efficient smoothing method
  - □ E.g. Image smoothing
- Determine a means of efficiently coding (representing) a signal modeled as the output of an LTI system
- Develop computational efficient algorithms
- Develop adaptive technique to obtain desirable output of system





#### Complex-Valued Linear Discrete-Time Models: ARMA and MA

Autoregressive moving average (ARMA) model

$$y[n] = -a_1^* y[n-1] - a_1^* y[n-2] - \dots - a_p^* y[n-p]$$
$$+ b_0^* f[n] + b_1^* f[n-1] + \dots + b_q^* f[n-q]$$
$$\Leftrightarrow \sum_{k=0}^p a_k^* y[n-k] = \sum_{k=0}^q b_k^* f[n-k]$$

$$\frac{\text{Moving average (MA) model}}{y[n] = b_0^* f[n] + b_1^* f[n-1] + \dots + b_q^* f[n-q]} \qquad \text{Vector notation}$$

$$\frac{y[n] = b_0^* f[n] + b_1^* f[n-1] + \dots + b_q^* f[n-q]}{\Rightarrow y[n] = \sum_{k=0}^q b_k^* f[n-k]} \qquad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ f[n-1] \\ \vdots \\ f[n-q] \end{bmatrix}}$$

$$\Rightarrow y[n] = \mathbf{b}^H \mathbf{f}[n]$$



#### Complex-Valued Linear Discrete-Time Models: AR

 $\frac{\text{Autoregressive (AR) model}}{y[n] = -a_1^* y[n-1] - a_1^* y[n-2] - \dots - a_p^* y[n-p] + b_0^* f[n]}$  $\Leftrightarrow y[n] = b_0^* f[n] - \sum_{k=1}^p a_k^* y[n-k]$ 

Define

$$\mathbf{y}[n] = \begin{bmatrix} y[n-1] \\ y[n-2] \\ \vdots \\ y[n-p] \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$$
$$\Leftrightarrow y[n] = b_0^* f[n] - \mathbf{a}^H \mathbf{y}[n]$$



#### System Function and Impulse Response

Assuming initial conditions are zero

$$\sum_{k=0}^{p} a_{k}^{*} z^{-k} Y(z) = \sum_{k=0}^{q} b_{k}^{*} z^{-k} F(z) \iff Y(z) A(z) = F(z) B(z)$$

ARMA System function

$$H(z) = \frac{Y(z)}{F(z)} = \frac{\sum_{k=0}^{q} b_{k}^{*} z^{-k}}{\sum_{k=0}^{p} a_{k}^{*} z^{-k}} = \frac{\sum_{k=0}^{q} b_{k}^{*} z^{-k}}{1 + \sum_{k=1}^{p} a_{k}^{*} z^{-k}} = \frac{B(z)}{A(z)}$$

(usually assume system is normalized so that  $a_0 = 1$ )

All-pole System function (IIR system)

$$H(z) = \frac{Y(z)}{F(z)} = \frac{\sum_{k=0}^{q} b_{k}^{*} z^{-k}}{1 + \sum_{k=1}^{p} a_{k}^{*} z^{-k}} = \frac{b_{0}^{*}}{A(z)}$$

All-zero system function (FIR system)

$$H(z) = \frac{Y(z)}{F(z)} = \sum_{k=0}^{q} b_k^* z^{-k} = B(z)$$



#### System Function and Impulse Response

$$H(z) = \sum_{k} f[k]h[n-k]$$

Factoring H(z) into monomial factors using roots of numerator and denominator

$$H(z) = \frac{b_0^* \prod_{k=1}^{q} 1 - z_i z^{-1}}{\prod_{k=1}^{p} 1 - p_i z^{-1}} = \frac{B(z)}{A(z)}$$



#### Stochastic MA and AR Models

f[n]: assumed to be a white discrete-time random process, usually zero mean  $b_0$ : set to 1, with input power determined by the variance of the signal

$$E(f[n]) = 0, \quad \forall n$$
$$E(f[m]f^*[n]) = \begin{cases} \sigma_{ff}^2, & m = n\\ 0, & \text{otherwise} \end{cases}$$

SP often involves comparing two signals, one way for comparison is by correlation. When the signal is comparing with itself, the correlation is called autocorrelation function. For zero-mean WSS signal y[n],  $r_{yy}[\ell - k] \triangleq E(y[n-k]y^*[n-\ell])$  or  $r_{yy}[k] = E(y[n]y^*[n-k])$ (Note the convention: first argument minus second)



#### Autocorrelation Function

Note:  $r_{yy}[k] = r_{yy}^{*}[-k]$  (more details later) For real-valued random process,  $r_{yy}[k] = r_{yy}[-k]$  (even function) For MA process  $y[n] = f[n] + b_{1}^{*} f[n-1] + \dots + b_{q}^{*} f[n-q]$   $\Rightarrow r_{yy}[k] = E(y[n]y^{*}[n-k])$   $= E[(f[n] + b_{1}^{*} f[n-1] + \dots + b_{q}^{*} f[n-q])(f^{*}[n-k] + b_{1} f^{*}[n-1-k] + \dots + b_{q} f^{*}[n-q-k])]$  $= r_{ff}[k] + |b_{1}|^{2} r_{ff}[k] + \dots + |b_{q}|^{2} r_{ff}[k] = \sigma_{ff}^{2} \sum_{k=1}^{q} |b_{k}|^{2}$ 

For AR process  $y[n] + a_1^* y[n-1] + \dots + a_p^* y[n-p] = f[n]$ 



#### Autocorrelation Function



Multply by  $y^*[n-\ell]$  on both sides and take expectation:

$$E\left(\sum_{k=0}^{p} a_{k}^{*} y\left[n-k\right] y^{*}\left[n-\ell\right]\right) = \sum_{k=0}^{p} a_{k}^{*} r_{yy}\left[\ell-k\right] = E\left(f\left[n\right] y^{*}\left[n-\ell\right]\right)$$
$$= \begin{cases} r_{fy}\left[\ell\right], \text{ for } \ell = 0\\ 0, \text{ for } \ell > 0 \end{cases} (0 \text{ for } \ell > 0 \text{ because } f\left[n\right] \text{ is white-noise process)} \end{cases}$$

For  $\ell > 0$ 

$$0 = r_{fy} [\ell] = E \Big[ \Big( y[n] + a_1^* y[n-1] + \dots + a_p^* y[n-p] \Big) y^* [n-\ell] \Big]$$
  
=  $r_{yy} [\ell] + a_1^* r_{yy} [\ell-1] + \dots + a_p^* r_{yy} [\ell-p]$   
 $\Rightarrow r_{yy} [\ell] = -a_1^* r_{yy} [\ell-1] - \dots - a_p^* r_{yy} [\ell-p]$ 



#### Yule-Walker Equations: Solving System ID Problem $r_{yy}[\ell] = -a_1^* r_{yy}[\ell-1] - \dots - a_p^* r_{yy}[\ell-p]$

Stacking  $\ell = 1, 2, ..., p$  equations, we have

 $\begin{bmatrix} r_{yy}[0] & r_{yy}[-1] & \cdots & r_{yy}[-(p-1)] \\ r_{yy}[1] & r_{yy}[0] & \cdots & r_{yy}[-(p-2)] \\ \vdots & \vdots & \ddots & \vdots \\ r_{yy}[p-1] & r_{yy}[p-2] & \cdots & r_{yy}[0] \end{bmatrix} \begin{bmatrix} -a_{1}^{*} \\ -a_{2}^{*} \\ \vdots \\ -a_{p}^{*} \end{bmatrix} = \begin{bmatrix} r_{yy}[1] \\ r_{yy}[2] \\ \vdots \\ r_{yy}[p] \end{bmatrix}$ 

Conjugating both sides:

 $\begin{bmatrix} r_{yy}^{*}[0] & r_{yy}^{*}[-1] & \cdots & r_{yy}^{*}[-(p-1)] \\ r_{yy}^{*}[1] & r_{yy}^{*}[0] & \cdots & r_{yy}^{*}[-(p-2)] \\ \vdots & \vdots & \ddots & \vdots \\ r_{yy}^{*}[p-1] & r_{yy}^{*}[p-2] & \cdots & r_{yy}^{*}[0] \end{bmatrix} \begin{bmatrix} -a_{1} \\ -a_{2} \\ \vdots \\ -a_{p} \end{bmatrix} = \begin{bmatrix} r_{yy}^{*}[1] \\ r_{yy}^{*}[2] \\ \vdots \\ r_{yy}^{*}[p] \end{bmatrix} \iff \mathbf{Rw} = \mathbf{r}$ 

$$\mathbf{w} \triangleq \begin{bmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_p \end{bmatrix}, \quad \mathbf{r} \triangleq \begin{bmatrix} r_{yy}^* \begin{bmatrix} 1 \\ r_{yy}^* \begin{bmatrix} 2 \\ \end{bmatrix} \\ \vdots \\ r_{yy}^* \begin{bmatrix} p \end{bmatrix} \end{bmatrix}$$



## Observations about YW Equations

#### • $\mathbf{R} = \mathbf{R}^H$

- Eigenvalues are real and eigenvectors corresponding to distinct eigenvalues are orthogonal/orthonormal. If **R** is real, then R is symmetric, i.e. **R**<sup>T</sup> = **R**
- **R** is a Toeplitz matrix, i.e.  $r_{ij} = r_{i-j}$ 
  - Values of **R** depend only on the difference between the index values
    - Has efficient algorithm to solve for solution
      - **D** Power efficient in hardware implementation



#### Realization

A controller canonical form (from control) can be written by realizing that the transfer function can be written as

$$H(z) = \frac{\frac{W(z)}{W(z)}}{W(z)} \frac{W(z)}{F(z)} = \left(\sum_{k=0}^{q} b_{k}^{*} z^{-k}\right) \left(\frac{1}{\left(1 + \sum_{k=1}^{p} a_{k}^{*} z^{-k}\right)}\right) = B(z)H_{2}(z) = H_{1}(z)H_{2}(z).$$
Since  $W(z)\left(1 + \sum_{k=1}^{p} a_{k}^{*} z^{-k}\right) = F(z) \Leftrightarrow w[n] + a_{1}^{*}w[n-1] + \dots + a_{p}^{*}w[n-p] = f[n]$  or  
 $\Rightarrow w[n] = f[n] - a_{1}^{*}w[n-1] - \dots - a_{p}^{*}w[n-p]$ 
Since  $B(z) = \frac{Y(z)}{W(z)} \Rightarrow Y(z) = W(z)B(z)$   
 $\Rightarrow \forall y[n] = w[n]^{*}b[n] = b_{0}^{*}w[n] + b_{1}^{*}w[n-1] + \dots + b_{q}^{*}w[n-q]$ 



#### Realization: AR part of Transfer Function

$$w[n] + a_1^* w[n-1] + \dots + a_p^* w[n-p] = f[n]$$







- Signal processing practitioners usually attempt to analyze characteristics of a system by **ONLY** looking at the relationship between the input and output
  - Transfer function

- Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay elements in discrete time) and putting a logic probe in each of the interconnect
  - Concatenation of these signals  $\{w[n-k]\}, \forall k \text{ makes up the state of the system}$

#### State-Space Form



Consider relabeling the interconnect signals (states) as  $\{x_k[n]\}$ , for k = 1, 2, ..., p



#### State-Space Representation

 $x_k[n]$ 's are known as the state variables. Note that the transfer function can be written as

$$H(z) = \frac{Y(z)}{F(z)} = \frac{Y(z)}{X(z)} \frac{X(z)}{F(z)} = \left(\sum_{k=0}^{q} b_k z^{-k}\right) \left(\frac{1}{a_0 + \sum_{k=1}^{p} a_k z^{-k}}\right) = H_1(z) H_2(z)$$

Assuming 
$$p = q$$
, note that  
 $x_1[n+1] = x_2[n]$   
 $x_2[n+1] = x_3[n]$   
 $\vdots$   
 $x_{p-1}[n+1] = x_p[n]$   
 $\Rightarrow \begin{cases} x_p[n+1] = f[n] - a_1^*x_p[n] - a_2^*x_{p-1}[n] - \dots - a_{p-1}^*x_2[n] - a_p^*x_1[n] \quad (\text{state equation}) \\ y[n] = b_p^*x_1[n] + b_{p-1}^*x_2[n] + \dots + b_2^*x_{p-1}[n] + b_1^*x_p[n] \quad (\text{input-output equation}) \\ + b_0^*(f[n] - a_1^*x_p[n] - a_2^*x_{p-1}[n] - \dots - a_p^*x_1[n]) \end{cases}$ 



#### State-Space Representation

Define the state vector  $\mathbf{x}[n] \triangleq \begin{bmatrix} x_1[n] \\ \\ \\ x_n[n] \end{bmatrix}$ , containing state variables  $x_k[n]$ ,  $\forall k$ ,  $\mathbf{b} \triangleq \begin{bmatrix} 0\\ \vdots\\ 0\\ 1 \end{bmatrix}, \ \mathbf{c} \triangleq \begin{bmatrix} b_p^* - b_0^* a_p^*\\ b_{p-1}^* - b_0^* a_{p-1}^*\\ \vdots\\ b_1^* - b_0^* a_1^* \end{bmatrix}, \ d \triangleq b_0^*, \ \text{and} \ \mathbf{A} \triangleq \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & 1 & 0 & \cdots & 0 & 0\\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots\\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1\\ -a_n^* & -a_{n-1}^* & -a_{n-2}^* & -a_{n-3}^* & \cdots & -a_2^* & -a_1^* \end{bmatrix}$ If  $b_0 = 0$ ,  $\mathbf{c}^T = \begin{bmatrix} b_p^* & b_{p-1}^* \\ b_1 & b_1^* \end{bmatrix}$ , then A is called a companion matrix  $\Rightarrow \begin{cases} \mathbf{x}[n+1] = \mathbf{A}\mathbf{x}[n] + \mathbf{b}f[n] \\ \mathbf{y}[n] = \mathbf{c}^T \mathbf{x}[n] + df[n] \end{cases}$ State-space equation

Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay elements in discrete time) and putting a logic probe in each of the interconnect

• Concatenation of these signals  $\{x_k[n]\}, \forall k \text{ makes up the state of the system}$ 



#### Non-uniqueness of State-Space Equation

Let  $\mathbf{x} = \mathbf{T}\mathbf{z}$ ,  $\mathbf{T}$ :  $p \times p$  invertible matrix, then  $\mathbf{T}\mathbf{z}[n+1] = \mathbf{A}\mathbf{T}\mathbf{z}[n] + \mathbf{b}f[n]$  $y[n] = \mathbf{c}^T\mathbf{T}\mathbf{z}[n] + df[n]$ 

$$\Rightarrow \frac{\mathbf{z}[n+1] = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{z}[n] + \mathbf{T}^{-1}\mathbf{b}f[n]}{y[n] = \mathbf{c}^{T}\mathbf{T}\mathbf{z}[n] + df[n]}$$

Terminologies (which will be explained later)

 $T^{-1}AT$  is a similarity transformation of A, they share identical eigenvalues



# Time-varying State-Space Model

When system is time-varying, the state-space representation becomes

$$\mathbf{x}[n+1] = \mathbf{A}[n]\mathbf{x}[n] + \mathbf{b}[n]f[n]$$
$$y[n] = \mathbf{c}^{T}[n]\mathbf{x}[n] + d[n]f[n]$$

so  $(\mathbf{A}[n], \mathbf{b}[n], \mathbf{c}^{T}[n], d[n])$  on the time index *n* is shown



## Transformed State-Space Model

Taking the *z*-transform of the time-invariant SS model

$$\mathbf{x}(z) = \mathbf{A}\mathbf{x}(z) + \mathbf{b}F(z)$$
$$Y(z) = \mathbf{c}^{T}\mathbf{x}(z) + dF(z)$$

Then the state equation becomes

$$(z\mathbf{I}_{p} - \mathbf{A})\mathbf{x}(z) = \mathbf{b}F(z)$$
  
 $\Rightarrow \mathbf{x}(z) = (z\mathbf{I}_{p} - \mathbf{A})^{-1}\mathbf{b}F(z).$ 

Substituting, then the output equation

$$Y(z) = \mathbf{c}^{T} \left( z \mathbf{I}_{p} - \mathbf{A} \right)^{-1} \mathbf{b} F(z) + dF(z)$$
$$= \left[ \mathbf{c}^{T} \left( z \mathbf{I}_{p} - \mathbf{A} \right)^{-1} \mathbf{b} + d \right] F(z).$$

Then the transfer function becomes

$$H(z) = \frac{Y(z)}{F(z)} = \mathbf{c}^{T} (z\mathbf{I}_{p} - \mathbf{A})^{-1} \mathbf{b} + d$$



# Solution for State-Space Difference Equation

Recall the state-space difference equation

$$\mathbf{x}[n+1] = \mathbf{A}\mathbf{x}[n] + \mathbf{b}f[n]$$
$$y[n] = \mathbf{c}^{T}\mathbf{x}[n] + df[n]$$
Also initial condition  $\mathbf{x}[-1]$ , and for  $n \ge 0$ ,  
$$\mathbf{x}[0] = \mathbf{A}\mathbf{x}[-1] + \mathbf{b}f[0]$$
$$\mathbf{x}[1] = \mathbf{A}\mathbf{x}[0] + \mathbf{b}f[1]$$
$$= \mathbf{A}(\mathbf{A}\mathbf{x}[-1] + \mathbf{b}f[0]) + \mathbf{b}f[1]$$
$$= \mathbf{A}^{2}\mathbf{x}[-1] + \mathbf{A}\mathbf{b}f[0] + \mathbf{b}f[1]$$
$$\mathbf{x}[n] = \mathbf{A}^{n+1}\mathbf{x}[-1] + \sum_{k=0}^{n} \mathbf{A}^{k}\mathbf{b}f[n-k]$$



# Solution for State-Space Difference Equation

$$y[n] = \mathbf{c}^T \mathbf{A}^{n+1} \mathbf{x}[-1] + \sum_{k=0}^n \mathbf{c}^T \mathbf{A}^k \mathbf{b} f[n-k] + df[n]$$

Quantities of  $\mathbf{c}^T \mathbf{A}^k \mathbf{b}$  are known as the Markov parameters of the system.

• Note:  $\mathbf{x}[n]$  is a linear function of  $\mathbf{x}[-1]$  and f[n-k], so it is also a Gaussian process (more on random process later)



### State-Space Model: MIMO Extension

MIMO extension:

$$\mathbf{x}[n+1] = \mathbf{A}\mathbf{x}[n] + \mathbf{B}\mathbf{u}[n]$$
$$\mathbf{y}[n] = \mathbf{C}\mathbf{x}[n] + \mathbf{D}\mathbf{u}[n]$$

If there are *p* state variables and  $\ell$  inputs and *m* outputs, then **A**:  $p \times p$ , **B**:  $p \times \ell$ , **C**:  $m \times p$ , **D**:  $m \times \ell$ 

Simple algebra will show that

$$\mathbf{x}[n] = \mathbf{A}^{n+1}\mathbf{x}[-1] + \sum_{k=0}^{n} \mathbf{A}^{k}\mathbf{B}\mathbf{u}[k]$$
$$\mathbf{y}[n] = \mathbf{C}\mathbf{A}^{n+1}\mathbf{x}[-1] + \sum_{k=0}^{n} \mathbf{C}\mathbf{A}^{k}\mathbf{B}\mathbf{u}[k] + \mathbf{D}\mathbf{u}[n]$$

Quantities of  $\mathbf{CA}^{k}\mathbf{B}$  are known as the Markov parameters of the system.



# State Equation Example: Two DC Power Supplies

Assume outputs are independent of each othen, then a reasonable model would be the scalar model for each output

$$x_{1}[n] = a_{1}x_{1}[n-1] + u_{1}[n]$$
$$x_{2}[n] = a_{2}x_{2}[n-1] + u_{2}[n],$$

where  $x_1[-1] \sim \mathcal{N}(\mu_{x_1}, \sigma_{x_1}^2), x_2[-1] \sim \mathcal{N}(\mu_{x_2}, \sigma_{x_2}^2), u_1[n]$  and  $u_2[n]$  are zero-mean

WGN with variance  $\sigma_{u_1}^2$  and  $\sigma_{u_2}^2$ , respectively. All RVs are independent of each other.

Then 
$$\begin{bmatrix} x_1[n] \\ x_2[n] \end{bmatrix} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} x_1[n-1] \\ x_2[n-1] \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1[n] \\ u_2[n] \end{bmatrix} \Leftrightarrow \mathbf{x}[n] = \mathbf{A}\mathbf{x}[n-1] + \mathbf{B}\mathbf{u}[n].$$

Also, since  $\mathbf{u}[n]$  is a vector WGN with zero mean and covariance

$$E\left(\mathbf{u}[m]\mathbf{u}^{T}[n]\right) = \begin{bmatrix} E\left(u_{1}[m]u_{1}[n]\right) & E\left(u_{1}[m]u_{2}[n]\right) \\ E\left(u_{2}[m]u_{1}[n]\right) & E\left(u_{2}[m]u_{2}[n]\right) \end{bmatrix} = \begin{bmatrix} \sigma_{u_{1}}^{2} & 0 \\ 0 & \sigma_{u_{2}}^{2} \end{bmatrix} \delta[m-n],$$
  
so  $\mathbf{Q} = \begin{bmatrix} \sigma_{u_{1}}^{2} & 0 \\ 0 & \sigma_{u_{2}}^{2} \end{bmatrix}$  and  $\mathbf{x}[-1] = \begin{bmatrix} x_{1}[-1] \\ x_{2}[-1] \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_{x_{1}} \\ \mu_{x_{2}} \end{bmatrix}, \begin{bmatrix} \sigma_{x_{1}}^{2} & 0 \\ 0 & \sigma_{x_{2}}^{2} \end{bmatrix}\right).$ 



#### State Equation Example: Vehicle Tracking

- Goal: Estimate and track range and bearing of vehicle (assuming x y Cartesian coordinates)
- Assume constant velocity, perturbed by only wind gusts, slight speed corrections
- Model these perturbations as noise inputs, leading to velocity equations

$$v_x[n] = v_x[n-1] + u_x[n]$$
  
 $v_y[n] = v_y[n-1] + u_y[n].$ 

- Note that without the noise perturbations  $u_x[n]$  and  $u_y[n]$ , the velocities would be constant, and the vehicle would be modeled as traveling in a straight line as indicated by the dashed line in Fig. 13.21
- The position equation at time n can then be written as

$$r_{x}[n] = r_{x}[n-1] + v_{x}[n-1]\Delta$$
$$r_{y}[n] = r_{y}[n-1] + v_{y}[n-1]\Delta,$$

where  $\Delta$  is the sampling period.

- The (discrete-time) velocity equations models the vehicle to be traveling at the velocity at
- n-1 and then changing abruptly at n. This is an approximation to the true continuous behavior



#### State Equation Example: Vehicle Tracking



Figure 13.21 Typical track of vehicle moving in given direction at constant speed



#### State Equation Example: Vehicle Tracking

Define the signal vector as  $\mathbf{x}[n] = \begin{bmatrix} r_x[n] \\ r_y[n] \\ v_x[n] \\ v_y[n] \end{bmatrix}$  from the velocity and position equations, we see that  $\begin{bmatrix} r_x[n] \\ r_y[n] \\ v_x[n] \\ v_y[n] \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_x[n-1] \\ r_y[n-1] \\ v_x[n-1] \\ v_y[n-1] \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ u_x[n] \\ u_y[n] \end{bmatrix}$  $\Leftrightarrow \mathbf{x}[n] = \mathbf{A}\mathbf{x}[n-1] + \mathbf{u}[n].$ 

The measurments are noisy observations of the range and bearing

$$\hat{R}[n] = R[n] + w_R[n]$$
$$\hat{\beta}[n] = \beta[n] + w_\beta[n].$$

This can be written in general form as  $\mathbf{y}[n] = \mathbf{h}(\mathbf{x}[n]) + \mathbf{w}[n]$ , where

$$\mathbf{C}\mathbf{x}[n] \Rightarrow \mathbf{h}(\mathbf{x}[n]) = \begin{bmatrix} \sqrt{r_x^2[n] + r_y^2[n]} \\ \arctan \frac{r_y[n]}{r_x[n]} \end{bmatrix}$$



#### Example: System Estimation: One LS Approach Output w[n]may/may not be $\delta[n]$ , or affected by Unknown linear $h_d[n]$ or x[n]additive noise other f[n]time-invariant z[n]=x[n]+w[n]z[n]known Modeled as system sequence deterministic or $\blacktriangleright e[n]$ (pilot) random? Model $\hat{h}_{d}[n]$ or y[n]matching: White noise ARMA(p,q)Using ARMA model to model the unknown system : $\hat{h}_{d}[n] \text{ or } y[n] = -a_{1}^{*}y[n-1] - a_{1}^{*}y[n-2] - \dots - a_{p}^{*}y[n-p]$ $+b_0^*f[n]+b_1^*f[n-1]+\dots+b_q^*f[n-q]$ $\Leftrightarrow y[n] = -\sum_{k=1}^{p} a_k^* y[n-k] + \sum_{k=0}^{q} b_k^* f[n-k]$ Assuming: • f[n] is known • System: ARMA(p,q)can setup equation Ax = b to solve for parameters

# Example: System Estimation: One LS Approach

$$\mathbf{Recall} \quad y[n] = -\sum_{k=1}^{p} a_{k}^{*} y[n-k] + \sum_{k=0}^{q} b_{k}^{*} f[n-k] \qquad \text{ to ensure we deal with a causal } y[n]$$

$$\mathbf{A} = \begin{bmatrix} y[p-1] & y[p-2] & \cdots & y[0] & f[p] & f[p-1] & \cdots & f[p-q] \\ y[p] & y[p-1] & \cdots & y[1] & f[p+1] & f[p] & \cdots & f[p+1-q] \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ y[N-1] & y[N-2] & \cdots & y[N-p] & f[N] & f[N-1] & \cdots & f[N-q] \end{bmatrix} \qquad n = N$$

$$\mathbf{x} = \begin{bmatrix} -a_{1}^{*} \\ -a_{2}^{*} \\ \vdots \\ -a_{p}^{*} \\ b_{0}^{*} \\ \vdots \\ b_{q}^{*} \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} z[p] \\ z[p+1] \\ \vdots \\ z[N] \end{bmatrix}$$

If N large  $\Rightarrow$  over-determined system  $\Rightarrow$  LS solution possible



#### E.g. Linear Prediction (Useful for Speech Coding and Recognition)

Assume we are told of an AR (p) system  $H(z) = \frac{1}{1 + \sum_{k=1}^{p} a_k z^{-k}}$ 

Speech is often modeled as output of such system driven by either a zero-mean uncorrelated signal in the case of unvoiced speech (such as "f", "s" known as fricatives) or by a periodic pulse sequence in the case of voiced speech (vowels) due to the "peaky" nature of human speech signal (in time).

From 
$$H(z)$$
  $\Rightarrow y[n] = -\sum_{k=1}^{p} a_k y[n-k] + f[n] = -\mathbf{a}^T \mathbf{y}[n-1] + f[n] = -\mathbf{a}_a^T \mathbf{y}[n]$   
 $\mathbf{a}_a \triangleq \begin{bmatrix} 1\\a_1\\a_2\\\vdots\\a_p \end{bmatrix}$  and  $\mathbf{y}[n] \triangleq \begin{bmatrix} f[n]\\y[n-1]\\y[n-2]\\\vdots\\y[n-p] \end{bmatrix}$   $\Rightarrow \hat{h}_a[n] = y[n] = -\hat{\mathbf{a}}_a^T \mathbf{y}[n]$   
Goal is to find  $\hat{\mathbf{a}}_a^T$  or  $\hat{\mathbf{a}}$  so that  $e[n] = z[n] - \hat{y}[n]$  is minimized



Application for Speech Recognition (big data example)

- Suppose there are several classes of signals to be distinguished (for example, several speech sounds to be recognized).
- Each signal will have its own set of prediction coefficients
  - Signal 1 has  $\mathbf{a}_1$
  - Signal 2 has  $\mathbf{a}_2, \ldots$
- An unknown input signal can be reduced (by estimating the prediction coefficients that represent it) to a vector **a** 
  - □ Then **a** can be compared with  $\mathbf{a}_1$ ,  $\mathbf{a}_2$ , and so on...to determine which signal the unknown input is most similar to


# Inverse Problem: Another Perspective of Prediction





## Inverse Problem: Another Perspective of Prediction

If 
$$Y(z) = H(z)F(z) \implies F(z) = Y(z)\frac{1}{H(z)}$$
  
 $\Rightarrow f[n] = y[n] + \mathbf{a}^T \mathbf{y}[n-1]$ 

In this case, y[n] is regarded as input, then f[n] is output of an inverse system. If we have an estimated system

$$H(z) = \frac{1}{1 + \sum_{k=1}^{p} a_{k} z^{-k}} = \frac{Y(z)}{F(z)}$$

then choose  $\widehat{f}[n] = y[n] + \mathbf{a}^T \mathbf{y}[n-1]$ 

so that is close to f[n] in some sense. This is known as an inverse problem.



### Nonparametric Spectrum Analysis

From DSP, we know we can perform DFT on "any" signals to get a picture of the spectrum



Not very accurate

"Analysis" Equation

$$X[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$
Why these equations are written this way?

"Synthesis" Equation

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

• Exploiting a priori knowledge of signal is better



#### Parameter Fourier Analysis

Assume we know the signal  $s[n] = a \cos 2\pi f_0 n + b \sin 2\pi f_0 n$ , for n = 0, 1, ..., N-1, where  $f_0 = k / N$ , with k = 1, ..., N / 2 - 1. Estimate  $\boldsymbol{\theta} = \begin{bmatrix} a & b \end{bmatrix}^T$ .



It can shown that **H** is orthogonal, i.e.

$$\mathbf{h}_{1}^{T}\mathbf{h}_{2} = \sum_{n=0}^{N-1} \cos\left(2\pi \frac{k}{N}n\right) \sin\left(2\pi \frac{k}{N}n\right) = 0 \qquad \Rightarrow \mathbf{H}^{T}\mathbf{H} = (N/2)\mathbf{I}_{p}$$
$$\mathbf{h}_{1}^{T}\mathbf{h}_{1} = \mathbf{h}_{2}^{T}\mathbf{h}_{2} = \frac{N}{2}$$



Parametric Fourier Analysis

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = \left( \mathbf{H}^T \mathbf{H} \right)^{-1} \mathbf{H}^T \mathbf{x}$$
$$= \frac{2}{N} \mathbf{H}^T \mathbf{x} = \begin{bmatrix} \frac{2}{N} \sum_{n=0}^{N-1} x[n] \cos\left(2\pi \frac{k}{N}n\right) \\ \frac{2}{N} \sum_{n=0}^{N-1} x[n] \sin\left(2\pi \frac{k}{N}n\right) \end{bmatrix}$$



### General Adaptive Filter Configuration

- Select parameters to achieve the "best" match between the desired signal *d*[*n*] and filter output – optimizing the performance function such as
  - Least-squares error
  - Mean-squared error
- Characteristics of AF
  - Can automatically adjust (or adapt) in the face of changing environments and changing system requirements
  - Can be trained to perform specific filtering or decision-making tasks
  - Should have some "adaptation algorithm" (learning algorithm) for adjusting system's parameters





## Applications of AF: System Identification and Interference Cancellation





# Applications of AF: Inverse Modeling and Predictors







### Random Variable (RV)

- A random variable is a function that assigns a numerical value each possible outcome in *S*, i.e.  $S \rightarrow \mathcal{R}$  (field of real number)
  - More convenient to work with a numerical value than nonnumerical value
- Can be discrete or continuous (example of discrete RV on top right, continuous RV on bottom right)
- Convention
  - Capital letters denote RVs

IEE 5335: Mathematical Methods and Algorithms for Signal Processing

- Lowercase letters denote values the RVs take on
  - E.g.  $f_X(x)$  distribution function for RV X with value x

Table 5.2 Possible Random Variables (RV)

| Outcome: S <sub>i</sub> | <b>RV No. 1:</b> $X_1(S_i)$ | <b>RV</b> No. 2: X <sub>2</sub> (S <sub>i</sub> ) |
|-------------------------|-----------------------------|---------------------------------------------------|
| $S_1 = heads$           | $X_1(S_1) = 1$              | $X_2(S_1)=\pi$                                    |
| $S_2 = tails$           | $X_1(S_2) = -1$             | $X_2(S_2)=\sqrt{2}$                               |



 $4\pi$ 

(b)

6π

 $8\pi$ 

#### Figure 5.4

Pictorial representation of sample spaces and random variables. (a) Coin-tossing experiment. (b) Pointer-spinning experiment.



#### CDF and PDF

- Functions which relates the probability of an event to a numerical value assigned to an event
- Parameter vs. nonparameteric
  - □ There are several different parametric PDFs
  - Nonparametric
    - Estimated directly from data
    - Easily adaptable



#### Probability (Cumulative) Distribution Functions

• A way to probabilistically describe an RV

 $F_X(x) \triangleq P(X \le x)$ 

**Properties of**  $F_{X}(x)$ 

- 1.  $0 \le F_{X}(x) \le 1$ , with  $F_{X}(-\infty) = 0$ ,  $F_{X}(\infty) = 1$
- 2.  $F_X(x)$  is continuous from the right, that is,  $\lim_{x \to x_0^+} F_X(x) = F_X(x_0)$
- 3.  $F_{X}(x)$  is a nondecreasing function of x, i.e.  $F_{X}(x_{1}) \leq F_{X}(x_{2})$  if  $x_{1} < x_{2}$



Illustration of the jump property of  $F_X(x)$ .



### Probability Density Functions (PDF)

More convenient to express statistical averages using PDFs

$$f_{X}\left(x\right) = \frac{dF_{X}\left(x\right)}{dx}$$

**Properties of**  $f_X(x)$ 

1. 
$$F_X(x) = \int_{\eta} f_X(\eta) d\eta \implies f_X(x) = \frac{dF_X(x)}{dx} \ge 0$$
  
2.  $\int_x f(x) dx = 1$   
3.  $P(x_1 \le X \le x_2) = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(x) dx$   
4.  $f_X(x) dx = P(x - dx < X \le x)$ 







#### Example: Cont. PDF and CDF

Consider the pointer-spinning experiment. Assume any one stopping point is not favored over any other and that the RV  $\Theta$  is defined as the angle that the pointer makes with the vertical, modulo  $2\pi$ . Thus  $\Theta$  is limited to  $[0,2\pi)$  and for any two angles  $\theta_1$  and  $\theta_2$  in  $[0,2\pi)$ , we have

$$\begin{split} P(\theta_1 - \Delta \theta < \Theta \le \theta_1) &= P(\theta_2 - \Delta \theta < \Theta \le \theta_2) \quad (\text{equally likely assumption}) \\ \Rightarrow f_{\Theta}(\theta_1) &= f_{\Theta}(\theta_2), \ 0 \le \theta_1, \theta_2 < 2\pi. \\ \Rightarrow f_{\Theta}(\theta) &= \begin{cases} \frac{1}{2\pi}, \ 0 \le \theta < 2\pi, \\ 0, \ \text{otherwise} \end{cases} \end{split}$$

Area under PDF curve is the probability.





IEE 5335: Mathematical Methods and Algorithms for Signal Processing

#### Joint CDFs and PDFs

Characterized by two or more RVs  $F_{XY}(x, y) = P(X \le x, Y \le y)$   $f_{XY}(x, y) = \frac{\partial^2 F_{XY}(x, y)}{\partial x \partial y}$   $P(x_1 < X \le x_2, y_1 < Y \le y_2) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} f_{XY}(x, y) dx dy$   $\Rightarrow F_{XY}(\infty, \infty) = \int_{y} \int_{x} f_{XY}(x, y) dx dy = 1$   $\Rightarrow f_{XY}(x, y) dx dy = P(x - dx < X \le x, y - dy < Y \le y)$ 

> **Figure 5.8** The dart-throwing experiment.





#### Marginal CDFs and PDFs

Can obtain cdf or pdf of one of the RVs from joint RVs

$$F_{X}(x, y) = P(X \le x, Y \le \infty) = F_{XY}(x, \infty)$$

$$F_{Y}(x, y) = P(X \le \infty, Y \le y) = F_{XY}(\infty, y)$$

$$F_{X}(x) = \int_{y'} \int_{-\infty}^{x} f_{XY}(x', y') dx' dy'$$

$$F_{Y}(y) = \int_{-\infty}^{y} \int_{x'} f_{XY}(x', y') dx' dy'.$$
Since  $f_{X}(x) = \frac{dF_{X}(x)}{dx}$  and  $f_{Y}(y) = \frac{dF_{Y}(y)}{dy}$ 

$$\Rightarrow f_{X}(x) = \int_{y'} f_{XY}(x, y') dy'$$
 and  $f_{Y}(y) = \int_{x'} f_{XY}(x', y) dx'$ 



#### Conditional CDFs and PDFs

Conditional RV:

$$F_{X|Y}(x|Y) = F_{X|Y}(x|Y \le y) = \frac{F_{XY}(x,y)}{F_Y(y)}$$
$$f_{X|Y}(x|y) = \frac{\partial F_{X|Y}(x|Y=y)}{\partial x} = \frac{f_{XY}(x,y)}{f_Y(y)}$$

Bayes Theorem:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{f_{Y|X}(y|X=x)f_X(x)}{f_Y(y)} = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$
  
where  $f_{Y|X}(y|x)dx = P(y-dy < Y \le y \text{ given } X = x).$ 



#### Statistical Independence

Two RVs are stat. independent if values one takes on do not influence the values that the other takes on.

$$\Rightarrow P(X \le x, Y \le y) = P(X \le x)P(Y \le y) \quad \text{or}$$
$$F_{XY}(x, y) = F_X(x)F_Y(y)$$
$$f_{XY}(x, y) = f_X(x)f_Y(y)$$

If *X* and *Y* are not independent, then using Bayes' rule  $f_{XY}(x, y) = f_X(x) f_{Y|X}(y|x) = f_Y(y) f_{X|Y}(x|y).$ 



### Example: Statistical Independence

Two RVs X and Y have joint pdf

$$f_{XY}(x, y) = \begin{cases} Ae^{-(2x+y)}, & x, y \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

A can be found by noting that

$$F_{XY}(\infty,\infty) = \int_{y} \int_{x} f_{XY}(x,y) dx dy = 1$$
  
Since  $\int_{0}^{\infty} \int_{0}^{\infty} Ae^{-(2x+y)} dx dy = 1 \implies A = 2$   
 $f_{X}(x) = \int_{y} f_{XY}(x,y) dy = \begin{cases} \int_{0}^{\infty} 2e^{-(2x+y)} dy, \ x \ge 0 \\ 0, \ x < 0 \end{cases} = \begin{cases} 2e^{-2x}, \ x \ge 0 \\ 0, \ x < 0 \end{cases}$   
 $f_{Y}(y) = \int_{x} f_{XY}(x,y) dx = \begin{cases} e^{-y}, \ y \ge 0 \\ 0, \ y < 0 \end{cases}$   
Conditional prob's are equal to respective marginals  $\Rightarrow X$  and  $Y$  are independent.  
 $f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = \begin{cases} 2e^{-2x}, \ x \ge 0 \\ 0, \ x < 0 \end{cases}$ 



#### Example: Statistical Independence





Joint and marginal pdfs for two random variables. (a) Joint pdf. (b) Marginal pdf for X. (c) Marginal pdf for Y.

$$f_{XY}(x, y) = \begin{cases} Ae^{-(2x+y)}, & x, y \ge 0\\ 0, & \text{otherwise.} \end{cases}$$
  
$$f_{X}(x) = \int_{y} f_{XY}(x, y) dy = \begin{cases} \int_{0}^{\infty} 2e^{-(2x+y)}, & x \ge 0\\ 0, & x < 0 \end{cases} = \begin{cases} 2e^{-2x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
  
$$f_{Y}(y) = \int_{x} f_{XY}(x, y) dx = \begin{cases} e^{-y}, & y \ge 0\\ 0, & y < 0 \end{cases}$$



### Sum of Two Statistically Indep. RVs

- The density of the sum of two statistically independent RVs is the convolution of their individual density functions.
- Suppose *X*, and *Y* are three independent RVS where W = X + Y, then

 $f_{W}(w) = \int_{y} f_{Y}(y) f_{X}(w-y) dy$   $f_{W}(w), f_{X}(x), \text{ and } f_{Y}(y) \text{ are }$ pdfs of W, X, and Y, respectively



$$F_{W}(w) = P(W \le w) = P(X + Y \le w)$$
$$= \int_{y} \int_{x = -\infty}^{w - y} f_{X,Y}(x, y) \, dx dy$$
$$= \int_{y} f_{Y}(y) \int_{x = -\infty}^{w - y} f_{X}(x) \, dx dy \quad \text{(stat. indep.)}$$
Differentiating we get the result

Differentiating we get the result



#### Statistical Averages

- Sometimes full description of RVs, i.e. knowing its CDF or PDF are not required
- Sometimes only partial information is needed
  - One type of partial information of a set of RVs statistical average or mean value



### Average of Discrete RV

Expectation of M RVs,  $x_1, \ldots, x_M$  with respective probabilities  $P_1, \ldots, P_M$ 

$$\mu_{x} \triangleq E[X] = \sum_{j=1}^{M} x_{j} P_{j}$$

Justification:

Let experiment be perform N number of time, with N large

Arithmetic mean: 
$$\frac{n_1 x_1 + \dots + n_m x_m}{N} = \sum_{j=1}^M x_j \frac{n_j}{N}$$

By relative frequency interpretation:  $\lim_{N \to \infty} \frac{n_j}{N} = P_j$ 

$$\Rightarrow \frac{n_1 x_1 + \dots + n_m x_m}{N} = \sum_{j=1}^M x_j P_j$$



#### Average of Cont. RV

Expectation of  $x_0$  to  $x_M$  with pdf  $f_X(x)$ . Suppose we break up this interval into subintervals of size  $\Delta x$  (assume small). The probability that X lies between  $x_i - \Delta x$  to  $x_i$  is

$$P(x_i - \Delta x < X \le x_i) \approx f_X(x_i) \Delta x, \text{ for } i = 0, \dots, M.$$

Hence, approximated X by a discrete RV that takes on values  $x_0$  to  $x_M$  with probabilities  $f_X(x_0)\Delta x, \dots, f_X(x_M)\Delta x$ .

$$\Rightarrow \mu_{x} \triangleq E[X] \approx \sum_{i=1}^{M} x_{i} f_{X}(x_{i}) \Delta x \stackrel{\lim_{\Delta x \to 0}}{=} \int_{x} x f_{X}(x) dx$$



### Properties of Expectation

#### • $E[\cdot]$ is a linear operator

- Sometimes need to perform  $E(tr(\cdot))$ .  $tr(\cdot)$  is also linear operator  $\rightarrow E(tr(\cdot)) = tr(E(\cdot))$
- Additive
  - E[X+Y] = E[X] + E[Y] for any 2 RVs
- Homogeneity
  - E[cX] = cE[X], for any constant c



#### Average of a Function of a RV

Let 
$$Y = g(X)$$
.  

$$\mu_Y \triangleq E[Y] = \begin{cases} \sum_i y_i P(y_i), & \text{discrete RV} \\ \int_y y f_Y(y) dx, & \text{cont. RV} \end{cases}.$$

$$r^{th} \text{ moment of } X, \text{ for } r = 0, 1, 2, \dots \text{ Let } Y = g(X) = X^{r}$$
$$\xi_{r} \triangleq E[X^{r}] = \begin{cases} \sum_{i} x_{i}^{r} P(x_{i}), \text{ discrete RV} \\ \int_{x} x^{r} f_{X}(x) dx, \text{ cont. RV} \end{cases}$$

 $r^{th}$  central moment of X, for  $r = 0, 1, 2, \dots$  Let  $Y = g(X) = (X - \mu_X)^r$  $m_r \triangleq E[(X - \mu_X)^r]$ 

Special case: variance: r = 2

$$\operatorname{var}[X] \triangleq m_2 \triangleq E\left[\left(X - \mu_X\right)^2\right] = E\left[X^2\right] - \mu_x^2 \triangleq \sigma_X^2$$



#### Average of a Function of a RV

 $r^{th}$  joint moment of X and Y, for i, j = 0, 1, 2, ...

$$\xi_{ij} \triangleq E\left[X^{i}Y^{j}\right] = \begin{cases} \sum_{i,j} x_{\ell}^{i} y_{m}^{j} P(x_{i}, y_{m}), & \text{discrete RV} \\ \int_{x,y} x^{i} y^{j} f_{XY}(x, y) dx dy, & \text{cont. RV} \end{cases}$$

Correlation:  $\xi_{11} \triangleq E[XY]$ 

#### Note:

Independent:  $E_{XY}(XY) = E_X(X)E_Y(Y)$ Uncorrelated:  $E_{XY}[(X - \mu_X)(Y - \mu_Y)] = 0$ Orthogonal: E(XY) = 0

Implications:

- If X and Y are independent and have zero mean, implies X and Y are uncorrelated and orthogonal.
- If X and Y are uncorrelated and have zero mean, implies they are orthogonal.
- Hence, independence is the strongest of the three properties.



#### Average of a Function of a RV

 $r^{th}$  joint central moment of X and Y, for i, j = 0, 1, 2, ...

$$m_{ij} \triangleq E\left[\left(X - \mu_X\right)^i \left(Y - \mu_Y\right)^j\right]$$

Covariance:

$$Cov[X,Y] \triangleq m_{11} \triangleq E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Correlation coefficient for *X* and *Y*:

$$\rho \triangleq \frac{m_{11}}{\sqrt{m_{20}m_{02}}} = \frac{Cov[X,Y]}{\sqrt{\sigma_X^2 \sigma_Y^2}}$$



#### Conditional Expectation

Conditional expectation of X given Y = y $E[X|Y] = E[X|Y = y] = \int_{x} x f_{X|Y}(x|Y = y) dx$ 

Expectation of functions of X : Y = g(X) $E[Y] = E[g(X)] = \int_{X} g(x) f_X(x) dx$ 



# Removing Conditional Expectation Via Expectation

Since  $E_{X|Y}(X|Y)$  is a function of Y, it is also a RV.  $E_{Y}[E_{X|Y}(X|Y)] = \int_{y} \int_{x} xf_{X|Y}(x|y) dx f_{Y}(y) dy$   $= \int_{x} x \int_{y} f_{X|Y}(x|y) f_{Y}(y) dy dx$   $= \int_{x} x \int_{y} f_{XY}(XY) dy dx$   $= \int_{x} xf_{X}(X) dx$  $= E_{X}[X]$ 



#### Conditional Expectation

This is an "expectation" version of the total probability theorem. In many cases, we can simplify a problem by conditioning or "fixing" one RV and performing an expectation. Then remove the conditioning in a second step by taking the expectation w.r.t. the conditioning RV.

More generally:

$$E\left[g\left(X\right)\right] = E_{Y}\left[E_{X|Y}\left(g\left(X\right)|Y\right)\right]$$



#### Special Average: Characteristic Function

Let 
$$g(X) = e^{j\omega X}$$
  
 $\Phi(\omega) \triangleq E[e^{j\omega X}] = \int_{x} f_{X}(x)e^{j\omega x}dx$   
 $f_{X}(x) = \frac{1}{2\pi}\int_{v} \Phi(\omega)e^{-j\omega x}dv$ 

Note:

- This is Fourier transform of  $f_{X}(x)$  if we have  $e^{-j\omega X}$
- Sometimes it is more convenient to use the variable *s* in place of *jω*, the result becomes moment generating function.

Obtaining moments of a RV:

$$\frac{\partial \Phi(\omega)}{d\omega} = j \int_{x} x f_{x}(x) e^{jvx} dx$$
  
Set  $\omega = 0$ :  $\Rightarrow E[X] = (-j) \frac{\partial \Phi(\omega)}{d\omega} \Big|_{\omega=0}$   
 $\Rightarrow E[X^{n}] = (-j)^{n} \frac{\partial^{n} \Phi(\omega)}{d\omega^{n}} \Big|_{\omega=0}$ 



# Chebyshev Inequality and the Law of Large Numbers

Let *X* be a RV with mean  $\mu_X$  and finite variance  $\sigma_X^2$ . Then for any  $\delta > 0$ ,  $\sigma_X^2$ 

$$P(|X - \mu_X| \ge \delta) \le \frac{\sigma_X^2}{\delta^2}$$
 (Chebyshev Inequality)

Let  $X_1, X_2, ..., X_N$  be i.i.d. (independent and identically distributed) RVs with mean  $\mu_X$  and variance  $\sigma_X^2$  each. Let the sample mean be

$$\hat{\mu}_X = \frac{1}{N} \sum_{i=1}^N X_i$$

Then, for any fixed  $\delta > 0$ ,

$$\lim_{N\to\infty} P(|\mu_x - \hat{\mu}_x| \ge \delta) = 0. \quad (LLN)$$

Intuitively, this means the estimator,  $\hat{\mu}_x$ , will converge to  $\mu_x$  in probability. If the above limit equals 0,  $\hat{\mu}_x$  is called a consistent estimator of  $\mu_x$ .



#### Useful PDFs

- Discrete RVs
  - Binomial distribution
    - Related to chance experiments with two mutually exclusive outcomes with probability *p* and 1-*p*
    - Model number of times event *A* has occurred in *n* trials (events are indep)
  - Poisson distribution
    - Related to chance experiment in which an event whose probability of occurrence in a very small time interval  $\Delta T$  is  $P = \alpha \Delta T$ , where  $\alpha$  is a constant
    - Model the probability of *k* events occurring in time *T*
    - Commonly used to model arrival time of packets in packet switching networks
- Continuous RVs
  - Normal (Gaussian) distribution
    - Commonly used to model large number of indep. random events when distribution of each event is unknown
    - Sum of large number of independent RVs converges to a Gaussian distribution
  - **Rayleigh distribution** 
    - (see above)
  - Rician distribution
    - Commonly used to model distribution of power profile of wireless channel when direct line-of-sight (LOS) exists
    - $x = \operatorname{sqrt}(x_1^2 + x_2^2)$ , where  $x_1 \sim N(\mu_1, \sigma^2)$ ,  $x_2 \sim N(\mu_2, \sigma^2)$  are indep. RV



#### Useful PDFs

#### Continuous RVs

#### Chi-Squared (central and noncentral)

Commonly encounter in detector design

 $\chi^2_{\nu}$  with  $\nu$  degrees of freedom

$$x = \sum_{i=1}^{\nu} x_i^2, \ x_i \sim N(0 \text{ or } \mu_i, 1) \text{ and indep.}$$

- □ *F*-distribution (central and noncentral)
  - Commonly encounter in detector design

F PDF: ratio of 2 indep.  $\chi_v^2$  RVs

$$x = \frac{x_1 / v_1}{x_2 / v_2}, \ x_1 \sim \chi^2_{v_1}(\lambda), \ x_2 \sim \chi^2_{v_2}$$
 and indep.

 $\lambda = 0$ : central *F* – dist.



#### Gaussian (Normal) Distribution

1-dimensional:



Joint CDFs and PDFs:

$$F_{XY}(x, y) = P(X \le x, Y \le y)$$
$$f_{XY}(x, y) = \frac{\partial^2 F_{XY}(x, y)}{\partial x \partial y}$$

Marginal distribution:

$$F_{X}(x) = F_{XY}(x,\infty) = F_{XY}(x,Y \le \infty)$$
$$F_{Y}(y) = F_{XY}(\infty, y) = F_{XY}(X \le \infty, y)$$
$$f_{X}(x) = \int_{x} f_{XY}(x, y) dy$$

$$P(x_{1} \le X \le x_{2}, y_{1} \le Y \le y_{2}) = \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f_{XY}(x, y) dxdy$$


### 2-D (Bivariate) Gaussian Distribution

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{\left[\left(x-\mu_x\right)/\sigma_x\right]^2 - 2\rho\left[\left(x-\mu_x\right)/\sigma_x\right]\left[\left(y-\mu_y\right)/\sigma_y\right] + \left[\left(y-\mu_y\right)/\sigma_y\right]^2}{2\left(1-\rho^2\right)}\right)$$

where

$$\mu_{x} = E[X], \quad \mu_{y} = E[Y], \quad \sigma_{x}^{2} = \operatorname{var}[X], \quad \sigma_{y}^{2} = \operatorname{var}[Y]$$
$$\rho = \frac{E[(X - \mu_{x})E(Y - \mu_{y})]}{\sigma_{x}\sigma_{y}} = \frac{Cov[X,Y]}{\sqrt{\sigma_{x}^{2}\sigma_{y}^{2}}}$$



### 2-D (Bivariate) Gaussian Distribution



#### **Figure 5.18** Bivariate Gaussian pdfs and corresponding contour plots. (a) $m_x = 0$ , $m_y = 0$ , $\sigma_x^2 = 1$ , $\sigma_y^2 = 1$ and $\rho = 0$ . (b) $m_x = 1$ , $m_y = -2$ , $\sigma_x^2 = 2$ , $\sigma_y^2 = 1$ , and $\rho = 0$ .(c) $m_x = 0$ , $m_y = 0$ , $\sigma_x^2 = 1$ , $\sigma_y^2 = 1$ , and $\rho = 0.9$ .



IEE 5335: Mathematical Methods and Algorithms for Signal Processing

### N-dimensional Gaussian Distribution

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{(2\pi)^{N/2} (\det \mathbf{C})^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu}_{\mathbf{x}})^{T} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{\mu}_{\mathbf{x}})\right]$$
$$\mathbf{\mu}_{\mathbf{x}} \triangleq E[\mathbf{x}] = \begin{bmatrix} E(x_{1}) \\ \vdots \\ E(x_{N}) \end{bmatrix}$$
$$\mathbf{C} \triangleq E\left[(\mathbf{x} - \mathbf{\mu}_{\mathbf{x}})(\mathbf{x} - \mathbf{\mu}_{\mathbf{x}})^{T}\right] \text{ (applied element-wise)}$$



### Central Limit Theorem

Let  $X_1, X_2, ..., X_N$  be indep. RVs with zero mean and variance  $\sigma_1^2, \sigma_2^2, ..., \sigma_N^2$ . Let  $s_N^2 \triangleq \sigma_1^2 + \dots + \sigma_N^2$ . If for any fixed  $\varepsilon > 0$ , there exists a sufficient large N such that

$$\sigma_k^2 < \varepsilon s_N$$
, for  $k = 1, \dots, N$ ,

then the normalized RV

$$Z_N \triangleq \frac{X_1 + X_2 + \dots + X_N}{s_N}$$

converges to the standard normal (Gaussian) PDF.



## Q-Function

Gaussian *Q*-Function:

Normalized Normal distribution of  $N(\mu_x, \sigma_x^2)$ 

Consider 
$$P(\mu_x - a \le X \le \mu_x + a) = \int_{\mu_x - a}^{\mu_x + a} \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp\left[-\frac{1}{2\sigma_x^2}(x - \mu_x)^2\right] dx$$
  
(let  $y = \frac{x - \mu_x}{\sigma_x}$ )  $= \int_{-a/\sigma_x}^{a/\sigma_x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy$   
 $= 2\int_{0}^{a/\sigma_x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy$   
(since area under PDF=1)  $= 1 - 2\int_{a/\sigma_x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy$   
 $= 1 - 2Q\left(\frac{a}{\sigma_x}\right)$   
where  $Q(u) \triangleq \int_{u}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy \approx \frac{1}{u\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$ , for  $u \gg 1$ 

has been computed numerically.



Normalized Distribution Function: F(x)and Q(x)

Normalized cumulative distribution function:  $\mu_x = 0$ ,  $\sigma_x = 1$ 

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\xi^{2}/2} d\xi$$
$$F(-x) = 1 - F(x)$$

A related function: F(x) = 1 - Q(x)

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\xi^{2}/2} d\xi$$
$$Q(-x) = 1 - Q(x)$$



| x   | .00   | .01    | .02   | .03    | .04    | .05   | .06   | .07    | .08    | .09    |
|-----|-------|--------|-------|--------|--------|-------|-------|--------|--------|--------|
| 0.0 | .5000 | .5040  | .5080 | .5120  | .5160  | .5199 | .5239 | .5279  | .5319  | .5359  |
| 0.1 | .5398 | .5438  | .5478 | .5517  | .5557  | .5596 | .5636 | .5675  | .5714  | .5753  |
| 0.2 | .5793 | .5832  | .5871 | .5910  | .5948  | .5987 | .6026 | .6064  | .6103  | .6141  |
| 0.3 | .6179 | .6217  | .6255 | .6293  | .6331  | .6368 | .6406 | .6443  | .6480  | .6517  |
| 0.4 | .6554 | .6591  | .6628 | .6664  | .6700  | .6736 | .6772 | .6808  | .6844  | .6879  |
| 0.5 | .6915 | .6950  | .6985 | .7019  | .7054  | .7088 | .7123 | .7157  | .7190  | .7224  |
| 0.6 | .7257 | .7291  | .7324 | .7357  | .7389  | .7422 | .7454 | .7486  | .7517  | .7549  |
| 0.7 | .7580 | .7611  | .7642 | .7673  | .7704  | .7734 | .7764 | .7794  | .7823  | .7852  |
| 0.8 | .7881 | .7910  | .7939 | .7967  | .7995  | .8023 | .8051 | .8078  | .8106  | .8133  |
| 0.9 | .8159 | .8186  | .8212 | .8238  | .8264  | .8289 | .8315 | .8340  | .8365  | .8389  |
| 1.0 | .8413 | .8438  | .8461 | .8485  | .8508  | .8531 | .8554 | .8577  | .8599  | .8621  |
| 1.1 | .8643 | .8665  | .8686 | .8708  | .8729  | .8749 | .8770 | .8790  | .8810  | .8830  |
| 1.2 | .8849 | .8869  | .8888 | .8907  | .8925  | .8944 | .8962 | .8980  | .8997  | .9015  |
| 1.3 | .9032 | .9049  | .9066 | .9082  | .9099  | .9115 | .9131 | .9147  | .9162  | .9177  |
| 1.4 | .9192 | .9207  | .9222 | .9236  | .9251  | .9265 | .9279 | .9292  | .9306  | .9319  |
| 1.5 | .9332 | .9345  | .9357 | .9370  | .9382  | .9394 | .9406 | .9418  | .9429  | .9441  |
| 1.6 | .9452 | .9463  | .9474 | .9484  | .9495  | .9505 | .9515 | .9525  | .9535  | .9545  |
| 1.7 | .9554 | .9564  | .9573 | .9582  | .9591  | .9599 | .9608 | .9616  | .9625  | .9633  |
| 1.8 | .9641 | .9649  | .9656 | .9664  | .9671  | .9678 | .9686 | .9693  | .9699  | .9706  |
| 1.9 | .9713 | .9719  | .9726 | .9732  | .9738  | .9744 | .9750 | .9756  | .9761  | .9767  |
| 2.0 | .9773 | .9778  | .9783 | .9788  | .9793  | .9798 | .9803 | .9808  | .9812  | .9817  |
| 2.1 | .9821 | .9826  | .9830 | .9834  | .9838  | .9842 | .9846 | .9850  | .9854  | .9857  |
| 2.2 | .9861 | .9864  | .9868 | .9871  | .9875  | .9878 | .9881 | .9884  | .9887  | .9890  |
| 2.3 | .9893 | .9896  | .9898 | .9901  | .9904  | .9906 | .9909 | .9911  | .9913  | .9916  |
| 2.4 | .9918 | .9920  | .9922 | .9925  | .9927  | .9929 | .9931 | .9932  | .9934  | .9936  |
| 2.5 | .9938 | .9940  | .9941 | .9943  | .9945  | .9946 | .9948 | .9949  | .9951  | .9952  |
| 2.6 | .9953 | .9955  | .9956 | .9957  | .9959  | .9960 | .9961 | .9962  | .9963  | .9964  |
| 2.7 | .9965 | .9966  | .9967 | .9968  | .9969  | .9970 | .9971 | .9972  | .9973  | .9974  |
| 2.8 | .9974 | .9975  | .9976 | .9977  | .9977  | .9978 | .9979 | .9979  | .9980  | .9981  |
| 2.9 | .9981 | .9982  | .9982 | .9983  | .9984  | .9984 | .9985 | .9985  | .9986  | .9986  |
| 3.0 | .9987 | .9987  | .9987 | .9988  | .9988  | .9989 | .9989 | .9989  | .9990  | .9990  |
| 3.1 | .9990 | .9991  | .9991 | .9991  | .9992  | .9992 | .9992 | .9992  | .9993  | .9993  |
| 3.2 | .9993 | .9993  | .9994 | .9994  | .9994  | .9994 | .9994 | .9995  | .9995  | .9995  |
| 3.3 | .9995 | .9995  | .9996 | .9996  | .9996  | .9996 | .9996 | .9996  | .9996  | .9997  |
| 3.4 | .9997 | .9997  | .9997 | .9997  | .9997  | .9997 | .9997 | .9997  | .9998  | .9998  |
| 3.5 | .9998 | .9998  | .9998 | .9998  | .9998  | .9998 | .9998 | .9998  | .9998  | .9998  |
| 3.6 | .9998 | .9999  | .9999 | .99999 | .99999 | .9999 | .9999 | .9999  | .9999  | .9999  |
| 3.7 | .9999 | .99999 | .9999 | .99999 | .99999 | .9999 | .9999 | .9999  | .9999  | .9999  |
| 3.8 | .9999 | .9999  | .9999 | .9999  | .9999  | .9999 | .9999 | 1.0000 | 1.0000 | 1.0000 |

## Normalized cumaltive distribution function

$$F(x)$$
$$F(x) = 1 - Q(x)$$



### Stochastic Process

#### Random Processes (Stochastic Processes)

#### Informal definition

- The outcomes (events) of a chance experiment are mapped into functions of time (waveforms)
- Cf. Random variables: outcomes are mapped into numbers
- Each waveform is called a sample function, or a realization. The totality of all sample functions is called an ensemble
- Chance experiment that gives rise to this ensemble is called a random/stochastic process
- Formal definition
  - Every outcome  $\zeta$  we assign, according to a certain rule, a time function  $X(t,\zeta)$ .  $X(t,\zeta_i)$  signifies a single time function
  - $X(t_j, \zeta)$  denotes a single RV
  - $X(t_j, \zeta_i)$  is a number







IEE 5335: Mathematical Methods and Algorithms for Signal Processing

### Statistical Description of Random Process

• A random process is statistically specified by its  $N^{\text{th}}$  order joint pdf's that describes a typical sample function at times  $t_N > t_{N-1} > \ldots > t_1$ , for any *N* where

$$F_{X1X2...XN}(x_1, t_1; x_2, t_2; ...; x_N, t_N) = P(x_1 - dx_1 < X_1 \le x_1 \text{ at} \text{ time } t_1, x_2 - dx_2 < X_2 \le x_2 \text{ at time } t_2, ..., x_N - dx_N < X_N \le x_N \text{ at time } t_N)$$
  
where  $X_n \equiv X(t_n, \zeta)$ , for  $n = 1, ...N$ 







### Stationarity and Wide-Sense Stationarity

- Statistical stationarity in the strict sense or stationarity
  - □ Joint pdfs depend only on the time differences  $t_2$ - $t_1$ ,  $t_3$ - $t_1$ , ...,  $t_N$ - $t_1$ 
    - Not dependent on time origin
  - Mean and variance independent of time
  - Correlation coefficient or covariance depends only on difference, e.g.  $t_2$ - $t_1$
- Wide-sense stationarity (WSS)
  - □ Joint pdfs are dependent on time origin
  - Mean and variance independent of time
  - □ Correlation coefficient or covariance depends only on difference, e.g.  $t_2$ - $t_1$
- Stationarity  $\rightarrow$  WSS
  - Converse is not necessarily true
    - Exception: Gaussian random process (Why?)





Sample functions of nonstationary processes contrasted with a sample function of a stationary process. (a) Time-varying mean. (b) Time-varying variance. (c) Stationary.



## Ensemble Average (Expectation)

Mean: 
$$\mu_x(t) = E[x(t)] = \overline{x(t)} = \int_{\alpha} \alpha f_x(\alpha, t) d\alpha$$
  
Variance:  $\sigma_{xx}^2(t) = E\{|x(t) - \overline{x(t)}|^2\} = E[|x(t)|^2] - |\overline{x(t)}|^2$ 

Covariance:

$$c_{xx}(t_1, t_2) = E\left\{ \begin{bmatrix} x(t_1) - \overline{x(t_1)} \end{bmatrix} \begin{bmatrix} x(t_2) - \overline{x(t_2)} \end{bmatrix}^* \right\}$$
$$= E\left[ x(t_1) x^*(t_2) \end{bmatrix} - \overline{x(t_1)} \overline{x(t_2)}^*$$
$$c_{xx}(t_2, t_1) = E\left\{ \begin{bmatrix} x(t_2) - \overline{x(t_2)} \end{bmatrix} \begin{bmatrix} x(t_1) - \overline{x(t_1)} \end{bmatrix}^* \right\}$$
$$= E\left[ x(t_2) x^*(t_1) \end{bmatrix} - \overline{x(t_2)} \overline{x(t_1)}^*$$
$$\Rightarrow c_{xx}(t_1, t_2) = c_{xx}^*(t_2, t_1)$$

$$r_{xx}(t_1,t_2) = E\left[x(t_1)x^*(t_2)\right]$$
$$= \int_{\alpha_2} \int_{\alpha_1} \alpha_1 \alpha_2 f_{X_1X_2}(\alpha_1,t_1;\alpha_2,t_2) d\alpha_1 d\alpha_2$$



### Ensemble Average (Vector Random Process)

Mean: 
$$\boldsymbol{\mu}_{x}(t) = E[\mathbf{x}(t)] = \overline{\mathbf{x}(t)}$$
  
Variance:  $\sigma_{xx}^{2}(t) = E\{[\mathbf{x}(t) - \overline{\mathbf{x}(t)}]^{H} [\mathbf{x}(t) - \overline{\mathbf{x}(t)}]\}$   
 $= E[|x(t)|^{2}] - 2\operatorname{Re}\{\mathbf{x}^{H}(t)\overline{\mathbf{x}(t)}\} + |\overline{x(t)}|^{2}$ 

Covariance:

$$\mathbf{C}_{xx}(t_1, t_2) = E\left\{ \left[ \mathbf{x}(t_1) - \overline{\mathbf{x}(t_1)} \right] \left[ \mathbf{x}(t_2) - \overline{\mathbf{x}(t_2)} \right]^H \right\}$$
$$= E\left[ \mathbf{x}(t_1) \mathbf{x}^H(t_2) \right] - E\left[ \mathbf{x}(t_1) \overline{\mathbf{x}(t_2)}^H \right] - E\left[ \overline{\mathbf{x}(t_1)} \mathbf{x}^H(t_2) \right] + \overline{\mathbf{x}(t_1)} \overline{\mathbf{x}(t_2)}^H$$

$$\mathbf{R}_{xx}\left(t_{1},t_{2}\right)=E\left[\mathbf{x}\left(t_{1}\right)\mathbf{x}^{H}\left(t_{2}\right)\right]$$



# Ensemble Average (Expectation) for WSS Process

WSS:

Mean:  $\mu_x(t) = E[x(t)] = \text{constant}$ Variance:  $\sigma_{xx}^2(t) = \text{constant}$ 

Covariance:

$$c_{xx}(\tau) \triangleq E\left\{ \left[ x(t) - \overline{x(t)} \right] \left[ x(t-\tau) - \overline{x(t-\tau)} \right]^* \right\}$$
$$= E\left[ x(t) x^*(t-\tau) \right] - \overline{x(t)} \overline{x(t-\tau)}^*$$

$$r_{xx}(\tau) \triangleq E[x(t)x^{*}(t-\tau)]$$
  

$$\Rightarrow r_{xx}^{*}(\tau) \triangleq E[x^{*}(t)x(t-\tau)]$$
  

$$\Rightarrow r_{xx}^{*}(-\tau) \triangleq E[x^{*}(t)x(t+\tau)] = E[x(t+\tau)x^{*}(t)]$$
  

$$= E[x(p)x^{*}(p-\tau)] = r_{xx}(\tau)$$



### Ensemble Average for Vector WSS Process

#### WSS:

Mean:  $\boldsymbol{\mu}_{x}(t) = E[\mathbf{x}(t)] = \text{constant}$ Variance:  $\sigma_{xx}^{2}(t) = E[\mathbf{x}^{H}(t)\mathbf{x}(t)] = \text{constant}$ Covariance:

$$\mathbf{C}_{xx}(\tau) \triangleq E\left\{ \left[ \mathbf{x}(t) - \overline{\mathbf{x}(t)} \right] \left[ \mathbf{x}(t-\tau) - \overline{\mathbf{x}(t-\tau)} \right]^{H} \right\}$$
$$= E\left[ \mathbf{x}(t) \mathbf{x}^{H}(t-\tau) \right] - \overline{\mathbf{x}(t)} \overline{\mathbf{x}(t-\tau)}^{H}$$

$$\mathbf{R}_{xx}(\tau) \triangleq E\left[\mathbf{x}(t)\mathbf{x}^{H}(t-\tau)\right]$$



## Ergodicity

Ergodic processes are processes for which time and ensemble averages are interchangeable. For example, for real-valued WSS processes:

$$\mu_{x} = E\left[x(t)\right] = \langle x(t) \rangle$$

$$\sigma_{xx}^{2} = E\left\{\left[x(t) - \overline{x(t)}\right]^{2}\right\} = \left\langle\left[x(t) - \langle x(t) \rangle\right]^{2}\right\rangle$$

$$r_{xx}(\tau) = E\left[x(t)x(t+\tau)\right] = \left\langle x(t)x(t+\tau) \right\rangle,$$
where  $\langle v(t) \rangle \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} v(t) dt.$ 

Note:

- All time and ensemble averages are interchangeable, not just the above.
- Ergodicity  $\Rightarrow$  strict-sense stationarity



### Example 1: Ergodicity

Consider a random process with sample function

$$n(t) = A\cos(2\pi f_0 t + \theta),$$

where  $f_0$  is a constant and  $\Theta$  is a RV with pdf

$$f_{\Theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & |\theta| \le \pi \\ 0, & \text{otherwise} \end{cases}$$

Calculate its ensemble and time-average.

$$\begin{split} E\left[n(t)\right] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} A\cos\left(2\pi f_0 t + \theta\right) d\theta = 0 \\ \sigma_{nn}^2(t) &= E\left[n^2(t)\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[A\cos\left(2\pi f_0 t + \theta\right)\right]^2 d\theta \quad \begin{pmatrix} n(t) \end{pmatrix} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A\cos\left(2\pi f_0 t + \theta\right) dt = 0 \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} A^2 \cos^2\left(2\pi f_0 t + \theta\right) d\theta \\ &= \frac{A^2}{4\pi} \int_{-\pi}^{\pi} \left[1 + \cos\left(4\pi f_0 t + 2\theta\right)\right] d\theta \\ &= \frac{A^2}{2} \end{split}$$

$$\begin{aligned} E\left[n(t)\right] &= \langle n(t) \rangle = \text{constant and } \sigma_{nn}^2(t) = \langle n^2(t) \rangle = \text{constant.} \end{aligned}$$



Example 2: Ergodicity  
Suppose 
$$f_{\Theta}(\theta) = \begin{cases} \frac{2}{\pi}, & |\theta| \le \frac{\pi}{4} \\ 0, & \text{otherwise} \end{cases}$$

Calculate its ensemble and time-average.

$$\begin{split} E\left[n(t)\right] &= \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} A\cos\left(2\pi f_0 t + \theta\right) d\theta \\ &= \frac{2}{\pi} A\sin\left(2\pi f_0 t + \theta\right) \Big|_{-\pi/4}^{\pi/4} = \frac{2\sqrt{2}A}{\pi} \cos\left(2\pi f_0 t\right) \\ r_{nn}^2(0) &= E\left[n^2(t)\right] = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \left[A\cos\left(2\pi f_0 t + \theta\right)\right]^2 d\theta \\ &= \frac{A^2}{\pi} \int_{-\pi/4}^{\pi/4} \left[1 + \cos\left(4\pi f_0 t + 2\theta\right)\right] d\theta \\ &= \frac{A^2}{2} + \frac{A^2}{\pi} \cos\left(4\pi f_0 t\right) \end{split}$$

Process is not stationary as first and second moment depends on t, hence it is for different time origin.



### Summary for Ergodic Process

1. Mean: 
$$\mu_x(t) = E[x(t)] = \langle x(t) \rangle$$
 is the DC component

2. 
$$\overline{x(t)}^2 = \langle x(t) \rangle^2$$
 is the DC power  
3.  $r_{xx}(0) = \overline{x^2(t)} = \langle x^2(t) \rangle$  is the total power  
4.  $\sigma_{xx}^2(t) = \overline{x^2(t)} - \overline{x(t)}^2 = \langle x^2(t) \rangle - \langle x(t) \rangle^2$  is the power in the alternating current (time-varying) component  
5. Total power  $\overline{x^2(t)} = \sigma^2(t) + \langle x(t) \rangle^2$  is the AC power plus the

5. Total power  $x^{2}(t) = \sigma_{xx}^{2}(t) + \langle x(t) \rangle^{2}$  is the AC power plus the DC power



## Power Spectral-Density Functions (PSD) and Cross-Spectral Density

The PSD of a wide-sense stationary random process is the Fourier transform of the autocorrelation function. For continuous-time random process

$$S_{xx}(j\Omega) = \int_{\tau} r_{xx}(\tau) e^{-j\Omega\tau} d\tau.$$

Since  $r_{xx}(\tau)$  is symmetric, the PSD is a real-valued function of  $\Omega$ . Since real-valued power cannot be negative, the PSD must satisfy  $S_{xx}(\Omega) \ge 0$ ,  $\forall \Omega$ . Then average power of a random process is

$$r_{xx}(0) = E\left[x(t)x^{*}(t)\right] = E\left[\left|x(t)\right|^{2}\right]$$
$$\Leftrightarrow \frac{1}{2\pi} \int_{\Omega} S_{xx}(j\Omega) e^{j\Omega\tau} d\Omega \bigg|_{\tau=0} = \frac{1}{2\pi} \int_{\Omega} S_{xx}(j\Omega) d\Omega$$
Cross-Spectral Density:  $S_{xy}(j\Omega) = \int_{\tau} r_{xy}(\tau) e^{-j\Omega\tau} d\tau$ 



## Bilateral Laplace Transform of the Autocorrelation Function

Note:  $s = \sigma + j\Omega$  (entire complex plane). Define  $S_{xx}(s) \triangleq \int_{\tau} r_{xx}(\tau) e^{-s\tau} d\tau$  $S_{xy}(s) \triangleq \int_{\tau} r_{xy}(\tau) e^{-s\tau} d\tau$ 

For real-valued random process, since autocovariance is real and even, its Laplace transform will be even

$$S_{xx}(s) = S_{xx}(-s).$$
  
If  $s = j\Omega$   
$$S_{xx}(-j\Omega) = S_{xx}^{*}(j\Omega).$$



### Discrete-Time PSD and its Laplace Transform Representation





### Uncorrelated, Orthogonal, Independent Random Processes

Given two random processes X(t) and Y(t)

(1) Uncorrelated

if 
$$R_{XY}(t_1, t_2) = m_X(t_1)m_Y^*(t_1), \quad \forall t_1, t_2$$

(2) Orthogonal

if  $R_{XY}(t_1, t_2) = 0, \quad \forall t_1, t_2$ 

(3) Independence: if

$$f_{XY}(x_1, y_1, t_1; x_2, y_2, t_2; ...; x_n, y_n, t_n) = f_X(x_1, t_1; x_2, t_2; ...; x_n, t_n) f_Y(y_1, t_1; y_2, t_2; ...; y_n, t_n)$$

Remarks:

- (1) Independence  $\Rightarrow$  Uncorrelated
- (2) Uncorrelated  $\Rightarrow (X(t) m_X(t))$  and  $(Y(t) m_Y(t))$  are orthogonal
- (3) (Uncorrelated and either  $m_X(t) = 0$  or  $m_Y(t) = 0$ )  $\Rightarrow$  orthogonal
- (4) Uncorrelated and Gaussian  $\Rightarrow$  Independent



### Linear Systems and Random Processes

Given 
$$h(t)$$
 is LTI, and  $y(t) = h(t) * x(t)$ 

Mean of 
$$y(t)$$
:  

$$\mu_{y}(t) = E[h(t)*x(t)] = E[\int_{u} h(u)x(t-u)du] = \int_{u} h(u)E[x(t-u)]du$$

$$= \mu_{x}(t)\int_{u} h(u)du = \mu_{x}(t)H(0)$$

**Cross-correlation** 

$$r_{xy}(t_{1},t_{2}) = E\left[x(t_{1})y^{*}(t_{2})\right] = E\left[x(t_{1})\int_{u}h^{*}(u)x^{*}(t_{2}-u)du\right]$$
$$= \int_{u}h^{*}(u)E\left[x(t_{1})x^{*}(t_{2}-u)\right]du$$
$$= \int_{u}h^{*}(u)r_{xx}(t_{1}-t_{2}+u)du$$
If  $x(t)$  is WSS, let  $\tau = t_{1}-t_{2}$ 
$$r_{xy}(\tau) = \int_{u}h^{*}(u)r_{xx}(\tau+u)du = h^{*}(-\tau)*r_{xx}(\tau)$$



### Linear Systems and Random Processes

Similarly

$$r_{yx}(t_{1},t_{2}) = E\left[y(t_{1})x^{*}(t_{2})\right] = E\left[\int_{u}h(u)x(t_{1}-u)du x^{*}(t_{2})\right]$$
$$= \int_{u}h(u)E\left[x(t_{1}-u)x^{*}(t_{2})\right]du$$
$$= \int_{u}h(u)r_{xx}(t_{1}-t_{2}-u)du$$

If x(t) is WSS, let  $\tau = t_1 - t_2$ 

$$r_{yx}(\tau) = \int_{u} h(u) r_{xx}(\tau - u) du = h(\tau) * r_{xx}(\tau)$$
  

$$r_{yy}(\tau) = E\left[y(t) y^{*}(t - \tau)\right] = E\left[y(t) \int_{u} h^{*}(u) x^{*}(t - u - \tau) du\right]$$
  

$$= \int_{u} h^{*}(u) E\left[y(t) x^{*}(t - u - \tau)\right] du$$
  

$$= \int_{u} h^{*}(u) r_{yx}(u + \tau) du$$
  

$$= h^{*}(-\tau) * r_{yx}(\tau)$$
  

$$= h^{*}(-\tau) * h(\tau) * r_{xx}(\tau)$$



## Linear Systems and Power Spectral Densities

$$r_{xy}(\tau) = h^*(-\tau)^* r_{xx}(\tau) \qquad \Leftrightarrow S_{xy}(j\Omega) = H^*(j\Omega)S_{xx}(j\Omega)$$

$$r_{yx}(\tau) = h(\tau) * r_{xx}(\tau) = r_{xy}^{*}(-\tau) \qquad \Leftrightarrow S_{yx}(j\Omega) = H(j\Omega)S_{xx}(j\Omega)$$
  
Since  $r_{xx}^{*}(-\tau) = r_{xx}(\tau)$  and  $\mathcal{F}\left\{r_{xx}^{*}(-\tau)\right\} = S_{xx}^{*}(j\Omega) = S_{xx}(-j\Omega)$   
 $\Leftrightarrow S_{yx}(j\Omega) = H(j\Omega)S_{xx}(j\Omega) = H(j\Omega)S_{xx}(-j\Omega)$ 

$$r_{yy}(\tau) = h^{*}(-\tau)r_{yx}(\tau) \qquad \Leftrightarrow S_{yy}(j\Omega) = H^{*}(j\Omega)S_{yx}(j\Omega)$$
$$= h^{*}(-\tau)^{*}h(\tau)^{*}r_{xx}(\tau) \qquad \Leftrightarrow \qquad = H^{*}(j\Omega)H(j\Omega)S_{xx}(j\Omega) = |H(j\Omega)|^{2}S_{xx}(j\Omega)$$



### Markov and Hidden Markov Models (HMM)

- HMM is a stochastic model that is used to model time-varying random phenomena
  - □ E.g. speech signal, video sequence
  - Can be understood in terms of state-space models



- Used to model evolution of random phenomena that can be in discrete states as a function to time,
  - Transition from one state to the next is random
- E.g. A system can be in one of the *S* distinct states
  - At each step of discrete time it can move to another state at random, with probability of the transition at the time *t* dependent only upon the state of the system at time *t*
    - i.e. only the previous state is relevant





- From state 1 to state 1 is possible with probability 0.5
- Denote S[t] denote the state at time t, where it takes on one of the values 1,2, ..., S.
- Initial state is selected according to a probability π

• 
$$\pi_i = P(S[1] = i), \ i = 1, 2, \dots, S$$



- Probability of transition depends ONLY upon the current state  $P(S[t+1] = j | S[t] = i, S[t-1] = k, S[t-2] = \ell, ...) = P(S[t+1] = j | S[t] = i)$
- This structure of probability is called the *Markov property*, and the random sequence of state values *S*[0], *S*[1], *S*[2], ... is called a *Markov sequence* or a Markov chain
- Sequence is the output of the Markov model
- Can determine the probability of arriving in the next state by adding up all the probabilities of the ways of arriving there, i.e.

$$P(S[t+1] = j) = P(S[t+1] = j | S[t] = 1) P(S[t] = 1) + P(S[t+1] = j | S[t] = 2) P(S[t] = 2)$$
  
+ \dots + P(S[t+1] = j | S[t] = S) P(S[t] = S)

Note that this is just the law of total probability



### Partitions and Total Probability



Suppose the events  $A_1, A_2, ..., A_n$  form a partition of a sample space *S*, that is, the events  $A_i$ 's are mutually exclusive and their union is *S*. Suppose *B* is any other event. Then

$$B = S \cap B = \left(\bigcup_{i=1}^{n} A_{i}\right) \cap B$$
$$= (A_{1} \cap B) \cup (A_{2} \cap B) \cup \dots \cup (A_{n} \cap B),$$

where  $A_i \cap B$  are also mutually exclusive. Then

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B).$$

From the multiplication theorem,

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n).$$

This is known as the law of total probability.



Can be written in matrix form. Define

$$\mathbf{p}[n] \triangleq \begin{bmatrix} P(S[n]=1) \\ P(S[n]=2) \\ \vdots \\ P(S[n]=S) \end{bmatrix}, \quad \mathbf{A} \triangleq \begin{bmatrix} P(1|1) & P(1|2) & \cdots & P(1|S) \\ P(2|1) & P(2|2) & \cdots & P(2|S) \\ \vdots & \vdots & \ddots & \vdots \\ P(S|1) & P(S|2) & \cdots & P(S|S) \end{bmatrix}, \quad \text{with } a_{ij} = P(i|j) \triangleq P(S[t+1]=i|S[t]=j).$$

From the previous example:

|            | 0.5 | 0.3 | 0.2 |
|------------|-----|-----|-----|
| <b>A</b> = | 0.2 | 0   | 0.7 |
|            | 0.3 | 0.7 | 0.1 |





• A steady-state probability assignment is one that does not change from one time step to the next, so the probability must satisfy the equation

### Ap=p

- This is an eigenequation, with eigenvalue = 1.
- By law of total probability, each column of A sum to 1
- Definition: An  $m \times m$  matrix **P**, such that  $\sum_{j=1}^{m} p_{ij} = 1$  (each row sums to 1) and each element of **P** is nonnegative, is called a *stochastic matrix*. If the rows and columns each sum to 1, then P is *doubly stochastic*



$$\mathbf{A} \triangleq \begin{bmatrix} P(1|1) & P(1|2) & \cdots & P(1|S) \\ P(2|1) & P(2|2) & \cdots & P(2|S) \\ \vdots & \vdots & \ddots & \vdots \\ P(S|1) & P(S|2) & \cdots & P(S|S) \end{bmatrix}$$
 is the transpose of a stochastic matrix. The vector

 $\pi$  contains the initial probabilities. Thus, we can write the probabilistic update equation is  $\mathbf{p}[t+1] = \mathbf{A}\mathbf{p}[t], \quad \text{with } \mathbf{p}[0] = \pi.$ 

Or,

$$\mathbf{p}[t+1] = \mathbf{A}\mathbf{p}[t] + \boldsymbol{\pi}\delta_t,$$

with  $\mathbf{p}[t] = 0$  for  $t \le 0$ . Note that the above is similar to the state equation

$$\mathbf{x}[n+1] = \mathbf{A}\mathbf{x}[n] + \mathbf{b}f[n].$$

Note that the "state" represented by  $\mathbf{p}[t+1] = \mathbf{A}\mathbf{p}[t] + \pi \delta_t$  is actually the vector of probabilities  $\mathbf{p}[t]$ , not the state of the Markov sequence S[t]



### Relationship to Markov Models and HMM

- Pick a ball from 3 urns
- Each urn contains 3 types of colored balls: black green, and red
- At each instant of time, an urn is selected by genie at random according to the state it was in at the previous time instant
- Genie magic creature which could do everything
- Ball is then drawn at random from the urn at time *t*
- Observation = ball selected
- Actual state is hidden
  - State of the system before the ball was chosen  $\rightarrow$  the state of the system after


#### Relationship to Markov Models and HMM: State Diagram 0.2 0.5 Urn 1 Urn 2 3 black 5 black $_{7 \text{ green}} p_2(y)$ $\frac{1}{2 \text{ green}} p_1(y)$ 3 red 1 red 0.3 0.2

Urn 3

2 red

2 black

 $_{2 \text{ green}} p_3(y)$ 

0.7

0.1

0.7



0.3

#### Relationship to Markov Models and HMM

• To further clarify the relationship,

$$\mathbf{p}[t+1] = \mathbf{A}\mathbf{p}[t] + \boldsymbol{\pi}\delta_t$$

provides for the state update of the Markov system.

- However, in most linear system, the state vector  $\mathbf{x}[t]$ is not directly observable, instead, it is observed only through the observation matrix **C** (assuming  $\mathbf{D} = \mathbf{0}$ ), i.e.  $\mathbf{y}[t] = \mathbf{C}\mathbf{x}[t]$
- In an HMM, the state is hidden from direct observation
- Instead, each state has a probability distribution associated with it



#### Relationship to Markov Models and HMM

In the HMM, we do not observe the "state" p[t]

- □ Instead, each state has a probability distribution associated with it
- When HMM moves into state s[t] at time t, the observed output y[t] is an outcome of a random variable Y[t] that is selected according to the distribution f(y[t]|S[t] = s), which we will represent using the notation  $f(y[S[t]=s) = f_s(y)$
- In the urn example, the output probabilities depend on the contents of the urns
- A sequence of outputs from an HMM is *y*[0], *y*[1], *y*[2], ...
- The underlying state information is hidden
- Distribution in each state can be of any type
  - Each state could have its own distribution
  - In practice, distribution of each state is the same, but with different parameters



## Summary: HMM

Denote the state at time t as S[t].

Initial state is selected according to probability  $\pi_i = P(S[1]=i), i = 1, 2, ..., S$ 

(assume 
$$P(S[t]=i)=0$$
, for  $t \le 0$ ).

Transition probability depends ONLY on current state:

$$P(S[t+1] = j | S[t] = i, S[t-1] = k, S[t-2] = \ell, ...) = P(S[t+1] = j | S[t] = i)$$

Then, the probability of arriving in the next state is

$$P(S[t+1] = j) = P(S[t+1] = j | S[t] = 1) P(S[t] = 1) + P(S[t+1] = j | S[t] = 2) P(S[t] = 2)$$
  
+ \dots + P(S[t+1] = j | S[t] = S) P(S[t] = S)



#### Summary: HMM State Transition

Can be written in matrix form. Define

$$\mathbf{p}[t] \triangleq \begin{bmatrix} P(S[t]=1) \\ P(S[t]=2) \\ \vdots \\ P(S[t]=S) \end{bmatrix}, \quad \mathbf{A} \triangleq \begin{bmatrix} P(1|1) & P(1|2) & \cdots & P(1|S) \\ P(2|1) & P(2|2) & \cdots & P(2|S) \\ \vdots & \vdots & \ddots & \vdots \\ P(S|1) & P(S|2) & \cdots & P(S|S) \end{bmatrix}, \quad \text{with } a_{ij} = P(i|j) \triangleq P(S[t+1]=i|S[t]=j).$$

From urn example:

$$\mathbf{A} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0 & 0.7 \\ 0.3 & 0.7 & 0.1 \end{bmatrix}$$

$$\Rightarrow \mathbf{p}[t+1] = \mathbf{A}\mathbf{p}[t] + \boldsymbol{\pi}\delta_t,$$
  
with  $\boldsymbol{\pi} \triangleq \mathbf{p}[0]$ 





# Summary: HMM Input-Output

Let *M* denote the number of possible outcomes from all states Let *Y*[*t*] be the random variable output at time *t*, with outcome *y*[*t*] Then probability of each possible output is P(Y[t] = j) = P(Y[t] = j|S[t] = 1)P(S[t] = 1) + P(Y[t] = j|S[t] = 2)P(S[t] = 2) $+ \dots + P(Y[t] = j|S[t] = S)P(S[t] = S)$ 



# Summary: HMM Input-Output

Can be written in matrix form. Define

$$\mathbf{q}[t] \triangleq \begin{bmatrix} P(Y[t]=1) \\ P(Y[t]=2) \\ \vdots \\ P(Y[t]=M) \end{bmatrix}, \quad \mathbf{C} \triangleq \begin{bmatrix} P(Y[t]=1|S[t]=1) & P(Y[t]=1|S[t]=2) & \cdots & P(Y[t]=1|S[t]=S) \\ P(Y[t]=2|S[t]=1) & P(Y[t]=2|S[t]=2) & \cdots & P(Y[t]=2|S[t]=S) \\ \vdots & \vdots & \ddots & \vdots \\ P(Y[t]=M|S[t]=1) & P(Y[t]=M|S[t]=2) & \cdots & P(Y[t]=M|S[t]=S) \end{bmatrix},$$
with  $c_{ij} = P(Y[t]=i|S[t]=i|S[t]=j).$ 

From urn example, with S = 1 (black), = 2 (green), = 3 (red):





## State-Space vs. HMM

State-space:

$$\mathbf{x}[n+1] = \mathbf{A}\mathbf{x}[n] + \mathbf{B}u[n]$$
$$\mathbf{y}[n] = \mathbf{C}\mathbf{x}[n] + \mathbf{D}\mathbf{u}[n]$$

HMM:  $\mathbf{p}[n+1] = \mathbf{A}\mathbf{p}[n] + \pi \delta_n$ , with  $\pi \triangleq \mathbf{p}[0]$  $\mathbf{q}[n] = \mathbf{C}\mathbf{p}[n]$ 

Recall solution for state-space is

$$\mathbf{x}[n] = \mathbf{A}^{n+1}\mathbf{x}[-1] + \sum_{k=0}^{n} \mathbf{A}^{k}\mathbf{B}\mathbf{u}[n-k]$$

$$\mathbf{y}[n] = \mathbf{C}\mathbf{A}^{n+1}\mathbf{x}[-1] + \sum_{k=0}^{n} \mathbf{C}\mathbf{A}^{k}\mathbf{B}\mathbf{u}[n-k] + \mathbf{D}\mathbf{u}[n].$$

 $\Rightarrow$  Hence,  $\mathbf{A}^{k}$  models dynamics of system by treating the system as a Markov process.



## Example: Speech Modeling for Speech Recognition

- Patterns in speech signal occurring sequentially in time
- Each word or sound (phoneme) to be recognized is represented by an HMM
  - Output is some feature vector that is derived from the speech data
  - Random variability in the feature vector and the amount of time each feature is produced is modeled by the HMM
  - Variability in the duration of the word is modeled by the Markov model
  - Variability in the outputs is modeled by the random selection from within each state



# Example

- Given a small vocabulary system with *N* words
  - There are *N* HMMs:  $(A_i, \pi_i, C_i)$
  - *i* denotes a particular state
- Training phase
  - Each is trained to represent the parameters for that word

#### Testing phase

- Sequence of feature vectors is computed (front end part)
- □ The likelihood (probability) that this sequence of feature vectors was produced by the HMM ( $A_i$ ,  $\pi_i$ ,  $C_i$ ) is computed for each *i*
- HMM that produces the highest probability selects the recognized word



#### Issues for HMM

#### Training:

- How can the parameters  $(A, \pi, C)$  be estimated based upon observations of the data?
  - In other words, how can we train the parameters of the models in the pattern recognition problem?
- Testing
  - How can we determine how well the observed data fits the model that has been trained?
  - How can we determine the sequence of states of the underlying Markov model?
    - I.e. How do we discover the hidden states?

