Mathematical Topics Embraced by Signal
 Processing

Carrson C. Fung
Dept. of Electronics Engineering
National Chiao Tung University

Examples of Mathematical Models

- Linear signal models for discrete and continuous time, including transfer function and state space representations. Applications of these models to SP problems such as prediction, spectrum estimation, and so on
- Adaptive filtering models and applications to prediction, system identification, and so forth
- The Gaussian random variable, and other probability density functions, including the important idea of conditioning upon an observation
- Hidden Markov models
- Model the dynamics of systems probabilistically

Why is modeling important?

- Our world is complicated
- To describe it mathematically requires complicated mathematics
- E.g. high-order differential equation
- E.g. suppose you are ask to design a filter $h[n]$ satisfying some design specifications such as transition bandwidth, passband frequency, stopband frequency, filter order, ...
- Hence, design is usually done in frequency using $H\left(e^{j \omega}\right)$
- How many points in $H\left(e^{j \omega}\right)$ do you need to design?
- This is an impossible problem to solve as there are uncountable number of points in $[0, \pi]$

Problem Specifications and Variable

Parametrization

Suppose the desired response is

$$
D(\omega)= \begin{cases}1, & 0 \leq \omega \leq \omega_{p} \\ 0, & \omega_{s} \leq \omega \leq \pi \\ \text { don't care, } & \omega_{p}<\omega \leq \omega_{s}\end{cases}
$$

Change the variable from $H\left(e^{j \omega}\right)$ to amplitude response $H_{0}\left(e^{j \omega}\right)$

$$
\begin{aligned}
H_{0}\left(e^{j \omega}\right) & =\sum_{n=0}^{N-1} h[n] e^{-j(n-M) \omega} \\
& =\sum_{n=0}^{M} b[n] \cos n \omega, \quad M=\frac{(N-1)}{2}
\end{aligned}
$$

assuming Type-I linear phase and

$$
b[n]= \begin{cases}2 h\left[\frac{(N-1)}{2}-n\right], & n \neq 0 \\ h\left[\frac{(N-1)}{2}\right], & n=0\end{cases}
$$

Problem Formulation

Then the filter design problem can be formulated as a LS problem

$$
\min _{b[n]} \int_{R}\left[D(\omega)-H_{0}\left(e^{j \omega}\right)\right]^{2} \frac{d \omega}{\pi},
$$

$R: 0 \leq \omega \leq \pi$, but excluding transition band.
Integration can be approximated by summation.

Now problem only needs to solve a finite number of variables.

Other Motivations for Using Mathematics

- Given a sequence of output data from a system, how can the parameters of the system be determined if the input signal is known
- What if the input signal is not known?
- What if system is nonlinear?

Other Motivations for Using Mathematics

- Determine a "minimal" representation of a system
- Given a signal from a system, determine a predictor for the signal
- Forward and/or backward
- Determine an optimal and/or efficient smoothing method

- E.g. Image smoothing
- Determine a means of efficiently coding (representing) a signal modeled as the output of an LTI system
- Develop computational efficient algorithms
- Develop adaptive technique to obtain desirable output of system

Complex-Valued Linear Discrete-Time Models: ARMA and MA

Autoregressive moving average (ARMA) model
$y[n]=-a_{1}^{*} y[n-1]-a_{1}^{*} y[n-2]-\cdots-a_{p}^{*} y[n-p]$ $+b_{0}^{*} f[n]+b_{1}^{*} f[n-1]+\cdots+b_{q}^{*} f[n-q]$
$\Leftrightarrow \sum_{k=0}^{p} a_{k}^{*} y[n-k]=\sum_{k=0}^{q} b_{k}^{*} f[n-k]$

Moving average (MA) model
$y[n]=b_{0}^{*} f[n]+b_{1}^{*} f[n-1]+\cdots+b_{q}^{*} f[n-q]$
$\Leftrightarrow y[n]=\sum_{k=0}^{q} b_{k}^{*} f[n-k]$

Vector notation
Define $\mathbf{f}[n]=\left[\begin{array}{c}f[n] \\ f[n-1] \\ \vdots \\ f[n-q]\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}b_{0} \\ b_{1} \\ \vdots \\ b_{q}\end{array}\right]$
$\Rightarrow y[n]=\mathbf{b}^{\mathbf{H}} \mathbf{f}[n]$

Complex-Valued Linear Discrete-Time Models: AR

Autoregressive (AR) model

$$
\begin{aligned}
& y[n]=-a_{1}^{*} y[n-1]-a_{1}^{*} y[n-2]-\cdots-a_{p}^{*} y[n-p]+b_{0}^{*} f[n] \\
& \Leftrightarrow y[n]=b_{0}^{*} f[n]-\sum_{k=1}^{p} a_{k}^{*} y[n-k]
\end{aligned}
$$

Define

$$
\begin{aligned}
& \mathbf{y}[n]=\left[\begin{array}{c}
y[n-1] \\
y[n-2] \\
\vdots \\
y[n-p]
\end{array}\right] \text { and } \mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{p}
\end{array}\right] \\
& \Leftrightarrow y[n]=b_{0}^{*} f[n]-\mathbf{a}^{H} \mathbf{y}[n]
\end{aligned}
$$

System Function and Impulse Response

Assuming initial conditions are zero
$\sum_{k=0}^{p} a_{k}^{*} z^{-k} Y(z)=\sum_{k=0}^{q} b_{k}^{*} z^{-k} F(z) \Leftrightarrow Y(z) A(z)=F(z) B(z)$
ARMA System function
$H(z)=\frac{Y(z)}{F(z)}=\frac{\sum_{k=0}^{q} b_{k}^{*} z^{-k}}{\sum_{k=0}^{p} a_{k}^{*} z^{-k}}=\frac{\sum_{k=0}^{q} b_{k}^{*} z^{-k}}{1+\sum_{k=1}^{p} a_{k}^{*} z^{-k}}=\frac{B(z)}{A(z)}$
(usually assume system is normalized so that $a_{0}=1$)
All-pole System function (IIR system)

$$
H(z)=\frac{Y(z)}{F(z)}=\frac{\sum_{k=0}^{q} b_{k}^{*} z^{-k}}{1+\sum_{k=1}^{p} a_{k}^{*} z^{-k}}=\frac{b_{0}^{*}}{A(z)}
$$

All-zero system function (FIR system)

$$
H(z)=\frac{Y(z)}{F(z)}=\sum_{k=0}^{q} b_{k}^{*} z^{-k}=B(z)
$$

System Function and Impulse Response

$$
H(z)=\sum_{k} f[k] h[n-k]
$$

Factoring $H(z)$ into monomial factors using roots of numerator and denominator

$$
H(z)=\frac{b_{0}^{*} \prod_{k=1}^{q} 1-z_{i} z^{-1}}{\prod_{k=1}^{p} 1-p_{i} z^{-1}}=\frac{B(z)}{A(z)}
$$

Stochastic MA and AR Models

$f[n]$: assumed to be a white discrete-time random process, usually zero mean b_{0} : set to 1 , with input power determined by the variance of the signal

$$
\begin{gathered}
E(f[n])=0, \forall n \\
E\left(f[m] f^{*}[n]\right)=\left\{\begin{array}{c}
\sigma_{f f}^{2}, m=n \\
0, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

SP often involves comparing two signals, one way for comparison is by correlation. When the signal is comparing with itself, the correlation is called autocorrelation function. For zero-mean WSS signal $y[n]$,
$r_{y y}[\ell-k] \triangleq E\left(y[n-k] y^{*}[n-\ell]\right)$ or $r_{y y}[k]=E\left(y[n] y^{*}[n-k]\right)$
(Note the convention: first argument minus second)

Autocorrelation Function

Note: $r_{y y}[k]=r_{y y}^{*}[-k] \quad$ (more details later)
For real-valued random process, $r_{y y}[k]=r_{y y}[-k] \quad$ (even function)
For MA process

$$
\begin{aligned}
& y[n]=f[n]+b_{1}^{*} f[n-1]+\cdots+b_{q}^{*} f[n-q] \\
& \begin{aligned}
\Rightarrow r_{y y}[k] & =E\left(y[n] y^{*}[n-k]\right) \\
& =E\left[\left(f[n]+b_{1}^{*} f[n-1]+\cdots+b_{q}^{*} f[n-q]\right)\left(f^{*}[n-k]+b_{1} f^{*}[n-1-k]+\cdots+b_{q} f^{*}[n-q-k]\right)\right] \\
& =r_{f f}[k]+\left|b_{1}\right|^{2} r_{f f}[k]+\cdots+\left|b_{q}\right|^{2} r_{f f}[k]=\sigma_{f f}^{2} \sum_{k=1}^{q}\left|b_{k}\right|^{2}
\end{aligned}
\end{aligned}
$$

For AR process

$$
y[n]+a_{1}^{*} y[n-1]+\cdots+a_{p}^{*} y[n-p]=f[n]
$$

Autocorrelation Function

Multply by $y^{*}[n-\ell]$ on both sides and take expectation:

$$
\begin{aligned}
& E\left(\sum_{k=0}^{p} a_{k}^{*} y[n-k] y^{*}[n-\ell]\right)=\sum_{k=0}^{p} a_{k}^{*} r_{y y}[\ell-k]=E\left(f[n] y^{*}[n-\ell]\right) \\
& \quad=\left\{\begin{array}{c}
r_{f y}[\ell], \text { for } \ell=0 \\
0, \quad \text { for } \ell>0
\end{array} \text { (0 for } \ell>0 \text { because } f[n] \text { is white-noise process }\right)
\end{aligned}
$$

For $\ell>0$

$$
\begin{aligned}
0=r_{f y}[\ell]= & E\left[\left(y[n]+a_{1}^{*} y[n-1]+\cdots+a_{p}^{*} y[n-p]\right) y^{*}[n-\ell]\right] \\
= & r_{y y}[\ell]+a_{1}^{*} r_{y y}[\ell-1]+\cdots+a_{p}^{*} r_{y y}[\ell-p] \\
& \Rightarrow r_{y y}[\ell]=-a_{1}^{*} r_{y y}[\ell-1]-\cdots-a_{p}^{*} r_{y y}[\ell-p]
\end{aligned}
$$

Yule-Walker Equations: Solving System ID

Problem

$$
\frac{r_{y y}}{(\ell)}[\ell]=-a_{1}^{*} r_{y y}[\ell-1]-\cdots-a_{p}^{*} r_{y y}[\ell-p]
$$

Stacking $\ell=1,2, \ldots, p$ equations, we have
$\left[\begin{array}{cccc}r_{y y}[0] & r_{y y}[-1] & \cdots & r_{y y}[-(p-1)] \\ r_{y y}[1] & r_{y y}[0] & \cdots & r_{y y}[-(p-2)] \\ \vdots & \vdots & \ddots & \vdots \\ r_{y y}[p-1] & r_{y y}[p-2] & \cdots & r_{y y}[0]\end{array}\right]\left[\begin{array}{c}-a_{1}^{*} \\ -a_{2}^{*} \\ \vdots \\ -a_{p}^{*}\end{array}\right]=\left[\begin{array}{c}r_{y y}[1] \\ r_{y y}[2] \\ \vdots \\ r_{y y}[p]\end{array}\right]$
Conjugating both sides:
$\left[\begin{array}{cccc}r_{y y}^{*}[0] & r_{y y}^{*}[-1] & \cdots & r_{y y}^{*}[-(p-1)] \\ r_{y y}^{*}[1] & r_{y y}^{*}[0] & \cdots & r_{y y}^{*}[-(p-2)] \\ \vdots & \vdots & \ddots & \vdots \\ r_{y y}^{*}[p-1] & r_{y y}^{*}[p-2] & \cdots & r_{y y}^{*}[0]\end{array}\right]\left[\begin{array}{c}-a_{1} \\ -a_{2} \\ \vdots \\ -a_{p}\end{array}\right]=\left[\begin{array}{c}r_{y y}^{*}[1] \\ r_{y y}^{*}[2] \\ \vdots \\ r_{y y}^{*}[p]\end{array}\right] \Leftrightarrow \mathbf{R w}=\mathbf{r}$

Observations about YW Equations

- $\mathbf{R}=\mathbf{R}^{H}$
- Eigenvalues are real and eigenvectors corresponding to distinct eigenvalues are orthogonal/orthonormal. If \mathbf{R} is real, then R is symmetric, i.e. $\mathbf{R}^{T}=\mathbf{R}$
$\square \mathbf{R}$ is a Toeplitz matrix, i.e. $r_{i j}=r_{i-j}$
- Values of \mathbf{R} depend only on the difference between the index values
- Has efficient algorithm to solve for solution
- Power efficient in hardware implementation

Realization

A controller canonical form (from control) can be written by realizing that the transfer function can be written as

Since $W(z)\left(1+\sum_{k=1}^{p} a_{k}^{*} z^{-k}\right)=F(z) \Leftrightarrow w[n]+a_{1}^{*} w[n-1]+\cdots+a_{p}^{*} w[n-p]=f[n]$ or

$$
\Rightarrow w[n]=f[n]-a_{1}^{*} w[n-1]-\cdots-a_{p}^{*} w[n-p]
$$

Since $B(z)=\frac{Y(z)}{W(z)} \Rightarrow Y(z)=W(z) B(z)$
$\Leftrightarrow y[n]=w[n] * b[n]=b_{0}^{*} w[n]+b_{1}^{*} w[n-1]+\cdots+b_{q}^{*} w[n-q]$

Realization: AR part of Transfer Function

$$
w[n]+a_{1}^{*} w[n-1]+\cdots+a_{p}^{*} w[n-p]=f[n]
$$

Realization of Complete Transfer

- Signal processing practitioners usually attempt to analyze characteristics of a system by ONLY looking at the relationship between the input and output
- Transfer function
- Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay elements in discrete time) and putting a logic probe in each of the interconnect
- Concatenation of these signals $\{w[n-k]\}, \forall k$ makes up the state of the system

State-Space Form

Consider relabeling the interconnect signals (states) as $\left\{x_{k}[n]\right\}$, for $k=1,2, \ldots, p$

State-Space Representation

$x_{k}[n]$'s are known as the state variables. Note that the transfer function can be written as

$$
H(z)=\frac{Y(z)}{F(z)}=\frac{Y(z)}{X(z)} \frac{X(z)}{F(z)}=\left(\sum_{k=0}^{q} b_{k} z^{-k}\right)\left(\frac{1}{a_{0}+\sum_{k=1}^{p} a_{k} z^{-k}}\right)=H_{1}(z) H_{2}(z)
$$

Assuming $p=q$, note that
$x_{1}[n+1]=x_{2}[n]$
$x_{2}[n+1]=x_{3}[n]$
$x_{p-1}[n+1]=x_{p}[n]$
$\Rightarrow\left\{\begin{array}{lr}x_{p}[n+1]=f[n]-a_{1}^{*} x_{p}[n]-a_{2}^{*} x_{p-1}[n]-\cdots-a_{p-1}^{*} x_{2}[n]-a_{p}^{*} x_{1}[n] \quad \text { (state equation) } \\ y[n]=b_{p}^{*} x_{1}[n]+b_{p-1}^{*} x_{2}[n]+\cdots+b_{2}^{*} x_{p-1}[n]+b_{1}^{*} x_{p}[n] \quad \text { (input-output equation) } \\ & +b_{0}^{*}\left(f[n]-a_{1}^{*} x_{p}[n]-a_{2}^{*} x_{p-1}[n]-\cdots-a_{p}^{*} x_{1}[n]\right)\end{array}\right.$

State-Space Representation

$$
\begin{aligned}
& \text { Define the state vector } \mathbf{x}[n] \triangleq\left[\begin{array}{c}
x_{1}[n] \\
x_{p}[n]
\end{array}\right] \text {, containing state variables } x_{k}[n], \forall k \text {, } \\
& \mathbf{b} \triangleq\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right], \mathbf{c} \triangleq\left[\begin{array}{c}
b_{p}^{*}-b_{0}^{*} a_{p}^{*} \\
b_{p-1}^{*}-b_{0}^{*} a_{p-1}^{*} \\
\vdots \\
b_{1}^{*}-b_{0}^{*} a_{1}^{*}
\end{array}\right], d \triangleq b_{0}^{*}, \quad \text { and } \mathbf{A} \triangleq\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{p}^{*} & -a_{p-1}^{*} & -a_{p-2}^{*} & -a_{p-3}^{*} & \cdots & -a_{2}^{*} & -a_{1}^{*}
\end{array}\right] \\
& \text { If } b_{0}=0, \mathbf{c}^{T}=\left[\begin{array}{lll}
b_{p}^{*} & b_{p-1}^{*} & b_{1}^{*}
\end{array}\right] \text {, then } \\
& \Rightarrow\left\{\begin{array}{c}
\mathbf{x}[n+1]=\mathbf{A} \mathbf{x}[n]+\mathbf{b} f[n] \\
y[n]=\mathbf{c}^{T} \mathbf{x}[n]+d f[n]
\end{array} \quad\right. \text { State-space equation }
\end{aligned}
$$

Imagine opening your system (a black box), which can now be modeled using a bunch of integrators (delay elements in discrete time) and putting a logic probe in each of the interconnect

- Concatenation of these signals $\left\{x_{k}[n]\right\}, \forall k$ makes up the state of the system

Non-uniqueness of State-Space Equation

Let $\mathbf{x}=\mathbf{T z}, \mathbf{T}: p \times p$ invertible matrix, then

$$
\begin{aligned}
\mathbf{T z}[n+1] & =\mathbf{A T z}[n]+\mathbf{b} f[n] \\
y[n] & =\mathbf{c}^{T} \mathbf{T z}[n]+d f[n]
\end{aligned}
$$

$$
\Rightarrow \begin{gathered}
\mathbf{z}[n+1]=\mathbf{T}^{-1} \mathbf{A T z}[n]+\mathbf{T}^{-1} \mathbf{b} f[n] \\
y[n]=\mathbf{c}^{T} \mathbf{T z}[n]+d f[n]
\end{gathered}
$$

Terminologies (which will be explained later)
$\mathbf{T}^{-1} \mathbf{A T}$ is a similarity transformation of \mathbf{A}, they share identical eigenvalues

Time-varying State-Space Model

When system is time-varying, the state-space representation becomes

$$
\begin{gathered}
\mathbf{x}[n+1]=\mathbf{A}[n] \mathbf{x}[n]+\mathbf{b}[n] f[n] \\
y[n]=\mathbf{c}^{T}[n] \mathbf{x}[n]+d[n] f[n]
\end{gathered}
$$

so $\left(\mathbf{A}[n], \mathbf{b}[n], \mathbf{c}^{T}[n], d[n]\right)$ on the time index n is shown

Transformed State-Space Model

Taking the z-transform of the time-invariant SS model

$$
\begin{array}{r}
z \mathbf{x}(z)=\mathbf{A x}(z)+\mathbf{b} F(z) \\
Y(z)=\mathbf{c}^{T} \mathbf{x}(z)+d F(z)
\end{array}
$$

Then the state equation becomes

$$
\begin{aligned}
& \left(z \mathbf{I}_{p}-\mathbf{A}\right) \mathbf{x}(z)=\mathbf{b} F(z) \\
\Rightarrow & \mathbf{x}(z)=\left(z \mathbf{I}_{p}-\mathbf{A}\right)^{-1} \mathbf{b} F(z) .
\end{aligned}
$$

Substituting, then the output equation

$$
\begin{aligned}
Y(z) & =\mathbf{c}^{T}\left(z \mathbf{I}_{p}-\mathbf{A}\right)^{-1} \mathbf{b} F(z)+d F(z) \\
& =\left[\mathbf{c}^{T}\left(z \mathbf{I}_{p}-\mathbf{A}\right)^{-1} \mathbf{b}+d\right] F(z) .
\end{aligned}
$$

Then the transfer function becomes

$$
H(z)=\frac{Y(z)}{F(z)}=\mathbf{c}^{T}\left(z \mathbf{I}_{p}-\mathbf{A}\right)^{-1} \mathbf{b}+d
$$

Solution for State-Space Difference

Equation

Recall the state-space difference equation

$$
\begin{aligned}
\mathbf{x}[n+1] & =\mathbf{A} \mathbf{x}[n]+\mathbf{b} f[n] \\
y[n] & =\mathbf{c}^{T} \mathbf{x}[n]+d f[n]
\end{aligned}
$$

Also initial condition $\mathbf{x}[-1]$, and for $n \geq 0$,

$$
\begin{aligned}
\mathbf{x}[0] & =\mathbf{A x}[-1]+\mathbf{b} f[0] \\
\mathbf{x}[1] & =\mathbf{A x}[0]+\mathbf{b} f[1] \\
& =\mathbf{A}(\mathbf{A x}[-1]+\mathbf{b} f[0])+\mathbf{b} f[1] \\
& =\mathbf{A}^{2} \mathbf{x}[-1]+\mathbf{A b} f[0]+\mathbf{b} f[1]
\end{aligned}
$$

$$
\mathbf{x}[n]=\mathbf{A}^{n+1} \mathbf{x}[-1]+\sum_{k=0}^{n} \mathbf{A}^{k} \mathbf{b} f[n-k]
$$

Solution for State-Space Difference

Equation

$$
y[n]=\mathbf{c}^{T} \mathbf{A}^{n+1} \mathbf{x}[-1]+\sum_{k=0}^{n} \mathbf{c}^{T} \mathbf{A}^{k} \mathbf{b} f[n-k]+d f[n]
$$

Quantities of $\mathbf{c}^{T} \mathbf{A}^{k} \mathbf{b}$ are known as the Markov parameters of the system.

- Note: $\mathbf{x}[n]$ is a linear function of $\mathbf{x}[-1]$ and $f[n-k]$, so it is also a Gaussian process (more on random process later)

State-Space Model: MIMO Extension

MIMO extension:

$$
\begin{aligned}
& \mathbf{x}[n+1]=\mathbf{A x}[n]+\mathbf{B u}[n] \\
& \mathbf{y}[n]=\mathbf{C} \mathbf{x}[n]+\mathbf{D u}[n]
\end{aligned}
$$

If there are p state variables and ℓ inputs and m outputs, then
A: $p \times p$,
B: $p \times \ell$,
$\mathbf{C}: m \times p, \quad \mathbf{D}: m \times \ell$

Simple algebra will show that
$\mathbf{x}[n]=\mathbf{A}^{n+1} \mathbf{x}[-1]+\sum_{k=0}^{n} \mathbf{A}^{k} \mathbf{B u}[k]$
$\mathbf{y}[n]=\mathbf{C A}^{n+1} \mathbf{x}[-1]+\sum_{k=0}^{n} \mathbf{C A}^{k} \mathbf{B u}[k]+\mathbf{D u}[n]$
Quantities of $\mathbf{C} \mathbf{A}^{k} \mathbf{B}$ are known as the Markov parameters of the system.

State Equation Example: Two DC Power Supplies

Assume outputs are independent of each othen, then a reasonable model would be the scalar model for each output

$$
\begin{aligned}
& x_{1}[n]=a_{1} x_{1}[n-1]+u_{1}[n] \\
& x_{2}[n]=a_{2} x_{2}[n-1]+u_{2}[n]
\end{aligned}
$$

where $x_{1}[-1] \sim \mathcal{N}\left(\mu_{x_{1}}, \sigma_{x_{1}}^{2}\right), x_{2}[-1] \sim \mathcal{N}\left(\mu_{x_{2}}, \sigma_{x_{2}}^{2}\right), u_{1}[n]$ and $u_{2}[n]$ are zero-mean WGN with variance $\sigma_{u_{1}}^{2}$ and $\sigma_{u_{2}}^{2}$, respectively. All RVs are independent of each other.
Then $\left[\begin{array}{l}x_{1}[n] \\ x_{2}[n]\end{array}\right]=\left[\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right]\left[\begin{array}{c}x_{1}[n-1] \\ x_{2}[n-1]\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}u_{1}[n] \\ u_{2}[n]\end{array}\right] \Leftrightarrow \mathbf{x}[n]=\mathbf{A x}[n-1]+\mathbf{B u}[n]$.
Also, since $\mathbf{u}[n]$ is a vector WGN with zero mean and covariance

$$
\begin{aligned}
& E\left(\mathbf{u}[m] \mathbf{u}^{T}[n]\right)=\left[\begin{array}{ll}
E\left(u_{1}[m] u_{1}[n]\right) & E\left(u_{1}[m] u_{2}[n]\right) \\
E\left(u_{2}[m] u_{1}[n]\right) & E\left(u_{2}[m] u_{2}[n]\right)
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{u_{1}}^{2} & 0 \\
0 & \sigma_{u_{2}}^{2}
\end{array}\right] \delta[m-n], \\
& \text { so } \mathbf{Q}=\left[\begin{array}{cc}
\sigma_{u_{1}}^{2} & 0 \\
0 & \sigma_{u_{2}}^{2}
\end{array}\right] \text { and } \mathbf{x}[-1]=\left[\begin{array}{l}
x_{1}[-1] \\
x_{2}[-1]
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{cc}
\mu_{x_{1}} \\
\mu_{x_{2}}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{x_{1}}^{2} & 0 \\
0 & \sigma_{x_{2}}^{2}
\end{array}\right]\right) .
\end{aligned}
$$

State Equation Example: Vehicle Tracking

- Goal: Estimate and track range and bearing of vehicle (assuming $x-y$ Cartesian coordinates)
- Assume constant velocity, perturbed by only wind gusts, slight speed corrections
- Model these perturbations as noise inputs, leading to velocity equations

$$
\begin{aligned}
& v_{x}[n]=v_{x}[n-1]+u_{x}[n] \\
& v_{y}[n]=v_{y}[n-1]+u_{y}[n] .
\end{aligned}
$$

- Note that without the noise perturbations $u_{x}[n]$ and $u_{y}[n]$, the velocities would be constant, and the vehicle would be modeled as traveling in a straight line as indicated by the dashed line in Fig. 13.21
- The position equation at time n can then be written as

$$
\begin{aligned}
& r_{x}[n]=r_{x}[n-1]+v_{x}[n-1] \Delta \\
& r_{y}[n]=r_{y}[n-1]+v_{y}[n-1] \Delta,
\end{aligned}
$$

where Δ is the sampling period.

- The (discrete-time) velocity equations models the vehicle to be traveling at the velocity at $n-1$ and then changing abruptly at n. This is an approximation to the true continuous behavior

State Equation Example: Vehicle Tracking

Figure 13.21 Typical track of vehicle moving in given direction at constant speed

State Equation Example: Vehicle Tracking

Define the signal vector as $\mathbf{x}[n]=\left[\begin{array}{c}r_{x}[n] \\ r_{y}[n] \\ v_{x}[n] \\ v_{y}[n]\end{array}\right]$ from the velocity and position equations, we see that

$$
\begin{aligned}
& {\left[\begin{array}{l}
r_{x}[n] \\
r_{y}[n] \\
v_{x}[n] \\
v_{y}[n]
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & \Delta & 0 \\
0 & 1 & 0 & \Delta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
r_{x}[n-1] \\
r_{y}[n-1] \\
v_{x}[n-1] \\
v_{y}[n-1]
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
u_{x}[n] \\
u_{y}[n]
\end{array}\right]} \\
& \Leftrightarrow \mathbf{x}[n]=\mathbf{A x}[n-1]+\mathbf{u}[n] .
\end{aligned}
$$

The measurments are noisy observations of the range and bearing

$$
\begin{aligned}
& \hat{R}[n]=R[n]+w_{R}[n] \\
& \hat{\beta}[n]=\beta[n]+w_{\beta}[n] .
\end{aligned}
$$

This can be written in general form as $\mathbf{y}[n]=\mathbf{h}(\mathbf{x}[n])+\mathbf{w}[n]$, where

$$
\mathbf{C} \mathbf{x}[n] \Rightarrow \mathbf{h}(\mathbf{x}[n])=\left[\begin{array}{c}
\sqrt{r_{x}^{2}[n]+r_{y}^{2}[n]} \\
\arctan \frac{r_{y}[n]}{r_{x}[n]}
\end{array}\right]
$$

Example: System Estimation: One LS

 Approach

$$
\begin{aligned}
& \begin{aligned}
& \hat{h}_{d}[n] \text { or } y[n]=-a_{1}^{*} y[n-1]-a_{1}^{*} y[n-2]-\cdots-a_{p}^{*} y[n-p] \\
& \quad+b_{0}^{*} f[n]+b_{1}^{*} f[n-1]+\cdots+b_{q}^{*} f[n-q]
\end{aligned} \\
& \Leftrightarrow y[n]=-\sum_{k=1}^{p} a_{k}^{*} y[n-k]+\sum_{k=0}^{q} b_{k}^{*} f[n-k]
\end{aligned}
$$

- $f[n]$ is known
- System: ARMA (p, q)
\Rightarrow can setup equation $\mathbf{A x}=\mathbf{b}$ to solve for parameters

Example: System Estimation: One LS

Approach

$$
\begin{aligned}
& \text { (} \sum^{p} \quad \text { To ensure we deal } \\
& \text { Recall } y[n]=-\sum_{k=1}^{p} a_{k}^{*} y[n-k]+\sum_{k=0}^{q} b_{k}^{*} f[n-k] \quad \text { with a causal } y[n] \\
& \mathbf{A}=\left[\begin{array}{ccccccc}
y[p-1] & y[p-2] & \cdots & y[0] & f[p] & f[p-1] & \cdots \\
y[p] & y[p-1] & \cdots & y[1] & f[p+1] & f[p] & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
\vdots[p+1-q] \\
y[N-1] & y[N-2] & \cdots & y[N-p] & f[N] & f[N-1] & \cdots \\
\vdots[N-q]
\end{array}\right] \quad n=p \\
& \mathbf{x}=\left[\begin{array}{c}
-a_{1}^{*} \\
-a_{2}^{*} \\
\vdots \\
-a_{p}^{*} \\
b_{0}^{*} \\
b_{1}^{*} \\
\vdots \\
b_{q}^{*}
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
z[p] \\
z[p+1] \\
\vdots \\
z[N]
\end{array}\right] \\
& \text { If } N \text { large } \Rightarrow \text { over-determined system } \Rightarrow \text { LS solution possible }
\end{aligned}
$$

E.g. Linear Prediction (Useful for Speech Coding and Recognition)

Assume we are told of an $\operatorname{AR}(p)$ system $H(z)=\frac{1}{1+\sum_{k=1}^{p} a_{k} z^{-k}}$
Speech is often modeled as output of such system driven by either a zero-mean uncorrelated signal in the case of unvoiced speech (such as "f", "s" known as fricatives) or by a periodic pulse sequence in the case of voiced speech (vowels) due to the "peaky" nature of human speech signal (in time).
From $H(z) \quad \Rightarrow y[n]=-\sum_{k=1}^{p} a_{k} y[n-k]+f[n]=-\mathbf{a}^{T} \mathbf{y}[n-1]+f[n]=-\mathbf{a}_{a}^{T} \mathbf{y}[n]$
$\mathbf{a}_{a} \triangleq\left[\begin{array}{c}1 \\ a_{1} \\ a_{2} \\ \vdots \\ a_{p}\end{array}\right]$ and $\mathbf{y}[n] \triangleq\left[\begin{array}{c}f[n] \\ y[n-1] \\ y[n-2] \\ \vdots \\ y[n-p]\end{array}\right]$
$\Rightarrow \hat{h}_{d}[n]=y[n]=-\hat{\mathbf{a}}_{a}^{T} \mathbf{y}[n]$
Goal is to find $\hat{\mathbf{a}}_{a}^{T}$ or $\hat{\mathbf{a}}$ so that $e[n]=z[n]-\hat{y}[n]$ is minimized

Application for Speech Recognition (big data example)

- Suppose there are several classes of signals to be distinguished (for example, several speech sounds to be recognized).
- Each signal will have its own set of prediction coefficients
- Signal 1 has \mathbf{a}_{1}
- Signal 2 has \mathbf{a}_{2}, \ldots
- An unknown input signal can be reduced (by estimating the prediction coefficients that represent it) to a vector a
- Then a can be compared with $\mathbf{a}_{1}, \mathbf{a}_{2}$, and so on...to determine which signal the unknown input is most similar to

Inverse Problem: Another Perspective of Prediction

Inverse Problem: Another Perspective of

Prediction

$$
\begin{aligned}
& \text { If } Y(z)=H(z) F(z) \Rightarrow F(z)=Y(z) \frac{1}{H(z)} \\
& \Rightarrow f[n]=y[n]+\mathbf{a}^{T} \mathbf{y}[n-1]
\end{aligned}
$$

In this case, $y[n]$ is regarded as input, then $f[n]$ is output of an inverse system.
If we have an estimated system

$$
H(z)=\frac{1}{1+\sum_{k=1}^{p} a_{k} z^{-k}}=\frac{Y(z)}{F(z)}
$$

then choose

$$
\hat{f}[n]=y[n]+\mathbf{a}^{T} \mathbf{y}[n-1]
$$

so that is close to $f[n]$ in some sense. This is known as an inverse problem.

Nonparametric Spectrum Analysis

- From DSP, we know we can perform DFT on "any" signals to get a picture of the spectrum

- Not very accurate
"Analysis" Equation

$$
\begin{aligned}
& X[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n \text { Why these }} \begin{array}{l}
\text { equations } \\
\text { are written } \\
\text { this way? }
\end{array} \\
& \text { "Synthesis" Equation } \\
& x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}
\end{aligned}
$$

- Exploiting a priori knowledge of signal is better

Parameter Fourier Analysis

Assume we know the signal $s[n]=a \cos 2 \pi f_{0} n+b \sin 2 \pi f_{0} n$, for $n=0,1, \ldots, N-1$, where $f_{0}=k / N$, with $k=1, \ldots, N / 2-1$. Estimate $\boldsymbol{\theta}=\left[\begin{array}{ll}a & b\end{array}\right]^{T}$.

$$
\left[\begin{array}{c}
s[0] \\
s[1] \\
\vdots \\
s[N-1]
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & 0 \\
\cos 2 \pi f_{0} & \sin 2 \pi f_{0} \\
\vdots & \vdots \\
\cos 2 \pi f_{0}(N-1) & \sin 2 \pi f_{0}(N-1)
\end{array}\right]}_{\mathbf{H}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \hat{\boldsymbol{\theta}}^{[0}=\left[\begin{array}{c}
\hat{a} \\
\hat{b}
\end{array}\right]=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{x}
$$

It can shown that \mathbf{H} is orthogonal, i.e.

$$
\begin{aligned}
& \mathbf{h}_{1}^{T} \mathbf{h}_{2}=\sum_{n=0}^{N-1} \cos \left(2 \pi \frac{k}{N} n\right) \sin \left(2 \pi \frac{k}{N} n\right)=0 \\
& \mathbf{h}_{1}^{T} \mathbf{h}_{1}=\mathbf{h}_{2}^{T} \mathbf{h}_{2}=\frac{N}{2}
\end{aligned} \quad \Rightarrow \mathbf{H}^{T} \mathbf{H}=(N / 2) \mathbf{I}_{p}
$$

Parametric Fourier Analysis

$$
\begin{aligned}
\hat{\boldsymbol{\theta}} & =\left[\begin{array}{l}
\hat{a} \\
\hat{b}
\end{array}\right]=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{x} \\
& =\frac{2}{N} \mathbf{H}^{T} \mathbf{x}=\left[\begin{array}{l}
\frac{2}{N} \sum_{n=0}^{N-1} x[n] \cos \left(2 \pi \frac{k}{N} n\right) \\
\frac{2}{N} \sum_{n=0}^{N-1} x[n] \sin \left(2 \pi \frac{k}{N} n\right)
\end{array}\right]
\end{aligned}
$$

General Adaptive Filter Configuration

- Select parameters to achieve the "best" match between the desired signal $d[n]$ and filter output - optimizing the performance function such as
- Least-squares error
- Mean-squared error
- Characteristics of AF
- Can automatically adjust (or adapt) in the face of changing environments and changing
 system requirements
- Can be trained to perform specific filtering or decision-making tasks
- Should have some "adaptation algorithm" (learning, algorithm) for adjusting system's parameters

Applications of AF: System Identification and Interference Cancellation

Applications of AF: Inverse Modeling and Predictors

Random Variable (RV)

Table 5.2 Possible Random Variables (RV)

- A random variable is a function that assigns a numerical value

Outcome: $\boldsymbol{S}_{\boldsymbol{i}}$	RV No. 1: $\boldsymbol{X}_{\mathbf{1}}\left(\boldsymbol{S}_{\boldsymbol{i}}\right)$	RV No. 2: $\boldsymbol{X}_{\mathbf{2}}\left(\boldsymbol{S}_{\boldsymbol{i}}\right)$
$S_{1}=$ heads	$X_{1}\left(S_{1}\right)=1$	$X_{2}\left(S_{1}\right)=\pi$
$S_{2}=$ tails	$X_{1}\left(S_{2}\right)=-1$	$X_{2}\left(S_{2}\right)=\sqrt{2}$

- More convenient to work with a numerical value than nonnumerical value
- Can be discrete or continuous (example of discrete RV on top right, continuous RV on bottom right)
- Convention
- Capital letters denote RVs
- Lowercase letters denote values the RVs take on
- E.g. $f_{X}(x)$ distribution function for RV X with value x

Figure 5.4
Pictorial representation of sample spaces and random variables. (a) Coin-tossing experiment. (b) Pointer-spinning experiment.

CDF and PDF

- Functions which relates the probability of an event to a numerical value assigned to an event
- Parameter vs. nonparameteric
- There are several different parametric PDFs
- Nonparametric
- Estimated directly from data
- Easily adaptable

Probability (Cumulative) Distribution Functions

- A way to probabilistically describe an RV

$$
F_{X}(x) \triangleq P(X \leq x)
$$

Properties of $F_{X}(x)$

1. $0 \leq F_{X}(x) \leq 1$, with $F_{X}(-\infty)=0, F_{X}(\infty)=1$
2. $F_{X}(x)$ is continuous from the right, that is, $\lim _{x \rightarrow x_{0}} F_{X}(x)=F_{X}\left(x_{0}\right)$
3. $F_{X}(x)$ is a nondecreasing function of x, i.e.

$$
F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right) \text { if } x_{1}<x_{2}
$$

Figure 5.5
Illustration of the jump property of $F_{X}(x)$.

Probability Density Functions (PDF)

More convenient to express statistical averages using PDFs

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

Properties of $f_{X}(x)$

1. $F_{X}(x)=\int_{\eta} f_{X}(\eta) d \eta \Rightarrow f_{X}(x)=\frac{d F_{X}(x)}{d x} \geq 0$
2. $\int_{x} f(x) d x=1$
3. $P\left(x_{1} \leq X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f_{X}(x) d x$
4. $f_{X}(x) d x=P(x-d x<X \leq x)$

Example: Discrete PDF and CDF

Figure 5.6

- 2 fair coins are tossed
- X: \# of heads

Outcome	X	$P\left(X=x_{j}\right)$
TT	$x_{1}=0$	$1 / 4$
TH		
HT		
HH	$x_{3}=3$	$1 / 4$

The cdf and pdf for a coin-tossing
experiment.

(a) cdf

(b) pdf

Example: Cont. PDF and CDF

Consider the pointer-spinning experiment. Assume any one stopping point is not favored over any other and that the RV Θ is defined as the angle that the pointer makes with the vertical, modulo 2π. Thus Θ is limited to $[0,2 \pi)$ and for any two angles θ_{1} and θ_{2} in $[0,2 \pi)$, we have

$$
\begin{aligned}
P\left(\theta_{1}-\Delta \theta<\Theta\right. & \left.\leq \theta_{1}\right)=P\left(\theta_{2}-\Delta \theta<\Theta \leq \theta_{2}\right) \quad \text { (equally likely assumption) } \\
& \Rightarrow f_{\Theta}\left(\theta_{1}\right)=f_{\Theta}\left(\theta_{2}\right), 0 \leq \theta_{1}, \theta_{2}<2 \pi . \\
& \Rightarrow f_{\Theta}(\theta)= \begin{cases}\frac{1}{2 \pi}, & 0 \leq \theta<2 \pi, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Area under PDF curve is the probability.

Joint CDFs and PDFs

Characterized by two or more RVs

$$
\begin{aligned}
& F_{X Y}(x, y)=P(X \leq x, Y \leq y) \\
& f_{X Y}(x, y)=\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y} \\
& P\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)=\int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f_{X Y}(x, y) d x d y \\
& \Rightarrow F_{X Y}(\infty, \infty)=\int_{y} \int_{x} f_{X Y}(x, y) d x d y=1 \\
& \Rightarrow f_{X Y}(x, y) d x d y=P(x-d x<X \leq x, y-d y<Y \leq y)
\end{aligned}
$$

Figure 5.8
The dart-throwing experiment.

Marginal CDFs and PDFs

Can obtain cdf or pdf of one of the RVs from joint RVs

$$
\begin{aligned}
& F_{X}(x, y)=P(X \leq x, Y \leq \infty)=F_{X Y}(x, \infty) \\
& F_{Y}(x, y)=P(X \leq \infty, Y \leq y)=F_{X Y}(\infty, y)
\end{aligned}
$$

$$
F_{X}(x)=\int_{y^{\prime}} \int_{-\infty}^{x} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

$$
F_{Y}(y)=\int_{-\infty}^{y} \int_{x^{\prime}} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} .
$$

Since $f_{X}(x)=\frac{d F_{X}(x)}{d x}$ and $f_{Y}(y)=\frac{d F_{Y}(y)}{d y}$
$\Rightarrow f_{X}(x)=\int_{y^{\prime}} f_{X Y}\left(x, y^{\prime}\right) d y^{\prime}$ and $f_{Y}(y)=\int_{x^{\prime}} f_{X Y}\left(x^{\prime}, y\right) d x^{\prime}$

Conditional CDFs and PDFs

Conditional RV:

$$
\begin{aligned}
& F_{X \mid Y}(x \mid Y)=F_{X \mid Y}(x \mid Y \leq y)=\frac{F_{X Y}(x, y)}{F_{Y}(y)} \\
& f_{X \mid Y}(x \mid y)=\frac{\partial F_{X \mid Y}(x \mid Y=y)}{\partial x}=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
\end{aligned}
$$

Bayes Theorem:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid X=x) f_{X}(x)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

where $f_{Y \mid X}(y \mid x) d x=P(y-d y<Y \leq y$ given $X=x)$.

Statistical Independence

Two RVs are stat. independent if values one takes on do not influence the values that the other takes on.

$$
\begin{gathered}
\Rightarrow P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y) \quad \text { or } \\
F_{X Y}(x, y)=F_{X}(x) F_{Y}(y) \\
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)
\end{gathered}
$$

If X and Y are not independent, then using Bayes' rule

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=f_{Y}(y) f_{X \mid Y}(x \mid y) .
$$

Example: Statistical Independence

Two RVs X and Y have joint pdf

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
A e^{-(2 x+y)}, x, y \geq 0 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

A can be found by noting that

$$
\left.\begin{array}{l}
F_{X Y}(\infty, \infty)=\int_{y} \int_{x} f_{X Y}(x, y) d x d y=1 \\
\text { Since } \int_{0}^{\infty} \int_{0}^{\infty} A e^{-(2 x+y)} d x d y=1 \Rightarrow A=2 \\
f_{X}(x)=\int_{y} f_{X Y}(x, y) d y=\left\{\begin{array}{ll}
\int_{0}^{\infty} 2 e^{-(2 x+y)} d y, x \geq 0 \\
0, & x<0
\end{array}=\left\{\begin{array}{ll}
2 e^{-2 x}, & x \geq 0 \\
0, & x<0
\end{array}\right\}\right. \\
f_{Y}(y)=\int_{x} f_{X Y}(x, y) d x=\left\{\begin{array}{ll}
e^{-y}, y \geq 0 \\
0, & y<0
\end{array}\right\} \\
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}= \begin{cases}2 e^{-2 x}, & x \geq 0 \\
0, & x<0\end{cases} \\
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(y)}= \begin{cases}e^{-y}, & y \geq 0 \\
0, & y<0\end{cases} \\
\text { Conditional prob’s are } \\
\text { equal to respective } \\
\text { marginals } \rightarrow X \text { and } Y \\
\text { are independent. }
\end{array}\right\}
$$

Example: Statistical Independence

(a)

(b)

(c)

Figure 5.9
Joint and marginal pdfs for two random variables. (a) Joint pdf. (b) Marginal pdf for X. (c) Marginal pdf for Y.

$$
\begin{aligned}
& f_{X Y}(x, y)= \begin{cases}A e^{-(2 x+y)}, x, y \geq 0 \\
0, & \text { otherwise. }\end{cases} \\
& f_{X}(x)=\int_{y} f_{X Y}(x, y) d y=\left\{\begin{array}{ll}
\int_{0}^{\infty} 2 e^{-(2 x+y)}, & x \geq 0 \\
0, & x<0
\end{array}= \begin{cases}2 e^{-2 x}, & x \geq 0 \\
0, & x<0\end{cases} \right. \\
& f_{Y}(y)=\int_{x} f_{X Y}(x, y) d x= \begin{cases}e^{-y}, & y \geq 0 \\
0, & y<0\end{cases}
\end{aligned}
$$

Sum of Two Statistically Indep. RVs

- The density of the sum of two statistically independent RVs is the convolution of their individual density functions.
- Suppose X, and Y are three independent RVS
 where $W=X+Y$, then
$f_{w}(w)=\int_{y} f_{x}(y) f_{x}(w-y) d y$ $f_{W}(w), f_{X}(x)$, and $f_{Y}(y)$ are pdfs of W, X, and Y, respectively

$$
\begin{aligned}
& \begin{aligned}
F_{W}(w) & =P(W \leq w)=P(X+Y \leq w) \\
& =\int_{y} \int_{x=-\infty}^{w-y} f_{X, Y}(x, y) d x d y \\
& =\int_{y} f_{Y}(y) \int_{x=-\infty}^{w-y} f_{X}(x) d x d y \text { (stat. indep.) }
\end{aligned} \\
& \text { Differentiating we get the result }
\end{aligned}
$$

Statistical Averages

- Sometimes full description of RVs, i.e. knowing its CDF or PDF are not required
- Sometimes only partial information is needed
- One type of partial information of a set of RVs statistical average or mean value

Average of Discrete RV

Expectation of M RVs, x_{1}, \ldots, x_{M} with respective probabilities P_{1}, \ldots, P_{M}

$$
\mu_{x} \triangleq E[X]=\sum_{j=1}^{M} x_{j} P_{j}
$$

Justification:
Let experiment be perform N number of time, with N large
Arithmetic mean: $\frac{n_{1} x_{1}+\cdots+n_{m} x_{m}}{N}=\sum_{j=1}^{M} x_{j} \frac{n_{j}}{N}$
By relative frequency interpretation: $\lim _{N \rightarrow \infty} \frac{n_{j}}{N}=P_{j}$

$$
\Rightarrow \frac{n_{1} x_{1}+\cdots+n_{m} x_{m}}{N}=\sum_{j=1}^{M} x_{j} P_{j}
$$

Average of Cont. RV

Expectation of x_{0} to x_{M} with $\operatorname{pdf} f_{X}(x)$. Suppose we break up this interval into subintervals of size Δx (assume small). The probability that X lies between $x_{i}-\Delta x$ to x_{i} is

$$
P\left(x_{i}-\Delta x<X \leq x_{i}\right) \approx f_{X}\left(x_{i}\right) \Delta x \text {, for } i=0, \ldots, M .
$$

Hence, approximated X by a discrete RV that takes on values x_{0} to x_{M} with probabilities $f_{X}\left(x_{0}\right) \Delta x, \ldots, f_{X}\left(x_{M}\right) \Delta x$.

$$
\Rightarrow \mu_{x} \triangleq E[X] \approx \sum_{i=1}^{M} x_{i} f_{X}\left(x_{i}\right) \Delta x \stackrel{\substack{\lim _{\begin{subarray}{c}{0} }}^{\Delta r \rightarrow 0}}\end{subarray}}{=} \int_{x} x f_{X}(x) d x
$$

Properties of Expectation

- $E[\cdot]$ is a linear operator
- Sometimes need to perform $E(\operatorname{tr}(\cdot))$. $\operatorname{tr}(\cdot)$ is also linear operator $\rightarrow E(\operatorname{tr}(\cdot))=\operatorname{tr}(E(\cdot))$
- Additive
- $E[X+Y]=E[X]+E[Y]$ for any 2 RVs
- Homogeneity
- $E[c X]=c E[X]$, for any constant c

Average of a Function of a RV

Let $Y=g(X)$.

$$
\mu_{Y} \triangleq E[Y]=\left\{\begin{array}{lr}
\sum_{i} y_{i} P\left(y_{i}\right), & \text { discrete RV } \\
\int_{y} y f_{Y}(y) d x, & \text { cont. RV }
\end{array} .\right.
$$

$r^{\text {th }}$ moment of X, for $r=0,1,2, \ldots$ Let $Y=g(X)=X^{r}$

$$
\xi_{r} \triangleq E\left[X^{r}\right]=\left\{\begin{array}{l}
\sum_{i} x_{i}^{r} P\left(x_{i}\right), \text { discrete RV } \\
\int_{x} x^{r} f_{X}(x) d x, \quad \text { cont. RV }
\end{array}\right.
$$

$r^{\text {th }}$ central moment of X, for $r=0,1,2, \ldots$. Let $Y=g(X)=\left(X-\mu_{X}\right)^{r}$

$$
m_{r} \triangleq E\left[\left(X-\mu_{X}\right)^{r}\right]
$$

Special case: variance: $r=2$

$$
\operatorname{var}[X] \triangleq m_{2} \triangleq E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-\mu_{x}^{2} \triangleq \sigma_{X}^{2}
$$

Average of a Function of a RV

$r^{\text {th }}$ joint moment of X and Y , for $i, j=0,1,2, \ldots$

$$
\xi_{i j} \triangleq E\left[X^{i} Y^{j}\right]= \begin{cases}\sum_{i, j} x_{\ell}^{i} y_{m}^{j} P\left(x_{i}, y_{m}\right), & \text { discrete } \mathrm{RV} \\ \int_{x, y} x^{i} y^{j} f_{X Y}(x, y) d x d y, & \text { cont. } \mathrm{RV}\end{cases}
$$

Correlation: $\quad \xi_{11} \triangleq E[X Y]$

Note:
Independent: $E_{X Y}(X Y)=E_{X}(X) E_{Y}(Y)$
Uncorrelated: $E_{X Y}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=0$
Orthogonal: $E(X Y)=0$

Implications:

- If X and Y are independent and have zero mean, implies X and Y are uncorrelated and orthogonal.
- If X and Y are uncorrelated and have zero mean, implies they are orthogonal.
- Hence, independence is the strongest of the three properties.

Average of a Function of a RV

$r^{\text {th }}$ joint central moment of X and Y , for $i, j=0,1,2, \ldots$

$$
m_{i j} \triangleq E\left[\left(X-\mu_{X}\right)^{i}\left(Y-\mu_{Y}\right)^{j}\right]
$$

Covariance:

$$
\operatorname{Cov}[X, Y] \triangleq m_{11} \triangleq E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y}
$$

Correlation coefficient for X and Y :

$$
\rho \triangleq \frac{m_{11}}{\sqrt{m_{20} m_{02}}}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}}}
$$

Conditional Expectation

Conditional expectation of X given $Y=y$

$$
E[X \mid Y]=E[X \mid Y=y]=\int_{x} x f_{X \mid Y}(x \mid Y=y) d x
$$

Expectation of functions of $X: Y=g(X)$

$$
E[Y]=E[g(X)]=\int_{x} g(x) f_{X}(x) d x
$$

Removing Conditional Expectation Via

 ExpectationSince $E_{X \mid Y}(X \mid Y)$ is a function of Y, it is also a RV.

$$
\begin{aligned}
E_{Y}\left[E_{X \mid Y}(X \mid Y)\right] & =\int_{y} \int_{x} x f_{X \mid Y}(x \mid y) d x f_{Y}(y) d y \\
& =\int_{x} x \int_{y} f_{X \mid Y}(x \mid y) f_{Y}(y) d y d x \\
& =\int_{x} x \int_{y} f_{X Y}(X Y) d y d x \\
& =\int_{x} x f_{X}(X) d x \\
& =E_{X}[X]
\end{aligned}
$$

Conditional Expectation

This is an "expectation" version of the total probability theorem.
In many cases, we can simplify a problem by conditioning or "fixing" one RV and performing an expectation. Then remove the conditioning in a second step by taking the expectation w.r.t. the conditioning RV.

More generally:

$$
E[g(X)]=E_{Y}\left[E_{X \mid Y}(g(X) \mid Y)\right]
$$

Special Average: Characteristic Function

Let $g(X)=e^{j \omega X}$

$$
\begin{gathered}
\Phi(\omega) \triangleq E\left[e^{j \omega X}\right]=\int_{X} f_{X}(x) e^{j \omega x} d x \\
f_{X}(x)=\frac{1}{2 \pi} \int_{v} \Phi(\omega) e^{-j \omega x} d v
\end{gathered}
$$

Note:

- This is Fourier transform of $f_{X}(x)$ if we have $e^{-j \omega X}$
- Sometimes it is more convenient to use the variable s in place of $j \omega$, the result becomes moment generating function.

Obtaining moments of a RV:

$$
\begin{gathered}
\frac{\partial \Phi(\omega)}{d \omega}=j \int_{x} x f_{X}(x) e^{j \nu x} d x \\
\text { Set } \omega=0: \quad \Rightarrow E[X]=\left.(-j) \frac{\partial \Phi(\omega)}{d \omega}\right|_{\omega=0} \\
\Rightarrow E\left[X^{n}\right]=\left.(-j)^{n} \frac{\partial^{n} \Phi(\omega)}{d \omega^{n}}\right|_{\omega=0}
\end{gathered}
$$

Chebyshev Inequality and the Law of
 Large Numbers

Let X be a RV with mean μ_{X} and finite variance σ_{X}^{2}. Then for any $\delta>0$,

$$
P\left(\left|X-\mu_{X}\right| \geq \delta\right) \leq \frac{\sigma_{X}^{2}}{\delta^{2}} \quad \text { (Chebyshev Inequality) }
$$

Let $X_{1}, X_{2}, \ldots, X_{N}$ be i.i.d. (independent and identically distributed) RVs with mean μ_{X} and variance σ_{X}^{2} each. Let the sample mean be

$$
\hat{\mu}_{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

Then, for any fixed $\delta>0$,

$$
\lim _{N \rightarrow \infty} P\left(\left|\mu_{X}-\hat{\mu}_{X}\right| \geq \delta\right)=0
$$

Intuitively, this means the estimator, $\hat{\mu}_{X}$, will converge to μ_{X} in probability. If the above limit equals $0, \hat{\mu}_{X}$ is called a consistent estimator of μ_{X}.

Useful PDFs

- Discrete RVs
- Binomial distribution
- Related to chance experiments with two mutually exclusive outcomes with probability p and 1-p
- Model number of times event A has occurred in n trials (events are indep)
- Poisson distribution
- Related to chance experiment in which an event whose probability of occurrence in a very small time interval ΔT is $P=\alpha \Delta T$, where α is a constant
- Model the probability of k events occurring in time T
- Commonly used to model arrival time of packets in packet switching networks
- Continuous RVs
- Normal (Gaussian) distribution
- Commonly used to model large number of indep. random events when distribution of each event is unknown
- Sum of large number of independent RVs converges to a Gaussian distribution
- Rayleigh distribution
- (see above)
- Rician distribution
- Commonly used to model distribution of power profile of wireless channel when direct line-of-sight (LOS) exists
- $\quad x=\operatorname{sqrt}\left(x_{1}{ }^{2}+x_{2}^{2}\right)$, where $x_{1} \sim N\left(\mu_{1}, \sigma^{2}\right), x_{2} \sim N\left(\mu_{2}, \sigma^{2}\right)$ are indep. RV

Useful PDFs

- Continuous RVs
- Chi-Squared (central and noncentral)
- Commonly encounter in detector design
χ_{v}^{2} with v degrees of freedom
$x=\sum_{i=1}^{v} x_{i}^{2}, x_{i} \sim N\left(0\right.$ or $\left.\mu_{i}, 1\right)$ and indep.
- F-distribution (central and noncentral)
- Commonly encounter in detector design
F PDF: ratio of 2 indep. χ_{ν}^{2} RVs
$x=\frac{x_{1} / v_{1}}{x_{2} / v_{2}}, \quad x_{1} \sim \chi_{v_{1}}^{2}(\lambda), \quad x_{2} \sim \chi_{v_{2}}^{2}$ and indep.
$\lambda=0$: central $F-$ dist.

Gaussian (Normal) Distribution

1-dimensional:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{\sqrt{2 \sigma^{2}}}(x-\mu)^{2}\right]
$$

where $\mu \triangleq E[X], \quad \sigma^{2} \triangleq E\left[(X-\mu)^{2}\right]$

Joint CDFs and PDFs:
Marginal distribution:

$$
F_{X}(x)=F_{X Y}(x, \infty)=F_{X Y}(x, Y \leq \infty)
$$

$$
\begin{aligned}
F_{X Y}(x, y) & =P(X \leq x, Y \leq y) \\
f_{X Y}(x, y) & =\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y}
\end{aligned}
$$

$$
F_{Y}(y)=F_{X Y}(\infty, y)=F_{X Y}(X \leq \infty, y)
$$

$$
f_{X}(x)=\int_{x} f_{X Y}(x, y) d y
$$

$P\left(x_{1} \leq X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right)=\int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f_{X Y}(x, y) d x d y$

2-D (Bivariate) Gaussian Distribution

$$
f_{X Y}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{\left[\left(x-\mu_{x}\right) / \sigma_{x}\right]^{2}-2 \rho\left[\left(x-\mu_{x}\right) / \sigma_{x}\right]\left[\left(y-\mu_{y}\right) / \sigma_{y}\right]+\left[\left(y-\mu_{y}\right) / \sigma_{y}\right]^{2}}{2\left(1-\rho^{2}\right)}\right)
$$

where

$$
\begin{aligned}
& \mu_{x}=E[X], \quad \mu_{y}=E[Y], \quad \sigma_{x}^{2}=\operatorname{var}[X], \quad \sigma_{y}^{2}=\operatorname{var}[Y] \\
& \rho=\frac{E\left[\left(X-\mu_{x}\right) E\left(Y-\mu_{y}\right)\right]}{\sigma_{x} \sigma_{y}}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\sigma_{x}^{2} \sigma_{y}^{2}}}
\end{aligned}
$$

2-D (Bivariate) Gaussian Distribution

(c)
X
Figure 5.18
Bivariate Gaussian pdfs and corresponding contour plots. (a) $m_{x}=0, m_{y}=0, \sigma_{x}^{2}=1, \sigma_{y}^{2}=1$ and $\rho=0$. (b) $m_{x}=1, m_{y}=-2, \sigma_{x}^{2}=2, \sigma_{y}^{2}=1$, and $\rho=0$ (c) $m_{x}=0, m_{y}=0, \sigma_{x}^{2}=1, \sigma_{y}^{2}=1$, and $\rho=0.9$.

N-dimensional Gaussian Distribution

$$
\begin{aligned}
& f_{\mathbf{x}}(\mathbf{x})=\frac{1}{(2 \pi)^{N / 2}(\operatorname{det} \mathbf{C})^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathrm{x}}\right)^{T} \mathbf{C}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathrm{x}}\right)\right] \\
& \boldsymbol{\mu}_{\mathrm{x}} \triangleq E[\mathbf{x}]=\left[\begin{array}{c}
E\left(x_{1}\right) \\
\vdots \\
E\left(x_{N}\right)
\end{array}\right] \\
& \mathbf{C} \triangleq E\left[\left(\mathbf{x}-\boldsymbol{\mu}_{\mathrm{x}}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{\mathrm{x}}\right)^{T}\right] \text { (applied element-wise) }
\end{aligned}
$$

Central Limit Theorem

Let $X_{1}, X_{2}, \ldots, X_{N}$ be indep. RVs with zero mean and variance $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{N}^{2}$.
Let $s_{N}^{2} \triangleq \sigma_{1}^{2}+\cdots+\sigma_{N}^{2}$. If for any fixed $\varepsilon>0$, there exists a sufficient large N such that

$$
\sigma_{k}^{2}<\varepsilon s_{N}, \text { for } k=1, \ldots, N \text {, }
$$

then the normalized RV

$$
Z_{N} \triangleq \frac{X_{1}+X_{2}+\cdots+X_{N}}{s_{N}}
$$

converges to the standard normal (Gaussian) PDF.

Q-Function

Gaussian Q-Function:
Normalized Normal distribution of $N\left(\mu_{x}, \sigma_{x}^{2}\right)$
Consider $P\left(\mu_{x}-a \leq X \leq \mu_{x}+a\right)=\int_{\mu_{x}-a}^{\mu_{x}+a} \frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \exp \left[-\frac{1}{2 \sigma_{x}^{2}}\left(x-\mu_{x}\right)^{2}\right] d x$
(let $y=\frac{x-\mu_{x}}{\sigma_{x}}$) $\quad=\int_{-a / \sigma_{x}}^{a / \sigma_{x}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y$

$$
=2 \int_{0}^{a / \sigma_{x}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y
$$

(since area under PDF=1) $=1-2 \int_{a / \sigma_{x}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y$

$$
=1-2 Q\left(\frac{a}{\sigma_{x}}\right)
$$

where $Q(u) \triangleq \int_{u}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y \approx \frac{1}{u \sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right)$, for $u \gg 1$
has been computed numerically.

Normalized Distribution Function: $F(x)$

 and $Q(x)$Normalized cumulative distribution function: $\mu_{x}=0, \sigma_{x}=1$

$$
\begin{gathered}
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\xi^{2} / 2} d \xi \\
F(-x)=1-F(x)
\end{gathered}
$$

A related function: $F(x)=1-Q(x)$

$$
\begin{gathered}
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\xi^{2} / 2} d \xi \\
Q(-x)=1-Q(x)
\end{gathered}
$$

TABLE B-1

Values of $F(x)$ for $0 \leq x \leq 3.89$ in steps of 0.01

\boldsymbol{x}	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9773	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	.9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	.9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	.9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998	. 9998
3.5	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998
3.6	. 9998	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999
3.7	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999
3.8	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	1.0000	1.0000	1.0000

Normalized cumaltive distribution function
$F(x)$
$F(x)=1-Q(x)$

Stochastic Process

- Random Processes (Stochastic Processes)
- Informal definition
- The outcomes (events) of a chance experiment are mapped into functions of time (waveforms)
- Cf. Random variables: outcomes are mapped into numbers
- Each waveform is called a sample function, or a realization. The totality of all sample functions is called an ensemble
- Chance experiment that gives rise to this ensemble is called a random/stochastic process
- Formal definition
- Every outcome ζ we assign, according to a certain rule, a time function $X(t, \zeta) . X\left(t, \zeta_{i}\right)$ signifies a single time function
- $X\left(t_{j}, \zeta\right)$ denotes a single RV
- $X\left(t_{j}, \zeta_{i}\right)$ is a number

Statistical Description of Random

 Process- A random process is statistically specified by its N^{th} order joint pdf's that describes a typical sample function at times $t_{N}>t_{N-1}>\ldots>t_{1}$, for any N where
$F_{X 1 X 2 \ldots x N}\left(x_{1}, t_{1} ; x_{2}, t_{2} ; \ldots ; x_{N}, t_{N}\right)=P\left(x_{1}-d x_{1}<X_{1} \leq x_{1}\right.$ at time $t_{1}, x_{2}-d x_{2}<X_{2} \leq x_{2}$ at time $t_{2}, \ldots, x_{N}-d x_{N}<X_{N}$ $\leq x_{N}$ at time t_{N})
where $X_{n} \equiv X\left(t_{n}, \varsigma\right)$, for $n=1, \ldots N$

Joint probability (from relative frequency) is the number of sample functions that pass through the slits placed at $t=\underline{t}_{1}$ and $t=t_{2}$ in both barriers divided by the total number of M of sample functions as M becomes large w/o bound

Stationarity and Wide-Sense Stationarity

- Statistical stationarity in the strict sense or stationarity
- Joint pdfs depend only on the time differences $t_{2}-t_{1}, t_{3}-t_{1}, \ldots, t_{N}-t_{1}$
- Not dependent on time origin
- Mean and variance independent of time
- Correlation coefficient or covariance depends only on difference, e.g. $t_{2}-t_{1}$
- Wide-sense stationarity (WSS)
- Joint pdfs are dependent on time origin
- Mean and variance independent of time
- Correlation coefficient or covariance depends only on difference, e.g. $t_{2}-t_{1}$
- Stationarity \rightarrow WSS
- Converse is not necessarily true
- Exception: Gaussian random process (Why?)

Figure 6.3
Sample functions of nonstationary processes contrasted with a sample function of a stationary process. (a) Time-varying mean. (b) Time-varying variance. (c) Stationary.

Ensemble Average (Expectation)

Mean: $\mu_{x}(t)=E[x(t)]=\overline{x(t)}=\int_{\alpha} \alpha f_{X}(\alpha, t) d \alpha$
Variance: $\sigma_{x x}^{2}(t)=E\left\{|x(t)-\overline{x(t)}|^{2}\right\}=E\left[|x(t)|^{2}\right]-|\overline{x(t)}|^{2}$
Covariance:

$$
\begin{aligned}
& c_{x x}\left(t_{1}, t_{2}\right)=E\left\{\left[x\left(t_{1}\right)-\overline{x\left(t_{1}\right)}\right]\left[x\left(t_{2}\right)-\overline{x\left(t_{2}\right)}\right]\right\} \\
& =E\left[x\left(t_{1}\right) x^{*}\left(t_{2}\right)\right]-\overline{x\left(t_{1}\right) x\left(t_{2}\right)^{*}} \\
& c_{x x}\left(t_{2}, t_{1}\right)=E\left\{\left[x\left(t_{2}\right)-\overline{x\left(t_{2}\right)}\right]\left[x\left(t_{1}\right)-\overline{x\left(t_{1}\right)}\right]\right\} \\
& =E\left[x\left(t_{2}\right) x^{*}\left(t_{1}\right)\right]-\overline{x\left(t_{2}\right)} \overline{x\left(t_{1}\right)}{ }^{*} \\
& \Rightarrow c_{x x}\left(t_{1}, t_{2}\right)=c_{x x}^{*}\left(t_{2}, t_{1}\right)
\end{aligned}
$$

Autocorrelation:

$$
\begin{aligned}
r_{x x}\left(t_{1}, t_{2}\right) & =E\left[x\left(t_{1}\right) x^{*}\left(t_{2}\right)\right] \\
& =\int_{\alpha_{2}} \int_{\alpha_{1}} \alpha_{1} \alpha_{2} f_{X_{1} X_{2}}\left(\alpha_{1}, t_{1} ; \alpha_{2}, t_{2}\right) d \alpha_{1} d \alpha_{2}
\end{aligned}
$$

Ensemble Average (Vector Random

Process)

Mean: $\boldsymbol{\mu}_{x}(t)=E[\mathbf{x}(t)]=\overline{\mathbf{x}(t)}$
Variance: $\sigma_{x x}^{2}(t)=E\left\{[\mathbf{x}(t)-\overline{\mathbf{x}(t)}]^{H}[\mathbf{x}(t)-\overline{\mathbf{x}(t)}]\right\}$

$$
=E\left[|x(t)|^{2}\right]-2 \operatorname{Re}\left\{\mathbf{x}^{H}(t) \overline{\mathbf{x}(t)}\right\}+|\overline{x(t)}|^{2}
$$

Covariance:

$$
\begin{aligned}
\mathbf{C}_{x x}\left(t_{1}, t_{2}\right) & =E\left\{\left[\mathbf{x}\left(t_{1}\right)-\overline{\mathbf{x}\left(t_{1}\right)}\right]\left[\mathbf{x}\left(t_{2}\right)-\overline{\mathbf{x}\left(t_{2}\right)}\right]^{H}\right\} \\
& =E\left[\mathbf{x}\left(t_{1}\right) \mathbf{x}^{H}\left(t_{2}\right)\right]-E\left[\mathbf{x}\left(t_{1}\right){\overline{\mathbf{x}\left(t_{2}\right)}}^{H}\right]-E\left[\overline{\mathbf{x}\left(t_{1}\right)} \mathbf{x}^{H}\left(t_{2}\right)\right]+{\overline{\mathbf{x}\left(t_{1}\right) \mathbf{x}\left(t_{2}\right)^{H}}}^{H}
\end{aligned}
$$

Autocorrelation:

$$
\mathbf{R}_{x x}\left(t_{1}, t_{2}\right)=E\left[\mathbf{x}\left(t_{1}\right) \mathbf{x}^{H}\left(t_{2}\right)\right]
$$

Ensemble Average (Expectation) for WSS Process

WSS:
Mean: $\mu_{x}(t)=E[x(t)]=$ constant
Variance: $\sigma_{x x}^{2}(t)=$ constant
Covariance:

$$
\begin{aligned}
c_{x x}(\tau) & \triangleq E\left\{[x(t)-\overline{x(t)}][x(t-\tau)-\overline{x(t-\tau)}]^{*}\right\} \\
& =E\left[x(t) x^{*}(t-\tau)\right]-\overline{x(t) x(t-\tau)}
\end{aligned}
$$

Autocorrelation:

$$
\begin{aligned}
& r_{x x}(\tau) \triangleq E\left[x(t) x^{*}(t-\tau)\right] \\
\Rightarrow & r_{x x}^{*}(\tau) \triangleq E\left[x^{*}(t) x(t-\tau)\right] \\
\Rightarrow & r_{x x}^{*}(-\tau) \triangleq E\left[x^{*}(t) x(t+\tau)\right]=E\left[x(t+\tau) x^{*}(t)\right] \\
& =E\left[x(p) x^{*}(p-\tau)\right]=r_{x x}(\tau)
\end{aligned}
$$

Ensemble Average for Vector WSS Process

WSS:
Mean: $\boldsymbol{\mu}_{x}(t)=E[\mathbf{x}(t)]=$ constant
Variance: $\sigma_{x x}^{2}(t)=E\left[\mathbf{x}^{H}(t) \mathbf{x}(t)\right]=$ constant
Covariance:

$$
\begin{aligned}
\mathbf{C}_{x x}(\tau) & \triangleq E\left\{[\mathbf{x}(t)-\overline{\mathbf{x}(t)}][\mathbf{x}(t-\tau)-\overline{\mathbf{x}(t-\tau)}]^{H}\right\} \\
& =E\left[\mathbf{x}(t) \mathbf{x}^{H}(t-\tau)\right]-\overline{\mathbf{x}(t) \mathbf{x}(t-\tau)}
\end{aligned}
$$

Autocorrelation:

$$
\mathbf{R}_{x x}(\tau) \triangleq E\left[\mathbf{x}(t) \mathbf{x}^{H}(t-\tau)\right]
$$

Ergodicity

Ergodic processes are processes for which time and ensemble averages are interchangeable.
For example, for real-valued WSS processes:

$$
\begin{gathered}
\mu_{x}=E[x(t)]=\langle x(t)\rangle \\
\sigma_{x x}^{2}=E\left\{[x(t)-\overline{x(t)}]^{2}\right\}=\left\langle[x(t)-\langle x(t)\rangle]^{2}\right\rangle \\
r_{x x}(\tau)=E[x(t) x(t+\tau)]=\langle x(t) x(t+\tau)\rangle,
\end{gathered}
$$

where $\langle v(t)\rangle \triangleq \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} v(t) d t$.
Note:

- All time and ensemble averages are interchangeable, not just the above.
- Ergodicity \Rightarrow strict-sense stationarity

Example 1: Ergodicity

Consider a random process with sample function

$$
n(t)=A \cos \left(2 \pi f_{0} t+\theta\right)
$$

where f_{0} is a constant and Θ is a RV with pdf

$$
f_{\Theta}(\theta)=\left\{\begin{array}{l}
\frac{1}{2 \pi}, \quad|\theta| \leq \pi \\
0, \text { otherwise }
\end{array}\right.
$$

Calculate its ensemble and time-average.

$$
\left.\begin{array}{rlrl}
E[n(t)] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} A \cos \left(2 \pi f_{0} t+\theta\right) d \theta=0 & \\
\sigma_{n n}^{2}(t)=E\left[n^{2}(t)\right]=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[A \cos \left(2 \pi f_{0} t+\theta\right)\right]^{2} d \theta & \begin{array}{ll}
\langle n(t)\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} A \cos \left(2 \pi f_{0} t+\theta\right) d t=0
\end{array} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} A^{2} \cos ^{2}\left(2 \pi f_{0} t+\theta\right) d \theta & & \left\langle n^{2}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} A^{2} \cos ^{2}\left(2 \pi f_{0} t+\theta\right) d t
\end{array}\right] \quad=\frac{A^{2}}{2} .
$$

$$
=\frac{A^{2}}{2}
$$ It may be stationary and ergodic.

Example 2: Ergodicity

Suppose $f_{\Theta}(\theta)=\left\{\begin{array}{l}\frac{2}{\pi}, \quad|\theta| \leq \frac{\pi}{4} \\ 0, \text { otherwise }\end{array}\right.$
Calculate its ensemble and time-average.

$$
\begin{aligned}
E[n(t)] & =\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4} A \cos \left(2 \pi f_{0} t+\theta\right) d \theta \\
& =\left.\frac{2}{\pi} A \sin \left(2 \pi f_{0} t+\theta\right)\right|_{-\pi / 4} ^{\pi / 4}=\frac{2 \sqrt{2} A}{\pi} \cos \left(2 \pi f_{0} t\right)
\end{aligned}
$$

$$
r_{n n}^{2}(0)=E\left[n^{2}(t)\right]=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4}\left[A \cos \left(2 \pi f_{0} t+\theta\right)\right]^{2} d \theta
$$

$$
=\frac{A^{2}}{\pi} \int_{-\pi / 4}^{\pi / 4}\left[1+\cos \left(4 \pi f_{0} t+2 \theta\right)\right] d \theta
$$

$$
=\frac{A^{2}}{2}+\frac{A^{2}}{\pi} \cos \left(4 \pi f_{0} t\right)
$$

Process is not stationary as first and second moment depends on t, hence it is for different time origin.

Summary for Ergodic Process

1. Mean: $\mu_{x}(t)=E[x(t)]=\langle x(t)\rangle$ is the DC component
2. $\overline{x(t)}^{2}=\langle x(t)\rangle^{2}$ is the DC power
3. $r_{x x}(0)=\overline{x^{2}(t)}=\left\langle x^{2}(t)\right\rangle$ is the total power
4. $\sigma_{x x}^{2}(t)=\overline{x^{2}(t)}-\overline{x(t)}{ }^{2}=\left\langle x^{2}(t)\right\rangle-\langle x(t)\rangle^{2}$ is the power in the alternating current (time-varying) component
5. Total power $\overline{x^{2}(t)}=\sigma_{x x}^{2}(t)+\langle x(t)\rangle^{2}$ is the AC power plus the DC power

Power Spectral-Density Functions (PSD) and Cross-Spectral Density

The PSD of a wide-sense stationary random process is the Fourier transform of the autocorrelation function. For continuous-time random process

$$
S_{x x}(j \Omega)=\int_{\tau} r_{x x}(\tau) e^{-j \Omega \tau} d \tau .
$$

Since $r_{x x}(\tau)$ is symmetric, the PSD is a real-valued function of Ω. Since real-valued power cannot be negative, the PSD must satisfy $S_{x x}(\Omega) \geq 0$, $\forall \Omega$. Then average power of a random process is

$$
\begin{aligned}
& r_{x x}(0)=E\left[x(t) x^{*}(t)\right]=E\left[|x(t)|^{2}\right] \\
& \left.\Leftrightarrow \frac{1}{2 \pi} \int_{\Omega} S_{x x}(j \Omega) e^{j \Omega \tau} d \Omega\right|_{\tau=0}=\frac{1}{2 \pi} \int_{\Omega} S_{x x}(j \Omega) d \Omega
\end{aligned}
$$

Cross-Spectral Density: $\quad S_{x y}(j \Omega)=\int_{\tau} r_{x y}(\tau) e^{-j \Omega \tau} d \tau$

Bilateral Laplace Transform of the Autocorrelation Function

Note: $s=\sigma+j \Omega$ (entire complex plane). Define

$$
\begin{aligned}
& S_{x x}(s) \triangleq \int_{\tau} r_{x x}(\tau) e^{-s \tau} d \tau \\
& S_{x y}(s) \triangleq \int_{\tau} r_{x y}(\tau) e^{-s \tau} d \tau
\end{aligned}
$$

For real-valued random process, since autocovariance is real and even, its
Laplace transform will be even

$$
\begin{aligned}
S_{x x}(s) & =S_{x x}(-s) \\
\text { If } s=j \Omega & S_{x x}(-j \Omega)
\end{aligned}=S_{x x}^{*}(j \Omega) .
$$

Discrete-Time PSD and its Laplace Transform Representation

For discrete-time, PSD:

$$
S_{x x}\left(e^{j \omega}\right)=\sum_{k} r_{x x}[k] e^{-j \omega k}
$$

Cross-Spectral Density:

$$
\begin{gathered}
S_{x y}\left(e^{j \omega}\right)=\sum_{k} r_{x y}[k] e^{-j \omega k} \\
S_{x x}(z) \triangleq \sum_{k} r_{x x}[k] z^{-k} \\
S_{x y}(z) \triangleq \sum_{k} r_{x y}[k] z^{-k}
\end{gathered}
$$

Define

For real-valued process

$$
\begin{aligned}
S_{x x}\left(\frac{1}{z}\right) & =S_{x x}(z) \\
S_{x x}\left(e^{-j \omega}\right) & =S_{x x}^{*}\left(e^{j \omega}\right)
\end{aligned}
$$

and

Uncorrelated, Orthogonal, Independent Random Processes

Given two random processes $X(t)$ and $Y(t)$
(1) Uncorrelated

$$
\text { if } R_{X Y}\left(t_{1}, t_{2}\right)=m_{X}\left(t_{1}\right) m_{Y}^{*}\left(t_{1}\right), \forall t_{1}, t_{2}
$$

(2) Orthogonal

$$
\text { if } R_{X Y}\left(t_{1}, t_{2}\right)=0, \quad \forall t_{1}, t_{2}
$$

(3) Independence: if

$$
\begin{aligned}
& f_{X Y}\left(x_{1}, y_{1}, t_{1} ; x_{2}, y_{2}, t_{2} ; \ldots ; x_{n}, y_{n}, t_{n}\right) \\
& \quad=f_{X}\left(x_{1}, t_{1} ; x_{2}, t_{2} ; \ldots ; x_{n}, t_{n}\right) f_{Y}\left(y_{1}, t_{1} ; y_{2}, t_{2} ; \ldots ; y_{n}, t_{n}\right)
\end{aligned}
$$

Remarks:
(1) Independence \Rightarrow Uncorrelated
(2) Uncorrelated $\Rightarrow\left(X(t)-m_{X}(t)\right)$ and $\left(Y(t)-m_{Y}(t)\right)$ are orthogonal
(3) (Uncorrelated and either $m_{X}(t)=0$ or $\left.m_{Y}(t)=0\right) \Rightarrow$ orthogonal
(4) Uncorrelated and Gaussian \Rightarrow Independent

Linear Systems and Random Processes

Given $h(t)$ is LTI, and $y(t)=h(t) * x(t)$

Mean of $y(t)$:

$$
\begin{aligned}
\mu_{y}(t) & =E[h(t) * x(t)]=E\left[\int_{u} h(u) x(t-u) d u\right]=\int_{u} h(u) E[x(t-u)] d u \\
& =\mu_{x}(t) \int_{u} h(u) d u=\mu_{x}(t) H(0)
\end{aligned}
$$

Cross-correlation

$$
\begin{aligned}
r_{x y}\left(t_{1}, t_{2}\right) & =E\left[x\left(t_{1}\right) y^{*}\left(t_{2}\right)\right]=E\left[x\left(t_{1}\right) \int_{u} h^{*}(u) x^{*}\left(t_{2}-u\right) d u\right] \\
& =\int_{u} h^{*}(u) E\left[x\left(t_{1}\right) x^{*}\left(t_{2}-u\right)\right] d u \\
& =\int_{u} h^{*}(u) r_{x x}\left(t_{1}-t_{2}+u\right) d u
\end{aligned}
$$

If $x(t)$ is WSS, let $\tau=t_{1}-t_{2}$

$$
r_{x y}(\tau)=\int_{u} h^{*}(u) r_{x x}(\tau+u) d u=h^{*}(-\tau)^{*} r_{x x}(\tau)
$$

Linear Systems and Random Processes

Similarly

$$
\begin{aligned}
r_{y x}\left(t_{1}, t_{2}\right) & =E\left[y\left(t_{1}\right) x^{*}\left(t_{2}\right)\right]=E\left[\int_{u} h(u) x\left(t_{1}-u\right) d u x^{*}\left(t_{2}\right)\right] \\
& =\int_{u} h(u) E\left[x\left(t_{1}-u\right) x^{*}\left(t_{2}\right)\right] d u \\
& =\int_{u} h(u) r_{x x}\left(t_{1}-t_{2}-u\right) d u
\end{aligned}
$$

If $x(t)$ is WSS, let $\tau=t_{1}-t_{2}$

$$
\begin{aligned}
r_{y x}(\tau) & =\int_{u} h(u) r_{x x}(\tau-u) d u=h(\tau) * r_{x x}(\tau) \\
r_{y y}(\tau) & =E\left[y(t) y^{*}(t-\tau)\right]=E\left[y(t) \int_{u} h^{*}(u) x^{*}(t-u-\tau) d u\right] \\
& =\int_{u} h^{*}(u) E\left[y(t) x^{*}(t-u-\tau)\right] d u \\
& =\int_{u} h^{*}(u) r_{y x}(u+\tau) d u \\
& =h^{*}(-\tau) * r_{y x}(\tau) \\
& =h^{*}(-\tau) * h(\tau) * r_{x x}(\tau)
\end{aligned}
$$

Linear Systems and Power Spectral Densities

$$
\begin{aligned}
& r_{x y}(\tau)=h^{*}(-\tau)^{*} r_{x x}(\tau) \Leftrightarrow S_{x y}(j \Omega)=H^{*}(j \Omega) S_{x x}(j \Omega) \\
& \begin{array}{rlrl}
r_{y x}(\tau)=h(\tau) * r_{x x}(\tau)=r_{x y}^{*}(-\tau) & & \Leftrightarrow S_{y x}(j \Omega)=H(j \Omega) S_{x x}(j \Omega) \\
\text { Since } r_{x x}^{*}(-\tau)=r_{x x}(\tau) \text { and } \mathcal{F}\left\{r_{x x}^{*}(-\tau)\right\}=S_{x x}^{*}(j \Omega)=S_{x x}(-j \Omega) \\
& \Leftrightarrow S_{y x}(j \Omega)=H(j \Omega) S_{x x}(j \Omega)=H(j \Omega) S_{x x}(-j \Omega) \\
& & \Leftrightarrow S_{y y}(j \Omega)=H^{*}(j \Omega) S_{y x}(j \Omega) \\
r_{y y}(\tau)=h^{*}(-\tau) r_{y x}(\tau) & \Leftrightarrow & =H^{*}(j \Omega) H(j \Omega) S_{x x}(j \Omega)=|H(j \Omega)|^{2} S_{x x}(j \Omega)
\end{array} \\
&=h^{*}(-\tau)^{*} h(\tau) * r_{x x}(\tau) \Leftrightarrow \quad
\end{aligned}
$$

Markov and Hidden Markov Models

 (HMM)- HMM is a stochastic model that is used to model time-varying random phenomena
- E.g. speech signal, video sequence
- Can be understood in terms of state-space models

Markov Models

- Used to model evolution of random phenomena that can be in discrete states as a function to time,
- Transition from one state to the next is random
- E.g. A system can be in one of the S distinct states
- At each step of discrete time it can move to another state at random, with probability of the transition at the time t dependent only upon the state
 of the system at time t
- i.e. only the previous state is relevant

Markov Models

- From state 1 to state 1 is possible with probability 0.5
- Denote $S[t]$ denote the state at time t, where it takes on one of the values $1,2, \ldots, S$.
- Initial state is selected according to a probability π

- $\pi_{i}=P(S[1]=i), i=1$,

2, ..., S

Markov Models

- Probability of transition depends ONLY upon the current state
- $P(S[t+1]=j \mid S[t]=i, S[t-1]=k, S[t-2]=\ell, \ldots)=P(S[t+1]=j \mid S[t]=i)$
- This structure of probability is called the Markov property, and the random sequence of state values $S[0], S[1], S[2], \ldots$ is called a Markov sequence or a Markov chain
- Sequence is the output of the Markov model
- Can determine the probability of arriving in the next state by adding up all the probabilities of the ways of arriving there, i.e.

$$
\begin{aligned}
P(S[t+1]=j)= & P(S[t+1]=j \mid S[t]=1) P(S[t]=1)+P(S[t+1]=j \mid S[t]=2) P(S[t]=2) \\
& +\cdots+P(S[t+1]=j \mid S[t]=S) P(S[t]=S)
\end{aligned}
$$

- Note that this is just the law of total probability

Partitions and Total Probability

Suppose the events $A_{1}, A_{2}, \ldots, A_{n}$ form a partition of a sample space S, that is, the events A_{i}^{\prime} 's are mutually exclusive and their union is S. Suppose B is any other event. Then

$$
\begin{aligned}
B=S \cap B & =\left(\bigcup_{i=1}^{n} A_{i}\right) \cap B \\
& =\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \cup \cdots \cup\left(A_{n} \cap B\right),
\end{aligned}
$$

where $A_{i} \cap B$ are also mutually exclusive. Then

$$
P(B)=P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\cdots+P\left(A_{n} \cap B\right) .
$$

From the multiplication theorem,

$$
P(B)=P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{n}\right) P\left(B \mid A_{n}\right) .
$$

This is known as the law of total probability.

Markov Models

Can be written in matrix form. Define

$$
\mathbf{p}[n] \triangleq\left[\begin{array}{c}
P(S[n]=1) \\
P(S[n]=2) \\
\vdots \\
P(S[n]=S)
\end{array}\right], \quad \mathbf{A} \triangleq\left[\begin{array}{cccc}
P(1 \mid 1) & P(1 \mid 2) & \cdots & P(1 \mid S) \\
P(2 \mid 1) & P(2 \mid 2) & \cdots & P(2 \mid S) \\
\vdots & \vdots & \ddots & \vdots \\
P(S \mid 1) & P(S \mid 2) & \cdots & P(S \mid S)
\end{array}\right] \text {, with } a_{i j}=P(i \mid j) \triangleq P(S[t+1]=i \mid S[t]=j)
$$

From the previous example:
$\mathbf{A}=\left[\begin{array}{ccc}0.5 & 0.3 & 0.2 \\ 0.2 & 0 & 0.7 \\ 0.3 & 0.7 & 0.1\end{array}\right]$

Markov Models

- A steady-state probability assignment is one that does not change from one time step to the next, so the probability must satisfy the equation

$$
\mathbf{A p}=\mathbf{p}
$$

- This is an eigenequation, with eigenvalue $=1$.
- By law of total probability, each column of A sum to 1
- Definition: An $m \times m$ matrix \mathbf{P}, such that $\sum_{j=1}^{m} p_{i j}=$ 1 (each row sums to 1) and each element of \mathbf{P} is nonnegative, is called a stochastic matrix. If the rows and columns each sum to 1 , then P is doubly stochastic

Markov Models

$\mathbf{A} \triangleq\left[\begin{array}{cccc}P(1 \mid 1) & P(1 \mid 2) & \cdots & P(1 \mid S) \\ P(2 \mid 1) & P(2 \mid 2) & \cdots & P(2 \mid S) \\ \vdots & \vdots & \ddots & \vdots \\ P(S \mid 1) & P(S \mid 2) & \cdots & P(S \mid S)\end{array}\right]$ is the transpose of a stochastic matrix. The vector
π contains the initial probabilities. Thus, we can write the probabilistic update equation is

$$
\mathbf{p}[t+1]=\mathbf{A} \mathbf{p}[t], \quad \text { with } \mathbf{p}[0]=\boldsymbol{\pi} .
$$

Or,

$$
\mathbf{p}[t+1]=\mathbf{A p}[t]+\boldsymbol{\pi} \delta_{t},
$$

with $\mathbf{p}[t]=0$ for $t \leq 0$. Note that the above is similar to the state equation

$$
\mathbf{x}[n+1]=\mathbf{A x}[n]+\mathbf{b} f[n] .
$$

Note that the "state" represented by $\mathbf{p}[t+1]=\mathbf{A p}[t]+\boldsymbol{\pi} \delta_{t}$ is actually the vector of probabilities $\mathbf{p}[t]$, not the state of the Markov sequence $S[t]$

Relationship to Markov Models and HMM

- Pick a ball from 3 urns
- Each urn contains 3 types of colored balls: black green, and red
- At each instant of time, an urn is selected by genie at random according to the state it was in at the previous time instant
- Genie - magic creature which could do everything
- Ball is then drawn at random from the urn at time t
- Observation = ball selected
- Actual state is hidden
- State of the system before the ball was chosen \rightarrow the state of the system after

Relationship to Markov Models and HMM: State Diagram

Relationship to Markov Models and HMM

- To further clarify the relationship,

$$
\mathbf{p}[t+1]=\mathbf{A p}[t]+\boldsymbol{\pi} \delta_{t}
$$

provides for the state update of the Markov system.

- However, in most linear system, the state vector $\mathbf{x}[t]$ is not directly observable, instead, it is observed only through the observation matrix \mathbf{C} (assuming $\mathbf{D}=\mathbf{0}$), i.e. $\mathbf{y}[t]=\mathbf{C x}[t]$
- In an HMM, the state is hidden from direct observation
- Instead, each state has a probability distribution associated with it

Relationship to Markov Models and HMM

- In the HMM, we do not observe the "state" $p[t]$
- Instead, each state has a probability distribution associated with it
- When HMM moves into state $s[t]$ at time t, the observed output $y[t]$ is an outcome of a random variable $Y[t]$ that is selected according to the distribution $f(y[t] \mid S[t]=s)$, which we will represent using the notation $f(y \mid S[t]=s)=f_{s}(y)$
- In the urn example, the output probabilities depend on the contents of the urns
- A sequence of outputs from an HMM is $y[0], y[1], y[2], \ldots$
- The underlying state information is hidden
- Distribution in each state can be of any type
- Each state could have its own distribution
- In practice, distribution of each state is the same, but with different parameters

Summary: HMM

Denote the state at time t as $S[t]$.
Initial state is selected according to probability $\pi_{i}=P(S[1]=i), i=1,2, \ldots, S$ (assume $P(S[t]=i)=0$, for $t \leq 0)$.
Transition probability depends ONLY on current state:

$$
P(S[t+1]=j \mid S[t]=i, S[t-1]=k, S[t-2]=\ell, \ldots)=P(S[t+1]=j \mid S[t]=i)
$$

Then, the probability of arriving in the next state is

$$
\begin{aligned}
P(S[t+1]=j)= & P(S[t+1]=j \mid S[t]=1) P(S[t]=1)+P(S[t+1]=j \mid S[t]=2) P(S[t]=2) \\
& +\cdots+P(S[t+1]=j \mid S[t]=S) P(S[t]=S)
\end{aligned}
$$

Summary: HMM State Transition

Can be written in matrix form. Define

$$
\mathbf{p}[t] \triangleq\left[\begin{array}{c}
P(S[t]=1) \\
P(S[t]=2) \\
\vdots \\
P(S[t]=S)
\end{array}\right], \quad \mathbf{A} \triangleq\left[\begin{array}{cccc}
P(1 \mid 1) & P(1 \mid 2) & \cdots & P(1 \mid S) \\
P(2 \mid 1) & P(2 \mid 2) & \cdots & P(2 \mid S) \\
\vdots & \vdots & \ddots & \vdots \\
P(S \mid 1) & P(S \mid 2) & \cdots & P(S \mid S)
\end{array}\right] \text {, with } a_{i j}=P(i \mid j) \triangleq P(S[t+1]=i \mid S[t]=j) .
$$

From urn example:

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
0.5 & 0.3 & 0.2 \\
0.2 & 0 & 0.7 \\
0.3 & 0.7 & 0.1
\end{array}\right] \\
& \Rightarrow \mathbf{p}[t+1]=\mathbf{A p}[t]+\boldsymbol{\pi} \delta_{t} \\
& \text { with } \boldsymbol{\pi} \triangleq \mathbf{p}[0]
\end{aligned}
$$

Summary: HMM Input-Output

Let M denote the number of possible outcomes from all states
Let $Y[t]$ be the random variable output at time t, with outcome $y[t]$
Then probability of each possible output is

$$
\begin{gathered}
P(Y[t]=j)=P(Y[t]=j \mid S[t]=1) P(S[t]=1)+P(Y[t]=j \mid S[t]=2) P(S[t]=2) \\
+\cdots+P(Y[t]=j \mid S[t]=S) P(S[t]=S)
\end{gathered}
$$

Summary: HMM Input-Output

Can be written in matrix form. Define
$\mathbf{q}[t] \triangleq\left[\begin{array}{c}P(Y[t]=1) \\ P(Y[t]=2) \\ \vdots \\ P(Y[t]=M)\end{array}\right], \mathbf{C} \triangleq\left[\begin{array}{cccc}P(Y[t]=1 \mid S[t]=1) & P(Y[t]=1 \mid S[t]=2) & \cdots & P(Y[t]=1 \mid S[t]=S) \\ P(Y[t]=2 \mid S[t]=1) & P(Y[t]=2 \mid S[t]=2) & \cdots & P(Y[t]=2 \mid S[t]=S) \\ \vdots & \vdots & \ddots & \vdots \\ P(Y[t]=M \mid S[t]=1) & P(Y[t]=M \mid S[t]=2) & \cdots & P(Y[t]=M \mid S[t]=S)\end{array}\right]$,
with $c_{i j}=P(Y[t]=i \mid S[t]=j)$.
From urn example, with $S=1$ (black), $=2$ (green), $=3$ (red):
$\mathbf{C}=\left[\begin{array}{ccc}1 / 2 & 1 / 3 & 1 / 3 \\ 1 / 3 & 7 / 15 & 1 / 3 \\ 1 / 6 & 1 / 5 & 1 / 3\end{array}\right]$

State-Space vs. HMM

State-space:

$$
\begin{aligned}
& \mathbf{x}[n+1]=\mathbf{A x}[n]+\mathbf{B} u[n] \\
& \mathbf{y}[n]=\mathbf{C} \mathbf{x}[n]+\mathbf{D u}[n]
\end{aligned}
$$

$$
\mathbf{p}[n+1]=\mathbf{A p}[n]+\boldsymbol{\pi} \delta_{n}, \quad \text { with } \boldsymbol{\pi} \triangleq \mathbf{p}[0]
$$

$$
\mathbf{q}[n]=\mathbf{C p}[n]
$$

Recall solution for state-space is
$\mathbf{x}[n]=\mathbf{A}^{n+1} \mathbf{x}[-1]+\sum_{k=0}^{n} \mathbf{A}^{k} \mathbf{B u}[n-k]$
$\mathbf{y}[n]=\mathbf{C A}^{n+1} \mathbf{x}[-1]+\sum_{k=0}^{n} \mathbf{C A}^{k} \mathbf{B u}[n-k]+\mathbf{D u}[n]$.
\Rightarrow Hence, \mathbf{A}^{k} models dynamics of system by treating the system as a Markov process.

Example: Speech Modeling for Speech

Recognition

- Patterns in speech signal occurring sequentially in time
- Each word or sound (phoneme) to be recognized is represented by an HMM
- Output is some feature vector that is derived from the speech data
- Random variability in the feature vector and the amount of time each feature is produced is modeled by the HMM
- Variability in the duration of the word is modeled by the Markov model
- Variability in the outputs is modeled by the random selection from within each state

Example

- Given a small vocabulary system with N words
- There are N HMMs: $\left(A_{i}, \pi_{i}, C_{i}\right)$
- i denotes a particular state
- Training phase
- Each is trained to represent the parameters for that word
- Testing phase
- Sequence of feature vectors is computed (front end part)
- The likelihood (probability) that this sequence of feature vectors was produced by the $\operatorname{HMM}\left(A_{i}, \pi_{i}, C_{i}\right)$ is computed for each i
- HMM that produces the highest probability selects the recognized word

Issues for HMM

- Training:
- How can the parameters ($\mathbf{A}, \boldsymbol{\pi}, \mathbf{C}$) be estimated based upon observations of the data?
- In other words, how can we train the parameters of the models in the pattern recognition problem?
- Testing
- How can we determine how well the observed data fits the model that has been trained?
- How can we determine the sequence of states of the underlying Markov model?
- I.e. How do we discover the hidden states?

