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SECTION I

1F Linear Algebra
Define what it means for two n × n matrices A and B to be similar. Define the Jordan

normal form of a matrix.

Determine whether the matrices

A =




4 6 −15
1 3 −5
1 2 −4


 , B =




1 −3 3
−2 −6 13
−1 −4 8




are similar, carefully stating any theorem you use.

2E Geometry
Define the Gauss map of a smooth embedded surface. Consider the surface of revolution S

with points 


(2 + cos v) cosu

(2 + cos v) sinu

sin v


 ∈ R3

for u, v ∈ [0, 2π]. Let f be the Gauss map of S. Describe f on the {y = 0} cross-section of S, and
use this to write down an explicit formula for f .

Let U be the upper hemisphere of the 2-sphere S2, and K the Gauss curvature of S.
Calculate

∫
f−1(U)

K dA.

3G Complex Analysis or Complex Methods
Let D be the open disc with centre e2πi/6 and radius 1, and let L be the open lower half

plane. Starting with a suitable Möbius map, find a conformal equivalence (or conformal bijection)
of D ∩ L onto the open unit disc.

4A Quantum Mechanics
Define what it means for an operator Q to be hermitian and briefly explain the significance

of this definition in quantum mechanics.

Define the uncertainty (∆Q)ψ of Q in a state ψ. If P is also a hermitian operator, show by
considering the state (Q+ iλP )ψ, where λ is a real number, that

〈Q2〉ψ 〈P 2〉ψ > 1

4
| 〈i[Q,P ]〉ψ |2 .

Hence deduce that

(∆Q)ψ (∆P )ψ > 1

2
| 〈i[Q,P ]〉ψ | .

Give a physical interpretation of this result.
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5C Numerical Analysis
(a) Find an LU factorisation of the matrix

A =




1 1 0 3
0 2 2 12
0 5 7 32
3 −1 −1 −10


 ,

where the diagonal elements of L are L11 = L44 = 1, L22 = L33 = 2.

(b) Use this factorisation to solve the linear system Ax = b, where

b =




−3
−12
−30
13


 .

6H Statistics
Suppose X1, . . . , Xn are independent with distribution N(µ, 1). Suppose a prior µ ∼

N(θ, τ−2) is placed on the unknown parameter µ for some given deterministic θ ∈ R and τ > 0.
Derive the posterior mean.

Find an expression for the mean squared error of this posterior mean when θ = 0.

7H Optimisation
Solve the following optimisation problem using the simplex algorithm:

maximise x1 + x2

subject to |x1 − 2x2| 6 2,

4x1 + x2 6 4, x1, x2 > 0.

Suppose the constraints above are now replaced by |x1− 2x2| 6 2 + ε1 and 4x1 +x2 6 4 + ε2. Give
an expression for the maximum objective value that is valid for all sufficiently small non-zero ε1
and ε2.
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SECTION II

8F Linear Algebra
Let Mn denote the vector space of n × n matrices over a field F = R or C. What is the

rank r(A) of a matrix A ∈Mn?

Show, stating accurately any preliminary results that you require, that r(A) = n if and only
if A is non-singular, i.e. detA 6= 0.

Does Mn have a basis consisting of non-singular matrices? Justify your answer.

Suppose that an n × n matrix A is non-singular and every entry of A is either 0 or 1. Let
cn be the largest possible number of 1’s in such an A. Show that cn 6 n2 − n + 1. Is this bound
attained? Justify your answer.

[Standard properties of the adjugate matrix can be assumed, if accurately stated.]

9G Groups Rings and Modules
State the structure theorem for a finitely generated module M over a Euclidean domain R

in terms of invariant factors.

Let V be a finite-dimensional vector space over a field F and let α : V → V be a linear map.
Let Vα denote the F [X]-module V with X acting as α. Apply the structure theorem to Vα to show
the existence of a basis of V with respect to which α has the rational canonical form. Prove that
the minimal polynomial and the characteristic polynomial of α can be expressed in terms of the
invariant factors. [Hint: For the characteristic polynomial apply suitable row operations.] Deduce
the Cayley–Hamilton theorem for α.

Now assume that α has matrix (aij) with respect to the basis v1, . . . , vn of V . Let M be
the free F [X]-module of rank n with free basis m1, . . . ,mn and let θ : M → Vα be the unique
homomorphism with θ(mi) = vi for 1 6 i 6 n. Using the fact, which you need not prove, that
ker θ is generated by the elements Xmi −

∑n
j=1 ajimj , 1 6 i 6 n, find the invariant factors of Vα

in the case that V = R3 and α is represented by the real matrix




0 1 0
−4 4 0
−2 1 2




with respect to the standard basis.

10E Analysis and Topology
State what it means for a function f : Rm → Rr to be differentiable at a point x ∈ Rm, and

define its derivative f ′(x).

Let Mn be the vector space of n× n real-valued matrices, and let p :Mn →Mn be given
by p(A) = A3 − 3A− I. Show that p is differentiable at any A ∈Mn, and calculate its derivative.

State the inverse function theorem for a function f . In the case when f(0) = 0 and f ′(0) = I,
prove the existence of a continuous local inverse function in a neighbourhood of 0. [The rest of the
proof of the inverse function theorem is not expected.]

Show that there exists a positive ε such that there is a continuously differentiable function
q : Dε(I) → Mn such that p ◦ q = id|Dε(I). Is it possible to find a continuously differentiable
inverse to p on the whole of Mn? Justify your answer.
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11E Geometry
Let C be the curve in the (x, z)-plane defined by the equation

(x2 − 1)2 + (z2 − 1)2 = 5 .

Sketch C, taking care with inflection points.

Let S be the surface of revolution in R3 given by spinning C about the z-axis. Write down
an equation defining S. Stating any result you use, show that S is a smooth embedded surface.

Let r be the radial coordinate on the (x, y)-plane. Show that the Gauss curvature of S
vanishes when r = 1. Are these the only points at which the Gauss curvature of S vanishes?
Briefly justify your answer.

12G Complex Analysis or Complex Methods
Let `(z) be an analytic branch of log z on a domain D ⊂ C \ {0}. Write down an analytic

branch of z1/2 on D. Show that if ψ1(z) and ψ2(z) are two analytic branches of z1/2 on D, then
either ψ1(z) = ψ2(z) for all z ∈ D or ψ1(z) = −ψ2(z) for all z ∈ D.

Describe the principal value or branch σ1(z) of z1/2 on D1 = C \ {x ∈ R : x 6 0}. Describe
a branch σ2(z) of z1/2 on D2 = C \ {x ∈ R : x > 0}.

Construct an analytic branch ϕ(z) of
√

1− z2 on C\{x ∈ R : −1 6 x 6 1} with ϕ(2i) =
√

5.
[If you choose to use σ1 and σ2 in your construction, then you may assume without proof that they
are analytic.]

Show that for 0 < |z| < 1 we have ϕ(1/z) = −iσ1(1 − z2)/z. Hence find the first three
terms of the Laurent series of ϕ(1/z) about 0.

Set f(z) = ϕ(z)/(1 + z2) for |z| > 1 and g(z) = f(1/z)/z2 for 0 < |z| < 1. Compute the
residue of g at 0 and use it to compute the integral

∫

|z|=2

f(z) dz .
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13D Variational Principles
A motion sensor sits at the origin, in the middle of a field. The probability that you are

detected as you sneak from one point to another along a path x(t) : 0 6 t 6 T is

P [x(t)] = λ

∫ T

0

v(t)

r(t)
dt ,

where λ is a positive constant, r(t) is your distance to the sensor, and v(t) is your speed. (If
P [x(t)] > 1 for some path then you are detected with certainty.)

You start at point (x, y) = (A, 0), where A > 0. Your mission is to reach the point
(x, y) = (B cosα,B sinα), where B > 0. What path should you take to minimise the chance of
detection? Should you tiptoe or should you run?

A new and improved sensor detects you with probability

P̃ [x(t)] = λ

∫ T

0

v(t)2

r(t)
dt .

Show that the optimal path now satisfies the equation

(
dr

dt

)2

= Er − h2

for some constants E and h that you should identify.

14B Methods
Consider the equation

∇2φ = δ(x)g(y) (∗)
on the two-dimensional strip −∞ < x < ∞, 0 6 y 6 a, where δ(x) is the delta function and
g(y) is a smooth function satisfying g(0) = g(a) = 0. φ(x, y) satisfies the boundary conditions
φ(x, 0) = φ(x, a) = 0 and limx→±∞ φ(x, y) = 0. By using solutions of Laplace’s equation for x < 0
and x > 0, matched suitably at x = 0, find the solution of (∗) in terms of Fourier coefficients of
g(y).

Find the solution of (∗) in the limiting case g(y) = δ(y − c), where 0 < c < a, and hence
determine the Green’s function φ(x, y) in the strip, satisfying

∇2φ = δ(x− b)δ(y − c)

and the same boundary conditions as before.
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15A Quantum Mechanics
Consider a quantum system with Hamiltonian H and wavefunction Ψ obeying the time-

dependent Schrödinger equation. Show that if Ψ is a stationary state then 〈Q〉Ψ is independent of
time, if the observable Q is independent of time.

A particle of mass m is confined to the interval 0 6 x 6 a by infinite potential barriers, but
moves freely otherwise. Let Ψ(x, t) be the normalised wavefunction for the particle at time t, with

Ψ(x, 0) = c1ψ1(x) + c2ψ2(x)

where

ψ1(x) =
(2

a

)1/2

sin
πx

a
, ψ2(x) =

(2

a

)1/2

sin
2πx

a

and c1, c2 are complex constants. If the energy of the particle is measured at time t, what are the
possible results, and what is the probability for each result to be obtained? Give brief justifications
of your answers.

Calculate 〈x̂〉Ψ at time t and show that the result oscillates with a frequency ω, to be
determined. Show in addition that

∣∣∣〈x̂〉Ψ −
a

2

∣∣∣ 6 16a

9π2
.
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16D Electromagnetism
Write down the electric potential due to a point charge Q at the origin.

A dipole consists of a charge Q at the origin, and a charge −Q at position −d. Show that,
at large distances, the electric potential due to such a dipole is given by

Φ(x) =
1

4πε0

p · x
|x|3 ,

where p = Qd is the dipole moment. Hence show that the potential energy between two dipoles
p1 and p2, with separation r, where |r| � |d|, is

U =
1

8πε0

(
p1 · p2

r3
− 3(p1 · r)(p2 · r)

r5

)
.

Dipoles are arranged on an infinite chessboard so that they make an angle θ with the
horizontal in an alternating pattern as shown in the figure. Compute the energy between a given
dipole and its four nearest neighbours, and show that this is independent of θ.

θ

θ

θ

θθ

θ

θ θ

θ
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17C Fluid Dynamics
Steady two-dimensional potential flow of an incompressible fluid is confined to the wedge

0 < θ < α, where (r, θ) are polar coordinates centred on the vertex of the wedge and 0 < α < π.

(a) Show that a velocity potential φ of the form

φ(r, θ) = Arγ cos (λθ) ,

where A, γ and λ are positive constants, satisfies the condition of incompressible flow, provided
that γ and λ satisfy a certain relation to be determined.

Assuming that uθ, the θ-component of velocity, does not change sign within the wedge,
determine the values of γ and λ by using the boundary conditions.

(b) Calculate the shape of the streamlines of this flow, labelling them by the distance rmin

of closest approach to the vertex. Sketch the streamlines.

(c) Show that the speed |u| and pressure p are independent of θ. Assuming that at some
radius r = r0 the speed and pressure are u0 and p0, respectively, find the pressure difference in the
flow between the vertex of the wedge and r0.

[Hint: In polar coordinates (r, θ),

∇f =

(
∂f

∂r
,

1

r

∂f

∂θ

)
and ∇ · F =

1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

for a scalar f and a vector F = (Fr, Fθ).]
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18C Numerical Analysis
(a) Given a set of n + 1 distinct real points x0, x1, . . . , xn and real numbers f0, f1, . . . , fn,

show that the interpolating polynomial pn ∈ Pn[x], pn(xi) = fi, can be written in the form

pn(x) =

n∑

k=0

ak

n∏

j=0,j 6=k

x− xj
xk − xj

, x ∈ R ,

where the coefficients ak are to be determined.

(b) Consider the approximation of the integral of a function f ∈ C[a, b] by a finite sum,

∫ b

a

f(x) dx ≈
s−1∑

k=0

wkf(ck) , (1)

where the weights w0, . . . , ws−1 and nodes c0, . . . , cs−1 ∈ [a, b] are independent of f . Derive the
expressions for the weights wk that make the approximation (1) exact for f being any polynomial
of degree s− 1, i.e. f ∈ Ps−1[x].

Show that by choosing c0, . . . , cs−1 to be zeros of the polynomial qs(x) of degree s, one of
a sequence of orthogonal polynomials defined with respect to the scalar product

〈u, v〉 =

∫ b

a

u(x)v(x)dx , (2)

the approximation (1) becomes exact for f ∈ P2s−1[x] (i.e. for all polynomials of degree 2s− 1).

(c) On the interval [a, b] = [−1, 1] the scalar product (2) generates orthogonal polynomials
given by

qn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
, n = 0, 1, 2, . . . .

Find the values of the nodes ck for which the approximation (1) is exact for all polynomials of
degree 7 (i.e. f ∈ P7[x]) but no higher.
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19H Statistics
Let X1, . . . , Xn be i.i.d. U [0, 2θ] random variables, where θ > 0 is unknown.

(a) Derive the maximum likelihood estimator θ̂ of θ.

(b) What is a sufficient statistic? What is a minimal sufficient statistic? Is θ̂ sufficient
for θ? Is it minimal sufficient? Answer the same questions for the sample mean θ̃ :=

∑n
i=1Xi/n.

Briefly justify your answers.

[You may use any result from the course provided it is stated clearly.]

(c) Show that the mean squared errors of θ̂ and θ̃ are respectively

2θ2

(n+ 1)(n+ 2)
and

θ2

3n
.

(d) Show that for each t ∈ R, limn→∞ P(n(1− θ̂/θ) > t) = h(t) for a function h you should
specify. Give, with justification, an approximate 1 − α confidence interval for θ whose expected
length is (

nθ

n+ 1

)(
log(1/α)

n− log(1/α)

)
.

[Hint: limn→∞(1− t
n )n = e−t for all t ∈ R.]

20H Markov Chains
Let (Xn)n>0 be a Markov chain with transition matrix P . What is a stopping time of

(Xn)n>0? What is the strong Markov property?

A porter is trying to apprehend a student who is walking along a long narrow path at
night. Being unaware of the porter, the student’s location Yn at time n > 0 evolves as a simple
symmetric random walk on Z. The porter’s initial location Z0 is 2m units to the right of the
student, so Z0 − Y0 = 2m where m > 1. The future locations Zn+1 of the porter evolve as follows:
The porter moves to the left (so Zn+1 = Zn − 1) with probability q ∈ ( 12 , 1), and to the right with
probability 1 − q whenever Zn − Yn > 2. When Zn − Yn = 2, the porter’s probability of moving
left changes to r ∈ (0, 1), and the probability of moving right is 1− r.

(a) By setting up an appropriate Markov chain, show that for m > 2, the expected time for
the porter to be a distance 2(m− 1) away from the student is 2/(2q − 1).

(b) Show that the expected time for the porter to catch the student, i.e. for their locations
to coincide, is

2

r
+

(
m+

1

r
− 2

) 2

2q − 1
.

[You may use without proof the fact that the time for the porter to catch the student is finite with
probability 1 for any m > 1.]

END OF PAPER
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