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Abstract

This article presents an overview of the recent development on mathematical
treatment of behavioural finance, primarily in the setting of continuous-time
portfolio choice under the cumulative prospect theory. Financial motivations
and mathematical challenges of the problem are highlighted. It is demonstrated
that the solutions to the problem have in turn led to new financial and mathe-
matical problems and machineries.
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1. Introduction

Finance ultimately deals with the interplay between market risks and human
judgement. The history of finance theory over the last 60 years has been char-
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acterised by two revolutions. The first is neoclassical or maximising finance
starting in the 1950s, including mean–variance portfolio selection and expected
utility maximisation, the capital asset pricing model (CAPM), efficient market
theory, and option pricing. The foundation of neoclassical finance is that the
world and its participants are rational “wealth maximisers”; hence finance and
economics, albeit primarily about human activities, can be made as logical and
predictable as natural sciences. The other revolution is behavioural finance,
starting in the 1980s. Its key components are (cumulative) prospect theory,
security–potential/aspiration (SP/A) theory, regret and self-control, heuristics
and biases. The behavioural theories posit that emotion and psychology do
influence our decisions when faced with uncertainties, causing us to behave
in unpredictable, inconsistent, incompetent, and most of all, irrational ways.
Behavioural finance attempts to explain how and why emotions and cognitive
errors influence investors and create stock market anomalies such as bubbles
and crashes. It seeks to explore the consistency and predictability in human
flaws so that such flaws can be understood, avoided or beneficially exploited.

Mathematical and quantitative approaches have played a pivotal rule in
the development of neoclassical finance, and they have led to several ground-
breaking, Nobel-prize-winning works. For instance, Markowitz’s mean–variance
portfolio selection model (Markowitz 1952), which uses probabilistic terms to
quantify the risks as well as quadratic programming to derive the solutions,
is widely regarded as the cornerstone of quantitative finance. Black–Scholes–
Merton’s option pricing theory (Black and Scholes 1973, Merton 1973), which
employs the Itô calculus and partial differential equations as the underlying
mathematical tools, is a fine example of “mathematicalising finance”. On the
other hand, while Daniel Kahneman won a Nobel prize in 2002 for his work on
the prospect theory, behavioural finance is still a relatively new field in which
research has so far been largely limited to be descriptive, experimental, and
empirical. Rigorous mathematical treatment of behavioural finance, especially
that for the continuous-time setting, is very rare in the literature. An impor-
tant reason for this is that behavioural problems bring in highly unconven-
tional and challenging features for which the known mathematical techniques
and machineries almost all fall apart. Therefore, new mathematical theories
and approaches, instead of mere extensions of the existing ones, are called for
in formulating and solving behavioural models.

This article is to give an account of the recent development on mathe-
matical behavioural finance theory, primarily in the realm of continuous-time
behavioural portfolio selection. Study on continuous-time portfolio choice has
so far predominantly centred around expected utility maximisation since the
seminal papers of Merton (1969, 1971). Expected utility theory (EUT), devel-
oped by von Neumann and Morgenstern (1944) based on an axiomatic system, is
premised upon the assumptions that decision makers are rational and risk averse
when facing uncertainty. In the context of financial portfolio choice, its basic
tenets are: investors evaluate wealth according to final asset positions; they are
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uniformly risk averse; and they are able to evaluate probabilities objectively.
These, however, have long been challenged by many observed and repeatable
empirical patterns as well as a number of famous paradoxes and puzzles such
as Allais paradox (Allais 1953), Ellesberg paradox (Ellesberg 1961), Friedman
and Savage puzzle (Friedman and Savage 1948), and the equity premium puzzle
(Mehra and Prescott 1985).

Hence, many alternative preference measures to expected utility have been
proposed, notably Yaari’s dual theory of choice (Yaari 1987) which attempts to
resolve a number of puzzles and paradoxes associated with the expected utility
theory. To illustrate Yaari’s theory, consider first the following expected utility

Eu(X) =

∫ +∞

−∞

u(x)dFX(x) (1)

where X is a random payoff with FX(·) as its cumulative distribution function
(CDF), and u(·) is a utility function. This expression shows that u(·) can be
regarded as a nonlinear “distortion” on payment when evaluating the mean
of X (if u(x) ≡ x, then the expression reduces to the mean). Yaari (1987)
introduces the following criterion

V (X) =

∫ +∞

−∞

w(P (X > x))dx, (2)

where w(·), called the probability distortion (or weighting) function, maps from
[0, 1] onto [0, 1], with w(0) = 0, w(1) = 1. Mathematically, (2) involves the
so-called Choquet integral with respect to the capacity w ◦ P (see Denneberg
1994 for a comprehensive account on Choquet integrals). This criterion can be
rewritten, assuming w(·) is suitably differentiable, as

V (X) =

∫ +∞

−∞

xd[−w(1− FX(x))] =

∫ +∞

−∞

xw′(1− FX(x))dFX(x). (3)

The first identity in (3) suggests that the criterion involves a distortion on
the CDF, in contrast to (1). The second identity reveals the role w(·) plays in
this new risk preference measure. The term w′(1 − FX(x)) puts a weight on
the payment x. If w(·) is convex, the value of w′(p) is greater around p = 1
than around p = 0; so V (X) overweights payoffs close to the low end and
underweights those close to the high end. In other words, the agent is risk
averse. By the same token, the agent is risk seeking when w(·) is concave.
Thus, in Yaari’s theory risk attitude is captured by the nonlinear distortion of
decumulative distribution rather than the utility of payoff.

Probability distortion has been observed in many experiments. Here we
present two (rather simplified) examples. We write a random variable (prospect)
X = (xi, pi; i = 1, 2, · · · ,m) if X = xi with probability pi. We write X � Y
if prospect X is preferred than propsect Y . Then it has been observed that
(£5000, 0.1;£0, 0.9) � (£5, 1) although the two prospects have the same mean.
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One of the explanations is that people usually exaggerate the small probability
associated with a big payoff (so people buy lotteries). On the other hand, it
is usual that (−£5, 1) � (−£5000, 0.1;£0, 0.9), indicating an inflation of the
small probability in respect of a big loss (so people buy insurances).

Other theories developed along this line of involving probability distortions
include Lopes’ SP/A model (Lopes 1987) and, most significantly, Kahneman
and Tversky’s (cumulative) prospect theory (Kahneman and Tversky 1979,
Tversky and Kahneman 1992), both in the paradigm of modern behavioural
decision-making. Cumulative prospect theory (CPT) uses cognitive psycholog-
ical techniques to incorporate anomalies in human behaviour into economic
decision-making. In the context of financial asset allocation, the key elements
of CPT are:

• People evaluate assets on gains and losses (which are defined with respect
to a reference point), instead of on final wealth positions;

• People behave differently on gains and on losses; they are not uniformly
risk averse, and are distinctively more sensitive to losses than to gains
(the latter is a behaviour called loss aversion);

• People overweight small probabilities and underweight large probabilities.

The significance of the reference point and the presence of non-uniform risk
preferences can be demonstrated by the following two experiments.

Experiment 1 You have been given £1000. Now choose between 1A) Win
£1000 with 50% chance and £0 with 50% chance, and 1B) Win £500
with 100% chance.

Experiment 2 You have been given £2000. Now choose between 2A) Lose
£1000 with 50% chance, and £0 with 50% chance, and 2B) Lose £500
with 100% chance.

It turns out that 1B) and 2A) were more popular in Experiments 1 and 2
respectively1. However, if one takes the initial amounts (£1000 and £2000 re-
spectively) into consideration then it is easy to see that 1A) and 2A) are exactly
the same as random variables, and so are 1B) and 2B). The different choices
of references points (£1000 and £2000 in these experiments) have led to com-
pletely opposite decisions. On the other hand, the choice of 2A) in Experiment
2 indicates that in a loss situation, people favours risky prospects (namely they
become risk-seeking), in sharp contrast to a gain situation in Experiment 1.

The loss aversion can be defined as (x, 0.5;−x, 0.5) � (y, 0.5;−y; 0.5) when
y > x > 0 are gains with respect to some reference point. So the marginal utility
of gaining an additional £1 is lower than the marginal disutility of losing an
additional £1.

1The outcomes of these experiments – or their variants – are well documented in the litera-
ture. I have myself conducted them in a good number of conference and seminar presentations,
and the results have been very consistent.
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The aforementioned CPT elements translate respectively into the following
technical features when formulating a CPT portfolio choice model:

• A reference point in wealth that defines gains and losses;
• A value function or utility function, concave for gains and convex for
losses (such a function is called S-shaped), and steeper for losses than for
gains;

• A probability distortion (or weighting) that is a nonlinear transformation
of the probability measure, which inflates a small probability and deflates
a large probability.

There have been burgeoning research interests in incorporating behavioural
theories into portfolio choice; nonetheless these have been hitherto overwhelm-
ingly limited to the single-period setting; see for example Benartzi and Thaler
(1995), Lopes and Oden (1999), Shefrin and Statman (2000), Bassett et al.
(2004), Gomes (2005), and De Giorgi and Post (2008). Most of these works fo-
cus on empirical and numerical studies, and some of them solve the underlying
optimisation problems simply by heuristics. Recently, Bernard and Ghossoub
(2009) and He and Zhou (2009) have carried out analytical treatments on single-
period CPT portfolio choice models and obtained closed-form solutions for a
number of interesting cases.

There has been, however, little analytical treatment on dynamic, especially
continuous-time, asset allocation featuring behavioural criteria. Such a lack of
study on continuous-time behavioural portfolio choice is certainly not because
the problem is uninteresting or unimportant; rather, we believe, it is because
all the main mathematical approaches dealing with the conventional expected
utility maximisation model fail completely. To elaborate, despite the existence
of thousands of papers on the expected utility model, there are essentially only
two approaches involved. One is the stochastic control or dynamic programming
approach, initially proposed by Merton (1969), which transforms the problem
into solving a partial differential equation, the Hamilton-Jacobi-Bellman (HJB)
equation. The other one is the martingale approach. This approach, developed
by Harrison and Kreps (1979) and Harrison and Pliska (1981), employs a mar-
tingale characterisation to turn the dynamic wealth equation into a static bud-
get constraint and then identifies the optimal terminal wealth via solving a
static optimisation problem. If the market is complete, an optimal strategy
is then derived by replicating the established optimal terminal wealth, in the
spirit of perfectly hedging a contingent claim. In an incomplete market with
possible portfolio constraints, the martingale approach is further developed to
include the so-called convex duality machinery; see, e.g., Cvitanić and Karatzas
(1992).

Now, nonlinear probability distortions in behavioural finance abolish virtu-
ally all the nice properties associated with the standard additive probability
and linear expectation. In particular, the time-consistency of the conditional
expectation with respect to a filtration, which is the core of the dynamic pro-
gramming principle, is absent due to the distorted probability. Moreover, in the
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CPT framework, the utility function is non-convex and non-concave, while the
global convexity/concavity is a necessity in traditional optimization. Worse still,
the coupling of these two ill-behaved features greatly amplifies the difficulty of
the problem.

Berkelaar, Kouwenberg and Post (2004) study a CPT mode with a specific
two-piece power utility function. They employ a convexification technique to
tackle the non-convexity of the problem. However, the probability distortion,
which is one of the major ingredients of all the behavioural theories and which
causes a main technical difficulty, is absent in that paper. Jin and Zhou (2008)
develop a new theory in solving systematically continuous-time CPT models,
featuring both S-shaped utility functions and probability distortions. The whole
machinery is very involved; however its essential ideas are clear and intuitive.
It constitutes several steps. First, to handle the S-shaped utility function one
decomposes the problem, by parameterising some key variables, into a gain
part problem and a loss part problem. The gain part problem is a Choquet
maximisation problem involving a concave utility function and a probability
distortion. The difficulty arising from the distortion is overcome by a so-called
quatile formulation which changes the decision variable from the random vari-
able X to its quantile function G(·). This quantile formulation has been used
by several authors, such as Schied (2004, 2005), Dana (2005), Carlier and Dana
(2005), in ad hoc ways to deal with problems with convex/concave probability
distortions. It has recently been further developed by He and Zhou (2010) into
a general paradigm of solving non-expected utility maximisation models. The
loss part problem, on the other hand, is more subtle and difficult to handle
even with the quantile formulation, because it is to minimise a concave func-
tional (thanks, of course, to the original S-shaped utility function). Hence it
is essentially a combinatorial optimisation in an infinite dimension. The prob-
lem is solved by noting that such a problem must have corner-point solutions,
which are step functions in a function space. Once the gain and loss part prob-
lems are solved, their solutions are then appropriately pasted by optimising the
parameters introduced in the first step.

The rest of this article is organised as follows. Section 2 presents the
continuous-time CPT portfolio selection model and the approach to solve the
model. Motivated by the gain part problem of the CPT model, Section 3 dis-
cusses about the quantile formulation that is a powerful tool in dealing with
many non-expected utility models. Section 4 is concerned with the loss part
problem and its solution procedure. Finally, Section 5 concludes.

2. The CPT Model

2.1. Model formulation. Consider a CPT agent with an investment
planning horizon [0, T ] and an initial endowment x0 > 0, both exogenously fixed



Mathematicalising Behavioural Finance 7

throughout this paper, in an arbitrage-free economy2. Let (Ω,F , P, {Ft}t≥0)
be a standard filtered complete probability space representing the underlying
uncertainty, and ρ be the pricing kernel (also known as the stochastic discount
factor in the economics literature), which is an FT -measurable random variable,
so that any FT -measurable and lower bounded contingent claim ξ has a unique
price E[ρξ] at t = 0 (provided that E[ρξ] < +∞). The technical requirements
on ρ throughout are that 0 < ρ < +∞ a.s., 0 < Eρ < +∞, and ρ admits no
atom, i.e. P (ρ = x) = 0 for any x ∈ IR+.

The key underlying assumption in such an economy is that “the price is
linear”. The general existence of a pricing kernel ρ can be derived, say, by
Riesz’s representation theorem under the price linearity in an appropriate
Hilbert space. Hence, our setting is indeed very general. It certainly covers
the continuous-time complete market considered in Jin and Zhou (2008) with
general Itô processes for asset prices, in which case ρ is the usual pricing kernel
having an explicit form involving the market price of risk. It also applies to a
continuous-time incomplete market with a deterministic investment opportu-
nity set, where ρ is the minimal pricing kernel; see, e.g., Föllmer and Kramkov
(1997).

The agent risk preference is dictated by CPT. Specifically, she has a ref-
erence point B at the terminal time T , which is an FT -measurable random
variable with E[ρB] < +∞. The reference point B determines whether a given
terminal wealth position is a gain (excess over B) or a loss (shortfall from B). It
could be interpreted as a liability the agent has to fulfil (e.g. a house downpay-
ment), or an aspiration she strives to achieve (e.g. a target profit aspired by, or
imposed on, a fund manager). The agent utility (value) function is S-shaped:
u(x) = u+(x

+)1x≥0(x)− u−(x
−)1x<0(x), where the superscripts ± denote the

positive and negative parts of a real number, u+, u− are concave functions
on IR+ with u±(0) = 0, reflecting risk-aversion on gains and risk-seeking on
losses. There are also probability distortions on both gains and losses, which
are captured by two nonlinear functions w+, w− from [0, 1] onto [0, 1], with
w±(0) = 0, w±(1) = 1 and w±(p) > p (respectively w±(p) < p) when p is close
to 0 (respectively 1).

The agent preference on a terminal wealth X (which is an FT -random vari-
able) is measured by the prospective functional

V (X −B) := V+((X −B)+)− V−((X −B)−),

where V+(Y ) :=
∫ +∞

0
w+(P (u+(Y ) ≥ y))dy, V−(Y ) :=

∫ +∞

0
w−(P (u−(Y ) ≥

2In our model the agent is a “small investor”; so her preference only affects her own utility
function – and hence her portfolio choice – but not the overall economy. Therefore issues like
“the limit of arbitrage” and “market equilibrium” are beyond the scope of this article.
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y))dy. Thus, the CPT portfolio choice problem is to

Maximise
X

V (X −B)

subject to

{

E[ρX] = x0
X is FT −measurable and lower bounded.

(4)

Here the lower boundedness corresponds to the requirement that the admissible
portfolios be “tame”, i.e., each of the admissible portfolios generates a lower
bounded wealth process, which is standard in the continuous-time portfolio
choice literature (see, e.g., Karatzas and Shreve 1998 for a discussion).

We introduce some notation related to the pricing kernel ρ. Let Fρ(·) be the
cumulative distribution function (CDF) of ρ, and ρ̄ and ρ be respectively the
essential lower and upper bounds of ρ, namely,

ρ̄ ≡ esssup ρ := sup {a ∈ IR : P{ρ > a} > 0} ,
ρ ≡ essinf ρ := inf {a ∈ IR : P{ρ < a} > 0} .

(5)

The following assumption is introduced in Jin and Zhou (2008) in solving
(4).

Assumption 1. u+(·) is strictly increasing, strictly concave and twice dif-
ferentiable, with the Inada conditions u′+(0+) = +∞ and u′+(+∞) =
0, and u−(·) is strictly increasing, and strictly concave at 0. Both w+(·)
and w−(·) are non-decreasing and differentiable. Moreover, F−1

ρ (z)/w′
+(z)

is non-decreasing in z ∈ (0, 1], lim infx→+∞

(

−xu′′
+(x)

u′
+(x)

)

> 0, and

E
[

u+

(

(u′+)
−1( ρ

w′
+(Fρ(ρ))

)
)

w′
+(Fρ(ρ))

]

< +∞.

By and large, the monotonicity of the function F−1
ρ (z)/w′

+(z) can be inter-
preted economically as a requirement that the probability distortion w+(·) on
gains should not be too large in relation to the market (or, loosely speaking,
the agent should not be over-optimistic about huge gains); see Jin and Zhou
(2008), Section 6.2, for a detailed discussion. Other conditions in Assumption
1 are mild and economically motivated.

2.2. Ill-Posedness. In general we say a maximisation problem is well-
posed if its supremium is finite; otherwise it is ill-posed. Well-posedness is more
a modelling issue; an ill-posed model sets incentives in such a way that the
decision-maker could achieve an infinitely favourable value without having to
consider trade-offs.

In classical portfolio selection literature (see, e.g., Karatzas and Shreve 1998)
the utility function is typically assumed to be globally concave along with other
nice properties; thus the problem is guaranteed to be well-posed in most cases3.

3Even with a global concave utility function the underlying problem could still be ill-posed;
see counter-examples and discussions in Jin, Xu and Zhou (2008).
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However, for the CPT model (4) the well-posedness becomes a more significant
issue, and that probability distortions in gains and losses play prominent, yet
somewhat opposite, roles.

Theorem 1. (Jin and Zhou 2008, Theorems 3.1 and 3.2) Problem (4) is ill-
posed under either of the following two conditions:

(i) There exists a nonnegative FT -measurable random variable X such that
E[ρX] < +∞ and V+(X) = +∞.

(ii) u+(+∞) = +∞, ρ̄ = +∞, and w−(x) = x.

Theorem 1-(i) says that the model is ill-posed if one can find a nonnegative
claim having a finite price yet an infinite prospective value. In this case the
agent can purchase such a claim initially (by taking out a loan if necessary)
and reach the infinite value at the end. Here we reproduce Example 3.1 in
Jin and Zhou (2008) for the existence of such a claim in a simple case with
very “nice” parameter specifications. Let ρ be such that Fρ(·) is continuous
and strictly increasing, with Eρ3 < +∞ (e.g., when ρ is lognormal). Take
w+(p) := p1/4 on p ∈ [0, 1/2] and u+(x) := x1/2. Set Z := Fρ(ρ) ∼ U(0, 1) and
define X := Z−1/2 − 1. Then it is an easy exercise to show that E[ρX] < +∞
and V+(X) = +∞. Notice that the culprit of the ill-posedness in this case
is the probability distortion w+(·) which has very large curvatures around 0.
In other words, the agent is excessively optimistic in the sense that she over-
exaggerates the tiny probability of a huge gain, so much so that her resulting
risk-seeking behaviour overrides the risk-averse part of the utility function in
the gain domain. This in turn leads to a problem without trade offs (an ill-posed
one, that is). So the agent is misled by her own “psychological illusion” (her
preference set) to take the most risky exposures.

Theorem 1-(ii) shows that a probability distortion on losses is necessary for
the well-posedness if the market upside potential is unlimited (as implied by
ρ̄ = +∞). In this case, the agent would borrow an enormous amount of money
to purchase a claim with a huge payoff, and then bet the market be “good”
leading to the realization of that payoff. If, for the lack of luck, the market turns
out to be “bad”, then the agent ends up with a loss; however due to the non-
distortion on losses its damage to the prospective value is bounded4. In plain
words, if the agent has no fear in the sense that she does not exaggerate the
small probabilities of huge losses, and the market has an unlimited potential
of going up, then she would be lured by her CPT criterion to take the infinite
risky exposure (again an ill-posed model).

To exclude the ill-posed case identified by Theorem 1-(i), we introduce the
following assumption.

4This argument is no longer valid if the wealth is constrained to be bounded from below.
This is why in Berkelaar et al. (2004) the model is well-posed even though no probability
distortion is considered, as the wealth process there is constrained to be non-negative.
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Assumption 2. V+(X) < +∞ for any nonnegative, FT -measurable random
variable X satisfying E[ρX] < +∞.

2.3. Solutions. The original problem (4) is solved in two steps involving
three sub-problems, which are described in what follows.

Step 1. In this step we consider two problems respectively:

• The Gain Part Problem: A problem with parameters (A, x+):

Maximise
X

V+(X) =
∫ +∞

0
w+(P (u+(X) > y))dy

subject to E[ρX] = x+, X ≥ 0 a.s., X = 0 a.s. on AC ,
(6)

where x+ ≥ (x0 − E[ρB])+ (≥ 0) and A ∈ FT are given. Thanks to
Assumption 2, V+(X) is a finite number for any feasible X. We define
the optimal value of Problem (6), denoted v+(A, x+), in the following
way. If P (A) > 0, in which case the feasible region of (6) is non-empty
[X = (x+1A)/(ρP (A)) is a feasible solution], then v+(A, x+) is defined to
be the supremum of (6). If P (A) = 0 and x+ = 0, then (6) has only one
feasible solution X = 0 a.s. and v+(A, x+) := 0. If P (A) = 0 and x+ > 0,
then (6) has no feasible solution, where we define v+(A, x) := −∞.

• The Loss Part Problem: A problem with parameters (A, x+):

Minimise
X

V−(X) =
∫ +∞

0
w−(P (u−(X) > y))dy

subject to

{

E[ρX] = x+ − x0 + E[ρB], X ≥ 0 a.s., X = 0 a.s. on A,
X is upper bounded a.s.,

(7)

where x+ ≥ (x0 − E[ρB])+ and A ∈ FT are given. Similarly to the gain
part problem we define the optimal value v−(A, x+) of Problem (7) as
follows. When P (A) < 1 in which case the feasible region of (7) is non-
empty, v−(A, x+) is the infimum of (7). If P (A) = 1 and x+ = x0−E[ρB]
where the only feasible solution is X = 0 a.s., then v−(A, x+) := 0. If
P (A) = 1 and x+ 6= x0 − E[ρB], then there is no feasible solution, in
which case we define v−(A, x+) := +∞.

Step 2. In this step we solve

Maximise
(A,x+)

v+(A, x+)− v−(A, x+)

subject to

{

A ∈ FT , x+ ≥ (x0 − E[ρB])+,
x+ = 0 when P (A) = 0, x+ = x0 − E[ρB] when P (A) = 1.

(8)

The interpretations of the gain and loss part problems, as well as the param-
eters (A, x+), are intuitive. If X is any feasible solution to (4), then its deviation
from the reference point B can be decomposed byX−B = (X−B)+−(X−B)−.
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Let A := {X ≥ B}, the event of ending up with gains, and x+ := E[ρ(X−B)+],
the price of the gains, then (X − B)+ and (X − B)− are respectively feasible
solutions to (6) and (7) with the parameters (A, x+).

If Step 1 above is to “divide” – to decompose the original problem into two
sub-problems, then Step 2 is to “conquer” – to combine the solutions of the sub-
problems in the best way so as to solve the original one. Problem (8) is to find
the “best” split between good states and bad states of the world, as well as the
corresponding price of the gains. Mathematically, it is an optimisation problem
with the decision variables being a real number, x+, and a random event, A, the
latter being very hard to handle. However, Jin and Zhou (2008), Theorem 5.1,
shows that one needs only to consider the type of events A = {ρ ≤ c}, where c
is a real number in certain range, when optimising (8). This important result
in turn suggests that the event of having gains is completely characterised by
the pricing kernel and a critical threshold.

With all these preliminaries at hand, we can now state the solution to (4)
in terms of the following two-dimensional mathematical programme with the
decision variables (c, x+), which is intimately related to (but not the same as)
Problem (8):

Maximise
(c,x+)

v(c, x+) = E
[

u+

(

(u′+)
−1

(

λ(c,x+)ρ
w′

+(Fρ(ρ))

))

w′
+(Fρ(ρ))1ρ≤c

]

−u−(
x+−(x0−E[ρB])

E[ρ1ρ>c]
)w−(1− Fρ(c))

subject to

{

ρ ≤ c ≤ ρ̄, x+ ≥ (x0 − E[ρB])+,
x+ = 0 when c = ρ, x+ = x0 − E[ρB] when c = ρ̄,

(9)

where λ(c, x+) satisfies E[(u′+)
−1( λ(c,x+)ρ

w′
+(Fρ(ρ))

)ρ1ρ≤c] = x+, and we use the fol-

lowing convention:

u−

(

x+ − (x0 − E[ρB])

E[ρ1ρ>c]

)

w−(1− Fρ(c)) := 0 when c = ρ̄ and x+ = x0 − E[ρB].

(10)

Theorem 2. (Jin and Zhou 2008, Theorem 4.1) We have the following con-
clusions:

(i) If X∗ is optimal for Problem (4), then c∗ := F−1
ρ (P{X∗ ≥ B}), x∗+ :=

E[ρ(X∗ −B)+], are optimal for Problem (9).

(ii) If (c∗, x∗+) is optimal for Problem (9), then {X∗ ≥ B} and {ρ ≤ c∗} are
identical up to a zero probability event. In this case

X
∗ =

[

(u′+)−1

(

λρ

w′
+(Fρ(ρ))

)

+B

]

1ρ≤c∗ −

[

x∗+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

]

1ρ>c∗

is optimal for Problem (4).
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The explicit form of the optimal terminal wealth profile, X∗, is sufficiently
informative to reveal the key qualitative and quantitative features of the cor-
responding optimal portfolio5. The following summarise the economical inter-
pretations and implications of Theorem 2, including those of c∗ and x∗+:

• The future world at t = T is divided by two classes of states: “good”
ones (having gains) or “bad” ones (having losses). Whether the agent
ends up with a good state is completely determined by ρ ≤ c∗, which in
statistical terms is a simple hypothesis test involving a constant c∗, à la
Neyman–Pearson’s lemma (see, e.g., Lehmann 1986).

• Optimal strategy is a gambling policy, betting on the good states while
accepting a loss on the bad. Specifically, at t = 0 the agent needs to sell

the “loss” lottery,
[

x∗
+−(x0−E[ρB])

E[ρ1ρ>c∗ ]
−B

]

1ρ>c∗ , in order to raise fund to

purchase the “gain” lottery,
[

(u′+)
−1

(

λρ
w′

+(Fρ(ρ))

)

+B
]

1ρ≤c∗ .

• The probability of finally reaching a good state is P (ρ ≤ c∗) ≡ Fρ(c
∗),

which in general depends on the reference point B, since c∗ depends on
B via (9). Equivalently, c∗ is the quantile of the pricing kernel evaluated
at the probability of good states.

• x∗+ is the price of the terminal gains.

• The magnitude of potential losses in the case of a bad state is a constant
x∗
+−(x0−E[ρB])

E[ρ1ρ>c∗ ]
≥ 0, which is endogenously dependent of B.

• x∗+ + E[ρB1ρ≤c∗ ] ≡ E[ρX∗1ρ>c∗ ] is the t = 0 price of the gain lottery.
Hence, if B is set too high such that x0 < x∗+ + E[ρB1ρ≤c∗ ], i.e., the
initial wealth is not sufficient to purchase the gain lottery6, then the
optimal strategy must involve a leverage.

• If x0 < E[ρB], then the optimal c∗ < ρ̄ (otherwise by the constraints of (9)
it must hold that x∗+ = x0−E[ρB] < 0 contradicting the non-negativeness
of x∗+); hence P (ρ > c∗) > 0. This shows that if the reference point is
set too high compared with the initial endowment, then the odds are not
zero that the agent ends up with a bad state.

5The specific optimal trading strategy depends on the underlying economy, in particular
the form of the asset prices. For instance, for a complete continuous-time market, the opti-
mal strategy is the one that replicates X∗ in a Black–Schole way. If the market is incomplete
but with a deterministic investment opportunity set, then ρ involved is the minimal pricing
kernel, and X∗ in Theorem 2-(ii) is automatically a monotone functional of ρ and hence repli-
cable. However, we do not actually need the form of the optimal strategy in our subsequent
discussions.

6It is shown in Jin and Zhou (2009), Theorems 4 and 7, that P (ρ ≤ c∗) converges to a
constant when B goes to infinity, in the case when the utility function is two-piece CRRA
and the pricing kernel is lognormal. So x∗

+
+E[ρB1ρ≤c∗ ] will be sufficiently large when B is

sufficiently large.
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2.4. An example: Two-piece CRRA utility. We now illustrate
the general results of Theorem 2 by a benchmark case where ρ is lognormal,
i.e., log ρ ∼ N(µ, σ2) with σ > 0, and the utility function is two-piece CRRA,
i.e.,

u+(x) = xα, u−(x) = kxα, x ≥ 0

where k > 0 (the loss aversion coefficient) and 0 < α < 1 are constants. In this
case ρ̄ = +∞ and ρ = 0. This setting is general enough to cover, for example, a
continuous-time economy with Itô processes for multiple asset prices (Karatzas
and Shreve 1998, Jin and Zhou 2008) and Kahneman–Tversky’s utility functions
(Tversky and Kahneman 1992) with α = 0.88.

In this case, the crucial mathematical programme (9) has the following more
specific form (see Jin and Zhou 2008, eq. (9.3)):

Maximise
(c,x+)

v(c, x+) = ϕ(c)1−αxα+ −
kw−(1−Fρ(c))
(E[ρ1ρ>c])β

(x+ − x̃0)
α,

subject to

{

0 ≤ c ≤ +∞, x+ ≥ x̃+0 ,
x+ = 0 when c = 0, x+ = x̃0 when c = +∞,

(11)

where x̃0 := x0 − E[ρB] and

ϕ(c) := E

[

(

w′
+(Fρ(ρ))

ρ

)1/(1−α)

ρ1ρ≤c

]

1c>0, 0 ≤ c ≤ +∞.

It turns out that (11) can be solved explicitly.
Introduce the following function:

k(c) :=
kw−(1− Fρ(c))

ϕ(c)1−α(E[ρ1ρ>c])α
> 0, c > 0.

We state the results for two different cases: one when the agent is initially in
the gain domain and the other in the loss domain.

Theorem 3. (Jin and Zhou 2008, Theorem 9.1) Assume that x0 ≥ E[ρB].

(i) If infc>0 k(c) ≥ 1, then the optimal solution to (4) is

X∗ =
x0 − E[ρB]

ϕ(+∞)

(

w′
+(Fρ(ρ))

ρ

)1/(1−α)

+B.

(ii) If infc>0 k(c) < 1, then (4) is ill-posed.

Theorem 4. (Jin and Zhou 2008, Theorem 9.2) Assume that x0 < E[ρB].

(i) If infc>0 k(c) > 1, then (4) is well-posed. Moreover, (4) admits an opti-
mal solution if and only if the following optimisation problem attains an
optimal solution

Min0≤c<+∞

[

(

kw−(1− Fρ(c))

(E[ρ1ρ>c])α

)1/(1−α)

− ϕ(c)

]

. (12)
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Furthermore, if an optimal solution c∗ of (12) satisfies c∗ > 0, then the
optimal solution to (4) is

X∗ =
x∗+
ϕ(c∗)

(

w′
+(Fρ(ρ))

ρ

)1/(1−α)

1ρ≤c∗ −
x∗+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
1ρ>c∗ +B,

(13)

where x∗+ := −(x0−E[ρB])
k(c∗)1/(1−α)−1

. If c∗ = 0 is the only minimiser in (12), then

the unique optimal solution to (4) is X∗ = x0−E[ρB]
Eρ +B.

(ii) If infc>0 k(c) = 1, then the supremum value of (4) is 0, which is however
not achievable.

(iii) If infc>0 k(c) < 1, then (4) is ill-posed.

As seen from the preceding theorems the characterising condition for well-
posedness in both cases is infc>0 k(c) ≥ 1, which is equivalent to

k ≥

(

inf
c>0

w−(1− Fρ(c))

ϕ(c)1−α(E[ρ1ρ>c])α

)−1

:= k0.

Recall that k is the loss aversion level of the agent (k = 2.25 in Tversky and
Kahneman 1992). Thus the agent must be sufficiently loss averse in order to
have a well-posed portfolio choice model.

Another interesting observation is that the optimal portfolios behave fun-
damentally different depending on whether the agent starts with a gain or loss
situation (determined by the initial wealth in relation to the discounted refer-
ence point). If she starts in a gain territory, then the optimal strategy is simply
to spend x0−E[ρB] buying a contingent claim that delivers a payoff in excess of
X, reminiscent of a classical utility maximizing agent (although the allocation
to stocks is “distorted” due to the probability distortion). If the initial situa-
tion is a loss, then the agent needs to get “out of the hole” soonest possible.
As a result, the optimal strategy is a gambling policy which involves raising
additional capital to purchase a claim that delivers a higher payoff in the case
of a good state of the market and incurs a fixed loss in the case of a bad one.
Finally, if x0 = E[ρB], then the agent simply buy the claim B at price x0. If in
particular B is the risk-free payoff, then the optimal portfolio is not to invest
in risky asset at all. Notice that this case underlines a natural psychological
reference point – the risk-free return – for many people. This, nonetheless, does
explain why most households do not invest in equities at all7.

As described by Theorem 4-(i), the solution of (4) relies on some attainabil-
ity condition of a minimisation problem (12), which is rather technical (or, shall
we say, mathematical) without clear economical interpretation. The following

7A similar result is derived in Gomes (2005) for his portfolio selection model with loss
averse investors, albeit in the single-period setting without probability distortions.
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Theorem 5, however, gives a sufficient condition in terms of the probability
distortion on losses.

Theorem 5. (Jin and Zhou 2009, Theorem 3) Assume that x0 < E[ρB],

and infc>0 k(c) > 1. If there exists γ < α such that lim infp↓0
w−(p)
pγ > 0, or

equivalently (by l’Hôpital’s rule), lim infp↓0
w′

−(p)

pγ−1 > 0, then (12) must admit an

optimal solution c∗ > 0 and hence (13) solves (4).

The conditions of Theorem 5 stipulate that the curvatures of the probability
distortion on losses around 0 must be sufficiently significant in relation to her
risk-seeking level (characterised by α). In other words, the agent must have a
strong fear on the event of huge losses, in that she exaggerates its (usually)
small probability, to the extent that it overrides her risk-seeking behavior in
the loss domain.

If, on the other hand, the agent is not sufficiently fearful of big losses, then
the risk-seeking part dominates and the problem is ill-posed, as stipulated in
the following result.

Theorem 6. (Jin and Zhou 2009, Proposition 1) Assume that x0 < E[ρB]. If

there exists γ ≥ α such that lim supp↓0
w−(p)
pγ < +∞, then infc≥0 k(c) = 0 < 1,

and hence Problem (4) is ill-posed.

3. Choquet Maximisation and Beyond: Quantile

Formulation

3.1. The gain part problem. To solve the gain part problem (6),
we may consider a more general maximisation problem involving the Choquet
integral:

Maximise
X

C(X) :=
∫ +∞

0
w(P (u(X) > y))dy

subject to E[ρX] = a, X ≥ 0,
(14)

where a ≥ 0, w(·) : [0, 1] 7→ [0, 1] is a non-decreasing, differentiable function
with w(0) = 0, w(1) = 1, and u(·) is a strictly concave, strictly increasing,
twice differentiable function with u(0) = 0, u′(0) = +∞, u′(+∞) = 0.

Although u(·) in this case is concave (instead of S-shaped), the preference
functional C(X) is still non-concave/non-convex in X, due to the probability
distortion. The technique to overcome this difficulty is what we call the “quan-
tile formulation”, namely to change decision variable of Problem (14) from the
random variable X to its quantile function G(·) (which is an appropriate inverse
function of the CDF of X). This transformation will recover the concavity (in
terms of G(·)) for (14), as will be shown shortly.

The key properties of Problem (14) that make the quantile formulation work
are the law-invariance of the preference functional C(X) (namely C(X) = C(Y )
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if X ∼ Y ) and the monotonicity of its supremium value with respect to the
initial wealth a (as both w(·) and u(·) are increasing functions). The general
logic of the quantile formulation goes like this: since X ∼ GX(Z) for any Z ∼
U(0, 1), where GX is the quantile of X and U(0, 1) is the uniform distribution
on (0, 1), we can replace X by GX(Z) without altering the value of C(X).
Now, since the value of Problem (14) is increasing in the initial price a, the
optimal GX(Z) is necessarily the one that has the cheapest price, namely, one
that makes E[ρGX(Z)] the smallest. There is a beautiful result which states
that E[ρGX(Z)] achieves its minimum (over all possible Z ∼ U(0, 1)) at Zρ :=
1− Fρ(ρ). The precise statement of the result is as follows.

Lemma 1. E[ρGX(Zρ)] ≤ E[ρX] for any lower bounded random variable X
whose quantile is GX(·). Furthermore, if E[ρGX(Zρ)] <∞, then the inequality
becomes equality if and only if X = GX(Zρ), a.s..

This lemma was originally due to Dybvig (1988) where a detailed proof for
a finite discrete probability space was provided. The exact form of the lemma
for general probability spaces needed for the present article was proved, with a
different proof than Dybvig (1988), in Jin and Zhou (2008). The proof is based
upon a lemma (Jin and Zhou 2008, Lemma B.1), which is closely related to the
so-called Hardy–Littlewood’s inequality (Hardy, Littlewood and Pòlya 1952, p.
278) in an integral form.

It follows from Zρ := 1− Fρ(ρ) that ρ = F−1
ρ (1− Zρ). Substituting this to

(14) we can therefore consider the following problem

Maximise
GX(·)

C(GX(Zρ))

subject to E[F−1
ρ (1− Zρ)GX(Zρ)] = a, G(·) ∈ G, G(0+) ≥ 0,

(15)

where G is the set of quantile functions of lower bounded random variables.

It may appear as if (15) were more complicated than (14), but it is actually
not. Recall

C(X) =

∫ +∞

0

u(x)d[−w(1− FX(x))]

=

∫ +∞

0

u(x)w′(1− FX(x))dFX(x)

=

∫ 1

0

u(GX(z))w′(1− z)dz

= E[u(GX(Zρ))w
′(1− Zρ)],

(16)

indicating that C(X), while not concave in X, is indeed concave in GX(·) and
the presence of the distortion w(·) now becomes harmless.
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We can then rewrite Problem (15) as follows

Maximise
G(·)

C̃(G(·)) =
∫ 1

0
u(G(z))w′(1− z)dz

subject to
∫ 1

0
F−1
ρ (1− z)G(z)dz = a, G(·) ∈ G, G(0+) ≥ 0.

(17)

The above problem can be solved rather thoroughly via the Lagrange ap-
proach (see the next subsection). Finally, if G∗(·) solves (17), then we can
recover the optimal terminal wealth X∗ by the following formula

X∗ = G∗(1− Fρ(ρ)). (18)

3.2. General solution scheme for quantile formulation. In-
deed, the law-invariance and monotonicity are inherent and common in many
different continuous-time portfolio choice models, including expected utility
maximisation, mean-variance, goal reaching, Yaari’s dual model, Lopes’ SP/A
model, as well as those explicitly involving VaR and CVaR in preferences and/or
constraints. Thus, like the gain part problem (6), these models all have quan-
tile formulation and can be solved in a similar manner (although there may be
technical subtleties with some of them); see He and Zhou (2010).

Let us consider the following general quantile formulation

Maximise
G(·)

U(G(·)) =
∫ 1

0
u (G(z))ψ(z)dz

subject to
∫ 1

0
F−1
ρ (1− z)G(z)dz = x0, G(·) ∈ G ∩M,

(19)

where ψ(z) ≥ 0 satisfies
∫ 1

0
ψ(z)dz = 1 and M specifies some other constraints

on quantiles.
The solution scheme starts with removing the budget constraint in (19) via

a Lagrange multiplier λ ∈ R and considering the following problem

Maximise
G(·)

Uλ(G(·)) :=
∫ 1

0
u (G(z))ψ(z)dz − λ

(

∫ 1

0
F−1
ρ (1− z)G(z)dz − x0

)

subject to G(·) ∈ G ∩M.

(20)

In solving the above problem one usually ignores the constraint, G(·) ∈
G ∩ M, in the first instance, since in many cases the optimal solution of the
resulting unconstrained problem could be modified to satisfy this constraint
under some reasonable assumptions. For some cases such a modification could
be technically challenging; see for example the SP/A model tackled in He and
Zhou (2008). In other cases the constraint may need to be dealt with separately,
via techniques specific to each problem.

Once (20) is solved with an optimal solution G∗
λ(·), one then finds λ∗ ∈ R

that binds the original budget constraint, namely,

∫ 1

0

F−1
ρ (1− z)G∗

λ∗(z)dz = x0.
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The existence of such λ∗ can usually be obtained by examining the monotonicity

and continuity of f(λ) :=
∫ 1

0
F−1
ρ (1 − z)G∗

λ(z)dz in λ. Moreover, if the strict
monotonicity can be established, then λ∗ is unique.

Finally, G∗(·) := G∗
λ∗(·) can be proved to be the optimal solution to (19).

This is shown in the following way. Let v(x0) and vλ(x0) be respectively the
optimal value of (19) and (20). By their very definitions we have the following
weak duality

v(x0) ≤ inf
λ∈R

vλ(x0) ∀x0 ∈ R.

However,

v(x0) ≤ inf
λ∈R

vλ(x0) ≤ vλ∗(x0) = Uλ∗(G∗(·)) = U(G∗(·)) ≤ v(x0).

This implies that G∗(·) is optimal to (19) (and, therefore, the strong duality
v(x0) = infλ∈R vλ(x0) holds).

The uniqueness of the optimal solution can also be derived from that of
(20). Indeed, suppose we have established the uniqueness of optimal solution to
(20) for λ = λ∗, and λ∗ is such that G∗

λ∗(·) binds the budget constraint. Then
G∗

λ∗(·) is the unique optimal solution to (19). To see this, assume there exists

another optimal solution G̃∗(·) to (19). Then

Uλ∗(G̃∗(·)) ≤ Uλ∗(G∗
λ∗(·)) = v(x0) = U(G̃∗(·)) = Uλ∗(G̃∗(·)).

Hence, by the uniqueness of optimal solution to (20), we conclude G̃∗(·) =
G∗

λ∗(·).

Finally, once (19) has been solved with the optimal solution G∗(·), the cor-
responding optimal terminal cash flow can be recovered by

X∗ = G∗(Zρ) ≡ G∗(1− Fρ(ρ)). (21)

The general expression (21) shows that the optimal terminal wealth is anti-
comonotonic with respect to the pricing kernel. One of its implications is that
the mutual fund theorem holds in any market (complete or incomplete, with
possible conic constraints on portfolios) having a deterministic opportunity
set so long as all the agents follow the general model (19); see He and Zhou
(2010), Theorem 5. Note that such a model covers a very diversified risk–return
preferences including those of the classical utility maximisation, mean-variance
and various behavioural models. Hence, the mutual fund theorem is somewhat
inherent in financial portfolio selection, at least in markets with deterministic
opportunity sets. As a consequence, the same risky portfolio is being held across
neoclassical (rational) and behavioural (irrational) agents in the market. This,
in turn, will shed light on the market equilibrium and capital asset pricing in
markets where rational and irrational agents co-exist.
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3.3. An example: Goal-reaching model. Let us demonstrate the
preceding solution scheme by solving the following goal-reaching model:

Maximise
X

P (X ≥ b)

subject to E[ρX] = x0, X ≥ 0, X is FT -measurable,
(22)

where b > 0 is the goal (level of wealth) intended to be reached by time T . This
is called the goal-reaching problem, which was proposed by Kulldorff (1993),
Heath (1993), and studied extensively (including various extensions) by Browne
(1999, 2000).

First, if x0 ≥ bE[ρ], then a trivial optimal solution isX∗ = b and the optimal
value is 1. Therefore we confine us to the only interesting case 0 < x0 < bE[ρ].
Notice

P (X ≥ b) =

∫ +∞

0

1{x≥b}dFX(x) =

∫ 1

0

1{G(z)≥b}dz,

and X ≥ 0 is equivalent to G(0+) ≥ 0. Hence problem (22) can be formulated
in the following quantile version:

Maximise
G(·)

U(G(·)) =
∫ 1

0
1{G(z)≥b}dz

subject to
∫ 1

0
F−1
ρ (1− z)G(z)dz = x0,

G(·) ∈ G, G(0+) ≥ 0.

(23)

This, certainly, specialises the general model (19) with a non-convex/concave
“utility” function u(x) = 1{x≥b} and ψ(z) ≡ 1.

Introducing the Lagrange multiplier λ > 0 (as will be evident from below in
this case we need only to consider positive multipliers), we have the following
family of problems

Maximise
G(·)

Uλ(G(·)) :=
∫ 1

0

[

1{G(z)≥b} − λF−1
ρ (1− z)G(z)

]

dz + λx0

Subject to G(·) ∈ G, G(0+) ≥ 0.
(24)

Ignore the constraints for now, and consider the pointwise maximisation of the
integrand above in the argument x = G(z): maxx≥0[1{x≥b}−λF

−1
ρ (1−z)x]. Its

optimal value is max{1−λF−1
ρ (1−z)b, 0} attained at x∗ = b1{1−λF−1

ρ (1−z)b≥0}.

Moreover, such an optimal solution is unique whenever 1− λF−1
ρ (1− z)b > 0.

Thus, we define

G∗
λ(z) := b1{1−λF−1

ρ (1−z)b≥0}, 0 < z < 1,

which is nondecreasing in z. Taking the left-continuous modification of G∗
λ(·)

to be the optimal solution of (24), and the optimal solution is unique up to a
null Lebesgue measure.
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Now we are to find λ∗ > 0 binding the budget constraint so as to conclude
that G∗

λ∗(·) is the optimal solution to (23). To this end, let

f(λ) : =

∫ 1

0

F−1
ρ (1− z)G∗

λ(z)dz

= b

∫ 1

0

F−1
ρ (1− z)1{F−1

ρ (1−z)≤1/(λb)}dz

= b

∫ +∞

0

x1{x≤1/(λb)}dFρ(x)

= bE
[

ρ1{ρ≤1/(λb)}

]

, λ > 0.

It is easy to see that f(·) is nonincreasing, continuous on (0,+∞), with
limλ↓0 f(λ) = bE[ρ] and limλ↑+∞ f(λ) = 0. Therefore, for any 0 < x0 < bE[ρ],
there exists λ∗ > 0 such that f(λ∗) = x0 or the budget constraint holds. As
per discussed in the general solution scheme the corresponding G∗

λ∗(·) solves
(23) and the terminal payment X∗ = G∗

λ∗(1 − Fρ(ρ)) = b1{ρ≤c∗}, where
c∗ ≡ (λ∗b)−1 is such that the initial budget constraint binds, solves the original
problem (22). Finally, the optimal solution is unique and the optimal value is
P (X∗ ≥ b) = P (ρ ≤ c∗) = Fρ(c

∗).
To summarise, we have

Theorem 7. (He and Zhou 2010, Theorem 1) Assume that 0 < x0 < bE[ρ].
Then the unique solution to the goal-reaching problem (22) is X∗ = b1{ρ≤c∗}

where c∗ > 0 is the one such that E[ρX∗] = x0. The optimal value is Fρ(c
∗).

The solution above certainly reduces to that of Browne (1999) when the
investment opportunity set is deterministic. However, the approach in Browne
(1999) is rather ad hoc, in that a value function of the problem is conjectured and
then verified to be the solution of the HJB equation. In contrast, the quantile
approach derives the solution (without having to know its form a priori). Thus
it can be easily adapted to more general settings. Indeed, the HJB equation
fails to work with a stochastic investment opportunity set, which however can
be treated by the quantile formulation at ease.

The quantile-based optimisation is proposed by Schied (2004, 2005) to solve
a class of convex, robust portfolio selection problems, and employed by Dana
(2005) and Carlier and Dana (2006) to study calculus of variations problems
with law-invariant concave criteria. The results presented here are mainly taken
from He and Zhou (2010) where the quantile approach is systematically de-
veloped into a general paradigm in solving non-expected, non-convex/concave
utility maximization models, including both neoclassical and behavioural ones.
The technique has been further applied to solve a continuous-time version of the
SP/A model (He and Zhou 2008), a general risk-return model where the risk is
quantified by a coherent risk measure (He, Jin and Zhou 2009) and an optimal
stopping problem involving probability distortions (Xu and Zhou 2009).
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4. Choquet Minimization: Combinatorial

Optimisation in Function Spaces

The loss part problem (7) is a special case of the following general Choquet
minimisation problem:

Minimise
X

C(X) :=
∫ +∞

0
w(P (u(X) > y))dy

subject to E[ρX] = a, X ≥ 0,
(25)

where a ≥ 0, w(·) : [0, 1] 7→ [0, 1] is a non-decreasing, differentiable function
with w(0) = 0, w(1) = 1, and u(·) is strictly increasing, concave, strictly
concave at 0, with u(0) = 0.

A quantile formulation transforms (25) into

Minimise
G(·)

C̃(G(·)) =
∫ 1

0
u(G(z))w′(1− z)dz

subject to
∫ 1

0
F−1
ρ (z)G(z)dz = a, G(·) ∈ G, G(0+) ≥ 0.

(26)

Compared with (17), a critically different feature of (26) is that a concave
functional is to be minimised. This, of course, originates from the S-shaped
utility function in the CPT portfolio selection problem. The solution of (26)
must have a very different structure compared with that of (17), which in turn
requires a completely different technique (different from the Lagrange approach)
to obtain. Specifically, the solution should be a “corner point solution”; in other
words, the problem is essentially a combinatorial optimisation in an infinite
dimensional space, which is a generally very challenging problem even in a
finite dimension.

The question now is how to characterise a corner point solution in the
present setting. A bit of reflection reveals that such a solution must be a step
function, which is made precise in the following result.

Proposition 1. (Jin and Zhou 2008, Propositions D.1 and D.2) The optimal
solution to (26), if it exists, must be in the form G∗(z) = q(b)1(b,1)(z), z ∈ [0, 1),
with some b ∈ [0, 1) and q(b) := a

E[ρ1{Fρ(ρ)>b}]
. Moreover, in this case, the

optimal solution to (25) is X∗ = G∗(Fρ(ρ)).

Since G(·) in Proposition 1 is uniformly bounded in z ∈ [0, 1), it follows
that any optimal solution X∗ to (25) must be uniformly bounded from above.

Proposition 1 suggests that we only need to find an optimal number b ∈ [0, 1)
so as to solve Problem (26), which motivates the introduction of the following
problem

Minimise
b

f(b) :=
∫ 1

0
u(G(z))w′(1− z)dz

subject to G(·) = a
E[ρ1{Fρ(ρ)>b}]

1(b,1](·), 0 ≤ b < 1.
(27)

Problem (25) is then solved completely via the following result.
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Theorem 8. (Jin and Zhou 2008, Theorem D.1) Problem (25) admits an op-
timal solution if and only if the following problem

min
0≤c<ρ̄

u

(

a

E[ρ1{ρ>c}]

)

w(P (ρ > c))

admits an optimal solution c∗, in which case the optimal solution to (25) is
X∗ = a

E[ρ1{ρ>c∗}]
1ρ>c∗ .

5. Concluding Remarks

A referee who reviewed one of our mathematical behavioural finance papers
questioned, ‘There is a fundamental inconsistency underlying the problem being
considered in this paper. The CPT is a theory that explains how investors are
“irrational” - by over emphasising losses over gains, and by under emphasising
very high and very low probabilities. In this paper the authors propose that the
investor rationally account for their irrationalities (implicit in the CPT value
function). How is this justified?’

A very good question indeed. Here is our response to the question.
‘Although irrationality is the central theme in behavioural finance, irrational

behaviours are by no means random or arbitrary. As pointed out by Dan Ariely,
a behavioural economist, in his best-seller Predictably Irrational (Ariely 2008),
“misguided behaviors ... are systamtic and predictable – making us predictably
irrational”. People working in behavioural finance have come up with various
particular CPT values functions and probability weighting functions to exam-
ine and investigate the consistency, predictability, and rationality behind what
appear as inconsistent, unpredictable and irrational human behaviours. These
functions are dramatically different from those in a neoclassical model so as
to systematically capture certain aspects of irrationalities such as risk-seeking,
and hope and fear (reflected by the probability distortions). Tversky and Kah-
neman (1992) themselves state “a parametric specification for CPT is needed
to provide a ‘parsimonious’ description of the the data”. As in many other be-
havioural finance papers, here we use CPT and specific value functions as the
carrier for exploring the “predictable irrationalities”.’

To explore the consistent inconsistencies and the predictable unpredictabili-
ties – it is the principal reason why one needs to research on “mathematicalising
behavioural finance”. The research is still in its infancy, but the potential is un-
limited – or so we believe.
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