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1
Graphs: basic concepts

1.1 Types of graphs. Subgraphs. Operations with graphs.

The following are some important families of graphs that we will use often. Let n be a positive

integer and V = {x1, x2, . . . , xn}.

The null graph of order n, denoted by Nn, is the graph of order n and size 0. The graph

N1 is called the trivial graph.

The complete graph of order n, denoted by Kn, is the graph of order n that has all possible

edges. We observe that K1 is a trivial graph too.

The path graph of order n, denoted by Pn = (V,E), is the graph that has as a set of edges

E = {x1x2, x2x3, . . . , xn−1xn}.

The cycle graph of order n ≥ 3, denoted by Cn = (V,E), is the graph that has as a set of

edges E = {x1x2, x2x3, . . . , xn−1xn, xnx1}.

The wheel graph of order n ≥ 4, denoted by Wn = (V,E), is the graph that has as a set

of edges E = {x1x2, x2x3, . . . , xn−1x1} ∪ {xnx1, xnx2, . . . , xnxn−1}.

Let r and s be positive integers.

A graph is r-regular if all vertices have degree r.

A graph G = (V,E) is bipartite if there are two non-empty subsets V1 and V2 such that

V = V1 ∪ V2, V1 ∩ V2 = ∅ and, for every edge uv ∈ E, we have u ∈ V1 and v ∈ V2, or

vice versa. That is, there are no edges uv with u, v ∈ V1 or u, v ∈ V2. The sets V1 and V2

are called the stable parts of G. If every vertex from V1 is adjacent to every vertex of V2,

we say that the graph is complete bipartite and we denote it by Kr,s, where |V1| = r and

|V2| = s. The graph K1,s is called a star graph.
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Subgraphs

Let G = (V,E) be a graph.

The graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊂ E. If V ′ = V , it is called

a spanning subgraph of G.

Let S ⊆ V , S 6= ∅. The graph G[S] = (S,E′) with E′ = {uv ∈ E : u, v ∈ S} is called the

subgraph induced (or spanned) by the set of vertices S .

Graphs derived from a graph

Consider a graph G = (V,E).

The complement of G, denoted by Gc, is the graph with set of vertices V and set of edges

Ec = {uv|uv 6∈ E}. A graph isomorphic to its complement is called self-complementary.

Let S ⊂ V . The graph obtained by deleting the vertices from S, denoted by G−S, is the

graph having as vertices those of V \ S and as edges those of G that are not incident to

any vertex from S. In the case that S = {v}, we denote it G− v.

Let S ⊂ E. The graph obtained by deleting the edges from S, denoted by G − S, is the

graph obtained from G by removing all the edges from S. That is, G−S = (V,E \S). If

S = {e}, we write G− e.

Let u, v be vertices from G that are not adjacent. The graph obtained by adding the edge

uv is the graph G + uv = (V,E ∪ {uv}).

Operations with graphs

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2).

The union of G1 and G2, denoted by G1 ∪ G2, is the graph that has as set of vertices

V1 ∪ V2 and as set of edges E1 ∪ E2.

The product of G1 and G2, denoted by G1 × G2, is the graph that has as set of vertices

V1 × V2 and whose adjacencies are given by

(u1, u2) ∼ (v1, v2)⇔ (u1v1 ∈ E1 and u2 = v2) or (u1 = v1 and u2v2 ∈ E2).
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1.2 Exercises

1.1 For each of the graphs Nn, Kn, Pn, Cn and Wn, give:

1) a drawing for n = 4 and n = 6;

2) the adjacency matrix for n = 5;

3) the order, the size, the maximum degree and the minimum degree in terms of n.

1.2 For each of the following statements, find a graph with the required property, and give

its adjacency list and a drawing.

1) A 3-regular graph of order at least 5.

2) A bipartite graph of order 6.

3) A complete bipartite graph of order 7.

4) A star graph of order 7.

1.3 Find out whether the complete graph, the path and the cycle of order n ≥ 1 are bipartite

and/or regular.

1.4 Give the size:

1) of an r-regular graph of order n;

2) of the complete bipartite graph Kr,s.

1.5 Let V = {a, b, c, d, e, f}, E = {ab, af, ad, be, de, ef} and G = (V,E). Determine all the

subgraphs of G of order 4 and size 4.

1.6 The following five items refer to the graph G defined as follows. The set of vertices

is V = {0, 1, 2, 3, 4, 5, 6, 7, 8}, and two vertices u and v are adjacent if |u − v| ∈ {1, 4, 5, 8}.
Determine the order and the size of the following subgraphs of G:

1) The subgraph induced by even vertices.

2) The subgraph induced by odd vertices.

3) The subgraph induced by the set {0, 1, 2, 3, 4}.

4) A spanning subgraph with as many edges as possible but without cycles.

1.7 Consider the graph G = (V,E) with V = {1, 2, 3, 4, 5} and E = {12, 13, 23, 24, 34, 45}.
Give the set of edges, the incidence and adjacency matrices, and a drawing of the graphs Gc,

G− 4, G− 45 and G + 25.
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1.8 Consider a graph G = (V,E) of order n and size m. Let v be a vertex and e an edge of

G. Give the order and the size of Gc, G− v and G− e.

1.9 Find out whether the complement of a regular graph is regular, and whether the comple-

ment of a bipartite graph is bipartite. If so, prove it; if not, give a counterexample.

1.10 Give the set of edges and a drawing of the graphs K3 ∪ P3 and K3 × P3, assuming that

the sets of vertices of K3 and P3 are disjoint.

1.11 Consider the graphs G1 = (V1, E1) and G2 = (V2, E2). Give the order, the degree of the

vertices and the size of G1 ×G2 in terms of those of G1 and G2.

1.12 Prove or disprove the following statements:

1) If G1 and G2 are regular graphs, then G1 ×G2 is regular.

2) If G1 and G2 are bipartite graphs, then G1 ×G2 is bipartite.

1.13 Draw all the graphs that have V = {a, b, c} as set of vertices.

1.14 Consider graphs whose set of vertices is [7] = {1, 2, 3, 4, 5, 6, 7}. Compute how many of

them are there . . .

1) . . . with exactly 20 edges.

2) . . . with exactly 16 edges.

3) . . . in total.

1.15 For each of the following sequences, find out if there is any graph of order 5 such that

the degrees of its vertices are given by that sequence. If so, give an example.

1) 3, 3, 2, 2, 2.

2) 4, 4, 3, 2, 1.

3) 4, 3, 3, 2, 2.

4) 3, 3, 3, 2, 2.

5) 3, 3, 3, 3, 2.

6) 5, 3, 2, 2, 2.

1.16 Prove that if a graph is regular of odd degree, then it has even order.

1.17 Let G be a bipartite graph of order n and regular of degree d ≥ 1. Which is the size of

G? Could it be that the order of G is odd?

1.18 Prove that the size of a bipartite graph of order n is at most n2/4.

1.19 Let G be a graph with order 9 so that the degree of each vertex is either 5 or 6. Prove

that there are either at least 5 vertices of degree 6 or at least 6 vertices of degree 5.
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1.20 Alex and Leo are a couple, and they organize a party together with 4 other couples.

There are a number of greetings but, naturally, nobody says hello to their own partner. At the

end of the party Alex asks everyone how many people did they greet, receiving nine different

answers. How many people did Alex greet and how many people did Leo greet?

Hint: Describe a graph that models the situation. Find out how many people did each member

of a couple greet.

1.21 Determine, up to isomorphism, all the graphs of order four and size two.

1.22 Let V = {a, b, c, d} and E = {ab, ac, ad, dc}. Determine, up to isomorphism, all the

subgraphs of the graph G = (V,E).

1.23 Classify by isomorphism type the graphs of Figure 1.1.

Figure 1.1:

1 G2 G3
G4

G5
G6 G7

G9G8 G10

G11
G12 G13

G

1.24 Let G = (V,E) and H = (W,B) be two graphs. Prove that G and H are isomorphic if,

and only if, Gc and Hc are isomorphic.

1.25 Determine up to isomorphism the number of graphs of order 20 and size 188.
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1.26 A graph is self-complementary if it is isomorphic to its complement. Prove that there

are no self-complementary graphs of order 3, but there are such graphs of order 4 and 5.

1.27 A graph is self-complementary if it is isomorphic to its complement.

1) How many edges does a self-complementary graph of order n have?

2) Prove that if n is the order of a self-complementary graph, then n is congruent with 0 or

with 1 modulo 4.

3) Check that for n = 4k with k ≥ 1, the following construction yields a self-complementary

graph of order n: let us take V = V1 ∪V2 ∪V3 ∪V4, where each Vi contains k vertices; the

vertices of V1 and V2 induce complete graphs; also, we have all edges between V1 and V3,

between V3 and V4, and between V4 and V2.

4) How could we modify the previous construction to build a self-complementary graph of

order 4k + 1?

1.28 Let G be a graph of order n ≥ 6.

1) Show that either G or Gc has a vertex v of degree at least 3.

2) Prove that G or Gc contains a cycle of length 3. (Consider the adjacencies between the

neighbours of vertex v above.)

3) Prove that at a meeting of at least 6 people, there are always 3 that mutually know each

other, or 3 that mutually do not know each other.
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Walks, connectivity and distance

2.1 In each of the following graphs, find paths of length 9 and 11, and cycles of length 5, 6,

8 and 9, if possible.

1

2

3

45

1
6

910

11

8

7

1

2

3

45

6

910

8

7

G
2

G

2.2 Prove that if G is a graph of minimum degree d, then G contains a path of length d.

2.3 A graph has order 13 and 3 connected components. Prove that one of the components

has at least 5 vertices.

2.4 Use the algorithm DFS to find out whether the following graphs, given by their adjacency

lists, are connected, and otherwise determine their connected components. Consider that the

set of vertices is alphabetically ordered.

1)

a b c d e f g h i j

d d h a a a b c b b

e g b d d i g g

f i e j

j f

2)

a b c d e f g h i j k l m

b a f b b c b b c a c g

j d i h g e d k b i

e k m

g

h

j
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2.5 Prove that if a graph has exactly two vertices of odd degree, then there is a path from

one of them to the other.

2.6 Let G be a graph of order n that has exactly two connected components, both of them

being complete graphs. Prove that the size of G is at least (n2 − 2n)/4.

2.7 Let G be a graph of order n with exactly k connected components. Prove that the size

of G is larger than or equal to n− k.

2.8 Let G be a graph of order n with exactly k+1 connected components. In this exercise we

want to find an upper bound for the size of G. Toward this end, we define an auxiliary graph

H of order n that has k + 1 connected components: k components are isomorphic to K1 and

one component is isomorphic to Kn−k.

1) Compute the size of H.

2) Prove that the size of H is larger than or equal to the size of G.

2.9 Prove that a 3-regular graph has a cut vertex if, and only if, it has some bridge.

2.10 Find the smallest n for which there is a 3-regular graph of order n that has a bridge.

2.11 Let G = (V,E) be a connected graph of order at least 2. Take z 6∈ V and define G + z

as the graph that has V ∪ {z} as set of vertices and E ∪ {zv : v ∈ V } as set of edges. Prove

that G + z is 2-connected.

2.12 Let G = (V,E) be a graph and v a vertex of G. Prove:

1) if G is not connected, then Gc is connected;

2) (G− v)c = Gc − v;

3) if G is connected and v is a cut vertex of G, then v is not a cut vertex of Gc.

2.13 Find out whether any of the following graphs is 2-connected.

8

3

1

5

6

4

1

2

3

GGG
1 2

21 3

4

5

6

7

2

3

4

5

6

7

2.14 Let us consider the graphs from exercise 2.4. Using the algorithm BFS, find the distance

from the vertices a and b to each of the other vertices of the connected component to which

they belong.
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2.15 Find the diameter of the following graphs.

1) Kn.

2) Graphs of exercise 2.1.

3) Kr,s.

4) Cn.

5) Wn.

6) Pn.

2.16 For each of the following statements, give a connected graph G = (V,E) and a vertex

u ∈ V that satisfies it.

1) D(G) = D(G− u). 2) D(G) < D(G− u). 3) D(G) > D(G− u).

Note: D(G) is the diameter of G.

2.17 Let G = (V,E) be a connected graph and v ∈ V . Let us introduce the following concepts:

I The eccentricity of the vertex v, e(v), is the maximum of the distances from v to any other

vertex of the graph, that is, e(v) = max{d(v, x) : x ∈ V }.

I The radius of G, r(G), is the minimum of the eccentricities of the vertices of G, that is,

r(G) = min{e(v) : v ∈ V }.

I A central vertex of G is a vertex u such that e(u) = r(G).

Answer the following questions.

1) Find the eccentricities, the radius and the central vertices of: a) the graphs from exercise

2.1; b) G = ([8], {12, 14, 15, 23, 34, 38, 46, 47, 56, 67, 78}).

2) Give an example of a graph with the same radius and diameter.

3) Give an example of a graph whose diameter is twice its radius.

4) Prove that, for each graph G, r(G) ≤ D(G) ≤ 2r(G), where D(G) is the diameter of G.

2.18 Let G be a graph of order 1001 so that each vertex has degree ≥ 500. Prove that G has

diameter ≤ 2.



3
Eulerian and Hamiltonian graphs

3.1 For each of the following graphs, either find an Eulerian circuit or prove that there is not

one.

G1 G2 G3 G4

G5

G7
G6 G8 G9

G10

3.2 Find out if the following figures can be drawn without lifting the pencil from the paper

and without repeating any line.

3.3 Determine the minimum number of times that one needs to lift the pencil from the paper

to draw each of the figures below without repeating any line.

2)1)



11

3.4 Find out for which values of r and s the complete bipartite graph Kr,s is Eulerian.

3.5 Let G be a graph with exactly two connected components, both being Eulerian. Which

is the minimum number of edges that need to be added to G to obtain an Eulerian graph?

3.6 Prove that a connected graph in which each vertex has even degree is bridgeless.

3.7 Find out if it is possible to put all the pieces of a domino set in a row so that the when

two pieces are adjacent the values of the touching sides match, and moreover that the values

at either end of the row also agree. If it is possible, give an explicit solution.

3.8 The n-cube is the graph Qn with set of vertices {0, 1}n and where two vertices (x1, x2, . . . , xn),

(y1, y2, . . . , yn) are adjacent if they differ exactly in one coordinate.

1) Draw Qi for 1 ≤ i ≤ 4.

2) Determine the order, the size and the degree sequence of Qn.

3) Find for which values of n the graph Qn is Eulerian.

3.9 For each of the graphs from exercise 3.1, either find a Hamiltonian cycle or prove that

there is none.

3.10 Prove that if a bipartite graph is Hamiltonian, then the stable parts have the same

cardinal.

3.11 Prove that a bipartite graph Kr,s of order ≥ 3 is Hamiltonian if, and only if, r = s.

3.12 Let G be a graph that has exactly two connected components, both of them Hamiltonian

graphs. Find the minimum number of edges that one needs to add to G to obtain a Hamiltonian

graph.

3.13 Let G be a Hamiltonian graph that is not a cycle. Prove that G has at least 2 vertices

of degree ≥ 3.

3.14 Cameron and Robin have rented an apartment together. They throw a dinner party

where 10 other friends are invited. In the group of 12 people, each of them knows at least 6

other people. Prove that they can seat at a round table in such a way that everyone knows the

two people sitting next to them.

At the last minute another person arrives, who also knows at least 6 of the people present. Can

you ensure now that they can still sit at the table following the previous condition?

3.15 Let G be a d-regular graph of order ≥ 2d + 2, for d ≥ 1. Prove that the complement of

G is Hamiltonian.

3.16 Let G be a graph of order n ≥ 2 such that each vertex has degree ≥ (n − 1)/2. Prove

that G has a Hamiltonian path.
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Trees

4.1 For each integer n ≥ 1, let an be the number of non-isomorphic trees of order n. Check

the values in the following table:

n 1 2 3 4 5 6 7

an 1 1 1 2 3 6 11

4.2 Prove that a tree of order n ≥ 2 is a bipartite graph.

4.3 Let T1 be a tree of order n and size 17, and let T2 be a tree of order 2n. Find n and the

order and the size of T2.

4.4 Find how many trees of order n there are with. . .

1) . . . maximum degree n− 2.

2) . . . maximum degree n− 3.

4.5 Let T be a tree of order 12 that has exactly 3 vertices of degree 3 and exactly one vertex

of degree 2.

1) Find the degree sequence of T .

2) Find two non-isomorphic trees with this degree sequence.

4.6 Find a connected graph that is not a tree but in which every vertex of degree ≥ 2 is a cut

vertex.

4.7

1) Let T be a tree of order n ≥ 2. Prove that the number of leaves of T is

2 +
∑

d(u)≥3

(d(u)− 2).
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2) Let ∆ be the maximum degree of T and let ni be the number of vertices of degree i of T .

Check that the previous formula can be written as

n1 = 2 +

∆∑
i=2

(i− 2)ni.

3) Let G be now a connected graph of maximum degree ∆ and with ni vertices of degree i,

for every i. Prove that the equality

n1 = 2 +

∆∑
i=2

(i− 2)ni,

implies that G is a tree.

4.8 Let G be a connected graph where each vertex has degree either 1 or 4. Let k be the

number of vertices of degree 4. Prove that G is a tree if, and only if, the number of vertices of

degree 1 is 2k + 2.

4.9 Let T be a tree of order n ≥ 2 and maximum degree ∆. Prove that T has at least ∆

leaves.

4.10 Let T be a tree of order n ≥ 3. Prove that the following statements are equivalent:

a) T is isomorphic to the star K1,n−1.

b) T has exactly n− 1 leaves.

c) T has maximum degree n− 1.

d) T has diameter equal to 2.

4.11 Let G be a graph of order n and size m. Prove that the following statements are

equivalent:

a) The graph G is connected and has only one cycle.

b) There is an edge e of G such that G− e is a tree.

c) The graph G is connected and n = m.

4.12 Compute the number of spanning trees of the cycle graph Cn and of the complete

bipartite graph K2,r.

4.13 Give two non-isomorphic graphs of order n ≥ 4 that have the following property: when

we apply the algorithm BFS with initial vertex v, we obtain a star graph K1,n−1 in which v is

a leaf. Point out which is vertex v in each of the two graphs.
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4.14 We apply the algorithm DFS to the complete graph Kr,r+3. How many non-isomorphic

trees can we obtain, depending on the initial vertex?

4.15 Show that if T is a spanning tree of G, then the leaves of T are not cut vertices of G.

Deduce that a connected graph of order ≥ 2 has at least two vertices that are not cut vertices.

4.16 Find the Prüfer sequences of the following trees:

T1 = ([6], {12, 13, 14, 15, 56}).
T2 = ([8], {12, 13, 14, 18, 25, 26, 27}).
T3 = ([11], {12, 13, 24, 25, 36, 37, 48, 49, 5 10, 5 11}).

4.17 Find the trees that have the following Prüfer sequences:

1) (4,4,3,1,1), 2) (6,5,6,5,1), 3) (1,8,1,5,2,5), 4) (4,5,7,2,1,1,6,6,7).

4.18 Determine the trees whose Prüfer sequences have length 1.

4.19 Determine the trees whose Prüfer sequences are constant.



Review exercises

A.1 Find the adjacency matrix and the incidence matrix of the graph G = (V,E) where

V = {a, b, c, d, e} and E = {ab, ac, bc, bd, cd, ce, de}.

A.2 Give the adjacency list and a drawing of the graph G = ([5], E) whose adjacency matrix

is 
0 1 0 1 0

1 0 0 0 1

0 0 0 1 0

1 0 1 0 1

0 1 0 1 0

 .

A.3 Prove that if the order of a graph is a multiple of 4 and the size is odd, then the graph

is not regular.

A.4 Prove that if a graph G has minimum degree 1, maximum degree k and order n > 2k,

then G has at least 3 vertices with the same degree.

A.5 Let G be a graph of order ≥ 7 such that each vertex has degree > 5. Prove that G has

size ≥ 21.

A.6 Let n ≥ 3 and 0 ≤ k ≤ n be integers, and consider the complete graph Kn with [n] as

set of vertices.

1) Compute the size of the subgraph induced by [k].

2) Compute how many edges have an end in [k] and the other in [n] \ [k].

3) Compute the size of the subgraph induced by [n] \ [k].

4) Using the previous results, prove that(
n

2

)
=

(
k

2

)
+ k(n− k) +

(
n− k

2

)
.

A.7 Find, up to isomorphism, all 4-regular graphs of order 7.
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A.8 Let G be a self-complementary graph of order n, for n ≡ 1 (mod 4). Prove that there

is an odd number of vertices of degree (n − 1)/2 and, therefore, that G contains at least one

vertex of degree (n− 1)/2.

A.9 Consider the graph G = (V,E) where V = {1, 2, . . . , 15} and two vertices i, j are adjacent

if, and only if, their greatest common divisor is different than 1. Give the number of connected

components of G and a path of maximum length.

A.10 Let G be a graph of order n and size m that does not have any cycle of length 3.

1) Prove that if u and v are adjacent vertices of G, then d(u) + d(v) ≤ n.

2) Prove that if n = 2k, then m ≤ k2. Hint: Induction on k ≥ 1.

A.11 Prove that in a connected graph two paths of maximum length have at least one vertex

in common, but not necessarily an edge in common.

Hint: Assume that two paths of maximum length do not have any vertex in common and see

if you can construct a path longer than the starting two.

A.12 Let G be a connected bipartite graph of order n ≥ 3 and d-regular. Prove that G is

bridgeless.

A.13 Let G be a non-bipartite connected graph. Prove that between any two vertices of G

there is a walk of odd length and a walk of even length.

Hint: the characterization of bipartite graphs can be useful.

A.14 Prove that if a graph is regular with even order and odd size, then it is not Eulerian.

A.15 Let G be a graph of odd order such that G and Gc are connected. Prove that G is

Eulerian if, and only if, Gc is Eulerian.

A.16 In each of the following cases, find out if it is possible to draw a closed continuous line

that crosses exactly once each interior segment of the rectangle.

2)1)

A.17 Let G be a bipartite graph that has a Hamiltonian path and let V1 and V2 be the stable

parts. Prove that
∣∣|V1| − |V2|

∣∣ ≤ 1.

A.18 Prove that if n ≥ 1 and m = n + 1, then the complete bipartite graph Km,n has a

Hamiltonian path.
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A.19 Seven people that assist to a conference want to have lunch together at a roundtable

during the three days that the conference lasts. In order to get to know each other better, they

decide to sit in such a way that two people are next to each other at most once. Can they

achieve their goal? And what happens if the congress lasts 5 days?

A.20 Let G be a Hamiltonian graph that is not a cycle. Prove that if G has two non-adjacent

vertices of degree 3, then it has at least another vertex of degree ≥ 3.

A.21 Prove that if G is a graph of order n and size ≥
(
n−1

2

)
+ 2, then G is Hamiltonian.

Hint : use the Ore’s theorem.

A.22 Find all graphs G such that G and Gc are trees.

A.23 Compute the number of edges that must be added to a forest of k connected components

to obtain a tree.

A.24 Let T be a tree of order 7 with at least three vertices of degree 1 and at least two vertices

of degree 3.

1) Find the degree sequence of T .

2) Find, up to isomorphism, all the trees that have this degree sequence.

A.25 Prove that if G is a graph of order ≥ 2 that has exactly one vertex of degree 1, then G

has a cycle.

A.26 Prove that the following statements are equivalent for a tree T of order n ≥ 3:

a) T is isomorphic to the path Pn.

b) T has maximum degree 2.

c) T has exactly 2 leaves.

d) T has diameter equal to n− 1.

A.27 Let G be a graph of order n and size m = n− 1 that is not a tree.

1) Prove that G has at least one connected component that is a tree and at least one that is

not a tree.

2) Prove that if G has exactly two connected components, then the one that is not a tree

has exactly one cycle.

A.28 Consider the wheel graph Wn of order n ≥ 4. Give all the non-isomorphic trees that

one can obtain by applying the algorithm BFS, depending on the initial vertex.
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A.29 Give the Prüfer sequences that corresponds to each of the trees having [4] as set of

vertices.

A.30 Determine the trees whose Prüfer sequences have all terms different.

1.31 We want to prove that a sequence of positive integers d1 ≥ d2 ≥ · · · ≥ dn ≥ 1 is the

degree sequence of a tree of order n ≥ 2 if, and only if, d1 + · · · + dn = 2(n − 1). One of the

implications is a direct consequence of the handshaking lemma (check it!). To prove the other

implication, we will apply induction on n, according to the following steps:

1) Write down the implication that is not a consequence of the hanshaking lemma. Check

the case n = 2. Write down the inductive hypothesis for n− 1.

2) Let n ≥ 3. Prove that if d1 + · · ·+ dn = 2(n− 1) and di ≥ 1 for each i, then dn = 1 and

d1 > 1.

3) Apply the inductive hypothesis to d1 − 1, d2, . . . , dn−1 and deduce the desired result.

A.32 Let S be a set and C be a finite collection of subsets of S. The intersection graph I(C) is

the graph that has C as set of vertices and where two vertices A,B ∈ C are adjacent if A∩B 6= ∅.

1) Let S = [6] and C = {{1, 2}, {2, 4}, {1, 2, 3}, {3, 4, 5}, {5, 6}}. Draw the graph I(C).

2) Consider the graph G that has [4] as set of vertices and edges 12, 23, 34 and 41. For

each i ∈ [4], consider the set Si consisting of the vertex i and the two edges incident

to i, that is: S1 = {1, 12, 41}, S2 = {2, 12, 23}, S3 = {3, 23, 34}, S4 = {4, 41, 34}. Let

S = S1 ∪ S2 ∪ S3 ∪ S4 and C = {S1, S2, S3, S4}. Prove that I(C) is isomorphic to G.

3) Prove that for any graph G, there exist a set S and a finite collection C of subsets of S

such that G is isomorphic to the intersection graph I(C).

A.33 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. Prove the

following statements:

1) If G1 and G2 are connected, then G1 ×G2 is connected.

2) If G1 and G2 are Eulerian, then G1 ×G2 is Eulerian.

3) If G1 ×G2 is Eulerian, then G1 and G2 are either Eulerian or of even order.

4) If G is Hamiltonian, then G×K2 is Hamiltonian.

A.34 If G1 is connected but G2 is not, is the product G1 ×G2 connected?

A.35 Let G = (V,E) be a graph. The line graph of G, LG, is the graph whose vertices are

the edges of G and where two vertices of LG are adjacent if, as edges of G, they are incident.

1) Give the line graph of K1,3, C5 and G = ({1, 2, 3, 4, 5}, {12, 23, 24, 25, 34, 35, 45}).
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2) Give the order and the vertex degrees of LG in terms of the parameters of G.

3) Prove that if G is Eulerian, then LG is Hamiltonian.

4) Find a graph G such that LG is Hamiltonian but G is not Eulerian.

5) Prove that if G is Eulerian, then LG is Eulerian.

6) Find a graph G such that LG is Eulerian, but G is not.

7) Prove that if G is Hamiltonian, then LG is Hamiltonian.

8) Find a graph G such that LG is Hamiltonian, but G is not.


