Bachillerato Internacional

Mathematics: applications and interpretation formula booklet

Prior learning
SL and HL 2
HL only 2
Topic 1: Number and algebra
SL and HL 3
HL only 4
Topic 2: Functions
SL and HL 5
HL only 5
Topic 3: Geometry and trigonometry
SL and HL 6
HL only 7
Topic 4: Statistics and probability
SL and HL 9
HL only 10
Topic 5: Calculus
SL and HL 11
HL only 11

Prior learning - SL and HL

Area of a parallelogram	$A=b h$, where b is the base, h is the height
Area of a triangle	$A=\frac{1}{2}(b h)$, where b is the base, h is the height
Area of a trapezoid	$A=\frac{1}{2}(a+b) h$, where a and b are the parallel sides, h is the height
Area of a circle	$A=\pi r^{2}$, where r is the radius
Circumference of a circle	$C=2 \pi r$, where r is the radius
Volume of a cuboid	$V=l w h$, where l is the length, w is the width, h is the height
Volume of a cylinder	$V=\pi r^{2} h$, where r is the radius, h is the height
Volume of prism	$V=A h$, where A is the area of cross-section, h is the height
Area of the curved surface of a cylinder	$A=2 \pi r h$, where r is the radius, h is the height
Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Prior learning - HL only

Solutions of a quadratic

 equation
Topic I: Number and algebra - SL and HL

$\begin{aligned} & \text { SL } \\ & 1.2 \end{aligned}$	The nth term of an arithmetic sequence The sum of n terms of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$ $S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right) ; S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)$
$\begin{array}{l\|} \hline \text { SL } \\ 1.3 \end{array}$	The nth term of a geometric sequence The sum of n terms of a finite geometric sequence	$u_{n}=u_{1} r^{n-1}$ $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
$\begin{aligned} & \text { SL } \\ & 1.4 \end{aligned}$	Compound interest	$F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}$, where $F V$ is the future value, $P V$ is the present value, n is the number of years, k is the number of compounding periods per year, $r \%$ is the nominal annual rate of interest
$\begin{aligned} & \mathrm{SL} \\ & 1.5 \end{aligned}$	Exponents and logarithms	$a^{x}=b \Leftrightarrow x=\log _{a} b$, where $a>0, b>0, a \neq 1$
$\begin{aligned} & \mathrm{SL} \\ & 1.6 \end{aligned}$	Percentage error	$\varepsilon=\left\|\frac{v_{\mathrm{A}}-v_{\mathrm{E}}}{v_{\mathrm{E}}}\right\| \times 100 \%$, where v_{E} is the exact value and v_{A} is the approximate value of v

Topic I: Number and algebra - HL only

$\begin{aligned} & \text { AHL } \\ & 1.9 \end{aligned}$	Laws of logarithms	$\begin{aligned} & \log _{a} x y=\log _{a} x+\log _{a} y \\ & \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\ & \log _{a} x^{m}=m \log _{a} x \\ & \text { for } a, x, y>0 \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 1.11 \end{aligned}$	The sum of an infinite geometric sequence	$S_{\infty}=\frac{u_{1}}{1-r},\|r\|<1$
$\begin{aligned} & \text { AHL } \\ & 1.12 \end{aligned}$	Complex numbers Discriminant	$z=a+b \mathrm{i}$ $\Delta=b^{2}-4 a c$
$\begin{aligned} & \text { AHL } \\ & 1.13 \end{aligned}$	Modulus-argument (polar) and exponential (Euler) form	$z=r(\cos \theta+\mathrm{i} \sin \theta)=r \mathrm{e}^{\mathrm{i} \theta}=r \operatorname{cis} \theta$
$\begin{aligned} & \text { AHL } \\ & 1.14 \end{aligned}$	Determinant of a 2×2 matrix Inverse of a 2×2 matrix	$\begin{aligned} & \boldsymbol{A}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \Rightarrow \operatorname{det} \boldsymbol{A}=\|\boldsymbol{A}\|=a d-b c \\ & \boldsymbol{A}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \Rightarrow \boldsymbol{A}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{A}}\left(\begin{array}{rr} d & -b \\ -c & a \end{array}\right), a d \neq b c \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 1.15 \end{aligned}$	Power formula for a matrix	$\boldsymbol{M}^{n}=\boldsymbol{P} \boldsymbol{D}^{n} \boldsymbol{P}^{-1}$, where \boldsymbol{P} is the matrix of eigenvectors and \boldsymbol{D} is the diagonal matrix of eigenvalues

Topic 2: Functions - SL and HL

SL	Equations of a straight line	$y=m x+c ; a x+b y+d=0 ; y-y_{1}=m\left(x-x_{1}\right)$			
2.1	Gradient formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	$	$	SL
:---					
2.5					
Axis of symmetry of the graph of a quadratic function	$t(x)=a x^{2}+b x+c \Rightarrow$ axis of symmetry is $x=-\frac{b}{2 a}$.				

Topic 2: Functions - HL only

AHL	Logistic function	$f(x)=\frac{L}{1+C \mathrm{e}^{-h x}}, L, k, C>0$

Topic 3: Geometry and trigonometry - SL and HL

$\begin{aligned} & \mathrm{SL} \\ & 3.1 \end{aligned}$	Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ Volume of a right-pyramid Volume of a right cone Area of the curved surface of a cone Volume of a sphere Surface area of a sphere	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$ $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$ $V=\frac{1}{3} A h$, where A is the area of the base, h is the height $V=\frac{1}{3} \pi r^{2} h$, where r is the radius, h is the height $A=\pi r l$, where r is the radius, l is the slant height $V=\frac{4}{3} \pi r^{3}$, where r is the radius $A=4 \pi r^{2}$, where r is the radius
$\begin{aligned} & \text { SL } \\ & 3.2 \end{aligned}$	Sine rule Cosine rule Area of a triangle	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ $\begin{aligned} & c^{2}=a^{2}+b^{2}-2 a b \cos C ; \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\ & A=\frac{1}{2} a b \sin C \end{aligned}$
$\begin{aligned} & \mathrm{SL} \\ & 3.4 \end{aligned}$	Length of an arc Area of a sector	$l=\frac{\theta}{360} \times 2 \pi r$, where θ is the angle measured in degrees, r is the radius $A=\frac{\theta}{360} \times \pi r^{2}$, where θ is the angle measured in degrees, r is the radius

Topic 3: Geometry and trigonometry - HL only

$\begin{aligned} & \text { AHL } \\ & 3.7 \end{aligned}$	Length of an arc Area of a sector	$l=r \theta$, where r is the radius, θ is the angle measured in radians $A=\frac{1}{2} r^{2} \theta$, where r is the radius, θ is the angle measured in radians
$\begin{aligned} & \text { AHL } \\ & 3.8 \end{aligned}$	Identities	$\cos ^{2} \theta+\sin ^{2} \theta=1$ $\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\begin{aligned} & \text { AHL } \\ & 3.9 \end{aligned}$	Transformation matrices	$\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$, reflection in the line $y=(\tan \theta) x$ $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right)$, horizontal stretch / stretch parallel to x-axis with a scale factor of k $\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right)$, vertical stretch / stretch parallel to y-axis with a scale factor of k $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$, enlargement, with a scale factor of k, centre $(0,0)$ $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, anticlockwise/counter-clockwise rotation of angle θ about the origin $(\theta>0)$ $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, clockwise rotation of angle θ about the origin ($\theta>0$)

$\begin{aligned} & \text { AHL } \\ & 3.10 \end{aligned}$	Magnitude of a vector	$\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+v_{2}{ }^{2}+v_{3}{ }^{2}}$, where $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$			
$\begin{aligned} & \text { AHL } \\ & 3.11 \end{aligned}$	Vector equation of a line Parametric form of the equation of a line	$\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}$ $x=x_{0}+\lambda l, y=y_{0}+\lambda m, z=z_{0}+\lambda n$			
$\begin{aligned} & \text { AHL } \\ & 3.13 \end{aligned}$	Scalar product Angle between two vectors Vector product Area of a parallelogram	$\boldsymbol{v} \cdot \boldsymbol{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$, where $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right), \boldsymbol{w}=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$ $\boldsymbol{v} \cdot \boldsymbol{w}=\|\boldsymbol{v} \\| \boldsymbol{w}\| \cos \theta$, where θ is the angle between \boldsymbol{v} and \boldsymbol{w} $\cos \theta=\frac{v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}}{\|\boldsymbol{v} \\| \boldsymbol{w}\|}$ $\boldsymbol{v} \times \boldsymbol{w}=\left(\begin{array}{l}v_{2} w_{3}-v_{3} w_{2} \\ v_{3} w_{1}-v_{1} w_{3} \\ v_{1} w_{2}-v_{2} w_{1}\end{array}\right)$, where $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right), \boldsymbol{w}=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$ $\|\boldsymbol{v} \times \boldsymbol{w}\|=\|\boldsymbol{v} \\| \boldsymbol{w}\| \sin \theta$, where θ is the angle between \boldsymbol{v} and \boldsymbol{w} $A=\|\boldsymbol{v} \times \boldsymbol{w}\|$ where \boldsymbol{v} and \boldsymbol{w} form two adjacent sides of a parallelogram			

Topic 4: Statistics and probability - SL and HL

$\begin{aligned} & \text { SL } \\ & 4.2 \end{aligned}$	Interquartile range	$\mathrm{IQR}=Q_{3}-Q_{1}$
$\begin{aligned} & \text { SL } \\ & 4.3 \end{aligned}$	Mean, \bar{x}, of a set of data	$\bar{x}=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n} \text {, where } n=\sum_{i=1}^{k} f_{i}$
$\begin{aligned} & \text { SL } \\ & 4.5 \end{aligned}$	Probability of an event A Complementary events	$\begin{aligned} & \mathrm{P}(A)=\frac{n(A)}{n(U)} \\ & \mathrm{P}(A)+\mathrm{P}\left(A^{\prime}\right)=1 \end{aligned}$
$\begin{aligned} & \text { SL } \\ & 4.6 \end{aligned}$	Combined events Mutually exclusive events Conditional probability Independent events	$\begin{aligned} & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) \\ & \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \\ & \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B) \end{aligned}$
$\begin{aligned} & \text { SL } \\ & 4.7 \end{aligned}$	Expected value of a discrete random variable X	$\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$
$\begin{aligned} & \text { SL } \\ & 4.8 \end{aligned}$	Binomial distribution $X \sim \mathrm{~B}(n, p)$ Mean Variance	$\begin{aligned} & \mathrm{E}(X)=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$

Topic 4: Statistics and probability - HL only

$\begin{aligned} & \text { AHL } \\ & 4.14 \end{aligned}$	Linear transformation of a single random variable Linear combinations of n independent random variables, $X_{1}, X_{2}, \ldots, X_{n}$ Sample statistics Unbiased estimate of population variance s_{n-1}^{2}	$\begin{aligned} & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\ & \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \end{aligned}$ $\begin{aligned} & \mathrm{E}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right)=a_{1} \mathrm{E}\left(X_{1}\right) \pm a_{2} \mathrm{E}\left(X_{2}\right) \pm \ldots \pm a_{n} \mathrm{E}\left(X_{n}\right) \\ & \operatorname{Var}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right) \\ & \quad=a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}{ }^{2} \operatorname{Var}\left(X_{n}\right) \end{aligned}$ $s_{n-1}^{2}=\frac{n}{n-1} s_{n}^{2}$
$\begin{aligned} & \text { AHL } \\ & 4.17 \end{aligned}$	Poisson distribution $X \sim \operatorname{Po}(m)$ Mean Variance	$\mathrm{E}(X)=m$ $\operatorname{Var}(X)=m$
$\begin{aligned} & \text { AHL } \\ & 4.19 \end{aligned}$	Transition matrices	$\boldsymbol{T}^{n} \boldsymbol{s}_{0}=\boldsymbol{s}_{n}$, where \boldsymbol{s}_{0} is the initial state

Topic 5: Calculus - SL and HL

$\mathbf{S L}$	Derivative of x^{n}	$f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$
$\mathbf{5 . 3}$	Integral of x^{n}	$\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1$
Area of region enclosed by a curve $y=f(x)$ and the x-axis, where $f(x)>0$	$A=\int_{a}^{b} y \mathrm{~d} x$	
$\mathbf{S L}$	The trapezoidal rule	$\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left(\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right)$,
$\mathbf{5 . 8}$	where $h=\frac{b-a}{n}$	

Topic 5: Calculus - HL only

$\begin{aligned} & \text { AHL } \\ & 5.9 \end{aligned}$	Derivative of $\sin x$	$f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x$
	Derivative of $\cos x$	$f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x$
	Derivative of $\tan x$	$f(x)=\tan x \Rightarrow f^{\prime}(x)=\frac{1}{\cos ^{2} x}$
	Derivative of e^{x}	$f(x)=\mathrm{e}^{x} \Rightarrow f^{\prime}(x)=\mathrm{e}^{x}$
	Derivative of $\ln x$	$f(x)=\ln x \Rightarrow f^{\prime}(x)=\frac{1}{x}$
	Chain rule	$y=g(u), \text { where } u=f(x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$
	Product rule	$y=u v \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
	Quotient rule	$y=\frac{u}{v} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

$\begin{aligned} & \text { AHL } \\ & 5.11 \end{aligned}$	Standard integrals	$\begin{aligned} & \int \frac{1}{x} \mathrm{~d} x=\ln \|x\|+C \\ & \int \sin x \mathrm{~d} x=-\cos x+C \\ & \int \cos x \mathrm{~d} x=\sin x+C \\ & \int \frac{1}{\cos ^{2} x}=\tan x+C \\ & \int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+C \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 5.12 \end{aligned}$	Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes	$\begin{aligned} & A=\int_{a}^{b}\|y\| \mathrm{d} x \text { or } A=\int_{a}^{b}\|x\| \mathrm{d} y \\ & V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x \text { or } V=\int_{a}^{b} \pi x^{2} \mathrm{~d} y \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 5.13 \end{aligned}$	Acceleration Distance travelled from t_{1} to t_{2} Displacement from t_{1} to t_{2}	$\begin{aligned} & a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=v \frac{\mathrm{~d} v}{\mathrm{~d} s} \\ & \text { distance }=\int_{t_{1}}^{t_{2}}\|v(t)\| \mathrm{d} t \\ & \text { displacement }=\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 5.16 \end{aligned}$	Euler's method Euler's method for coupled systems	$y_{n+1}=y_{n}+h \times f\left(x_{n}, y_{n}\right) ; x_{n+1}=x_{n}+h$, where h is a constant (step length) $\begin{aligned} & x_{n+1}=x_{n}+h \times f_{1}\left(x_{n}, y_{n}, t_{n}\right) \\ & y_{n+1}=y_{n}+h \times f_{2}\left(x_{n}, y_{n}, t_{n}\right) \\ & t_{n+1}=t_{n}+h \end{aligned}$ where h is a constant (step length)
$\begin{aligned} & \text { AHL } \\ & 5.17 \end{aligned}$	Exact solution for coupled linear differential equations	$\boldsymbol{x}=A \mathrm{e}^{\lambda_{1} t} \boldsymbol{p}_{1}+B \mathrm{e}^{\lambda_{2} t} \boldsymbol{p}_{2}$

