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Arithmetic series

General (kth) term, u
k

= a + (k – 1)d

last (nth) term, l = u
n

= a + (n – l)d

Sum to n terms, S
n

= n(a + l) = n[2a + (n – 1)d]

Geometric series

General (kth) term, u
k

= a rk–1

Sum to n terms, S
n

= =

Sum to infinity S∞ = , – 1 < r < 1

Binomial expansions

When n is a positive integer

(a + b)n = an + ( ) an –1 b + ( ) an–2 b2 + ... + ( ) an–r br + ... bn , n ∈ N

where

( ) =
n
C

r
= ( ) + ( ) = ( )

General case

(1 + x)n = 1 + nx + x2 + ... + xr + ... , |x| < 1,

n ∈ R

Logarithms and exponentials

exln a = ax log
a

x =

Numerical solution of equations

Newton-Raphson iterative formula for solving f(x) = 0, x
n+1

= x
n

–

Complex Numbers

{r(cos θ + j sin θ)}n = rn(cos nθ + j sin nθ)

ejθ = cos θ + j sin θ
The roots of zn = 1 are given by z = exp( j) for k = 0, 1, 2, ..., n–1

Finite series

∑
n

r=1

r2 = n(n + 1)(2n + 1) ∑
n

r=1

r3 = n2(n + 1)21
–
4

1
–
6

2πk–––– n

f(x
n
)

––––
f '(x

n
)

log
b
x

–––––
log

b
a

n(n – 1) ... (n – r + 1)
–––––––––––––––––

1.2 ... r

n(n – 1)
–––––––

2!

n + 1
r + 1

n
r + 1

n
r

n!
––––––––
r!(n – r)!

n
r

n
r

n
2

n
1

a
–––––
1 – r

a(rn – 1)
––––––––

r – 1

a(1 – rn)
––––––––

1 – r

1–
2

1–
2

Infinite series

f(x) = f(0) + xf '(0) + f"(0) + ... + f (r )(0) + ...

f(x) = f(a) + (x – a)f '(a) + f"(a) + ... + + ...

f(a + x) = f(a) + xf '(a) + f"(a) + ... + f(r)(a) + ...

ex = exp(x) = 1 + x + + ... + + ... , all x

ln(1 + x) = x – + – ... + (–1)r+1 + ... , – 1 < x < 1

sin x = x – + – ... + (–1)r + ... , all x

cos x = 1 – + – ... + (–1)r + ... , all x

arctan x = x – + – ... + (–1)r + ... , – 1 < x < 1

sinh x = x + + + ... + + ... , all x

cosh x = 1 + + + ... + + ... , all x

artanh x = x + + + ... + + ... , – 1 < x < 1

Hyperbolic functions

cosh2x – sinh2x = 1,   sinh2x = 2sinhx coshx,   cosh2x = cosh2x + sinh2x

arsinh x =  ln(x + ), arcosh x =  ln(x + ), x > 1

artanh x =  ln ( ), |x| < 1

Matrices

Anticlockwise rotation through angle θ, centre O: ( )
Reflection in the line y = x tan θ : ( )cos 2θ sin 2θ

sin 2θ –cos 2θ

cos θ –sin θ
sin θ cos θ

1 + x–––––
1 – x

1
–
2

x2 1–x2 1+

x2r+1
––––––––
(2r + 1)

x5
––
5

x3
––
3

x2r
––––
(2r)!

x4
––
4!

x2
––
2!

x2r+1
––––––––
(2r + 1)!

x5
––
5!

x3
––
3!

x2r+1
––––––
2r + 1

x5
––
5

x3
––
3

x2r
––––
(2r)!

x4
––
4!

x2
––
2!

x2r+1
––––––––
(2r + 1)!

x5
––
5!

x3
––
3!

xr
––
r

x3
––
3

x2
––
2

xr
––
r!

x2
––
2!

xr
––
r!

x2
––
2!

(x – a)rf(r)(a)––––––––––
r!

(x – a)2
––––––

2!

xr
––
r!

x2
––
2!
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Cosine rule cos A = (etc.)

a2 = b2 + c2 –2bc cos A (etc.)

Trigonometry

sin (θ ± φ) = sin θ cos φ ± cos θ sin φ
cos (θ ± φ) = cos θ cos φ 7 sin θ sin φ

tan (θ ± φ) = , [(θ ± φ) ≠ (k + W)π]

For t = tan θ : sin θ = , cos θ =

sin θ + sin φ = 2 sin (θ + φ) cos (θ – φ)

sin θ – sin φ = 2 cos (θ + φ) sin (θ – φ)

cos θ + cos φ = 2 cos (θ + φ) cos (θ – φ)

cos θ – cos φ = –2 sin (θ + φ) sin (θ – φ)

Vectors and 3-D coordinate geometry

(The position vectors of points A, B, C are a, b, c.)

The position vector of the point dividing AB in the ratio λ:µ 

is

Line: Cartesian equation of line through A in direction u is

= = (= t)

The resolved part of a in the direction u is

Plane: Cartesian equation of plane through A with normal n is

n
1

x + n
2
y + n

3
z + d = 0    where d = –a . n

The plane through non-collinear points A, B and C has vector equation

r = a + s(b – a) + t(c – a) = (1 – s – t) a + sb + tc

The plane through A parallel to u and v has equation

r = a + su + tv

a . u
–––––

|u|

z – a
3––––––

u
3

y – a
2––––––

u
2

x – a
1––––––

u
1

µa + λb
–––––––
(λ + µ)

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

(1 – t2)
––––––
(1 + t2)

2t––––––
(1 + t2)

1–
2

tan θ ± tan φ
––––––––––––
1 7 tan θ tan φ

b2 + c2 – a2
––––––––––

2bc

Perpendicular distance of a point from a line and a plane

Line:  (x
1
,y

1
) from ax + by + c = 0 : 

Plane: (α,β,γ) from n
1
x + n

2
y + n

3
z + d = 0 :

Vector product

a × b = |a| |b| sinθ n̂ = | | = ( )

a. (b × c) = | | = b. (c × a) = c. (a × b)

a × (b × c) = (c . a) b – (a . b) c

Conics

Any of these conics can be expressed in polar
coordinates (with the focus as the origin) as: = 1 + e cos θ
where l is the length of the semi-latus rectum.

Mensuration

Sphere : Surface area = 4πr2

Cone :  Curved surface area = πr × slant height

l
–
r

a
1

b
1

c
1

a
2

b
2

c
2

a
3

b
3

c
3

a
2
b

3
– a

3
b

2
a

3
b

1
– a

1
b

3
a

1
b

2
– a

2
b

1

i a
1

b
1

j a
2

b
2

k a
3

b
3

n
1
α + n

2
β + n

3
γ + d

––––––––––––––––––
√(n

1
2 + n

2
2 + n

3
2)

Rectangular
hyperbola

HyperbolaParabolaEllipse

Standard
form

––  +  –– = 1 –– – –– = 1 x y = c2y2 = 4ax

Parametric form (acosθ, bsinθ) (at2, 2at) (asecθ, btanθ) (ct, ––)

Eccentricity
e < 1

b2 = a2 (1 – e2)

e > 1

b2 = a2 (e2 – 1)
e = 1 e = √2

Foci (± ae, 0) (a, 0) (±c√2, ±c√2)(± ae, 0)

Directrices x = ± – x = ± – x + y = ±c√2x = – a

Asymptotes none none – = ± – x = 0, y = 0

x2

a2

x2

a2

y2

b2

y2

b2

c
t

a
e

a
e

x
a

y
b

ax by c

a b

1 1

2 2

+ +
+

A

a

bc

CB
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Surface area of revolution S
x

= 2π∫y ds =  2π∫y√(ẋ2 + ẏ2) dt

S
y

= 2π∫x ds =  2π∫x√(ẋ2 + ẏ2) dt

Curvature

κ = =  = 

Radius of curvature ρ = , Centre of curvature  c = r + ρ n̂

L'Hôpital’s rule

If f(a) = g(a) = 0  and g'(a) ≠ 0 then =

Multi-variable calculus

grad g = ( ) For w = g(x, y, z), δw = δx + δy + δz
∂w
–––
∂z

∂w
–––
∂y

∂w
–––
∂x

∂g/∂x

∂g/∂y

∂g/∂z

f '(a)
––––
g'(a)

f(x)
––––
g(x)

Lim
x➝a

1––κ

d2y
–––
dx2

–––––––––––––
dy(1 + [––]

2

)
3/2

dx

ẋ ÿ – ẍ ẏ
––––––––
(ẋ2 + ẏ2)

3/2

dψ
–––
ds

Differentiation f(x) f '(x)

tan kx ksec2 kx
sec x sec x tan x
cot x –cosec2 x
cosec x –cosec x cot x

arcsin x

arccos x

arctan x

sinh x cosh x
cosh x sinh x
tanh x sech2 x

arsinh x

arcosh x

artanh x

Quotient rule y = , =

v – u

Trapezium rule  ∫b

a
ydx ≈ h{(y

0
+ y

n
) + 2(y

1
+ y

2
+ ... + y

n–1
)}, where h =

Integration by parts ∫ u dx = uv  – ∫ v dx

Area of a sector A = ∫ r2 dθ (polar coordinates)

A = ∫ (xẏ – yẋ) dt (parametric form)

Arc length s = ∫ √ (ẋ2 + ẏ2) dt (parametric form)

s = ∫ √ (1 + [ ]
2

) dx (cartesian coordinates)

s = ∫ √ (r2 + [ ]
2

) dθ (polar coordinates)
dr

–––
dθ

dy
–––
dx

1–
2

1–
2

du
–––
dx

dv
–––
dx

b – a–––––n
1–
2

dv
–––
dx

du
–––
dxdy

–––
dx

u
–
v

1–––––––
(1 – x2)

1–––––––
√(x2 – 1)

1–––––––
√(1 + x2)

1–––––
1 + x2

–1–––––––
√(1 – x2)

1–––––––
√(1 – x2)

x–
2

Integration f(x) ∫f(x) dx (+ a constant)

sec2 kx (l/k) tan kx
tan x ln |sec x|
cot x ln |sin x |
cosec x –ln |cosec x + cot x| = ln |tan |

sec x ln |sec x + tan x| = ln |tan ( + )|
ln | |

arcsin ( ) , |x| < a

arctan( )
ln | | = artanh ( ) , |x| < a

sinh x cosh x
cosh x sinh x
tanh x ln cosh x

arsinh ( )  or  ln (x + ),

arcosh ( )  or  ln (x +              ), x > a , a > 0x–a
1–––––––

√(x2 – a2)

x a2 2+x–a
1–––––––

√(a2 + x2)

x–a
1–a

a + x–––––a – x
1––
2a

1––––––
a2 – x2

x–a
1–a

x–a
1–––––––

√(a2 – x2)

x – a–––––x + a
1––
2a

1––––––
x2 – a2

π–
4

x–
2

x a2 2–

1––––––
a2 + x2

v2
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Centre of mass (uniform bodies)

Triangular lamina: along median from vertex

Solid hemisphere of radius r: r from centre

Hemispherical shell of radius r: r from centre

Solid cone or pyramid of height h: h above the base on the 
line from centre of 
base to vertex

Sector of circle, radius r, angle 2θ: from centre

Arc of circle, radius r, angle 2θ at centre: from centre

Conical shell, height h: h above the base on the
line from the centre of
base to the vertex

Motion in polar coordinates

Motion in a circle

Transverse velocity: v = rθ̇
Radial acceleration: –rθ̇2 = –

Transverse acceleration: v̇ = rθ̈

General motion

Radial velocity: ṙ

Transverse velocity: rθ̇
Radial acceleration: r̈ – rθ̇2

Transverse acceleration: rθ̈ + 2ṙθ̇ = (r2θ̇)

Moments as vectors

The moment about O of F acting at r is r × F

d
––
dt

1
–
r

v2
––
r

1–
3

r sin θ
–––––––

θ

2r sin θ
–––––––

3θ

1–
4

1–
2

3–
8

2–
3

Moments of inertia (uniform bodies, mass M)

Thin rod, length 2l, about perpendicular axis through centre: Ml2

Rectangular lamina about axis in plane bisecting edges of length 2l: Ml2

Thin rod, length 2l, about perpendicular axis through end: Ml2

Rectangular lamina about edge perpendicular to edges of length 2l: Ml2

Rectangular lamina, sides 2a and 2b, about perpendicular
axis through centre: M(a2 + b2)

Hoop or cylindrical shell of radius r about perpendicular 
axis through centre: Mr2

Hoop of radius r about a diameter: Mr2

Disc or solid cylinder of radius r about axis: Mr2

Disc of radius r about a diameter: Mr2

Solid sphere of radius r about a diameter: Mr2

Spherical shell of radius r about a diameter: Mr2

Parallel axes theorem: I
A

= I
G

+ M(AG)2

Perpendicular axes theorem: I
z

= I
x

+ I
y

(for a lamina in the (x, y) plane)

2–
3

2–
5

1–
4

1–
2

1–
2

1–
3

4–
3

4–
3

1–
3

1–
3
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Probability P(A∪B) = P(A) + P(B) – P(A∩B)

P(A∩B) = P(A) . P(B|A)

P(A|B) = 

Bayes’ Theorem: P(A
j
|B) = 

Populations

Discrete distributions

X is a random variable taking values x
i
in a discrete distribution with

P(X = x
i
) = p

i

Expectation: µ = E(X) = ∑x
i
p

i

Variance: σ2 = Var(X) = ∑(x
i
– µ)2 p

i
= ∑x

i
2p

i
– µ2

For a function g(X): E[g(X)] = ∑g(x
i
)p

i

Continuous distributions

X is a continuous variable with probability density function (p.d.f.) f(x)

Expectation: µ = E(X) = ∫ x f(x)dx

Variance: σ2 = Var (X)

= ∫(x – µ)2 f(x)dx = ∫x2 f(x)dx – µ2

For a function g(X): E[g(X)] = ∫g(x)f(x)dx

Cumulative

distribution function F(x) = P(X < x) = ∫ x

–∞f(t)dt

Correlation and regression For a sample of n pairs of observations (x
i
, y

i
)

S
xx

= ∑(x
i
– )2 = ∑x

i
2 – , S

yy
= ∑(y

i
– )2 = ∑y

i
2 – ,

S
xy

= ∑(x
i
– )(y

i
– ) = ∑x

i
y

i
–

Covariance     =
∑ = ∑( – )( – )

–
x x y y

n

x y

n
x yi i i i

S
xy

––––
n

(∑x
i
)(∑y

i
)

–––––––––
n

yx

(∑y
i
)2

–––––
n

y
(∑x

i
)2

–––––
n

x

P(A
j
)P(B |A

j
)

––––––––––––
∑P(A

i
)P(B|A

i
)

P(B|A)P(A)
––––––––––––––––––––––
P(B|A)P(A) + P(B|A')P(A')

Product-moment correlation: Pearson’s coefficient

r = = =

Rank correlation: Spearman’s coefficient

r
s

= 1 –

Regression

Least squares regression line of y on x: y – = b(x – )

b = = =

Estimates

Unbiased estimates from a single sample

for population mean µ; Var = 

S2 for population variance σ2 where S2 = ∑(x
i
– )2f

i

Probability generating functions

For a discrete distribution

G(t) = E(tX)

E(X) = G'(1);  Var(X) = G"(1) + µ – µ2

G
X + Y

(t) = G
X

(t) G
Y

(t) for independent X, Y

Moment generating functions:

M
X
(θ) = E(eθX)

E(X) = M'(0) = µ;    E(Xn) = M(n)(0)

Var(X) = M"(0) – {M'(0)}2

M
X + Y

(θ) = M
X

(θ) M
Y
(θ) for independent X, Y

x1––––
n – 1

σ2
––nXX

∑(x
i
– ) (y

i
– )

–––––––––––––––
∑(x

i
– )2

S
xy

–––
S

xx

xy

6∑d
i
2

––––––––
n(n2 – 1)

Σ

Σ Σ

x x y y

x x y y

i i

i i

– –

– –

( )( )
( ) ( )[ ]2 2

S

S S

xy

xx yy

x

x

y
∑

∑

x y

n
x y

x

n
x

i i

i

–

–
2

2

∑

∑ −





∑ −















x y

n
x y

x

n
x

y

n
y

i i

i i

–

2

2

2

2
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Markov Chains

p
n + 1

= p
n
P

Long run proportion   p = pP

Bivariate distributions

Covariance Cov(X, Y) = E[(X – µ
X
)(Y – µ

Y
)] = E(XY) – µ

X
µ

Y

Product-moment correlation coefficient ρ =

Sum and difference

Var(aX ± bY) = a2Var(X) + b2Var(Y) ± 2ab Cov (X,Y)

If X, Y are independent: Var(aX ± bY) = a2Var(X) + b2Var(Y)

E(XY) = E(X) E(Y)

Coding

X = aX ' + b } ⇒ Cov(X, Y) = ac Cov(X ', Y ')
Y = cY ' + d

Analysis of variance

One-factor model: x
ij

= µ + α
i
+ ε

ij
,  where ε

ij
~ N(0,σ2)

SS
B

= ∑
i

n
i
(

i
– )2 = ∑

i

–

SS
T

= ∑
i

∑
j

(x
ij

– )2 = ∑
i

∑
j

x
ij

2 –
T2
––n

x

T2
––n

T
i
2

–––n
i

xx

Cov(X, Y)––––––––σ
X

σ
Y

Regression

ε
i
~ N(0, σ2)      a, b, c are estimates for α, β, γ. σ̂2 =

For the model Y
i
= α + βx

i
+ ε

i
,

b = ,  b ~ N(β, ) ,  ~ t
n–2

a = – b , a ~ N(α, )
a + bx

0
~ N(α + βx

0
, σ2 { +              }

RSS = S
yy

–             = S
yy

(1 – r2)

Randomised response technique

E(p̂) =  Var(p̂) = 

Factorial design

Interaction between 1st and 2nd of 3 treatments

(–) { – }

Exponential smoothing

ŷ
n+1

= αy
n

+ α(1 – α)y
n–1

+ α(1 – α)2 y
n–2

+ ... + α(1 – α)n–1 y
1

+ (1 – α)ny
0

ŷ
n+1

= ŷ
n

+ α(y
n

– ŷ
n
)

ŷ
n+1

= αy
n

+ (1 – α) ŷ
n

(ABc – aBc) + (ABC – aBC)
––––––––––––––––––––––

2

(Abc – abc) + (AbC – abC)
–––––––––––––––––––––

2

[(2θ – 1) p + (1 – θ)][θ – (2θ – 1)p]
––––––––––––––––––––––––––––––

n(2θ – 1)2

y
–n – (1 – θ)

––––––––––
(2θ – 1)

1–n

σ2∑x
i
2

–––––––
n S

xx
xy

b

Sxx

− β
σ̂ /2

σ2
–––
S

xx

S
xy

–––
S

xx

RSS––––
n – p

Y
i

α + βx
i
+ ε

i

α + βf(x
i
) + ε

i

α + βx
i
+ γz

i
+ ε

i

RSS

∑(y
i
– a – bx

i
)2

∑(y
i
– a – bf(x

i
))2

∑(y
i
– a – bx

i
– cz

i
)2

No. of parameters, p

2

2

3

(x
0

– )2

–––––––
S

xx

x

(S
xy

)2

–––––
S

xx
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Description

Pearson’s product

moment

correlation test

Spearman rank 

correlation test

Normal test for 

a mean

t-test for a mean

χ2 test

Normal test for the

difference in the

means of 2 samples

with different 

variances

Test statistic Distribution

r =

rs = 1 –

Description Test statistic Distribution

∑

∑





∑















x y

n
x y

x

n
x

y

n
y

i i

i i

–

– –
2

2

2

2

6∑di
2

–––––––
n(n2 – 1)

x

n

–

/

µ
σ

x

s n

–

/

µ

f f

f

o e

e

–( )∑
2

(n1 – 1)s1
2 + (n2 – 1)s2

2

–––––––––––––––––––––––
n1 + n2 – 2

( – ) – ( – )x y

s
n n

µ µ1 2

1 2

1 1+

( – ) – ( – )x y

n n

µ µ
σ σ

1 2

1
2

1

2
2

2

+

N(0, 1)

N(0, 1)

tn1 + n2 – 2

tn –1

χ2
v

See tables

See tables

χ2
n – 1

N(0, 1)

Wilcoxon single

sample test

Wilcoxon Rank-sum

(or Mann-Whitney)

2-Sample test

Normal test on 

binomial proportion

χ2 test for variance

F-test on ratio of 

two variances

A statistic T is calculated

from the ranked data.

Samples size m, n: m < n

Wilcoxon  

W = sum of ranks of 

sample size m

Mann-Whitney

T = W –   m(m + 1)

p

n

–

( – )

θ
θ θ1





n s–1 2

2

( )
σ

1–
2

Fn
1
–1, n

2
–1

t-test for 

paired sample

t with (n – 1) 
degrees of
freedom

x x

s

1 2– –( ) µ
/ n

t-test for the 

difference in the

means of 

2 samples

where s2 =

s1
2 /σ1

2

–––––––
s2

2 /σ2
2

, s1
2 > s2

2
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Name

Binomial B(n, p)

Discrete

Poisson (λ)

Discrete

Normal N(µ, σ2)

Continuous

Uniform (Rectangular) on

[a, b] Continuous

Exponential

Continuous

Geometric

Discrete

Negative binomial 

Discrete

Function

P(X = r) = nCr qn–rpr ,

for r = 0, 1, ... ,n ,  0 < p < 1, q = 1 – p

P(X = r) = e–λ ,

for r = 0, 1, ...  ,  λ > 0

f(x) =             exp (–
W( )2),

–∞ < x < ∞

f(x) =               ,   a < x < b

f(x) = λe–λx ,    x > 0, λ > 0

P(X = r) = q r – 1p ,   r = 1, 2, ... ,

0 < p < 1      ,  q = 1 – p

P(X = r) = r – 1Cn – 1 qr – n pn ,

r = n, n + 1, ... ,

0 < p < 1  ,         q = 1 – p

Mean Variance

λ

µ

(b – a)2a + b
–––––

2

1
––λ

1
––
λ2

λ

σ2

p.g.f. G(t) (discrete)

m.g.f. M(θ) (continuous)

G(t) = (q + pt)n

G(t) = eλ(t – 1)

M(θ) = exp(µθ + Wσ2θ2)

M(θ) =     

G(t) = ( )
n

G(t) = 

M(θ) =

nq
––
p2

n
––
p

1
––
p

q
––
p2

np npq

λr
–––
r!

pt
–––––
1 – qt

pt
–––––
1 – qt

λ
–––––λ – θ

ebθ – eaθ
–––––––––
(b – a)θ

1

2σ π
x – µ
–––––σ

1
––
12

1
–––––
b – a



1
0

N
U

M
E

R
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A
L

A
N

A
L

Y
S

IS

D
E

C
IS

IO
N
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IS
C

R
E

T
E

 M
A

T
H

E
M

A
T

IC
S

Numerical Solution of Equations

The Newton-Raphson iteration for solving f(x) = 0 : x
n + 1

= x
n

–

Numerical integration

The trapezium rule

∫b

a
ydx ≈ h{(y

0
+ y

n
) + 2(y

1
+ y

2
+ ... + y

n–1
)}, where h =

The mid-ordinate rule

∫b

a
ydx ≈ h(y + y

1
+ ... + y

n–1
+ y

n–
), where h =

Simpson’s rule

for n even

∫b

a
ydx ≈ h{(y

0
+ y

n
) + 4(y

1
+ y

3
+ ... + y

n–1
) + 2(y

2
+ y

4
+ ... + y

n–2
)},

where h =

The Gaussian 2-point integration rule

Interpolation/finite differences

Lagrange’s polynomial : P
n
(x) = ∑ L

r
(x)f(x) where L

r
(x) = ∏

n

i=0
i≠r

Newton’s forward difference interpolation formula

f(x) = f(x
0
) + ∆f(x

0
) + ∆2f(x

0
) + ...

Newton’s divided difference interpolation formula

f(x) = f[x
0
] + (x – x

0
]f[x

0
, x

1
] + (x – x

0
) (x – x

1
)f[x

0
, x

1
, x

2
] + ...

Numerical differentiation

f"(x) ≈ f(x + h) – 2f(x) + f(x – h)
–––––––––––––––––––––

h2

(x – x
0
)(x – x

1
)

––––––––––––
2!h2

(x – x
0
)

––––––
h

x – x
i––––––

x
r

– x
i

b – a–––––n

1–
3

b – a–––––n1
–
2

1
–
2

1
–
2

1
–
2

b – a–––––n
1–
2

f(x
n
)

––––
f '(x

n
)

Taylor polynomials

f(a + h) = f(a) + hf '(a) + f"(a) + error

f(a + h) = f(a) + hf '(a) + f"(a + ξ),  0 < ξ < h

f(x)       = f(a) + (x – a)f '(a) + f"(a) + error

f(x)       = f(a) + (x – a)f '(a) + f"(η) , a < η < x

Numerical solution of differential equations

For  = f(x, y):

Euler’s method : y
r + 1

= y
r

+ hf(x
r
, y

r
);   x

r+1
= x

r
+ h

Runge-Kutta method (order 2) (modified Euler method)

y
r + 1

= y
r

+ (k
1

+ k
2
)

where k
1

= h f(x
r
, y

r
), k

2
= h f(x

r
+ h, y

r
+ k

1
)

Runge-Kutta method, order 4:

y
r+1

= y
r

+ (k
1

+ 2k
2

+ 2k
3

+ k
4
),

where k
1

= hf(x
r
, y

r
) k

2
= hf(x

r
+ h, y

r
+ k

1
)

k
3

= hf(x
r

+ h, y
r

+ k
2
) k

4
= hf(x

r
+ h, y

r
+ k

3
).

Logic gates

1–
2

1–
2

1–
2

1–
2

1–
6

1–
2

dy
––
dx

(x – a)2
––––––

2!

(x – a)2
––––––

2!

h2
–––
2!

h2
–––
2!

f d( )
–

x x h
h h

h

h

≈ −





+ 











∫ f f

3 3

NOT

OR

AND

NAND
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LIMIT FORMULAE 

1.       
     

   
       . 

2.       
    

 
        

 

    
        

      

 
        

 

      
     

3.       
    

 
   . 

4.       
        

 
   . 

5.       
    

 
   . 

6.       
         

 
   . 

7.       
    

 
               . 

8.       (  
 

 
)
 

    ,            
 

    . 

9.       
    

 
        

       

 
   . 

10.       
  

  
         ,        

  

  
         ,        

  

  
   . 

11.       
    

 
        

      

 
   . 

12.       (  
 

 
)
 

                
 

  . 

13.    
    

      ,      
   

      . 

14.          {

               
              
            

  ,                       . 

15.        
 

 
           

 

 
    ,   so         

 

 
   does not exist. 

16.       
 

  
                 

 

  
   . 

17.         
 

    . 

18.                . 

19.    
   

     
 

 
   . 

20.    
   

    
 

 
   does not exist . 
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21.    
   

     
 

 
     

   
      

 

 
     

   
     

 

  
     

   
     

 

 
    

   
     

 

  
 

    
   

 √    
 

 
   . 

22.                           

23.                              . 

24.                                                       . 

25.       
        

        
 

 

 
               

        

        
 

 

 
       . 

 

SOME IMPORTANT FORMULAE TO REMEMBER 

 

1.                            . 

2.                                   

3. If             exists but             does not exist then                   

                  does not exist . 

4. If                                                        may not 

exist . [ e.g. f(x) = x , g(x) = 1/x ] 

5. Product and Ratio of two odd function is even . 

 

SOME USEFUL RESULTS ON CONTINUOUS FUNCTION 

 If f and g are continuous at x = a then 

1. f ± g is continuous at x = a 

2. f . g is continuous at x = a 

3. f / g is continuous at x = a , where g(a) ≠ 0 

4. f[g(x)] is continuous at x = a 

5. Every Polynomial function is continuous at every point of the 

real line . 

6. Every Rational function is continuous at every point where its 

denominator is different from zero . 
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SOME USEFUL RESULTS ON RELATION AND MAPPING 

 

1. Let n(A) = m , n(B) = n ; then the total number of relations from A to B is 

2
mn

 . 

2. Let f : A→B be a function where n(A) = m , n(B) = n , then total 

number of functions is nm . 

3. If f : A→B be a function where n(A) = m , n(B) = n , then total 

number of injection is  {
         
            

  

4. If f : A→B be a function where n(A) = n , n(B) = n , then total 

number of bijection is n! . 
5. Let f : A→B be a function where n(A) = m , n(B) = n , then total 

number of onto functions is  ∑        ( 
 
)             

 

   
 

 
SOME USEFUL RESULTS ON APPLIED CALCULUS 

 

1. B(m,n) = ∫      

 
                             is called Beta 

Integral. 

2. ⌈(n) = ∫     

 
                  is called Gamma Integral . 

3. ⌈(n+1) =n⌈(n) = n! , ⌈(n) = (n-1)! , ⌈(1) = 1 , ⌈(
 

 
) = √  . 

4. B(m,n) = B(n,m) , where B(m,n) = 
⌈   ⌈     

⌈      
 .  

5. ⌈(m) ⌈(1-m)= πcosecmπ  , 0 < m < 1 . 

6. ∫     
    

√ 

 

 

 
 . 

7. ∫      
   

 
          

 

 
  (

   

 
 
   

 
)                     

8. ∫
     

 
     

 

 

 

 
                          

9. ∫      
   

 
    ∫      

   

 
   

 

 
 
⌈ 

   

 
 

⌈ 
   

 
 
   (p > -1) . 

10.   ∫      

 
       = 

⌈   
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SERIES FORMULAE 

1.        ∑ ( 
 
)      

 

   
 . 

2.          
  

  
 

        

  
   

3.      
 

  
 

  

  
 

  

  
           

4.      
     

  
 

        

  
 

        

  
   

5.         ∑ (     
 

)               
 

   
 

6. tanx =   
  

 
 

   

  
    [ Use these kinds of expansions only when the 

variable in the expansion tends to 0 ]  

7.  
  

 
  

 

  
 

 

  
  

 

  
    

8.  
  

 
  

 

  
 

 

  
  

 

  
    

9. 
  

  
  

 

  
 

 

  
  

 

  
    

10.  
  

  
  

 

  
 

 

  
  

 

  
    

11.                      

12.                      

13.                        

14.                        

15.                         

16.                         
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Permutations and CombinationsPermutations and CombinationsPermutations and CombinationsPermutations and Combinations    

    

Fundamental principle of counting:Fundamental principle of counting:Fundamental principle of counting:Fundamental principle of counting:    

 There are two fundamental counting principles i.e. Multiplication principle and 

Addition principle. 

    Multiplication principle:Multiplication principle:Multiplication principle:Multiplication principle: If an operation can be performed independently in ‘m’ different 

ways, and another operation can be performed in ‘n’ different ways, then both 

operations can be performed by m x n ways. 

In other words, if a job has n parts and the job will be completed only when each part is 

completed, and the first part can be completed in a1 ways, the second part can be 

completed in a2 ways and so on… the nth part can be completed in an ways then the total 

number of ways of doing the jobs is a1.a2.a3………an. 
ExExExEx: - A person can travel from Sambalpur to Bargarh in four routes and Bargarh to 

Bolangir in five routes then the number of routes that the person can travel is from 

Sambalpur to Bolangir via Bargarh is 4 x 5 = 20 routes. 

 

    Addition principle:Addition principle:Addition principle:Addition principle: If one operation can be performed independently in ‘m’ different 

ways, a second operation can be performed in ‘n’ different ways, then there are(m + n) 

possible ways when one of these operations be performed.  

ExExExEx: - A person has 4 shirts and 5 pants. The number of ways he wears  a pant or shirt 

is 4 + 5 = 9 ways  

Problems:Problems:Problems:Problems:    

1. There are three letters and three envelopes. Find the total number of ways in 

which letters can be put in the envelopes so that each envelope has only one 

letter. [ Ans:6] 

2. Find the number of possible outcomes of tossing a coin twice.[Ans:4] 

3. In a class there are 20 boys and 15 girls. In how many ways can the teacher 

select one boy and one girl from amongst the students of the class to represent 

the school in a quiz competition?[Ans:300] 

4. A teacher has to select either a boy or a girl from the class of 12 boys and 15 

girls for conducting a school function. In how many ways can she do it?[Ans:27] 

5. There are 5 routes from A to B and 3 routes from place B to C. Find how many 

different routes are there from A to C?[Ans:15] 

6. How many three lettered codes is possible using the first ten letters of the 

English alphabets if no letter can be repeated?[Ans:720] 

7. If there are 20 buses plying between places A and B, in how many ways can a 

round trip from A be made if the return journey is made on    

 i) same bus[Ans:20]  ii) a different bus[Ans:380] 

8. A lady wants to choose one cotton saree and one polyester saree from 10 cotton 

and 12 polyester sarees in a textile shop. In how many ways she can 

choose?[Ans:120] 

9. How many three digit numbers with distinct digits can be formed with out using 

the digits 0, 2, 3, 4, 5, 6.[Ans:24] 

10. How many three digit numbers are there between 100 and 1000 such that every 

digit is either 2 or 9?[Ans:8] 

11. In how many ways can three letters be posted in four letter boxes?[Ans:64] 

12. How many different signals can be generated by arranging three flags of different 

colors vertically out of five flags?[Ans:60] 
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13. In how many ways can three people be seated in a row containing seven 

seats?[Ans:210] 

14. There are five colleges in a city. In how many ways can a man send three of his 

children to a college if no two of the children are to read in the same 

college?[Ans:60] 

15. How many even numbers consisting of 4 digits can be formed by using the digits 

1, 2, 3, 5, 7?[Ans:24] 

16. How many four digit numbers can be formed with the digits 4,3,2,0 digits not 

being repeated?[Ans:18] 

17. How many different words with two letters can be formed by using the letters of 

the word JUNGLE, each containing one vowel and one consonant?[Ans:16] 

18. How many numbers between 99 and 1000 can be formed with the digits 0, 1, 2, 3, 

4 and 5?[Ans:180] 

19. There are three multiple choice questions in an examination. How many 

sequences of answers are possible, if each question has two choices?[Ans:8] 

20. There are four doors leading to the inside of a cinema hall. In how many ways 

can a person enter into it and come out?[Ans:16] 

21. Find the number of possible outcomes if a die is thrown 3 times.[Ans:216] 

22. How many three digit numbers can be formed from the digits 1,2,3,4, and 5, if the 

repetition of the digits is not allowed.[Ans:60] 

23. How many numbers can be formed from the digits 1,2,3, and 9 , if the repetition 

of the digits is not allowed.[Ans:24] 

24. How many four digit numbers greater than 2300 can be formed with the digits 

0,1,2,3,4,5 and 6, no digit being repeated in any number.[Ans:560] 

25. How many two digit even numbers can be formed from the digits 1,2,3,4,5 if the 

digits can be repeated?[Ans:10] 

26. How many three digits numbers have exactly one of the digits as 5 if repetition is 

not allowed?[Ans:200] 

27. How many 5 digit telephone numbers can be constructed using the digits 0 to 9 if 

each number starts with 59 and no digit appears more than once.[Ans:210] 

28. In how many ways can four different balls be distributed among 5 boxes, when  

 i) no box has more than one ball[Ans:120]     

 ii) a box can have any number of balls[Ans:625] 

29. Rajeev has 3 pants and 2 shirts. How many different pairs of a pant and a shirt, 

can he dress up with?[Ans:6] 

30. Ali has 2 school bags, 3 tiffin boxes and 2 water bottles. In how many ways can 

he carry these items choosing one each?[Ans:12] 

31. How many three digit numbers with distinct digits are there whose all the digits 

are odd?[Ans:60] 

32. A team consists of 7 boys and 3 girls plays singles matches against another team 

consisting of 5 boys and 5 girls. How many matches can be scheduled between 

the two teams if a boy plays against a boy and a girl plays against a girl.[Ans:50] 

33. How many non- zero numbers can be formed using the digits 0, 1, 2, 3, 4, 5 if 

repetition of the digits is not allowed? [Ans:600] 

34. In how many ways can five people be seated in a car with two people in the front 

seat including driver and three in the rear, if two particular persons out of the 

five can not drive?[Ans:72] 

35. How many A.P’s with 10 terms are there whose first term belongs to the 

set{1,2,3} and common difference belongs to the set {1,2,3,4,5}[Ans:15] 
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FactorialFactorialFactorialFactorial: The product of first n natural numbers is generally written as n! or n∠  and is 

read factorial n.  

  Thus, n! = 1. 2. 3.………..n.  

 ExExExEx: 123456!6 ×××××= =720 

Note:Note:Note:Note: 

1) 0! =1 

2) (-r)! = ∞  

Problems:Problems:Problems:Problems:    

1. Evaluate the following: 

i) 7!  ii) 5!  iii) 8!  iv) 8!-5!     v) 4!-3! vii) 7!-5! viii)
!5

!6
 

  

ix) 
!5

!7
        x)    

!2!6

!8
        xi) 

!2!10

!12
 xii) (3!)(5!) xiii) 

!5

1
+

!6

1
+

!7

1
 xiv) 

2!3!    
2. Evaluate 

)!(!

!

rnr

n

−
, when 

i) n=7, r=3 ii) n=15, r=12  iii) n=5, r=2 

3. Evaluate 
)!(

!

rn

n

−
, when           

i) n=9, r=5 ii) n=6, r=2 

4. Convert the following into factorials:         

i) 1.3.5.7.9.11  ii) 2.4.6.8.10 iii) 5.6.7.8.9 iv) 

(n+1)(n+2)(n+3)…………2n 

5. Find x if 

i) 
!5

1
+

!6

1
=

!7

x
 ii) 

!8

1
+

!9

1
=

!10

x
 

6. Find the value of n if  

i) (n+1)!=12(n-1)! ii) (2n)!n!=(n+1)(n-1)!(2n-1)! 

7. If 
)!2(!2

!

−n

n
 and 

)!4(!4

!

−n

n
 are in the ratio 2:1 find the value of n. 

8. Find the value of x if
)!12(

)!2(

−

+

x

x
.

)!3(

)!12(

+

+

x

x
=

7

72
 where Nx ∈     

9. Show that n!(n+2)=n!+(n+1)! 

10. Show that 27! Is divisible by 122 . What is the largest natural number n such that 

27! is divisible by 2n. 
11. Show that 24! +1 is not divisible by any number between 2 to 24. 

12. Prove that (n!)2 ≤  nn n! <  (2n)! 

13. Find the value of x if
)!1(

)!32(

+

+

x

x
.

)!12(

)!1(

+

−

x

x
=7 

14. Prove that the product of k consecutive positive integers is divisible by k! for 

2≥k  

15. Show that 2.6.10……..to n factors =
!

)!2(

n

n
. 
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PermutationPermutationPermutationPermutation:- The different arrangements which can be made by taking some or all at a 

time from a number of objects are called permutations. In forming permutations we are 

concerned with the order of the things. For example the arrangements which can be 

made by taking the letters a, b, c two at a time are six numbers, namely,  

       ab , bc, ca, ba, cb, ac 

Thus the permutations of 3 things taken two at a time are 6. 

    

a) Without repetitiona) Without repetitiona) Without repetitiona) Without repetition: 

   i) If there are n distinct objects then the number of permutations of n objects taking r 

at a time with out repetition is denoted by npr or p (n ,r) and is defined as    
       , nr ≤≤0  

 

ProofProofProofProof:  Arrangements of n objects, taken r at a time, is same to filling r places with n 

things 

                1st place can be filled up in n ways 

                2nd place can be filled up in n-1 ways 

                3rd place can be filled up in n-2 ways 

    ………………………………………. 

    ………………………………………. 

     rth  place can be filled up in n-(r-1) ways 

 ∴the number of arrangements  

   r

n p = ))1(........().........2)(1( −−−− rnnnn  

   = 
)!(

)!)(1.......().........2)(1(

rn

rnrnnnn

−

−+−−−
 

      r

n p =
)!(

!

rn

n

−
. 

    ii) Number of arrangements of n different things taken all at a time without repetition 

= !
)!(

!
n

nn

n
pn

n =
−

=  

    

b) With repetitionb) With repetitionb) With repetitionb) With repetition:  

      i) If there are n distinct objects then the number of permutations of n objects 

taking r at a time with repetition is nr.  
      ii) Number of arrangements of n different things taken all at a time with repetition 

is nn. 
c) If p objects of one kind, q objects of second kind are there then the total number of 

permutations of all the  

p + q objects are given by
!!

)!(

qp

qp +
. 

       In general If ai objects of ith kind, i= 1, 2, 3…..,r are there then the number of 

permutations of all the a1+a2+……….+ar objects is given by 
!..!.........!

)!.........(

21

321

r

r

aaa

aaaa ++++
. 

    

    

    

    

    

)!(

!

rn

n
pr

n

−
=
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d) Circular arrangementsd) Circular arrangementsd) Circular arrangementsd) Circular arrangements:  

    i)  The number of circular arrangements of n distinct objects taking all at a time is 

(n-1)! 

    ii) The number of circular arrangements of n distinct objects when clockwise and 

anti-clockwise circular permutations are considered as same is
2

)!1( −n
. 

    iii) The number of circular permutations of n different things taken r at a time is 

r

pr

n

( if clockwise and anti-clockwise circular permutations are considered as different) 

                    Ex:Ex:Ex:Ex: The number of which 29 persons be seated in a round table if there are 9 chairs 

is 
9

9

29
p

 

    iv) The number of circular permutations of n different things taken r at a time is 

r

pr

n

2
( if clockwise and anti-clockwise circular permutations are considered as same). 

    

Restricted permutations:Restricted permutations:Restricted permutations:Restricted permutations:    

1)1)1)1) The number of permutations of n dissimilar things taken r at a time when one 

particular thing always occurs is r  n-1Pr-1 
2)2)2)2) The number of permutations of n dissimilar things taken r at a time when one 

particular thing taken is  

            n-1Pr. 
      3)  The number of permutations of n dissimilar things taken r at a time when p 

particular things always occurs = !.rC pr

pn

−

−  

4) The number of permutations of n dissimilar things taken r at a time when p 

particular things never occurs    !.rCr

pn−  

    

Zero Factorial:Zero Factorial:Zero Factorial:Zero Factorial:    

The value of Zero factorial is 1 i.e. 0! =1 

Proof: Proof: Proof: Proof:     

 By the fundamental principle of counting we know that the number of 

permutations of n different objects taken all at a time with out repetition is 

!1.2.3.).........2)(1( nnnn =−−  ………(1) 

 And we have seen 
)!(

!

rn

n
pr

n

−
= …………… (2) 

From (2) the number of permutations of n different objects taken all at a time with out 

repetition is 

   
!0

!

)!(

! n

nn

n
pn

n =
−

= ……………… (3) 

from (1) and (3) 
!0

!
!

n
n =  

and this can be hold true if 0! is 1. 

1!0 =∴  
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Problems:Problems:Problems:Problems:    

1. Find r if P(20,r) = 13.  P(20,r-1) 

2. Find n if P(n,4) = 12.  P(n,2) 

3. If P(n-1,3): P(n+1,3) = 5 : 12, find n 

4. Find m and n if P(m+n,2)=56, P(m-n,2)=12 

5. Show that P(n, n) = P(n, n-1) for all positive integers. 

6. Show that P(m, 1)+ P(n ,1 ) = P(m+n, 1) for all positive integers 

7. Prove that P(n,n) = 2 P(n, n-2) 

8. Find n if 9:1: 43

1 =−
PP

nn  

9. Find r if 1

54 65 −= rr PP  

10. If ,42 35 PP
nn = for n>4, then find the value of n. 

11. If 3604 =Pn , find n. 

12. If 92403 =P
n , find n. 

13. If 72010 =rP , find r. 

14. Find n if 5:3: 12

1

12 =−

−

+

n

n

n

n
PP  

15. Prove that 2

2

1

1 2 PP + + 4

4

3

3 43 PP + +………+ n

n
Pn  = 11

1 −+

+

n

n
P  

16. In how many ways can five people be arranged in a row? [Ans: 5!] 

17. In how many ways can three guests be seated if there are six chairs in your 

home?[Ans: 3

6
p ] 

18. How many four digit numbers are there, with no digit repeated?[Ans: 9. 3

9
p ] 

19. How many numbers of four digits can be formed with the digits 1, 2,4,5,7 if no 

digit being repeated?[Ans: 4

5 p ] 

20. How many even numbers of three digits can be formed with the digits 1, 2, 

3,4,5,7 if no digit being repeated?[Ans: 2

5.2 p  

21. How many numbers between 100 and 1000 can be formed with the digits 

1,2,3,4,5,6,7 if no digit being repeated? [Ans: 3

7
p ] 

22. How many different numbers greater than 5000 can be formed with the digits 

0,1,5,9 if no digit being repeated? [Ans:12] 

23. In how many ways can four persons sit in a row?[Ans:4!] 

24. In how many ways can three men and four women be arranged in a row such that 

all the men sit together?[ [Ans:5!3!] 

25. In how many ways can three men and four women be arranged in a row such that 

all the men and all the women will sit together?[Ans:2!3!4!] 

26. In how many ways can 8 Indians, 4 English men and 4 Americans be seated in a 

row so that all the persons of the same nationality sit together? [Ans:3!8!4!4!] 

27. In how many ways can 10 question papers be arranged so that the best and the 

worst papers never come together?[Ans:10!-2!9!] 

28. In how many ways can 5 boys and 3 girls be seated in a row so that all the three 

girls do not sit together?[Ans:8!-3!6!] 

29.  In how many ways can 5 boys and 4 girls be seated in a row so that no two girls 

sit together?[Ans: !54

7 p ] 

30. In how many ways the word MISSISSIPPI can be arranged?[Ans:
!2!4!4

!11
] 

31. In how many ways the word MISSISSIPPI can be rearranged? [Ans: 1
!2!4!4

!8
− ] 

32. In how many ways the word GANESH can be arranged?[Ans:6!] 
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33. In how many ways can the word CIVILIZATION be arranged so that four I’s come 

together?[Ans:9!] 

34. In how many ways can 4 boys and 4 girls be seated in a row so that boys and girls 

occupy alternate seats?[2.4!.4!] 

35. In a class there are 10 boys and 3 girls. In how many ways can they be arranged in 

a row so that no two girls come consecutive?[ !103

11
p ] 

36. How many different words can be formed with the letters of the word 

UNIVERSITY so that all the vowels are together?[Ans:7!
!2

!4
] 

37. In how many ways can the letters of the word DIRECTOR be arranged so that the 

three vowels are never together?[Ans: !3
!2

!6

!2

!8
− ] 

38. Find the number of rearrangements of the letters of the word BENEVOLENT. How 

many of them end with L.[Ans: 
!2!3

!9
,

!2!3

!10
] 

39. In how many ways the letters of the word ALZEBRA can be arranged in a row if 

   i) the two A’s are together[Ans: 
!2

!2!6
 ii) the two A’s are not 

together[Ans:
!2

!2!6

!2

!7
− ] 

40. How many words can be formed with the letters of the word PATALIPUTRA with 

out changing the relative order of the vowels and consonants?[ 
!3

!5
.

!2!2

!6
] 

41. How many different can be formed if with the letters of the word PENCIL when 

vowels occupy even places.[ !42

3 p ] 

42. In how many ways can the letters of the word ARRANGE be arranged so that 

    i)  the two R’s are never together 

ii) the two A’s are together but not the two R’s     

  iii) neither the two R’s nor two A’s are together 

41. The letters of the word OUGHT are written in all possible orders and these words 

are written out as in a dictionary. Find the rank of the word TOUGH in this 

dictionary.[Ans:89] 

42. Find the number of words which can be made using all the letters of the word 

AGAIN. If these words are written in a dictionary, what will be the fiftieth 

word?[Ans:NAAIG] 

43. In how many ways can 8 people sit in a round table?[Ans:7!] 

44. In how many ways three men and three women sit in a round table so that no two 

men can occupy adjacent positions?[Ans:2!3!] 

45. In how many ways a garland can be prepared if there are ten flowers of different 

colors?[Ans:
2

!9
] 

46. In how many ways can four people be seated in a round table if six places are 

available? 

[Ans: 
4

4

6 p
] 
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CombinationCombinationCombinationCombination: - The different groups or selections which can be made by taking some or 

all at a time from a number of things are called combinations. Thus in combinations we 

are only concerned with the number of things each group contains irrespective of the 

order. 

 For examples the combinations which can be made by taking the letters a, b, c two at a 

time are 3 in number namely,     ab, bc, ca  

 The number of combinations of n dissimilar things taken r at a time denoted by nCr or C(n,r) and is given by r

nc =
)!(!

!

rnr

n

−
            

ProofProofProofProof:  

              Let there are n objects and let us denote the number of combinations of n 

objects taking r at a time as r

nc . Therefore every combination contains r objects and 

these r objects can be arranged in r! ways,  which gives us the total number of 

permutations of n objects taking r at a time. 

   Hence r

n p = !r r

nc  

          ⇒ r

nc =
!r

pr

n

 

                                ⇒ r

nc =
)!(!

!

rnr

n

−
 

 

Note:Note:Note:Note:  Relation between r

n p  and r

nc is r

n p = !r r

nc  

 

Restricted combinationsRestricted combinationsRestricted combinationsRestricted combinations 

1)1)1)1) The number of combinations of n dissimilar thing taken r at a time when p 

particular things always   

      occur = pr

pn
C −

−  

 

2)2)2)2) The number of combinations of n dissimilar things taken r at a time when p 

particular things never occur = r

pn C−  

 

Properties of  Properties of  Properties of  Properties of  r

nc     ::::    

1)   1)   1)   1)   r

nc = 1

1

−

−

− = r

n

rn

n
c

r

n
c  

Proof:Proof:Proof:Proof:    

                                                    1

1

)]!1()1[()!1(

)!1(

)!(!

!
−

−=
−−−−

−
=

−
= r

n

r

n c
r

n

rnrr

nn

rnr

n
c     

3)3)3)3) If x

n
c = y

n
c  then either nyxoryx =+=  

Proof:Proof:Proof:Proof:    

Case (i) given Case (i) given Case (i) given Case (i) given x

n
c = y

n
c  

                  yx =⇒  

Case (ii)Case (ii)Case (ii)Case (ii) given given given given x

n
c = y

n
c  

                   yn

n

x

n
cc −=⇒ ynx −=⇒ nyx =+⇒      
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4)4)4)4)  r

nc + 1−r

nc = r

n c1+
 

                            Proof: Proof: Proof: Proof: we have 

  

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )
( )

r

n

r

n

r

n

r

n

r

n

r

n

CCCHence

C

rnr

nn

rnr

n

rnr

n

rnr

rrn

rnr

n

rnrrnr

n

rnrnr

n

nrr

n

rnr

n

rnr

n
CC

1

1

1

1

!1!

!1

1

1
.

!!1

!

1

1

!!1

!

1

11

!!1

!

!.1!1

!

!1!1.

!

!1!1

!

!!

!

+

−

+

−

=+

=

+−

+
=

+−

+

−−
=










+−

++−

−−
=








+−
+

−−
=

−+−−
+

−−
=

+−−
+

−
=+

 

 

5)5)5)5) 
( )( ) ( )

!

1........21

! r

rnnnn

r

p
C r

n

r

n +−−−
==   

6)6)6)6) 
( )

1
!0!

!

!!

!
==

−
=

n

n

nnn

n
Cn

n  

7)7)7)7)  
( )

1
!0!

!

!0!0

!
0 ==

−
=

n

n

n

n
Cn  

8)8)8)8) ∑∑
==

−==
n

r

n
n

r r

rnp
rnc

11

12
!

),(
),(  

9)9)9)9) Number of divisors or factors of a given number n>1, which can be expressed as 
rk

r

kk
ppp ........... 21

21 where rppp ,,........., 21  are distinct primes and 

rkkk ,,........., 21 are positive integers, are )1().........1)(1( 21 +++ rkkk (including 1and n). 

10)10)10)10) Number of selections from n objects, taking at least one is   

1cn
+ 2cn

+ 3c
n

+………. + n

n
c = 12 −n  

Ex:Ex:Ex:Ex:  There are 15 bulbs in a room. Each one of them can operated independently. 

The number of ways in which the room can be lightened is 1

15c + 2

15c + 3

15
c +………. 

+ 15

15
c = 1215 −  

11)11)11)11) The number selection of r objects out of n identical objects is 1. 

12)12)12)12) The number of selection of none or more objects from n identical objects is equal 

to n+1. 

13)13)13)13) Number of ways of dividing m different things into 3 sets consisting a, b, c things 

such that a, b, c are distinct and a + b +c=m is  
!!!

!

cba

m
ccc c

bam

b

am

a

m =−−−  

14)14)14)14) Number of ways of distributing m different things among three persons such that 

each person gets a, b, c things is !3
!!!

!

cba

m
 

15)15)15)15) Number of ways dividing 3m different things into three groups having m things in 

each group is 
!3)!(

!
3

m

m
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16)16)16)16) Number of ways distributing 3m different things to three persons having m things  

is 
3)!(

!

m

m
 

17)17)17)17) If there are n points in the plane then the number of line segments can be drawn 

is 2cn
 

18)18)18)18) If there are n points out of which m are collinear  then the number of line 

segments can be drawn is )1)((
2

1
122 −+−=+− mnmncc

mn
 

19)19)19)19) If there are n points in the plane then the number of triangles can be drawn is 3c
n

 

20)20)20)20) If there are n points out of which m are collinear  then the number of triangles 

can be drawn is 33 cc
mn −  

21)21)21)21) Number of diagonals in a regular polygon having n sides is ncn −2 . 

      ExExExEx: Number of diagonals in a regular decagon is 102

10 −c . 

Problems:Problems:Problems:Problems:    

1. Compute the following          

  i) 3

12
c   ii) 12

15c   iii) 4

9c + 5

9
c   iv) 3

7
c + 4

6c + 3

6
c    

2. Prove that ∑
=

=
5

1

5 31
r

rc  

3. Evaluate 22

25c - 21

24c  

4. If =rc3

5

3

15

+rc , find r 

5. If =rc18

2

18

+rc , find 5c
r  

6. Determine n, if 33

2 : cc
nn

=11:1. 

7. If 8c
n = 6c

n , determine n and hence find 2cn  

8. Determine n, if 3

3

6: cc
nn −

=33 : 4. 

9. Prove that  sr

sn

s

n

s

r

r

n
cccc −

−×=×  

10. If  13:9:6:: 11 =+−

r

n

r

n

r

n ccc  , find n and r 

11. Find the value of the expression ∑
=

−+
5

1

3

52

4

47

j

j
cc  

12. How many diagonals does a polygon have?[ ]2 ncn −  

13. Find the number of sides of a polygon having 44 diagonals.[Ans:11] 

14. In how many ways three balls can be selected from a bag containing 10 balls?[ 

]3

10
c  

15. In how many ways two black and three white balls are selected from a bag 

containing 10black and 7 white balls? [ 2

10c 3

7
c  ] 

16. A delegation of 6 members is to be sent abroad out of 12 members. In how many 

ways can the selection be made so that i) a particular person always included 

[ ]5

11
c             ii) a particular person never 

included[ ]6

11
c  

17. A man has six friends. In how many ways can he invite two or more friends to a 

dinner party?[Ans:57] 

18. In how many ways can a student choose 5 courses out of the courses 

921 ,,........., ccc  if 21 ,cc  are compulsory and 86 ,cc  can not be taken together? 

19. In a class there are 20 students.  How many Shake hands are available if they 

shake hand each other?[ ]2

20c  
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20. Find the number of triangles which can be formed with 20 points in which no two 

points are collinear?[ ]3

20
c  

21. There are 15 points in a plane, no three points are collinear. Find the number of 

triangles formed by joining them. [ ]3

15
c  

22. How many lines can be drawn through 21 points on a circle?[ ]2

21c  

23. There are ten points on a plane, from which four are collinear. No three of 

remaining six points are collinear. How many different straight lines and triangles 

can be formed by joining these points?[Ans: −2

10c ],1 3

4

3

10

2

4
ccc −+  

24. To fill 12 vacancies there are 25 candidates of which 5 are from S.C. If three of 

the vacancies are reserved for scheduled caste, find the number of ways in which 

the selections can be made. [Ans: ]3

5

9

20
cc  

25. On a New Year day every student of a class sends a card to every other student. 

If the post man delivers 600 cards. How many students are there in the 

class?[Ans:25] 

26. There are n stations on a railway line. The number of kinds of tickets printed (no 

return tickets) is 105. Find the number of stations.[Ans:15] 

27. In how many ways a cricket team containing 6 batsmen and 5 bowlers can be 

selected from 10 batsmen and 12 bowlers?[ ]5

12

6

10
cc  

28. How many words can be formed out of ten consonants and 4 vowels, such that 

each contains three consonants and two vowels?[ ]!52

4

3

10
cc  

29. How many words each of three vowels and two consonants can be formed from 

the letters of the word INVOLUE? [ ]!52

3

3

4
cc  

30. A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways 

can this be done when the committee consists of  i) exactly 3 girls[Ans: ]3

4

4

9
cc   

ii) at least three girls.[ +3

4

4

9
cc ]4

4

3

9
cc  

31. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 

members be selected if the team has i) no girls ii) at least one boy iii) at least 

one boy and one girl iv) at least three girls. 

32. In how many ways four cards selected from the pack of 52 cards? [ ]4

52c  

33. How many factors do 210 have?[16(including 1) and 15(excluding 1)] 

34. How many factors does 1155 have that are divisible by 3?[Ans:8] 

35. Find the number of divisors of 21600.[71(excluding 1)] 

36. In an examination minimum is to be scored in each of the five subjects for a pass. 

In how many ways can a student fail?[Ans:31] 

37. In how many number of ways 4 things are distributed equally among two persons. 

[
2)!2(

!4
] 

38. In how many ways 12 different things can be divided in three sets each having 

four things? [Ans:
!3)!4(

!12
3

] 

39. In how many ways 12 different things can be distributed equally among three 

persons?[Ans:
3)!4(

!12
] 

40. How many different words of 4 letters can be made by using the letters of the 

word EXAMINATION?[Ans:2454] 

41. How many different words of 4 letters can be made by using the letters of the 

word BOOKLET?[ 
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42. How many different 5 lettered words can be made by using the letters of the 

word INDEPENDENT?[Ans:72] 

43. From 5 apples, 4 oranges and 3 mangos how many selections of fruits can be 

made?[Ans:119] 

44. Find the number of different sums that can be formed with one rupee, one half 

rupee and one quarter rupee coin.[Ans:7] 

45. There are 5 questions in a question paper. In how many ways can boy solve one 

or more questions?[Ans:31] 

 

Important formulas:Important formulas:Important formulas:Important formulas:    

1. The number of arrangements  taking not more than q objects  from n objects, 

provided every object can be used any number of times is given by ∑
=

q

r

r
n

1

. 

2. Number of integers from 1 to n which are divisible by k is 






k

n
, where [ ] denotes 

the greatest integral function. 

3. The total number of selections of taking at least one out of 

nppp +++ .........21 objects where 1p  are alike of one kind, 2p are alike of another 

kind and so on …….. np are alike of  another kind is equal to  

1)]1().........1)(1[( 21 −+++ nppp  

4. The total number of selections taking of at least one out of 

sppp n ++++ .........21 objects where 1p  are alike of one kind, 2p are alike of another 

kind and so on …….. np are alike of  another kind and s are distinct are equal to  

1}2)]1().........1)(1{[( 21 −+++ s

nppp  

5. The greatest value of r

nc is k

n
c where  

    

Nmmnif
n

or
n

Nmmnif
n

k

∈∀+∈
+−

=

∈∈=

12
2

1

2

1

,2
2

 

6. Number of rectangles of any size in a square of size 

2

1

3

2

)1(
∑

=








 +
==×

n

r

nn
rnn  

7. Number of squares of any size in a square of size 
6

)12)(1(

1

2 ++
==× ∑

=

nnn
rnn

n

r

 

8. Number of squares of any size in a rectangle of size ∑
=

+−+−=×
n

r

rnrmnm
1

)1)(1(  

9.  If m points of one straight line are joined to n points on the another straight line, 

then the number of points of intersections of the line segment thus obtained 

= 2cm

2cn =
4

)1)(1( −− nmmn
. 

10. Number of rectangles formed on a chess board is 2

9

2

9 cc . 

11. Number of rectangles of any size in a rectangle of size 

)1)(1(
4

)( 2

1

2

1 ++==≤=× ++
nm

mn
ccmnnm

nm  

12. The total number of ways of dividing n identical objects into r groups if blank 

groups are allowed is 1

1

−

−+

r

rn c . 
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13. The total number of ways of dividing n identical objects into r groups if blank 

groups are not allowed is 1

1

−

−

r

n c . 

14. The exponent of k in n! is 





+





+





+





+





=

pk
k

n

k

n

k

n

k

n

k

n
nE ........)!(

432
, where nk

p <  

15. The sum of the digits in unit’s place of the numbers formed by n nonzero distinct 

digits is  

(sum of the digits) (n-1)!  

16. The sum of the numbers formed by n nonzero distinct digits is (sum of the digits) 

(n-1)! 






 −

9

110n

 

17. Derangements:Derangements:Derangements:Derangements: If n items are arranged in a row, then the number of ways in 

which they can be rearranged so that no one of them occupies the place 

assigned to it is 





−++−+−

!

1
)1(.............

!3

1

!2

1

!1

1
1!

n
n

n  

 

Exercise:Exercise:Exercise:Exercise:    

1. In how many ways can 5 beads out 7 different beads be strung into a string? 

2.  A person has 12 friends, out of them 8 are his relatives. In how many ways can 

he invite his 7 friends so  as to include his 5 relatives?  

   (a) 8C3 x 4C2                   (b) 12C7       (c)  12C5 x 4C3               (d) none of these 

3. It is essential for a student to pass in 5 different subjects of an examination then the 

no. of method so that  

    he may failure  

                  (a) 31                           (b) 32                      (c)   10     

 (d)  15 

4. The number of ways of dividing 20 persons into 10 couples is 

             (a)                   (b)20C10         (c)  (d) none 

of these 

5. The number of words by taking 4 letters out of the letters of the word 

‘COURTESY’, when T and S are always included are  

                 (a) 120                            (b) 720                         (c)  

 360               (d)  none of these 

6. The number of ways to put five letters in five envelopes when one letter is kept in 

right envelope and four letters in wrong envelopes are–  

                (a) 40                            (b) 45            (c)   30    

      (d)  70 

7.  is equal to  

(a) 
51

C4               (b) 
52

C4            (c)  
53

C4             (d) none 

of these 

8. A candidate is required to answer 6 out of 10 questions which are divided into 

two groups each containing 5 questions and he is not permitted to attempt 

more than 4 from each group. The number of ways in which he can make up 

his choice is 
 (a) 100                         (b) 200               (c)  300                    (d)  400 



    14  

9. Out of 10 white, 9 black and 7 red balls, the number of ways in which selection of 

one or more balls can be made, is  

  (a) 881                      (b) 891           (c)   879          

              (d)  892 

10. The number of diagonals in an octagon are  

(a)  28              (b) 48                  (c)   20                

 (d)  none of these 

 

Q26.Out of 10 given points 6 are in a straight line. The number of the triangles formed 

by joining any three of them is  

(a)  100             (b) 150   (c)   120          

              (d)  none of these 

 

Q27.In how many ways the letters AAAAA, BBB, CCC, D, EE, F can be arranged in a 

row when the letter C occur at different places?  

(a)  (b)  (c)  (d)

 none of these 

 

Q28.A is a set containing n elements. A subset P of A is chosen. The set A is 

reconstructed by replacing the elements of P. A subset Q of A is again chosen. The 

number of ways of chosen P and Q so that P Ç Q = f is  

(a)  22n – 2nCn       (b) 2n (c)   2n – 1             

    (d)  3n 
 

Q29.A parallelogram is cut by two sets of m lines parallel to the sides, the number of 

parallelograms thus formed is  

(a)  (b)  (c)  (d)

  
 

Q30.Along a railway line there are 20 stations. The number of different tickets required 

in order so that it may be possible to travel from every station to every station is  

(a)  380                (b) 225 (c)   196             

 (d)  105 

 

Q31.The number of ordered triplets of positive integers which are solutions of the 

equation x + y + z = 100 is  

(a)  5081                 (b) 6005         (c)   4851        

            (d)  none of these 

 

Q32.The number of numbers less than 1000 that can be formed out of the digits 0, 1, 2, 

3, 4 and 5, no digit being repeated, is  

(a)  130                      (b) 131              (c)   156              

    (d)  none of these 

 

Q33.A variable name in certain computer language must be either a alphabet or 
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alphabet followed by a decimal digit. Total number of different variable names that can 

exist in that language is equal to  

(a)  280                               (b) 290              (c)   286               

 (d)  296 

 

Q34.The total number of ways of selecting 10 balls out of an unlimited number of 

identical white, red and blue balls is equal to  

(a)  12C2                       (b) 12C3            (c)   10C2                 
    (d)  10C3 
 

Q35.Total number of ways in which 15 identical blankets can be distributed among 4 

persons so that each of them get atleast two blankets equal to  

(a)  10C3                             (b) 9C3                   (c)   11C3                

      (d)  none of these 

 

Q36.The number of ways in which three distinct numbers in AP can be selected from 

the set {1, 2, 3, …, 24}, is equal to  

(a)  66                                     (b) 132                (c)   198          

               (d)  none of these 

 

Q37.The number of ways of distributing 8 identical balls in 3 distinct boxes so that none 

of the boxes is empty is:  

(a)  5                                    (b) 21             (c)   38                  

          (d)  8C3 
 

Q38.The number of ways in which 6 men and 5 women can dine at a round table if no 

two women are to sit together is given by:  

(a)  6! x 5!                         (b) 30        (c)   5! x 4!          

           (d)  7! x 5! 

 

Q39.If nCr denotes the number of combinations of n things taken r at a time, then the 

expression nCr + 1 + nCr – 1 + 2 x nCr equals:  

(a)  n + 2Cr                           (b) n + 2Cr + 1 (c)   n + 1Cr       
            (d)  n + 1Cr + 1 
 

Q40.If the letters of the word SACHIN are arranged in all possible ways and these are 

written out as in dictionary, then the word SACHIN appears at serial number 

(a)  600                   (b) 601              (c)   602          

            (d)  603 

    

Q26.The number of numbers is there between 100 and 1000 in which all the digits are 

distinct is  

(a) 648 (b) 548           (c) 448                  

         (d) none of these 

 

Q27.The number of arrangements of the letters of the word ‘CALCUTTA’ is  

(a) 5040         (b) 2550               (c) 40320                

         (d) 10080 
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Q28. How many different words can be formed with the letters of the word 

“PATLIPUTRA” without changing the position of the vowels and consonants?  

(a) 2160                        (b) 180                     (c) 720                

               (d) none of these 

 

Q29. How many different words ending and beginning with a consonant can be formed 

with the letters of the word ‘EQUATION’? 

(a) 720                            (b) 4320                   

       (c) 1440                        (d) none of these 

 

Q30.The number of 4 digit numbers divisible by 5 which can be formed by using the 

digits 0, 2, 3, 4, 5 is  

(a) 36                      (b) 42                                  (c) 48               

       (d) none of these 

 

Q31.The number of ways in which 5 biscuits can be distributed among two children is  

(a) 32                    (b) 31                                   (c)

 30                                (d) none of these 

 

Q32.How many five-letter words containing 3 vowels and 2 consonants can be formed 

using the letters of the word “EQUATION” so that the two consonants occur together?  

(a) 1380              (b) 1420                     (c) 1440                

             (d) none  

 

Q33.If the letters of the word ‘RACHIT’ are arranged in all possible ways and these 

words are written out as in a dictionary, then the rank of this word is  

(a) 365                  (b) 702                       (c) 481               

              (d) none of these 

 

Q34.On the occasion of Dipawali festival each student of a class sends greeting cards to 

the others. If there are 20 students in the class, then the total number of greeting cards 

exchanged by the students is  

(a) 20C2                     (b) 2 . 20C2                       (c) 2 . 20P2             

          (d) none of these 

 

Q35.The sum of the digits in the unit place of all the numbers formed with the help of 3, 

4, 5, 6 taken all at a time is  

(a) 18                 (b) 108                   (c) 432                    

          (d) 144 

 

Q36.How many six digits numbers can be formed in decimal system in which every 

succeeding digit is greater than its preceding digit  

(a)  9P6           (b) 10P6                           (c) 9P3                   

            (d) none of these 

 

Q37.How many ways are there to arrange the letters in the work GARDEN with the 

vowels in alphabetical order?  
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(a)  120 (b) 240                           (c) 360                    

          (d) 480 

 

Q38.A five-digit numbers divisible by 3 is to be formed using the numerals 0, 1, 2, 3, 4 

and 5, without repetition. The total number of ways this can be done is     

(a) 216           (b) 240                           (c) 600               

                (d) 3125 

 

Q39.How many different nine digit numbers can be formed from the number 223355888 

by rearranging its digits so that the odd digits occupy even positions?  

(a) 16 (b) 36                                   (c) 60     

                     (d) 180 

 

Q40.The number of arrangements of the letters of the word BANANA in which the two 

N’s do not appear adjacently is  

(a) 40 (b) 60                                   (c)

 80                                (d) 100 
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THE BINOMIAL THEOREMTHE BINOMIAL THEOREMTHE BINOMIAL THEOREMTHE BINOMIAL THEOREM    

Binomial expressionBinomial expressionBinomial expressionBinomial expression:  

    An algebraic expression consisting of only two terms is called a binomial 

expression. 

ExExExEx: i) x+y ii) 4x -3y iii) x2+y2 iv) x2- 1/a2 
Binomial theoremBinomial theoremBinomial theoremBinomial theorem:  

 The formula by which any power of a binomial expression can be 

expanded in the form of a series is known as binomial theorem. This theorem 

is given by Sir Issac Newton. 

Binomial theorem for positive integral indexBinomial theorem for positive integral indexBinomial theorem for positive integral indexBinomial theorem for positive integral index: 

If n is a positive integer 

=+ nyx )( +0

0 yxc
nn +− 11

1 yxc nn +− 22

2 yxc nn +− 33

3 yxc
nn ……………..+ nnn

n

n
yxc

−  

Note: Note: Note: Note:     

1) Number of terms in the expansion of (x + y)n is n+1. 

2) In the expansion of (x + y)n, the sum of the powers of x and y is equal to n. 

3) 0c
n , 1cn , 2cn ,………, n

n
c  are called coefficients of 1st, 2nd ,……..,(n+1)th terms 

respectively. These are called binomial coefficients. 

Pascal's trianglePascal's trianglePascal's trianglePascal's triangle:  

The coefficients of the binomial expansion for different values of n are written 

in the form of triangle as shown below. 

                       

 

 

 

 

 

 

This triangular array is called Pascal's Triangle.   

Each row gives the binomial coefficients.  That is, the row 1 2 1 are the 

coefficients of (a + b) ².  The next row, 1 3 3 1, are the coefficients of (a + b) 3; and so on.   

To construct the triangle, write 1, and below it write 1  1.  Begin and end 

each successive row with 1.  To construct the intervening numbers, add the 

two numbers immediately above. 

Thus to construct the third row, begin it with 1, and then add the two 

numbers immediately above:  1 + 1.  Write 2.  Finish the row with 1.   

To construct the next row, begin it with 1, and add the two numbers 

immediately above: 1 + 2.  Write 3.  Again, add the two numbers 

immediately above:  2 + 1 = 3.  Finish the row with 1.  

Some special forms of Binomial expansionSome special forms of Binomial expansionSome special forms of Binomial expansionSome special forms of Binomial expansion: 

   n=0 

n=1 

n=2 

n=3 

n=4 

n=5 

n=6 
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=+ nyx )( +0

0 yxc
nn +− 11

1 yxc nn +− 22

2 yxc nn +− 33

3 yxc
nn …………+ nnn

n

n
yxc

− … (1) 

               =∑
=

n

r 0

rrn

r

n yxc −  

Put –x in place of x, we get 

=− nyx )( −0

0 yxc
nn +− 11

1 yxc nn −− 22

2 yxc nn +− 33

3 yxc
nn ……+ nnn

n

nn
yxc

−− )1( …(2) 

              =  ∑
=

−
n

r

r

0

)1( rrn

r

n yxc −  

Put x = 1 in (1) 

=+ ny)1( +0

01 yc
nn +− 11

11 yc nn +− 22

21 yc nn +− 33

31 yc
nn …………+ nnn

n

n
yc

−1  

     = +1 +ycn

1 +2

2 ycn +3

3 yc
n …………+ ny  

             = ∑
=

n

r 0

r

r

n yc  

Put x = 1 in (2) 

=− ny)1( −0

01 yc
nn +− 11

11 yc nn −− 22

21 yc nn +− 33

31 yc
nn …………+ nnn

n

nn
yc

−− 1)1(  

     = −1 +ycn

1 −2

2 ycn +3

3 yc
n …………+ nn y)1(−  

     = ∑
=

−
n

r

r

0

)1( r

r

n yc  

Problems:Problems:Problems:Problems:    

1) Expand (x − 1)6. 
 Solution:   According to Pascal's triangle, the coefficients are  

1  6  15  20  15  6  1. 

In the binomial, x is "x", and −1 is "y".  The signs will alternate:  

(x − 1)6   = 

  

x
6 − 6x5

···· 1 + 15x4
···· 1² − 20x3

···· 13 + 15x²···· 14 − 6x···· 15 + 16
 

 
  

=  
x

6 − 6x5 + 15x4 − 20x3 + 15x² − 6x + 1 

 

2)  The term   a8
b

4 occurs in the expansion of what binomial? 

AnswerAnswerAnswerAnswer.   (a + b)12 .  The sum of 8 + 4 is 12. 

3)....   Use Pascal's triangle to expand the following. 

a)   (a + b)3  = = = =     a
3 + 3a²b + 3ab² + b3 

b)   (a − b)3  =  a3 − 3a²b + 3ab² − b3 
c)   (x + y)4  =  x4 + 4x3

y + 6x²y² + 4xy3 + y4  
d)   (x − y)4  =  x4 − 4x3

y + 6x²y² − 4xy3 + y4  
e)   (x − 1)5  =  x5 − 5x4 + 10x3 − 10x² + 5x − 1 

f)   (x + 2)5  =  x5 + 10x4 + 40x3 + 80x² + 80x + 32 

g)   (2x − 1)3  =  8x3 − 12x² + 6x − 1  
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Exercise:Exercise:Exercise:Exercise:    

1) Expand i)
6

1








+

x
x    ii)

4

1








−

y
x ,y≠ 0   iii) ( )4

32 yx −    iv) ( )52 2ax +    v) ( )321 xx ++  

                      vi) ( )421 xx +−  

2) Expand ( ) −+
6

ba ( )6
ba − .hence find the value of ( ) −+

6

12 ( )6

12 −  

3) Simplify ( ) −−+
6

1xx ( )6

1−− xx  

4)  If A be the sum of odd terms and B be the sum of even terms in the 

expansion of ( )n
ax + , then prove that  

                  i) ( )n
axBA 2222 −=−             ii) 2( ( ) nn

axaxBA 2222 )() −++=+  

5) The first three terms in the expansion ny)1( + are 1, 10 and 40, find the 

expansion. 

6) Using binomial theorem compute (99)5 
7) Find the exact value of (1.01)5 
8) Which is larger (1.2)4000 or 800? 

9) Which is greater (1.1)10000 or 1000? 

10) Show that (101)50> (100)50 + (99)50. 
11) Prove that ∑

=

n

r 0

r

r

nc 3 = 4n. 
12) Prove that +0c

n +1cn +2cn +3c
n …………+ n

n
c = 2n. 

13) Prove that product of k consecutive numbers is divisible by k!. 

General term in the expansion (x + y)General term in the expansion (x + y)General term in the expansion (x + y)General term in the expansion (x + y)nnnn : 
=+ nyx )( +0

0 yxc
nn +− 11

1 yxc nn +− 22

2 yxc nn +− 33

3 yxc
nn …………+…………+…………+…………+ nnn

n

n
yxc

−     

In the above expansion the (r+1)th term is given by  

     =+1rT rrn

r

n yxc −     

this is called the general term of the expansion. 

Putting r=0,1,2,3,4…..,n we get 1st ,2nd ,……..,(n+1)th terms respectively. 

Middle term in the expansionMiddle term in the expansionMiddle term in the expansionMiddle term in the expansion (x + y)(x + y)(x + y)(x + y)    nnnn::::    
CaseCaseCaseCase----    i) n is eveni) n is eveni) n is eveni) n is even    

                            If n is even then the number of terms in the expansion is n+1 which is odd. 

Therefore the number of middle terms in the expansion is one and the term is 

1
2

+
n

    th term.  

CaseCaseCaseCase----    ii) n is oddii) n is oddii) n is oddii) n is odd    
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      If n is odd then the number of terms in the expansion is n+1 which is even. 

Therefore the number middle terms in the expansion are two and the terms are 

2

1+n
th and 

2

3+n
th terms. 

Greatest coefficient in the expansionGreatest coefficient in the expansionGreatest coefficient in the expansionGreatest coefficient in the expansion (x + y)(x + y)(x + y)(x + y)n n n n ::::    
   In any binomial expansion the middle term has the greatest coefficient. If 

there are two middle terms then their two coefficients are equal and greater. 

ProbProbProbProb : If  n be a positive integer,  prove that the coefficients of the terms in the 

expansion of (x+y)n  equidistant from the beginning and from the end are equal. 

  In the expansion of (x+y)n   
Co efficient of 1st term from beginning = 0c

n  

Co efficient of 2nd  term from beginning = 1cn  

Co efficient of 3rd  term from beginning = 2cn  

…………………………………….. 

……………………………………… 

Co efficient of r th term from beginning = 1−r

nc  

Now  

Co efficient of 1st term from end = n

n
c  

Co efficient of 2nd  term from end = 1−n

n
c  

Co efficient of 3rd  term from end = 2−n

n
c  

…………………………………….. 

……………………………………… 

Co efficient of r th term from end = )1( −− rn

n
c     

Since 1−r

nc  = = = = )1( −− rn

n
c are equal. We can say in the expansion    of (x+y)n  , the co 

efficient of r th term from beginning and end are equal. 

NoteNoteNoteNote: In the binomial expansion, the r th term from the end is equal to (nIn the binomial expansion, the r th term from the end is equal to (nIn the binomial expansion, the r th term from the end is equal to (nIn the binomial expansion, the r th term from the end is equal to (n----r+2)th r+2)th r+2)th r+2)th 

term from the beginning.term from the beginning.term from the beginning.term from the beginning.    

ProblemsProblemsProblemsProblems: 

1) Find the 4 th term in the expansion of (x-2y)12 
2)  Find the 13 th term in the expansion of .0,

3

1
9

18

≠







− x

x
x  
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3) Find the 5 th term from the end in the expansion of .
2

2

9

2

3









−

x

x
 

4) Write the general term in the expansion of ( ) .
62 yx −  

5) If x >1 and the third term in the expansion of 
5

log10
1









+ x

x
x

is1000, find the 

value of x. 

6) If the 21st and 22nd terms in the expansion of (1+x)44 are equal then find the 

value of x. 

7) In the binomial expansion of (a-b)n, 5≥n , the sum of 5th and 6th terms is 

zero, then find .
b

a
 

8) Find the middle term in the expansion of .9
3

10









− y

x
 

9) Find the middle term in the expansion of .
2

1
12









−

x
x  

10) Find the middle term in the expansion of .
1

2

7

2








−

x
x  

11) Find the middle term in the expansion of ( ) .221 2 n
xx +−  

12) Prove that the middle term in the expansion of 
n

x
x

2
1








+  is 

!

2)12......(7.5.3.1

n

n
n−

 

13)  Show that the greatest coefficient in the expansion of 
n

x
x

2
1








+ is 

!

2)12......(7.5.3.1

n

n
n−

. 

14) Show that the coefficient of the middle term in (1+x)2n is equal to the sum 

of the coefficients of two middle terms in (1+x)2n-1. 
15) Find the coefficient of 1/y2 in .

10

2

3









−

y

c
y  

16) Find the coefficient of x 9 in ( ) .331
1532 xxx +++  

17) Find the coefficient of x 40 in ( ) .21
272xx ++  

18) Find the term independent of x in .
3

1

2

3
9

2









−

x

x
 

19) Given that the fourth term in the expansion of .
1

n

x
px 








+ is 5/2, find n and 

p. 

20) Find the value of k so that the term independent of x in 
10

2








+

x

k
x is 405. 

21) In the expansion of (1+a)m+n, prove that the coefficient of  am and an are 

equal. 
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22) Find a if the coefficient of x2 and x3 in the expansion of (3+ax)9 are equal. 

23) If the coefficients of ar-1, ar,ar+1 in the binomial expansion of (1+a)n are in 

A.P. prove that n2-n(4r+1)+4r2-2=0. 

24) Find the coefficient of x-1 in (1+3x2+x4) 8
1

1 







+

x
. 

25) If n be a positive integer, then prove that 62n-35n-1 is divisible by 1225. 

26)  Find the  

a) 7th term in the expansion of 
9

2

5

5

4








−

x

x
 

b) 9th term in the expansion of 
12

2

3








−

x

a

a

x
 

c) 5th term in the expansion of 
7

3
3









− b

a
and 

10

3

2

3

1
2 








−

x
x  

27) Find a, if the 17th and 18th terms of the expansion (2+a)50 are equal. 

28) Find the r th term from the end in 

9

2

3 2

2 







−

x

x
 

29) Write the general terms in the following expansions. 

      i) ( ) .1
122x− ii) 

10

2

3








−

x
x iii) 

12

2 1








−

x
x , 0≠x  

30) Find the general term and middle term in the expansion of 

12 +









+

n

x

y

y

x
n being 

positive integer. 

31) If n is a positive integer, show that  

           i) 4n-3n-1 is divisible by 9. 

           ii) 25n-31n-1 is divisible by 961. 

32) Using binomial theorem prove that 6n-5n always leaves the remainder 1 

when divided by 25 for all positive integers n. 

33)  Find the middle terms in the expansions 

i) 
20

2

3

3

2








−

yx
ii) 

6

2

3

3

2








−

x

x
 iii) 

7









−

x

y

y

x
iv) ( ) n

x
2

1+ v) ( )n
xx 221 +− vi)

7
3

6
3 








−

x
 

34) Find the coefficient of  

i) x in the expansion of 
9

3
2 








−

x
x            ii) x7 in the expansion of 

11

2

5

1
3 








+

x
x  

iii) x9 in the expansion of 
20

2 1
2 








−

x
x      iv) x24 in the expansion of 

15

2 3








−

x

a
x  

v) x9 in the expansion of 
9

2

3

1








−

x
x         vi) x-7 in the expansion of 

11

23

1
2 








−

x
x  

vii) x5 in the expansion of ( )8
3+x             viii) x5 in the expansion of ( )9

3+x  

ix) a5b7  in the expansion of ( )12
2ba −         x) x6y3 in  in the expansion of ( )9

yx +   

35) If the coefficients of x,x2 and x3 in the binomial expansion (1+x)2n are in 

A.P then prove that 2n2-9n+7=0. 
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36) Find the positive value of m for which the coefficient of x2 in the expansion 

of (1+x)m is 6. 

37) Find the term independent of x in the following binomial expansion(x ≠ 0). 

i) 
n

x
x

2
1








+      ii) 

14
1








−

x
x      iii) 

13

2 1
2 








+

x
x       iv)

12

2 1








+

x
x       v) 

10

22

3

3 









+

x

x
 

vi) 
12

2 1
2 








−

x
x   vii) 

25

3

2 3
2 








−

x
x  viii) 

6
2

3

1

2

3








−

x

x
 ix) 

15

2

3 3








−

x
x x) 

10

3

2 3








−

x
x  

xi) 

8

3
13

1

2 












+

−
x

x
xii) 

12
1








−

x
x xiii) 

18

3

3

2

1








+

x
x  

38) If three consecutive coefficients in the expansion of (1+x)n be 56, 70 and 

56., find n and the position of the coefficients. 

39) If three successive coefficients in the expansion of (1+x)n be 220, 495 and 

972., find n. 

40) If coefficients of (r-1)th, rth and (r+1)th terms in the expansion of (x+1)n 
are  in the ratio 1:3:5. Find n and r. 

41)  If the coefficients of 5th, 6th and 7th terms in the expansion of (1+x)n are  in 

A.P, Find n. 

42) If the coefficients of 2nd , 3rd  and 4th  terms in the expansion of (1+x)n are  in 

A.P, show that 2n2-9n+7=0. 

43) In the expansion of (1+a)m+n, prove that the coefficient of am and an are equal. 

44) Find a if the coefficient of x2 and x3 in the expansion of (3+ax)9 are equal. 

45) If coefficients of ar-1, ar,ar+1  in the expansion of (1+a)n are  in A.P. Prove 

that  

    n2-n(4r+1)+4r2-2=0. 

46) Find the coefficient of x4 in the expansion of ( ).1031 2xx ++

10
1








+

x
x  

47) Find the coefficient of x-1 in the expansion of ( ).31 42 xx ++

8
1








+

x
x  

48) Find n if the if the coefficient of 4th and 13th terms in the expansion of 

(a+b)n are equal. 

49) If in the expansion of (1+x)43 the coefficient of (2r+1)th term is equal to 

the coefficient of (r+2) th term , find r. 

50) If three consecutive coefficients in the expansion of (1+x)n be 165, 330 and 

462., find n and the position of the coefficients. 

51) If a1,a2,a3 and a4 be any four consecutive coefficients in the expansion of 

(1+x)n, prove that 
32

2

43

3

21

1 2

aa

a

aa

a

aa

a

+
=

+
+

+
. 

52) If 2nd, 3rd and 4th terms in the expansion of (x+y) n be 240,720 and 1080 

respectively find x, y and n. 

53)  If the coefficients of three consecutive terms in the expansion of (1+a)n 
are  in the ratio 1:7:42. Find n . 
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54) if in  the binomial expansion a,b,c and d be  6th ,7th ,8th and 9th terms 

respectively, prove that 
c

a

bdc

acb

3

4
2

2

=
−

−
. 

Binomial expansion for fractional index:Binomial expansion for fractional index:Binomial expansion for fractional index:Binomial expansion for fractional index:    

=+ −nx)1( −1 +xcn

1 −+ 2

2

1 xcn ++ 3

3

2
xc

n ….+ r

r

rnr xc1)1( −+− +…..…, 1<x , Qn ∈  

To determine numerically greatest term in the expansion ofTo determine numerically greatest term in the expansion ofTo determine numerically greatest term in the expansion ofTo determine numerically greatest term in the expansion of nyx )( + )( Nn ∈∀ ::::----    

 It is always better to consider nx)1( + in place of nyx )( + . . . . For this take one 

of x and y common preferably the greater one. For example ( )
10

1010

7

5
1775 








+=+ , 

now one should find the greatest term of 
10

7

5
1 








+  and multiply it by 107 . So it is 

sufficient to consider the expansion of nx)1( + , x <1. 

Method to determine numerically greatest term in the expansion ofMethod to determine numerically greatest term in the expansion ofMethod to determine numerically greatest term in the expansion ofMethod to determine numerically greatest term in the expansion of nx)1( + : 

Steps:Steps:Steps:Steps:    

1. Calculate 
1

)1(

+

+
=

x

nx
r  

2.  If r is an integer then Tr and Tr+1 are equal and both are greatest terms. 

3.  If r is not an integer, there T[r]+1 is the greatest term where[ ] denotes 

the greatest integer part. 

Some important conclusions frSome important conclusions frSome important conclusions frSome important conclusions from the binomial theorem:om the binomial theorem:om the binomial theorem:om the binomial theorem:    

1) If n is odd then nn axax )()( −−+ and nn axax )()( −++  both have equal no of 

terms and the number of terms are
2

1+n
. 

2) If n is even then nn axax )()( −−+  has
2

n
 terms and nn axax )()( −++  has 1

2
+

n
 

terms. 

    

    

Some important productsSome important productsSome important productsSome important products: 

1) rrrr +−= )1(2  

2) rrrrrrr +−+−−= )1(3)2)(1(3  

3) rrrrrrrrrrr +−+−−+−−−= )1(7)2)(1(6)3)(2)(1(4  

4) abcxcabcabxcbaxcxbxax −+++++−=−−− )()())()(( 23  

5) ∑ ∑ ∑ ∏
= =≠ =≠≠ =

−−+−=−−−−
4

1

4

1

4

1

4

1

234

4321 ))()()((
i ji kji i

ikjijii axaaaxaaxaxaxaxaxax  
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Some important short cuts:Some important short cuts:Some important short cuts:Some important short cuts:    

1) If a, b, c are three consecutive coefficients in the expansion of (1+x)n then the 

values of n and r are given by  

                             
acb

cabac
n

−

++
=

2

)(2
  and 

acb

cba
r

−

+
=

2

)(
   

2) If the coefficient of 1, +rr xx in the expansion 
n

b

x
a 








+ are given then the value of 

n is 
                               rrabn ++= )1(  

3) If the coefficients of Tr ,Tr+1, Tr+2 in the expansion of nx)1( + are in A.P then 

the value of r is given by 

                                    Nn
nn

r ∈∀
+±

= ,
2

2
 

4) If the coefficients of Tr ,Tr+1, Tr+2 in the expansion of nx)1( + , Nn ∈∀  are in the 

ratio a : b : c then the value of r is given by 

                                   
acb

cba
r

−

+
=

2

)(
 and 

acb

cabac
n

−

++
=

2

)(2
 

5) If in the expansion of nx)1( + , pth term = qth term then p + q =n + 2 

 

Identities involving Binomial coefficientsIdentities involving Binomial coefficientsIdentities involving Binomial coefficientsIdentities involving Binomial coefficients: 

    We know the binomial coefficients are 0c
n , , , , 1cn , , , , 2cn ,,,,    3c

n ,…………,,…………,,…………,,…………, n

n
c . . . . Through out 

this chapter we write these coefficients as ncccc ,..........,, 210  for convenience. 

 

 

1.  Prove that n

ncccc 2..........210 =++++        

     Proof: Proof: Proof: Proof:     

  we have           

=+ ny)1( +0

01 yc
nn +− 11

11 yc nn +− 22

21 yc nn +− 33

31 yc
nn …………+ nnn

n

n
yc

−1  

Put y = 1 we get 
n

ncccc 2..........210 =++++  ……………. (1) 

2. Prove that 0)1(..........210 =−+−+− n

n
cccc  

      ProofProofProofProof:  

  we have           

=+ ny)1( +0

01 yc
nn +− 11

11 yc nn +− 22

21 yc nn +− 33

31 yc
nn …………+ nnn

n

n
yc

−1  

Put y = -1 we get 

0)1(..........210 =−+−+− n

n
cccc  ……………. (2) 

3. Prove that 1

420 2.......... −=+++ n
ccc  and 1

531 2.......... −=+++ n
ccc  

ProofProofProofProof: 

    Adding (1) and (2) we get 1

420 2.......... −=+++ n
ccc  

    Subtracting (1) and (2) we get 1

531 2.......... −=+++ n
ccc  
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4. Prove that 
!

)1(
1............111

12

3

1

2

0

1

n

n

c

c

c

c

c

c

c

c n

n

n +
=








+








+








+








+

−

 

Proof:  

     Let us take 
r

rn

n

rnr

rnr

n

c

c

r

r 1

!

)!1()!1(

)!(!

!

1

+−
=

+−−
×

−
=

−

 

 Now putting r=1,2,3……,n we get 

n
c

c
=

0

1 , 
2

1

1

2 −
=

n

c

c
, 

3

2

2

3 −
=

n

c

c
………., 

nc

c

n

n 1

1

=
−

 

now 

( )

!

)1(

.........3.2.1

))(1....().........1)(1(

1
1............

3

2
1

2

1
11

1............111
12

3

1

2

0

1

n

n

n

timesnnnn

n

nn
n

c

c

c

c

c

c

c

c

n

n

n

+
=

+++
=









+







 −
+







 −
++=









+








+








+








+

−

 

 

5. If P be the sum of the odd terms and Q be the sum of the even terms in 

the expansion of (a+x)n, then prove that 2222 )( QPxa n −=−  

6. Find the sum of nc
n

cc
1

1
..........

3

1

2

1
1 21

+
++++  

ProofProofProofProof: 1st method 

( )

( )12
1

1

.........
1

1

1..........
!2

)1()1(

3

1
)1(

2

1
)1(

1

1

1

1
..........

!2

)1(

3

1

2

1
1

1

1
..........

3

1

2

1
1

1

1

1

3

1

2

1

1

1

21

−
+

=

++++
+

=









++

−+
++++

+
=

+
++

−
++=

+
++++

+

+

++++

n

n

nnnn

n

n

cccc
n

nnn
nnn

n

n

nn
n

c
n

cc

 

        2nd  method 

we have we have we have we have  

=+ ny)1( +1 +yc1 +2

2 yc +3

3 yc …………+ n

n yc  

now integrating both sides w.r.to y under the limits 0 and 1 we get the 

answer 

7. Find the sum of 
12

3

1

2

0

1 ..............32
−

++++
n

n

c

c
n

c

c

c

c

c

c
 

Proof:  

     Let us take 
r

rn

n

rnr

rnr

n

c

c

r

r 1

!

)!1()!1(

)!(!

!

1

+−
=

+−−
×

−
=

−

 

 Now putting r=1,2,3……,n we get 

n
c

c
=

0

1 , 
2

1

1

2 −
=

n

c

c
, 

3

2

2

3 −
=

n

c

c
………., 

nc

c

n

n 1

1

=
−
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now 

2

)1(

1................)2()1(

1
........

3

1
3

2

1
2

..............32
12

3

1

2

0

1

+
=

++−+−+=

++
−

+
−

+=

++++
−

nn

nnn

n
n

nn
n

c

c
n

c

c

c

c

c

c

n

n

 

 

 

8. Show that   i) 
2

22

2

2

1

2

0
)!(

)!2(
..........

n

n
cccc n =++++  

      ii) 
)!1()!1(

)!2(
.......... 1322110

+−
=++++ −

nn

n
cccccccc nn  

 iii) 
)!2()!2(

)!2(
.......... 2423120

+−
=++++ −

nn

n
cccccccc nn  

                        Proof:Proof:Proof:Proof:    

 We have  

=+ ny)1( +0c +yc1 +2

2 yc +3

3 yc …………+ n

n yc ……………. (1) 

             and =+ ny )1( +n
yc0 +−1

1

nyc +−2

2

nyc +−3

3

n
yc …………+ nc …………….(2) 

 now multiplying (1) and (2) we get

 ny 2)1( + =( +0c +yc1 +2

2 yc +3

3 yc ……+ n

n yc )( +n
yc0 +−1

1

nyc +−2

2

nyc …..+ nc )……..(

3) 

        from l.h.s 
ny 2)1( + = +0

2
c

n +ycn

1

2 +2

2

2 ycn ……..+ +−

−

1

1

2 n

n

n
yc +n

n

n
yc

2 ++

+

1

1

2 n

n

n
yc ……+ n

n

n
yc

2

2

2

…..(4) 

i) Equating the coefficients of ny  in the right hand side of (3) and (4) we 

get 

2

22

2

2

1

2

0

222

2

2

1

2

0

)!(

)!2(
..........

..........

n

n
cccc

ccccc

n

n

n

n

=++++⇒

=++++

 

ii) Equating the coefficients of 1−ny  in the right hand side of (3) and (4) we 

get 

)!1()!1(

)!2(
..........

..........

1322110

1

2

1322110

+−
=++++⇒

=++++

−

−−

nn

n
cccccccc

ccccccccc

nn

n

n

nn

 

iii) Equating the coefficients of 2−ny  in the right hand side of (3) and (4) we 

get 

)!2()!2(

)!2(
..........

..........

2423120

2

2

2423120

+−
=++++⇒

=++++

−

−−

nn

n
cccccccc

ccccccccc

nn

n

n

nn
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9. Prove that 2,0)1()1(..........32 2

2

2

1

2

0 >=+−+−+− ncnccc n

n  

10. 
)2)(1(

12

2
..............

5432

1

3210

++

+
=

+
+++++

+

nn

n

n

ccccc n

n  

11. Prove that 

i) +0

2
c

n +1

2 cn +2

2 cn ……..+……..+……..+……..+ +−12

2

n

n
c n

n
c2

2 ==== n22         [ Hints: 
n

ncccc 2..........210 =++++ ]    

ii) +1

2 cn +3

2
c

n +5

2
c

n ……..+ 12

2

−n

n
c = 122 −n   [Hints:    1

531 2.......... −=+++ n
ccc ]]]] 

iii) nncccc ++++ ..........32 321 = 12 −n
n   

[Hints: take (1+x)n then differentiate w.r.to x both sides then put 

x=1both sides] 

iv) n

n ncnccc 2)1()12(..........53 210 +=+++++  

 [Hints: write it as )..........( 210 ncccc ++++ +2( nncccc ++++ ..........32 321 )] 

12. Find the sum of 

i) n

n
ncccc

1

321 )1(..........32 −−+−+−  

        [Hints: take (1-x)n then differentiate w.r.to x both sides then put 

x=1both sides] 

 

ii) nncncc )1(..........3.22.1 32 −+++  

[Hints: take (1+x)n then differentiate w.r.to x both sides then again 

differentiate both sides w.r.to x and then put x=1both sides] 

 

iii) ncnccc
2

3

2

2

2

1 ..........32 ++++  

[Hints: take (1+x)n then differentiate w.r.to x both sides then multiply x 

both sides then again differentiate both sides w.r.to x and then put x=1both 

sides] 

 

iv)    ncnccc )1(..........32 210 +++++  

[Hints: take (1+x)n then multiply x both sides then differentiate w.r.to x 

both sides  and then put x=1both sides] 

 

v) n

n
cnccc )1()1(..........32 210 +−+−+−  

[Hints: take (1-x)n then multiply x both sides then differentiate w.r.to x 

both sides  and then put x=1both sides] 

 

vi) n

n
c

n
ccc

1

1
)1(..........

3

1

2

1
210

+
−+−+−  

[Hints: take (1-x)n then integrate both sides w.r.to x under the limits 0 

and 1] 

 

13. Show that  

i) 
2

22

3

2

2

2

1
])!1[(

)!12(
..........32

−

−
=++++

n

n
ncccc n  

[Hints: do like problem no.8] 

ii) 1

432 2)2(1)1(..........32 −−+=−++++ n

n ncnccc  
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Inequality 
 
 

 

First we will discuss about AM (Arithmetic mean), GM (Geometric mean) and 
HM (Harmonic mean). 
 

AM of any n positive real number is defined as = (x1 + x2 + .....+ xn)/n. 

GM of any n positive real number is defined as = (x1x2....xn)1/n
 

HM of any n positive real number is defined as = n/{(1/x1) + (1/x2) + ....  
+ (1/xn)} 
 
 
 

Theorem: AM ≥ GM ≥ HM 

 

Proof: Let, a and b are two positive real numbers. 
 

Then, (a – b)2 ≥ 0 
 (a + b)2 – 4ab ≥ 0 

 (a + b)2 ≥ 4ab 

 {(a + b)/2}2 ≥ ab 

 (a + b)/2 ≥ √(ab) 

 AM ≥ GM 

 
This is proved for two positive real numbers. It can be extended to any 
number of positive real numbers. 
 

Now, we have, (a + b)/2 ≥ √(ab) 
 1/√(ab) ≥ 2/(a + b) 

 √(ab)/ab ≥ 2/(a + b) 

 √(ab) ≥ 2ab/(a + b) 

 √(ab) ≥ 2/{(1/a) + 1/b)} 

 GM ≥ HM 

 
This is proved for two positive real numbers. It can be extended to any number 
of positive real numbers. 
 

Equality holds when a = b. 

 
 
Note that “positive” is written in Italic to emphasize on the word that whenever 
you will be using AM ≥ GM ≥ HM then all the real numbers must be positive. 
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Problem 1: Prove that a3 + b3 + c3 ≥ 3abc where a, b, c are positive 

real numbers. 

 

Solution 1: Applying AM ≥ GM on a3, b3 and c3 we get, 

(a3 + b3 + c3)/3 ≥ (a3b3c3)1/3
 

 (a3 + b3 + c3)/3 ≥ abc 




 a3 + b3 + c3 ≥ 3abc. 
 

Weighted AM, GM, HM: If x1, x2, ....., xn are n real numbers with weights 

w1, w2, ...., wn then weighted AM is defined as, 
 

Weighted AM = (x1w1 + x2w2 + .... + xnwn)/(w1 + w2 + ..... + wn) 

Weighted GM = {(x1
w1)(x2

w2).....(xn
wn)}^{1/(w1 + w2 + .... + wn)} 

Weighted HM = (w1 + w2 + .... + wn)/{(w1/x1) + (w2/x2) + .... + (wn/xn)} 
 
Also, Weighted AM ≥ Weighted GM ≥ Weighted HM but remember the word 
positive whenever applying this. 
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Combinatorics 
 
 

 

Fundamental theorem: If a work can be done in m ways and another work 

can be done in n ways then the two works can be done simultaneously in mn 
ways. 
 
 

 

Note: Emphasize on the word simultaneously because most of the students 
get confused where to apply multiplication and where to apply addition. When 
both the works need to be done to complete a set of work then apply 
multiplication and if the works are disjoint then apply addition. 
 
 

 

Permutation: There are n things and we need to take r things at a time and 

we need to arrange it with respect to order then the total number of ways is 
nPr where nPr = n!/(n – r)!. 
 
For example there are 3 tuples (1, 2, 3) 
 
6 permutations are possible = (1, 2, 3); (1, 3, 2); (2, 1, 3); (2, 3, 1); (3, 1, 
2) and (3, 2, 1) 
 

Now, we will check by the formula. 
 

Here number of permutations = 3P3 = 3!/(3 – 3)! = 3×2/1 = 6. 
 

 

Proof: We can take 1st thing in n ways, 2nd thing in (n – 1) ways, ....., rth 

thing in {n – (r – 1)} = (n – r + 1) ways. 
 
By fundamental theorem,  
total number of ways = n(n – 1)(n – 2)....(n – r + 1) 
 
= n(n – 1)(n – 2)....(n – r + 1)(n – r)(n – r – 1)....2×1/{(n – r)(n – r – 
1)..... ×2×1}   
 
(Multiplying numerator and denominator by (n – r)(n – r – 1).... ×2×1) 
 
= n!/(n – r)!  
 

So, nPr = n!/(n – r)! 
 
Proved. 
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Combination: If there are n things and we need to select r things at a time 

(order is not important) then total number of ways of doing this = nCr = 

n!/(n – r)! ×r!. 
 
For example, there are 5 numbers (1, 2, 3, 4, 5). We need to select 3 at a 
time. 
 
Total number of ways = (1, 2, 3); (1, 2, 4); (1, 2, 5); (1, 3, 4); (1, 3, 5); 
(1, 4, 5); (2, 3, 4); (2, 3, 5); (2, 4, 5); (3, 4, 5) i.e. 10 number of ways. 
 

Now, we will check by formula. 
 

Here number of combinations = 5C3 = 5!/(5 – 3)! ×2! = 5×4×3!/3! ×2 = 10. 

Note that here (1, 2, 3) is equivalent to (1, 3, 2) etc. as order is not 
important in combination but this is important in permutation. 
 
 
 

Proof: Now, the order is not important. 
 
Hence the number of ways r things can permutate among themselves is r!. 
 

Therefore, r! ×nCr = nPr = n!/(n – r)! 
 


 nCr = n!/{(n – r)! × r!} Proved. 
 
 

Number of non-negative solution: 

 
Problem: a1 + a2 +....+ ar = n where a1, a2, ...., an, n are all integers. 

Prove that the number of non-negative solution of the equation is 
n+r-1Cr-1 (or, (𝒏+𝒓−𝟏

𝒓−𝟏
) ) 

 

We will prove it by induction. 
 

Clearly, this is true for r = 1. 
Let, this is true for r = k i.e. number of non-negative solution when there 

are k variables in the LHS is (n + k – 1)C(k – 1). 
 
Now, number of non-negative solution for r = k + 1 i.e. when an extra variable 

gets added in LHS is ∑ (𝑛−𝑖+𝑘−1
𝑘−1

)𝑛
𝑖=0   

 

Now, we have to prove that, ∑ (𝑛−𝑖+𝑘−1
𝑘−1

)𝑛
𝑖=0 = (𝑛+𝑘

𝑘
).  

Now, we will prove this by another induction. For, n = 1,  

LHS = kC(k – 1) + (k – 1)C(k – 1) = k + 1 

RHS = (k + 1)Ck = k + 1. 
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So, this is true for n = 1. 
 
Let, this is true for n = p i.e. we have, ∑ (𝑝−𝑖+𝑘−1

𝑘−1
)

𝑝
𝑖=0 = (𝑝+𝑘

𝑘
). 

 
For, n = p + 1, LHS = ∑ (𝑝+1−𝑖+𝑘−1

𝑘−1
)

𝑝+1
𝑖=0  

 

= (p + k)C(k – 1) + ∑ (𝑝−𝑖+𝑘−1
𝑘−1

)
𝑝
𝑖=0   

 

= (p + k)C(k – 1) + (p + k)Ck  
 
= (p + k)!/{(p + 1)!×(k – 1)!} + (p + k)!/{p!×k!}  
 
= [(p + k)!/{(p + 1)!×k!}](k + p + 1)  
 
= (p + k + 1)!/{(p + 1)!×k!}  

= (𝑝+1+𝑘
𝑘
) 

 
= RHS for n = p + 1.  
 
 

Number of positive solutions: 

 

Problem: a1 + a2 + … + ar = n where a1, a2, …, ar, n are all positive 
integers. Prove that number of positive solutions of this equation is 
n-1Cr-1. 

 
Solution: We will prove this by induction. 
 

Clearly this is true for r = 1. 
 

Let this is true for r = k i.e. if there are k number of variables in LHS then 

number of solutions of the equation is n-1Ck-1. 
 
Now, for r = k + 1 i.e. if an extra variable gets added then number of 
solutions of the equation is ∑ (𝑛−𝑖−1

𝑘−1
)𝑛−𝑘 

𝑖=1  

We have to prove that, ∑ (𝑛−𝑖−1
𝑘−1

)𝑛−𝑘 
𝑖=1  = n-1Ck. We will prove this by 

another induction. 
 

Clearly this is true for n = 1. 
 

Let this is true for n = p i.e. ∑ (𝑝−𝑖−1
𝑘−1

)
𝑝−𝑘 
𝑖=1  = p-1Ck. 

 

Now, for n = p + 1, LHS = ∑ (𝑝−𝑖
𝑘−1
)𝑛−𝑘+1 

𝑖=1 = p-1Ck-1 + p-1Ck (from above) 
 

= pCk = RHS for n = p + 1. 

Proved. 
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Problem: Find number of terms in the expansion of (x + y + z + w)n. 

 

Solution: 
 
Now, there are 4 variables and any term consists of the 4 terms such that, 
 
x1 + y1 + z1 + w1 = n where x1, y1, z1, w1 are powers of x, y, z, w in any term. 
 

Now, x1, y1, z1, w1 runs from 0 to n. 
 
So, we need to find number of non-negative solution of this equation and we 
are done with number of terms of this equation. 
 

From previous article we know, number of non-negative solution of this 

equation = n+4-1C4-1 = n+3C3. 
 

In general if there are r variables then number of terms = n+r-1Cr-1. 
 

 

Problem: Find number of terms which are independent of x in the 

expansion of (x + y + z + w)n. 

 

Solution: 
 
Now, x1 = 0. So, we need to find number of non-negative solution of the 

equation, y1 + z 1 + w1 = n and then we need to subtract this from n+3C3 and 
we are done with the number of terms which are independent of x. 
 

It is, n+3-1C3-1 = n+2C2. 
 

So, number of terms which are independent of x = n+3C3 – n+2C2. 
 
In general if there are r variables then number of terms excluding one 

variable = n+r-1Cr-1 – n+r-2Cr-2. 
 
Similarly, we can find number of terms independent of x and y and so on. 
 
 

Problem: Prove that number of ways of distributing n identical things 

among r members where every member gets at least 1 thing is n-1Cr-1. 

 

Solution: Let, first member gets x1 things, second member gets x2 things 

and so on i.e. tth member gets xt things. 
 
So, x1 + x2 + … + xr = n 
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Now, we need to find number of positive solutions of this equation because 
x1, x2, …, xn > 0. 
 

From above it is n-1Cr-1.  

 

Problem: In an arrangement of m H’s and n T’s, an uninterrupted sequence 
of one kind of symbol is called a run. (For example, the arrangement 

HHHTHHTTTH of 6 H’s and 4T’s opens with an H-run of length 3, followed 
successively by a T-run of length 1, an H-run of length 2, a T-run of length 3 

and, finally an H-run if length 1.) 

 

Find the number of arrangements of m H’s and n T’s in which there are 
exactly k H-runs. 

 

Solution: Now, m H’s can be put in k places with k+1 holes (spaces) 

between them in m-1Ck-1 ways. 
 
Now, k – 1 spaces between the H’s must be filled up by at least one T. 
 

So, number of ways is n-1Ck-2. 
 

So, in this case number of ways = m-1Ck-1 ×n-1Ck-2. 
 
Now, if k spaces (i.e. one space from either side first or last) can be filled by 

n T’s where in every space at least one T is there in n-1Ck-12 ways. 
 

So, total number of ways in this case = 2×m-1Ck-1×n-1Ck-1. 
 
Now, if k+1 spaces (i.e. including first and last space) can be filled up by n 

T’s where in every space at least one T is there in n-1Ck ways. 

So, in this case total number of ways = m-1Ck-1×n-1Ck.  

So, total number of ways = m-1Ck-1(n-1Ck-2 + 2×n-1Ck-1 + n-1Ck)  

= m-1Ck-1(n-1Ck-2 + n-1Ck-1 + n-1Ck-1 + n-1Ck) 
 

= m-1Ck-1(nCk-1 + nCk) = n-1Ck-1*n+1Ck 

 

Problem: Show that number of ways in which four distinct integers can 

be chosen from 1, 2, …, n (n ≥ 7) such that no two are consecutive is 

equal to n-3C4. 

 

Solution:  

 

http://www.ctanujit.in/
http://www.ctanujit.org/


Ctanujit Classes of Mathematics, Statistics & Economics                                                   M: 8420253573 
 

Blog: www.ctanujit.in                                                                                                  Web: www.ctanujit.org  

We choose 4 integers as shown in figure by circle. 
 

So, there are maximum 5 spaces between them shown in figure by boxes. 
 
Now, let us say, 2, 3, 4 spaces i.e. boxes are to be filled by other n – 4 
integers (4 integers already chosen for 4 circles). 
 

Number of ways = n-5C2 (As number of ways is n-1Cr-1 for at least one to be 
there) 
 

Similarly, for 1, 2, 3, 4, boxes and 2, 3, 4, 5 boxes to be filled by other n– 4 

integers number of ways = 2×n-5C3. 
 

For 5 boxes to be filled by other n – 4 integers number of ways = n-5C4.  

Total number of ways = n-5C2 + 2*n-5C3 + n-5C4 = (n-5C2 + n-5C3) + (n-5C3 +  
n-5C4) = n-4C3 + n-4C4 = n-3C4. 
 
 
 

Problem: Prove that number of ways of distributing n identical things 

to r members (no condition) is n+r-1Cr-1. 
 

Solution: Let first member gets x1 things, second member gets x2 things and 

so on i.e. tth member gets xt things. 
 
We have, x1 + x2 + …. + xr = n 
 

We need to find number of non-negative solutions of this equation. 

From above it is n+r-1Cr-1. 

Proved. 
 

 

Problem: Find the number of all possible ordered k-tuples of non-

negative integers (n1, n2, …., nk) such that ∑ 𝒏𝒊
𝒌
𝒊=𝟏 = 100. 

 
 

Solution: Clearly, it needs number of non-negative solution of the equation, 
n1 + n2+ …. + nk = 100. 
 

It is n+k-1Ck-1. 
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Problem: Show that the number of all possible ordered 4-tuples of non-
negative integers (n1, n2, n3, n4) such that n1 + n2 + n3 + n4 ≤ 100 is 
104C4. 

 

Solution: Clearly, required number = 3C3 + 4C3 + 5C3 + ….. + 103C3  

= 104C4. 

 

Problem: How many 6-letter words can be formed using the letters A, B 
and C so that each letter appears at least once in the word? 

 

Solution: Let x1 number of A, x2 number of B and x3 number of C are chosen 
where x1, x2, x3 >0 
 

Now, x1 + x2 + x3 = 6. 
 

Number of positive solution of this equation is 6-1C3-1 = 5C2 = 10. 

So, combinations are as follows, 
 
4 A, 1 B, 1 C, number of words = 6!/4! = 30 
 

3 A, 2 B, 1 C, number of words = 6!/(3!×2!) = 60 
 

3 A, 1 B, 2 C, number of words = 6!/(3!×2!) = 60 
 

2 A, 1 B, 3 C, number of words = 6!/(2!×3!) = 60 
 

2 A, 2 B, 2 C, number of words = 6!/(2!×2!×2!) = 90 
 

2 A, 3 B, 1 C, number of words = 6!/(2!×3!) = 60 
 

1 A, 1 B, 4 C, number of words = 6!/4! = 30 
 

1 A, 2 B, 3 C, number of words = 6!/(2!×3!) = 60 
 

1 A, 3 B, 2 C, number of words = 6!/(3!×2!) = 60 
 

1 A, 4 B, 1 C, number of words = 6!/4! = 30 
 
So, total number of words = 30 + 60 + 60 + 60 + 90 + 60 + 30 + 60 + 60 
+ 30 = 540. 
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Problem: All the permutations of the letters a, b, c, d, e are written down 
and arranged in alphabetical order as in a dictionary. Thus the arrangement 

abcde is in the first position and abced is in the second position. What is the 
position of the arrangement debac? 

 

Solution: 
 

Now, first fix a at first place. Number of arrangements = 4! 
 

Now, fix b at first place. Number of arrangements = 4! 
 

Now, fix c at first place. Number of arrangements = 4! 
 

Now comes d the first letter of the required arrangement. 
 
Now fix d at first position & a at second position.  
Number of arrangement = 3! 
 

Fix b at second place. Number of arrangement = 3! 
 

Fix c at second place. Number of arrangement = 3! 
 

Now, comes e at second place and we have de. 
 

Now, fix a at third place. Number of arrangement = 2! 
 

Now comes b which is required and we have deb. 
 

Then comes a and then c. 
 
So, debac comes after (4! + 4! + 4! + 3! + 3! + 3! + 2!) = 92 arrangement. 
 

So, it will take 92 + 1 = 93rd position. 
 

 

Problem: x red balls, y black balls and z white balls are to be arranged in a 
row. Suppose that any two balls of the same color are indistinguishable. 
Given that x + y + z = 30, show that the number of possible arrangements 

is the largest for x = y = z = 10. 

 

Solution:  

Clearly, number of possible arrangement is (x + y + z)!/{x!×y!×z!}  

= 30!/{x!×y!×z!} 
 

Now, it will be largest when x!×y!×z! = minimum. 
 

Let us say, x = 12 and y = 8 
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Now, 12!×8! = 12×11×10!×10!/(10×9) = (12*11/10*9)*(10!)2 
 12!×8!/(10!)2 = (12×11)/(10×9) > 1 



 (10!)2 < 12 ×8! 

 It will be least when x = y = z = 10. 

 

 
Problem: Find number of arrangements of the letters of the word 

MISSISIPPI. 
 

Solution: 

Number of letters = 10 
 

Number of I’s = 4, number of S’s = 3, number of P’s = 2 
 
Therefore, total number of words that can be formed from the letters of the 
word is 10!/(4!×3!×2!). 
 

 

Problem: Find the number of words (meaningful or non-meaningful) 
that can be formed from the letters of the word MOTHER. 
 

Solution: 
 

Number of letters = 6. 
 

All are distinct. 
 

Hence total number of words = 6! 
 
 
 

Problem: Show that the number of ways one can choose a set of 
distinct positive integers, each smaller than or equal to 50, such that 

their sum is odd, is 249. 

 

Solution: The sum is odd. 
We need to select odd number of integers.  

Now, we can select 1 integer from 50 integers in 50C1 ways.  

We can select 3 integers from 50 integers in 50C3 ways. 

… 
 

.. 
 

We can select 49 integers from 50 integers in 50C49 ways. 
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So, number of ways = 50C1 + 50C3 + ….. + 50C49. 
 

Now, 50C0 + 50C1 + ….. + 50C49 + 50C50 = 250 

Now, 50C0 – 50C1 + ….. – 50C49 + 50C50 = 0 

Subtracting the above two equations we get, 
 

2(50C1 + 50C3 + …. + 50C49) = 250
  


50C1+50C3+ …. +50C49= 249. 

 
 

 

Number of ways of distributing n distinct things to r persons (r < n) 
so that every person gets at least one thing. 
 

Total number of ways = rn 
 

Now, let Ai denotes that the i th person doesn‟t get a gift and B denotes that 
every person gets at least one gift. 
 

Therefore, rn = |B| + |A1UA2UA3U.....UAr| 
 
Now, |A1UA2U....UAr|  

= ∑Ai - ∑Ai∩Aj + ∑Ai∩Aj∩Ak - ..... + (-1)r-1[A1∩A2∩...∩Ar] 
 

Now, |Ai| = (r – 1)n, |Ai∩Aj| = (r – 2)n ,...., A1∩A2∩....∩Ar = (r – r)n = 0n
  

So, |A1UA2U...UAr| = rC1(r – 1)n  – rC2(r – 2)n  + rC3(r – 3)n  - .... + (-1)r- 
 

 

Therefore, |B| = rn – [rC1(r – 1)n – rC2(r – 2)n + rC3(r – 3)n - .... + (-1)r-  
1rCr0n] 
 

= rn – rC1(r – 1)n + rC2(r – 2)n – rC3(r – 3)n + .... + (-1)rrCr0n
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Polynomial 
 

 

Let, P(x) be a polynomial of degree d, then P(x) can be written as, 

P(x) = a1xd + a2xd-1 + a3xd-2 +.....+ ad-1x2 + adx + ad+1 

 
 
Remainder theorem: Consider a polynomial of degree d > 1. P(x) gives the 
remainder P(a) if P(x) is divided by x – a. 

 

Proof: Let P(x) = (x – a)Q(x) + R where R is constant as the divider is linear 

so at most degree of R is 0 i.e. free of x or constant. 
 

Q(x) is the quotient and R is remainder. 
 

Putting x = a in the above expression we get, 
 

     P(a) = (a – a)Q(a) + R 
 
 R = P(a) 
 

 

Problem 1: Find the remainder when P(x) = x2 + x + 1 is divided by 

x + 1. 
 

Solution 1: From above we have remainder = R = P(-1) 

So, R = P(-1) = (-1)2 + (-1) + 1 = 1. 

 

Consider a polynomial P(x) of degree d > 1. We will now find the remainder if 
there is any repeated root in divider. So, we will find the remainder when P(x) 

is divided by (x – a)2. 

 

Let, P(x) = (x – a)2Q(x) + R(x) (Note that this time R(x) is not constant and 
have degree 1 as divider is quadratic) 
 

Let, R(x) = Ax + B. 
 

Q(x) is the quotient. 
 
Now, putting the value of R(x) in the above equation the equation becomes, 
 

P(x) = (x – a)2Q(x) + Ax + B 
 
Now, putting x = a in the above equation we get, 
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P(a) = (a – a)2Q(a) + Aa + B 
  
 Aa + B = P(a) 

Now, differentiating the above equation w.r.t. x we get, 
 

P‟(x) = 2(x – a)Q(x) + (x – a)2Q‟(x) + A 

 

Putting x = a in the above equation we get, 
 

P‟(a) = 2(a – a)Q(a) + (a – a)2Q‟(a) + A 
 
A = P‟(a) 



 
B = P(a) – Aa = P(a) – a×P‟(a) 

 
R(x) = Ax + B = P‟(a)x + P(a) – a*P‟(a) = P‟(a)(x – a) + P(a) 

 
 

 

Problem 1: Consider a polynomial P(x) of degree d > 2. Let R(x) be the 
remainder when P(x) is divided by (x - 1)2. P'(1) = P(1) = 1. Find R(x). 
 

Solution 1: From the above result we have, 
 

R(x) = P‟(1)(x – 1) + P(1) = 1*(x – 1) + 1 = x. 
 

 

 Consider a polynomial P(x) of degree d > 1. Now we will find the remainder 
when the divider is quadratic and have two distinct roots. Let us find the 
remainder when P(x) is divided by (x – a)(x – b). 

 

 

Let, P(x) = (x – a)(x – b)Q(x) + R(x) 
 

Q(x) = quotient and R(x) = remainder = Ax + B. 
 

Putting value of R(x) in the above equation we get, 
 

P(x) = (x – a)(x – b)Q(x) + Ax + B 
 

Putting x = a in the above equation we get, 
 

P(a) = (a – a)(a – b)Q(a) + Aa + B 
 
 Aa + B = P(a)  ....(i) 

 

Now, putting x = b in the above equation we get, 
 

P(b) = (b – a)(b – b)Q(b) + Ab + B 
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 Ab + B = P(b) ......(ii) 
 

Now, from (i) and (ii) we get, Aa + B – Ab – B = P(a) – P(b) 
 
A = {P(a) – P(b)}/(a – b)

 
B = {aP(b) – bP(a)}/(a – b) 

 
R(x) = Ax + B = {P(a) – P(b)}x/(a – b) + {aP(b) – bP(a)}/(a – b) 


 Consider a polynomial of degree d > 1. Now, we will work with quotient. 
Let Q(x) be the quotient when P(x) is divided by (x – a). Then we will have 
the relation Q(a) = P‟(a). 

 

Proof: Let, P(x) = (x – a)Q(x) + R where R is remainder and note that R is 

constant as divider is linear i.e. of degree 1. 
 

Differentiating the above equation w.r.t. x we get, 
 

P‟(x) = Q(x) + (x – a)Q‟(x) + R‟ 
 

Note that R‟ = 0 as R is constant. 
 

So, we have, P‟(x) = Q(x) + (x – a)Q‟(x) 
 

Putting x = a in the above equation we get, 
 

P‟(a) = Q(a) + (a – a)Q‟(a) 
 
 Q(a) = P‟(a) 

 
Problem 1: Consider a polynomial P(x) = x3 + 3x2 + 2x + 1. Q(x) is the 

quotient when P(x) is divided by x - 1. Find the value of Q(1). 

 
Solution 1: From the above we have the result, Q(1) = P‟(1) 
 

Given P(x) = x3 + 3x2 + 3x + 1 
 
P‟(x) = 3x2 + 6x + 3 

 
P‟(1) = 3×12 + 6×1 + 3 

 
Q(1) = P‟(1) = 12. 

 
 
Problem 2: Consider a polynomial P(x) of degree d > 1. Q(x) = 4x + 3 is 

the quotient when P(x) is divided by x - 7. Find the slope of P(x) at x = 7 
or put in other way find P'(7). 

 

Solution 2: From above we have, P‟(7) = Q(7) = 4*7 + 3 = 31. 
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 Consider a polynomial P(x) of degree d > 1. Now, we will see relation 
between quotient i.e. Q(x) and P(x) when there is repeated root in the 

divider. Let, Q(x) is the quotient when P(x) is divided by (x – a)2. Then we 
will have the relation Q(a) = P‟‟(a)/2. 

 

Proof: Let, P(x) = (x – a)2Q(x) + R(x)  (Note that R(x) is linear here and so 

R‟‟(x) = 0) 
 

Differentiating w.r.t. x we get, 

P‟(x) = 2(x – a)Q(x) + (x – a)2Q‟(x) + R‟(x) 

 
 
Differentiating again w.r.t. x we get, 
 

P‟‟(x) = 2Q(x) + 2(x – a)Q‟(x) + 2(x – a)Q‟(x) + (x – a)2Q‟‟(x) + R‟‟(x) 
 
Putting x = a in the above expression we get, 
 

P‟‟(a) = 2Q(a) + 2(a – a)Q‟(a) + 2(a – a)Q‟(a) + (a – a)2Q‟‟(a) + 0 

 

 Q(a) = P‟‟(a)/2. 
 

 

Problem 1: Let Q(x) = 3x2 + 2 is the quotient when P(x) is divided by    (x – 
1)2. Find the value of P‟‟(1). 

 

Solution 1: From the above result we have, 
 

P‟‟(1) = 2Q(1) = 2(3*12 + 2) = 10. 
 
 

Problem 2: Let P(x) be a polynomial of degree d > 2. Q(x) is the quotient 
when P(x) is divided by (x - 2)2. Q(2) = 4. Find P''(2). 

 

Solution 2: From the above result we have, 
 

P‟‟(2) = 2Q(2) = 2*4 = 8. 
 
 

Tips to solve problems: 

 

1. The remainder of P(x) divided by x+ a can be found by putting x = -a i.e. 
P(-a) will give the remainder when P(x) is divided by x + a.   

2. If there is a root between (a, b) then P(a) and P(b) will be of opposite sign.   
3. If P(x) is strictly increasing or decreasing then P(x) have at most one real 
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root. P(x) can be proved increasing if P‟(x) > 0 and decreasing if P‟(x) < 
0.   

4. To find number of real roots in P(x) draw the graph of LHS and RHS and 
count the number of intersection points and that is the answer.   

5. If there is any mention of sum of coefficients then think of P(1) and vice 
versa.   

6. If there is any repeated root think of derivative.   
7. If there is any involvement of quotient Q(x) then write the equation P(x) = 

D(x)Q(x) + R(x) where D(x) is the divider and think of derivative.   
8. If there is any mention of becoming the polynomial prime think of P(0) i.e. 

the constant term.  
9. R(x) has at most degree d - 1 where d is the degree of divider.  
10. Complex roots come in pair. If a polynomial is of degree d which is odd 

then the polynomial must have at least one real root.  
 

11. If there is any question/mention of multiplicity of a root then do 
derivative for m + 1 times where m is at most multiplicity of the root and 

show that P(m+1)(x) doesn't have the root.  
 

 

Problem 1: Consider the polynomial P(x) = 30x7 - 35x6 + 42x5 + 210x3 - 

1470. Prove that P(x) = 0 have only one real root and the root lies 
between (1, 2). 
 

Solution 1: Now, P(x) = 30x7 - 35x6 + 42x5 + 210x3 – 1470 
 
P‟(x) = 210x6 – 210x5 + 210x4 + 630x2 

 
P‟(x) = 210x4(x2 - x + 1) + 630x2 

 
P‟(x) = 210x4{(x – ½)2 + ¾} + 630x2  
Which is always greater than 0. 
 
P(x) is increasing. 

 
P(x) has at most one real root. 

 

Now, P(1) = 30×17 – 35×16 + 42×15 + 210×13 – 1470 < 0 

And, P(2) = 30×27 – 35×26 + 42×25 + 210×23 – 1470 > 0 
 
There is a root between (1, 2) & this root is the only real root of P(x) = 0. 

 

Problem 2: Prove that x = cosx has only one real root. 
 

Solution 2: Now, drawing the graph of LHS and RHS 
 i.e., y = x and y = cosx. 
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Clearly, there is one point of intersection. There is one real root. 
 

 
Problem 3: P(x) and Q(x) are two polynomials such that the sum of the co-
efficient is same for both. Prove that the remainders when P(x) and Q(x) 
are divided by x - 1 are same. 

 

Solution 3: Let, P(x) = a1x
d + a2x

d-1 + ..... + adx + ad+1  

 

Putting x = 1 we get, 
 
P(1) = a1 + a2 + .... + ad + ad+1 = sum of the coefficients. 
 
Now, from remainder theorem (also tips number 1) we have the remainder 
P(x) gives when P(x) is divided by (x – 1) is P(1) = sum of coefficients. 
 

Similar thing goes for Q(x) i.e., Q(1) = sum of coefficients. 

Now, it is given that sum of coefficients of P(x) = sum of coefficients of Q(x) 
 
P(1) = Q(1). 
 

Problem 4: P(x) is a polynomial of degree d > 1 with integer coefficients. 

P(1) is divisible by 3. All the coefficients are placed side by side in any order 
to make a positive integer. For example if there is 2 coefficients 20 and 9 
then the numbers formed are 209 or 920. Prove that the number thus 

generated is divisible by 3. 

 

Solution 4: Now, in the previous example we have seen that P(1) = sum of 

coefficients of P(x). 
 

Now, the sum is divided by 3. 
 
As per the rule of divisibility by 3 says a number is divisible by 3 if sum of the 
digits is divisible by 3. 
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
 The sum of the digits of the coefficients of P(x) is divisible by 3. 

 
Now, whatever be the order of placing the digits of the coefficients of P(x) the 
sum of their digits must be same. 
 The sum of the digits is divisible by 3. 




 Thus the number generated with whatever be the order of placing the 
digits is divisible by 3. 

 
 
 
 
Problem 5: Show that the equation x(x - 1)(x - 2).....(x - 2009) = c has real 

roots of multiplicity at most 2. 

 

Solution 7: (tips number 11) 
 

As per the tips we need to show P‟‟(x) doesn’t have the root which P(x) and 
P‟(x) has. 
 

We have, x(x - 1)(x - 2).....(x - 2009) = c 

Differentiating w.r.t. x we get, 
 
(x – 1)(x – 2)....(x – 2009) + x(x – 2)(x – 3)....(x – 2009) + x(x – 1)(x – 
3)...(x – 2009) + ..... + x(x – 1)(x – 2)....(x – 2008) = 0 
 

 c/x + c/(x – 1) + c/(x – 2) + .... + c/(x – 2009) = 0 


(Putting value from the given equation)  




 c{1/x + 1/(x – 1) + 1/(x – 2) + .... + 1/(x – 2009)} = 0 

 

Now, differentiating again w.r.t. x we get, 
 

-c × {1/x2 + 1/(x – 1)2 + 1/(x – 2)2 + .... + 1/(x – 2009)2} = 0 
 
This equation cannot hold true as sum of squares of real numbers equal to 0 
but they are always greater than 0. 
 

The given polynomial cannot have real roots of multiplicity more than 2. 

 
 
 

Problem 6: Prove that the polynomial P(x) = x3 + x – 2 have at least one real 
root. 

 

Solution 8: (Tips number 10) 
 

Let all the roots of P(x) is complex. 
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Complex roots come in pair. 

There needs to be 4 roots of P(x) 

 
But P(x) have at most 3 roots as the degree of the polynomial is 3. 

 Our assumption was wrong. It may have at most 2 complex root. 


 
There is at least one real root of P(x).  
 

 
Solved examples: 

 
1. Consider a polynomial P(x) of degree d > 1. Q(x) is the quotient when 

P(x) is divided by x - a. Prove that P'(a) = Limiting value of Q(x)  
as x -> a.  

 

Solution: 
 
We can write, P(x) = (x – a)Q(x) + R(x) where R(x) is remainder when P(x) 
is divided by (x – a). 
 


 R(x) is constant. 

Now, P‟(a) = {P(x) – P(a)}/(x – a)  as x -> a 
 P‟(a) = {(x – a)Q(x) + R(x) – R(a)}/(x – a) as x -> a  (P(a) = R(a)) 

 P‟(a) = Q(x) as x -> a + {R(x) – R(a)}/(x – a) as x -> a 

 P‟(a) = Q(x) as x -> a + R‟(a) 

 P‟(a) = Q(x) as x -> a (as R‟(a) = 0 because R(x) is constant) 

 
 

2. Consider a polynomial P(x) of degree d > 2. Let R(x) be the remainder 
when P(x) is divided by (x - 1)2. P'(1) = P(1) = 1. Find R(x).  

 

Solution: We can write, P(x) = (x – 1)2Q(x) + R(x) where Q(x) is the 

quotient when P(x) is divided by (x – 1)2. 
 P‟(x) = 2(x – 1)Q(x) + (x – 1)2Q‟(x) + R‟(x) 
 P‟(1) = R‟(1) = 1 

And, P(1) = R(1) = 1 
 

Now, R(x) is remainder when P(x) is divided by (x – 1)2 
 


 R(x) is linear. 
Say, R(x) = ax + b 
 

Now, R‟(x) = a 

R‟(1) = a = 1 

Now, R(1) = a + b = 1 
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

 b = 0. So, 

R(x) = x. 
 

 

3. Let P(x) be a polynomial of degree d > 2. Q(x) is the quotient when P(x) 
is divided by (x - 2)2. Q(2) = 4. Find P''(2).  

 

Solution: We can write, P(x) = (x – 2)2Q(x) + R(x) where R(x) is remainder 

when P(x) is divided by (x – 2)2. 
 
So, R(x) is linear. 
 

Now, P‟(x) = 2(x – 2)Q(x) + (x – 2)2Q‟(x) + R‟(x) 
 
P‟(x) = 2Q(x) + 2(x – 2)Q‟(x) + 2(x – 2)Q‟(x) + (x – 2)2Q‟(x) + R‟(x)   

P‟(2) = 2Q(2) + R‟‟(2)  
 
Now, R‟(2) = 0 as R(x) is linear. 
 
P‟(2) = 2Q(2) = 2×4 = 8. 
 

 
4. P(x) and Q(x) are two polynomials such that the sum of the coefficient is 

same for both. Prove that the remainders when P(x) and Q(x) are divided 
by x - 1 are same.  

 

Solution: Sum of the coefficients of P(x) and Q(x) are same. 
 


 P(1) = Q(1). 

Now, as per Remainder theorem P(1) and Q(1) are remainders when P(x) 
and Q(x) are divided by (x – 1) and they are clearly same. 
 

 

5. P(x) is a polynomial of degree d > 1 with integer coefficients. P(1) is 
divisible by 3. All the coefficients are placed side by side in any order to 
make a positive integer. For example if there is 2 coefficients 20 and 9 
then the numbers formed are 209 or 920. Prove that the number thus 
generated is divisible by 3.  

 

 

Solution: P(1) is divisible by 3. 

 Sum of the coefficients is divisible by 3. 





 If we place the coefficients side by side then the number formed will be 
divisible by 3 as the sum of the digits is divisible by 3 as per P(1) is 
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divisible by 3. 

 


6. Consider a polynomial P(x) of degree d > 2. Q(x) is the quotient when 
P(x) is divided by D(x). D(x) is quadratic and x = a is a root. P''(a) = b 
and Q(a) = b/2. Prove that D(x) has repeated root at x = a.  

 

 

Solution: Let, D(x) = (x – a)(x – d) 
 
We can write, P(x) = D(x)Q(x) + R(x) where R(x) is remainder when P(x) is 
divided by D(x). R(x) is linear as D(x) is quadratic. 
 

 P(x) = (x – a)(x – d)Q(x) + R(x) 

 P‟(x) = (x – d)Q(x) + (x – a)Q(x) + (x – a)(x – d)Q‟(x) + R‟(x) 

 P‟‟(x) = Q(x) + (x – d)Q‟(x) + Q(x) + (x – a)Q‟(x) + (x – d)Q‟(x) + (x 
– a)Q‟(x) + (x – c)(x – d)Q‟(x) + R‟(x) 

 P‟(a) = 2Q(a) + 2(a – d)Q‟(a) + R‟(a) 

 b = 2(b/2) + 2(a – d)Q‟(a) (R‟‟(a) = 0 as R(x) is linear) 

 (a – d)Q‟(a) = 0 

 d = a 

 D(x) has repeated root at x = a. 








7. Consider two polynomials P(x) and Q(x) of degree d > 0 with integer 
coefficients. P(0) = Q(0). Prove that there exists an integer n which 
divides both P(n) and Q(n).  

 

Solution: P(0) = Q(0) 
 
 The constant term of P(x) and Q(x) are equal. Let, 

P(x) = a1xp + a2xp – 1 + ….. + apx + n 
 

Let, Q(x) = b1xq + b2xq – 1+ …..+bqx +n  

Clearly n divides both P(n) and Q(n).  

 
8. Let P(x) be a polynomial of degree 3d - 1 where d > 0.  

Let P(i)(0) = 3×(i!) where P(i)(x) is i-th derivative of P(x) w.r.t. x. Prove 
that P(1) is divisible by 9.  

 

Solution: 

P(x) = a1xn + a2xn-1 + …. + an-1x2 + anx + an+1 P(0) 

= an+1 = 3 
 
P‟(0) = an = 3 
 

P‟(0) = (2!)an-1 = 3×2! 
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
 an-1 = 3. 

 
Similarly, an-2 = an-3 = …. = a1 = 3. 
 

Now, P(1) = a1 + a2 + … + an+1 = a1 + a2 + …. + a3d  as n = 3d – 1. 
 P(1) = 3 + 3 + …. 3d times. = 3×3d = 9d 

 P(1) is divisible by 9. 

 
 
9. Consider a polynomial P(x) of degree d > 1. Given P(0) = 25. All the roots 

of P(x) are distinct positive integers. P(d)(0) = d! . Find the value of P(d-

1)(0)/(d-1)! where P(m)(x) is m-th derivative of P(x) w.r.t. x.  
 

 

Solution: 
 

Let, P(x) = a1xd + a2xd-1 + …… + ad-1x2 + adx + 25 (As P(0) = 25) 
 
Now, P‟(0) = ad = 1 
 

P‟(0) = (2!)ad-1 = 2! 
 


 ad-1 = 1 

 
Similarly ad-2 = ad-3 = ad-4 = …. = a2 = a1 = 1 

Now, P(d-1)(0) = (d – 1)!×a2 
 

P(d-1)(0)/(d–1)! = a2= 1 

 

10. Let P(x) and Q(x) be two polynomials of degree d1 and d2 respectively 
where d1 and d2 are both odd. Prove that the sum of the squares of the 
number of real roots of P(x) and Q(x) cannot be equal to an where a and n 
are positive integers, n > 1. 

 

Solution: Now, if P(x) have complex roots then they will come in pair 
(complex + conjugate) 
 

So, number of real roots of P(x) must be odd as degree = d1 = odd. 

Similarly, number of real roots of Q(x) must be odd. 
 
Let, number of real roots of P(x) and Q(x) are u and v respectively. 

Now, let, u2 + v2 = an
 

As u and v are both odd, a is even. 
 

Now, dividing the equation by 4 we get, 
 

1 + 1 ≡ 0 (mod 4) as n > 1 
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
 2 ≡ 0 (mod 4) 

Which is impossible 
 
Sum of squares of the number of real roots of P(x) and Q(x) cannot be equal 
to an where a and n are positive integers, n > 1. 

 

10. Let a, b, c be three distinct integers, and let P be a polynomial with 
integer coefficients. Show that in this case the conditions P(a) = b,  
P(b) = c, P(c) = a cannot be satisfied simultaneously. 

 

Solution: 
 

Suppose the conditions are satisfied. We derive a contradiction. 
 

P(x) – b = (x − a)P1(x) ……………… (1) 
 

P(x) – c = (x − b)P2(x) ……………… (2) 
 

P(x) – a = (x − c)P3(x) ……………… (3) 
 
Among the numbers a, b, c, we choose the pair with maximal absolute 
difference. 
 

Suppose this is |a − c|. Then we have 
 

|a − b| < |a − c|……………………. (4) 
 

If we replace x by c in (1), then we get 
 

a – b = (c − a)P1(c). 
 

Since P1(c) is an integer, we have |a − b| ≥ |c − a|, which contradicts 

(4). 

 

12. Let f(x) be a monic polynomial with integral coefficients. If there are 
four different integers a, b, c, d, so that f(a) = f(b) = f(c) = f(d) = 5, then 
there is no integer k, so that f(k) = 8. 

 

Solution: Monic polynomial means the highest degree coefficient is 1. 
 

Now, f(x) = (x – a)(x – b)(x – c)(x – d)Q(x) + 5 
 

Now, f(k) = (k – a)(k – b)(k – c)(k – d)Q(k) + 5 

 (k – a)(k – b)(k – c)(k – d)Q(k) = 3 (As f(k) = 8) 




 
3 is factor of at least four distinct integers k – a, k – b, k – c, k – d as a, b, c, 
d are distinct. 
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But this is impossible as 3 is prime and may have maximum 3 factors viz. 3, 
1, -1. 
 

 

Problem: Check whether n68 + n37 + 1 is divisible by n2 + n + 1. 

 

Solution: As ω is cube root of unity so we have ω2 + ω + 1 = 0 and 

 ω3 = 1. 
 

Put ω in place of n and check whether the given expression is divisible by ω2 

+ ω + 1 or not. This is possible because n3 ≡ 1 (mod n2 + n + 1) 
 

So, n68 + n37 + 1 = ω68 + ω37 + 1 = ω2 + ω + 1 = 0 
 

Hence, n2 + n + 1 divides n68 + n37 + 1. 
 
 

How to solve the questions like “how many real solutions does this 

equation have?” and you have a four-degree equation. 
 
 
1. First check if you can factorize using Vanishing method with 1, 2,  

- 1, -2, maximum verify by 3.   
2. Then check the degree of the equation. If it is odd then it has at least one 

real solution. If it is even then it may have no real solution at all because 
complex roots come in pair.   

3. Then use Descartes‟ sign rule to evaluate if there is any positive or negative 
real roots. Descartes‟ sign rule says: check number of sign changes of the 
coefficients from higher degree to lower degree of the polynomial and that 
says number of maximum possible positive roots of the equation. If it has 
4 sign changes then it may have 4 or 2 or 0 number of positive roots i.e. it 
comes down by an even number 2. Check of negative roots is my same 
method but of the polynomial P(-x). So, put x = -x and then find number 
of negative roots of the     equation. If there is no then all roots are complex, 
otherwise it may have real roots.   

4. Check whether the polynomial is increasing or decreasing for some value 
of x. For example, it is a fourth degree equation and we have evaluated 
that it may have 4 positive roots. And you see the polynomial is increasing 
for x > 0. Implies the polynomial doesn’t meet the x-axis after x > 0. 
Therefore, all the roots it has negative but from Descartes‟ sign rule we 
have zero negative roots. Implies all the roots of the equation are complex.   

5. Take any complex root of the equation as a + ib, then a – ib is also a root 
of the equation. Now, do P(a + ib) – P(a – ib) = 0 and check whether b = 
0 for sure. If it comes out to be b = 0, then it has no imaginary roots as 
the imaginary part of the root is zero.  
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Problem: The number of real roots of x5 + 2x3 + x2 + 2 = 0 

 

Solution: First check x = -1 is a solution. So, we will first factorize it by 
vanishing method. 
 

Now, x5 + 2x3 + x2 + 2 
 

= x5 + x4 – x4 – x3 + 3x3 + 3x2 – 2x2 – 2x + 2x + 2  
 

= x4(x + 1) – x3(x + 1) + 3x2(x + 1) – 2x(x + 1) + 2(x + 1)  
 

= (x + 1)(x4 – x3 + 3x2 – 2x + 2)  
 
It is a fifth degree equation and we have evaluated one real root x = -1. 
 

Now, we have a four degree equation, x4 – x3 + 3x2 – 2x + 2 = 0 
 
Number of sign change = 4. Therefore, it may have 4, 2 or 0 positive roots. 
And it has 0 negative roots. 
 

P(x) = x4 – x3 + 3x2 – 2x + 2 
 
P(0) = 2, P(1) = 3, P(2) = 18 and we are seeing that it is increasing with 

(+)-ve value of x. 
 

So, P‟(x) = 4x3 – 3x2 +3x – 2  

              = x(4x2 – 4x + 1) + (x2 + 2x – 2)  

              = x(2x – 1)2 + (x – 1)(x + 2) + x > 0 for x > 2 
 

 P(x) is increasing for x > 2. 




 P(x) may have negative real roots but from Descartes‟ sign rule it has 
no negative roots. 


 All the roots of the four degree equation are complex. 




 The equation has only one real root and that is x = -1. 
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Elements of Combinatorial Probability 

RULE –I : If there are two groups G1 & G2;  

𝐺1 = {𝑎1, 𝑎2, … . , 𝑎𝑛} consisting of n elements and 𝐺2 = {𝑏1, 𝑏2, … . , 𝑏𝑚} consisting of m elements then 

the no. of pairs (𝑎𝑖 , 𝑏𝑗 ) formed by taking one element 𝑎𝑖 𝑓𝑟𝑜𝑚 𝐺1 𝑎𝑛𝑑 𝑏𝑗 𝑓𝑟𝑜𝑚 𝐺2 𝑖𝑠 𝑛 × 𝑚. 

If there are k groups 𝐺1, 𝐺2, … . . , 𝐺𝑘, such that  

𝐺1 = {𝑎1, 𝑎2, … . . , 𝑎𝑛1} 

𝐺2 = {𝑏1, 𝑏2, … . . , 𝑏𝑛2} 

⋮                                      

⋮                                      

𝐺𝑘 = {𝑡1, 𝑡2, … . . , 𝑡𝑛𝑘} 

Then the number ordered k−tuples (𝑎𝑖1, 𝑏𝑖2, … . . , 𝑡𝑖𝑘) formed by taking one element from each group is 

= 𝑛1 × 𝑛2 × ……× 𝑛𝑘 

Example:  ‘Placing balls into the cells’ amounts to choose one cell for each ball. Let there are r balls and 

n cells. For the 1st ball, we can choose any one of the n cells. Similarly, for each of the balls, we have n 

choices, assuming the capacity of each cell is infinite or we can place more than one ball in each cell. 

Hence the r balls can be placed in the n cells in 𝑛𝑟 ways. 

Applications:  

1. A die is rolled r times. Find the probability that – 

i) No ace turns up. 

ii) No ace turns up. 

Solution:  

i) The experiment of throwing a die r times has 6 × 6 × 6… . 𝑟 𝑡𝑖𝑚𝑒𝑠 = 6𝑟 possible outcomes. 

Assume that all possible cases are equally likely. The no. of cases favorable to the event (A), ‘no ace 

turns up’ is 5𝑟. 

By Classical Definition, 𝑃[𝐴] =
𝑁(𝐴)

𝑁
=
5𝑟

6𝑟
. 

ii) P[ an ace turns up] = 1 − 𝑃[𝑛𝑜 𝑎𝑐𝑒 𝑡𝑢𝑟𝑛𝑠 𝑢𝑝] = 1 −
5𝑟

6𝑟
. 

Remark : The all possible outcomes of ‘r’ throw of a die correspond to the placing r balls into 𝑛 = 6 cells. 
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RULE –II: 

Ordered Samples: Consider a population of n elements 𝑎1, 𝑎2, … . 𝑎𝑛 any order arrangement 

𝑎𝑗1, 𝑎𝑗2, … . , 𝑎𝑗𝑟 of r elements is called an ordered sample of size r, drawn from the population. Two 

procedure are possible – 

i) Sampling with replacement: Here an element is selected from the population and the 

selected element is returned to the population before the next selection is made. Each 

selection is made from the entire population, so that the same element can be drawn more 

than ones. 

ii) Sampling without replacement : Here an element once chosen is removed from the 

population, so that the sample becomes an arrangement without repetition. 

 

 For a population with n elements and a prescribed sample size r, there are 𝑛𝑟 different ordered 

samples with replacement and n(n−1)…..(n−r+1) = 𝑛𝑝𝑟  𝑜𝑟 (𝑛)𝑟 different ordered samples 

without replacement.  

Remark:  

1. 𝑛𝑝𝑟 = 𝑛(𝑛 − 1)… . (𝑛 − 𝑟 + 1) is defined if 𝑛 ∈ 𝑁 and r is a non−negative integers. But (𝑛)𝑟 =

𝑛(𝑛 − 1)… . (𝑛 − 𝑟 + 1) is defined if 𝑛 ∈ 𝑅 and r is non−negative integer. In the same way if 

𝑛 ∈ ℝ then  

𝑛𝑐𝑅 = (
𝑛

𝑟
) =

𝑛(𝑛 − 1)…… . (𝑛 − 𝑟 + 1)

𝑟!
 

 

Example : 1) A random sample of size ‘r’ with replacement is taken from a population of n elements. 

Find the probability that in the sample no element appear twice.    

Solution: There are 𝑛𝑟 sample in all. As the samples are drawn randomly, all samples are equally likely. 

The no. of the samples in which in which no element appears twice is the no. of samples drawn without 

replacement.  

Favorable sample is = 𝑛(𝑛 − 1)… . (𝑛 − 𝑟 + 1) = (𝑛)𝑟 

Hence, the probability is =
(𝑛)𝑟

𝑛𝑟
 

 

Example: 2) If n balls are randomly placed into n cells, what is the probability that each cell will be 

occupied. 

Solution:  𝑃(𝐴) =
𝑛!

𝑛𝑛
. 
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SOLVED EXAMPLES:  

1. Find the probability that among five randomly selected digits, all digits are different. 

Ans:     

𝑃(𝐴) =
(10)5
105

 

2. In a city seven accidents occur each week in a particular week there occurs one accidents per 

day. Is it surprising?  

Ans :  

𝑃(𝐴) =
7!

77
 

3. An elevator (lift) stands with 7 passengers and stops at 10th floor. What is the probability that 

no two passengers leave at the same floor? 

Solution:  

𝑁 = 10,10… . .10 (7 𝑡𝑖𝑚𝑒𝑠) 

= 107 

𝑁(𝐴) = 10.9.8.7.6.5.4 

= (10)7 

𝑃(𝐴) =
(10)7
107

 

4. What is the probability that r individuals have different birthdays? Also show that the 

probability is approximately equal to 𝒆−𝒓(𝒓−𝟏)/𝟕𝟑𝟎. How many people are required to make 

the prob. of distinct birthdays less than ½ ? 

Solution:  

𝑝 =
(365)𝑟
365𝑟

 =
365.364…… . (365 − 𝑟 + 1)

365.365………… . .365
 

= 1(1 −
1

365
) (1 −

2

365
)……(1 −

𝑟 − 1

365
) 

∴ ln 𝑝 = ∑ ln(1 −
𝑘

365
)

𝑟−1

𝑘=1

 

𝐹𝑜𝑟, 0 < 𝑥 < 1, ln(1 − 𝑥) ≅ −𝑥. 
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∴ ln 𝑝 ≅ ∑(−
𝑘

365
) = −

1

365
(∑𝑘

𝑟−1

𝑘=1

)

𝑟−1

𝑘=1

 

= −
𝑟(𝑟 − 1)

2(365)
 = –

𝑟(𝑟 − 1)

730
 

∴ 𝑝 = 𝑒−𝑟(𝑟−1)/730 

𝐹𝑜𝑟 𝑝 =
1

2
, ln 𝑝 = − ln 2 = −0.693, 

∴
𝑟(𝑟 − 1)

730
= 0.693 

∴ 𝑟2 − 𝑟 − 506 = 0 

⇒ (𝑟 − 23)(𝑟 + 22) = 0 

⇒ 𝑟 = 23 

∴ More than 23 people are required. 

 

5. Six dice are thrown. What’s the prob. that every possible number will appear. 

Hints: 𝑝 =
6!

66
 = 0.0154 

 

6. There are four children in a family. Find the prob. that  

(a) At least two of them have the same birthday? 

(b) Only the oldest and the youngest have the same birthday? 

Hints: (a) 

𝑝1 = 1 − {
(365)4
3654

} = 1 − 𝑝 {𝑡ℎ𝑒𝑚 ℎ𝑎𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑖𝑟𝑡ℎ𝑑𝑎𝑦𝑠} 

(b) 

𝑝2 =
365 × 365 × 363

3654
 =
(365)3
3654
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7. The number 1, 2,….,n are arranging in a random order. Find the probability that digits (a) 1, 2 , 

(b) 1, 2, 3 appears as neighbours in the order named. 

Hints: consider (1, 2) as a single digit then there are (n−1) entities which can be arranged in (n−1)! ways. 

(a) Required prob. is = 
(𝑛−1)!

𝑛!
 =

1

𝑛
. 

(b) Required prob. is =
(𝑛−2)!

𝑛!
=

1

𝑛(𝑛−1)
. 

 

8. (i) In sampling with replacement find the prob. that a fixed element be included at least once. 

(i) In sampling without replacement find the prob. that a fixed element of a population of n 

elements to be included in a random sample of size r. 

 Hints:  

(i) 𝑃1 = 1 − 𝑃 [ the fixed element is not included in the sample WOR] 

= 1 −
(𝑛 − 1)𝑟

𝑛𝑟
 

(ii) 𝑃2 = 1 − 𝑃[ a fixed element is not included in the sample WR] 

= 1 −
(𝑛 − 1)𝑟
(𝑛)𝑟

 1 −
𝑛 − 𝑟

𝑛
=
𝑟

𝑛
. 

9. There is 3 volume dictionary among 30 books is arranged in a shelf in random way. Find the 

prob. of 3 volume standing in an increasing order from left to right? (The vols. are not 

necessary side by side). 

Solution: The order of the 3 vols. doesn’t depend on the arrangement of the remaining books. Here 3 

vols. can be arranged in 3! ways of which only one case 𝑉1, 𝑉2, 𝑉3 is favorable. Hence prob. is 1/3!. 

10. Two fair dice are thrown 10 times. Find the prob. that the first 3 throws result in a sum of 7 

and the last 7 throws in a sum of 8. 

Solution: Ω𝑘 = {(𝑖, 𝑗): 𝑖, 𝑗 = 1 (1)6}, 𝑘 = 1(1)10, be the sample space of the kth throw of a pair of dice, 

the sample space of the experiment is  

Ω = Ω1 × Ω2 × Ω3 × … .× Ω10. 

𝑁 = 𝑛(Ω) = n( Ω1 × Ω2 × Ω3 × … . .× Ω10) = 36
10 

Let, 𝐴 = {(𝑖, 𝑗): 𝑖 + 𝑗 = 7, 𝑖, 𝑗 = 1(1)6}, the event of getting a sum of 7 in a throw of a pair of dice.  

And 𝐵 = {(𝑖, 𝑗): 𝑖 + 𝑗 = 8, 𝑖, 𝑗 = 1(1)6}, the event of getting a sum of 8 in a throw of a pair of dice. 

Our event is = 𝐴 × 𝐴 × 𝐴 × 𝐵 × …𝐵 
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Favorable cases are = {(3, 4), (2, 5), (1, 6), (2, 6), (3, 5), (4, 4) 

𝑁(𝐴) = {𝑛(𝐴)}3{𝑛(𝐵)}7 = 63 × 57… . . } 

∴ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
63 × 57

3610
 

11.  

(i) If n men, among whom A and B, stand in a row. What’s the prob. that there will be exactly r 

men between A and B? 

(ii) If they stand in a ring instead of in a row, show that the prob. is independent of ‘r’. 

[In the circular arrangement, consider only that they are leading from A to B in the +ve direction.] 

Solution:  

(i) n persons can be arranged among themselves in n! ways. Since, the persons are randomly, 

all possible cases are equally likely. For the favorable cases if A occupies a position to the left 

of B, then A may choose any of the positions: 

1st, 2nd,….. (n−r−1)th from the left, with r persons between A and B. The remaining (n−2) persons can 

stand in (n−2) places in (n−2)! Ways. Similar thing for B on the left of A.   

Hence, no. of favorable cases, 𝑁(𝐴) = 2(𝑛 − 𝑟 − 1)(𝑛 − 2)! 

Required probability  

=
2(𝑛 − 𝑟 − 1)(𝑛 − 2)!

𝑛!
 =
2(𝑛 − 𝑟 − 1)

𝑛(𝑛 − 1)
. 

(ii) If they form a ring, then the no. of possible arrangement is (n−1)! which is obtained by 

keeping the place for any person fixed and arranging the remaining (n−1) persons.  

For the favorable cases, we fixed the places for A and B, with r individuals between them and then 

remaining (n−2) persons can be arranged in (n−2)! ways.  

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
(𝑛 − 2)!

(𝑛 − 1)!
 =

1

𝑛 − 1
, 𝑖𝑡 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑟. 
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RULE−III:  

Subpopulations and Groups: Consider a subpopulation of size ‘r’ from a given population of size ‘n’, let 

the no. of the groups of size r be x. 

Now the r elements in a group can be arranged in r! ways. Hence x.r! ordered samples of size r. 

∴ 𝑥. 𝑟!  = (𝑛)𝑟 

𝑆𝑜, 𝑥 = (
𝑛

𝑟
) 

Application : 

1. Each of the 50 states has two senator. Find the prop. of the event that in a committee of 50 

senators chosen randomly – 

(a) A given state is represented. 

(b) All states are represented. 

Solution: We can choose a group of 50 senators in (100
50
) ways & since 50 senators are chosen randomly 

50 all possible outcomes are equally likely. 

(a) There are 100 senators and 98 not from the given state. 

Required probability = 𝑃[the given state is not represented] C 

= 1 −
(98
50
)

(100
50
)
 

(b) All states will be represented if one senators from each state is selected. A committee of 50 with 

one senator from 50 states can be selected in 2 × 2 × …× 2⏟        
50 𝑡𝑖𝑚𝑒𝑠

 ways. 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
250

(100
50
)
 

 

2. If n balls are placed at random in n cells, find the probability that exactly one cell remains 

empty.  

Solution:  𝑁 = 𝑛𝑟 

Since k balls can be chosen in (𝑟
𝑘
) ways which are to be placed in the specified cells and the remaining 

(r−k) balls can be placed in the remaining (n−1) cells in (𝑛 − 1)𝑟−𝑘 ways. 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
(𝑟
𝑘
) (𝑛 − 1)𝑟−𝑘

(𝑛)𝑟
 = (

𝑟

𝑘
) (
1

𝑛
)
𝑘

(1 −
1

𝑛
)
𝑟−𝑘

. 
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3. If n balls are placed at a random order in n cells, find the prob. that exactly one cell remains 

empty. 

Solution: 𝑁 = 𝑛𝑛 

For the favorable cases, the empty cell can be chosen in n ways and the two balls to be kept in the same 

cell can be chosen in (𝑛
2
) ways. 

Consider the two balls as a single ball or entity, then (n−1) entities can be arranged in (n−1) cells in 

(n−1)! ways.  

So, the required prob.  =
𝑛(𝑛2)(𝑛−1)!

𝑛𝑛
 

 

4. A closent contains n pairs of shoes. If 2r shoes chosen at random (2r < n). What is the prob. 

that there will be: 

(a) No complete pair 

(b) Exactly one complete pair 

(c) Exactly two complete pair among them. 

Solution: (a) 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
( 𝑛
2𝑟
) 22𝑟

(2𝑛
2𝑟
)

 

(b) 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
(𝑛
1
)( 𝑛−1
2𝑟−2

) 22𝑟−2

(2𝑛
2𝑟
)

 

(c) 

𝑅𝑒𝑞. 𝑝𝑟𝑜𝑏.=
(𝑛
2
)( 𝑛−2
2𝑟−4

). 22𝑟−4

(2𝑛
2𝑟
)

 

 

5. A car is parked among N cars in a row, not at either end. On the return the car owner finds 

that exactly r of the N places are still occupied. What’s the prob. that both neighbouring 

places are empty? 

Solution: 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑃𝑟𝑜𝑏.=
(𝑁−3𝑟−1)

(𝑁−1𝑟−1)
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RULE –IV: 

The no. of ways in which a population of n elements can be divided into K−ordered parts of which 1st 

contains 𝑟1, 2nd contains r2 elements and so on is 

𝑛!

𝑟1!  𝑟2! …… . 𝑟𝑘!
, 𝑤ℎ𝑒𝑟𝑒 ∑𝑟𝑖 = 𝑛

𝑘

𝑖=1

 

Application: 

1. In a bridge table, calculate the prob. that 

(a) Each of the 4 players has an ace 

(b) One of the player receives all 13 spades. 

Solution:  

(a) In a bridge table 52 cards are partitioned into four equal groups and the no. of different hands is  

(
52

13
) (
39

13
) (
26

13
) (
13

13
) 

For the favorable cases, 4 aces can be arranged in 4! ways and each arrangement represents one 

possibility of given one ace to each player and the remaining 48 cards can be distributed equally among 

the 4 players in 

(
48

12
) (
36

12
) (
24

12
) (
12

12
)  𝑤𝑎𝑦𝑠 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
4! (48

12
)(36
12
)(24
12
)(12
12
)

(52
12
)(39
13
)(26
13
)(13
13
)
  

=
4! 

48!
(12!)4

52!
(13!)4

. 

(b) 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
4!

39!
(13!)3

52!
(13!)4
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2. In a bridge hand of cards consists of 13 cards drawn at random WOR from a deck of 52 cards. 

Find the prob. that a hand of cards will contain 

(a) 𝜸𝟏 clubs, 𝜸𝟐 spades, 𝜸𝟑 diamonds 

(b) 𝜸 aces 

(c) 𝜸𝟏 aces and 𝜸𝟐 kings. 

Solution: (a) 

𝑝𝑟𝑜𝑏.=
(13
𝛾1
) (13

𝛾2
) (13

𝛾3
) ( 13

13−𝛾1−𝛾2−𝛾3
)

(52
13
)

 

(b) 

𝑃𝑟𝑜𝑏.=
(
4
𝛾
) (

48
13 − 𝛾

)

(
52
13
)

 

(c) 

𝑃𝑟𝑜𝑏.=
(
4
𝛾1
) (
4
𝛾2
) (

44
4 − 𝛾1 − 𝛾2

)

(
52
3
)

 

3. 4 cards are drawn at random from a full deck of 52 cards. What’s the prob. that 

(i) They are of different denominations? 

(ii) They are of different suits? 

(iii) Both? 

Solution:  

(i) In a deck of cards there are 13 denominations and 4 suits. 

For favorable cases select a group of 4 denominations from 13 and then choose one card from each of 

the 4 denomination.  

So, no. of favorable cases = (
13
4
) (
4
1
)
4

. 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
(
13
4
)(
4
1
)
4

(
52
4
)
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(ii)  

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
(
13
1
)
4

(
52
4
)

 

(iii) For favorable cases, selecting 4 denominations from 13 and then taking one card from the 

1st denomination in 4 ways from the 4 suits. Then taking 2nd from the 2nd denomination in 3 

ways & so on.  

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
(
13
4
) × 4!

(
52
4
)

 

4. From a deck of 52 cards are drawn successively until an ace appears. What is the prob. that 

the 1st ace will appear  

(a) At the nth draw, 

(b) After the nth draw. 

Solution:  

(a) For the favourable cases, at the nth draw an ace can occur in 4 ways and the first (n−1) cards are 

to be taken from 48 non−ace cards which can be done in (48)𝑛−1 ways. 

∴ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
4 × (48)𝑛−1
(52)𝑛

 

(b) For the favorable cases, 1st n cards contain no ace. 

∴ 𝑅𝑒𝑞 𝑝𝑟𝑜𝑏.=
(48)𝑛
(52)𝑛

 

5. (Spread of Rumours) In a town of (n+1) inhabitants, a person tells a rumour to a second 

person, who in turn, repeats it to a third person, etc. At each step the receipt of the rumour is 

chosen at random from n people available. 

(i) Find the prob. that the rumour will be told r times without  

(a) Returning to the originator. 

(b) Being repeated to any person. 

 

(ii)  Do the same problem when at each step the rumour is told by one person to a gathering 

of N randomly chosen individuals. 

Solution:  

(i) Since any person can tell the rumour to any one of the n available persons in n ways, total 

possible cases = 𝑛𝑟. 
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(a) The originator can tell the rumour to anyone of the remaining n persons in n ways & each of the 

(r−1) receipts of the rumour can tell to anyone of the remaining (n−1) persons without returning 

to the originator in (n−1) ways. 

 

(b) 

𝑅𝑒𝑞. 𝑝𝑟𝑜𝑏.=
𝑛(𝑛 − 1)𝑟−1

𝑛𝑟
 

𝑅𝑒𝑞. 𝑝𝑟𝑜𝑏.=
(𝑛)𝑟
𝑛𝑟

 

(ii)  

(a)  

𝑃𝑎 =
(
𝑛
𝑁
) {(

𝑛 − 1
𝑁

)}
𝑟−1

{(
𝑛
𝑁
)}
𝑟  

= {
(
𝑛 − 1
𝑁

)

(
𝑛
𝑁
)
}

𝑟−1

= (1 −
𝑁

𝑛
)
𝑟−1

 

(b)   

𝑃𝑏 =
(
𝑛
𝑁
) (
𝑛 − 𝑁
𝑁

)(
𝑛 − 2𝑁
𝑁

)…… . (𝑛 − 𝑟 − 1
̅̅ ̅̅ ̅̅ ̅𝑁
𝑁

)

{(
𝑛
𝑁
)}
𝑟  

=

𝑛!
{𝑁!}𝑟(𝑛 − 𝑟𝑁)!

{(
𝑛
𝑁
)}
𝑟  

=
(𝑛)𝑟𝑁
{(𝑛)𝑁}

𝑟
 

 

6. 5 cards are taken at random from a full deck. Find the probability that  

(a) They are different denominations? 

(b) 2 are of same denominations? 

(c) One pair if of one denomination & other pair of a different denomination and one odd? 

(d) There are of one denomination & two scattered? 

(e) 2 are of one denomination and 3 of another? 

(f) 4 are of one denomination and 1 of another? 
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Solution : (a)  

𝑃(𝑎) =
(
13
5
) (
4
1
)
5

(
52
5
)

 

(b) 

𝑃(𝑏) =
(
13
1
) (
4
2
) (
12
3
) (
4
1
)
3

(
52
5
)

 

(c)  

𝑃(𝑐) =
(
13
2
)(
4
2
)
2

(
11
1
) (
4
1
)

(
52
5
)

 

(d)  

𝑃(𝑑) =
(
13
1
) (
4
3
) (
12
2
)(
4
1
)
2

(
52
5
)

 

(e)    

𝑃(𝑒) =
(
13
2
) (
4
2
) (
13
3
)(
4
3
)

(
52
5
)

 

(f)  

𝑃(𝑓) =
(
13
1
) (
4
4
) (
12
1
) (
4
1
)

(
52
5
)
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RULE−V: 

 Occupancy Problem: In many situations it is necessary to treat the balls indistinguishable, e.g., in 

statistical studies of the distribution of accidents among week days, here one is interested only 

in the number of occurrences and not in the individual involved. 

Such an example is completely described by its occupancy numbers 𝑟1, 𝑟2, … , 𝑟𝑛; where, 𝑟𝑘 denotes the 

number of balls in the kth cell. 

Here we are interested in number of possible distribution, i.e., the number of different n−tuples 

(𝑟1, 𝑟2, … . . , 𝑟𝑛) such that 𝑟1 + 𝑟2 +⋯+ 𝑟𝑛 = 𝑟 (𝑟𝑖 ≥ 0). 

 

 Theorem 1: The number of different distributions of ‘r’ indistinguishable balls in n cells, i.e., the 

number of different solution of the above fact is  

(
𝑛 + 𝑟 − 1
𝑛 − 1

). 

 Theorem 2: The number of different distribution of ‘r’ indistinguishable balls in the n cells in 

which no cell remains empty is 

(
𝑟 − 1
𝑛 − 1

). 

Ex: r distinguishable balls are distributed into n cells and all possible distributions are equally likely. Find 

the prob. that exactly m cells remain empty.  

Solution: The m cells which are to be kept empty can be chosen from n cells in (
𝑛
𝑚
) ways and r 

indistinguishable balls can be distributed in the remaining (n−m) cells so that no cell remain empty is in  

(
𝑟 − 1

𝑛 −𝑚 − 1
)  𝑤𝑎𝑦𝑠. 

No. of favorable cases = (
𝑛
𝑚
)(

𝑟 − 1
𝑛 −𝑚 − 1

) 

∴ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑏.=
(
𝑛
𝑚
)(

𝑟 − 1
𝑛 −𝑚 − 1

)

(
𝑛 + 𝑟 − 1

𝑟
)
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 Application: 

1. Show that r indistinguishable balls can be distributed in n cells i.e., the no. of different 

solution (𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏) such that {𝒓𝟏 + 𝒓𝟐 +⋯+ 𝒓𝒏 = 𝒓} is (
𝒏 + 𝒓 − 𝟏

𝒓
), where 𝒓𝒊 ≥ 𝟎. 

Solution : Denoting the choices of 𝑟1, i.e., 0, 1, ….., r in the indices, we get the factors (𝑥0 + 𝑥1 +⋯+

𝑥𝑟).  

The no. of different solutions (𝑟1, 𝑟2, … . , 𝑟𝑛) of 

∑𝑟𝑖 = 𝑟

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖 ≥ 0 𝑖𝑠 

= The coefficient of 𝑥𝑟 in  

(𝑥0 + 𝑥1 +⋯+ 𝑥𝑟)… (𝑥0 + 𝑥1 +⋯+ 𝑥𝑟)⏟                            
𝑛 𝑡𝑖𝑚𝑒𝑠

 

= The coefficient of 𝑥𝑟 in 

(
1 − 𝑥𝑟+1

1 − 𝑥
)

𝑛

 

= The coefficient of 𝑥𝑟 in the expression (1 − 𝑥𝑟+1)𝑛 (1 − 𝑥)−𝑛 

= The coefficient of 𝑥𝑟 in 

{1 − 𝑛𝑥𝑟+1 + (
𝑛

2
)𝑥2𝑟+2 +⋯} {1 + 𝑛𝑥 + (

𝑛

2
)𝑥2 +⋯+ (

𝑛

𝑟
) 𝑥𝑟 +⋯} 

= (
𝑛 + 𝑟 − 1

𝑟
). 

 

2. Show that the no. of different distributions of r indistinguishable balls in n cells where no cell 

remains empty is (
𝒏 − 𝟏
𝒓 − 𝟏

). 

Hints: 

The coefficients of 𝑥𝑟 in (𝑥 + 𝑥2 +⋯+ 𝑥𝑟)𝑛 

= The coefficient of 𝑥𝑟 in 𝑥𝑛  (
1−𝑥𝑟

1−𝑥
)
𝑛

 

= The coefficient of 𝑥𝑟−𝑛 𝑖𝑛 (1 − 𝑥𝑟)𝑛(1 − 𝑥)−𝑛 

= (
𝑛 + 𝑟 − 𝑛 − 1

𝑟 − 𝑛
) = (

𝑟 − 1
𝑛 − 1

). 
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STUDY MATERIALS ON BASIC ALGEBRA 

TOPIC : COMPLEX NUMBERS (DE’ MOIVRE’S THEOREM) 

A complex number z is an ordered pair of real numbers (a,b): a is called Real 

part of z, denoted by Re z and b is called imaginary part of z, denoted by Im z. 

If Re z=0, then z is called purely imaginary; if Im z =0, then z is called real. On 

the set C of all complex numbers, the relation of equality and the operations of 

addition and multiplication are defined as follows: 

(a,b)=(c,d) iff a=b and c=d, (a,b)+(c,d)=(a+c,b+d), (a,b).(c,d)= (ac-bd,ad+bc) 

The set C of all complex numbers under the operations of addition and 

multiplication as defined above satisfies following properties: 

 For z1,z2,z3 C, (1) (z1+z2)+z3=z1+(z2+z3)(associativity), (2)z1+(0,0)=z1, 

(3) for z=(a,b) C, there exists –z=(-a,-b) C such that (-z)+z=z+(-

z)=(0,0), (4)z1+z2=z2+z1. 

 For z1,z2,z3 C, (1) (z1. z2).z3=z1.(z2.z3)(associativity), (2)z1.(1,0)=z1, (3) 

for z=(a,b) C,z (0,0), there exists 
 

 
 C such that z.

 

 
=

 

 
.z=1, 

(4)z1.z2=z2.z1. 

 For z1,z2,z3 C, z1.(z2+z3)=(z1.z2)+(z1.z3). 

Few Observations 

(1) Denoting the complex number (0,1) by i and identifying a real complex 

number (a,0) with the real number a, we see 

z=(a,b)=(a,0)+(0,b)=(a,0)+(0,1)(b,0) can be written as z=a+ib.  

(2) For two real numbers a,b , a
2
+b

2
=0 implies a=0=b; same conclusion need 

not follow for two complex numbers, for example, 1
2
+i

2
=0 but 

1≡(1,0) (0,0) ≡0 and i=(0,1)  (0,0) (≡ denotes identification of a real 

complex number with the corresponding real number). 

(3) For two complex numbers z1,z2, z1z2=0 implies z1=0 or z2=0. 

(4) i2
=(0,1)(0,1)=(-1,0) ≡-1. 

(5) Just as real numbers are represented as points on a line, complex numbers 

can be represented as   points on a plane: z=(a,b) P: (a,b). The line 

containing points representing the real complex numbers (a,0), a real,  is 

called the real axis and the line containing points representing purely 

imaginary complex numbers (0,b) ≡ib is called the imaginary axis.  
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(6) The plane on which the representation is made is called Gaussian Plane or 

Argand Plane. 

Definition 1.1 Let z=(a,b) ≡a+ib. The conjugate of z, denoted by  ̅ ,  is (a,-b) 

≡a-ib.  

Geometrically, the point (representing)  ̅ is the reflection of the point 

(representing) z in the real axis. The conjugate operation satisfies the following 

properties: 

(1)  ̅̅=z , (2)      ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅    ̅, (3)     ̅̅ ̅̅ ̅̅    ̅    ̅, (4)(
  

  
)

̅̅ ̅̅ ̅
 

  ̅̅ ̅

  ̅̅ ̅
 , (4) z+ ̅=2 

Rez, z- ̅=2i Im(z) 

Definition 1.2 Let z=(a,b) ≡a+ib. The modulus of z, written as | |, is defined as 

√     . 

Geometrically, | | represents the distance of the point representing z from the 

origin (representing complex number (0,0) ≡0+i0). More generally, |     | 
represents the distance between the points z1  and z2. The modulus operation 

satisfies the following properties:  

(1)    |     |  |  |  |  |,   (2)   |     |  |  | |  |    (3)  |
  

  
|  

|  |

|  |
        

(4)    ||  |  |  ||  |     | 

GEOMETRICAL REPRESENTATION OF COMPLEX NUMBERS: THE 

ARGAND PLANE 

Let z=a+ib be a complex number. In the Argand plane, z is represented by the 

point whose Cartesian co-ordinates is (a,b) referred to two perpendicular lines 

as axes, the first co-ordinate axis is called the real axis and the second the 

imaginary axis. Taking the origin as the pole and the real axis as the initial line, 

let (r, ) be the polar co-ordinates of the point (a,b). Then a=r cos  , b=r sin  . 

Also r=√     =| |. Thus z=a+ib=| |(cos  +isin  ): this is called modulus-

amplitude form of z. For a given z 0, there exist infinitely many values of   

differing from one another by an integral multiple of 2 : the collection of all 

such values of   for a given z 0 is denoted by Arg z or Amp z. The principal 

value of Arg z , denoted by arg z or amp z, is defined to be the angle   from the 

collection Arg z that satisfies the condition -     . Thus                         

Arg z={arg z+2n : n an integer}. arg z satisfies following properties:                                 

(1) arg(z1z2)=argz1+argz2+2k , where k is a suitable integer from the set{-1,0,1] 
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such that -   argz1+argz2+2k   , (2) arg(
  

  
)   argz1-argz2+2k , where k is 

a suitable integer from the set{-1,0,1] such that -   argz1-argz2+2k   . 

Note An argument of a complex number z=a+ib is to be determined from the 

relations cos  =a/| |, sin  = b/| | simultaneously and not from the single 

relation tan  =b/a. 

Example1.1  Find arg z where z=1+i tan
  

 
.  

»Let 1+itan
  

 
=r(cos  +i sin  ). Then r

2
= sec

2  

 
 . Thus r = - sec

  

 
 > 0. Thus   

cos  =- cos
  

 
, sin  =-sin 

  

 
. Hence  =  +

  

 
. Since  >  , arg z=  -2  =-

  

 
. 

Theorem 1.1 (De Moivre’s Theorem) If n is an integer and   is any real number, 

then (cos  +i sin  )
n
= cos n  +i sin n  . If n=

 

 
, q natural, p integer, | |and q are 

realtively prime,   is any real number, then (cos  +i sin  )
n
 has q number of 

values, one of which is cos n  +i sin n  . 

Proof:  Case 1: Let n be a positive integer. 

Result holds for n=1: (cos  +i sin  )
1
= cos 1  +i sin 1  . Assume result holds 

for some positive integer k: (cos  +i sin  )
k
= cos k  +i sin k  .Then (cos  +i 

sin  )
k+1

=(cos  +i sin  )
k
(cos  +i sin  )=( cos k  +i sin k  )( cos  +i sin  )= 

cos(k+1)  +isin(k+1)    Hence result holds by mathematical induction. 

Case 2: Let n be a negative integer, say, n=-m, m natural. 

(cos  +i sin  )
n
=(cos  +i sin  )

-m 
= 

 

(          ) 
 

 

              
  (by case 1)  

= cos m -isin m =cos(-m)  +isin(-m)  = cos n  +i sin n  . 

Case3:  n=0: proof obvious. 

Case 4 Let n=
 

 
, q natural, p integer, | |and q are realtively prime. 

Let (           )
 

 = cos  +i sin  . Then (           ) = (cos  +i 

sin  )
q
. Thus cos p  +isin p  = cos q  +i sin q  . Thus q  =2k +p  , that is, 

 =
       

 
. Hence (           )

 

 = cos(
       

 
)+isin(

       

 
), where 

k=0,1,…,q-1 are the distinct q values. 
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Some Applications of De’ Moivre’s Theorem 

 

(1) Expansion of cos n  , sin n   and tan n   where n is natural and   is real. 

Cos n  +i sin n  =(cos  +isin  )
n
=cos

n  +   
  cos

n-1  isin  +   
  cos

n-

2          +…+i
n
sin

n  = (cos
n  -   

  cos
n-2         +…)+i(   

  cos
n-

1  sin  -   
  cos

n-3       +…). Equating real and imaginary parts, cos 

n  = cos
n  -   

  cos
n-2         +… and sin n  =   

  cos
n-1  sin  -   

  cos
n-

3       +… 

(2) Expansion of cos
n   and sin

n   in a series of multiples of   where n is 

natural and          . 

Let x = cos        . Then x
n
=cos n  +isin n  , x

-n
= cos n  -isin n  . 

Thus (2 cos  )
n
=(x+

 

 
)n

 

=(x
n
+

 

  
)     

 (x
n-2

+
 

    
)+…=2 cos n  +   

 (2 cos(n-2)  )+… 

Similarly, expansion of sin
n   in terms of multiple angle can be derived. 

(3) Finding n th roots of unity 

To find z satisfying z
n
=1=cos(2k )+isin(2k ), where k is an integer. 

Thus z=[ cos(2k )+isin(2k )]
1/n

=cos(
   

 
)      (

   

 
), k=0,1,…,n-1; 

replacing k by any integer gives rise to a complex number in the set A={ 

cos(
   

 
)      (

   

 
)/ k=0,1,…,n-1}. Thus A is the set of all nth roots of 

unity. 

Example1.2  Solve x
6
+x

5
+x

4
+x

3
+x

2
+x+1=0 

»We have the identity x
6
+x

5
+x

4
+x

3
+x

2
+x+1=

    

   
. Roots of x

7
-1=0 are cos

   

 
 

    
   

 
, k=0,1,…,6. Putting k=0, we obtain root of x-1=0. Thus the roots of 

given equation are cos
   

 
     

   

 
, k=1,…,6. 
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Example1.3  Prove that the sum of 99 th powers of all the roots of x
7
-1=0 is 

zero. 

»The roots of x
7
-1=0 are {1, ,  2

,…,  6
}, where  =cos

  

 
+isin

  

 
. Thus sum of 

99
th
 powers of the roots is 1+  99

+(  )     (  )   1+  99
+(   )    

(   ) =
       

     
=0, since      =1 and     1. 

 

Example1.4 If the amplitude of the complex number 
   

   
 is 

 

 
, show that z lies 

on a circle in the Argand plane. 

»Let z=x+iy. Then 
   

   
=

         

(   )    
  

     

(   )    
. By given condition, 

     

         
=1. On simplification, (x+1)

2
+(y-1)

2
=1. Hence z lies on the circle 

centred at (-1,1) and radius 1. 

 

Example1.5 If A,B,C represent complex numbers z1,z2,z3 in the Argand plane 

and z1+z2+z3=0 and |  |=|  |  |  |, prove that ABC is an equilateral triangle. 

»z1+z2=-z3. Hence |     |
  |  |

 , that is, |  |
 +|  |

 +2z1.z2=|  |
 . By 

given condition, |  ||  |cos  =|  |
 , where   is the angle between z1 and 

z2.Thus cos  =-
 

 
, that is,  =120

0
. Hence the corresponding angle of the triangle 

ABC is 60
0
. Similarly other angles are 60

0
. 

 

Example1.6 Let z and z1 be two complex numbers satisfying z=
    

    
 and |  |=1. 

Prove that z lies on the imaginary axis. 

» z1=
   

   
. By given condition,   |

   

   
|  

|   |

|   |
. If z=x+iy, x=0. Hence. 

 

Example1.7 complex numbers z1,z2,z3 satisfy the relation z1
2
+z2

2
+z3

2
-z1z2-z2z3-

z3z1=0 iff |     |  |     |  |     |. 

» 0=z1
2
+z2

2
+z3

2
-z1z2-z2z3-z3z1=(z1+wz2+w

2
z3)(z1+w

2
z2+wz3), where w stands for 

an imaginary cube roots of unity. If z1+wz2+w
2
z3=0, then (z1-z2)=-w

2
(z3-z2); 

hence |     |=|  ||     |=|     | similarly other part. 
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Conversely, if |     |  |     |  |     |, then z1,z2,z3 represent vertices 

of an equilateral triangle. Then z2-z1=(z3-z1)(cos 60
0
+isin60

0
), z1-z2=(z3-z2)( cos 

60
0
+isin60

0
 ); by dividing respective sides, we get the result. 

 

Example1.8 Prove that |     |
  |     |

   (|  |
  |  |

 ), for two 

complex numbers z1,z2. 

 |     |
  (     )(  ̅    ̅)=|  |

  |  |
 +2 z1z2; similarly |   

  |
 =|  |

  |  |
 -2 z1z2; Adding we get the result. 

 

Example1.9  If cos +cos  +cos  =sin +sin  +sin  =0, then prove that (1) cos 

3 +cos3  +cos 3  =3cos(    +  ), (2) ∑     =∑     =3/2. 

 Let x=cos  +i sin , y= cos  +i sin , z= cos  +i sin . Then x+y+z=0. Thus 

x
3
+y

3
+z

3
=3xyz. By De’ Moivre’s Theorem, (cos 3  + cos 3  +cos 3  )+i(sin 

3  + sin 3  +sin 3  )=3[ cos(     )+isin(     ) . Equating, we get 

result. 

Let x=cos  +i sin , y= cos  +i sin , z= cos  +i sin . Then x+y+z=0. Also 
 

 
 

 

 
 

 

 
    hence xy+yz+zx=0. Thus x

2
+y

2
+z

2
=0. By De’ Moivre’s 

Theorem, cos 2  +cos2  +cos2  =0. Hence∑     =3/2. Using sin
2  =1- 

cos
2  , we get other part. 

 

Example1.10 Find the roots of z
n
=(z+1)

n
, where n is a positive integer, and 

show that the points which represent them in the Argand plane are collinear. 

Let w=
   

 
        

 

   
 Now z

n
=(z+1)

n
 implies w

n
=1.Thus, w=cos

   

 
 

    
   

 
,k=0,…,n-1. 

So z=
 

   
   

 
     

   

 

  , k=1,…,n-1 

= 
 

 
 

 

 
   

  

 
. Thus all points z satisfying z

n
=(z+1)

n
 lie on the line x=-

 

 
. 
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TOPIC : THEORY OF EQUATIONS 

An expression of the form a0x
n
+a1x

n-1
+…+an-1x+an, where a0,a1,…,an are real or 

complex constants, n is a nonnegative integer and x is a variable (over real or 

complex numbers) is a polynomial in x. If a0 0, the polynomial is of degree n 

and a0x
n
 is the leading term of the polynomial. A non-zero constant a0 is a 

polynomial of degree 0 while a polynomial in which the coefficients of each 

term is zero is said to be a zero polynomial and no degree is assigned to a zero 

polynomial. 

Equality: two polynomials a0x
n
+a1x

n-1
+…+an-1x+an and b0x

n
+b1x

n-1
+…+bn-

1x+bn are equal iff a0=b0,a1=b1,…,an=bn. 

Addition: Let f(x)= a0x
n
+a1x

n-1
+…+an-1x+an, g(x)= b0x

n
+b1x

n-1
+…+bn-1x+bn. 

the sum of the polynomials f(x) and g(x) is given by  

f(x)+g(x)= a0x
n
+…+an-m-1x

m+1
+(an-m+b0)x

m
+…+(an+bm), if m<n 

              = (a0+b0)x
n
+…+(an+bn), if m=n 

              = b0x
m
+…+bm-n-1x

n+1
+(bm-n+a0)x

n
+…+(bm+an), if m>n. 

Multiplication: Let f(x)= a0x
n
+a1x

n-1
+…+an-1x+an, g(x)= b0x

n
+b1x

n-1
+…+bn-

1x+bn. the product of the polynomials f(x) and g(x) is given by  

f(x)g(x)=c0x
m+n

+c1x
m+n-1

+…+cm+n
,
 where ci=a0bi+a1bi-1+…+aib0. c0=a0b0 0; 

hence degree of f(x)g(x) is m+n. 

Division Algorithm:  Let f(x) and g(x) be two polynomials of degree n and m 

respectively and n m. Then there exist two uniquely determined polynomials 

q(x) and r(x) satisfying f(x)=g(x)q(x)+r(x), where the degree of q(x) is n-m and 

r(x) is either a zero polynomial or the degree of r(x) is less than m. In particular, 

if degree of g(x) is 1, then r(x) is a constant, identically zero or non-zero. 

Theorem 1.1 ( Remainder Theorem)If a polynomial f(x) is divided by x-a, 

then the remainder is f(a). 

»Let q(x) be the quotient and r (constant)be the remainder when f is divided by 

x-a. then f(x)=(x-a)q(x)+r is an identity. Thus f(a)=r. 
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Theorem 1.2 ( Factor Theorem)If f is a polynomial, then x-a is a factor of f      

iff f(a)=0. 

» By Remainder theorem, f(a) is the remainder when f is divided by x-a; hence, 

if f(a)=0, then x-a is a factor of f. Conversely, if x-a is a factor of f, then   

f(x)=(x-a)g(x) and hence f(a)=0. 

Example1.1 Find the remainder when f(x)=4x
5
+3x

3
+6x

2
+5 is divided by 2x+1. 

»The remainder on dividing f(x) by x-(-
 

 
)=x+

 

 
 is f(-

 

 
)=6. If q(x) be the 

quotient, then f(x)=q(x)(x+
 

 
)+6=

 ( )

 
(2x+1)+6. Hence 6 is the remainder when f 

is divided by 2x+1. 

 

Theorem 1.3 ( Fundamental Theorem of Classical Algebra) 

Every polynomial equation of degree 1 has a root, real or complex. 

Corollary A polynomial equation of degree n has exactly n roots, multiplicity 

of each root being taken into account. 

Corollary If a polynomial f(x) of degree n vanishes for more than n distinct 

values of x, then f(x) =0 for all values of x. 

 

Polynomial equations with Real Coefficients 

Theorem 1.4  If a+ib is a root of multiplicity r of  the polynomial equation 

f(x)=0 with real coefficients, then a-ib is a root of multiplicity r of f(x)=0. 

Note: 1+i  is a root of x
2
-(1+i)x=0 but not so is 1- i.  

Example1.2  Prove that the roots of 
 

   
 

 

   
 

 

   
 

 

 
 are all real. 

» The given equation is 
 

   
+

 

   
+

 

   
=-5 (*). Let a+ib be a root of the 

polynomial equation (*) with real coefficients. Then a-ib is also a root of 

(*).Thus 
 

(   )   
+

 

(   )   
+

 

(   )   
=-5 and 

 

(   )   
+

 

(   )   
+

 

(   )   
=-5. 

Subtracting, -2ib[
 

(   )    
 

 

(   )    
 

 

(   )    
]=0 which gives b=0. Hence 

all roots of given equation must be real. 
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Example1.3 Solve the equation f(x)=x
4
+x

2
-2x+6=0 , given that 1+i is a root. 

» Since f(x)=0 is a polynomial equation with real coefficients, 1-i is also a root 

of f(x)=0. By factor  theorem,(x-1-i)(x-1+i)=x
2
-2x+2 is a factor of f(x). by 

division, f(x)=( x
2
-2x+2)(x

2
+2x+3). Roots of x

2
+2x+3=0 are -1 √ i. Hence the 

roots of f(x)=0 are 1 i, -1 √ i. 

Theorem 1.5 If a+√  is a root of multiplicity r of  the polynomial equation 

f(x)=0 with rational coefficients, then a-√  is a root of multiplicity r of f(x)=0 

where a,b are rational and b is not a perfect square of a rational number.  

Since every polynomial with real coefficients is a continuous function from R to 

R, we have 

Theorem 1.6 (Intermediate Value Property) Let f(x) be a polynomial with real 

coefficients and a,b are distinct real numbers such that f(a) and f(b) are of 

opposite signs. Then f(x)=0 has an odd number of roots between a and b. If f(a) 

and f(b) are of same sign, then there is an even number of roots of f(x)=0 

between a and b. 

Example1.4 Show that for all real values of a, the equation                   

(x+3)(x+1)(x-2)(x-4)+a(x+2)(x-1)(x-3)=0 has all its roots real and simple. 

»Let f(x)= (x+3)(x+1)(x-2)(x-4)+a(x+2)(x-1)(x-3). Then         ( )= ,    

f(-2)<0, f(1)>0, f(3)<0,       ( )= . Thus each of the intervals                

(  ,-2),(-2,1),(1,3),(3,  ) contains a real root of f(x)=0. Since the equation is 

of degree 4, all its roots are real and simple. 

 

Theorem 1.7 (Rolle’s Theorem) Let f(x) be a polynomial with real 

coefficients. Between two distinct real roots of f(x)=0 ,there is at least one real 

root of f
(1)

(x)=0. 

 

Note:  

(1) Between two consecutive real roots of f
(1)

(x)=0, there is at most one real 

root of f(x)=0. 

(2) If all the roots of f(x)=0 be real and distinct, then all the roots of f
(1)

(x)=0 

are also  real and distinct. 
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Example1.5 Show that the equation f(x)=(x-a)
3
+(x-b)

3
+(x-c)

3
+(x-d)

3
=0, where 

a,b,c,d are not all equal , has only one real root. 

» Since f(x)=0 is a cubic polynomial equation with real coefficients, f(x)=0 has 

either one or three real roots. If   be a real multiple root of f(x)=0 with 

multiplicity 3, then   is also a real root of f
(1)

(x)=3[(x-a)
2
+(x-b)

2
+(x-c)

2
+(x-

d)
2
]=0, and hence  =a=b=c=d (since  ,a,b,c,d are real), contradiction. If f(x)=0 

has two distinct real roots, then in between should lie a real root of f
(1)

(x)=0, 

contradiction since not all of a,b,c,d are equal. Hence f(x)=0 has only one real 

root. 

Example1.6  Find the range of values of k for which the equation       

f(x)=x
4
+4x

3
-2x

2
-12x+k=0 has four real and unequal roots. 

» Roots of f
(1)

(x)=0 are -3,-1,1. Since all the roots of f(x)=0 are to be real and 

distinct, they will be separated by the roots of  f
(1)

(x)=0. Now         ( )= , 

f(-3)=-9+k, f(-1)=7+k, f(1)=-9+k,       ( )= . Since f(-3)<0, f(-1)>0 and 

f(1)<0, -7<k<9. 

Example1.7 If c1,c2,…,cn be the roots of x
n
+nax+b=0, prove that (c1-c2)(c1-

c3)…(c1-cn)=n(c1
n-1

+a). 

» By factor theorem, x
n
+nax+b=(x-c1)(x-c2)…(x-cn).Differentiating w.r.t. x, 

n(x
n-1

+a)= (x-c2)…(x-cn)+(x-c1)(x-c3)…(x-cn)+…+(x-c2)(x-c3)…(x-cn). 

Replacing x by c1 in this identity, we obtain the result. 

Example1.8  If a is a double root of f(x)=x
n
+p1x

n-1
+…+pn=0, prove that a is 

also a root of p1x
n-1

+2p2x
n-2

+…+npn=0. 

» Since a is a double root of f(x)=0, both f(a)=0 and f
(1)

(a)=0 hold. Thus a
n
+p1a

n-

1
+…+pn=0 (1) and na

n-1
+(n-1)p1a

n-2
+…+pn-1=0(2). Multiplying both side of (1) 

by n and both side of (2) by a and subtracting, we get p1a
n-1

+2p2a
n-

2
+…+npn=0.Hence the result. 

Example1.9 Prove that the equation f(x)=1+x+
  

  
+…+

  

  
=0 cannot have a 

multiple root. 

» If a is a multiple root of f(x)=0, then 1+a+
  

  
+…+

  

  
=0 and 

1+a+
  

  
+…+

    

(   ) 
=0;it thus follows  that 

  

  
=0, so that a=0; but 0 is not a root of 

given equation.  

Hence no multiple root. 
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Descartes’ Rule of signs 

Theorem 1.8 The number of positive roots of an equation f(x)=0 with real 

coefficients does not exceed the number of variations of signs in the sequence 

of the coefficients of f(x) and if less, it is less by an even number. 

The number of negative roots of an equation f(x)=0 with real coefficients does 

not exceed the number of variations of signs in the sequence of the coefficients 

of f(-x) and if less, it is less by an even number. 

Example1.10  If f(x)=2x
3
+7x

2
-2x-3 , express f(x-1) as a polynomial in x. Apply 

Descartes’ rule of signs to both the equations f(x)=0 and f(-x)=0 to determine 

the exact number of positive and negative roots of f(x)=0. 

» Let g(x)=f(x-1)=2x
3
+x

2
-10x+4. By Descartes’ Rule, g(x)=0 has exactly one 

negative root, say, c. Thus g(c)=f(c-1)=0; hence c-1(<0) is a negative root of 

f(x)=0. Since there are 2 variations of signs in the sequence of coefficients of   

f(-x)and since c-1 is a negative root of f(x)=0, f(x)=0 has two negative roots. 

Also, f(x)=0 has exactly one positive root ,by Descartes’ rule.  

 

Relations between roots and coefficients 

Let c1,…,cn be the roots of the equation a0x
n
+a1x

n-1
+…+an-1x+an=0. By factor 

theorem,  

a0x
n
+a1x

n-1
+…+an-1x+an=a0(x-c1)(x-c2)…(x-cn). 

Equating coefficients of like powers of x,a1=a0( ∑   ), a2=a0∑    ,….,an=a0 (-

1)
n
c1c2…cn. Hence  

∑  =-
  

  
,∑    =

  

  
,…, c1c2…cn=(-1)

n  

  
. 

Example1.11 Solve the equation 2x
3
-x

2
-18x+9=0 if two of the roots are equal 

in magnitude but opposite in signs. 

» Let the roots be -a, a, b .Using relations between roots and coefficients,      

b=(-a)+a+b=
 

 
 and –a

2
b=-

 

 
. Hence a

2
=9, that is, a= 3. Hence the roots are        

3, -3, 
 

 
. 
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SETS AND FUNCTIONS 

A set is a collection of objects having the property that given any abstract (the thought of 

getting 100%marks at the term-end examination) or concrete (student having a particular 

Roll No. of semester II mathematics general) object, we can say without any ambiguity 

whether that object belongs to the collection (collection of all thoughts that came to one’s 

mind on a particular day or the collection of all students of this class) or not. For 

example, the collection of ‘good’ students of semester II will not be a set unless the 

criteria of ‘goodness’ is made explicit! The objects of which a set A is constituted of are 

called elements of the set A. If x is an element of a set A, we write x A; otherwise x A. 

If every element of a set X is an element of set Y,X is a subset of Y, written as X  Y. X 

is a proper subset of Y if X  Y and   Y X, written as    . For two sets X = Y iff (if 

and only if, bi-implication) X  Y and Y X. A set having no element is called null set, 

denoted by  .  

Example1.1 a≠{a} (a letter inside envelope is different from a letter without envelope    

{a} {a,{a}}, {a} {a,{a}},   A(the premise x    of the implication x    ⇒ x    is 

false and so the implication holds vacuously ), A A, for every set A. 

Set Operations: formation of new sets 

Let X and Y be two sets. Union of X and Y, denoted by X Y, is the set {a| a X or a Y 

or both}. Intersection of X and Y, denoted by X  , is the set {a| a X and a Y}. The set 

difference of X and Y, denoted by X-Y, is the set {a| a X and a  Y}. The set difference 

U-X is called complement of the set X, denoted by X
/
, where U is the universal set. The 

symmetric  set difference of X and Y, denoted by X  , is the set (X-Y) U(Y-X). For any 

set X, the power set of X, P(X), is the set of all subsets of X. Two sets X and Y are 

disjoint iff X   =  . The Cartesian product of X and Y, denoted by X X Y, is defined as 

the set {(x,y)| x X, y Y} [ (x,y) is called an ordered pair. Two ordered pairs (x,y) and 
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(u,v) are equal, written (x,y) = (u,v), iff x = u and y = v]. If we take X = {1,2} and Y = 

{3}, then X X Y = {(1,3),(2,3)} ≠{(3,1),(3,2)} = Y X X. Thus Cartesian product between 

two distinct sets are not necessarily commutative (Is     { }  { }    ?). 

Laws governing set operations 

For sets X, Y, Z,  

 Idempotent laws: X    , X X = X 

 Commutative laws: X Y = Y X, X Y = Y   

 Associative Laws: (X Y)  Z = X (Y Z), (X Y)  Z = X (Y    

 Distributive laws: X (Y Z) = (X    (X Z), X (Y Z) = (X    (X Z) 

 Absorptive laws: X (X Y)=X, X (X Y)=X 

 De’ Morgan’s laws: X-(Y Z) = (X-Y)  (X-Z), X-(Y Z) = (X-Y)  (X-Z) 

Example1.1 Let A, B, C be three sets such that A B = A C and A B = A  , then 

prove B = C.  

» B = B (A B) = B (A  ) = (B A)   (B C) (distributivity of   over ) = 

(C A)  (B C) = C (A B)= C (A  ) = C. 

Example1.2 A       implies A = B: prove or disprove. 

NOTE: Proving will involve consideration of arbitrary sets A,B,C satisfying the given 

condition, whereas disproving consists of giving counter-examples of three particular sets 

A,B,C that satisfies the hypothesis A       but for which the conclusion A = B is 

false. 

NOTATION: N,Z,Q,R,C will denote set of all positive integers, integers, rational 

numbers ,real numbers  and the complex numbers respectively. 
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A function from a set A to a set B, denoted by f:  A B, is a correspondence between 

elements of A and B having the properties: 

 For every x A, the corresponding element f(x)      f(x) is called the image of x 

under the correspondence f and x is called a pre-image of f(x). A is called domain 

and B is called the codomain of the correspondence. Note that we differentiate 

between f, the correspondence, and f(x), the image of x under f. 

 For a fixed x A, f(x)    is unique. For two different elements x and y of A, 

images f(x) and f(y) may be same or may be different. 

In brief, a function is a correspondence under which  

 both existence and uniqueness of image of all elements of the domain is guaranteed 

but  

 neither the existence nor the uniqueness of pre-image of some element of 

codomain is guaranteed. 

Example1.7 Prove that f(A B)  f(A)  f(B) ; give a counterexample to establish that the 

reverse inclusion may not hold. 

» y  f(A B)⇒y = f(x), x  A B⇒ y = f(x), x  A and x B⇒y f(A)and y f(B) ⇒y  

f(A)  f(B). Hence f(A B)  f(A)  f(B). Consider the counter example: f: R R,f(x) = x
2
, 

A = {2}, B = {-2}.  

Example1.3 Let f: R R, f(x) = 3x
2
-5. f(x) = 70 implies x = ±5. Thus f

-1
{70} = {-5, 

5}.Hence f[f
-1

{70}] = {f(-5), f(-5)} = {70}. Also, f
-1

({-11}) =   [x  f
-1

({-11})⇒3x
2
-5=-

11⇒x
2
=-2]. 

A function under which uniqueness  of pre-image is guaranteed is called an injective 

function. A function under which existence of pre-image is guaranteed is called a 

surjective function. Put in a different language, f: A B is injective iff a1, a2 A, f(a1) = 
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f(a2) implies a1 = a2. f is surjective iff codomain and range coincide. A function which is 

both injective and surjective is called bijective . 

NOTE: The injectivity, surjectivity and bijectivity depends very much on the domain and 

codomain sets and may well change with the variation of those sets even if expression of 

the function remains unaltered e.g. f:Z Z, f(x) = x
2
 is not injective though g:N Z, g(x) 

= x
2
 is injective. 

Example1.4 f: R R, f(x) = x
2
 – 3x+4. f(x1) = f(x2) implies (x1-x2)(x1+x2-3) = 0. Thus f(1) 

= f(2) though 1≠2; hence f is not injective [Note: for establishing non-injectivity, it is 

sufficient to consider particular values of x]. Let y R and x  f-1
{y}. Then y = f(x) = x

2
 – 

3x+4. We get a quadratic equation x
2
 – 3x+(4-y) = 0 whose roots, considered as a 

quadratic in x, give pre-image(s) of y. But the quadratic will have real roots if the 

discriminant 4y-7 0, that is , only when y 7/4. Thus, for example, f
-1

{1} =   Hence f is 

not surjective. 

If f:A B and g:B C, we can define a function g0f:A C, called the composition of f and 

g, by (g0f)(a) = g(f(a)), a A. 

Example1.5 f:Z  Z and g: Z  Z by f(n) = (-1)
n
 and g(n) = 2n. Then g0f: Z  Z, 

(g0f)(n)=g((-1)
n
) = 2(-1)

n
 and (f0g)(n) = (-1)

2n
. Thus g0f ≠ f0g. Commutativity of 

composition of functions need not hold. 
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LINEAR ALGEBRA 

MATRICES 

Definition: A rectangular array of mn elements aij into m rows and n columns, where the 

elements  aij belong to a field F, is called a matrix of order mxn over F. It is denoted by 

[aij]mxn or by  [

          

   
          

]        (

          

   
          

). F is called field of 

scalars. In particular, if F be the field R of real numbers, a matrix over R is said to be a 

real matrix. The element aij appearing in the i th row and j th column of the matrix is said 

to be ij th element. If m=1, the matrix is said to be a row matrix and if n = 1, it is called a 

column matrix. If each element of a matrix is 0, it is called a null matrix and denoted by 

Omxn. If m=n, matrix is called a square matrix. Two matrices [aij]mxn  and [bij]pxq are equal 

iff m = p, n = q and aij = bij for each i and j. A square matrix whose elements on the 

principal diagonal are all equal to 1 and all the elements off the main diagonal are 0 is 

called identity matrix and is denoted by In. If A = [aij]mxn, then transpose of A, denoted by 

A
T
, is defined as A

T
 = [bij]nxm,where bij = aji, for each i and j. A square matrix is a 

diagonal matrix if all the elements not lying on the main diagonal are zero. 

OPERATION ON MATRICES 

Equality of matrices [aij]mxn=[bij]pxq iff  m=p, n=q and aij = bij, for each i,j. 

Multiplication by a scalar for a scalar c,  c[aij]mxn = [caij]mxn 

Addition two matrices [aij]mxn , [bij]pxq are conformable for addition iff m = p and n = q 

and in that case  

   [aij]mxn+[bij]mxn = [aij+bij]mxn 
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Multiplication two matrices [aij]mxn , [bij]pxq are conformable for multiplication iff n = p. 

in that case 

   [aij]mxn [bij]nxq = [cij]mxq, cij =∑       
 
   . 

ALGEBRA OF MATRICES 

1. Matrix addition is commutative and associative.  

2. Matrix multiplication is NOT commutative.  

3. Matrix multiplication is associative. Let A = [aij]mxn, B = [bij]nxp, C = [cij]pxq. Then 

AB = [dij]mxp, where dij = ∑       
 
   . Thus (AB)C = [eij]mxq where eij = 

∑       
 
    = ∑ ∑       

 
   

 
      . Again, BC = [fij]nxq, where fij = ∑       

 
   . 

Thus A(BC) = [gij]mxq where gij = ∑       
 
   =∑ ∑          

 
   

 
    = eij, for all 

i,j. hence A(BC) = (AB)C. 

4. Matrix multiplication is distributive over addition. 

5.  (A
T
)

T
 = A 

6. (A+B)
T
 = A

T
+B

T
. 

7. (AB)
T
 = B

T
A

T
 (supposing A,B are conformable for product). Let A = [aij]mxn, B = 

[bij]nxp. AB =[cij]mxp, where cij = ∑       
 
   . So (AB)

T
 =[dij]pxm, dij = 

cji=∑       
 
   . B

T
 = [eij]pxn , A

T
 = [fij]nxm where eij = bji,fij = aji. Hence B

T
A

T
 = 

[gij]pxm, where gij =∑       
 
   =∑       

 
   =dij.  

Symmetric and skew-symmetric matrix 

A square matrix A is symmetric iff A = A
T
. A square matrix A is skew-symmetric iff      

A = -A
T
. 

Results involving symmetric and skew-symmetric matrices 

(1) If A and B are symmetric matrices of the same order, then A+B is symmetric. 
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(2) If A and B are symmetric matrices of the same order , then AB is symmetric iff AB 

= BA. 

» if AB is symmetric, then AB = (AB)
T
 = B

T
A

T
 = BA. If AB = BA, then AB = BA 

= B
T
A

T
 = (AB)

T
, so that AB is symmetric. 

(3) AA
T
 and A

T
A are both symmetric. 

(4) A real or complex square matrix can be uniquely expressed as the sum of a 

symmetric and a skew-symmetric matrix. 

» let A be a square matrix. then A can be expressed as A = 
 

 
(      

 

 
(  

    where 
 

 
(      is symmetric and 

 

 
(      is skew-symmetric. 

Uniqueness can be proved. 

DETERMINANT 

Let M stand for the set of all square matrices over R. We define a function det: M R 

inductively as follows: 

Step 1 det X= a11=(-1)
1+1

a11, if X= [a11]1x1.     det     (            (     

(            (    , if X=[aij]2x2= (
      

      
). 

Step 2 let us assume the definition is valid for a square matrix of order n: thus for X= 

(aij)nxn , det X=∑ (               
 
   , where X1r is a matrix of order n-1, obtained 

from X by deleting the first row and r th column. We now consider X = (aij)(n+1)x(n+1). We 

now define det X =∑ (               
   
   , where X1r is a matrix of order n, obtained 

from X by deleting the first row and r th column. By assumption,        can be 

evaluated for all r. so the definition is valid for a square matrix of order (n+1). 
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Hence by induction, for a matrix X = (aij)nxn ,  we define det X 

=∑ (               
 
   , where X1r is a matrix of order n-1, obtained from X by 

deleting the first row and r th column. 

Following this definition , we can define det X, for any X  M. 

Example 2.1 for the matrix X=[

         

         

         

], det X = (-1)
1+1

a11X11+(-1)
1+2

a12X12+(-

1)
1+3

a13X13, where X1r is the determinant of the matrix obtained by deleting the first row 

and r th column of A. now X11 = (-1)
2+2

a22det(a33)+(-1)
2+3

a23det(a32)  = a22a33-a23a32. 

Similarly value for X12 and X13 can be found and finally value of det X can be calculated. 

Properties of determinants 

(1) det X = det X
T
, where X =[

         

         

         

]  . By actual calculation, we can verify 

the result. 

NOTE: By virtue of this property, a statement obtained from an established result 

by interchanging the words ‘row’ and ‘column’ thoroughly will be established.  

(2) Let A be a matrix and B is obtained from A by interchanging any two rows 

(columns) of a matrix A, then detA = - det B. 

(3) If A be a matrix containing two identical rows (or columns), then det A = 0. Result 

follows from (2). 

(4) If elements of any row of a determinant is expressed as sum of two elements, then 

the determinant can be expressed as a sum of two determinants. 
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Example: det [

         

               
         

] =    [

         

         

         

]  

   [

         

   
         

], which can be verified using definition and earlier properties. 

 

(5) If elements of any row of a determinant is multiplied by a constant, then the 

determinant is multiplied by the same constant 

Example     [

         

            

         

]= c det [

         

         

         

], which can be verified 

using definition and earlier properties. 

(6) In an nxn matrix A if a scalar multiple of one row(column) be added to another 

row(column), then detA remains unaltered. 

» det [

         

                        

         

]  = det [

         

         

         

]  

   [

         

            

         

], [by property  (4)]   

=det[

         

         

         

]+c   [

         

         

         

], [by property(5)]   

= det[

         

         

         

] + c.0 , [by property(3)]  

= det[

         

         

         

] 

 

(7) In an nxn matrix A, if one row(column) be expressed as a linear combination of 

the remaining rows(columns), then detA = 0. 
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» det[

                                 

         

         

]  

= c1det[

         

         

         

]+c2det[

         

         

         

]=0. 

Example:  Prove without expanding the determinant |
          
          
          

|=0 

» |
          
          
          

|  |
       

       

       

|  |
    
    
    

| 

= |
     

     

     

|+
 

   
|
      
      
      

| 

= - |
    

    

    

|+
   

   
|
    
    
    

|=0. 

Cofactors and Minors : 

Let A = [aij]mxn. Mij, minor of the element aij, is the determinant of the matrix obtained by 

deleting i th row and j th column of the matrix A. Aij, cofactor of the element aij, is 

defined as (-1)
i+j

Mij. 

Theorem: For a matrix A=[aij]3x3, ai1Ak1+ ai2Ak2+ ai3Ak3 = det A, if i=k and  = 0, if i≠k. 

» a11A11+a12A12+A13 = a11(-1)
1+1

det *
      

      
+ +a12(-1)

1+2
det *

      

      
+ +a13(-

1)
1+3

det*
      

      
+=detA, by definition. Also,  
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a11A21+a12A22+a13A23= a11(-1)
2+1

det *
      

      
+ +a12(-1)

2+2
det *

      

      
+ +a13(-

1)
2+3

det*
      

      
+ 

=det [

         

         

         

] (by definition of determinant) = 0 (by property (3)). 

Similarly other statement can be proved. 

Multiplication of determinants 

Theorem: If A and B are two square matrices of the same order, then  

det(AB) = detA.detB= det A
T
.det B 

Example:  prove |
          

          

          

|=(a
3
+b

3
+c

3
-3abc)

2
 

» we have |
   
   
   

|=- (a
3
+b

3
+c

3
-3abc). Now |

   
   
   

| |
   
   
   

| 

= |
   
   
   

|  |
      
   
   

|= |
          

          

          

|. 

Example:  Prove that |

 (     (     

(      (     

(     (      

|=2(a-b)
2
(b-c)

2
(c-a)

2
. 

» We have |
   
   
      

|= (a-b)(b-c)(c-a).  Now   2|
   
   
      

| |
   
   
      

| 
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= - 2|
      

   
   

| |
   
   
      

| 

=|
      

         
   

| |
   
   
      

|  |

 (     (     

(      (     

(     (      

|.  

Definition: If A=(aij) be a square matrix and Aij be the cofactor of aij in det A, then 

det(Aij) is the adjoint of det A. 

Theorem:  If A=(aij)3x3, then det(Aij)=[det (aij)]
2
, if det (aij)≠0. 

»|

         

         

         

| |

         

         

         

| 

=|
                                         

      
      

| 

 = (det A)
3
. Hence det(Aij)=[det (aij)]

2
, if det (aij)≠0. 

Example: Prove |
               

               

               

|=(a
3
+b

3
+c

3
-3abc)

2
 

» we have |
   
   
   

|=-(a
3
+b

3
+c

3
-3abc). Now |

               

               

               

| 

= adj|
   
   
   

|=|
   
   
   

|

 

=RHS 
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Adjoint of a square matrix 

Definition Let A = (aij) be a square matrix. Let Aij be the cofactor of aij in detA. The 

adjoint of A, denoted by Adj A, is defined as (Aij)
T
. 

Theorem: Let A be a square matrix of order n. then A. (Adj A) = (Adj A).A = | |In. 

» the i,j th element of A.(Adj A) is ai1A1j+ai2AI2+…+ainAnj which equals 0, if i≠j and 

equals | |, if i=j. Hence A. (Adj A) = [
| |    

   
      | |

] = | |In. similarly other part. 

 

Definition: A square matrix is singular if | |=0 and is non-singular if | |≠0. 

Definition: A square matrix of order n is invertible if there exists a matrix B such that 

AB= BA = In. B is called an inverse to A. If C be an inverse to A also, then AC = CA = 

In. using associativity of product of matrices, it is easy to verify that B = C. So inverse of 

a square matrix , if it exists, is unique. Note also that since AB and BA both are to be 

defined, A must be a square matrix. 

Theorem: An nxn matrix A is invertible iff it is non-singular. 

» Necessity let Anxn be invertible. Then there exists Bnxn such that AB = BA = In. then 

| || |=|  |=|  |=1 so that | |≠0. 

Sufficiency Let | | ≠0. we know that A.(Adj A) = (Adj A).A = | | In. hence 

A. 
 

| |
(       =  

 

| |
(       A = In, proving the result. 
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Theorem:  If A,B be invertible matrices of the same order, then AB is invertible and 

(AB)
-1

 = B
-1

A
-1

. 

» |  |  | || |≠0, hence AB is invertible. Using associativity, 

 (AB)(B
-1

A
-1

) = In=(B
-1

A
-1

)(AB).  

Theorem:  If A be invertible, then A
-1

 is also invertible and (A
-1

)
-1

 = A. 

»   From AA
-1

 = A
-1

A = In, it follows from the definition of inverse that (A
-1

)
-1

 = A. 

Theorem:  If A be an invertible matrix, then A
T
 is invertible and (A

T
)

-1
 = (A

-1
)

T
. 

» A
T
.(A

-1
)

T
 = (A

-1
A)

T
=In

T
 = In = (AA

-1
)

T
 = (A

-1
)

T
.A

T
. Hence (A

T
)

-1
 = (A

-1
)

T
. 

Orthogonal matrix 

Definition: A square matrix A of order n is orthogonal iff AA
T
 = In. 

Theorem:  If A is orthogonal , then A is non-singular and | |=±1. 

» | |  | ||  |  |   |  |  |    implies | |      . 

Theorem: If A be an nxn orthogonal matrix, then A
T
A = In. 

» AA
T
 = In⇒A

T
(AA

T
) = A

T
In⇒(A

T
A)A

T
 = A

T⇒(A
T
A-In)A

T
 = O⇒(A

T
A-In)[A

T
(A

T
)

-1
] = O 

(A is orthogonal⇒A is non-singular⇒A
T
 is non-singular⇒A

T
 is invertible) ⇒A

T
A = In. 

Theorem: If A and B are orthogonal matrices of the same order, then AB is orthogonal. 

»(AB)(AB)
T
 = (AB)(B

T
A

T
) = A(BB

T
)A

T
 =(AIn)A

T
 = AA

T
 = In. 

Theorem: If A is orthogonal, A
-1

is orthogonal. 

» (A
-1

)(A
-1

)
T
=(A

-1
)(A

T
)

-1
= (A

T
A)

-1
 = In

-1
 = In. 

Note:  If A be an orthogonal matrix, A
T
 = A

-1
. 



 

15 

 

Rank of a matrix 

Definition Let A be a non-zero matrix of order mxn. Rank of A is defined to be the 

greatest positive integer r such that the determinant of the matrix formed by elements of 

A lying at the intersection of some r rows and some r columns is nonzero. Rank of null 

matrix is defined to be zero.  

Note: (1) 0<rank A≤ min{m,n}, for a non-zero matrix A. 

          (2) for a square matrix A of order n, rankA < n or =n according as A is singular or 

non-singular. 

          (3) Rank A = Rank A
T
. 

Elementary row operations 

An elementary operation on a matrix A over a field F is an operation of the following 

three types: 

 Interchange of two rows(columns) of A 

 Multiplication of a row (or column) by a non-zero scalar c  F 

 Addition of a scalar multiple of one row (or column)to another row(or column) 

When applied to rows, elementary operations are called elementary row operations. 

Notation: interchange of i th and j th row will be denoted by Rij. Multiplication of i th row 

by c will be denoted by cRi.  Addition of c times the j th row to the i th row is denoted by 

Ri+cRj. 

Definition: An mxn matrix B is row equivalent to a mxn matrix A over the same field F 

iff B can be obtained from A by a finite number of successive elementary row operations. 
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Note Since inverse of an elementary row operation is again an elementary row operation, 

if B is row equivalent to A, then A is also row equivalent to B. 

Definition: An m x n matrix is row reduced iff 

 The first non-zero element in a non-zero row is 1 and 

 each column containing the leading 1of some row has all other elements zero. 

Example:  [
           
           
     

] 

Definition: An m x n matrix A is row reduced echelon matrix iff 

 A is row reduced 

 Each zero row comes below each non-zero row and 

 If first r rows are non-zero rows of A and if the leading element of row I occurs in 

column ki, then k1<k2<…<kr. 

Example:  [
   
   
   

] 

Algorithm which row-reduces a matrix to echelon form 

Step-1: suppose that j1 column is the first column with a nonzero entry. Interchange the 

rows so that this nonzero entry appears in the first row, that is, so that     ≠0 

Step-2: for each i>1, apply the operation Ri→-             . 

Repeat steps 1 and 2 with the submatrix formed by all the rows excluding the first. 

Theorem: For a given matrix A , a row-reduced echelon matrix B equivalent to A can be 

found by elementary row operations. 



 

17 

 

Example: [
   
    
    

]
 

 
  

→ [
   
    
    

]
      

→     [
   
   
    

]
      

→     [
   
   
   

]

      

→     [
   
   
   

]
   

→ [
   
   
   

] 

Theorem: If a matrix A is equivalent to a row-reduced enhelon matrix having r non-zero 

rows, then Rank A = r. 

Example: Find the rank of the matrix A = [
    
   
   

] 

» First Method: rank A≥ 1, since        = 1≠0. Though det*
  
  

+ = 0, det*
   
  

+≠0. 

Hence  rank A≥ 2. Since  det A= 0, rank A is not equal to 3. hence rank A = 2. 

Second Method: A 
      

→     [
    
   
   

]
   

 

 
  

→    [
   
   
   

]
   

 

 
  

→    [
   
   
   

]

 

 
  

→ [
   
   
   

]. Hence rank A = 2. 

SYSTEM OF LINEAR EQUATIONS 

A system of m linear equation in n unknowns x1,x2,…,xn is of the form 

a11x1+a12x2+…+a1nxn = b1 

a21x1+a22x2+…+a2nxn = b2 

……................................. 

am1x1+am2x2+…+amnxn = bm, where aij’s and bi’s are given elements of a field. 
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An ordered n-tuple (c1,c2,…,cn) is a solution of the system if each equation of the system 

is satisfied by x1=c1,…,xn = cn. a system of equation is consistent if it has a solution; 

otherwise it is inconsistent. 

Matrix representation Let A = (aij)mxn, X = (xj)nx1 and B = (bi)mx1.then the system can be 

written as AX = B. The matrix [
            

   
            

] is called the augmented matrix, 

denoted by (A,B). 

Definition: two systems AX=B and CX=D are equivalent systems if the augmented 

matrices (A,B) and (C,D) are row equivalent. 

Theorem: if AX = B and CX = D are equivalent systems and if (e1,e2,…,en) be a solution 

of AX = B, then (e1,e2,…,en) is also a solution of CX = D. If one of two equivalent 

systems is inconsistent, then the other is also so. 

Ex : Solve, if possible, the system x1+2x2 – x3 = 10, -x1+x2+2x3 = 4, 2x1+x2 – 3x3 = 2. 

» [
        

           
        

]
     

→    [
        
            
        

]
      

→     [
         
             
           

]

     

→    [
          
              
              

] . Thus the given system is equivalent to x1+2x2 – x3 = 10, 

3x2+x3 = 14, 0 = -4, which is inconsistent. Thus the given system is inconsistent. 

Theorem: a necessary and sufficient condition that a given system of linear equations 

AX=B is consistent is that rank A = rank(A,B). 
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Solution of a system of linear equations having same number of variables as that of 

equations in which coefficient matrix is nonsingular 

METHOD 1: Cramer’s rule  

Let  

 a11x1+a12x2+…+a1nxn = b1 

a21x1+a22x2+…+a2nxn = b2 

……………………………….. 

 an1x1+an2x2+…+annxn = bn 

be a system of n linear equations in n unknowns where det A= det(aij)nxn≠0.Then there 

exists a unique solution of the system given by x1 = 
     

    
,…,xn = 

     

    
, where Ai is the 

nxn matrix obtained from A by replacing its i th column by the column [b1  b2…bn]
T
, i = 

1,2,…,n. 

» x1detA =det[

            

   
            

] = det[

                            

   
                          

] 

=det[
         

   
         

]=det A1. Similarly others. 
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Example:  let us consider the system x+2y-3z = 1, 2x – y+z = 4, x+3y = 5. 

Determinant of the coefficient matrix = |
    
    
   

|= -22≠0. By Cramer’s rule, 

x = 

|
    
    
   

|

   
=2, y=

|
    
   
   

|

   
=1, z=

|
   
    
   

|

   
=1. 

METHOD 2: Matrix Inversion method  

Let A = (aij)nxn, X = [x1,..,xn]
T
, B=[b1,b2,…,bn]

T
.  Then the above system of linear 

equations can be written as AX=B,   

where detA ≠0. Thus A
-1

 exists and X = A
-1

B. 

Example2.12  3x+y = 2, 2y+3z = 1, x+2z = 3. 

Let A =[
   
   
   

], X=[
 
 
 
]    [

 
 
 
]. detA≠0.  

A
-1

 = 
 

    
    = 

[
 
 
 
 

 

  
 

 

  

 

  
 

  

 

  
 

 

  

 
 

  

 

  

 

  ]
 
 
 
 

. X=A
-1

B=[
 

  
 

]. Thus the solution is  

x = 1,y = -1,z = 1. 
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EIGEN VECTOR AND EIGEN VALUE CORRESPONDING TO A SQUARE 

MATRIX 

Let A be an nxn matrix over a field F. A non-zero vector   F
n
 is an eigen vector or a 

characteristic vector of A if there exists a scalar a F such that A  = c  holds. Thus (A-

cIn)   = O holds. This is a homogeneous system of n equations in n unknowns. If det(A-

cIn) ≠ 0, then by Cramer’s rule,   =   will be the only solution .Since we are interested in 

non-zero solution, det(A-cIn)=0 equation is called the characteristic equation of A.  

A root of the above equation equation in a, is called an eigen value of A.  

Example: let A = *
  
  

+. The characteristic equation is |
    

    
|=0, or , 

a
2
-6a-7 = 0.thus eigen values are -1,7. The eigenvector *

 
 +  corresponding to the 

eigenvalue -1 is given by *
  
  

+ *
 
 + =-1 *

 
 + . Thus 2x+3y = 0, 4x+6y = 0. Thus                 

x =-3y/2.hence the eigenvector corresponding to -1 is *
 
 += *

  
 

+, where k≠0. Similarly 

eigenvector corresponding to eigenvalue 7 can be found. 

Theorem: The eigen values of a diagonal matrix are its diagonal elements. 

Theorem:If c is an eigen value of a nonsingular matrix A,then c
-1

 is an eigen value of A
-1

. 

Theorem: If A and P be both nxn matrices and P be non-singular, then A and P
-1

AP have 

the same eigen values. 

Theorem: To an eigen vector of A, there corresponds a unique eigen value of A. 

» if possible, let there be two distinct eigen values c1 and c2 of A corresponding to an 

eigen vector  . Thus A  = c1  = c2 . hence (c1-c2)   =  ; but this is a contradiction since 

a1≠a2 and   is non-zero vector.  
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Theorem: (Cayley Hamilton theorem) 

Every square matrix satisfies its own characteristic equation. 

Ex: let A=*
  
  

+. Verify that A satisfies its characteristic equation. Hence find A
-1

. 

» The characteristic equation is x
2
 – 7x+7 = 0. Now A

2
-7A+7I =O can be verified by 

actual calculation. Hence Cayley Hamilton theorem is verified.  Hence A * 
 

 
(  

    +=I2. Thus A
-1

 =  
 

 
(      = 

 

 
*

   
   

+. 

 

REAL QUADRATIC FORM 

An expression of the form ∑            (i,j = 1,2,…,n) where aijare real and aij = aji, is said 

to be a real quadratic form in n variables x1,x2,…,xn. the matrix notation for the quadratic 

form is  T
A , where   =          T

, A = (aij)nxn. A is a real symmetric matrix 

since aij = aji for all i,j. A is called the matrix associated with the quadratic form. 

Example2.27 x1x2-x2x3 is a real quadratic form in three variables x1,x2,x3. The associated 

matrix is [

     
        
      

]. 
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Definition: A real quadratic form Q= T
A  is  

(1) Positive definite if Q>0 for all  ≠O 

(2) Positive semi definiteif Q≥0 for all  ≠O 

(3) Negative definite if Q<0 for all  ≠O 

(4) Negative semidefinite if Q≤0 for all  ≠O 

(5) Indefinite if Q≥0 for some  ≠O and Q≤0 for some other  ≠O 

Example: consider the quadratic form Q(x1,x2,x3) = x1
2
+2x2

2
+4x3

2
+2x1x2-4x2x3-2x3x1 = 

(x1+x2-x3)
2
+(x2-x3)

2
+2x3

2
≥0 and Q = 0 only when x1+x2-x3= x2-x3 = x3 = 0, that is, when 

x1=x2=x3 = 0. Thus Q is positive definite. 

For a real quadratic form Q=X
T
AX where A is real symmetric matrix of rank r(≤n), there 

exists a non-singular matrix P such that P
T
AP becomes a diagonal matrix 

[
  

     

 

] of rank r, where 0≤m≤r. thus by a suitable transformation X=PY, 

where P is nonsingular, the real quadratic form Q transforms to y1
2
+…+ym

2
-ym+1

2
-…-yr

2
 

where 0≤m≤r≤n. this is called normal form of Q. 

Theorem: A real quadratic form of rank r and index m is 

(1) Positive definite, if r = n,m=r 

(2) Positive semidefinite, if r<n,m= r 

(3) Negative definite, if r = n,m = 0 

(4) Negative semidefinite, if r<n,m= 0 

(5) Indefinite, if r≤n,0<m<r 
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Example: Reduce the quadratic form 5x
2
+y

2
+14z

2
-4yz-10zx to its normal form and show 

that it is positive definite. 

» The associated symmetric matrix is A= [
    
    

      
] . Let us apply congruent 

operations on A to reduce it to the normal form.  

A
     
→    [

    
    
    

]
     
→   [

   
    
    

]
      
→     [

   
    
   

]
      
→    [

   
   
   

]

 

√ 
   

 

√ 
  

→      [
√   
   

  √ 

]

 

√ 
   

 

√ 
  

→      [
   
   
   

]. The normal form is x
2
+y

2
+z

2
.the rank of the 

quadratic form is 3 and its signature is 3. Thus the quadratic form is positive definite. 
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1 Functions

In this Chapter we will cover various aspects of functions. We will look at the definition of
a function, the domain and range of a function, what we mean by specifying the domain
of a function and absolute value function.

1.1 What is a function?

1.1.1 Definition of a function

A function f from a set of elements X to a set of elements Y is a rule that
assigns to each element x in X exactly one element y in Y .

One way to demonstrate the meaning of this definition is by using arrow diagrams.

f : X → Y is a function. Every element
in X has associated with it exactly one
element of Y .

g : X → Y is not a function. The ele-
ment 1 in set X is assigned two elements,
5 and 6 in set Y .

A function can also be described as a set of ordered pairs (x, y) such that for any x-value in
the set, there is only one y-value. This means that there cannot be any repeated x-values
with different y-values.

The examples above can be described by the following sets of ordered pairs.

F = {(1,5),(3,3),(2,3),(4,2)} is a func-
tion.

G = {(1,5),(4,2),(2,3),(3,3),(1,6)} is not
a function.

The definition we have given is a general one. While in the examples we have used numbers
as elements of X and Y , there is no reason why this must be so. However, in these notes
we will only consider functions where X and Y are subsets of the real numbers.

In this setting, we often describe a function using the rule, y = f(x), and create a graph
of that function by plotting the ordered pairs (x, f(x)) on the Cartesian Plane. This
graphical representation allows us to use a test to decide whether or not we have the
graph of a function: The Vertical Line Test.
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1.1.2 The Vertical Line Test

The Vertical Line Test states that if it is not possible to draw a vertical line through a
graph so that it cuts the graph in more than one point, then the graph is a function.

This is the graph of a function. All possi-
ble vertical lines will cut this graph only
once.

This is not the graph of a function. The
vertical line we have drawn cuts the
graph twice.

1.1.3 Domain of a function

For a function f : X → Y the domain of f is the set X.

This also corresponds to the set of x-values when we describe a function as a set of ordered
pairs (x, y).

If only the rule y = f(x) is given, then the domain is taken to be the set of all real x for
which the function is defined. For example, y =

√
x has domain; all real x ≥ 0. This is

sometimes referred to as the natural domain of the function.

1.1.4 Range of a function

For a function f : X → Y the range of f is the set of y-values such that y = f(x) for
some x in X.

This corresponds to the set of y-values when we describe a function as a set of ordered
pairs (x, y). The function y =

√
x has range; all real y ≥ 0.

Example

a. State the domain and range of y =
√

x + 4.

b. Sketch, showing significant features, the graph of y =
√

x + 4.
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Solution

a. The domain of y =
√

x + 4 is all real x ≥ −4. We know that square root functions are
only defined for positive numbers so we require that x + 4 ≥ 0, ie x ≥ −4. We also
know that the square root functions are always positive so the range of y =

√
x + 4 is

all real y ≥ 0.

b.

The graph of y =
√

x + 4.

Example

a. State the equation of the parabola sketched below, which has vertex (3,−3).

b. Find the domain and range of this function.

Solution

a. The equation of the parabola is y = x2−6x
3

.

b. The domain of this parabola is all real x. The range is all real y ≥ −3.

Example

Sketch x2 + y2 = 16 and explain why it is not the graph of a function.

Solution

x2 + y2 = 16 is not a function as it fails the vertical line test. For example, when x = 0
y = ±4.
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The graph of x2 + y2 = 16.

Example

Sketch the graph of f(x) = 3x − x2 and find

a. the domain and range

b. f(q)

c. f(x2)

d. f(2+h)−f(2)
h

, h �= 0.

Solution

The graph of f(x) = 3x − x2.

a. The domain is all real x. The range is all real y where y ≤ 2.25.

b. f(q) = 3q − q2
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c. f(x2) = 3(x2) − (x2)
2

= 3x2 − x4

d.

f(2 + h) − f(2)

h
=

(3(2 + h) − (2 + h)2) − (3(2) − (2)2)

h

=
6 + 3h − (h2 + 4h + 4) − 2

h

=
−h2 − h

h

= −h − 1

Example

Sketch the graph of the function f(x) = (x − 1)2 + 1 and show that f(p) = f(2 − p).

Illustrate this result on your graph by choosing one value of p.

Solution

The graph of f(x) = (x − 1)2 + 1.

f(2 − p) = ((2 − p) − 1)2 + 1

= (1 − p)2 + 1

= (p − 1)2 + 1

= f(p)
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The sketch illustrates the relationship f(p) = f(2 − p) for p = −1. If p = −1 then
2 − p = 2 − (−1) = 3, and f(−1) = f(3).

1.2 Specifying or restricting the domain of a function

We sometimes give the rule y = f(x) along with the domain of definition. This domain
may not necessarily be the natural domain. For example, if we have the function

y = x2 for 0 ≤ x ≤ 2

then the domain is given as 0 ≤ x ≤ 2. The natural domain has been restricted to the
subinterval 0 ≤ x ≤ 2.

Consequently, the range of this function is all real y where 0 ≤ y ≤ 4. We can best
illustrate this by sketching the graph.

The graph of y = x2 for 0 ≤ x ≤ 2.
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1.3 The absolute value function

Before we define the absolute value function we will review the definition of the absolute
value of a number.

The Absolute value of a number x is written |x| and is defined as

|x| = x if x ≥ 0 or |x| = −x if x < 0.

That is, |4| = 4 since 4 is positive, but | − 2| = 2 since −2 is negative.

We can also think of |x| geometrically as the distance of x from 0 on the number line.

More generally, |x − a| can be thought of as the distance of x from a on the numberline.

Note that |a − x| = |x − a|.

The absolute value function is written as y = |x|.
We define this function as

y =




+x if x ≥ 0

−x if x < 0

From this definition we can graph the function by taking each part separately. The graph
of y = |x| is given below.

The graph of y = |x|.
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Example

Sketch the graph of y = |x − 2|.

Solution

For y = |x − 2| we have

y =




+(x − 2) when x − 2 ≥ 0 or x ≥ 2

−(x − 2) when x − 2 < 0 or x < 2

That is,

y =




x − 2 for x ≥ 2

−x + 2 for x < 2

Hence we can draw the graph in two parts.

The graph of y = |x − 2|.

We could have sketched this graph by first of all sketching the graph of y = x − 2 and
then reflecting the negative part in the x-axis. We will use this fact to sketch graphs of
this type in Chapter 2.

1.4 Exercises

1. a. State the domain and range of f(x) =
√

9 − x2.

b. Sketch the graph of y =
√

9 − x2.

2. Given ψ(x) = x2 + 5, find, in simplest form,
ψ(x + h) − ψ(x)

h
h �= 0.

3. Sketch the following functions stating the domain and range of each:

a. y =
√

x − 1
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b. y = |2x|
c. y = 1

x−4

d. y = |2x| − 1.

4. a. Find the perpendicular distance from (0, 0) to the line x + y + k = 0

b. If the line x + y + k = 0 cuts the circle x2 + y2 = 4 in two distinct points, find the
restrictions on k.

5. Sketch the following, showing their important features.

a. y =
(

1
2

)x

b. y2 = x2.

6. Explain the meanings of function, domain and range. Discuss whether or not y2 = x3

is a function.

7. Sketch the following relations, showing all intercepts and features. State which ones
are functions giving their domain and range.

a. y = −
√

4 − x2

b. |x| − |y| = 0

c. y = x3

d. y = x
|x| , x �= 0

e. |y| = x.

8. If A(x) = x2 + 2 + 1
x2 , x �= 0, prove that A(p) = A(1

p
) for all p �= 0.

9. Write down the values of x which are not in the domain of the following functions:

a. f(x) =
√

x2 − 4x

b. g(x) = x
x2−1

10. If φ(x) = log
(

x
x−1

)
, find in simplest form:

a. φ(3) + φ(4) + φ(5)

b. φ(3) + φ(4) + φ(5) + · · · + φ(n)

11. a. If y = x2 + 2x and x = (z − 2)2, find y when z = 3.

b. Given L(x) = 2x + 1 and M(x) = x2 − x, find

i L(M(x))

ii M(L(x))
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12. Using the sketches, find the value(s) of the constants in the given equations:

y = ax2 − b
y = a

bx2+1

13. a. Define |a|, the absolute value of a, where a is real.

b. Sketch the relation |x| + |y| = 1.

14. Given that S(n) = n
2n+1

, find an expression for S(n − 1).

Hence show that S(n) − S(n − 1) = 1
(2n−1)(2n+1)

.
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2 More about functions

In this Chapter we will look at the effects of stretching, shifting and reflecting the basic
functions, y = x2, y = x3, y = 1

x
, y = |x|, y = ax, x2 + y2 = r2. We will introduce the

concepts of even and odd functions, increasing and decreasing functions and will solve
equations using graphs.

2.1 Modifying functions by shifting

2.1.1 Vertical shift

We can draw the graph of y = f(x) + k from the graph of y = f(x) as the addition of
the constant k produces a vertical shift. That is, adding a constant to a function moves
the graph up k units if k > 0 or down k units if k < 0. For example, we can sketch the
function y = x2 − 3 from our knowledge of y = x2 by shifting the graph of y = x2 down
by 3 units. That is, if f(x) = x2 then f(x) − 3 = x2 − 3.

We can also write y = f(x) − 3 as y + 3 = f(x), so replacing y by y + 3 in y = f(x) also
shifts the graph down by 3 units.

2.1.2 Horizontal shift

We can draw the graph of y = f(x − a) if we know the graph of y = f(x) as placing the
constant a inside the brackets produces a horizontal shift. If we replace x by x− a inside
the function then the graph will shift to the left by a units if a < 0 and to the right by a
units if a > 0.
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For example we can sketch the graph of y = 1
x−2

from our knowledge of y = 1
x

by shifting

this graph to the right by 2 units. That is, if f(x) = 1
x

then f(x − 2) = 1
x−2

.

Note that the function y = 1
x−2

is not defined at x = 2. The point (1, 1) has been shifted
to (1, 3).

2.2 Modifying functions by stretching

We can sketch the graph of a function y = bf(x) (b > 0) if we know the graph of y = f(x)
as multiplying by the constant b will have the effect of stretching the graph in the y-
direction by a factor of b. That is, multiplying f(x) by b will change all of the y-values
proportionally.

For example, we can sketch y = 2x2 from our knowledge of y = x2 as follows:

The graph of y = x2.
The graph of y = 2x2. Note, all the y-
values have been multiplied by 2, but the
x-values are unchanged.

We can sketch the graph of y = 1
2
x2 from our knowledge of y = x2 as follows:
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The graph of y = x2.
The graph of y = 1

2
x2. Note, all the

y-values have been multiplied by 1
2
, but

the x-values are unchanged.

2.3 Modifying functions by reflections

2.3.1 Reflection in the x-axis

We can sketch the function y = −f(x) if we know the graph of y = f(x), as a minus sign
in front of f(x) has the effect of reflecting the whole graph in the x-axis. (Think of the
x-axis as a mirror.) For example, we can sketch y = −|x| from our knowledge of y = |x|.

The graph of y = |x|.
The graph of y = −|x|. It is the reflec-
tion of y = |x| in the x-axis.

2.3.2 Reflection in the y-axis

We can sketch the graph of y = f(−x) if we know the graph of y = f(x) as the graph of
y = f(−x) is the reflection of y = f(x) in the y-axis.
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For example, we can sketch y = 3−x from our knowledge of y = 3x.

The graph of y = 3x.
The graph of y = 3−x. It is the reflection
of y = 3x in the y-axis.

2.4 Other effects

We can sketch the graph of y = |f(x)| if we know the graph of y = f(x) as the effect of the
absolute value is to reflect all of the negative values of f(x) in the x-axis. For example,
we can sketch the graph of y = |x2 − 3| from our knowledge of the graph of y = x2 − 3.

The graph of y = x2 − 3.
The graph of y = |x2 − 3|. The negative
values of y = x2 − 3 have been reflected
in the x-axis.

2.5 Combining effects

We can use all the above techniques to graph more complex functions. For example, we
can sketch the graph of y = 2− (x+1)2 from the graph of y = x2 provided we can analyse
the combined effects of the modifications. Replacing x by x + 1 (or x − (−1)) moves the
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graph to the left by 1 unit. The effect of the − sign in front of the brackets turns the
graph up side down. The effect of adding 2 moves the graph up 2 units. We can illustrate
these effects in the following diagrams.

The graph of y = x2.
The graph of y = (x + 1)2. The graph
of y = x2 has been shifted 1 unit to the
left.

The graph of y = −(x + 1)2. The graph
of y = (x + 1)2 has been reflected in the
x-axis.

The graph of y = 2−(x+1)2. The graph
of y = −(x + 1)2 has been shifted up by
2 units.

Similarly, we can sketch the graph of (x−h)2+(y−k)2 = r2 from the graph of x2+y2 = r2.
Replacing x by x − h shifts the graph sideways h units. Replacing y by y − k shifts the
graph up or down k units. (We remarked before that y = f(x) + k could be written as
y − k = f(x).)

For example, we can use the graph of the circle of radius 3, x2 + y2 = 9, to sketch the
graph of (x − 2)2 + (y + 4)2 = 9.
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The graph of x2 + y2 = 9.

This is a circle centre (0, 0), radius 3.

The graph of (x − 2)2 + (y + 4)2 = 9.

This is a circle centre (2,−4), radius 3.

Replacing x by x − 2 has the effect of shifting the graph of x2 + y2 = 9 two units to the
right. Replacing y by y + 4 shifts it down 4 units.

2.6 Graphing by addition of ordinates

We can sketch the graph of functions such as y = |x| + |x − 2| by drawing the graphs of
both y = |x| and y = |x − 2| on the same axes then adding the corresponding y-values.



0

2

2 4 6–2

x

y

4

y = |x|

y = |x – 2|

0

2

2 4 6–2

x

y

4

Mathematics Learning Centre, University of Sydney 17

The graph of y = |x| + |x − 2|.

At each point of x the y-values of y = |x| and y = |x − 2| have been added. This allows
us to sketch the graph of y = |x| + |x − 2|.

This technique for sketching graphs is very useful for sketching the graph of the sum of
two trigonometric functions.

2.7 Using graphs to solve equations

We can solve equations of the form f(x) = k by sketching y = f(x) and the horizontal line
y = k on the same axes. The solution to the equation f(x) = k is found by determining
the x-values of any points of intersection of the two graphs.
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For example, to solve |x − 3| = 2 we sketch y = |x − 3| and y = 2 on the same axes.

The x-values of the points of intersection are 1 and 5. Therefore |x − 3| = 2 when x = 1
or x = 5.

Example

The graph of y = f(x) is sketched below.

For what values of k does the equation f(x) = k have

1. 1 solution

2. 2 solutions

3. 3 solutions?

Solution

If we draw a horizontal line y = k across the graph y = f(x), it will intersect once when
k > 0 or k < −4, twice when k = 0 or k = −4 and three times when −4 < k < 0.
Therefore the equation f(x) = k will have
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1. 1 solution if k > 0 or k < −4

2. 2 solutions if k = 0 or k = −4

3. 3 solutions if −4 < k < 0.

2.8 Exercises

1. Sketch the following:

a. y = x2 b. y = 1
3
x2 c. y = −x2 d. y = (x + 1)2

2. Sketch the following:

a. y = 1
x

b. y = 1
x−2

c. y = −2
x

d. y = 1
x+1

+ 2

3. Sketch the following:

a. y = x3 b. y = |x3 − 2| c. y = 3 − (x − 1)3

4. Sketch the following:

a. y = |x| b. y = 2|x − 2| c. y = 4 − |x|

5. Sketch the following:

a. x2 + y2 = 16 b. x2 + (y + 2)2 = 16 c. (x − 1)2 + (y − 3)2 = 16

6. Sketch the following:

a. y =
√

9 − x2 b. y =
√

9 − (x − 1)2 c. y =
√

9 − x2 − 3

7. Show that
x − 1

x − 2
=

1

x − 2
+ 1.

Hence sketch the graph of y =
x − 1

x − 2
.

8. Sketch y = x+1
x−1

.

9. Graph the following relations in the given interval:

a. y = |x| + x + 1 for −2 ≤ x ≤ 2 [Hint: Sketch by adding ordinates]

b. y = |x| + |x − 1| for −2 ≤ x ≤ 3

c. y = 2x + 2−x for −2 ≤ x ≤ 2

d. |x − y| = 1 for −1 ≤ x ≤ 3.

10. Sketch the function f(x) = |x2 − 1| − 1.
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11. Given y = f(x) as sketched below, sketch

a. y = 2f(x)

b. y = −f(x)

c. y = f(−x)

d. y = f(x) + 4

e. y = f(x − 3)

f. y = f(x + 1) − 2

g. y = 3 − 2f(x − 3)

h. y = |f(x)|

12. By sketching graphs solve the following equations:

a. |2x| = 4

b. 1
x−2

= −1

c. x3 = x2

d. x2 = 1
x

13. Solve |x − 2| = 3.

a. algebraically

b. geometrically.

14. The parabolas y = (x − 1)2 and y = (x − 3)2 intersect at a point P . Find the
coordinates of P .

15. Sketch the circle x2 + y2 − 2x − 14y + 25 = 0. [Hint: Complete the squares.] Find
the values of k, so that the line y = k intersects the circle in two distinct points.

16. Solve 4
5−x

= 1, using a graph.

17. Find all real numbers x for which |x − 2| = |x + 2|.

18. Given that Q(p) = p2 − p, find possible values of n if Q(n) = 2.

19. Solve |x − 4| = 2x.

a. algebraically

b. geometrically.
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2.9 Even and odd functions

Definition:

A function, y = f(x), is even if f(x) = f(−x) for all x in the domain of f .

Geometrically, an even function is symmetrical about the y-axis (it has line symmetry).

The function f(x) = x2 is an even function as f(−x) = (−x)2 = x2 = f(x) for all values
of x. We illustrate this on the following graph.

The graph of y = x2.

Definition:

A function, y = f(x), is odd if f(−x) = −f(x) for all x in the domain of f .

Geometrically, an odd function is symmetrical about the origin (it has rotational symme-
try).

The function f(x) = x is an odd function as f(−x) = −x = −f(x) for all values of x.
This is illustrated on the following graph.

The graph of y = x.
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Example

Decide whether the following functions are even, odd or neither.

1. f(x) = 3x2 − 4

2. g(x) = 1
2x

3. f(x) = x3 − x2.

Solution

1.

f(−x) = 3(−x)2 − 4 = 3x2 − 4 = f(x)

The function f(x) = 3x2 − 4 is even.

2.

g(−x) =
1

2(−x)
=

1

−2x
= − 1

2x
= −g(x)

Therefore, the function g is odd.

3.

f(−x) = (−x)3 − (−x)2 = −x3 − x2

This function is neither even (since −x3 − x2 �= x3 − x2) nor odd (since −x3 − x2 �=
−(x3 − x2)).

Example

Sketched below is part of the graph of y = f(x).

Complete the graph if y = f(x) is

1. odd

2. even.
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Solution

y = f(x) is an odd function.

y = f(x) is an even function.

2.10 Increasing and decreasing functions

Here we will introduce the concepts of increasing and decreasing functions. In Chapter 5
we will relate these concepts to the derivative of a function.

Definition:

A function is increasing on an interval I, if for all a and b in I such that a < b,
f(a) < f(b).

The function y = 2x is an example of a function that is increasing over its domain. The
function y = x2 is increasing for all real x > 0.
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The graph of y = 2x. This function is
increasing for all real x. The graph of y = x2. This function is

increasing on the interval x > 0.

Notice that when a function is increasing it has a positive slope.

Definition:

A graph is decreasing on an interval I, if for all a and b in I such that a < b,
f(a) > f(b).

The function y = 2−x is decreasing over its domain. The function y = x2 is decreasing on
the interval x < 0.

The graph of y = 2−x. This function is
decreasing for all real x. The graph of y = x2. This function is

decreasing on the interval x < 0.

Notice that if a function is decreasing then it has negative slope.

2.11 Exercises

1. Given the graph below of y = f(x):

a. State the domain and range.

b. Where is the graph
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i increasing?

ii decreasing?

c. if k is a constant, find the values of k such that f(x) = k has

i no solutions

ii 1 solution

iii 2 solutions

iv 3 solutions

v 4 solutions.

d. Is y = f(x) even, odd or neither?

2. Complete the following functions if they are defined to be (a) even (b) odd.

y = f(x) y = g(x)

3. Determine whether the following functions are odd, even or neither.

a. y = x4 + 2 b. y =
√

4 − x2 c. y = 2x d. y = x3 + 3x

e. y = x
x2 f. y =

1

x2 − 4
g. y =

1

x2 + 4
h. y =

x

x3 + 3

i. y = 2x + 2−x j. y = |x − 1| + |x + 1|

4. Given y = f(x) is even and y = g(x) is odd, prove

a. if h(x) = f(x) · g(x) then h(x) is odd

b. if h(x) = (g(x))2 then h(x) is even
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c. if h(x) =
f(x)

g(x)
, g(x) �= 0, then h(x) is odd

d. if h(x) = f(x) · (g(x))2 then h(x) is even.

5. Consider the set of all odd functions which are defined at x = 0. Can you prove that
for every odd function in this set f(0) = 0? If not, give a counter-example.
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3 Piecewise functions and solving inequalities

In this Chapter we will discuss functions that are defined piecewise (sometimes called
piecemeal functions) and look at solving inequalities using both algebraic and graphical
techniques.

3.1 Piecewise functions

3.1.1 Restricting the domain

In Chapter 1 we saw how functions could be defined on a subinterval of their natural
domain. This is frequently called restricting the domain of the function. In this Chapter
we will extend this idea to define functions piecewise.

Sketch the graph of y = 1 − x2 for x ≥ 0.

The graph of y = 1 − x2 for x ≥ 0.

Sketch the graph of y = 1 − x for x < 0.

The graph of y = 1 − x for x < 0.
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We can now put these pieces together to define a function of the form

f(x) =




1 − x2 for x ≥ 0

1 − x for x < 0

We say that this function is defined piecewise. First note that it is a function; each value
of x in the domain is assigned exactly one value of y. This is easy to see if we graph the
function and use the vertical line test. We graph this function by graphing each piece of
it in turn.

The graph shows that f defined in this way is a function. The two pieces of y = f(x)
meet so f is a continuous function.

The absolute value function

f(x) =




x for x ≥ 0

−x for x < 0

is another example of a piecewise function.

Example

Sketch the function

f(x) =




x2 + 1 for x ≥ 0

2 for x < 0
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Solution

This function is not continuous at x = 0 as the two branches of the graph do not meet.

Notice that we have put an open square (or circle) around the point (0, 2) and a solid
square (or circle) around the point (0, 1). This is to make it absolutely clear that f(0) = 1
and not 2. When defining a function piecewise, we must be extremely careful to assign
to each x exactly one value of y.

3.2 Exercises

1. For the function

f(x) =




1 − x2 for x ≥ 0

1 − x for x < 0

evaluate

a. 2f(−1) + f(2)

b. f(a2)

2. For the function given in 1, solve f(x) = 2.

3. Below is the graph of y = g(x). Write down the rules which define g(x) given that
its pieces are hyperbolic, circular and linear.
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4. a. Sketch the graph of y = f(x) if

f(x) =




−
√

4 − x2 for −2 ≤ x ≤ 0

x2 − 4 for x > 0

b. State the range of f .

c. Solve

i f(x) = 0

ii f(x) = −3.

d. Find k if f(x) = k has

i 0

ii 1

iii 2 solutions.

5. Sketch the graph of y = f(x) if

f(x) =




1 − |x − 1| for x ≥ 0

|x + 1| for x < 0

6. Sketch the graph of y = g(x) if

g(x) =




2
x+2

for x < −1

2 for −1 ≤ x < 1

2x for x ≥ 1



30 6–3–6

3

x

y

(4,4)

x

y

–4 0

–2

–4

2

4

2 4–2

Mathematics Learning Centre, University of Sydney 31

7. McMaths burgers are to modernise their logo as shown below.

Write down a piecewise function that represents this function using (a) 4 (b) 3 (c) 2
pieces (i.e. rules that define the function).

8. a. The following piecewise function is of the form

f(x) =




ax2 + b for 0 < x ≤ 2

cx + d for x > 2

Determine the values of a, b, c and d.

b. Complete the graph so that f(x) is an odd function defined for all real x, x �= 0.

c. Write down the equations that now define f(x), x �= 0.
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3.3 Inequalities

We can solve inequalities using both algebraic and graphical methods. Sometimes it is
easier to use an algebraic method and sometimes a graphical one. For the following
examples we will use both, as this allows us to make the connections between the algebra
and the graphs.

Algebraic method Graphical method

1. Solve 3 − 2x ≥ 1.
This is a (2 Unit) linear inequality.
Remember to reverse the inequality
sign when multiplying or dividing
by a negative number.

3 − 2x ≥ 1

−2x ≥ −2

x ≤ 1

When is the line y = 3 − 2x above or
on the horizontal line y = 1 ? From the
graph, we see that this is true for x ≤ 1.

2. Solve x2 − 4x + 3 < 0.
This is a (2 Unit) quadratic inequal-
ity. Factorise and use a number line.

x2 − 4x + 3 < 0

(x − 3)(x − 1) < 0

The critical values are 1 and 3,
which divide the number line into
three intervals. We take points in
each interval to determine the sign
of the inequality; eg use x = 0,
x = 2 and x = 4 as test values.

Thus, the solution is 1 < x < 3.

Let y = x2 − 4x + 3.

When does the parabola have negative
y-values? OR When is the parabola un-
der the x-axis? From the graph, we see
that this happens when 1 < x < 3.
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3. Solve 1
x−4

≤ 1.
This is a 3 Unit inequality. There
is a variable in the denominator.
Remember that a denominator can
never be zero, so in this case x �= 4.
First multiply by the square of the
denominator

x − 4 ≤ (x − 4)2, x �= 4

x − 4 ≤ x2 − 8x + 16

0 ≤ x2 − 9x + 20

0 ≤ (x − 4)(x − 5)
Mark the critical values on the num-
ber line and test x = 0, x = 4.5 and
x = 6.

Therefore, x < 4 or x ≥ 5.

Let y = 1
x−4

.

y = 1
x−4

is not defined for x = 4. It
is a hyperbola with vertical asymptote
at x = 4. To solve our inequality we
need to find the values of x for which
the hyperbola lies on or under the line
y = 1. (5, 1) is the point of intersection.
So, from the graph we see that 1

x−4
≤ 1

when x < 4 or x ≥ 5.

4. Solve x − 3 < 10
x

.
Consider x − 3 = 10

x
, x �= 0.

Multiply by x we get
x2 − 3x = 10

x2 − 3x − 10 = 0

(x − 5)(x + 2) = 0
Therefore, the critical values are
−2, 0 and 5 which divide the num-
ber line into four intervals. We can
use x = −3, x = −1, x = 1 and
x = 6 as test values in the inequal-
ity. The points x = −3 and x = 1
satisfy the inequality, so the solu-
tion is x < −2 or 0 < x < 5.

(Notice that we had to include 0 as
one of our critical values.)

Sketch y = x− 3 and then y = 10
x

. Note
that second of these functions is not de-
fined for x = 0.

For what values of x does the line lie
under the hyperbola? From the graph,
we see that this happens when x < −2
or 0 < x < 5.
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Example

Sketch the graph of y = |2x − 6|.
Hence, where possible,

a. Solve

i |2x − 6| = 2x

ii |2x − 6| > 2x

iii |2x − 6| = x + 3

iv |2x − 6| < x + 3

v |2x − 6| = x − 3

b. Determine the values of k for which |2x − 6| = x + k has exactly two solutions.

Solution

f(x) = |2x − 6| =




2x − 6 for x ≥ 3

−(2x − 6) for x < 3

a. i Mark in the graph of y = 2x. It is parallel to one arm of the absolute value graph.
It has one point of intersection with y = |2x − 6| = −2x + 6 (x < 3) at x = 1.5.

ii When is the absolute value graph above the line y = 2x? From the graph, when
x < 1.5.
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iii y = x + 3 intersects y = |2x − 6| twice.

To solve |2x − 6| = x + 3, take |2x − 6| = 2x − 6 = x + 3 when x ≥ 3. This gives
us the solution x = 9. Then take |2x − 6| = −2x + 6 = x + 3 when x < 3 which
gives us the solution x = 1.

iv When is the absolute value graph below the line y = x + 3?

From the graph, 1 < x < 9.

v y = x − 3 intersects the absolute value graph at x = 3 only.

b. k represents the y-intercept of the line y = x + k. When k = −3, there is one point of
intersection. (See (a) (v) above). For k > −3, lines of the form y = x + k will have
two points of intersection. Hence |2x− 6| = x + k will have two solutions for k > −3.

3.4 Exercises

1. Solve

a. x2 ≤ 4x

b. 4p
p+3

≤ 1

c. 7
9−x2 > −1

2. a. Sketch the graph of y = 4x(x − 3).

b. Hence solve 4x(x − 3) ≤ 0.

3. a. Find the points of intersection of the graphs y = 5 − x and y = 4
x
.

b. On the same set of axes, sketch the graphs of y = 5 − x and y = 4
x
.

c. Using part (ii), or otherwise, write down all the values of x for which

5 − x >
4

x

4. a. Sketch the graph of y = 2x.

b. Solve 2x < 1
2
.

c. Suppose 0 < a < b and consider the points A(a, 2a) and B(b, 2b) on the graph of
y = 2x. Find the coordinates of the midpoint M of the segment AB.

Explain why
2a + 2b

2
> 2

a+b
2

5. a. Sketch the graphs of y = x and y = |x − 5| on the same diagram.

b. Solve |x − 5| > x.

c. For what values of m does mx = |x − 5| have exactly

i two solutions

ii no solutions

6. Solve 5x2 − 6x − 3 ≤ |8x|.
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4 Polynomials

Many of the functions we have been using so far have been polynomials. In this Chapter
we will study them in more detail.

Definition

A real polynomial, P (x), of degree n is an expression of the form

P (x) = pnx
n + pn−1x

n−1 + pn−2x
n−2 + · · · + p2x

2 + p1x + p0

where pn �= 0, p0, p1, · · ·, pn are real and n is an integer ≥ 0.

All polynomials are defined for all real x and are continuous functions.

We are familiar with the quadratic polynomial, Q(x) = ax2 + bx + c where a �= 0. This
polynomial has degree 2.

The function f(x) =
√

x+x is not a polynomial as it has a power which is not an integer
≥ 0 and so does not satisfy the definition.

4.1 Graphs of polynomials and their zeros

4.1.1 Behaviour of polynomials when |x| is large

One piece of information that can be a great help when sketching a polynomial is the
way it behaves for values of x when |x| is large. That is, values of x which are large in
magnitude.

The term of the polynomial with the highest power of x is called the leading or dominant
term. For example, in the polynomial P (x) = x6 − 3x4 − 1, the term x6 is the dominant
term.

When |x| is large, the dominant term determines how the graph behaves as it is so much
larger in magnitude than all the other terms.

How the graph behaves for |x| large depends on the power and coefficient of the dominant
term.

There are four possibilities which we summarise in the following diagrams:

1. Dominant term with even power and
positive coefficient, eg y = x2.

2. Dominant term with even power and
negative coefficient, eg Q(x) = −x2.
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3. Dominant term with odd power and
positive coefficient, eg y = x3.

4. Dominant term with odd power and
negative coefficient, eg Q(x) = −x3.

This gives us a good start to graphing polynomials. All we need do now is work out what
happens in the middle. In Chapter 5 we will use calculus methods to do this. Here we
will use our knowledge of the roots of polynomials to help complete the picture.

4.1.2 Polynomial equations and their roots

If, for a polynomial P (x), P (k) = 0 then we can say

1. x = k is a root of the equation P (x) = 0.

2. x = k is a zero of P (x).

3. k is an x-intercept of the graph of P (x).

4.1.3 Zeros of the quadratic polynomial

The quadratic polynomial equation Q(x) = ax2 + bx + c = 0 has two roots that may be:

1. real (rational or irrational) and distinct,

2. real (rational or irrational) and equal,

3. complex (not real).

We will illustrate all of these cases with examples, and will show the relationship between
the nature and number of zeros of Q(x) and the x-intercepts (if any) on the graph.

1. Let Q(x) = x2 − 4x + 3.
We find the zeros of Q(x) by solving the
equation Q(x) = 0.

x2 − 4x + 3 = 0

(x − 1)(x − 3) = 0

Therefore x = 1 or 3.
The roots are rational (hence real) and
distinct.
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2. Let Q(x) = x2 − 4x − 3.
Solving the equation Q(x) = 0 we get,

x2 − 4x − 3 = 0

x =
4 ±

√
16 + 12

2

Therefore x = 2 ±
√

7.
The roots are irrational (hence real) and
distinct.

3. Let Q(x) = x2 − 4x + 4.
Solving the equation Q(x) = 0 we get,

x2 − 4x + 4 = 0

(x − 2)2 = 0

Therefore x = 2.
The roots are rational (hence real) and
equal. Q(x) = 0 has a repeated or dou-
ble root at x = 2.

Notice that the graph turns at the dou-
ble root x = 2.

4. Let Q(x) = x2 − 4x + 5.
Solving the equation Q(x) = 0 we get,

x2 − 4x + 5 = 0

x =
4 ±

√
16 − 20

2
Therefore x = 2 ±

√
−4.

There are no real roots. In this case the
roots are complex.

Notice that the graph does not intersect
the x-axis. That is Q(x) > 0 for all real
x. Therefore Q is positive definite.
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We have given above four examples of quadratic polynomials to illustrate the relationship
between the zeros of the polynomials and their graphs.

In particular we saw that:

i if the quadratic polynomial has two real distinct zeros, then the graph of the polyno-
mial cuts the x-axis at two distinct points;

ii if the quadratic polynomial has a real double (or repeated) zero, then the graph sits
on the x-axis;

iii if the quadratic polynomial has no real zeros, then the graph does not intersect the
x-axis at all.

So far, we have only considered quadratic polynomials where the coefficient of the x2

term is positive which gives us a graph which is concave up. If we consider polynomials
Q(x) = ax2 + bx + c where a < 0 then we will have a graph which is concave down.

For example, the graph of Q(x) = −(x2 − 4x + 4) is the reflection in the x-axis of the
graph of Q(x) = x2 − 4x + 4. (See Chapter 2.)

The graph of Q(x) = x2 − 4x + 4. The graph of Q(x) = −(x2 − 4x + 4).

4.1.4 Zeros of cubic polynomials

A real cubic polynomial has an equation of the form

P (x) = ax3 + bx2 + cx + d

where a �= 0, a, b, c and d are real. It has 3 zeros which may be:

i 3 real distinct zeros;

ii 3 real zeros, all of which are equal (3 equal zeros);

iii 3 real zeros, 2 of which are equal;

iv 1 real zero and 2 complex zeros.

We will illustrate these cases with the following examples:
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1. Let Q(x) = 3x3 − 3x.
Solving the equation Q(x) = 0 we get:.

3x3 − 3x = 0

3x(x − 1)(x + 1) = 0

Therefore x = −1 or 0 or 1
The roots are real (in fact rational) and
distinct.

2. Let Q(x) = x3.
Solving Q(x) = 0 we get that x3 = 0.
We can write this as (x − 0)3 = 0.
So, this equation has three equal real
roots at x = 0.

3. Let Q(x) = x3 − x2.
Solving the equation Q(x) = 0 we get,

x3 − x2 = 0

x2(x − 1) = 0

Therefore x = 0 or 1.
The roots are real with a double root at
x = 0 and a single root at x = 1.

The graph turns at the double root.

4. Let Q(x) = x3 + x.
Solving the equation Q(x) = 0 we get,

x3 + x = 0

x(x2 + 1) = 0

Therefore x = 0.
There is one real root at x = 0.
x2 + 1 = 0 does not have any real solu-
tions.

The graph intersects the x-axis once
only.
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Again, in the above examples we have looked only at cubic polynomials where the coeffi-
cient of the x3 term is positive. If we consider the polynomial P (x) = −x3 then the graph
of this polynomial is the reflection of the graph of P (x) = x3 in the x-axis.

The graph of Q(x) = x3. The graph of Q(x) = −x3.

4.2 Polynomials of higher degree

We will write down a few rules that we can use when we have a polynomial of degree ≥ 3.

If P (x) is a real polynomial of degree n then:

1. P (x) = 0 has at most n real roots;

2. if P (x) = 0 has a repeated root with an even power then the graph of P (x) turns at
this repeated root;

3. if P (x) = 0 has a repeated root with an odd power then the graph of P (x) has a
horizontal point of inflection at this repeated root.

For example, 1. tells us that if we have a quartic polynomial equation f(x) = 0. Then
we know that f(x) = 0 has ≤ 4 real roots.

We can illustrate 2. by the sketching f(x) = x(x− 2)2(x + 1). Notice how the graph sits
on the x-axis at x = 2.

The graph of f(x) = x(x + 1)(x − 2)2.
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We illustrate 3. by sketching the graph of f(x) = x(x − 2)3. Notice the horizontal point
of inflection at x = 2.

The graph of f(x) = x(x − 2)3.

4.3 Exercises

1. Sketch the graphs of the following polynomials if y = P (x) is:

a. x(x + 1)(x − 3)

b. x(x + 1)(3 − x)

c. (x + 1)2(x − 3)

d. (x + 1)(x2 − 4x + 5)

2. The graphs of the following quartic polynomials are sketched below. Match the graph
with the polynomial.

a. y = x4 b. y = x4 − 1 c. y = x4 + 1 d. y = 1 − x4 e. y = (x − 1)4 f. y = (x + 1)4

i ii iii

iv v vi
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3. Sketch the graphs of the following quartic polynomials if y = C(x) is:

a. x(x − 1)(x + 2)(x + 3)

b. x(x − 1)(x + 2)(3 − x)

c. x2(x − 1)(x − 3)

d. (x + 1)2(x − 3)2

e. (x + 1)3(x − 3)

f. (x + 1)3(3 − x)

g. x(x + 1)(x2 − 4x + 5)

h. x2(x2 − 4x + 5).

4. By sketching the appropriate polynomial, solve:

a. x2 − 4x − 12 < 0

b. (x + 2)(x − 3)(5 − x) > 0

c. (x + 2)2(5 − x) > 0

d. (x + 2)3(5 − x) ≥ 0.

5. For what values of k will P (x) ≥ 0 for all real x if P (x) = x2 − 4x − 12 + k?

6. The diagrams show the graph of y = P (x) where P (x) = a(x − b)(x − c)d.

In each case determine possible values for a, b, c and d.

a. b. c.

d. e. f.

7. The graph of the polynomial y = f(x) is given below. It has a local maximum and
minimum as marked. Use the graph to answer the following questions.

a. State the roots of f(x) = 0.

b. What is the value of the repeated root.

c. For what values of k does the equation f(x) = k have exactly 3 solutions.
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d. Solve the inequality f(x) < 0.

e. What is the least possible degree of f(x)?

f. State the value of the constant of f(x).

g. For what values of k is f(x) + k ≥ 0 for all real x.

The graph of the polynomial y = f(x)

4.4 Factorising polynomials

So far for the most part, we have looked at polynomials which were already factorised. In
this section we will look at methods which will help us factorise polynomials with degree
> 2.

4.4.1 Dividing polynomials

Suppose we have two polynomials P (x) and A(x), with the degree of P (x) ≥ the degree
of A(x), and P (x) is divided by A(x). Then

P (x)

A(x)
= Q(x) +

R(x)

A(x)
,

where Q(x) is a polynomial called the quotient and R(x) is a polynomial called the
remainder, with the degree of R(x) < degree of A(x).

We can rewrite this as
P (x) = A(x) · Q(x) + R(x).

For example: If P (x) = 2x3 +4x+3 and A(x) = x−2, then P (x) can be divided by A(x)
as follows:

2x2 + 4x + 12
x − 2 2x3 + 0x2 + 4x − 3

2x3 − 4x2

4x2 + 4x − 3
4x2 − 8x

12x − 3
12x − 24

21
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The quotient is 2x2 + 4x + 12 and the remainder is 21. We have

2x3 + 4x + 3

x − 2
= 2x2 + 4x + 12 +

21

x − 2
.

This can be written as

2x3 + 4x − 3 = (x − 2)(2x2 + 4x + 12) + 21.

Note that the degree of the ”polynomial” 21 is 0.

4.4.2 The Remainder Theorem

If the polynomial f(x) is divided by (x − a) then the remainder is f(a).

Proof:

Following the above, we can write

f(x) = A(x) · Q(x) + R(x),

where A(x) = (x − a). Since the degree of A(x) is 1, the degree of R(x) is zero. That is,
R(x) = r where r is a constant.

f(x) = (x − a)Q(x) + r where r is a constant.

f(a) = 0 · Q(a) + r

= r

So, if f(x) is divided by (x − a) then the remainder is f(a).

Example

Find the remainder when P (x) = 3x4 − x3 + 30x − 1 is divided by a. x + 1, b. 2x − 1.

Solution

a. Using the Remainder Theorem:

Remainder = P (−1)

= 3 − (−1) − 30 − 1

= −27

b.

Remainder = P (
1

2
)

= 3(
1

2
)4 − (

1

2
)3 + 30(

1

2
) − 1

=
3

16
− 1

8
+ 15 − 1

= 14
1

16
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Example

When the polynomial f(x) is divided by x2 − 4, the remainder is 5x + 6. What is the
remainder when f(x) is divided by (x − 2)?

Solution

Write f(x) = (x2 − 4) · q(x) + (5x + 6). Then

Remainder = f(2)

= 0 · q(2) + 16

= 16

A consequence of the Remainder Theorem is the Factor Theorem which we state below.

4.4.3 The Factor Theorem

If x = a is a zero of f(x), that is f(a) = 0, then (x − a) is a factor of f(x) and f(x) may
be written as

f(x) = (x − a)q(x)

for some polynomial q(x).

Also, if (x− a) and (x− b) are factors of f(x) then (x− a)(x− b) is a factor of f(x) and

f(x) = (x − a)(x − b) · Q(x)

for some polynomial Q(x).

Another useful fact about zeros of polynomials is given below for a polynomial of degree
3.

If a (real) polynomial
P (x) = ax3 + bx2 + cx + d,

where a �= 0, a, b, c and d are real, has exactly 3 real zeros α, β and γ, then

P (x) = a(x − α)(x − β)(x − γ) (1)

Furthermore, by expanding the right hand side of (1) and equating coefficients we get:

i

α + β + γ = − b

a
;

ii
αβ + αγ + βγ =

c

a
;

iii

αβγ = −d

a
.
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This result can be extended for polynomials of degree n. We will give the partial result
for n = 4.

If

P (x) = ax4 + bx3 + cx2 + dx + e

is a polynomial of degree 4 with real coefficents, and P (x) has four real zeros α, β, γ and
δ, then

P (x) = a(x − α)(x − β)(x − γ)(x − δ)

and expanding and equating as above gives

αβγδ =
e

a
.

If a = 1 and the equation P (x) = 0 has a root which is an integer, then that integer must
be a factor of the constant term. This gives us a place to start when looking for factors
of a polynomial. That is, we look at all the factors of the constant term to see which ones
(if any) are roots of the equation P (x) = 0.

Example

Let f(x) = 4x3 − 8x2 − x + 2

a. Factorise f(x).

b. Sketch the graph of y = f(x).

c. Solve f(x) ≥ 0.

Solution

a. Consider the factors of the constant term, 2. We check to see if ±1 and ±2 are solutions
of the equation f(x) = 0 by substitution. Since f(2) = 0, we know that (x − 2) is a
factor of f(x). We use long division to determine the quotient.

4x2 − 1
x − 2 4x3 − 8x2 − x + 2

4x3 − 8x2

− x + 2
− x + 2

So,

f(x) = (x − 2)(4x2 − 1)

= (x − 2)(2x − 1)(2x + 1)
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b.

The graph of f(x) = 4x3 − 8x2 − x + 2.

c. f(x) ≥ 0 when −1
2
≤ x ≤ 1

2
or x ≥ 2.

Example

Show that (x − 2) and (x − 3) are factors of P (x) = x3 − 19x + 30, and hence solve
x3 − 19x + 30 = 0.

Solution

P (2) = 8 − 38 + 30 = 0 and P (3) = 27 − 57 + 30 = 0 so (x − 2) and (x − 3) are both
factors of P (x) and (x − 2)(x − 3) = x2 − 5x + 6 is also a factor of P (x). Long division
of P (x) by x2 − 5x + 6 gives a quotient of (x + 5).

So,

P (x) = x3 − 19x + 30 = (x − 2)(x − 3)(x + 5).

Solving P (x) = 0 we get (x − 2)(x − 3)(x + 5) = 0.

That is, x = 2 or x = 3 or x = −5.

Instead of using long division we could have used the facts that

i the polynomial cannot have more than three real zeros;

ii the product of the zeros must be equal to −30.

Let α be the unknown root.

Then 2 · 3 ·α = −30, so that α = −5. Therefore the solution of P (x) = x3 − 19x + 30 = 0
is x = 2 or x = 3 or x = −5.
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4.5 Exercises

1. When the polynomial P (x) is divided by (x− a)(x− b) the quotient is Q(x) and the
remainder is R(x).

a. Explain why R(x) is of the form mx + c where m and c are constants.

b. When a polynomial is divided by (x− 2) and (x− 3), the remainders are 4 and 9
respectively. Find the remainder when the polynomial is divided by x2 − 5x + 6.

c. When P (x) is divided by (x− a) the remainder is a2. Also, P (b) = b2. Find R(x)
when P (x) is divided by (x − a)(x − b).

2. a. Divide the polynomial f(x) = 2x4 + 13x3 + 18x2 + x − 4 by g(x) = x2 + 5x + 2.
Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials.

b. Show that f(x) and g(x) have no common zeros. (Hint: Assume that α is a
common zero and show by contradiction that α does not exist.)

3. For the following polynomials,

i factorise

ii solve P (x) = 0

iii sketch the graph of y = P (x).

a. P (x) = x3 − x2 − 10x − 8

b. P (x) = x3 − x2 − 16x − 20

c. P (x) = x3 + 4x2 − 8

d. P (x) = x3 − x2 + x − 6

e. P (x) = 2x3 − 3x2 − 11x + 6
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5 Solutions to exercises

1.4 Solutions

1. a. The domain of f(x) =
√

9 − x2 is all real x where −3 ≤ x ≤ 3. The range is all
real y such that 0 ≤ y ≤ 3.

b.

The graph of f(x) =
√

9 − x2.

2.

ψ(x + h) − ψ(x)

h
=

(x + h)2 + 5 − (x2 + 5)

h

=
x2 + 2xh + h2 + 5 − x2 − 5

h

=
h2 + 2xh

h
= h + 2x

3. a.

The graph of y =
√

x − 1. The domain
is all real x ≥ 1 and the range is all real
y ≥ 0.

b.

The graph of y = |2x|. Its domain is all
real x and range all real y ≥ 0.
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c.

The graph of y = 1
x−4

. The domain is all real x �= 4 and the range is all real y �= 0.

d.

The graph of y = |2x| − 1. The domain is all real x, and the range is all real
y ≥ −1.

4. a. The perpendicular distance d from (0, 0) to x + y + k = 0 is d = | k√
2
|.

b. For the line x+y+k = 0 to cut the circle in two distinct points d < 2. ie |k| < 2
√

2
or −2

√
2 < k < 2

√
2.

5. a.

The graph of y = (1
2
)x.

b.

The graph of y2 = x2.

6. y2 = x3 is not a function.



2

–2

0–2

x

2

y

2

–2

0–2

x

2

y

2

–2

0–2

x

2

y

0–2

x

2

y

2

–2

x

2

y

2

–2

0

Mathematics Learning Centre, University of Sydney 52

7. a.

The graph of y = −
√

4 − x2. This is a
function with the domain: all real x such
that −2 ≤ x ≤ 2 and range: all real y
such that −2 ≤ y ≤ 0.

b.

The graph of |x| − |y| = 0. This is not
the graph of a function.

c.

The graph of y = x3. This is a function
with the domain: all real x and range:
all real y.

d.

The graph of y = x
|x| . This is the graph

of a function which is not defined at x =
0. Its domain is all real x �= 0, and range
is y = ±1.

e.

The graph of |y| = x. This is not the graph of a function.



x

1–1

y

1

–1

0

Mathematics Learning Centre, University of Sydney 53

8.

A(
1

p
) = (

1

p
)2 + 2 +

1

(1
p
)2

=
1

p2
+ 2 +

1
1
p2

=
1

p2
+ 2 + p2

= A(p)

9. a. The values of x in the interval 0 < x < 4 are not in the domain of the function.

b. x = 1 and x = −1 are not in the domain of the function.

10. a. φ(3) + φ(4) + φ(5) = log(2.5)

b. φ(3) + φ(4) + φ(5) + · · · + φ(n) = log(n
2
)

11. a. y = 3 when z = 3.

b. i L(M(x)) = 2(x2 − x) + 1

ii M(L(x)) = 4x2 + 2x

12. a. a = 2, b = 2 so the equations is y = 2x2 − 2.

b. a = 5, b = 1 so the equation is y = 5
x2+1

.

13. b.

The graph of |x| + |y| = 1.

14. S(n − 1) = n−1
2n−1

Hence

S(n) − S(n − 1) =
n

2n + 1
− n − 1

2n − 1

=
n(2n − 1) − (2n + 1)(n − 1)

(2n − 1)(2n + 1)

=
2n2 − n − (2n2 − n − 1)

(2n − 1)(2n + 1)

=
1

(2n − 1)(2n + 1)
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2.8 Solutions

1. a.

The graph of y = x2.

b.

The graph of y = x2

3
.

c.

The graph of y = −x2.

d.

The graph of y = (x + 1)2.

2. a.

The graph of y = 1
x
.

b.

The graph of y = 1
x−2

.



x

y

2

2

0

–2

–2

x

y

2

0 2–2

4

0–1

x

1

y

1

–1
x

y

0 2–2

2

4

x

y

40 2

2

4

x

y

0 2–2

2

4

2 4

2

4

x

y

0

Mathematics Learning Centre, University of Sydney 55

c.

The graph of y = −2
x

.

d.

The graph of y = 1
x+1

+ 2.

3. a.

The graph of y = x3.

b.

The graph of y = |x3 − 2|.

c.

The graph of y = 3 − (x − 1)3.

4. a.

The graph of y = |x|.

b.

The graph of y = 2|x − 2|.
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c.

The graph of y = 4 − |x|.

5.

a.

The graph of x2 + y2 = 16.

b.

The graph of x2 + (y + 2)2 = 16.

c.

The graph of (x − 1)2 + (y − 3)2 = 16.



–3 3
x

y

0

3

0

3

2 4–2
x

y

(1,0)

x
y

–3

0–3 3

4–2
x

y

0

2

2

4–2
x

y

0

2

2

–2

Mathematics Learning Centre, University of Sydney 57

6. a.

The graph of y =
√

9 − x2.

b.

The graph of y =
√

9 − (x − 1)2.

c.

The graph of y =
√

9 − x2 − 3.

7.
1

x − 2
+ 1 =

1 + (x − 2)

x − 2
=

x − 1

x − 2

The graph of y = x−1
x−2

.

8.

The graph of y = x+1
x−1

.
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9. a.

The graph of y = |x| + x + 1
for −2 ≤ x ≤ 2.

b.

The graph of y = |x| + |x − 1|
for −2 ≤ x ≤ 3.

c.

The graph of y = 2x + 2−x

for −2 ≤ x ≤ 2.

d.

The graph of |x − y| = 1 for
−1 ≤ x ≤ 3.

10.

The graph of f(x) = |x2 − 1| − 1.
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11. a.

The graph of y = 2f(x).

b.

The graph of y = −f(x).

c.

The graph of y = f(−x).

d.

The graph of y = f(x) + 4.

e.

The graph of y = f(x − 3).

f.

The graph of y = f(x + 1) − 2.
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g.

The graph of y = 3 − 2f(x − 3).

h.

The graph of y = |f(x)|.

12. a.

x = −2 and x = 2 are solutions of the
equation |2x| = 4.

b.

x = 1 is a solution of 1
x−2

= −1.

c.

x = 0 and x = 1 are solutions of the
equation x3 = x2.

d.

x = 1 is a solution of x2 = 1
x
.

13.

a. For x ≥ 2, |x − 2| = x − 2 = 3. Therefore x = 5 is a solution of the inequality.
(Note that x = 5 is indeed ≥ 2.)

For x < 2, |x − 2| = −(x − 2) = −x + 2 = 3. Therefore x = −1 is a solution.
(Note that x = −1 is < 2.)
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b.

The points of intersection are (−1, 3) and (5, 3).

Therefore the solutions of |x − 2| = 3 are x = −1 and x = 5.

14. The parabolas intersect at (2, 1).

15.

y = k intersects the circle at two distinct points when 2 < k < 12.

16.

The point of intersection is (1, 1). Therefore the solution of 4
5−x

= 1 is x = 1.
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17.

The point of intersection is (0, 2). Therefore the solution of |x− 2| = |x + 2| is x = 0.

18. n = −1 or n = 2.

19. a. For x ≥ 4, |x − 4| = x − 4 = 2x when x = −4, but this does not satisfy the
condition of x ≥ 4 so is not a solution.

For x < 4, |x − 4| = −x + 4 = 2x when x = 4
3
. x = 4

3
is < 4 so is a solution.

Therefore, x = 4
3

is a solution of |x − 4| = 2x.

b.

The graph of y = |x − 4| and y = 2x intersect at the point (4
3
, 8

3
). So the solution

of |x − 4| = 2x is x = 4
3
.

2.11 Solutions

1. a. The domain is all real x, and the range is all real y ≥ −2.

b. i −2 < x < 0 or x > 2

ii x < −2 or 0 < x < 2

c. i k < −2

ii There is no value of k for which f(x) = k has exactly one solution.

iii k = 2 or k > 0
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iv k = 0

v −2 < k < 0

d. y = f(x) is even

2. a.

y = f(x) is even.

b.

y = f(x) is odd.

a.

y = g(x) is even.

b.

y = g(x) is odd.

3. a. even b. even c. neither d. odd e. odd

f. even g. even h. neither i. even j. even

4. a.

h(−x) = f(−x) · g(−x)

= f(x) · −g(x)

= −f(x) · g(x)

= −h(x)

Therefore h is odd.

b.

h(−x) = (g(−x))2

= (−(g(x))2

= (g(x))2

= h(x)

Therefore h is even.
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c.

h(−x) =
f(−x)

g(−x)

=
f(x)

−g(x)

= −f(x)

g(x)

= −h(x)

Therefore h is odd.

d.

h(−x) = f(−x) · (g(−x))2

= f(x) · (−g(x))2

= f(x) · (g(x))2

= h(x)

Therefore h is even.

5. If f is defined at x = 0

f(0) = f(−0) (since 0 = −0)

= −f(0) (since f is odd)

2f(0) = 0 (adding f(0) to both sides)

Therefore f(0) = 0.

3.2 Solutions

1. a. 2f(−1) + f(2) = 2(1 − (−1)) + (1 − (2)2) = 4 + (−3) = 1.

b. f(a2) = 1 − (a2)2 = 1 − a4 since a2 ≥ 0.

2. You can see from the graph below that there is one solution to f(x) = 2, and that
this solution is at x = −1.
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3. g(x) =




1
x+1

for x < 1
√

1 − x2 for −1 ≤ x ≤ 1

−1 for x > 1

4. a. The domain of f is all real x ≥ −2.

b. The range of f is all real y > −4.

c. i f(x) = 0 when x = −2 or x = 2.

ii f(x) = −3 when x = 1.

d. i f(x) = k has no solutions when k ≤ −4.

ii f(x) = k has 1 solution when −4 < k < −2 or k > 0.

iii f(x) = k has 2 solutions when −2 ≤ k ≤ 0.

5. Note that f(0) = 0.

6. The domain of g is all real x, x �= −2.
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The range of g is all real y < 0 or y ≥ 2.

7. Note that there may be more than one correct solution.

a. Defining f as

f(x) =




x + 6 for x ≤ −3

−x for −3 < x < 0

x for 0 ≤ x ≤ 3

−x + 6 for x > 3

gives a function describing the McMaths burgers’ logo using 4 pieces.

b. Defining f as

f(x) =




x + 6 for x ≤ −3

|x| for −3 < x < 3

−x + 6 for x ≥ 3

gives a function describing the McMaths burgers’ logo using 3 pieces.

c. Defining f as

f(x) =




3 − |x + 3| for x ≤ 0

3 − |x − 3| for x > 0

gives a function describing the McMaths burgers’ logo using 2 pieces.

8. a. Here a = 1, b = −4, c = 2 and d = −4. So,

f(x) =




x2 − 4 for 0 < x ≤ 2

2x − 4 for x > 2

b. Defining f to be an odd function for all real x, x �= 0, we get
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c. We can define f as follows

f(x) =




2x + 4 for x < −2

4 − x2 for −2 ≤ x < 0

x2 − 4 for 0 < x ≤ 2

2x − 4 for x > 2

3.4 Solutions

1. a. 0 ≤ x ≤ 4

b. −3 < p ≤ 1

c. x < −4 or −3 < x < 3 or x > 4

2. a. The graph of y = 4x(x − 3) is given below

b. From the graph we see that 4x(x − 3) ≤ 0 when 0 ≤ x ≤ 3.
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3. a. The graphs y = 5 − x and y = 4
x

intersect at the points (1, 4) and (4, 1).

b. The graphs of y = 5 − x and y = 4
x

c. The inequality is satisfied for x < 0 or 1 < x < 4.

4. a. The graph of y = 2x.

b. 2x < 1
2

when x < −1.

c. The midpoint M of the segment AB has coordinates (a+b
2

, 2a+2b

2
).

Since the function y = 2x is concave up, the y-coordinate of M is greater than
f(a+b

2
). So,

2a + 2b

2
> 2

a+b
2
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5.

a.

b. |x − 5| > x for all x < 2.5.

c. i mx = |x − 5| has exactly two solutions when 0 < m < 1.

ii mx = |x − 5| has no solutions when −1 < m < 0.

6. −1 ≤ x ≤ 3

4.3 Solutions

1. a.

The graph of P (x) = x(x + 1)(x − 3).

b.

The graph of P (x) = x(x + 1)(3 − x).

c.

The graph of P (x) = (x + 1)2(x − 3).

d.

The graph of
P (x) = (x + 1)(x2 − 4x + 5).

2. a. iv. b. v. c. i. d. iii. e. ii. f. vi.
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3. a.

The graph of
P (x) = x(x − 1)(x + 2)(x + 3).

b.

The graph of
P (x) = x(x − 1)(x + 2)(3 − x).

c.

The graph of P (x) = x2(x − 1)(x − 3).

d.

The graph of P (x) = (x + 1)2(x − 3)2.

e.

The graph of P (x) = (x + 1)3(x − 3).

f.

The graph of P (x) = (x + 1)3(3 − x).

g.

The graph of
P (x) = x(x + 1)(x2 − 4x + 5).

h.

The graph of P (x) = x2(x2 − 4x + 5).
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4. a.

x2 − 4x − 12 < 0 when −2 < x < 6.

b.

(x + 2)(x − 3)(5 − x) > 0 when x < −2 or 3 < x < 5.

c.

(x + 2)2(5 − x) > 0 when x < 5.

5. x2 − 4x − 12 + k ≥ 0 for all real x when k = 16.

6. a. P (x) = x(x − 4)

b. P (x) = −x(x − 4)

c. P (x) = x2(x − 4)

d. P (x) = x3(x−4)
3

e. P (x) = −x(x − 4)2

f. P (x) = (x+4)(x−4)2

8

7. a. The roots of f(x) = 0 are x = −2, x = 0 and x = 2.
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b. x = 2 is the repeated root.

c. The equation f(x) = k has exactly 3 solutions when k = 0 or k = 3.23.

d. f(x) < 0 when −2 < x < 0.

e. The least possible degree of the polynomial f(x) is 4.

f. Since f(0) = 0, the constant in the polynomial is 0.

g. f(x) + k ≥ 0 for all real x when k ≥ 9.91.

4.5 Solutions

1. a. Since A(x) = (x− a)(x− b) is a polynomial of degree 2, the remainder R(x) must
be a polynomial of degree < 2. So, R(x) is a polynomial of degree ≤ 1. That is,
R(x) = mx + c where m and c are constants. Note that if m = 0 the remainder
is a constant.

b. Let P (x) = (x2 − 5x + 6)Q(x) + (mx + c) = (x − 2)(x − 3)Q(x) + (mx + c).

Then

P (2) = (0)(−1)Q(2) + (2m + c)

= 2m + c

= 4

and

P (3) = (1)(0)Q(3) + (3m + c)

= 3m + c

= 9

Solving simultaneously we get that m = 5 and c = −6. So, the remainder is
R(x) = 5x − 6.

c. Let P (x) = (x − a)(x − b)Q(x) + (mx + c).

Then

P (a) = (0)(a − b)Q(a) + (ma + c)

= am + c

= a2

and

P (b) = (b − a)(0)Q(b) + (mb + c)

= bm + c

= b2

Solving simultaneously we get that m = a + b and c = −ab provided a �= b.

So, R(x) = (a + b)x − ab.

2. a.

2x4 + 13x3 + 18x2 + x − 4 = (x2 + 5x + 2)(2x2 + 3x − 1) − 2

b. Let α be a common zero of f(x) and g(x). That is, f(α) = 0 and g(α) = 0.
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Then since f(x) = g(x)q(x) + r(x) we have

f(α) = g(α)q(α) + r(α)

= (0)q(α) + r(α) since g(α) = 0

= r(α)

= 0 since f(α) = 0

But, from part b. r(x) = −2 for all values of x, so we have a contradiction.

Therefore, f(x) and g(x) do not have a common zero.

This is an example of a proof by contradiction.

3. a. i P (x) = x3 − x2 − 10x − 8 = (x + 1)(x + 2)(x − 4)

ii x = −1, x = −2 and x = 4 are solutions of P (x) = 0.

iii

The graph of P (x) = x3 − x2 − 10x − 8.

b. i P (x) = x3 − x2 − 16x − 20 = (x + 2)2(x − 5).

ii x = −2 and x = 5 are solutions of P (x) = 0. x = −2 is a double root.

iii

The graph of P (x) = x3 − x2 − 16x − 20.

c. i P (x) = x3+4x2−8 = (x+2)(x2+2x−4) = (x+2)(x−(−1+
√

5))(x−(−1−
√

5))

ii x = −2, x = −1 +
√

5 and x = −1 −
√

5 are solutions of P (x) = 0.
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iii

The graph of P (x) = x3 + 4x2 − 8.
The zeros are x = −2, x = −1 +

√
5 and x = −1 −

√
5.

d. i P (x) = x3 − x2 + x − 6 = (x − 2)(x2 + x + 3). x2 + x + 3 = 0 has no real
solutions.

ii x = 2 is the only real solution of P (x) = 0.

iii

The graph of P (x) = x3 − x2 + x − 6.
There is only one real zero at x = 2.

e. i P (x) = 2x3 − 3x2 − 11 + 6 = (x + 2)(x − 3)(2x − 1).

ii x = −2, x = 1
2

and x = 3 are solutions of P (x) = 0.

iii

The graph of P (x) = 2x3 − 3x2 − 11 + 6.



 

1 
 

DIFFERENTIAL CALCULUS 

CHAPTER I : REAL NUMBER SYSTEM 

Definition 1.1 By Real Number System we mean a non-empty set R, two binary 

operations addition and multiplication (denoted by + and . respectively) and an 

order relation     defined on R which satisfy the following axioms I, II and III : 

I. Algebraic Properties: 

For all a,b,c in R,  

(1) a+(b+c)=(a+b)+c, a.(b.c)=(a.b).c  (associativity), 

(2) a+b=b+a,a.b=b.a  (commutativity) 

(3) there exists 0,1  in R, 01, such that a+0=a,a.1=a (existence of identity 

for addition and multiplication) 

(4) for all a in R ,there is (-a) in R such that a+(-a)=0; for all a (0) in R , 

there exists a-1  in  R  such that a.a-1 =1  (existence of inverse under 

addition and multiplication) 

(5) a.(b+c)=a.b+a.c  (distributivity of . over +) 

A system that has more than one element and satisfies these five axioms is called a 

FIELD. The basic algebraic properties of R can be proved solely on the basis of 

these field properties. (Field properties will be discussed in detail in a later 

semester.) 

II. ORDER PROPERTIES: 

(1) for a,b in R, either a b or b  a 

(2) if a b and b  a, then a=b 

(3)  if a b and b  c, then a  c 

(4) if a b then a+c   b+c 

(5) if a  b and 0  c, then ac  bc 

A field satisfying above five properties is called an  ordered field. Most of the 

algebraic and order properties of R can be established for any ordered field (like 

Q).  

III. The Completeness Axiom:  

Differentiation of Real Numbers and Rational Numbers 
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Let      . If a real number M satisfies     for all    , then   is called 

an upper bound of    and    is called bounded above.  

If a real number   satisfies (1)   is an upper bound of   and (2) no real number 

less than   is an upper bound of  , then   is the LEAST UPPER BOUND of    or 

SUPREMUM of   , written as  l.u.b.    or  sup   .  

Ex: sup {
 

  
    + = 0 , sup {         } does not exist,  sup 

{1,2,3}=max{1,2,3}. 

The Completeness Axiom for R states that: 

Every nonempty subset S of R that is bounded above has a least upper bound in R. 

That is, if a nonempty subset of real numbers has an upper bound, then it has a 

smallest upper bound in R. 

Definition: A number is called an algebraic number if it satisfies a polynomial 

equation     
       

                   where the coefficients     , 

  , ………… ,    , are integers,      , and    . A real number which is not 

algebraic (like    ) is called a transcendental number. 

Note: Rational numbers are algebraic numbers since a rational number    
 

 
 , 

    are integers and      satisfies the equation        . 

Theorem: Suppose that    ,   , ………… ,    are integers  and   is a rational 

number satisfying the polynomial equation    
       

             

     where          ,  and    .  Write    
 

 
 ,  where     are integers 

having no common factors and    . Then   divides    and   divides    . 

Ex: √  cannot represent a rational number. 

»By theorem above, the only rational numbers that could possibly be solutions of 

       are     and   .  But none of the four numbers    and    are 

solutions of the equation. Since √  represents a solution of         ,  √  

cannot represent a rational number.                    Note: In  , division of an integer   

by an integer   is defined iff there exists unique integer   such that      holds. 
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For      , division of   by   is undefined because there does not exist any 

integer   such that           holds.  Division of    by   is undefined because for 

any integer           holds and uniqueness of     is violated. 

The absolute value function and the greatest integer function 

For    , absolute value of    , denoted as | |, is defined to be the distance 

between (the points representing)   and  : 

 | |   , if    ,  

              , if    .  

 

 

The absolute value function satisfies the following properties: 

 (1) | |  |  |,                  (2) |   |  | |  | |,                                (3) |  |  

| || |,      

 (4) |
 

 
|  

| |

| |
(      )                                (5) || |  | ||  |   | 

Note: |   | gives distance between the (points representing) real numbers     and  

 . Hence the statement   lies between     and     can be equivalently put as 

|   |    . 

The greatest integer function is defined on the set   of  real numbers as follows:  

for real number a satisfying           , (  an integer), , -   .  

Thus, for example,  , -     , for        ,  

                                                        , for         

                                                        , for          

  

CHAPTER 2: SEQUENCES OF REAL NUMBERS 
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Definition: A sequence (in  ) is a function         ( )  is called the n th term 

of the sequence and denoted by     . The sequence   is often denoted by 

*  ,         + or ,more compactly, by (  ). We must distinguish between a 

sequence (  ) and its range set *  +: the range set of (1,1/2,1/3,…) is 

{1,1/2,1/3,…}; that of (1,1,1…) is {1}. We shall use the terms 

‘bounded’,’unbounded’, ‘bounded above’ and ‘bounded below’ for a sequence iff 

its range set (as a subset of  ) has the corresponding property. (   ) is bounded, 

(  ) is bounded below but not above,   (   ) is bounded above but not below, 

((  )  ) is neither bounded above nor bounded below. 

Note: A fraction increases when either the numerator is increased and/or the 

denominator is decreased. 

Ex: Verify whether the following sequences are bounded above and/or bounded 

below:                                                     (1) .
    

    
/,                           (2) 

.(  ) 
    

 
/,                      (3) (  ) where    √   

 
 √ 

 
 ,                 (4) 

(  ) where    
 

√    
   

 

√    
. 

Solution:  (1)  
    

    
 

 

 
4
     

 

 

    
5  

 

 
 

 

 (    )
 

 

 
 

 

 
  , for all natural 

number  . Thus    
    

    
  ,  for all natural  ; hence .

    

    
/ is bounded. 

(2)   |(  ) 
    

 
|    

 

 
  for all natural  :  hence .(  ) 

    

 
/ is 

bounded. 

(3)      
 

(   )
 
  (   )

 
  

 
   

 
 

 
 

 
  for all   (justify!): hence (  ) is bounded. 

(4)   
 

√    
    

 

√    
 

 

 
    for all natural  : hence (  ) is bounded. 

Definition:  A sequence (  ) is convergent iff there exists     such that for 

every    , there exists natural number ( ) , in general depending on   ,  so that  

     implies  |    |   . In this case, we say (  ) converges to     as  

     or    is a limit of (  ) and  write        (  )   .  A sequence that is 

not convergent is called divergent. 
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Ex: Consider the sequence   (  ), where        for all  . Then 

   (        )   , since for any    , |    |      for all     .   

Note that every constant sequence (b,b,…) is convergent to b. 

Ex: Consider the sequence  (  ),  where    (  )
     natural .  

     (  )     since the open interval  (0.5 , 1.5) containing 1 does not contain all 

the infinite number of terms of the sequence with odd suffix .     (  )     since 

the open interval (-1.5  ,-0.5) containing -1 does not contain all the infinite number 

of terms of the sequence with even suffix.  

If            let       *|   | |   |+. Then (   ,   ) does not 

contain any term of the sequence. Hence (  )diverges. 

Ex:  If     
 

 
  for all natural  ,  

then        (  )   : for any    ,  |    |        
 

 
      0

 

 
1    

  

Note: Observe the direction of implication sign carefully. 

Note: If       (  )      then the inequality ||  |  | ||  |    |,   natural, 

shows that       |  |  | |. Converse may not hold as can be seen from the 

counter example ((  ) ). 

Theorem: A convergent sequence is bounded. 

»Let     (  )   .  Corresponding to     ,  there exists positive integer     

such that   |    |       that is                                             for all   

   .  Let      *                 + and 

     *                 +. Then        for all natural  . Hence 

(  ) is bounded. 

 

Theorem: (Limit Theorem for Sequences)  Let       (  )    and  

      (  )   .   
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Then   (1)         (     )     ,     (2)      
   

(   )    ,     (3)     

   
   

(    )    ,                                                      (4)     if     ,   then ∃     

such that      for all       and         .
 

  
/  

 

 
. 

Note: Combined applications of different parts ensures that    (     )       

and       (     )        if      . 

Note: Note that it is possible that    (  )     and    (  )    ,       , for all 

natural   and yet    .  Consider the sequences  (  ) (  )  where        and  

        for all    . 

Theorem: If (  ) and (  ) are convergent sequences of real numbers and if  

       for all     (  fixed natural number), then     (  )     (  ) . 

Theorem: (Sandwich Theorem) Let (  ) (  ) (  ) be sequences and      be 

such that             for all     and    (  )     (  )   . Then 

(  )    . 

Ex:  Let  | |   . Then     (  )   . 

» If    , the result is obvious. Let    . Let  
 

| |
    . Then     and 

 

| | 
 (   )           for all natural   .  Hence    | |  

 

  
 .  Since 

    (
 

  
)   , by Sandwich Thorem,     (| | )   .  Hence     (  )     

Ex:  Let     . Then     ( 
 

 )   . 

» If     , nothing remains to prove.    

Let     . Then  
 

    for all natural  .  

Let     
 

    for natural  . then  (    )
            (  )

  

    ,  

so that          for all   .   

By Sandwich Theorem,    (  )   , so that ,    ( 
 

 )   .  
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If       , let          so that     (
 

 
 
 

)     . 
 

 /    , since     and 

hence     ( 
 

 )   . 

Ex:    ( 
 

 )   . 

»Since ( 
 

 )    for all  , we can write   
 

       where        for all    .   

Hence    (    )
  

 (   )

 
(  )

   .  

Thus        √
 

 
  .   Thus     (  )    and so     ( 

 

 )   . 

E x a m p l e 2 . 1 1  Let    
 

    
   

 

    
, for natural  . clearly          

for all natural   ,                  where    ∑
 

    
  

   
  

    
  and     

∑
 

    
  

   
  

     
  . Since     (  )     (  )   , so     (  )   . 

Ex: Use Squeeze Theorem to verify whether following sequences converge: 

. 
 

  /  .(  )
 

  /. 

»    
 

    
 

 , 1 (  )
 

   (  )
 

    
 

  for all natural  . 

Note: Every convergent sequence is bounded. The converse may not hold : 

consider ((  ) ). We now consider a class of sequences for which convergence is 

equivalent to boundedness. 

Definition:  A sequence       or (  ) is monotonically increasing iff   is 

monotonically increasing function, that is,         for all natural  . A sequence 

      or (  ) is monotonically decreasing iff   is monotonically decreasing 

function, that is,         for all natural    .  A sequence is monotonic iff it is 

either monotonically increasing or monotonically decreasing. 

Theorem : A monotonically increasing sequence is convergent iff it is bounded 

above. 
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Ex: Consider (  ), where      
 

  
 

 

  
   

 

  
 for natural   .  (  ) is 

monotonially increasing. Also        
 

 
 

 

  
   

 

    
   

 .  
 

  
/     for all natural  .  Thus (  ) is convergent. 

Ex: Consider (  ), where    .  
 

 
/
 

.  

Now,        .
 

 
 

 (   )

  

 

  
   

 (   )(   )  

  

 

  
 

               
 

  
(  

 

 
)    

 

  
(  

 

 
) (  

 

 
) (  

   

 
) 

                                                         
 

  
   

 

  
 

                                                         
 

 
 

 

  
   

 

    
  .  

 Thus             ,   for all    .  

Hence (  ) is bounded.  

Also                
 

  
.  

 

   
/     

 

  
.  

 

   
/ .  

 

   
/ .  

   

   
/  

 

(   ) 
.  

 

   
/ .  

 

   
/ .  

   

   
/ .  

 

   
/.  

Thus      is sum of (   ) summands whereas an is that of (   ) summands 

and each summand (from beginning) of        is greater than or equal to the 

corresponding summand of    . Hence (  ) is monotone increasing.  Thus (  ) is 

convergent.  If we denote    (  ) by  , then        since         for all 

 . 

Ex: Consider the sequence (  ), where      
 

 
 

 

 
   

 

 
, for all  . Clearly 

(  ) is monotonically increasing. For each  ,       
 

 
 .

 

 
 

 

 
/    

.
 

      
   

 

  
/    

 

 
 

 

 
   

    

  
   

 

 
.Hence there is no     such 

that      , for all    .  Thus  (  ) is unbounded above and hence is not 

convergent. 
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Ex: Consider the sequence (  ), where       
 

  
   

 

  
  . Clearly (an) is 

monotonically increasing.  Also, for each  ,      
 

   
 

 

   
   

 

(   ) 
 

  .  
 

 
/    .

 

   
 

 

 
/    

 

 
  . So (  ) is bounded above. Hence 

(  ) is convergent. 

Ex: Consider the sequence (  ), where      
 

  
   

 

  
 for each  . clearly 

(  ) is monotonically increasing. We have seen in two examples above that 

(  ) is divergent if     and convergent if     . This implies that (  ) is 

divergent if     and convergent if     , because for each     
 

 
 

 

  
   if   

    while   
 

  
 

 

  
  if     .  

P R O P E R L Y  D I V E R G E N T  S E Q U E N C E S  

Definition: Let (  ) be a sequence of real numbers. (  ) tends to   as   tends to 

     written as       (  )    iff for every    , there exists natural number 

  such that      implies     . Similarly, a sequence (  ) of real numbers 

tends to    as   tends to    , written as        (  )      iff for every    , 

there exists natural number   such that       implies      .   

CAUCHY’S GENERAL PRINCIPLE OF CONVERGENCE  

Theorem:   A sequence  (  )  of real numbers is convergent  iff for every      , 

there exists positive integer   such that for                 natural number,  

|     |     holds. 

 

Ex: Verify that the sequence (  ) where      
 

 
   

 

 
   natural, does not 

converge. 

»If  (  ) converges,  then corresponding to    
 

 
 ,  there exists    such that 

|     |  
 

 
 for all      . In particular, |      |  

 

 
.  But  |      |  

 

   
   

 

  
 

 

  
 

 

 
  ,  contradiction. 
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Definition:  An infinite series, or, for short, a series of real numbers is an 

expression of the form                 or,  in more compact notation 

∑   
 
   , where    is real number , for all  . The sequence (  ), where       

        , is called the sequence of partial sums corresponding to the series 

∑   
 
   . 

Definition: We say  ∑   
 
    is convergent iff    (  ) exists as real number, that 

is, iff the sequence of partial sums of the series is convergent.  If        (  )  

 , then   is the sum of the series ∑   
 
    and we write   ∑   

 
   .  An infinite 

series ∑   
 
     that is not convergent,  is divergent. In particular, we say the series  

∑   
 
     diverges to     or to       according as    (  )     or     (  )  

  . 

Note: The convergence of a series is not affected by changing finite number of its 

terms, although its sum may change by doing so. If  ∑   
 
     and         

   ∑   
 
      be two series obtained by changing first m number of terms, and 

if (  ) and (  ) be the corresponding sequences of partial sums, then for   

        ∑   
 
    ∑   

 
   . Thus (  )converges iff (  )converges and if 

they converge  to   and   respectively,      ∑   
 
    ∑   

 
   . 

Ex: (Geometric Series) For the series ∑   (   real ),  

                 
    

   
 ,  if       and 

       ,  if      .  

If         ,      (  )  
 

   
.  Hence the series ∑   converges for      

 .  

If      ,  then         for all   (since              are    );  hence (  ) 

and thus ∑   diverges to  .  

                  CHAPTER 3: INFINITE SERIES OF REAL NUMBER 
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If       ,         and          for all n and hence ∑   is divergent.  

Finally, if      , then    (   )      and     (     )      ; hence  ∑    

is divergent to     

Ex: (Exponential Series) We have seen earlier that the sequence (  ) given by 

     
 

  
 

 

  
   

 

  
  is convergent to a real number         .  Thus   

    
 

  
 

 

  
   

 

  
 ……. 

Ex: (Harmonic series and its variants) As seen in example 2.17,   
 

  
   

 

  
 

    is divergent for     and convergent for      .  It can be shown that the 

sequence of partial sums and hence the series  ∑(  )   
 

 
   converges.  

Note: Since convergence of a series is defined in terms of convergence of its 

sequence of partial sums, many results about convergence of a series follows from 

the corresponding results on sequences.  

 The sequence of partial sums of a convergent series is bounded. 

 Let  ∑    ,  ∑      . Then  ∑(     )       , ∑(   )    .   If  

        for all   ,  then    . 

 (Sandwich Theorem) If (  ) (  ) (  ) are sequences of real numbers such 

that                 for each  , and further if ∑     ∑  ,  then  

∑     . 

Theorem: If ∑    is convergent, then     (  )   .  In other words, if     (  ) 

does not exist or is not equal to zero, then ∑   is divergent. Converse may not 

hold: consider  ∑
 

 
 . 

Ex:  ∑ (  )   
 

  
 
    is divergent if     since |(  )   

 

  
|    for all   . 

TESTS FOR CONVERGENCE : series of non-negative terms 

Theorem:  (Comparison Test)  Let (  ) (  ) be sequences of non-negative real 

numbers such that         for all         natural.  If ∑   is convergent, then  

∑   is convergent and  ∑   ∑  .  If  ∑   diverges, then ∑   is divergent. 
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Ex:   ∑
    

    
  is convergent since 

    

    
  .

 

 
/
 
for all natural   and ∑.

 

 
/
 
is 

convergent. 

Ex: ∑
 

(       )
 
 

 is convergent since 
 

(       )
 
 

 
 

 

 

 
 
 

 for all natural   and ∑
 

 
 
 

 is 

convergent. 

Theorem: (Limit Form of Comparison Test)  Let  (  ) (  )  be sequences of 

positive real numbers such that             .
  

  
/   (  ). Then ∑   is 

convergent iff  ∑   is convergent.  If        .
  

  
/    and if ∑   is convergent, 

then ∑  is convergent. If       .
  

  
/    and if ∑   is divergent, then ∑  is 

divergent. 

Ex: The series ∑
    

    
 is convergent by Comparison Test since ∑.

 

 
/
 
 is 

convergent and       .
  

  
/   (  ). 

Ex:  ∑   .
 

 
/ diverges by comparison test since ∑

 

 
 is divergent and 

      

   .
 

 
/

 

 

  (  ) 

Theorem: (D’Alembert’s Ratio Test) Let ∑   be a series of positive real numbers 

and let       .
    

  
/   . Then ∑   converges if     and ∑   diverges if 

   . 

Theorem: (Cauchy’s Root Test) Let ∑   be a series of positive real numbers and 

let    
   

  
 

   . Then ∑   converges if     and ∑   diverges if     . 

Theorem: (Raabe’s Test) Let ∑   be a series of positive real numbers and let 

             .
  

    
  /    .Then ∑   converges if     and ∑   diverges if 

   . 
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Ex: Use comparison Test to verify whether the following series converge:                                   

(1) ∑
   

  
, (2) ∑

 

√ (   )
(3)∑

√ 

(   ) 
 

»Compare the series respectively with (1) ∑
 

  
,            (2)∑

 

 
         and                

(3)∑
 

    
 

Note: While testing convergence of a series ∑   by comparison test, the series is 

constructed by considering heighest power of n present in numerator and 

denominator separately .  

ALTERNATING SERIES : LEIBNITZ TEST 

Definition: A series of the form ∑(  )   , where      for all positive integer 

 , is an alternating series. 

Theorem: (Leibnitz Test) An alternating series ∑(  )    is convergent  if the 

sequence (  )of positive terms is monotonically decreasing and       (  )    . 

Ex: 1 4  ∑(  ) 
 

    
 converges by Leibnitz Test. 

 

 

 

Definition:  Let       and     .   

A real number    is the LEFT( hand) LIMIT of    at   , written  as            ,  

iff for every    , there exists     such that          implies | ( )  

 |    .  

CHAPTER 4 

LIMIT OF A REAL VALUED FUNCTION OF A REAL VARIABLE 



 

14 
 

A real number   is the RIGHT( hand) LIMIT of   at  , written  as           , 

iff for every    , there exists     such that          implies | ( )  

 |    .  

A real number   is limit of   at    , written as           , iff                                                         

(1)          exists and    (2)          exists and    (3)            . 

Ex: Prove that             . 

»Let      be given.|     |    |   |  
 

 
     |   |    ,   

  .  Hence the result. 

Note: Observe the direction of implication sign carefully. 

Ex:         
    

 

 
=0 

»Let     be given. |     
 

 
  |     |  | |   

 

 
|  |  |    | |    

| |  √      |   |   . 

Ex:  Let         ( )  , -.  

             since for any     ,  there exists           such that  

           implies                         | ( )   |=|   |    .  Similarly,   

           .  Hence            does not exist. 

Ex:  Let         ( )    
 

       ( )   .  

As       ,              
 

 
      and so     

 

    .  

As       ,         
 

 
      and so     

 

  
 

 
 
 
 

      

So     
    

  does not exist while     
    

    . 

 

Theorem: (Sequential criteria of limits) Let       and     be a real number. 

Then the following are equivalent:  
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(1)          ,  

(2) for every sequence (  ) of real numbers that converges to    such that        

for all  , the sequence ( (  )) converges to  . 

Theorem: (Divergence criteria) Let       and     be a real number.  

            iff there exists a sequence (  ) of real numbers that converges to    

such that        for all  ,    (  )     but     ( (  ))    (either     ( (  )) 

does not exist or exists but not equal to  ).  

Alternatively,            does not exist iff there exist sequences  (  ) and (  )  of 

real numbers,          ,   for all  ,       (  )     (  )    , but  

    ( (  ))       ( (  )) . 

Ex:           .
 

 
/ does not exist in  . 

» The sequences (  ) and (  ) both converge to   where    
 

  
   and      

 

(    )
 

 

    but   (   .
 

  
/)  (     ) tends to   whereas (    (  ))  (    (   

 )
 

 
) converges to  . 

Theorem: (Limit Theorem of Functions) Let         and     .   If  

          and          , then          (    )     ,           (  

 )     ,            (  )    ,              (  )    . If   Let     

    ( )     for all real    belonging to (       ), for some    ,  and if  

           , then     (
 

 
)  

 

 
. 

Note: If    be a polynomial, then           ( )  for any real   . 

Theorem: (Squeeze Theorem) Let           and     . If  ( )    ( )   

 ( ) for all real       , and if                   ,   then           . 

Some Extensions of Limit Concept 

Definition:   Let Let       and     .    tends to     as     ,  written as  

          ,  iff for every real  , there exists       such that for all   

satisfying    |   |   ,   ( )     holds. 
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Definition: Let       and     .    tends to      as     ,  written as  

           ,  iff for every real  , there exists       such that for all   

satisfying   |   |   ,  ( )     holds. 

 

Ex:        
 

  
  . 

»Let      
 

  
      

 

 
   

 

√ 
   

 

√ 
    |   |  

 

√ 
  . 

Hence the result. 

Definition:  Let      . A real number   is a limit of   as    , written as 

         , iff for any given    , there exists   such that     implies 

| ( )   |     

Definition:  Let      .    tends to   as   tends to  , written as          , 

iff given any real  , there exists   such that     implies  ( )   . 

E x a m p l e 4 . 8  Evaluate the following limits or show that they do not exist:                             

(1)        
 

   
 ,  (2)        

   

√ 
,   (3)        

√   

√   
 (   )     (4)        

√   

√   
 

(   ) 

»(1)Let     
 

   
       

 

   
       

 

   
  (  ).   

Hence          
 

   
  . 

  (2) Let     
   

√ 
     

 

√ 
   √  

 

 
       

 

  
  . 

 Hence          
   

√ 
  . 

   (3) Let     
√   

√   
   |

√   

√   
  |     

 

√   
    

 

√ 
      

  

  
 

 .                                            

 Hence          
√   

√   
  . 
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Continuous Functions 

Definition: Let        and let   be a real number.   is continuous at   iff 

        ,          and  ( ) exists and                      ( )  If   

is continuous at every real     is continuous on  . 

Theorem: Let          be continuous at       and   be a real constant. 

Then the functions                are continuous at  , where the 

functions are defined as follows: 

 (   )( )   ( )   ( )          

  (   )( )   ( )   ( )    

 (   )( )   ( )  ( )   

(  )( )    ( )        .  

The function 
 

 
 defined by .

 

 
/ ( )  

 ( )

 ( )
 is continuous at   if   ( )    for all 

  in          (       ) for some    . 

Ex:  Every constant function        ( )    (  real constant) is continuous 

on  . 

Ex:  Every polynomial function  ( )     
     

         is 

continuous on  . 

Definition:       has removable discontinuity at   iff            

                 exists but either  ( ) does not exist or exists but 

different from the limiting value         . 

      has discontinuity of first kind at   iff both           and           

exist but                   . 

      has discontinuity of second kind at   iff at least one of           and  

         does not exist. 

Ex: Check the continuity of the following functions at the indicated points: 

(1)  ( )  , -  ,  -       ,          (2)      ( )  
 

      
       ,  
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(3)      ( )                
  

 
             

(4)       ( )  , -                                  ( )  ( )  
 

 
       ( )          

»         (1)         =       (    )=-1=       (  (  ))=         

   ( ).  

          Hence   has removable discontinuity at   . 

(2)              
 

       
 

      (   
 

  )   ,  

            
 

      (   
 

 )      

 

Thus                       ( )  Hence     is continuous at  . 

(3)             
    

.  
  

 
/   ;               

    
(   )     and  

 ( )   .  Hence   is  continuous at    . 

(4)       (    )              (    )  ;  hence   

has discontinuity of first kind at  . 

(5)         does not exist as real number; hence   has discontinuity of 

second kind at  . 

Theorem: If        be continuous at   and       be continuous at  ( )  

then    ,defined by (   )( )   ( ( )) for real  , is continuous at  . 

Ex:              ( )         and             ( )     are continuous on  ;  

hence                           (   )( )     (  ) is continuous on  . 

Theorem:  If     is continuous at   and   ( )   ,  then there exists       such 

that   ( )  has the same sign as   ( )  for all     in  (        )  

Theorem: (Bolano’s Intermediate Value Property) Let         be continuous 

and       be real numbers,    ,  such that   ( )    ( ).  Let   be a real 

number between   ( )  and   ( )   Then there exists     in  ,   -  such that  

 ( )     

Note: Continuity is sufficient but not necessary for the conclusion in the above 

theorem to hold:    for example, let  us define 
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              ( )             

                                               ,   satisfies IVP but is discontinuous at    

Corollary: If  f(a) and f(b) are of opposite signs, then there exists c in (a,b) such 

that f(c)=0. 

Ex:  Prove that   
 

   
 

 

   
 

  

   
     has a solution between 1 and 2. 

»Let f( )   (   )(   )   (   )(   )    (   )(   )    being a 

polynomial function, is continuous at any real number and hence on ,   -. Also 

 ( )    and  ( )   . Thus there exists   in (   ) such that  ( )   , that is  
 

   
 

 

   
 

  

   
    has a solution in (   )  

Ex:  Show that the equation         has solution in (  
 

 
)  

»Let  ( )             ,  
 

 
-  ( )    and  (

 

 
)   ; also   is continuous 

on ,  
 

 
-  Hence there exists   in (  

 

 
) such that   ( )       is a solution of the 

given equation. 

Theorem: Let       be continuous and     be real numbers,    .   Then 

there exist       in  ,   -   such that   ( )     * ( )   ,   -+   and    

 ( )     * ( )   ,   -+  

Note: The result may not hold if we consider a discontinuous function or a non-

closed interval.      

Let        ( )  
 

 
    for          

                                       at        .  

So    is discontinuous at  . There does not exist   in ,    - such that 

  ( )     * ( )   ,    -+ (   )      ( )    does not have either 

maximum or minimum on (   )  
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CHAPTER 5 

DERIVATIVE OF A REAL VALUED FUNCTION OF A REAL 

VARIABLE 

Definition: Let   ,   -              The left (hand) derivative of    at  , 

denoted by  ( )(  )  is equal to        
 ( )  ( )

   
, provided the limit exists. The 

right(hand) derivativeof   at  , denoted by  ( )(  ), is equal to        
 ( )  ( )

   
, 

provided the limit exists. 

Ex:  Let         ( )      real constant.     is derivable at      iff   ( )( )  

exists and in that case    ( )( )        
 ( )  ( )

   
       

   

   
      In general, 

derivative of a constant function defined on an interval at any point of its domain 

of definition is zero. 

Ex:  Let   ,   -     ( )                 

                                                         at                                                                                                         

                                                              for          

    ( )(  )         
 ( )  ( )

   
    

    

(       )  

   
   while 

 ( )(  )         
 ( )  ( )

   
    

    

      

   
  . Since      ( )(  )  

 ( )(  )   ,    is not derivable at   . Since  ( )(  )      
    

 ( )  ( )

   
 

   
    

        

   
    

    
(        )    ,  so   is differentiable at   and  

 ( )( )    . 

Theorem:  If   ,   -     be differentiable at        , then   is continuous 

at  . 

       , ( )   ( )-        0
 ( )  ( )

   
(   )1  

      
 ( )  ( )

   
           (   )   

( )( )   .   Hence      
   

 ( )   ( )  thus 

  is continuous at  . 
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Note: Converse may not hold:  Consider   ,    -       ( )  | |    is 

continuous at   but not differentiable at     

Ex:  Let  (   )   ( )   ( ) for all real    . Let  ( )    and  ( )( )     

prove that  ( )( )   . 

     ( )   (   )   ( )   ( ) ; hence  ( )   . Now  ( )( )  

      
 (   )  ( )

 
       

 ( )  ( )  ( )

 
 
 ( )  ( )

 
  ( )( )   . 

 

 

Definition: Let   ,   -      is (monotonically) increasing on ,   - iff       

,   -       imply  (  )    (  )    is (monotonically) decreasing on ,   - iff 

      ,   -       imply  (  )    (  )    is monotonic iff   is either 

increasing on ,   - or decreasing on ,   -   is strictly increasing iff       

,   -       imply  (  )    (  )   Similarly strictly decreasing function is 

defined.  

Theorem: Let   ,   -    be a differentiable function. Then  

(1)    is nonnegative throughout ,   - iff   is monotonically increasing on ,   -  

 (2)    is positive throughout ,   - implies   is strictly increasing on ,   -  

Ex:  Prove that  ( )  
           

           
(        are constants) is either 

monotonically increasing on   or monotonically decreasing on  . 

   ( )( )  
     

(           ) 
    for all   if         and     for all   if 
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CHAPTER 6 

SUCCESIVE DIFFERENTIATION 

Definition: Let   ,   -    be differentiable on ,   -  Then  ( ) ,   -     is a 

function . This function  ( ) may again be differentiable at every point of ,   -  

the function ( ( ))( ) is denoted by  ( )and called second order derivative of   ,   

 ( ), in its turn, may have derivative at every point of  ,   -, which is denoted by 

 ( ) ,  called third order derivative of   . The process may be continued. 

Ex:  Let            rational. Show that   ( )   (   ) (    

 )    , for natural      

»   ( )       . Result holds for    . Let  ( )   (   ) (    

 )    , for some natural  . Then  (   )  ( ( ))( )   (   ) (    

 )(   )      .  Thus if the result holds for    , it holds for    . Thus , by 

mathematical induction , the result holds for all natural   . 

Ex: Let    
 

    
.   Then    ( )  

(  )     

(    )   
. 

Ex: Let       .  Then   ( )     . Hence   ( )  ( ( ))(   )  (   )(   )  
(  )   (   ) 

  
. 

 

Ex: Let        . To prove:  ( )      (
  

 
  ) (  natural). 

   ( )           (
 

 
  )   Result holds for    . Let   ( )      (

  

 
  ) for 

some natural  . Then   (   )     .
  

 
  /     .

 

 
 

  

 
  /  

   (
(   ) 

 
  ). Hence the result holds by induction. 

Ex: Let               

   Then    ( )     (                )   

Let                                                 .  
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Then   √      and   satisfies           and                   .   

 Thus   ( )         (     )   

Hence   ( )           (      )     (     )       (      )  

Ex: Let     
 

    
 

 

(   )(   )
 

 

   
 

 

   
  . Equating coefficients of like powers 

of   in the identity    (   )   (   )  we get    
 

 
        

 

 
.  Hence 

  
 

 
(
 

   
 

 

   
)  Thus   ( )  

(  )   

 
0

 

(   )   
 

 

(   )   
1. 

Ex: Let   
 

   
        ( )( )     

»     
 

   
.   Thus    ( )  -

(  )   

(   ) 
.   Hence    ( )( )      

Theorem: ( Leibnitz’s Theorem) Let       be two functions possessing   th order 

derivatives, then    is differentiable   times and  

(  )( )  .
 

 
/ ( )  .

 

 
/ (   ) ( )    .

 

 
/  (   ) ( )    .

 

 
/  ( )  

Proof: (  )( )   ( )    ( )  ( 
 
) ( )  ( 

 
)  ( )  Thus the result holds for 

      

 Let (  )( )  ( 
 
) ( )  ( 

 
) (   ) ( )    ( 

 
) (   ) ( )    

( 
 
)  ( )   

Then (  )(   )  ((  )( ))( ) 

 0.
 

 
/ ( )  .

 

 
/ (   ) ( )    .

 

 
/ (   ) ( )    .

 

 
/  ( )1

( )

 

 ,.
 

 
/  (   )  .

 

 
/ ( ) ( )-   ,.

 

 
/ (     ) ( )  .

 

 
/  (   ) (   )-

    ,.
 

 
/ ( ) ( )  .

 

 
/  (   )- 

              (   
 
) (   )  (   

 
) ( ) ( )    (   

 
) (     ) ( )    

(   
   

)  (   )   
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since    (  
   
)  ( 

 
)  (   

 
)  ) holds.    Thus result holds by mathematical 

induction. 

Ex: Let      (        )   

Prove that  (1) (    ) ( )    ( )       ,  

                  (2) (    ) (   )  (    )  (   )  (     ) ( )     

»  ( )     (        ) .
 

√    
.    

Squaring and cross multiplying, (    )( ( ))         (        )  

  (    ) (from given expression).  

Hence     ( ) ( )(    )    ( ( ))    (   ) ( )).  

Since for the given expression  ( ) is not identically zero and the relation is to hold 

for all  , cancelling    ( ) from both sides, we obtain (    ) ( )    ( )  

     . 

Next applying Leibnitz’s Theorem (remembering that   th order derivative of sum 

and difference of a finite number of functions is sum or difference of their   th 

order derivatives), we get  

,(    )( ( ))( )  ( 
 
)( ( ))(   )(   )  ( 

 
)( ( ))(   )(  )]  

, ( ( ))( )  ( 
 
)( ( ))(   )     ( )   ;  simplifying we obtain the result. 

CHAPTER 7 

MEAN VALUE THEOREMS 

Theorem: (Rolle’s Theorem) If    ,   -      is continuous on ,   - and 

differentiable on (   ) and if  ( )   ( )  then there is    (   )  such that  

  ( )   . 

Ex: If  ( )          for    , where       and    , then   has a 

unique real root. To see this, note that if   had more than one real root, then there 

would be       with     and  ( )   ( )   . Hence , by Rolle’s Theorem, 

there would be   (   ) such that   ( )   . But   ( )        is not zero 
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for any      since     . On the other hand,             and         

 .Thus   takes on negative as well as positive values. Hence  ( )    for some 

   , since   has the IVP on  . Thus   has a unique real root. 

Ex: Consider f:[0,1]  R defined by f(x)=x, x  [0,1) and f(1)=0. Then f is 

differentiable on (0,1) and f(0)=f(1)=0 but f is not continuous on [0,1]. Note that 

f  (c)=1  0 for 0<c<1. 

Ex: Consider f:[-1,1] R defined by f(x)=|x|. Then f is continuous on [-1,1] and f(-

1)=f(1)=1.      f '(x)=1 for x>0, =-1, for x<0 and f '(0) does not exist. There does not 

exist c, -1<c<1, such that   f '(0)=0. 

Ex: Consider f:[0,1]  R defined by f(x)=x for x  [0,1). Then f is continuous on 

[0,1]and differentiable on (0,1) but f '(c)=1  0 for every c  (0,1). Note that f(0)  

f(1). 

Theorem: (Lagrange’s Mean Value Theorem)  If f:[a,b] R is continuous on [a,b] 

and differentiable on (a,b), then there exists c  (a,b) such that  f(b)-f(a)=(b-a)f 

'(c). 

Proof: Consider F:[a,b]  R defined by F(x)=f(x)-f(a)-s(x-a), where s = 
 ( )  ( )

   
. 

Then F(a)=0 and by our choice of constant s, F(b)=0. So Rolle’s Theorem applies 

to F and, as a result, there exists c  (a,b) such that F/(c)=0, that is, f '(c)=s, as 

desired. 

Note: If we write b=a+h, then the conclusion of MVT may be stated as follows:       

f(a+h)=f(a)+hf '(a+h) for some  (0,1). 

Corollary: (Mean Value Inequality) If f:[a,b]  R is continuous on [a,b] and 

differentiable on (a,b),and if m,MR are such that m  f '(x)  M for all x (a,b), 

then                                               m(b-a)  f(b)-f(a)  M(b-a). 

Corollary: Let I be an interval containing more than one point and f: I  R  be any 

function. Then f is a constant function on I if and only if f/ exists and is identically 

zero on I. 
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Proof: If    is a constant function on  , then it is obvious that   exists on   and 

  ( )    for all     .  

Conversely, if     exists and vanishes identically on  , then for any x1 , x2 I with 

x1 < x2, we have [x1 , x2] I and applying MVT to   on [x1 , x2], we obtain [f(x2)-

f(x1)]=(x2 – x1)f/(c )  (for some   (     )     )    and hence   (  )   (  ).   

Note: The MVT or the Mean Value Inequality may be used to approximate a 

differentiable function around a point. For example, if m is natural and  ( )  √  

for   ,     -  then √    √    (   )   ( )     ( )  
 

 √ 
  for 

some   (     )   Hence    
 

 √   
 √    √  

 

 √ 
.     For example, 

by putting      ,                                                    
 

 
   

 

 
   

 

 √ 
 √    

 

 
 

 

 
. 

Corollary: Let I be an interval containing more than one point  and f: I  R be a 

differentiable function. Then (1) f ' is nonnegative throughout I iff f is 

monotonically increasing on I, (2) f ' is positive throughout I implies f is strictly 

increasing . 

Proof: Let  x1 , x2   I  with x1 < x2  . Then [x1 , x2]  I  and we can apply MVT to 

the restriction of     to [x1 , x2] to obtain  [f(x2)-f(x1)]=(x2 – x1)f '(c ) for some 

  (     ) .  Thus  f(x2)   f(x1)  iff  f '(c )   . 

Note:          ( )      is strictly increasing on  ,    -  but    ( )   . 

Theorem: (Cauchy’s MVT) Let f,g: [a,b]  R are continuous on [a,b] and 

differentiable on (a,b), then there is c  (a,b) such that  

g
(1)

(c)(f(b)-f(a))= f
(1)

(c)(g(b)-g(a)) 

Proof: Consider the function F:[a,b]  R defined by F(x)= f(x)-f(a) - s[g(x)-g(a)], 

where                          s = 
 ( )  ( )

  ( )  ( )
. 

Theorem: (L’Hospital’s Rule for  
 

 
  Indeterminate Form) Let     and      (  

   )     be differentiable function such that            and           . 
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Suppose  ( )( )     for all   (     ) and        
 ( )( )

 ( )( )
=L. Then 

       
 ( )

 ( )
  . 

 Here   can be a real number or        . 

Note: L’Hospital’s Rule for  
 

 
  Indeterminate Form is also valid for right (hand) 

limits. The statement is similar to that given above. Combining the two cases 

follows L’Hospital’s Rule for(two-sided)limits of  
 

 
 Indeterminate Form, which we 

may state as follows: 

Theorem: Let     and   (     )   (     ) for some    . Let 

        be differentiable functions such that          and          . 

Suppose  ( )( )     for all     and       
 ( )( )

 ( )( )
  . Then       

 ( )

 ( )
  . 

Here   can be a real number or        . 

 L’Hospital’s Rule for 
 

 
 Indeterminate Form are also valid if instead of considering 

limits as    , where   is a real number, we consider limits as      or as  

      For example, a statement for limits as       would be as follows: 

Theorem: Let   be real number and      (    )     be differentiable functions 

such that            and           . Suppose  ( )( )     for all   in 

(    ) and        
 ( )( )

 ( )( )
  . Then        

 ( )

 ( )
  . Here   can be a real 

number or     or    . 

Theorem: (L’Hospital’s Rule for 
 

 
 Indeterminate Form) Let   be an interval ,   ) 

where   is real and either   is real with     or      Let         be 

differentiable functions such that        | ( )|   . Suppose  ( )( )     for 

all     and        
 ( )( )

 ( )( )
     Then        

 ( )

 ( )
      Here   can be a real 

number or    or    . 
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Theorem: (Taylor’s Theorem) Let   be a nonnegative integer and   ,   -     be 

such that  ( )  ( )     ( ) exist on ,   - and further  ( ) is continuous on 

,   - and differentiable on (   ). Then there exists   (   ) such that 

   ( )   ( )  (   ) ( )( )    (   ) 
 ( )( )

  
  (   )   

 (   )( )

(   ) 
  

Proof: For   ,   -  let  ( )   ( )   ( )( )(   )  
 ( )( )

  
(   )    

 ( )( )

  
(   )   Consider   ,   -     defined by  ( )    ( )   ( )  

 (   )   , where   
 ( )  ( )

(   )   
 . Then  ( )    and our choice of   is such that 

 ( )   . So Rolle’s Theorem is applicable to   on ,   - and, as a result, there is 

   (   ) such that  |(  )   . Next ,  ( )( )   ( )( ) and so  ( )( )    as 

well. Now Rolle’s Theorem applies to the restriction of  ( ) to ,    -, and so there 

is    (    ) such that  ( )(  )   . Further , if    , then  ( )( )    and so 

there exists    (    ) such that  ( )(  )   . Continuing this way, we see that 

there is        (    ) such that  (   )( )   . Now  (   ) is identically 

zero, since   is a polynomial of degree n. In particular,  (   )( )     Hence 

 (   )( )   (   )   which, in turn, yields desired result. 

Note: (1)Note that the Lagrange’s MVT corresponds to the case n=0 of Taylor’s 

Theorem. 

           (2) In statement of Taylor’s Theorem , the point   was the left end point of 

the interval on which   was defined. There is an analogous version for right 

endpoint: if   is as in the statement of Taylor’s Theorem, then there exists   

(   ) such that  ( )   ( )   ( )( )(   )    
 ( )( )

  
(   )  

 (   )( )

(   ) 
(   )     Similarly, it can be proved that if    is any interval,    ,and  

      is such that  ( )  ( )     ( ) exist on   and   (   )exists at every 

interior  point of   , then for any        , there is   between   and   such that  

 ( )   ( )   ( )( )(   )    
 ( )( )

  
(   )  

 (   )( )

(   ) 
(  

 )   . 
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The last expression is sometimes referred to as the Taylor formula for   

around  . The polynomial given by   ( )   ( )   ( )( )(   )    
 ( )( )

  
(   )  is called the   th Taylor polynomial of   around  .The 

difference   ( )       
 (   )( )

(   ) 
(   )    is called Lagrange form 

of remainder after   terms. 

(3) Usually, the      Taylor polynomial of    around    provides a 

progressively better approximation to   around   as   increases. For 

example, let us revisit the estimate of √  obtained from Lagrange’s MVT and 

see what happens when we use Taylor’s Theorem.  

Thus let   be natural and   ,     -       ( )  √ .  Applying Taylor 

formula for   around  , with    , we have  ( )   ( )   ( )( )(  

 )  
 ( )( )

  
(   )  for some   between   and  .  

In particular, for         , we get √    √  
 

 √ 
 

 

  √ 
 for some 

   (     )   

For example, by putting    , we obtain   
 

 
 

 

 
 √    

 

 
 

 

  √ 
  

and hence 

 
  

 
 √    

 

 
 

 

  √ 
      , where in the last inequality we have used 

the estimate √     .  The resulting bounds       and       are,  in fact,  

better than the bounds     and     obtained using MVT. 

Taylor’s Infinite Series: Let f be a function possessing derivatives of all orders in 

,     - for some    . The   th Taylor Polynomial around   for different 

positive integers   are given by 

  (   )   ( )    ( )(     )   ( )    , 

  (   )   ( )    ( )( )  
  

  
 ( )(     )   ( )    

( )( )       
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 (   )   ( )    ( )( )  
  

  
 ( )( )  

  

  
 ( )(     )   ( )  

  ( )( )  
  

  
 ( )( )    ,               

  (   )   ( )    ( )( )  
  

  
 ( )( )    

    

(   ) 
 (   )( )  

  

  
 ( )(  

   )   ( )    
( )( )  

  

  
 ( )( )    

    

(   ) 
 (   )( )       where 

              are in general different real numbers lying strictly between 0 and 1.  

Let us denote  ( )    ( )( )  
  

  
 ( )( )    

    

(   ) 
 (   )( ) by   . Thus 

 (   )       , where (  ) is the sequence of partial sums corresponding the 

infinite series of real numbers 

 ( )    ( )( )  
  

  
 ( )( )    

    

(   ) 
 (   )( )          If       (  )   , 

then    (  )   (   ) and we can write  

 (   )   ( )    ( )( )  
  

  
 ( )( )    

    

(   ) 
 (   )( )    

Note: Let   be a function possessing derivatives of all orders in ,   - for some 

    and let      (
  

  
 ( )(    ))   . Then the Taylor’s infinite series 

corresponding to   about   is : 

 ( )   ( )    ( )( )  
  

  
 ( )( )    

    

(   ) 
 (   )( )      is called 

Maclaurin’s infinite series. 

Ex: (The Exponential Series)         ( )    , possesses derivatives of every 

order in ,   - for an arbitrarily fixedx and    
  

  
 ( )(   )      as   

  since    .
  

  
/             is bounded for all positive integer   (since 

       implies           ). Thus    can be expanded in Maclaurin’s 

infinite series and  
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Ex: (The sine and cosine series) Let   ( )        , then  ( )( )     .
  

 
  / 

for all natural number    Thus   possesses derivatives of all orders in ,   -  Also 

   
  

  
   .

  

 
    /     as     since    .

  

  
/    and |   .

  

 
 

   /|    for all   .  Thus         can be expanded in Maclaurin’s infinite series   

        
  

  
 

  

  
   

 

CHAPTER 8 

FUNCTIONS OF SEVERAL REAL VARIABLES 

Let        be a real-valuedfunction of two independent real variables: we shall 

often write    (   ) where     are independent real variables and   is the 

dependent real variable. Just as we represent function of a single real variable by a 

planar curve in two-dimensional plane, similarly a real-valued function of two 

independent real variables is represented by a surface in the three-dimensional 

space. 

 

Definition: Let        and (   )    .       A real number    is limit of   as 

(   )   (   ), written as    (   ) (   )    ,  if and only if for every    , 

there exists     such that   √(   )  (   )     implies   | (   )  

 |    . 

        (   ) (   )   
     

     
  . 

»Let     be given. 

|  
     

     
  |    | || | |

     

     
|    | || |    (since |

     

     
|    for real 

    ) 

 | |  √  | |  √          (since     ,    )    

√(   )  (   )       (say).     Hence the result. 
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Definition:  Let        and (   )    . f is continuous at (   ) iff  

                                                         (   ) (   )    (   )  

        is continuous at (   ) iff for any two sequences (  )     and (  )    , 

the sequence  (     ) should converge to  (   )  

Ex: Let       ,  (   )  
  

     
 for (   )  (   ) and  (   )   . 

   (   ) (   )   does not exist since for sequences .
 

 
/ and .

 

 
/ (both of which tend 

to   as     ),  .
 

 
 
 

 
/=

 

 
 

 

 
  as     ; whereas for the sequences .

 

 
/ and 

. 
 

 
/(both of which tend to   as     ),  .

 

 
 
  

 
/= 

 

 
  

 

 
  as     . Hence 

  is not continuous at (   )  

Definition: Let        and (   )    . The partial derivative of   with respect 

to first independent variable   at (   )  denoted by   (   )  is defined by 

      
 (     )  (   )

 
, provided the limit exists. Similarly the partial derivative of 

  with respect to second independent variable   at (   )  denoted by   (   ), is 

defined by        
 (     )  (   )

 
, provided the limit exists. 

Ex: Find   (   ) and   (   ) for (   )  
     

     
 , if they exist. 

»  (   )        
 

 (   )
 

 

 
. 

 

 

Definition: The partial derivatives   (   ) and   (   )of the function  (   ) are , 

in turn, functions of   and  . Thus, if the associated  limits exist, we may define 

partial derivatives of higher order for   s follows : 

   (   )        
  (     )   (   )

 
, 

    (   )        
  (     )   (   )

 
,    (   )        

  (     )   (   )
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   (   )        
  (     )   (   )

 
. 

Here       
  

  
  ,    

  

  
  ,      

   

   
  ,      

   

    
  ,      

   

    
  ,      

   

   
. 

Ex:  If     (             )  prove that 

(1)   
  

  
 

  

  
 

  

  
 

 

     
 ,       (2)     

   

   
 

   

   
 

   

   
    (     )  

»                  (     )(        )(        )   

Thus      (     )    (        )     (        )  where   is 

an imaginary cube roots of unity. Now 

  

  
 

 

     
 

 

        
 

 

        
  , 

 
  

  
 

 

      
 

 

        
 

  

        
,
  

  
 

 

     
 

  

        
 

 

        
 .  

  Thus     
  

  
 

  

  
 

  

  
 

 

     
,  since          .   Similarly the other part 

cn be proved . 

Homogeneous functions : Euler’s Theorem 

Definition:        is homogeneous of degree     iff (     )     (   ) for all  

    and for every positive       

  (   )  
  

     
   is homogeneous of degree     (   )        is not 

homogeneous. 

Theorem: (Euler’s Theorem for two independent variables) If   is a homogeneous 

function of degree   having continuous partial derivatives, then  
  

  
  

  

  
     

Ex: If          
     

   
,   prove that   

    (1)        
  

  
  

  

  
        ,  
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(2)     
   

   
    

   

    
   

   

   
 (        )      . 

»    is not homogeneous but         
     

   
 is homogeneous of degree 2 and 

partial derivatives  
  

  
  and  

  

  
  exist and  are continuous at all points except at 

(   )  hence we can apply Euler’s Theorem on   at all points other than (   )  We 

get  
  

  
  

  

  
   ; or,  

  

  

  

  
  

  

  

  

  
                 or,    

  

  
  

  

  
 

     

     
       . 

Differentiating partially w.r.t.   and   respectively,   
  

  
  

   

   
  

   

    
 

      
  

  
 ,     

   

    
 

  

  
  

   

   
       

  

  
 . Multiplying the equations by    

and   respectively and adding, 

  

  
   

   
    

   

    
   

   

   
      (          ) . 

  

  
  

  

  
/    

       (          )  

  (        )      . 

Ex: If     .
 

 
/   .

 

 
/ and     have continuous partial derivatives, prove that 

  
   

   
    

   

    
   

   

   
  . 

»   .
 

 
/ and  .

 

 
/ are homogeneous functions of degree 1 and 0 respectively and 

the functions have continuous partial derivatives; hence  
 ,  .

 

 
/-

  
 

 ,  .
 

 
/-

  
   .

 

 
/ 

and 
 , .

 

 
/-

  
 

 , .
 

 
/-

  
  . From first relation,  .

 

 
/    ( ) .

 

 
/ ((  )   )  

  ( ) .
 

 
/ .

 

 
/    .

 

 
/,  ( ) .

 

 
/ . 

 

  
/   ( ) .

 

 
/ .

 

 
/   . Differentiating the 

relations w.r.t   and   respectively and multiplying by   and    and adding , we 

obtain required relation. 
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Definition: Let        possess partial derivatives          at   (   )    is 

differentiable at  (   )  iff for all     and     (       )   (   )  

  (   )     (   )    (   )   (   )   where    (   ) (   )  (   )  

     (   ) (   )  (   ).     (   )    (   )     (   )   is called total 

differential of  . 

 

CHAPTER 9 

APPLICATIONS OF DIFFERENTIAL CALCULUS 

    TANGENTS AND NORMALS TO A PLANE CURVE 

Equation of the tangent to a curve in Cartesian form 

The equation of tangent to a planar curve whose equation is given in Cartesian 

explicit form    ( ) at a point   (   ) on the curve is given by:     
  

  
|
(   )

(   )  

The equation of normal to    ( ) at a point   (   ) (that is, a line through 

(   ) perpendicular to the tangent at  ) is given by:      
 

  

  
|
(   )

(   ) 

(In both cases, we assume that the line is not parallel to the y-axis; otherwise, the 

equation is    .) 

If the equation of the curve is in the implicit form   (   )   ,  we calculate   
  

  
  

  

  
 . 

If the equation of the curve is in the parametric form      ( )    ( )  then   

  

  
  

  

  
  

  

. 

Let T and G be the points of intersection of the tangent PT drawn at P with the x-

axis and N be the foot of the perpendicular from P on the x-axis. Then subtangent 

at P is    
 
  

  

 and subnormal at P is      
  

  
   (NT and NG are the signed 
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distance from N to T and G and may be positive or negative). Length of the tangent 

PT is the absolute length PT intercepted on the tangent line by the curve and the x-

axis and is given by 
 √    

 

  
, where    

  

  
. 

Angle between two straight lines 

If both lines are parallel to y-axis, angle between the lines is 0. 

If one of the line is parallel to the y-axis while the other one has angle of 

inclination   
 

 
, then the angle between the lines is |

 

 
  |. 

If none of the lines is parallel to the y-axis, then the angle between them is tan-

1|
     

      
|. 

Angle between two curves at their point(s) of intersection 

Angle of intersection of two curves is the angle between the tangents drawn to the 

two curves at their point of intersection. 

Rule of finding equations of tangents to a rational algebraic curve at the origin: 

A rational algebraic curve of n th degree is a curve whose equation is of the form 

(       )  (   
          

 )    (   
     

          
 )  

 , where at least one of             ,   is nonzero. 

The equations of tangent(s) to a rational algebraic curve at (0,0) are obtained by 

equating to zero the terms of the lowest degree in the equation. 

Ex: Show that at any point of the curve              , the m th power of the 

subtangent varies as the n th power of the subnormal. 

 (          )  .
  

   
/
 
   and (         )  .

   

  
/
   

    
 (using given 

equation of the curve).Hence the result. 

Ex: Prove that the curves              and             intersect 

orthogonally if    
 

 
 

 

 
 

 

 
 

 

 
 . 
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»Let (   ) be a point of intersection of the two curves. Then             

     , whence 
  

  
 

   

   
.   Also , for the first curve, 

  

  
(   )   

  

  
 and for the 

second curve,     (   )        . Product of slopes of tangents is 
    

    
 

  

  
 
   

   
   . Hence the result. 

Ex: Show that the points of the curve       (      
 

 
) where the tangents are 

parallel to the x-axis  lie on the curve        . 

 »Let (h,k) be a point on the curve      (      
 

 
 ) where the tangents are 

parallel to the x-axis. Thus      (        
 

 
). Since tangent to the curve at 

(   ) is parallel to  -axis, 
  

  (   )
  , that is,    

 

 
  ; hence       . Thus 

(   ) lies on        . 

Ex: In the curve          , prove that the portion of the tangent intercepted 

between the axes is divided at the point of contact into two segments which are in a 

constant ratio. 

» Let the tangent at (   ) to the curve meet the co-ordinate axes at A and B 

respectively. From the equation of the curve ,              (   )     . 

Differentiating , 
  

  (   )
  

  

  
.      The equation of tangent at (   ) is       

 
  

  
(   )  that is, 

  

(   ) 
 

  

(   ) 
  .  

Thus   .
(   ) 

 
  / and   .  

(   ) 

 
/. It can be easily seen that            

(ratio independent of (   ) . 

Equation of the tangent to a curve in Polar form 

If the equation of the curve is in polar form    ( )    is the vectorial angle of a 

point (   ) on the curve and   is the angle between the radius vector and the 

tangent vector and if   is the length of the perpendicular dropped from the pole to 

the tangent at (   )  then tan  =
 
  

  

  ,         
  

  
  is to be calculated from the equation 

   ( ) of the curve and evaluated at (   ) )          .  
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Angle of intersection between two curves whose polar equations are given 

Let the two curves whose equations are    ( ) and    ( ) intersect at 

   (   ) and let  1 and  2 be the angles made by the tangent vector at   with the 

radii vector at   of    ( ) and    ( ) respectively. Then          ( )( ) 

and           ( )( ) at  .                      Thus     (     )  
           

            
 

gives the angle of intersection |     | of the two curves at  . 

If   be the length of the perpendicular dropped from the pole onto the tangent to 

the curve    ( ) at    (   )  then we have the result 
 

  
 

 

  
 

 

  
.
  

  
/
 
. 

Ex: Prove that the normal at any point (   ) on the curve              makes 

an angle (   )   with the initial line. 

» Given equation of the curve is                        . Thus 
 

 

  

  
 

        which gives                . Thus   
 

 
   . Let   be the angle 

that the tangent makes with initial line. Then   
 

 
 is the angle made by the 

normal with the initial line. Now        (   )   
 

 
. Thus   

 

 
 

(   )   is the angle made by the normal with the initial line. 

Ex: Show that the curves              and                 intersect 

orthogonally. 

»Taking natural logarithms and differentiating w.r.t.  , for the first curve 
 

 

  

  
 

       , which gives               , that is,          . Similarly, for 

the second curve,      . Thus the angle between the curves is |     |  
 

 
. 

 

 

Pedal equation from Cartesian and Polar Equation 

A relation between p, the length of the perpendicular from a given point O to the 

tangent at any point P on a curve and r, the distance of P from O is called pedal 
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equation of the curve w.r.t. O. When nothing is mentioned, O is to be taken as the 

origin or pole according as the equation is Cartesian or polar. 

(A) Pedal Equation from Cartesian 

Let  (   )    …………..(1) be the Cartesian equation of the curve.  

The equation of tangent at (   ) being          (       )      

we have    
(       )

 

  
    

    …………….(2)       

Also           …………..(3).  E 

Eliminating     from (1),(2) and (3), we obtain the pedal equation. 

(B) Pedal Equation from polar 

Let  (   )    be the polar equation. We have       
 
  

  

 and   

       . We obtain pedal equation from these equations after eliminating 

  and  . 

Ex: Find the pedal equation of the asteroid                    . 

»The equation of tangent at a point (     ) to the curve is    
 
 

     
 
 

   
 

 . 

Thus 

   
 
 
 

 
  
   

  
 

 (   )
 

           

( 
 
 ⁄   

 
 ⁄ )    

 
 ⁄  

 
 ⁄ ( 

 
 ⁄   

 
 ⁄ )      (   )

 

        . Thus the 

pedal equation is           

Ex: Find the pedal equation of ellipse 
  

  
 

  

  
   with respect to one of its foci.  

»Let (    ) be the focus and   (   ) be any point on the ellipse. Equation of 

tangent at   is      
   

   
(   )  Here,              (  

  

  
)       (  

  )  (     )(    )              (    )     (    ) .  

Thus       . Now ( )   square of the perpendicular from (    ) to the 

tangent at      
(          ) 

         
 

    (    ) 

         
 

     

       
.   Thus   

  

  
 

    

 
 

    

 
 

  

 
  . 
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Ex:  Find the pedal equation of ellipse 
  

  
 

  

  
   with respect to the centre. 

»The parametric equation of the ellipse is                  . Thus,    

                     . Equation of the tangent at (             ) is 

      

 
 

     

 
  . Here   

  

√               
. Hence 

    

  
          is the 

required pedal equation. 

Ex: Find the pedal equation of the asteroid                       with 

respect to the origin. 

»Equation of the tangent at any point  ‘ ’  is                           .  

Thus             . Now            (             )  

  *(             )                 +    (        )          

Ex: Find the pedal equation of the parabola      (   ) with respect to the 

vertex. 

»The vertex is at (    )  Let   (   ) be any point on the parabola. 

    (   )     (   )         .   …………………….. (1) 

Equation of tangent at (   ) is      (   )       

The length of the perpendicular from (    ) on the tangent at (   ) is   
  (   )    

√      
 

  (   )

√      
   ……………………….  (2)    

Also         (   )  …………………………..  (3)  Eliminating       from  

(1), (2) and (3) , we get the required equation. 

CHAPTER 10 

CURVATURE 

Let L be a fixed line of reference, Γ be a planar curve in the plane of L, A is a fixed 

point on Γ with reference to which arc length is measured and P,Q be two points 

on Γ. Let arc AP= s and arc AQ=s+∆s so that arc PQ is ∆s. Let the tangents to Γ at 

P and Q respectively make angles ψ and ψ+∆ψ with L respectively. Thus tangent 
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rotates through an angle ∆ψ for a change ∆s in arc length. The curvature (rate of 

bending of the curve) k of Γ at P is defined as         
   

   
 
   

   
.  

Circle: a special case 

Let PQ be an arc of a circle of radius r subtending an angle ∆ψ (in radian) at the 

centre of the circle and let ∆s be the arc length of the arc. Then ∆s=r∆ψ and thus 

curvature of the circle at P is  

  
   

   
         

   

   
 
 

 
, independent of the point P on the circle. The radius of 

the circle   
 

 
.   This prompts the following general definition : 

 

Circle of curvature, radius of curvature 

Let Γ be a planar curve, P be a point on the curve such that the curvature k of Γ at 

P is non-zero. The circle C satisfying the following properties is called the circle of 

curvature of Γ at P; its centre and radius are called centre of curvature and radius of 

curvature of Γ at P: 

 The radius of the circle is 1/k 

 C passes through P and has the same tangent as C at P 

 An arc of C containing P and the circle lies on the same side of the tangent at 

P 

Note For a point P on Γ ,curvature of Γ at P  is equal to the curvature of its circle of 

curvature at P . 

Formulae for finding radius of curvature   

 Intrinsic Equation    ( )    
  

  
 

 Cartesian Equation  (   )       
(    

 )
 
 

  
    

  

  
    

   

   
 

 Polar Equation    ( )    
(     

 )
 
 

      
     

 

 Pedal Equation    ( )     
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Ex: Find the radius of curvature of the curve        at its point of local 

maximum. 

        (   )    gives     (      for any real  )       ( )     

   . Thus curve has local maximum at (     )  Thus   |   |   . 

Ex: Prove that the radius of curvature of the curve                       , at 

the point ‘ ’ is               . 

     
            

           
              

  

  
 

     

             
  

 

  
                                                                                       

Thus    |
     

 
 

  
            

|                

Ex: In the curve             , verify that   
  

(   ) 
 

  

(   )    
. 

»Then                         
 

 

  

  
          . Thus       

   .
 

 
   /. Taking particular solution,   

 

 
   .  Thus         

         . eliminating         , the pedal equation of the curve is  

        . Differentiating w.r.t.         
  

  
 

  

(   )    
 

    

(   )    
 

  

(   ) 
. 

Ex: Show that at any point of the cardioide     (       ),   is numerically 

equal to 
 

 
√   . 

      (       )                              
    

     ,(       )  

     -     (      )         
 

 
    Thus (     

 )
 

         
 

 
. Also 

     
        

     
 

 
.    Hence   

  

 
   

 

 
 

 

 
√    (from equation of the 

curve). 

Newton’s Method of finding radius of curvature     

Let Γ be a planar curve, P and Q be two points on Γ. Let C be a circle through P 

and Q, and having common tangent with Γ at P. If Q approaches P along Γ, the 

limiting position of C is identical to the circle of curvature to Γ at P. A few 

important results coming out of this considerations are as follows: 



 

43 
 

(1) If a curve passes through the origin and the x-axis is tangent at the origin to 

the curve, then    (   ) (   )
  

  
 equals the radius of curvature of the curve at 

the origin. 

(2) If a curve passes through the origin and the y-axis is tangent at the origin to 

the curve, then    (   ) (   )
  

  
 equals the radius of curvature of the curve at 

the origin. 

(3) If a curve passes through the origin and if ax+by=0 is tangent at the origin to 

the curve, then 
 

 
√        (   ) (   )

     

     
 equals the radius of curvature 

of the curve at the origin. 

Ex:  Show that the radii of curvature of the curve   (   )    (   ) at the 

origin are  √  .  

»Equating to zero the lowest degree terms of the given equation  (   )(  

 )        , the tangents at the origin of the given curve are       and 

     . The radius of curvature of the branch of the curve to which       

is a tangent, 

  
 

 
√   (  )    (   ) (   )

     

   
 

 

 
√    

(   ) (   )

(     ) (   )

      
 

√ a    
(   ) (   )

{  .
 

 
/
 
}2  

 

 
3

  .
 

 
/
  √  , since    

(   ) (   )

 

 
(= slope of the tangent 

      at the origin)  . Similarly , the radius of curvature of the other branch 

of the curve corresponding to the tangent       is   √  . 

 

Co-ordinates of Centre of Curvature: Equation of Circle of Curvature, The 

centre of curvature (  ̅  ̅) of a curve whose Cartesian equation is given is given by 

 ̅    
  (    

 )

  
,   ̅    

(    
 )

  
, where     and       are the first and second order 

derivative calculated from the given equation of the curve and     . 

Ex:  Find the equation of the circle of curvature  of           at (   )  
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»From the given equation of the curve, (  )(   )     and (  )(   )       Thus 

  
 √ 

 
,  ̅     ,  ̅     . Hence the equation of the circle of curvature at (   ) 

is (     )  (     )     . 

Let Γ be a planar curve,    (   ) be a point on   where   ,     exist and     , 

and    (  ̅  ̅) be the corresponding co-odinate of the centre of curvature of   at  . 

Locus    of   corresponding to the locus    of   is called evolute of   and   is 

called  of    . 

Ex: Find the equation of the evolute of the parabola       .  

»   
 

 
 

√ 

√ 
,     

  

  
  

√ 

  
 
 ⁄
. Hence  ̅    

√ 

√ 
.  

 

 
/

 
√ 

  
 
 

     ,  ̅   
  

  
. 

Thus   
 ̅  

 
    √   ̅

 
. Substituting these values in the given equation of 

parabola, we get    ̅   ( ̅   ) . Changing to current co-ordinates, the 

equation of the envelope is                       81y
2
=4(x-6)3.       (   )  

Ex: Show that the evolute of the asteroid                  (   )    

(   )           

»Let                     be a point on the asteroid.           

                                       Thus ( ̅   ̅)
 

  ( ̅   ̅)
 

  

     . 

Ex:  Find the equation of the evolute of the hyperbola      . 

»        ( )          ( )        . Thus  ̅  
  

 
 

  

   
, ,   ̅  

  

 
 

  

   
. 

Hence               ̅   ̅  
 

   
(   )  and    ̅   ̅   

 

   
(   ) . Thus ( ̅  

 ̅)
 

  ( ̅   ̅)
 

  (  )   . 
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CHAPTER 11 

    RECTILINEAR ASYMPTOTES 

Let Γ be a planar curve whose Cartesian equation is given and let L be a line whose 

equation is ax+by+c=0. Let P:(   ) be an arbitrary point on Γ, whose 

perpendicular distance from L is |
       

√     
| . If |

       

√     
| tends to zero when either 

| | or | | or both tend to  , then L is a rectilinear asymptote (or asymptote, in 

short) of Γ. 

Ex:       is an asymptote of    
 

   
 since    | |  

   

√     
    

| |  

 

 
  . The 

circle    √     does not have any asymptote since for an arbitrary point 

  (   ) on the curve, | |    and | |    and hence neither | | nor | | tends to 

 . Similarly,   
 

 
 is an asymptote to          

THEOREM:         is an asymptote to a planar curve    (   )    if and 

only if      | |  
 

 
  and      | |  (    ) , (   ) is a point of  -  

Determination of asymptotes not parallel to the y-axis of an algebraic curve  

Let Γ be a planar algebraic curve whose equation is     (   
     

       

   
 )  (   

       
          

   )    (         )     

  ……………………………….(1) 

which may be written as     .
 

 
/          .

 

 
/      .

 

 
/   , 

…………………….. (2)                 where   .
 

 
/ is a homogeneous polynomial of 

degree r.   If (1) has an asymptote with (unknown) slope  , then      | |  
 

 
.  

Dividing (2) by    and passing to limit as | |   , we get   ( )    

……………………….(3)    whose roots give slopes of possible asymptotes not 

parallel to y-axis.  Let    be a root of   ( )   . Corresponding c value of  

       is given by      | |  (    ). Let         ; then   

   | |   1.  Thus 
 

 
    

  

 
.  From (2) we get     .   

  

 
/  
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        .   
  

 
/        .   

  

 
/   . By Taylor’s Theorem (     are 

polynomials and hence satisfy all conditions of Taylor’s Theorem), 

  0  (  )  
  

 
  
( )(  )  

  
 

   
  
( )(  )   1   

   0    (  )  

  

 
    

( )(  )  
  

 

   
    

( )(  )    1            …………………….. (4) 

Arranging in descending powers of  , we get       (  )   
   0    

( )(  )  

    (  )1   
   0

  
 

 
  
( )(  )        

( ) (  )      (  )1      . 

Since   (  )         (      is a root of     ( )   ,   dividing by         and 

taking limit as   | |   ,   we  get       
( )(  )      

( ) (  )       ………… (5) ,    

or,        
    (  )

  
( )
(  )

 ,       if    
( )
(  )   .  Thus       

    (  )

  
( )
(  )

    is an 

asymptote if      
( )
(  )   . 

If     
( )(  )     but      (  )   ,  then no   value can be obtained from (5); 

hence there will be no asymptote corresponding to   . 

If   
( )(  )     and      (  )   ,  then (5) becomes an identity which is not 

acceptable since corresponding to a given slope   , infinite number of   values is 

not possible.  From (4) by dividing by      and allowing | |   , we have 

  
 

 
  
( )(  )        

( ) (  )      (  )    from which two values of   are 

obtained. If the roots           are real and distinct, corresponding to the slope   , 

there are two asymptotes           and          . If the roots are real 

and equal, say    , then there is one asymptote          corresponding to 

  . If the roots are conjugate complex, no asymptote corresponding to slope   . 

Similarly we proceed, if necessary, to higher powers of   . 

Note Real roots of    ( )     determines asymptotic directions. It may be that 

  is a root of   ( )      but all the corresponding values of   may be complex: 

then there is no asymptote with slope     .  If              and         

    are asymptotes to the same curve, then   is a multiple root of    ( )     .   

Summarising, an algebraic curve of degree n can have at most n asymptotes. 
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Determination of asymptotes parallel to the y-axis of an algebraic curve 

Let   (   )     ( )        ( )      ( )    ,   where               

are polynomials in  , be the equation of a rational algebraic curve . Dividing by 

  and letting    (since   has asymptote parallel to  -axis,    | |    should 

exist), we get  ( )    if    | |     . Thus the vertical asymptotes to 

 (   )    are obtained by equating to zero the coefficient of the heighest power 

of  . No vertical asymptote to the curve exists if the coefficient of highest power of 

  is a constant or not resolvable in real linear factors. 

      
  

  
 

  

  
   can be written in the form .

 

 
 

 

 
/ .

 

 
 

 

 
/  (  )   , which is 

of the form        , where      can be written as product of two real linear 

factors  
 

 
 

 

 
  , 
 

 
 

 

 
  such that  

 

 
 

 

 
   and  

 

 
 

 

 
   represent two non-

parallel lines; hence the asymptotes are given by  
 

 
 

 

 
   and  

 

 
 

 

 
  . 

Ex: The parabola            has no asymptote parallel to the    -axis;  the 

equation can be written in the form        (
 

 
)     (

 

 
)     where   ( )  

     ( )        ( )    gives       , if it exists, corresponding to     

is given by    ( )( )    ( )     that is,           ,   contradiction. Hence 

no asymptote non-parallel to  -axis either: thus no asymptote to the curve. 

 

CHAPTER 12 

ENVELOPE OF A FAMILY OF CURVES 

A point  (   ) is a singular point of a curve  (   )    if  (   )      (   )  

  and   (   )     holds simultaneously. In contrast   is an ordinary point of the 

curve  (   )    if at least one of    (   ) and    (   ) is not equal to zero.  

Let  (     )    be a family of curves, where   is a parameter (corresponding to 

each value of  , there is a curve) . The characteristic points of the family of curves 

 (     )    are those ordinary points which are lying on each curve 

 (      )    of the familyand at those points 
  

  
   holds simultaneously. 
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Ex: The characteristic points of the family of circles (    )        (  is the 

parameter)can be obtained by solving simultaneously  (     )  (    )  

     and          (   )     which give the two points (    )  Also 

     (    )       is not equal to zero; hence  (    ) are ordinary points and 

hence are characteristic points of the family. 

Characteristic points may not exist for a family of curves : for the family      

       of concentric circle, there is no characteristic point.  

The envelope of a family of curves  (     )    (  parameter)is the locus of 

isolated characteristic points of the family. 

Note: If  (     )    and       (     )    both hold for a point where 

     and     , then the point is a singular point and, therefore, not a 

characteristic point. 

Ex: Let us consider the family of curves                              , where 

  is the parameter,   fixed. The characteristic points are obtained by solving the 

equations                               and  –                 

               simultaneously.  

The envelope, that is, the locus of characteristic points is obtained by eliminating   

and is given by               . 

Ex:            parameter. Differentiating partially w.r.t. the parameter  , 

we get 0= x - a/m
2
, that is,    √

 

 
. Substituting in the given equation,   

  √  , that is,       . 

Ex: Find the envelope of circles described on the radii vectors of the parabola 

       as diameter. 

»Let   (       ) be an arbitrary point on the parabola and O be the origin. 

Equation of circle with OP as one of its diameter is   (   )(     )  (  

 )(     )   , that is,                             . Differentiating 

partially w.r.t.  ,              , that is,        .  Substituting in the 

equation,      (     )    is the required envelope. 
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Case of two parameters 

Let   (       )    ------ (1)   be the equation of a 2-parameter family of curves 

where the parameters     are connected by  (   )   ------- (2). For a fixed 

point (   ) on the envelope, from given relations, we have   
  

  
 

  

  

  

  
   and  

  

  
 

  

  

  

  
  . Eliminating 

  

  
 from the last two relations, we have   

  

  
  

  

 
  

  
 
  

  
 -

--------- (3).    Eliminating      from (1),(2) and (3), we obtain the  required 

envelope. 

 

Ex: Find the envelope of the family of co-axial ellipses 
  

  
 

  

  
= 1 where the 

parameters a,b are connected by         , c fixed.  

»Differentiating partially w.r.t.     
  

  
  

  

  
  

  
   and      

  

  
  . 

Equating values of  
  

  
, we get 

  

  
 

  

  
, that is, 

  

  

  
 

  

  

  
 

  

  
 
  

  

     
 

 

  
.  Hence 

            .Since         , the required envelope is        
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STUDY MATERIALS ON INTEGRAL CALCULUS 

DEFINITE INTEGRAL 

Let f be a real valued continuous function defined on a closed and 

bounded interval [a,b]. Let us choose a partition (collection of finite 

number of points of [a,b] including a and b) P = {a = x0,x1,x2,…,xn=b} of 

[a,b] (for example: {0,1/2,1} is a partition for [0,1]). 

Let  r = xr-xr-1, r = 1,…,n and         r| r = 1,2,…,n}. Choose an arbitrary 

point cr (xr-1,xr) for all r and consider sum of areas of rectangles ∑        
 
 . 

It can be seen that this sum approaches more closely the actual area under 

the curve if we make width of the rectangles smaller , that is, if we increase 

number n of points of subdivision (sum of areas of two rectangles on 

  gives a better approximation to the area under the curve than 

area of a single rectangle). 

Definition:  ∫               ∑        
 
 

 

 
, provided the limit exists 

independent of choice of points of subdivision xi and that of ci , 

for all i. It can be proved that for a continuous function f defined 

over a closed bounded interval [a,b],  ∫       
 

 
 exists in above 

sense. 

Simpler equivalent expression for calculating ∫       
 

 
: 

We can make choices of xi and ci suitably so as to obtain equivalent simpler 

expression of ∫       
 

 
. 
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 Let us choose xi’s equi-spaced, that is ,  1 =  2 = … =  n = (b-a)/n. 

Then∫               
   

 
∑      

 
 

 

 
. 

 Let us choose cr = a+rh, r = 1,…,n, where h = (b-a)/n. Then∫        
 

 

       
   

 
∑      

   

 
  

  =        ∑         
 . 

As a special case,∫                
 

 
∑  (

 

 
)         ∑       

 
 
 

 

 
 

Example:   From definition, calculate ∫     
 

 
. 

» ∫     
 

 
 =        ∑       

 =       
                 

 
 = 1/3, since nh = 1 

holds, for every positive integer n and the corresponding h. 

Fundamental Theorem of Integral Calculus 

Theorem: If ∫        
 

 
exists and if there exists a function g:[a, b] R 

such that g1(x) = f(x)(suffix denotes order of differentiation) on [a, b], then 

∫        
 

 
 = g(b) – g(a). 

NOTE:  g is called a primitive of f. A function f may not possess a 

primitive on [a,b] but ∫        
 

 
 may exist ; in that case, ∫        

 

 
can not 

be calculated using fundamental theorem. Primitives of f on [a, b] are given 

by the indefinite integral ∫       : that is the reason why we consider 

indefinite integrals. 

Example ∫     
 

 
 exists, since x2 is continuous on [0,1]. Also 

g(x)= ∫    =
  

 
 +c is a primitive of x2 on [0,1]. Hence Fundamental 

Theorem gives ∫     
 

 
= 

 

 
+c)-c=

 

 
. 
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Note ∫     
 

 
 is independent of c though ∫     involves c. 

PROPERTIES OF DEFINITE INTEGRALS 

We assume below that the definite integrals exist and whenever we consider 

∫        
 

 
, a primitive g to f over [a,b] exists, so that we can apply 

Fundamental Theorem. For a<b, we define ∫  
 

 
      = - ∫        

 

 
. 

1. ∫        
 

 
= ∫        

 

 
+ ∫        

 

 
(irrespective of relative algebraic 

magnitude of a,b,c) 

Example ∫     
 

 
+∫     

 

 
= 

 ∫     
 

 
+ ∫     

 

 
   (  

 

 
)   

  

 
 

 

 
  

   

 
=∫     

 

 
. 

2. ∫        ∫         
 

 

 

 
 

Example ∫        
 

 ⁄

 
=∫        

 
 ⁄

 
 

3. ∫         ∫        ∫         
   

 

   

 

 

 
. In particular, if f(a-x) = f(x)for 

all x in [0,a], then ∫         ∫       
   

 

 

 
 and if f(a-x) = - f(x) for all x in 

[0,a], then ∫       
 

 
= 0. 

4. ∫         ∫       
 

 

  

 
, if f(a+x) = f(x), n natural. 

5. ∫         ∫            }  
 

 

 

  
. If f is even,∫         ∫       

 

 

 

  
. If f 

is odd, ∫        
 

  
= 0. 

Example ∫           
 

  
=0, ∫           

 

  
= 2∫           
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REDUCTION FORMULA 

In this chapter, we study how to decrease complexity of some integrals in a 

stepwise manner by the use of recurrence relation that we derive generally 

using integration by parts formula. 

1. Let In = ∫          , n natural. 

In = ∫                = sinn-1x(-cos x)- (n-1)∫                        = 

sinn-1x(-cos x)+(n-1)∫                   = -sinn-1x cos x+(n-1)In-2-(n-1)In. 

hence In= 
            

 
 

   

 
In-2. 

If we denote Jn = ∫          
 

 ⁄

 
 then Jn =  

            

 
  
 

 ⁄ +
   

 
Jn-2 = 

   

 
Jn-2. 

By repeated application of the reduction formula, it can be proved that Jn= 

   

 
Jn-2=…=

   

 

   

   
 

 

 
   =

   

 

   

   
 

 

 
 
 

 
, if n is even natural and Jn 

=
   

 

   

   
 

 

 
  =

   

 

   

   
 

 

 
, if n is odd natural. 

2. Let In = ∫          , n natural. 

Then In = ∫                  = ∫                      = 
       

   
 

    . 

Also, Jn = ∫         
 

 ⁄

 
=

       

   
  
 

 ⁄ -Jn-2= 
 

   
  Jn-2. 

3. Let In = ∫          , n natural. Then In = ∫                  = secn-2x tanx – 

(n-2)  ∫                      = secn-2x tan x – (n-2)(In-In-2). Hence In 

=
           

   
+

   

   
    . 
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4. Let Im,n = ∫               = ∫                       = 
               

   
 

   

   
∫                      = 

               

   
 

   

   
∫                 

          = 
               

   
 

   

   
Im,n-2- 

   

   
    . Transposing and 

simplifying, we get a reduction formula for Im,n. 

5. Let Im,n = ∫              = -
          

 
 

 

 
∫                     = -

          

 
 

 

 
∫                    +

 

 
∫                     [ since 

cos nx sin x = sin nx cos x – sin(n-1)x]  = -
          

 
 

 

 
Im,n+

 

 
        . 

Transposing and simplifying, we get a reduction formula for Im,n. 

 

Illustrative examples 

1.    = ∫          
 

 
 

 and n>1, show that In+ n(n-1)In-2 = n 
 

 
     

     =            
 

 ⁄   ∫            
 

 ⁄

 
 = n *          

 
 ⁄     

  ∫            
 

 ⁄

 
+ = n 

 

 
    -n(n-1)    . Hence the proof. 

2. Im,n = ∫           = 
    

   
       

 

   
∫                      = 

    

   
       

 

   
(            . Hence Im,n can be obtained. 

3. Im = ∫              
 

 ⁄

 
. From 5 above, Im = 

 

  
 

 

 
     = 

 

  
 

 

 
*

 

      
 

 

 
    +  = 

 

  
 

 

       
 

 

  
    . Repeating the use of the 

reduction formula, it can be proved that Im = 
 

    
*  

  

 
 

  

 
   

  

 
+. 
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IMPROPER INTEGRAL 

When we consider the definite integral ∫       
 

 
 in earlier standards, we 

implicitly assume two conditions to hold: (a) f is continuous on [a, b] or , to 

that matter, at least the limit ∫               ∑        
 
 

 

 
 exists 

independent of choice of points of subdivision xi and that of ci, for all i  and 

(b) the interval [a,b] is bounded. We want to extend the definition of 

∫       
 

 
 when either (a) or (b) or both are not met. This extended 

definition of definite integral is referred to as Improper Integrals. 

Improper integrals can be of two types: (a) Type 1: interval of integration is 

unbounded, (b) Type 2: integrand has a finite number of infinite 

discontinuities in the interval of integration. 

Definition of TYPE I improper integral  ∫       
 

 
,∫       

 

  
 and 

∫       
 

  
 

Let the function f be integrable in [a ,B], for every B>a. If       ∫       
 

 
 

exist finitely, we define ∫       
 

 
 =       ∫       

 

 
 and we say ∫       

 

 
 

exists or converges; otherwise ∫       
 

 
 diverges. Similarly, ∫        

 

  

       ∫       
 

 
 (provided the limit exists) and ∫        

 

  

 ∫        ∫       
 

 

 

  
, a is any real, provided ∫       

 

 
 and ∫       

 

  
 

exist separately. 
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Example: ∫
  

  

 

 
,  ∫

  

√ 

 

 
 . The range of integration of the integrals  are 

unbounded. For a>1, ∫
  

  

 

 
  = 1-  

 

   
 and ∫

  

√ 

 

 
 = 2(√ -1). Since       (  

 

 
)= 1 exists but       ( (√   )) does not exist, hence the improper 

integral ∫
  

  

 

 
 converges and ∫

  

√ 

 

 
  diverges.(compare areas below the 

curves y = 1/x2 and y = 1/√   in diagram below) 

Definition of TYPE II improper integral 

Let f have an infinite discontinuity only at the point a (that is, 

               or                 and is continuous in (a, b].Then 

we define ∫                ∫       
 

   

 

 
,0<c<b-a, provided the limit 

exists. Similarly, if f has an infinite discontinuity only at the point b and is 

continuous in [a, b), then we define ∫                ∫       
   

 

 

 
, 

0<c<b-a, provided the limit exists. If f has an infinite discontinuity at d, 

a<d<b, and is otherwise continuous in [a,b], we define ∫        
 

 

 ∫        ∫       
 

 

 

 
, provided both of ∫       

 

 
 and ∫       

 

 
 exist 

separately. 

Example: ∫
  

√ 

 

 
,  ∫

  

  

 

 
 . The integrands have an infinite discontinuity at 

x=0. For 0<a<1, ∫
 

√ 
       √  

  

 
 and ∫

  

  
 

 

 
  

 

 
. Since            

√   = 2 exists but        (
 

 
  ) does not exist, so ∫

  

√ 

 

 
 converges whereas 

∫
  

  

 

 
 diverges. (Compare areas between x = a,0<a<1, and x = 1, below the 

curves y = 1/x2 and y = 1/√   in diagram above) 
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Example:   ∫
  

     
 

 

  

 

 
 

  The integrand 
 

     
 is continuous everywhere but the interval of 

integration is unbounded. Let a>o be fixed. ∫
  

     

 

 
 = 

 

 
∫

  

   (
 

 
)
 

 

 
 = 

 

 
       

 
. Thus       ∫

  

     

 

 
 = 

 

 
 
 

 
 = 

 

  
. 

Example: ∫
  

√    

 

 
=

 

 
. 

  The integrand has an infinite discontinuity at x = 3 and is continuous on 

[0, 3). Let 0<a<3. Then ∫
  

√    

 

 
 = sin-1(a/3) . So        ∫

  

√    

 

 
 = 

            (
 

 
)  

 

 
. Hence ∫

  

√    

 

 
=

 

 
. 

Note : we can apply standard methods of integration, in particular method 

of substitution, only to a proper integral and not directly to an improper 

integral. Thus if we substitute z=1/x directly in the improper integral∫
  

  

 

  
 , 

we get a value -2 of the integral whereas it can be checked from definition 

that the improper integral diverges. 

TESTS FOR CONVERGENCE OF IMPROPER INTEGRALS 

TYPE I INTEGRAL 

Theorem: (Comparison test) Let f and g be integrable in [a, B], for every 

B>a. Let g(x)>0, for all x ≥a. If       
    

    
  = c≠0, then the integrals 

∫       
 

 
 and ∫       

 

 
 either both converge or both diverge. If c = 0 and 

∫       
 

 
 converges , then ∫       

 

 
 converges.  
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Theorem: (        Let f be integrable in [a, B], for every B>a. Then 

∫       
 

 
 converges if              exists with  >1  and ∫       

 

 
 

diverges if              exists and ≠0 with   ≤ 1. 

Example:  ∫
  

    

 

 
 converges by comparison test , since 0≤

 

  
 for all 

x 0,       
  

    
       

 

     
   and ∫

  

  

 

 
 converges (need to prove!). 

Example: ∫     
  

 

 
 converges by        since               

  = 0 (verify 

using L’Hospital’s rule) ,    = 2>1 and     
 is continuous, and hence 

integrable, in [0,B] for B>0. 

Example: ∫
 
 

 ⁄

     
  

 

 
 diverges, since         

 
 ⁄ (

 
 

 ⁄

     
)  = 1/3,   = ½<1 

and 
 
 

 ⁄

     
 is continuous, and hence integrable, in [0,B] for B>0. 

 

TYPE II INTEGRAL 

Theorem: (Comparison test) Let f and g be integrable in [c, b], for every c, 

a<c<b. Let g(x)>0 , for all x, a<x≤b. If        
    

    
≠0, then ∫       

 

 
 and 

∫       
 

 
 both converge or both diverge. If        

    

    
 = 0 and 

∫       
 

 
converges, then ∫       

 

 
 converges. 

Theorem: (        Let f be integrable in[c, b], for every c, a<c<b. Then 

∫       
 

 
 converges if              f(x) exists for       and 

∫       
 

 
 diverges if              f(x) exists (≠0) for  ≥1. 
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Example: ∫
  

     √ 

 

 
 converges , since             

 

 
 

     √ 
 = 1, for  <1 

and 
 

     √ 
 is continuous, and hence integrable, in [c,1]for 0<c<1. 

Example: ∫
  

√      

 
 

 ⁄
 converges, since             

 
 ⁄

 

√      
 = 1, for 

  
 

 
   and 

 

√      
 is continuous, and hence integrable, in [1/2, c]for 

1/2<c<1. 

 

THE GAMMA AND BETA FUNCTIONS 

Definition (Gamma function) For n>0,  (n) = ∫          
 

 
. 

NOTE: Gamma function is an improper integral of type I. If 0<n<1,  (n) is 

also an improper integral of type II. We shall assume convergence of the 

gamma function in our course of study. 

Definition (Beta function) For m, n>0,   (m,n) = ∫                
 

 
 

NOTE: Beta function is an improper integral of type II if either m or n or 

both lies between 0 and 1 strictly; otherwise it is a proper integral. 

Properties of Gamma and Beta functions 

1. For any a>0, ∫           
 

 
 =  (n)/an. 

» let 0<c<d. consider the proper integral I =  ∫           
 

 
. Let y = ax. 

Then I = ∫        

    
 
 

 
  

  

  
 = 

 

  ∫          
  

  
. Thus lim I = 

    

  
 as      

and d  . 
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2.   (n+1) = n  (n) 

 » Let 0<c<d. using integration by parts on the proper integral I = 

∫        
 

 
, we get I = ( 

  

  )   
   ∫          

 

 
 = 

(
  

  
 

  

  
 +  ∫          

 

 
, which tends to n  (n) as c  0+ and d   (by 

use of L’Hospital’s rule). Hence the result. 

3     (1) = 1 (can be verified easily) 

       (n+1) = n , for a natural n (follows from property 2 and 3) 

4  (m,n) =  (n,m) (follows using a substitution y = 1-x after passing to a 

proper integral) 

5  (m,n) =2∫                     
 

 ⁄

 
 (follows using a substitution x = sin2  

after passing to a proper integral) 

6  (
 

 
,
 

 
)=  (follows from definition) 

7         
        

      
  

8  (
 

 
)  √  

9 For 0<m<1,  (m)  (1-m) =   cosec(m    

Example:  ∫     
    

√ 

 

 

 
. 

» The range of integration of the given integral is unbounded but the 

integrand is continuous everywhere. For 0<a, ∫     
  

 

 
 = 

 

 
∫   

 

      
  

 
 

(substituting y = x2 in the proper integral ). Thus       ∫     
  

 

 
 = 

 

 
   
   

∫   
 

      
  

 
= 

 

 
∫     

 

 
   

 
   =

 

 
  (

 

 
) = √   . 
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Example:  ∫
  

      
 
 

  
 

 
. 

» The integrand has an infinite discontinuity at x = 1.Let 0<c<1. 

Substituting x3 = sin    in the proper integral ∫
  

      
 

 ⁄

 

 
 , ∫

  

      
 

 ⁄

 

 
 = 

 

 
∫    

 
 ⁄          

 
      

 
 ⁄       . Since        ∫

  

      
 

 ⁄

 

 
 = 

 

 
  (5/3,1/3) = 

 

 

 (
 

 
)  

 

 
 

  
 

 
 

 

 
 

 = 
 

 
.
 

 

 (
 

 
)  

 

 

 
 = 

 

 
  (

 

 
)  (  

 

 
)  

 

  
       

 

 
 . 

 

DOUBLE INTEGRAL 

Let f(x,y) be a bounded function of two independent variables x and y 

defined over a closed rectangular region R: a≤x≤b; c≤y≤d. we take 

partitions {a = x0,x1,…,xr-1,xr,…,xn = b} of [a,b] and {c = y0,y1,…,ys-1,ys,…,ym = 

d}. These partitions divides the rectangle R into mn number of 

subrectangles Rij(1≤i≤n, 1≤j≤m). Let us choose arbitrarily (        

                        and             , 1≤i≤n, 1≤j≤m. the volume of the 

parallelepiped with base Rij and altitude f(       is f(      (xi-xi-1)(yj-yj-1). 

∑  (     )                     , sum of the volumes  of all the 

parallelepipeds erected over all of the Rij’s, gives an approximation of the 

volume enclosed by the curve and the planes x = a,x = b, y = c, y = d and z = 

0. The approximation can be improved by increasing number of 

subrectangles into which R is divided into. Thus the limit 

          ∑  (     )                     , provided it exists, gives the 

volume and is represented by ∬           
 

. 
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NOTE: Every continuous function is integrable over any rectangle. 

Theorem: (equivalence of double integrals with repeated 

integrals) If ∬           
 

 exists over a rectangle R: a≤x≤b; c≤y≤d and 

∫         
 

 
 exists for each value of y in [c,d], then the repeated integral 

∫   ∫         
 

 

 

 
 exists and is equal to ∬           

 
  

Example: Evaluate ∬              
 

 over R:0≤x≤
 

 
, 0≤y≤

 

 
  

Sol: sin(x+y) is continuous on R, so the double integral  ∬       
 

         exists . Evaluating given double integral in terms of repeated 

integrals,  

∬              
 

 = ∫   ∫           
 

 ⁄

 

 
 ⁄

 
 = ∫              

 

   
 

 ⁄

 
 

 ∫               
 

 
 

= 2. 

 

EVALUATION OF AREA 

Cartesian co-ordinate 

It has already been seen that area of the region bounded by the curve y = 

f(x), lines x = a, x = b and y = 0 is given by ∫       
 

 
, provided it exists. 

Similarly area of the region bounded by the curve x = g(y), lines y = c, y = d 

and x = 0 is given by ∫       
 

 
, provided it exists. We can define F:[a,b]  R 

by F(t)=∫       
 

 
  ,a≤t≤b. 
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Example: Find the area of the bounded region bounded by the curves y = 

x2 and x = y2. 

Sol: On solving the given equations of the curves, the point of intersection 

of the two curves are (0,0) and (4,4). Thus required area = ∫ √     
 

 

 ∫
  

 
  

 

 
. 

Example:  Find the area of the loop formed by the curve y2 = x(x-2)2 

Sol: The abscissa of points of intersection of the curve with the x-axis are 

given by y = 0, that is, x = 0,2,2. For x<0, no real value of y satisfy the 

equation. Hence no part of the curve exist corresponding to x<0. 

Corresponding to each x-value satisfying 0<x<2, there exist two values of y, 

equal in magnitude and opposite in sign. Thus between x = 0 and x = 2, the 

curve is symmetric about the x-axis and a loop is formed thereby. For x>2, 

y   as x  . the required area = 2∫      √   
 

 
 (by symmetry of the 

curve about x-axis). 

Example: Prove that area included in a circle of radius r unit is  r2 square 

unit. 

Sol: We can choose two perpendicular straight lines passing through the 

centre of the circle as co-ordinate axes. With reference to such a co-ordinate 

system, equation of the circle is y = ±√     .Curve is symmetric about the 

axes .Thus required area = 4∫ √      

 
 dx. 
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Polar Coordinates: 

The area of the region bounded by the curve r = f( ) , the radius vector 

   ,    is given by 
 

 
∫     

 

 
. 

Example: Find the area enclosed by the cardioide r = a(1+ cos  ) 

Sol: As   varies from 0 to 
 

 
, r decreases continuously from 2a to a. When 

  further increases from 
 

 
 to  , r decreases further from a to 0. Also the 

curve is symmetric about the initial line (since the equation of the curve 

remains unaffected on replacing   by –   . Hence the area enclosed by the 

curve = 2.
  

 
∫            

 

 
. 

Example: Find the area enclosed by the cardioide r = a(1+ cos  ) and r = 

a(1- cos  ) 

Sol: The vectorial angle corresponding the points of intersection of the 

curves are   
 

 
 and  =-

 

 
. Because of the symmetry of the curves about the 

initial line,   
 

 
 ,  =-

 

 
 and     , required area is 4.

  

 
∫            

 
 ⁄

 
. 
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AN INTRODUCTION TO STATISTICS 

 
"Status"-"State"->"Statistics". 
 
STEPS AT A GLANCE : 
Collection of Data-> Summarisation of Data-> Analysis of Data-> Interpretation of Data 
towards a VALID DECISION. 
 
WHAT IS THE MAIN PROBLEM IN STATISTICS? 
Given a sample(a set of outcomes),we are to say(infer) about the population or the 
model.Statistics primarily deals with situations in which the occurrence of some event can't. be 
predicted with certainty. 
 
WHAT ARE THE MAJOR OBJECTIVES OF STATISTICS? 
1. To make inference about a population from an analysis of information contained in the 
sample data. 
2. To make assessments of the extent of uncertainty involved in these inferences. 
A third objective,no less important,is to design the process & the extent of sampling so that the 
observations from a basis for drawing valid & accurate inferences. 
 
GIVE THE DEFINITION OF STATISTICS? 
"STATISTICS" is a science of decision making on the basis of sample observations drawn from 
a population under uncertainty. That is, it is a mathematical discipline concerned with 
collection of data,summarisation of data,analysis of data & interpretation of data toward a 
valid decision. 
Encyclopaedia Americana :- 
As a name of a field of study, Statistics refers to the science & arts of obtaining & analysing 
quantitative data with a view to make sound inferences in the face of uncertainty. 
Encyclopaedia Britannica:- 
As is commonly understood now a days, Statistics is a mathematical discipline concerned with 
the study of masses of quantitative data of any kind. 
 
WHAT IS THE MEANING OF THE TERM 'STATISTICS'? 
As a singular noun it refers the science of collecting,analysing & interpreting numerical data 
relating to an aggregate of individuals. As a plural noun it denotes the numerical & quantitative 
information,e.g., labour statistics,vital statistics. 
 
IS STATISTICS A SCIENCE? 
Any Science has for its objectives the formulation of laws for explaining phenomena in some 
part of the real world with a deterministic view-point. 
As Kendall explained ," Statistics is the branch of scientific method which deals with the data 
obtained by counting or measuring the properties of population of natural phenomena". 
Indeed, we can call Statistical Methodology as Scientific Method. It is noted that STATISTICS 
is sometimes called the study of variation, i.e., a population or group without any variation & 
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uncertainty is no interest to Statistics. So, Statistics is the scientific methodology which deals 
with the collection,classification & tabulation of numerical facts as a basis for 
explanation,description & comparison of social phenomena. 
 
DEFINE THE TERMS: STATISTICAL DATA,POPULATION,SAMPLE. 
Statistical Data:- The numerical data or measurements obtained in case of an enquiry into a 
phenomenon,marked by uncertainty & variability,constitute Statistical Data. Uncertainty & 
variability are two major characteristics of Statistical data. Not all quantitative data is 
statistical data. Example of statistical data--Suppose we study the 'Heights of students in a 
particular college'.Here we can't predict the height of an individual with certainty & there will 
be variation in heights of students. Counter Example:--Multiplication table in a tabular form is 
a quantitative data,but since there is no uncertainty & variability involved in the data so it's not 
a Statistical Data. 
Population:- A set or group of observations relating to a phenomenon under statistical 
investigation is known as statistical population or simply population. However,the term 
'population' implies an aggregate or collection of measurements on a given variable(s). 
Population is said to be finite or infinite according to whether the set contains a finite or 
infinite number of observations. 
Example-Measurements of heights in your college. 
Note that: I. The characteristics of a population are called parameters. II.A population contains 
finite or infinite no of observations on a given variable(s). 
Sample :- The set of data actually collected through a process of observation from selected 
items of any source is called a Sample. However, "Sample" is a subset of population or a true 
representation of population.  
Example- Measurements of heights of students of Statistics department in your college. 
Note that:- I. The characteristics of sample are called as Statistic. II. A sample is taken in order 
to gather information about a population. 
 
WRITE DOWN THE DRAWBACKS OF STATISTICS?  
Limitations of Statistics: I. Statistics deals with quantitative data only. II. Statistical law holds 
good only for aggregate of items or average individuals. It may not true for a particular 
individual or item. III. Inadequate knowledge of data interpretation may lead to invalid 
decision.  
There are some sayings: "There are there kinds of lies--lies,white lies & Statistics" , "Figure 
won't lie,but liars figure" , "Statistics is like a clay of which you can make a god or a devil". 
 
COMMENT ON THE FOLLOWING: "In a study of ages & professions of deceased 
men, it was found that the profession with the lowest average age of death was 
'student' .So it appears that student profession is very dangerous." 
It is obvious that every professional must have some basic education & it happens that the 
average age of every professional men must be higher than the age of the students. But it can 
happen that profession with lowest age of death was student . So the given statement is TRUE. 
But the conclusion made from the fact is incorrect . It can never be told that the student 
profession is dangerous. To conclude properly,we must have data for computing the 
proportions or percentages of deceased men in different professions. Therefore the conclusion 
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made here is absurd.  
This is an example of the situation where inadequate information takes into bad decisions. 
Statistics is a science of DECISION MAKING. So,wrong data interpretation will show some 
absurd decision,might be harmful for society. 
 
EXPLAIN THE STATEMENT : "Blindly using any data happened to be available 
can lead to misleading information & bad decision." 
There are two kinds of people: Some of them believe that the inferences based on statistical 
data are very reliable & trusty. And others don't believe statistical results at all,they think it as a 
damned lies. But the fact is statistics is sometimes misused either deliberately or often due to 
lack of knowledge. Making conclusions based on inadequate information,deliberate 
manipulation & personal bias may lead to bad decision. Statistics are not to be blamed for all 
these. Statistical methods are most danger tool in the hand of non-experts.Lastly Statistics is 
like a clay of which you can make a god or a devil. 

MEASURES OF CENTRAL TENDENCY 

 

A Frequency Distribution corresponding to a variable specifies the values the variable takes  
and the frequencies or the number of times each variate value is taken.

Following are the marks obtained by 60 students in an examination: 

22,47,9,42,31,17,13,15,18,13,2,21,27,38,15,0,33,10,34,29,26,16,25,33,36,10,24,2,26,19,14,36,18,
25,21,33,35,25,18,28,25,17,38,10,3,31,24,3,12,16,33,18,26,29,27,29,28,35,26,27. 

Here the variable is the ‘number of marks’. The data in the above form is called raw or 
ungrouped data. This representation of the data does not furnish any useful information  
and is rather confusing to mind. To make  the data more compact and understandable, we 
arrange the data from the array in ascending or descending order of magnitude to obtain a 
Frequency Table. Take each mark from the data and place a bar( | ) or tally mark against the 
number when it occurs. Tally marks are recorded in batches of five, the fifth occurrence is 
shown by putting a cross tally(/) on the first four bars ||||/. We get the following frequency 
table of marks: 

Frequency Table of Marks in an Examination 

Marks: 0 2 3 9 10 12 13 14 15 16 17 18  

Tally marks:| | || | ||| | || | || || || |||| 

Frequency: 1 1 2 1 3 1 2 1 2 2 2 4 

 

Marks: 19 21 22 24 25 26 27 28 29 31 33 34  

Tally marks:| || || || |||| |||| ||| || ||| || |||| | 
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Frequency: 1 2 2 2 4 4 3 2 3 2 4 1 

 

Marks:  35 36 38 42 47   

Tally marks: || || || | | 

Frequency:  2 2 2 1 1 

If the identity of the individuals about whom a particular information is taken 
is not relevant , nor the order in which the observation arise, then the first real step 
of condensation of data is achieved by arranging the data into groups: 

Frequency Table of Marks in an Examination 

Marks 
(Class) 

Tally Marks No.of 
students 
(frequency) 

Cumulative 
frequency(less 
than) 

Cumulative 
frequency(greater 
than) 

0-5 /// 4 4 60 
6-10 / 1 5 59 
11-15 ////| // 7 12 58 
16-20 ////| ////| / 11 23 52 
21-25 ////| / 6 29 45 
26-30 ////| ////| ////|  

/ 
16 45 29 

31-35 ////| // 7 52 23 
36-40 ////| / 6 58 12 
41-45 / 1 59 5 
46-50 / 1 60 4 
 

This type of representation of frequencies is called a grouped frequency distribution. The 
groups 0-5, 6-10,… are called classes; 0 and 5 are called the lower limit and upper limit of 
the class 0-5 respectively. The difference 5-0=5 between the upper and lower limits of a class is 

called the width of the class. The value 
   

 
=2.5 which lies midway between the lower and the 

upper limits is called the mid-value or central value of the class. The less-than 
cumulative frequency (greater-than cumulative frequency resp.) corresponding to a 
class is the total number of observations less than or equal to the upper limit (greater than or 
equal to the lower limit) of the class. Following points need be kept in mind while classifying 
given data: 

 Classes should be clearly defined and should not lead to any ambiguity 

 Classes should be exhaustive( each of given value should be included in one of the 

classes) 

 Classes should be mutually exclusive and non-overlapping 

 Classes should be of equal width 
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 Number of classes should neither be too large nor too small; preferably it 

should lie between 5 and 15.  

NOTE: A variable, which can take any numerical value  within certain range , is called a 
continuous variable. Consider frequency distribution of the continuous variable of ages in 
years of students in a college. We cannot arrange the data in age groups 16-20,21-25 etc. since 
there can be students having ages between 20 and 21 years. If the original ‘inclusive’ class 

intervals( of the form [a,b]) are ,say, 16-20,21-25,…, we calculate the adjustment 
 

 
(lower limit 

of succeeding class-upper limit of a class)=  
 

 
(21-20)=.5 and change the class intervals to 

‘exclusive’ type([a,b)): 15.5-20.5, 20.5-25.5,…. It is understood that age of students whose age 

is   15.5 and < 20.5 are included in the class interval 15.5-20.5. 

Comparison of Frequency Distributions 

It is frequently necessary to compare two frequency distributions. If they are of different types , 
a precise comparison is difficult and is usually not required. If they are of same type, a 
comparison can be made in terms of values of the following four types of measures: 

 Measure of location or central tendency gives a single value around which largest 

number of values of the variate tend to cluster. 

 The scale parameter or measure of dispersion gives the degree of scatter about 

the central value. It measures variability or lack of homogeneity of data. 

 Measure of skewness measuring degree of departure from symmetry 

 Measure of Kurtosis measuring degree of ‘flatness’ of the ‘top’ as compared with the 

‘normal’ curve. 

Characteristics of a good measure of Central Tendency 

 It should be based on all observations 

 It should not be affected much by extreme values 

 It should be rigidly defined  

 It should be easily understandable and easy to calculate 

 It should be amenable to algebraic treatment 

 It should be least affected by fluctuation of sampling: if a number of samples of same 

size are drawn from a population, the measure of central tendency having minimum 

variation among the different calculated values should be preferred. 

Different Measures of Central Tendency 

 Arithmetic Mean   

 Geometric Mean 

 Harmonic Mean 

 Median and Quartiles 

 Mode 
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Arithmetic Mean 

If a variate X takes values x1,…,xn, then the A.M. of the set of observations x1,…,xn, is defined by 

 ̅  
       

 
. If the variate-values are not of equal ‘importance’, we may attach to them ‘weights’ 

w1,…,wn as measures of their importance; the corresponding weighted mean is defined by  

 ̅  
           

       
. 

In particular, if the variate-value x1 occurs f1 times, x2 occurs f2 times,…, then  ̅  
           

       
 

 

 
∑     

 
 , where N=f1+…+fn is the total frequency. 

Note the A.M. of a grouped or continuous frequency distribution is computed by above 
formula where x’s denote the mid-values of the corresponding class intervals. 

 Find the A.M. of following frequency distribution: 

x: 1 2 3 4 5 6 7 

f: 5 9 12 17 14 10 6 

 Computation of Mean  

 
 

Thus  ̅  
 

 
∑     

 
  

   

  
. 

 

 

 

 Find the A.M. of following frequency distribution: 

Marks:  0-10  10-20   20-30  30-40  40-50    50-60 

No. of students: 12      18         27           20             17           6 

 Computation of Mean  

Marks No. of students(f) Mid-

point(x) 

fx 

0-10 12 5 60 

10-20 18 15 270 

20-30 27 25 675 

x f fx 
1 5 5 
2 9 18 
3 12 36 
4 17 68 
5 14 70 
 6 10 60 
 7 6 42 
Total 73 299 
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30-40 20 35 700 

40-50 17 45 765 

50-60 6 55 330 

Total 100  2800 

 

A.M.=  ̅  
 

 
∑     

 
  

    

   
   . 

Change of origin and scale 

Let x and u be two variates related by u=
   

 
. Then ∑   ∑   ∑   . Thus   ̅  

∑  

∑ 
   

 
∑  

∑ 
     ̅. 

Thus mean is dependent on both change of origin a and scale h. 

 Find the A.M. of following frequency distribution: 

Marks:  0-10  10-20  20-30  30-40  40-50  50-60 

No. of students: 12  18  27  20  17  6 

 Let us take the origin a=300 and scale h=50 so that u=
     

  
. 

 Algebraic sum of deviations of a set of variate values from their arithmetic  mean is zero. 

 ∑       ̅)=∑      ̅ ∑  =N ̅-N ̅ =0, where N=∑  . 

 

 (Mean of the combined distribution) If   ̅̅̅,…,   ̅̅ ̅ be the A.M.s of k distributions with 

respective frequencies n1,…,nk, then the mean  ̅  of the combined distribution of 

frequency N=∑   is given by:  ̅=
 

 
∑     ̅

 
   . 

The average salary of male employees in a firm was Rs. 5200 and that of females  

was Rs. 4200. The mean salary of all the employees was Rs. 5000. Find the percentage of male 

and female employees. 

 Let n1 and n2 denote respectively the number of male and female employees  and   ̅̅̅ and 

  ̅̅ ̅ denote their average salary (in Rs.). Then 5000(n1+n2)=5200 n1+4200 n2 implying  

n1:n2::4:1. Thus percentage of male and female employees in the firm is 80% and 20% 

respectively. 

Geometic Mean 
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If n positive values x1,…,xn occur f1,…,fn times respectively, then geometric mean(G.M.) G of the 

set of observations is defined by G=[  
     

  ]
 

 , where N=∑   
 
 . 

Harmonic Mean 

The harmonic  mean H of n non-zero variate values xi with frequencies fi is given by H=
∑  

∑
  
  

. 

Relation between A.M., G.M. and H.M. 

If A,G,H stand for the A.M., G.M. and H.M. respectively of a finite series of positive values of a 

variate, then it can be proved that A    . 

MEDIAN 

Mean can not be calculated whenever there is frequency distribution with open 
end classes. Also the mean is affected to a great extent by presence of extreme 
value in the set of observations. For instance, if salary of 8 persons be Rs. 
150,225,240,260,275,290,300 and 1500, the mean salary is Rs. 405, which is not a good 
measure of central tendency because out of the 8 people, seven get Rs. 300 or less. 

Median of a finite set of variate values  is the value of the variate  which divides it into two 
equal parts. It is the value which exceeds and is exceeded by same number of observations. 
Median is thus a positional average. 

In case of ungrouped data, if the number of observations is odd then median is the middle 
value after the values have been arranged in ascending or descending order of magnitude. In 
case of even number of observations, there are two middle terms and median is taken to be the 
arithmetic mean of the middle terms. Thus , median of the values 25,20,15,35,18, that is, of  
15,18,20,25,35 is 20 and the median of 8,20,50,25,15,30, that is, of 8,15,20,25,30,50 is 
(20+25)/2=22.5. 

In case of discrete frequency distribution, median is obtained as follows: 

 Find N/2, where N=∑  . 

 Find the cumulative frequency (less than type) just greater than N/2 

 The corresponding value of the variate is the median. 

 Obtain the median for the following frequency distribution: 

x: 1 2 3 4 5 6 7 8 9 

f: 8 10 11 16 20 25 15 9 6 

 Calculation of Median 

x f c.f. 
1 8 8 
2 10 18 
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3 11 29 
4 16 45 
5 20 65 
6 25 90 
7 15 105 
8 9 114 
9 6 120=N 

N/2=60. The c.f. just greater than N/2 is 65 and the value of x corresponding to 65 is 5. Thus , 
median is 5. 

In case of grouped frequency distribution, median is obtained as follows: 

Let us consider the grouped frequency distribution: 

Class intervals   frequency   cumulative frequency 

x1 - x2             f1     F1 

x2 – x3             f2     F2 

…    ….     …. 

xp – xp+1            fp     Fp 

….    …..     … 

xn – xn+1            fn     Fn 

where Fk=∑   
 
   . Let the smallest c.f. greater then N/2 is Fp. Then the median class is xp – 

xp+1. We assume that frequency of a class is uniformly distributed over the class interval. Let 
the c.f. for the class just above the median class be c . Thus (N/2-c) is the frequency of the 
interval between the median and the lower limit of the median class . the length of the interval 

corresponding to the frequency  (N/2-c) is 
 

 
  

 
 I, where f is frequency of the median class, I is 

the length of the class interval of the median class . Hence the median is  L0+
 

 
  

 
 I, where L0 is 

lower limit of the median class. 

Properties of Median 

 Median is a positional average and hence is not influenced by extreme values 

 Median can be calculated even in the case of open end intervals 

 Median can be located even if the data is incomplete 

 It is not a good representative of data if the number of observations is small 

 It is not amenable to algebraic treatment 

 It is susceptible to sampling fluctuations 
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Quartiles are thsose variate values which divide the total frequency into four equal parts; 
deciles and percentiles divide into ten and hundred equal parts  respectively. Suppose the 
values of the variate have been arranged in ascending order of magnitude, then the value of the 
quartile having the position between the lower extreme and the median , is the first quartile Q1 
and that between the median and the upper extreme is the third quartile Q3. The median is the 
second quartile Q2, is the fifth decile D5 and the fiftieth percentile P50. For a grouped frequency 
distribution, the quartiles, deciles and percentiles are given by  

Qi=l+
  

 
  

 
h, i=1,2,3 

Dj= l+
  

  
  

 
h, j=1,…,9 

Pk= l+
  

   
  

 
h, k=1,…,99 

where l is the lower limit of the class in which the particular quartile/decile/percentile lies, f is 
the frequency of the class , h is the width of this class, C is the cumulative frequency upto and 
including the class preceding the class in which the particular  quartile/decile/percentile lies 
and N is the total frequency. 

 Calculate the three quartiles for the following frequency distribution of the 
number of marks obtained by 49 students in a class: 

Marks  No. of students   Marks  No. of students 

5-10   5     25-30   5  

10-15   6     30-35   4 

15-20   15     35-40   2 

 20-25   10     40-45   2 

 
Cumulative Frequency Table 

Class   Frequency   Cumulative Frequency(less than) 

5-10   5     5 

10-15   6     11 

15-20   15     26 

20-25   10     36 

25-30   5     41 

30-35   4     45 
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35-40   2     47 

40-45   2     49=N 

The cumulative frequency immediately greater than N/4=49/4 is 26; hence to find Q1,  

L=15, h=15-10=5, C=11, f=15. Thus Q1= 15+
  

 
   

  
 5= 15.47 marks. 

For median, N/2= 24.5 . Thus the median class is 15-20. Median = 15+
  

 
   

  
 5=19.5 marks. 

To find Q3, we have 3N/4=147/4 . Hence Q3 lies in the class 25-30. L=25, C=36,f=5,h=5. Hence 

Q3=25+
   

 
   

 
5 =25.75. 

 In a factory employing 3000 persons, in a day 5% work less than 3 hours, 580 
work from 3.01 to 4.50 hours, 30% work from 4.51 to 6.00 hours, 500 work from 6.01 to 7.50 
hours, 20% work from 7.51 to 9.00 hours and the rest work 9.01 or more hours. What is the 
median hours of work? 

 Calculation for Median Wages 

 

Work Hours No. of employees(f) Less than c.f. Class Boundaries 
Less than 3 5/100 x 3500=150 150 Below 3.005 
3.01-4.50 580 730 3.005-4.505 
4.51-6.00 30/100 x 3000=900 1630 4.505-6.005 
6.01-7.50 500 2130 6.005-7.505 
7.51-9.00 20/100 x 3000=600 2730 7.505-9.005 
9.01 and above 3000-2730=270 3000 9.005 and above 
 

N=3000. The c.f. just greater than N/2=1500 is 1630.the corresponding class 4.51-6.00, whose 
class boundaries are 4.505-6.005, is the median class. Hence 

median=l+
 

 
(
 

 
  )=4.505+

   

   
          =4.505+1.283=5.79(approx.). 

An incomplete frequency distribution is given as follows: 

Variable  Frequency  Variable  Frequency 

10-20   12   50-60         ? 

20-30   30   60-70         25 

30-40   ?   70-80          18 

40-50   65   Total(N)         229 
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Given that the median value is 46, determine the missing frequencies. 

 Let the frequency of the class 30-40 be f1 and that of 50-60 be f2. Then f1+f2=229 -

(12+30+65+25+18)= 79. 

Since median is given to be 46, 40-50 is the median class. Using formula for median , we 
get  

46=40+
                

  
  x 10. Hence f1= 33.5= 34(approx.). Hence f2=45. 

Mode 

Let us consider the following statements: The average height of an Indian is 5’6”; the average 
size of shoes sold in a shop is 7; an average student in a hostel spends Rs. 750 per month. In all 
the above statements,the average referred to is mode. Mode is the value of the variate which 
occurs most frequently in a set of observations and around which the other members  of the set 
cluster densely. In other words, mode is the value of the variable which is predominant in the 
given set of values. In case of discrete frequency distribution, mode is the value of the variable 
corresponding to maximum frequency. In the following distribution: 

x:  1 2 3 4 5 6 7 8  

f:  4 9 16 25 22 15 7 3 

value of x corresponding to maximum frequency viz. 25 is 4. Hence mode is 4. 

In any one of the following cases, mode is determined by the method of grouping: 

 If the maximum frequency is repeated 

 If the maximum frequency occurs in the very beginning or at the end of the distribution 

 If there are irregularities in the distribution 

 Find the mode of the following frequency distribution: 

Size(x):   1 2 3 4 5 6 7 8 9 10 11 12 

Frequency: 3 8 15 23 35 40 32 28 20 45 14 6 

 The distribution is not regular since the frequencies are increasing steadily upto 40 and 

then decrease but the frequency 45 after 20 does not seem to be consistent with the 

distribution. We cannot say that since the maximum frequency is 45, mode is 10. Here 

we locate mode by the method of grouping as explained below: 
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Size      Frequency 
(x)   (i)  (ii)  (iii)  (iv)  (v)  (vi) 
1  3 
    11 
2  8      26 
      23 
3  15        46 
    38 
4  23 
      58 
5  35      98    73 
    75 
6  40        107 
      72 
7  32 
    60 
8  28      80    100 
      48 
9  20 
    65      93 
10  45          79 
      59 
11  14      65 
    20 
12  6 

The frequencies in column (i) are the original frequencies. Column (ii) is obtained by 
combining the frequencies two by two.If we leave the first frequency and combine the 
remaining frequencies two by two, we get column (iii).Combining the frequencies two by two 
after leaving the first two frequencies results in a repetition of column (ii). Hence, we proceed 
to combine the frequencies three by three , thus getting column (iv). The combination of 
frequencies three by three after leaving the first frequency results in column (v) and after 
leaving the first two frequencies results in column (vi). 

Analysis Table 

Column No. Maximum Frequency(1) Value or combination of values of x 
giving max. frequency in (1) (2) 

(i) 45 10 
(ii) 75 5,6 
(iii) 72 6,7 
(iv) 98 4,5,6 
(v) 107 5,6,7 
(vi) 100 6,7,8 
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Mode for Continuous frequency distribution 

Mode= l+ 
     

         
 h 

Where l is the lower limit of the modal class(class having maximum frequency), fm is the 
maximum frequency, f1 and f2 are the frequencies of the classes preceding and following modal 
class. 

 The median and mode of the following wage distribution are known to be Rs. 
3350 and Rs. 3400 respectively.Find the values of f3,f4,f5: 

Wages (in Rs.) No. of employees Wages (in Rs.)  No. of employees  

0-1000   4   4000-5000   f5 

1000-2000   16   5000-6000   6 

2000-3000   f3   6000-7000   4 

3000-4000   f4   Total    230 

 Calculation for median and mode 

Wages (in Rs.)   frequency(f)   less than c.f. 

0-1000      4    4 

1000-2000      16    20 

2000-3000      f3    20+f3 

3000-4000      f4    20+f3+f4 

4000-5000      f5    20+f3+f4+f5 

5000-6000      6    26+f3+f4+f5  

6000-7000      4    30+f3+f4+f5=N 

N=30+f3+f4+f5=230 . Thus f3+f4+f5=200. 

Since median is 3350, which lies in 3000-4000, 3000-4000 is the median class. Using median 
formula,  

3350=3000+
    

  
[115-(20+f3)]. Thus f3=95-0.35f4.  

Mode being 3400, modal class is 3000-4000. Using formula for mode, 

3400=3000+
           

         
 ; hence 

         

    
=

            

            
. Thus f4=100. Hence f3=95-0.35x100=60, 

f5=40. 
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Note: For a symmetrical distribution, mean, median and mode coincide. If the distribution is 
moderately asymmetrical, they obey the following empirical relationship: mode = 3 
median – 2 mean 

 

MEASURES OF DISPERSION     

 

A measure of central tendency alone is not enough to  have a clear idea about the data unless 
all observations are almost the same. Moreover two sets of observations may have the same 
central tendencies whereas variability of data within the sets may vary widely . Consider 

Set A:   30 30 30 30 30 

Set B: 28 29 30 31 32 

Set C: 3 5 30 37 75 

All the three sets have same mean and mode; but the amount of variation differs widely 
amongst the sets. 

Characteristics of an ideal measure of dispersion 

 It should be rigidly defined 

 It should be easily understandable and easy to calculate 

 It should be based on all observations 

 It should be amenable to further mathematical treatment 

 It should be least affected by fluctuation of sampling 

Different measres of dispersion 

Range: Range is the difference between the maximum and the minimum values of the variate. 
It is easily understood and easy to calculate but depends only on the two extreme values which 
themselves are subject to sampling fluctuation; hence range is not a reliable measure of 
dispersion. 

Quartile Deviation: quartile deviation or semi-interquartile range is given by 
 

 
(Q3-Q1), 

where Q1 and Q3 are the first and the third quartiles of the frequency distribution. Quartile 
deviation is definitely a better  measure than the range as it makes use of 50% of data. But 
since ignores the other 50% of data, it cannot be regarded as a reliable measure. 

Mean Deviation If xi|fi ,  i=1,…,n be the frequency distribution, then mean deviation from A 

(usually mean, median or mode) is defined by s= 
 

 
∑   |    | 

   , ∑   
 
   =N.  
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Since mean deviation is based on all the observations, it is a better measure of dispersion as 
compared to range and quartile deviation. But use of absolute value renders it useless for 
further mathematical treatment. 

  Calculate Q.D. and M.D. from mean, for the following data: 

Marks:   0-10 10-20    20-30    30-40    40-50 50-60  60-70 

No. of students:  6    5       8          15       7            6            3 

 Calculation for Q.D. and M.D. from mean 

Marks Mid-
value 

f d=(x-35)/10 fd |   ̅| f|   ̅| c.f. (less) 

0-10 5 6 -3 -18 28.4 170.4 6 
10-20 15 5 -2 -10 18.4 92.0 11 
20-30 25 8 -1 -8 8.4 67.2 19 
30-40 35 15 0 0 1.6 24.0 34 
40-50 45 7 1 7 11.6 81.2 41 
50-60 55 6 2 12 21.6 129.6 47 
60-70 65 3 3 9 31.6 94.8 50 
Total    -8  659.2  

 

(1) Here N=50, N/4=12.75, 3N/4=37.25 

The c.f.(less than) just greater than 12.75 is 19. Hence the corresponding class 20-30 contains 
Q1. 

Q1=20+
  

 
(12.75-11)=22.19 

The c.f.(less than) just greater than 37.25 is 41. Hence the corresponding class 40-50 contains 
Q3. 

Q3=40+
  

 
(37.25-34)=44.64. 

Hence Q.D. = 
 

 
(Q3-Q1)= 

 

 
(44.64-22.19)=11.23. 

(2)  ̅ = A+
 ∑  

 
=35+

       

  
 = 33.4 marks. Thus M.D. (from mean) =

 

 
∑ |  

 ̅|=
     

  
=13.184. 

Standard Deviation, Variance 
 

For the frequency distribution  xi|fi ,  i=1,…,n , S.D.   is defined by:  =√
 

 
∑       ̅  , where  ̅ 

is the A.M. of the distribution (non-negative value of the square root is considered).  2 is called 
the variance. 
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Note s2=
 

 
∑         =

 

 
∑       ̅   ̅     =

 

 
∑        ̅  +( ̅-A)2+2( ̅-A)(xi- ̅)} 

=
 

 
∑       ̅  +( ̅-A)2

 

 
∑  +2( ̅-A) 

 

 
∑       ̅  =  2+( ̅-A)2, where d= ̅-A. 

Thus s2 is least when d=0.that is, when  ̅=A. Thus M.D. is least when A= ̅ and  S.D. is least 
value of M.D. 

Note (1)  2=
 

 
∑       ̅  =

 

 
∑     

   ̅      ̅ ) = 
 

 
∑    

 +  ̅  

 
∑  - 

2  ̅
 

 
∑    =

 

 
∑    

 +  ̅ -2  ̅  =
 

 
∑    

  (
 

 
∑    )

 

. This expression is often used for 

calculation of  2. 

(2)If n1 and n2 are the sizes,   ̅̅̅ and   ̅̅ ̅ be the means and  1 and  2 be the S.D. s of two 

series, then the S.D.   of the combined series of n1+n2 observations is given by: 

 2=
 

     
[     

    
 )+      

    
 )], where d1=  ̅̅̅- ̅, d2=  ̅̅ ̅- ̅ and  ̅=

    ̅̅̅̅      ̅̅̅̅

     
 is the mean of 

the combined series. 

  For a group of 200 candidates , the mean and S.D. of scores were found to be 
40 and 15 respectively. Later on it was discovered that the scores 43 and 35 were misread as 34 
and 53 respectively. Find the corrected mean and S.D. corresponding to the corrected figures. 

 Let x be the given variable. Given n=200,  ̅=40 and  =15. Now 40=  ̅=
 

   
∑   gives 

∑  =8000. 

 2=
 

 
∑  

 - ̅2 gives ∑  
 =200(225+1600)=365000. 

Corrected ∑  =8000-34-53+43+35=7991, corrected mean =
    

   
=39.995 

Corrected ∑  
 = 365000-342-532+432+352=364109 

Corrected  2=
      

   
 (39.995)2=224.14. Thus corrected  =√      =14.97. 

   The first of two samples has 100 items with mean 15 and s.d. 3.if the whole 

group has 250 items with mean 15.6 and s.d. √     .  find s.d. of the second group. 

 Here n1=100,  ̅̅̅=15,  1=3, n=n1+n2=250,  ̅=15.6,  =√      

 ̅=
    ̅̅̅̅      ̅̅̅̅

     
 gives   ̅̅ ̅=16. Hence d1=  ̅̅̅- ̅=15-15.6=-0.6, d2=  ̅̅ ̅- ̅=16-15.6=0.4 

From  2=
 

     
[     

    
 )+      

    
 )],  2=4. 

Moments 

The r th (raw) moment of a variable x about any point A , denoted by   
 

, is given by 

  
 
=

 

 
∑         . 
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The r th (central) moment of a variable x about mean  ̅  , denoted by   , is given by 

  =
 

 
∑       ̅  . 

In particular,   =
 

 
∑       ̅  =

 

 
∑  =1,   =

 

 
∑       ̅  =0,   =

 

 
∑       ̅  =  2. 

Relation between raw and central moments 

  =
 

 
∑       ̅  =

 

 
∑           ̅  =

 

 
∑         ̅  , where di=xi-A. 

 ̅ =A+
 

 
∑    =A+   

 
. Hence   =

 

 
∑        

 
  =

 

 
∑     

    
   

     
 

+   
   

      
 
  -…+(-

1)r   
 
  ) 

=  
 
-  

     
 

  
 
+  

     
 

   
 
  -…+(-1)r   

 
  . 

In particular, on putting r=2,3,4 and simplifying, we get   =  
/-  

  
,   =  

/-3  
/  

/+2  
  

, 

  =  
 
    

 
  

 
+6  

 
  

  
-3  

  
. 

Effect of change of origin and scale on Moments 

Let u=
   

 
. Then  ̅      ̅ . Thus x-  ̅ =h(u-  ̅ ). Thus      =

 

 
∑       ̅   

 

 
∑        

 ̅    hr     . 

Symmetrical and Skew Distributions 

A distribution is symmetrical when the frequencies are symmetrically distributed about the 
mean , that is, when the values of the variate equidistant from mean have equal frequencies. 
For example, the following distribution is symmetrical about its mean 5: 

x: 1 2 3 4 5 6 7 8 9 

f: 3 4 6 9 10 9 6 4 3 

It can be seen that if n is odd, 
 

 
∑        ̅   

  =0 since all the terms cancel in pairs, n being odd 

and f1=fn, f2=fn-1,…. Thus   =0 , for n odd. Hence for a symmetrical distribution,    
  

 

  
  = 0. 

Thus    is a measure of departure from symmetry. 

Also for a symmetrical distribution, the mean, median and mode coincide. Further, in the case 
of such distribution, median lies halfway between the two quartiles. 

Skewness means lack in symmetry. It indicates whether the frequency curve is inclined more to 
one side than the other, that is , whether the frequency curve has a longer tail on one side. 
Skewness is positive if the curve is more elongated to the right side, that is, if the mean of 
the distribution is greater than the mode; in the reverse case, it is negative. Skewness gives an 
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idea about the direction in which also the extent to which the distribution is distorted from the 
symmetrical distribution. 

For distribution of moderate skewness, an empirical relation holds: mean-mode= 3(mean-
median). 

Karl Pearson’s coefficient of skewness is given by : coefficient of 

skewness=
         

                  
=

              

                  
. 

It is a pure number since the numerator and denominator have the same dimension. It has 
value zero for a symmetrical distribution. 

Bowley’s measure of skewness is 
         

     
. 

  Find out a coefficient of dispersion based on quartile deviation and a measure 
of skewness from the following table giving wages of 230 persons: 

Wages(in Rs) f c.f.   Wages(in Rs) f c.f. 

140-160  12 12   220-240  50 157 

160-180  18 30   240-260  45 202 

180-200  35 65   260-280  20 222 

200-220  42 107   280-300  8 230 

 Here N/2=115 and the 115 person has a wage in the class 220-240. Hence median=Q2= 

220+
       

  
x 20 = Rs. 223.20. Similarly, Q1=180+

       

  
x 20=Rs. 195.71, 

Q3=240+
         

  
x 20=Rs. 246.88. It can be shown that mean=Rs. 220.87, S.D.= Rs. 

34.52. 

Coefficient of dispersion based on quartile deviation= 
     

     
=

     

      
=0.1156. 

Measure of skewness = 
         

    
=

             

     
= - 0.3514 

Second measure of skewness=
         

     
=- 0.07446. 

Pearson’s   and  - Coeficients 

   
  

 

  
  ,    √   ,    

  

  
  ,   =  -3. 

The values of the two coefficients   ,    enable us to know whether the given distribution is 

symmetrical  and whether it is relatively more or less flat than the normal curve.    gives a 
measure of departure from symmetry. Kurtosis measures whether the given frequency curve is 
relatively more or less flat –topped compared to the normal curve (to be studied later). For a 

normal distribution ,   =3. Curves with values of    less than 3 are called Platykurtic whereas 
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those with values of    greater than 3 are called Lettokurtic. Curves with   value equal to 3 are 
called Mesokurtic. 

 

BASIC PROBABILITY THEORY 

 
  

Basic Terminology  

Random Experiment : If in each trial(repetition) of an experiment conducted under 
identical conditions, the outcome is not unique , but may be any one of possible outcomes, then 
such an experiment is called a random experiment. Examples of random experiments are: 
tossing a coin, throwing a die, selecting a card from a pack of playing cards etc. in all these 
cases, there are a number of possible outcomes which can occur but there is an uncertainty as 
to which of them will actually occur. 

A piece of Information: A pack of cards consists of four suits called Spades, Hearts and 
Clubs. Each suit consists of 13 cards, of which nine cards are numbered from 2 to 10, an ace, a 
king, a queen and a jack(or knave).Spades and clubs are black-faced cards while hearts and 
diamonds are red-faced cards. 

Outcome: result of a random experiment is called an outcome. 

Sample Space, Events: The collection S of all possible outcomes of a random experimepernt 
is called sample space of the random experiment; any subset of S is an event; a singleton subset 
of S is an elementary(simple) event. For example, in an experiment which consists of throwing 
a six-faced die, possible outcomes are 1,2,3,4,5,6. Thus sample space of this experiment is 
{1,2,3,4,5,6}, {1} is an elementary event; getting an even number, {2,4,6} is an event of this 
experiment. 

Exhaustive Events: events E1,…,Ek of a random experiment with sample space S are called 

exhaustive iff S = E1   Ek. in the case of throwing of a die, getting even points( that is, 2,4, or  
6) and getting odd points (that is, 1,3, or 5) are exhaustive events. 

Equally Likely Events: Events are equally likely if there is no reason to expect any one of 
them compared to others. In the trial of drawing a card from a well-shuffled pack of cards, any 
of the 52 cards may appear, so that the 52 elementary events are equally likely. 

Exclusive Events: Events are exclusive if the occurrence of any one of them precludes the 
occurrence of all others. On the contrary, events are compatible if it is possible for them to 
happen simultaneously. For instance, in the rolling of two dice, the cases of the face marked 5 
appearing on both dice are compatible. 

Favourable Events: The trials which entail the happening of an event are favourable to the 
event. For example, in the tossing of a dice, the number of favourable events to the appearance 
of a multiple of 3 are two viz. getting 3 and 6. 
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Classical (a priori) definition of probability 

If a random trial results in n exhaustive, mutually exclusive and equally likely outcomes, out of 
which m are favourable to the occurrence of an event E, then the probability of occurrence of E 

, denoted by P(E), is given by P(E)=
 

 
.  

It is clear from definition that 0 p 1. Since the number of cases in which event A will not 

happen is n-m, the probability q that the event A will not happen is given by P  ̅ =
   

 
=1-

 

 
=1-

P(A). 

An event A is certain to happen if all the trials are favourable to it and then the probability of 
its happening is unity; for an event which is certain not to happen, the probability is zero. 

   Find the chance that if a card is drawn at random from an ordinary pack, it is 
one of the court cards. 

 Court cards are kings, queens, jacks and their number in a pack of 52 cards is 12, so that 

the number of favourable events is 12. Hence the probability is 12/52=3/13. 

   What is the chance that a leap year selected at random will contain 53 
Sundays? 

 A leap year which contains 366 days has 52 Sundays corresponding to 52 weeks and 2 

more days.There are following seven possibilities: (1) Sunday, Monday, (2) 

Monday,Tuesday,(3) Tuesday, Wednesday, (4) Wednesday, Thursday, (5) Thursday, 

Friday, (6) Friday , Saturday, (7) Saturday, Sunday. Out of these seven possibilities, 

there are two favourable outcomes, namely (1) and (8). Thus the required probability is 

2/7. 

 An urn contains 9 balls, two of which are red, three blue and four black.Three 
balls are drawn from the urn at random. What is the chance that (1) three balls are of different 
colours, (2) two balls are of the same colour and third is different, (3) the balls are of the same 
colour? 

 (1) Three balls can be drawn from 9 balls in   
 =84 ways and these are equally likely, 

exhaustive and mutually likely cases. A red ball can be drawn in 2 ways, a blue in 3 and a 

black in 4 ways, so that three differently coloured balls can be drawn in 2 x 3x 4=24 

ways. Hence the probability is 24/84=2/7. 

(2)two blue balls can be drawn in   
  ways and then a red or black ball in 6 ways so that 

the two blue balls and a different coloured ball can be drawn in 6x  
 =18 ways. Two 

black balls and a different coloured ball can be drawn in 5x  
 =30 ways. Similarly the 

number of ways in which two red balls and a different coloured ball can be drawn in 

7x  
 =7 ways. Thus the number of ways two balls of same colour and a ball of different 

colour can be drawn is 18+30+7=55. Thus required probability is 55/84. 
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(3)Three blue balls can be drawn in 1 way and 3 black balls in   
  or 4 ways so that the 

corresponding probability is 5/84. 

Limitation of Classical Definition 

This definition breaks down in the following cases: 

 If the various outcomes of the random experiment are not equally likely 

 If the number of exhaustive outcomes of the random experiment is infinite or unknown 

Von Mises’s statistical (or empirical) definition of probability 

If trials be repeated a great number of times under essentially same conditions, then the limit 
of the ratio of the number of times that an event happens to the total number of trials, as the 
number of trials increases indefinitely, is the probability of the happening of the 
event,provided the ratio approaches a finite and a unique limit. 

Axiomatic definition of Probability 

To an event A(that is, a subset of sample space S) is assigned a real number P(A), called 
probability of A, satisfying the following properties: 

 (Axiom of non-negativity)P(A) 0 

 (Axiom of certainty) P(S)=1 

 (Axiom of Additivity) If {An} is any finite or infinite sequence of disjoint events, then 

P ⋃   
 
     ∑      

 
   . 

Note P, the probability function,  is otherwise unspecified except it is to satisfy above three 
axioms. 

Notation for two events A,B of a sample space S,A B={x S: x A or x B}, A B={x S: x A 

and x B}, ̅ = { x S: x∉A},  A-B={ x S: x   and x∉B}, A B  can be denoted by A+B, if A and B 

are disjoint; A B=( ̅  B)+(A  ̅). 

  Let A,B,C are three arbitrary events. Find expression for the following events: 

(1)Only A occurs, (2) Both A,B but not C , occur, (3) All three events occur, (4) At least one 
occurs, (5) At least two occur, (6) one and no more occurs, (7) two and no more occur, (8) none 
occurs. 

 (1) A  ̅   ̅ , (2) A    ̅, (3) A    , (4)A    , (5) (A    ̅)   A  ̅      

  ̅             ), (6) (   ̅   ̅)   ( ̅     ̅)   ( ̅   ̅   ), (7)       ̅) 

   ̅     )      ̅   ), (8)      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Some Theorems on Probability 

Theorem3.1 Probability of impossible event is zero: P( )=0. 
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 S=S    and S,   are disjoint events. Using axiom of additivity, P(S)=P(S  

 )=P(S)+P( ); hence P( )=0. 

    : P(A)=0 does not necessarily mean A is impossible event. In case of continuous 
random variable X, the probability at a point is always zero: P(X=c)=0. 

Theorem3.2 P( ̅ =1-P(A). 

 1=P(S)=P(A  ̅)=P(A)+P( ̅  (since A  ̅= ). 

Corollary 0 P( ̅ =1-P(A); hence 0 P(A) 1. 

Lemma For two events A,B, P( ̅                 

  ̅      ̅  and         are disjoint events and B=B  =B (A  ̅)=(   ) 

  ̅    ; hence by axiom of additivity, P( ̅                . 

Corollary (1) If A B, then P( ̅     P(B)-P(A), (2) P(A)  P(B). 

Theorem3.3 (Addition Theorem of Probability) If A,B are any two events, 

P(A B)=P(A)+P(B)-P(   ). 

 A B=A ( ̅   ) and A,  ̅    are disjoint. Hence P(A B)=P(A)+ P( ̅    = P(A)+P(B)-

P(   ). 

Generalising , for three events A,B,C, we have 

P(                                                   . 

   If p1=P(A), p2=P(B), p3=P(   ), express the following in terms of p1,p2,p3: (1) 

P(   ̅̅ ̅̅ ̅̅ ̅), (2) P( ̅   ̅ , (3)P( ̅  B),(4) P( ̅     

 (1) P(   ̅̅ ̅̅ ̅̅ ̅ )=1-P(A   =1-[P(A)+P(B)-P(A B)]=1-p1-p2-p3.(2) P(  ̅   ̅ )=P(   ̅̅ ̅̅ ̅̅ ̅ )=1-

P(  B)=1-p3. (3) P( ̅  B)=P(B)- P(  B)=p2-p3.(4) P( ̅   )=P( ̅)+P(B)- P( ̅  B)=1-

p1+p2-( p2-p3)=1-p1+p3.  

 It two dice are thrown, what is the probability that the sum  is (1) greater than 8, 
(2)neither 7 nor 11? 

 (1)If X denotes the sum on the two dice, then we want P(X>8). The required event can 

happen in the following mutually exclusive cases: X=9, X=10,X=11,X=12. Hence by 

addition theorem on probability, P(X>8)=P(X=9)+P(X=10)+P(X=11)+P(X=12). In a 

throw of two dice, the sample space contains 62=36 points. The number of favourable 

cases can be enumerated as: 

X=9: (3,6),(6,3),(4,5),(5,4) 
X=10: (4,6),(6,4),(5,5) 
X=11: (5,6),(6,5) 
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X=12:(6,6). 

Thus P(X>8)=
 

  
 

 

  
 

 

  
 

 

  
=

 

  
. 

(2)Let A denote the event of getting the sum of 7 and B denote the event of getting the 
sum of 11 with a pair of dice. 
X=7: (1,6),(6,1),(2,5),(5,2),(3,4),(4,3) 
X=11: (5,6),(6,5) 

Required probability= P( ̅   ̅)=1-P(A B)=1-[P(A)+P(B)] (since A and B are disjoint 

events)=1-
 

 
 

 

  
=

 

 
. 

   Two  dice are tossed. Find the probability of getting an even number on the 
first die or a total of 8. 

 Let A be the event of getting an even number on the first dice and B be the event that the 

sum of points obtained on the two dice is 8. The events are represented by the following 

subsets of the sample space S: 

A={2,4,6} X {1,2,3,4,5,6}, B={(2,6),(6,2),(3,5),(5,3),(4,4)}. Here A B={(2,6),(6,2),4,4)}. 

Required probability is P(A B)=P(A)+P(B)-P(A B)=
  

  
 

 

  
 

 

  
=

 

 
. 

 An integer is chosen at random from first two hundred natural numbers. What 
is the probability that the integer is divisible by 6 or 8? 

 Sample space of the random experiment is {1,2,…,200}. The event A ‘ integer chosen is 

divisible by 6’ is given by {6,12,…,198}; the event B‘ integer chosen is divisible by 8’ is 

given by {8,16,…,200}. LCM of 6 and 8 is 24. Hence a number is divisible by 6 and 8 iff 

it is divisible by 24. Thus A  B={24,48,…,192}. Hence required probability is 

P(A B)=P(A)+P(B)-P(A B)=
  

   
 

  

   
 

 

   
=

 

 
. 

 The probability that a student passes Physics test is 2/3 and the probability that 
he passes both Physics test and English test is 14/45.The probability that he passes at least one 
test is 4/5. What is the probability that he passes English test? 

 Let A be the event that the student passes the Physics test and B be the event that he 

passes English test. Given P(A)=
 

 
, P(A B)=  

  

  
, P(A B)=  

 

 
. We want P(B). From 

P(A B)=P(A)+P(B)-P(A B), we get P(B)=
 

 
. 

 An investment consultant predicts that the odds against the price of a certain 
stock will go up during the next week are 2:1 and the odds in favour of the price remaining the 
same are 1:3.What is the probability that the price of the stock will go down during the next 
week? 
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 Let A denote the event ‘ stock price will go up’ and B be the event ‘stock price will remain 

same’. Then P(A)=   
 

   
, P(B)=  

 

   
. Thus P(A B)=P(A)+P(B)=  

 

 
 

 

 
 

 

  
. Hence the 

probability that the stock price will go down is given by P( ̅   ̅)=1- P(A B)=1-
 

  
=

 

  
. 

 An MBA applies for a job in two firms X and Y. The probability of his being 
selected in firm X is 0.7 and being rejected at Y is 0.5. The probability of at least one of his 
applications being rejected is 0.6. What is the probability that he will be selected in one of his 
firms? 

 Let A and B denote the events that the person is selected in firms X and Y respectively. 

Then P(A)=0.7, P  ̅ =0.5. Thus P  ̅ =1-0.7=0.3, P(B)=1-0.5=0.5 and 0.6= P( ̅   ̅)= 

P  ̅ + P  ̅   P( ̅   ̅). The probability that the person will be selected in one of the 

twofirms X or Y is given by: P(A B)=1- P( ̅   ̅)=1-[ P  ̅   P  ̅   P( ̅   ̅ ]=1-

(0.3+0.5-0.6)=0.8. 

 Three newspapers A,B and C are published in a certain city. It is estimated 
from a survey that 20% read A, 16% read B, 14% read C, 8% read both A and B, 5% read both A 
and C, 4% read both B and C, 2% read all three. Find what percentage read at least one of the 
papers? 

 Let E,F,G denote the events that a person reads newspapers A,B and C respectively. 

Then we are given: P(E)=
  

   
, P(F)=  

  

   
, P(G)=  

  

   
, P(E  F)=  

 

   
, P(E  G)=  

 

   
, 

P(G F)= 
 

   
, P      )= 

 

   
. 

The required probability that a person reads at least one of the newspapers is given by 

P      )=P(E)+P(F)+P(G)- P(E F)- P(E G)- P(G F)+ P      )= 
  

   
=0.35. 

 A card is drawn from a pack of 52 cards. Find the probability of getting a king 
or a heart or a red card.   

 Let A,B and C denote the event ‘card drawn is a king’, ‘card drawn is a heart’ and ‘card 

drawn is a red card’ respectively. Then A,B,C are not mutually exclusive. 

A B: card drawn is king of hearts ; n(A B)=1 

B  =B( since B C): card drawn is a heart ;n(B  )=13 

A  : card drawn is a red king; n(A  )=2 

A    = A  : card drawn is the king of hearts; n(A    )=1. 

Thus P(A)= 
 

  
, P(B)= 

  

  
, P(C)= 

  

  
, P(A B)= 

 

  
, P(B  )= 

  

  
, P(A  )= 

 

  
, P(A   

 )= 
 

  
. Thus required probability is P(     )=P(A)+P(B)+P(C)- P(A B)- P(B  )- 

P(A  )+ P(A    )= 
 

  
. 
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Conditional Probability 

In many situations we have the information about the occurance of an event A and are required 
to find out the probability of the occurrence of another event B. This is denoted by P(B/A). For 
example, if we know that a card drawn from a pack is black, we may need to calculate the 
probability that it is the ace of spade. 

Let us take the problem of throwing a fair die twice. Suppose same number of spots do not 
appear in both the throws and we are required to find the probability that the sum of number 
of spots in the two throws is six. 

A patient comes to a doctor with his family history that his elders suffered from high blood 
pressure. He wants to know the probability of the event that he will also suffer from high blood 
pressure. 

Definition Let A and B  be two events. The conditional probability of event B supposing 

event A has occurred, is defined by P(B/A)=
      

    
, if P(A)>0. 

Note Let B1,…,Bk be mutually exclusive events. The conditional probability of ⋃   
 
  given that 

event A has occurred is given by P(
⋃   

 
 

 
)  

 [(⋃   
 
 )  ]

    
=

∑         
 

    
. 

 If a card drawn from a pack is black, represented by event A, find the 
probability of the event B that the card drawn is ace of spade . 

 Number of black cards in a pack of 52 cards is 26. P(A)=26/52=1/2. Out of 26 black 

cards, only one is ace of spade. The event A B contains only one point; thus        

 

  
. Hence P(B/A)= 

      

    
=

 

  
 

 

=
 

  
. 

 An experiment is conducted by throwing a fair dice twice. Let A be the event 
that same number of spots do not turn up in two throws and B be the event that sum of the 
spots is 6. Find P(B/A). 

 A includes all 36 points of the sample space except (1,1),(2,2),(3,3),(4,4),(5,5) and (6,6). 

Thus P(A)=30/36=5/6. Points favourable to event B are (1,5),(2,4),(3,3),(4,2),(5,1). 

Points common to A and B , that is A B , are (1,5),(2,4),(4,2),(5,1). Thus P(A B)=4/36. 

Thus P(B/A)= 
 

  
  

  

=
 

  
=0.133. 

   10% of patients feel they suffer and are really suffering from TB, 30% feel they 
suffer but actually do not suffer, 25% do not feel they are suffering but are suffering and 
remaining 35% neither feel nor suffering from TB. Find the probility of events E1,E2,E3,E4, 
where E1: person who suffers from TB and feels he suffering from TB, E2: person has TB and 
does not feel, E3:person feels he has TB and does not suffer from TB, E4: person feels and has 
TB. 
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 Let us define events: A: person feels he has TB, B: person suffers from TB. P(A B)=0.1, 

P(A  ̅ =.3, P( ̅  B)=.25, P( ̅   ̅)=.35. Thus P(A)= P(A B)+ P(A  ̅ =0.1+0.3=0.4, 

P(B)= P(A B)+ P( ̅  B)=.10+.25=.35, P( ̅)= P( ̅  B)+P( ̅   ̅)=0.25+0.35=0.6,P( ̅)= 

P(A  ̅)+ P( ̅   ̅)=0.3+0.35=0.65. Hence 

P(E1)=P(B/A)=
      

    
 

   

   
     , P(E2)=P(B/ ̅)=

     ̅ 

   ̅ 
=0.417,P(E3)= P(A/ ̅ )=0.462, 

P(E4)=P(A/B) = 0.286. 

 There are two lots of manufactured item. Let one contain 40 pieces whereas lot 
two contains 50 pieces.it is known that former lot contains 25% defective pieces and the later 
one 10%. We flip a coin and select a piece from a lot one if it turns with head up; otherwise we 
select a piece from lot 2. Find the probability that a selected piece will be defective. 

 Let A,B stand for the event ‘piece is selected from lot 1’ and ‘piece is selected from lot 2’. 

Since the probability of turning head up=1/2, we have P(A)=1/2 and P( ̅)=1/2. Lot 1 has 

10 defective and 30 non-defective pieces; lot 2 has 5 defective and 45 non-defective 

pieces. Given P(B/A)=1/4, P(B/  ̅ =1/10. Thus P(A B)=P(B/A)P(A)=1/8, P(  ̅  B)= 

P(B/ ̅  P( ̅)=1/20. Hence the probability that the selected item is defective is P(A B)+ 

P( ̅  B)=0.175. 

Independent Events 

If we draw two cards from a pack of cards in succession, then the results of the two draws are 
independent if the cards are drawn with replacement and are not independent if the cards 
are drawn without replacement. 

Definition An event A is independent of another event B iff P(A/B)=P(A). This definition is 

meaningful when P(A/B) is defined, that is, when P(B) 0. 

Theorem3.4 If two events A and B are such that P(A)  0, P(B)  0 and A is independent of B, 
then B is independent of A. 

 P(A/B)=P(A)⇒
      

    
      ⇒       =P(A)P(B) ⇒P(B/A)= 

      

    
=

        

    
=P(B). 

Theorem3.5  If A,B are events with positive probilities, then A and B are independent iff 

      =P(A)P(B). 

Theorem3.6  If A and B are independent, then (1) A and  ̅, (2)  ̅ and B , (3)  ̅,  ̅  are 
independent. 

 Since A and B are independent,       =P(A)P(B). P(A  ̅)=P(A)-       =P(A)-

P(A)P(B)=P(A)P(  ̅ ). P(  ̅   ̅ )=P(   ̅̅ ̅̅ ̅̅ ̅ )=1-P(A B)=1-[P(A)+P(B)-       )]=1-P(A)-

P(B)+P(A)P(B)=[1-P(A)][1-P(B)]=P( ̅)P( ̅). 
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 If      , then show that P(A) P( ̅  

 A=(          ̅)=       ̅)=    ̅ ⇒A  ̅⇒ P(A) P( ̅ . 

 Let A and B be two events such that P(A)=3/4, P(B)=5/8. Show that (a) 

P(A B) 
 

 
, (b) 

 

 
        

 

 
. 

 (a) A A  ⇒
 

 
            . 

(b)     B⇒P(      P(B)=  
 

 
. Also,                      B)    ⇒

 

 
 

 

 
         ) ⇒

 

 
        

BAYES’ THEOREM 

Theorem3.7 If E1,E2,…,En are mutually disjoint events with P(Ei) 0(i=1,…,n), then for any 

arbitrary event A which is a subset of ⋃   
 
  such that P(A)>0,  

P(Ei/A)=
       

 

  
 

∑        
 

  
  

 

 
       

 

  
 

    
 

  Suppose that a product is produced in three factories X,Y, and Z. It is known 
that factory X produces thrice as many items as factory Y and that factory Y and Z produces 
same number of items. 3% of the items produced by each of the factories X and Z are defective 
and 5% of those manufactured in Y are defective. All the items in the three factories are stocked  
and an item of the product is selected at random. (1) What is the probability that the item 
selected is defective? (2) if an item selected at random is found to be defective, what is the 
probability that it was produced in factory X,Y,Z respectively? 

 Let the number of items produced by factories X,Y, and Z be 3n,n,n respectively. Let 

E1,E2,E3 be the events that the items are produced by factory X,Y and Z respectively and 

let A be the event that the item being defective. Then P(E1)=
  

      
=0.6, P(E2)=0.2, 

P(E3)=0.2. Also, P(A/E1)= P(A/E3)=0.03, P(A/E2)=0.05(given). 

(1) The probability that an item selected at random from the stock is defective is given 

by P(A)=∑         ∑        
 

  
  

 
 
 =.6 x .03+.2x.05+.2x.03=.034. 

(2) By Bayes’ rule, the required probabilities are given by :  

P(E1/A)=
       

 

  
 

    
 

        

    
=

 

  
, P(E2/A)=

       
 

  
 

    
 

        

    
=

 

  
, P(E3/A)=

       
 

  
 

    
 

 

  
. 

   In 2002 there will be three candidates for the position of the principal –Mr. x, 
Mr. y and Mr.z—whose chances of getting the appointment are in the ratio 4:2:3 respectively. 
The probability that Mr. x if selected would introduce co-education in the college is 0.3. The 
corresponding probabilities for Mr. y and Mr.z are 0.5 and 0.8. (1) What is the probability that 
there will be co-education in 2003? (2) if there is co-education in 2003, what is the probability 
that Mr. z is the principal? 
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 Let us define the events 

A: introduction of co-education, E1: Mr. x is selected as principal 

             E2: Mr. y is selected as principal, E3: Mr. z is selected as principal. 

            P(E1)=4/9, P(E2)=2/9, P(E3)=3/9, P(A/E1)=3/10, P(A/E2)=5/10, P(A/E3)=8/10. 

(1) The required probability that there will be coeducation in the college in 2003 is  

P(A)=P[(A E1)              ]= P(A E1)+ P(A E2)+ P(A E3) 

=P(E1)P(A/E1)+ P(E2)P(A/E2)+ P(E3)P(A/E3)=
 

 
 

 

  
 

 

 
 

 

  
 

 

 
 

 

  
=

  

  
. 

(2) The required probability is given by Bayes’ rule: 

P(E3/A)=
       

 

  
 

    
=

 

 
 

 

  
  

  

=
  

  
. 

 
 

RANDOM VARIABLES 

 
In many random experiments, we are interested not in knowing which of the outcomes has 
occurred but in the numbers associated with them. For example, when n coins are tossed, one 
may be interested in knowing the number of heads obtained. When a pair of dice are tossed, 
one may seek information about the sum of points. Thus, we associate a real number with each 
outcome of a random experiment. In other words, we are considering a function whose domain 
is the set of all possible outcomes and whose range is a subset of the set of reals. 

Definition Let S be the sample space associated with a given random experiment. A real-

valued function X: S      ) is called a one-dimensional random variable(r.v.). 

Notation If x is a real number, the set of all w S such that X(w)=x is denoted by X=x. Thus 

P(X=x)=P{w: X(w)=x}. Similarly P(X  a)= P{w              ] }, 

P(a<X b)=P{w:X(w) (a,b]} 

 Consider the random experiment of tossing a coin. Then S={w1,w2}, w1=H,w2=T. 

Define X:{w1,w2} {0,1} by X(w1)=1, X(w2)=0. X is a r.v. 

A function X:S→R2 is a two-dimensional random variable. 

: If a dart is thrown at a circular target, the sample space S is the set of all points 
w on the target.By imagining a co-ordinate system placed on the target with the origin at the 
centre, we can consider a two-dimensional random variable X which assigns to every point w of 
the circular region , its rectangular co-ordinates (x,y) 

  If a pair of dice is tossed , then S={1,2,3,4,5,6}X{1,2,3,4,5,6} .Let X be the 
random variable defined by X(i,j)=max{i,j}. Then 

P(X=1)=P{(i,j):X(i,j)=1}=P{(1,1)}=1/36, P(X=2)=P{(1,2),(2,2),(2,1)}=3/36. 
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Distribution Function 

Definition Let X be a random variable(r.v.). The function F : (-∞,∞)→[0,1] defined by 
F(x)=P{t: X(t)≤x} is the distribution function (d.f.) of the r.v. X. 

Note: To emphasize the r.v. X, we sometimes denote F(x) by FX(x). 

Properties of Distribution Function 

(1) If F is the d.f. of the r.v. X and if a<b, then P(a<X≤b)=F(b)-F(a). 

 The events a<X≤b’ and X≤a are disjoint and their union is the event X≤b. Hence, 

by addition theorem of probability, 

P(a<X≤b)+P(X≤a)=P(X≤b). Hence the result. 

           Corollary: P(a≤X≤b)=P{(X=a) (a<X≤b)}=P(X=a)+ P(a<X≤b) =     

                             P(X=a)+ [F(b)-F(a)]. When P(X=a)=0, the events  

                              a≤X≤b and a<X≤b have same probability F(b)-F(a) 

(2)  0≤F(x) ≤1. If x<y, then F(x) ≤F(y). 

Discrete Random Variable 

A r.v. which can assume only at most countable number of real values is a discrete random 
variable. Example of discrete random variable are marks obtained in a test, number of 
accidents per month etc. 

Probability Mass Function 

If X is a one-dimensional discrete r.v. taking at most a countable number of values x1,x2,…, then 
the probabilistic behaviour of X at each xi is described by its probability mass function. 

Definition If X is a discrete r.v. having distinct values x1,x2,…, then the function pX(x), or 
simply p(x), defined by p(x)=P(X=xi)=pi, if x=xi and =0, if x≠xi, i=1,2,… is called probability 
mass function(p.m.f.) of r.v. X. 

Note (1)The set {(x1,p1),(x2,p2),…} specifies the probability distribution of the r.v. X. 

(2)P(xi)≥0 , for all i and ∑          
  

   Let S={H,T} be the sample space corresponding to the random experiment of 
tossing of a ‘fair’ coin. Let X be the r.v. defined by X(H)=1, X(T)=0. X has only two distinct 
values, namely, 0 and 1. The corresponding p.m.f. is given by: p(1)=P(X=1)=P(H)=1/2, 
p(0)=1/2. 
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 A r.v. X has the following p.m.f.: 

xi: 0 1 2 3 4 5 6 7 

pi: 0 k 2k 2k 3k k2 2k2 7k2+k 

(1)Find k, (2)Evaluate P(X<6),P(X≥6) and P(0<X<5), (3) If P(X≤a)>1/2, find the minimum 
value of a, (4) determine the p.d.f. of X. 

 (1) Since      , k+2k+2k+3k+k2+2k2+7k2+k=1 giving 10k2+9k-1=0, which gives 

k=1/10 or -1. Since p2=k cannot be negative, -1 is rejected and k=1/10. 

        (2)P(X<6)=P(X=0)+P(X=1)+…+P(X=5)=1/10+2/10+2/10+3/10+1/100=81/100. Now 
P(X≥6)=1-P(X<6)=1-81/100=19/100. 

(3) P(X≤a)>1/2. By trial, we get a=4. 

(4) The p.d.f. of X is given by: 

         X:   0  1  2  3 
 F(x)=P(X≤x): 0 k=1/10  3k=3/10     5k=5/10 

X:   4  5  6  7 
F(x)   8k=4/5 8k+k2  8k+3k2     9k+10k2 

 

   If p(x)=x/15, x=1,2,3,4,5; =0, elsewhere be the p.m.f. of a r.v.X. Find (1) P{X=1 

or 2}, (2) P{
 

 
   

 

 
|     . 

 (1) P{X=1 or 2}=P(X=1)+P(X=2)=1/15+2/15=1/5. 

(3) P{
 

 
   

 

 
|      

  (
 

 
   

 

 
)       

      
 

                  

      
 

      

        
 

 

  

  
 

  

 
 

 
. 

   An experiment consists of three independent tosses of a fair coin. Let X=the 
number of heads, Y=the number of head runs,Z=the length of head runs, a head run being 
defined as consecutive occurrence of at least two heads, its length then being the number of 
heads occurring together in three tosses of the coin. Find the probability function of (1)X, (2) Y, 
(3)Z,(4)X+Y and (5)XY. 

 Elementary Event    Random Variables 

                                                       X  Y  Z  X+Y  XY 
HHH        3  1  3  4  3 
HHT        2  1  2  3  2 
HTH        2  0  0  2  0 
HTT        1  0  0  1  0 
THH        2  1  2  3  2 
THT        1  0  0  1  0 
TTH        1     0  0  1  0 
TTT        0  0  0  0  0 
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(1)Obviously X is a r.v. which can take the values 0,1,2, and 3. p(3)=P(HHH)=(
 

 
)
 

=
 

 
, 

p(2)=P(HHT         )=P(HHT)=P(HTH)+P(THH)=1/8+1/8+1/8=3/8. Similarly 
p(1)=3/8, p(0)=1/8. 

(2) probability distribution of Y: p(0)=5/8, p(1)=3/8. 

(3)probability distribution of Z: p(0)=5/8, p(1)=0,p(2)=2/8,p(3)=1/8. 

(4) probability distribution of U=X+Y:p(0)=1/8, p(1)=3/8,p(2)=1/8,p(3)=2/8,p(4)=1/8. 

(5) probability distribution of V=XY: p(0)=5/8,p91)=0,p(2)=2/8,p(3)=1/8. 

Continuous Random Variable 

Definition A r.v. X is continuous iff X takes all values between two unequal real numbers. 

Probability Density Function 

Consider a small interval (x, x+dx) of length dx about x. Let f(x) be any continuous function of 
x so that f(x)dx represents the probability that X falls in the infinitesimal interval (x, x+dx). 

Symbolically, P(x        =fX(x)dx. fX  is called probability density function (p.d.f.) of the 
r.v. X. 

The probability for a variate value to lie in the interval [a,b] is P(a X b)=∫        
 

 
. 

The p.d.f. f(x) of a r.v. X has the properties: 

f(x) 0, ∫       
 

  
=1 (since ∫       

 

  
 gives total probability), P(X=c)= ∫        

 

 
=0(where c 

is any value of the variate X) 

Various measures of central tendency, dispersion, skewness and kurtosis for 
continuous probability distribution 

The formulae for these measures in case of discrete frequency distribution can be easily 
extended to the case of continuous probability distribution by simply replacing pi=fi/N by 
f(x)dx, xi by x and summation over ‘i’ by integration over the specified range of the variable X. 

Let f(x) be the p.d.f. of a r.v. X, [a,b] being the range of X. Then  

A.M.  ̅=∫        
 

 
,   (central)=∫     ̅        

 

 
,   

 
(about x=A)=∫             

 

 
 

Median is the point which divides the total area into two equal parts: if M be the median, then 

∫        ∫            
 

 

 

 
 

Mode is the value of x for whixh f(x) is maximum. Mode is the solution of f/(x)=0 and f//(x)<0, 
provided it lies in [a,b]. 
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    The diameter of an electric cable , say X, is assumed to be a continuous 

random variable with p.d.f. f(x)=6x(1-x), 0 x 1. (1) Check that f(x) is a p.d.f., (2) determine 
the median b of the distribution. 

 (1) ∫         
 

 
(by direct calculation); hence f(x) is p.d.f. of r.v. X. (2) 

P(X<b)=P(X>b)⇒ ∫        
 

 
 ∫       

 

 
⇒ b=1/2, lying in [0,1]. 

    Suppose that the life in hours of  a certain part of radio tube is a continuous 

random variable X with p.d.f. given by f(x)=100/x2, when x 100; =0, elsewhere. (1) What is 
the probability that all of three such tubes in a given radio set will have to be replaced during 
the first 150 hours of operation?(2)What is the probability that none of the original tubes will 
have to be replaced during the first 150 hours of operation?(3)what is the probability that a 
tube will last less than 200 hours if it is known that the tube is still functioning after 150 hours 
of service? 

 (1)p=P(X 150)=∫        ∫
   

     
 

 

   

   

   

   
. By compound probability theorem, the 

probability that all three of original tubes will have to be replaced during the first 150 

hours =p3=1/27. 

(2)The probability that a tube is not replaced during the first 150 hours of operation is 

P(X>150)=1-P(X 150)=1-p=2/3. By compound probability theorem, the probability 
that none of the three tubes will have to be replaced during the first 150 hours 
=q3=8/27. 
(3)Probability that a tube will last less than 200 hours given that the tube is still 

functioning after 150 hours is P(X<200|X>150)=
            

        
=

∫
   

    
   
   

∫
   

    
 
   

 
 

 
 

 

 
=0.25. 

    The amount of bread (in hundreds of pounds) x that a certain bakery is able 
to sell in a day is found to be a numerical valued random phenomenon with a probability 

function specified by the p.d.f. f(x) given by f(x)=kx, 0 x<5; =k(10-x), 5 x<10; =0, otherwise. 
(1) find the value of k such that f(x) is a p.d.f., (2)what is the probability that the number of 
pounds of bread that will be sold tomorrow is (a) more than 500 pounds, (b) less than 500 
pounds and (c) between 250 and 750 pounds? (3) Denoting by A,B,C the events that the 
pounds of bread sold are as in (2)(a),(2)(b) and (2)(c) respectively, find P(A|B),P(A|C). Are (1) 
A,B independent, (2) A,C independent? 

 (1)∫       
 

  
=1 gives k=1/25. 

(2)(a)P(5   10)=∫
 

  
        

  

 
=0.5 

      (b)P(0      ∫
 

  
    

 

 
0.5 

      (c)P(2.5        ∫
 

  
     ∫

 

  
        

   

 

 

   
=3/4 

(3)From (2)(a),(b),(c), P(A)=0.5, P(B)=0.5, P(C)=3/4. The events A B and A   are 

given by: A B= , A  :5<X<7.5. Thus P(A B)=0,P(A C)= 
 

  
∫

 

  
        

   

 
=3/8. 
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P(A)P(C)=1/2 X ¾=3/8=P(A   ), P(A)P(B)=1/4                        P(A B). 
Thus A,C are independent and A,B are not independent. 
 

Expectation of a r.v. 

Let the r.v. X take values x1,…,xn with probabilities p1,…,pn. Let X take value xi , fi number of 

times; let N=f1+…+fn. Mean of X is given by 
           

 
 

  

 
     

  

 
  . Let N  . Using the 

statistical definition of probability, limiting value of mean of X ,  ̅             .  

Definition Expectation of X, E(X)=∑     
 
 . 

Thus E(X) may be regarded as the limiting value of the average value of X realized in N random 

experiments as N  . Generalising, if f(X) is a function of X, f(X) will take values f(x1),…,f(xn) 

with frequencies f1,…,fn and the average value of f(X) in N experiments is 
  

 
f(x1)+…+ 

  

 
f(xn) and 

as N  , this approaches to E(f(X))=p1f(x1)+…+pnf(xn). In particular,   
 
   =E[(X-a)r],   

 [    ̅ r],     [    ̅ 2]=  . 

    What is the expectation of the number of failures preceding the first success 
in an infinite series of independent trials with constant probability p of success in a trial? 

 If X denotes the number of failures preceding the first success , we find that X takes the 

values 0,1,2,3,… with probabilities p,qp,q2p,q3p,…, where q=1-p. Thus probability 

density function is f(x)=qrp, r=0,1,2,…. Hence 

E(X)=0.p+1.qp+2.q2p+3.q3p+…=pq(1+2q+3q2+…)=pq(1-q)-2 (since q<1)=q/p = 1/p-1. 

Properties of Expectation 

1. Addition Theorem of Expectation: If X,Y are r.v., then E(X+Y)=E(X)+E(Y). 

2. Multiplication Theorem of Expectation: If X,Y are independent r.v., E(XY)=E(X)E(Y). 

3. If X is a r.v. and a,b are constants, then E(aX+b)=aE(X)+b, provided all the expectations 

exist. 

4. If X 0,then E(X)  0. 

5. If X,Y are r.v. and X(t)  Y(t), forall t, then E(X)  E(Y), provided all expectations exist. 

Let X be a r.v. with the following probability distribution: 

x:   -3  6  9 

P(X=x): 1/6  ½  1/3 

Find E(X) and E(X2) and using laws of expectation, evaluate E(2X+1)2. 

 E(X)=∑     =(-3)
 

 
  

 

 
  

 

 
=

  

 
, E(X2)=∑       

  

 
. Then 

E(2X+1)2=4E(X2)+4E(X)+1=209. 
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 Two unbiased dice are thrown. Find the expected values of the sum of 
numbers of points on them. 

 The probability function of X(sum of number of heads on two dice) is  

x:   2  3  4  … 12 
P(X=x): 1/36  2/36  3/36  … 1/36 

E(X)=∑   
 

  
                                 

 

  
   =7. 

SOME IMPORTANT DISTRIBUTIONS 

 
 

Binomial Distribution 

Let a series of n trials be performed in which occurance of an event is called a ‘success’ and its a 
non-occurrence is called a ‘failure’.Let p be the probability of a success and q=1-p is the 
probability of a failure. We shall assume that trials are independent and probability p of 
success is same in every trial. The number of successes in n trials may be 0,1,2,…,n and is a 
randam variate. The probability of x succeses and n-x failures in a series of n independent trials 
in a specified order(say) SSFSFFF… FSF (S represents success and F represents failure) is 
given by compound probability theorem: P(SSFSFFF… FSF)=P(S)…P(F)=p..p(x factors)q…q(n-

x factors)=pxqn-x. But x successes in n trials can occur in   
  ways and  the probability for each 

one of these ways are same, viz. pxqn-x. Hence the probability of x successes in n trials in any 

order is given by the addition theorem of probability by the expression   
 pxqn-x. The 

probability distribution of the number of successes  so obtained is called  Binomial 
probability distribution, for the obvious reason that the probabilities of 0,1,…,n successes 

viz. qn,   
 p1qn-1,   

 p2qn-2,…,pn are the successive terms of the binomial expansion of (q+p)n. 

Definition A random variable X is said to follow binomial distribution with parameters n and 

p, written as X         if it assumes only non-negative values and its p.m.f. is given by  

P(X=x)=p(x)=    
 pxqn-x, x=0,1,…,n, q=1-p; =0,otherwise. A random variable which follows 

binomial distribution is called a binomial variate. 

For a binomial distribution, following conditions must hold: 

 Number of trials n is finite 

 Trials are independent 

 Probability of success p is constant for each trial 

 Each trial results in one of two mutually exclusive and exhaustive outcomes, termed 

‘success’ and ‘failure’ 
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  Ten coins are tossed. Find the probability of getting at least seven heads. 

 P=q=1/2, n=10. The probability of getting x heads in a random throw of 10 coins is 

p(x)=    
  (

 

 
)
 

(
 

 
)
    

=  
  (

 

 
)
  

, x=0,1,…,10. Hence probability of getting at least 7 

heads is P(X 7)= p(7)+p(8)+p(9)+p(10)= (
 

 
)
  

[  
     

     
      

  ]  
   

    
. 

   A and B play a game in which their chances of winning are in the ratio 3:2. 
Find A’s chance of winning at least three games out of the five games played. 

 Let p be the probability that A wins the game. N=5,p=3/5, q=2/5. The probability that 

out of 5 games played, A wins ‘x’ games is given by:P(X=x)=   
 (

 

 
)
 

(
 

 
)
   

, x=0,1,…,5. 

The required probability that A wins at least three games is given by 

P(X 3)=∑   
  

   
      

  = 0.68. 

   A multiple-choice test consists of 8 questions with 3 answers to each 
question(of which only one is correct). A student answers each question by rolling a balanced 
die and checking the first answer if he gets 1 or 2, the second answer if he gets 3 or 4 and the 
third answer if he gets 5 or 6.  To get a distinction, the syudent must secure at least 75% correct 
answers. If there is no negative marking, what is the probability that the student secures a 
distinction? 

 Since there are three answers to each question, out of which only one is correct, the 

probability of getting a correct answer to a question is p=1/3,so that q=2/3. The 

probability of getting r correct answers in a8-question set is P(X=x)=p(x)= 

  
 (

 

 
)
 

(
 

 
)
   

, x=0,1,…,8. 

Hence the required probability of securing a distinction (that is, to get correct answers 

to at least 6 out of 8 questions) is given by: p96)+p(7)+p(8)=    
 (

 

 
)
 

(
 

 
)
   

 

  
 (

 

 
)
 

(
 

 
)
   

   
 (

 

 
)
 

(
 

 
)
   

=0.0197. 

   The probability of a man hitting a target is ¼. (1) if he fires 7 times , what is 
the probability of his hitting the target at least twice? (2) How many times must he fire so that 
the probability of his hitting the target at least once is greater than 2/3? 

 p=probability of the man hitting the target =1/4, q=1-p=3/4. 

p(x)=probability of getting x hits in 7 shots=  
 (

 

 
)
 

(
 

 
)
   

, x=0,1,…,7. 

(1) Probability of at least 2 hits=1-[p(0)+p(1)]=1-[  
 (

 

 
)
 

(
 

 
)
   

   
 (

 

 
)
 

(
 

 
)
   

]=
    

    
. 
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(2) Probabilty of at least one hit in n shots=1-p(0)=1-(
 

 
)
 

. It is required to find n such 

that 1-(
 

 
)
 

 >
 

 
 , that is, 

 

 
>(

 

 
)
 

. Taking logarithms on both sides and simplifying, 

n>
      

      
=3.8. Thus required number of shots is 4. 

   In a Binomial distribution consisting of 5 independent trials, probabilities of 1 
and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter ‘p’ of the distribution. 

 Let X~B(n,p) where n=5, p(1)=0.4096, p(2)=0.2048. P(X=x)=   
 px(1-p)5-x, x=0,1,..,5. 

Given p(1)=   
 p1(1-p)5-1 = 0.4096,p(2)=   

 p2(1-p)5-2=0.2048. Dividing, we get 
      

   
 2, 

p=0.2. 

Moments of Binomal Distribution 

  
 
      ∑  

 

   

  
          ∑    

                          

 

 

 

Thus mean of Binomial distribution is np. It can be verified that   
 

=n(n-1)p2+np, 

  (central)=npq,   =npq(q-p). 

Note If X~B(n,p), then mean=np, variance=npq. Hence variance<mean for a Binomial variate. 

   The mean and the variance of a binomial distribution are 4 and 4/3 

respectively. Find P(X 1). 

 Let X~B(n,p). Then np=4, npq=4/3. q=1/3.p=1-q=2/3. Hence n=4/p=6. Thus 

P(X 1)=1-P(X=0)=1-qn=1-(
 

 
)
 

=0.99863. 

Poisson Distribution 

Poisson Distribution is a limiting case of Binomial Distribution under the following conditions: 

 n, the number of trials , is indefinitely large, that is, n   

 p, the constant probability of success for each trial is indefinitely small, that is, p 0 

 np=λ (say) is finite. 

           A r.v. X is said to follow a Poisson distribution if it assumes only non-negative 

values and its p.m.f. is given by p(x, )=P(X=x)=
     

  
, x=0,1,…,λ>0; =0,otherwise. 

λ is known as the parameter of the distribution; we write X~P(λ) to denote X is a Poisson 
variate with parameter λ. 

Following are some examples of Poisson variate: 
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 the number of typographical errors per page in typed material 

 the number of defective screws per box of 100 screws 

 the number of bacterial colonies in a given culture per unit area of microscope slab 

 the number of deaths in a district in one year by a rare disease 

Moments of Poisson Distribution 

  
 
       λ,   

 
 E(X2)= λ2+ λ,   =  

 
    

 
  = λ,   = λ. 

    Find the probability that at most 5 defective fuses will be found in a box of 
200 fuses if experience shows that 2 percent of such fuses are defective. 

 n=200, p=probability of defective fuses=2%=.02. Since p is small, we may use oisson 

distribution. λ =mean number of defective pins=np=200(.02)=4. Thus required 

probability =P(X 5)=∑
     

  

 
   =e-4*    

  

 
 

  

 
 

  

  
 

  

   
+=.785. 

    Six coins are tossed 6400 times. Using Poisson distribution, find the 
approximate probability of getting six heads r times. 

 The probability of getting six heads in one throw of six coins (a single trial) is p=(
 

 
)
 

, 

assuming head and tail are equally probable. λ =np=6400(
 

 
)
 

=100. Thus required 

probability of getting 6 heads r number of times is P(X=r)=
         

  
, r=0,1,2,… 

    In a book of 520 pages, 390 typographical errors occur. Assuming Poisson law 
for the number of errors per page, find the probability that a random sample of 5 pages will 
contain no error. 

 The average number of typographical error per page in the book is λ=390/520=0.75. 

Using Poisson probability law,the probability of x errors per page is given by 

P(X=x)= 
     

  
=

             

  
, x=0,1,2,…. The required probability that a random sample of 

5 pages will contain no error is given by [P(X=0)]5=(e-0.75)5=e-3.75. 

 

Normal Distribution 

Definition A r.v. X is said to have a normal distribution with parameters   (called ‘mean’) 

and  2(called ‘variance’) if its p.d.f. is given by the probability law: 

f(x;      
 

 √  
   { 

 

 
(
   

 
)
 

}                   . 

Note (1) When a r.v.is normally distributed with mean   and standard deviation  , it is 

customary to write X~N(   2).  If X~N(   2), then Z=
   

 
~N(0,1); Z is called corresponding 
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standard normal variate. The p.d.f. of standard normal variate Z is given by      

 

√  
  

  

        . The corresponding distribution function, denoted by Φ(z)=P(Z    

∫     
 

  
   

 

√  
∫   

  

 
 

  
  . 

Few Properties of distribution function of standard normal variate 

 Φ(-z)=1- Φ(z) 

 P(a       Φ(
   

 
)   Φ(

   

 
),  where X~ N(   2).   

Chief Characteristics of the Normal Distribution and Normal Probability curve 

The normal probability curve with mean   and s.d.   is given by f(x)=
 

 √  
 

 
      

   ,-      . 

The curve has the following properties: 

 The curve is bell-shaped and symmetrical about the line x=   

 Mean,median and mode of the distribution coincide 

 As x increases numerically, f(x) decreases rapidly, the maximum probability 

[p(x)]max=
 

 √  
 occurring at x=  . 

           

 Since f(x) (being probability) 0, for all x, no portion of the curve lies below the x-axis 

 x-axis is an asymptote to the curve f(x) 

      =0, r=0,1,2,… 

 mean deviation about mean=4  /5 (approx.), quartile deviation=2    (approx.) 

 Area property: P(                      P(                

                                        . 

     For a certain normaldistribution, the first moment about 10 is 40 and the 
fourth moment about 50 is 48. What is the arithmetic mean  and s.d. of the distribution? 

   
 
(about X=10)=40. Thus mean=10+  

 
=50. Also   

 
(about X=50)=48, that is,  4=48( 

since mean =50). But for a normal distribution with s.d.  ,  4=3  4=48 giving  =2. 

     X  N(12,4). (a) Find the probability of (1) X 20, (2)X 20, (3)0 X   . (b) 
Find x such that P(X>x)=0.24. 

 (a) For X=20, Z=
     

 
=2. Thus P(X  20)=P(Z  2)=0.5-P(0      =0.5-

0.4772=0.0228. 

      P(X 20)=1- P(X 20)=1-.0228=.9722. 

      P(0 X    =P(-3 Z 0)=P(0     =0.49865. 
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(b)When X=x, Z=
    

 
=z1(say).GivenP(X>x)=P(Z>z1)=0.24;thus P(0<Z<z1)=0.26. From 

normal table, z1=0.71(approx..) Hence 
    

 
=0.71 giving x=14.84. 

     The mean yield for one-acre plot is 662 kilos with s.d. 32 kilos. Assuming 
normal distribution, how many one acre plots in a batch of 1000 plots would you expect to 
have yield (1) over 700 kilos,(2)below 650 kilos and (3) what is the lowest yield of the best 
100plots? 

 If the r.v. X denotes the yield (in kilos) for one-acre plot, then X~ N(   2), with      , 

 =32. 

(1) The probability that a plot has a yield over 700 kilos is given by P(X>700)=P(Z>1.19) 

[z=
       

  
     ] = 0.5-P(0 Z 1.19)=0.5-0.3830=0.1170. Hence in a batch of 1000 

plots, the expected number of plots with yield over 700 kilos is 1000 x 0.117=117. 

(2) Required number of plots with yield below 650 kilos isgiven by  1000 x 

P(X<650)=1000 X P(Z<-0.38)[z=
       

  
] =1000 x P(Z>0.38)=1000 X [0.5-

P(0   0.38)]=1000[0.5-0.1480]=352. 

(3) The lowest yield , say, x,of best 100 plots is given by:P(X>x)=
   

    
=0.1. When X=x, 

Z=
     

  
=z1 (say) such that P(Z>z1)=0.1⇒ P(0 Z  1)=0.4⇒z1=1.28(approx.) (from 

normal tables). Thus x=662+32z1=702.96. Hence the best 100 plots have yield over 

702.96 kilos. 

     The marks obtained by a number of students for a certain subject are 
assumed to be approximately normally distributed with mean value 65 and s.d. 5. If 3 students 
are taken at random from this list, what is the probability that exactly 2 of them will have 
marks over   70? 

 Let the r.v. X denote the marks obtained by the given set of students in the given subject. 

Given that X~ N(   2), with     ,  =5. The probability that a randomly selected 

student from the given set gets marks over 70 is given by p=P(X>70)=P(Z>1)=0.5-

P(0 Z   =0.5-0.3413=0.1587. Since this probability is same for each student of the 

set, the required probability that out of 3 students selected at random from the set, 

exactly 2 will have marks over 70, is given by the binomial probability law:   
 p2(1-p)=3 

x (0.1587)2 x (0.8413)=.06357. 
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CORRELATION & REGRESSION 

 
 

Often we come across situations in which our focus is simultaneously on two or more possibly 
related variables . If change in one variable affects a change in the other variable, the variables 
are said to be correlated. If increase in values of one variable results in increase in the 
corresponding values of the other variable, variables are said to be positively correlated; if 
increase in one variable results in decrement of values of the other variable, variables are 
negatively correlated. Correlation is said to be perfect if deviation in one variable is followed by 
a corresponding and proportional deviation in the other variable. 

Scatter Diagram 

It is simplest diagrammatic representation of bivariate data. Thus for the bivariate distribution 
(xi,yi), i=1,…,n; if the values of the variables X and Y are plotted along the x-axis and y-axis 
respectively in the x-y plane, the diagram of dots so obtained is known as scatter diagram. 
From the scatter diagram, we can form a fairly good, though vague, idea whether the variables 
are correlated or not: if the points are very close to each other, we should expect  high 
correlation between the variables. 

Karl Pearson’s coefficients of correlation 

Let (xi,yi),i=1,…,n be a bivariate distribution of two r.v.s X and Y.  Correlation coefficient 
between X,Y , usually denoted by r(X,Y) or by rXY, is a numerical measure of linear 

relationship between them and is defined as : r(X,Y)=
        

    
, where Cov(X,Y)=E[{X-

E(X)}{Y-E(Y)}]=
 

 
∑      ̅  

      ̅ =
 

 
∑      ̅

 

 
∑  -  ̅

 

 
∑  +  ̅ ̅  = 

 

 
∑    -  ̅ ̅ ,      

  
 

 
∑     ̅   

 

 
∑  

   ̅ ,      
  

 

 
 

 

 
∑     ̅   

 

 
∑  

   ̅ . 

Note r(X,Y) is independent of units of measurement of X,Y. 

Karl Pearson’s correlation coefficient is based on the assumptions: 

 There is a linear relationship between the r.v.s, that is, if the paired observations of both 

the variables are plotted on a scatter diagram, the plotted points will approximately be 

concurrent 

 The variations in the two variables follow the normal law. 

Limits for value of correlation coefficient 

r(X,Y)=
        

    
 

 

 
∑      ̅  

      ̅ 

*
 

 
∑     ̅  

 

 
∑     ̅  +

 
 

⇒    
 ∑     

 

(∑  
 )(∑  

 )
, where ai= xi-  ̅ , bi= yi-  ̅ . Now by 

Schwartz inequality,  ∑     
   ∑  

   ∑  
  . Hence r2 1. Thus -1    . 

Note if r=+1, correlation is perfect and positive; if r=-1, correlation is perfect and negative. 
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Effect of change of origin and scale of reference on correlation coefficient 

If U=
   

 
   

   

 
 , then     

  

√    
   . Hence if h,k are of the same sign, then        ; if h,k  

are of opposite sign,         . 

Note r is independent of origin a,b. 

Note two independent variables are uncorrelated; converse may not hold. 

 If X,Y are independent, Cov(X,Y)=0; hence r(X,Y)=  
        

    
=0. Two uncorrelated 

variables may not be independent: 

X: -3 -2 -1 1 2 3 
Y:  9  4  1 1 4 9 
XY: -27 -8 -1 1 8 27 
r(X,Y)=0 but X,Y are dependent: Y=X2. 

 Calculate the correlation coefficient for the following heights(in inches) of 
fathers (X) and their sons(Y): 

X: 65 66 67 67 68 69 70 72 

Y: 67 68 65 68 72 72 69 71 

 Calculation for correlation coefficient 

X  Y  X2  Y2  XY 
65  67  4225  4489  4355 
66  68  4356  4624  4488 
67  65  4489  4225  4355 
67  68  4489  4624  4556 
68  72  4624  5184  4896 
69  72  4761  5184  4968 
70  69  4900  4761  4830 
72  71  5184  5041  5112 
……………………………………………………………………………………….. 
544  552  37028 38132 37560 

 ̅  
 

 
∑  

   

 
     ̅  

 

 
∑  

   

 
    

 

r(X,Y)= 
        

    
=

 

 
∑    ̅ ̅

√(
 

 
∑    ̅ )(

 

 
∑    ̅ )

 
 

 
                

√,
     

 
    -,

     

 
    -

=0.603. 
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Short-cut Method 

X Y U=X-
68 

V=Y-69 U2 V2 UV 

65 67 -3 -2 9 4 6 
66 68 -2 -1 4 1 2 
67 65 -1 -4 1 16 4 
67 68 -1 -1 1 1 1 
68 72 0 3 0 9 0 
69 72 1 3 1 9 3 
70 69 2 0 4 0 0 
72 71 4 2 16 4 8 
TOTAL  0 0 36 44 24 
 

 ̅ =0,   ̅ =0, Cov(U,V)=
 

 
∑    ̅ ̅ =

 

 
     =3,   

  
 

 
∑    ̅ =

 

 
  36=4.5,   

  
 

 
∑   

 ̅ =
 

 
  44=5.5. Thus rUV=

        

    
=

 

√         
=0.603. 

      A computer while calculating correlation coefficient between two variables X 

and Y from 25 pairs of observations obtained the following results: n=25,∑      ∑   
    ∑      ∑       ∑        It was however later discovered at the time of checking 
that he had copied down two pairs as (6,14),(9,6) while the correct values are (8,12),(6,8). 
Obtain the correct value of correlation coefficient. 

 Corrected ∑  125-6-8+8+6=125,corrected ∑  100-14-6+12+8=100 

Corrected ∑  =650-62-82+82+62=650, corrected ∑  =460-142-62+122+82=436, 

Corrected ∑  =508-6 X 14-8 X 6+8 X 12+6 X 8=520. 

Corrected  ̅=
 

  
 x 125=5, Corrected  ̅=

 

  
 x100=4. 

Cov(X,Y)= 
 

 
∑    ̅ ̅=4/5.   

 =1,   
 =36/25. Hence corrected rXY=0.67. 

Regression Analysis 

Regression Analysis is a mathematical measure of the average relationship between two or 
more  variables in terms of the original units of data.  

If the variables in a bivariate distribution are related, the corresponding points in the scatter 
diagram will cluster round some curve called’ curve of regression’. If the curve is a straight line, 
it is called ‘line of regression’ and there is said to be  linear regression between the variables. 

The line of regression is the line which gives the best estimate to the value of one variable for 
any specific value of the other variable. Thus ‘line of regression’ is the line of best fit and is 
obtained by principle of least squares. 

Let us suppose that in the bivariate distribution (xi,yi), i=1,…,n, X is independent and Y is 
dependent variable. Let the line of regression of Y on X be Y=a+bX (1).  (1) represents a family 
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of straight lines for different values of a and b. The problem is to find a and b corresponding to 
the line of ‘best fit’. 

According to the principle of least squares, we have to find a,b so that E=∑           
  

  is 

minimum. From the principle of maxima and minima, 0=
  

  
   ∑   

           and 

0=
  

  
   ∑    

 
           which gives  ∑        

 b ∑   
 
  (2), ∑        

 ∑    
 
 

 ∑   
  

 (3) 

Equations (2) and (3) are known as normal equations for estimating a and b. From (2), on 

dividing by n, we get  ̅      ̅(4)  Thus the line of regression of Y on X passes through ( ̅,  ̅). 

Now A(say)=Cov(X,Y)=
 

 
∑      ̅ ̅ ⇒   

 

 
∑    =A+ ̅ ̅. (5) 

  
  

 

 
∑  

   ̅ ⇒     
 

 
∑  

    
   ̅ .(6) 

From (3),(5) and (6), A+ ̅ ̅=a ̅+b(  
   ̅ ). From (4) and (6), A=b  

  giving b=A/  
 . 

Since the regression line of Y on X passes through ( ̅,  ̅) and has slope b=A/  
 , its equation is  

Y- ̅      
 (X- ̅), that is, Y- ̅  r

  

  
(X- ̅). 

Similarly the equation of line of regression of X on Y is given by X- ̅=r
  

  
(Y- ̅). 

Note In case of perfect correlation r= 1 and in that case the equations of two regression lines 

coincide: 
   ̅

  
= 

   ̅

  
.  

Regression Coefficients 

bYX= r
  

  
 and bXY= r

  

  
 are called regression coefficient of Y on X and of X on Y respectively. 

Properties of regression coefficients 

 bYX bXY=r2. Thus r= √      . Since r=
 

    
, bYX=

 

  
 , bXY=

 

  
 , it may be noted that sign of 

correlation coefficient is same as that of regression coefficients, since the sign of each 

depends on that of A. Thus, if the regression coefficients are positive, r is positive; if the 

regression coefficients are negative, r is negative. Hence the sign to be taken before the 

square root is that of the regression coefficients. 

 

 If one of the regression coefficients is >1, then the other must be <1: bYX bXY=r2 1; if 

bYX=
 

   
>1, then bXY<1. 
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 Regression coefficients are independent of change of origin but not of scale: if U=
   

 
, 

V=
   

 
, then bXY=

 

 
bUV. 

 

 Obtain the equations of two lines of regressions for the following data. Also 
obtain the estimate of X for Y=70. 

X: 65 66 67 67 68 69 70 72 

Y: 67 68 65 68 72 72 69 71 

 Let U=X-68, V=Y-69. Then  ̅     ̅   ,   
        

  5.5, Cov(U,V)=3,r(U,V)=0.6. 

Since correlation coefficient is independent of change of origin, r=r(X,Y)=r(U,V)=0.6. 

 ̅=68+ ̅=68,  ̅=69+ ̅=69,  =  =√   =2.12,      =√   =2.35. 

Equation of line of regression of Y on X is: Y- ̅=r
  

  
(X- ̅), or, Y=0.665 X+23.78 

Equation of line of regression of X on Y is: X- ̅=r
  

  
(Y- ̅), or, X=0.54Y+30.74 

To estimate X for given Y, we use line of regression of X on Y.If Y=70, estimated value of 

X is given by  ̂=0.54 X 70+30.74=68.54. 

In a partially destroyed laboratory, record of an analysis of correlation data, the 
following results only are available:  Variance of X=9, Regression equations: 8X-

10Y+66=0,40X-18Y=214. What are values of(1)  ̅  ̅, (2)rXY, (3)   ? 

 (1)Since ( ̅  ̅) is the point of intersection of the lines of regression, solving given 

equations of lines of regression simultaneously, we get  ̅=13,  ̅=17. 

(2) Comparing given equations of regression lines Y=
 

  
  

  

  
, X=

  

  
  

   

  
, we get 

bYX=
 

  
 

 

 
, bXY=

  

  
 

 

  
. Hence r2= bYX. bXY=

 

  
. Hence r= 

 

 
. Since both the regression 

coefficients are positive, r=
 

 
=0.6. 

(3)we have bYX=r.
  

  
 ; hence 

 

 
=

 

 
 
  

 
, giving   =4. 

 

   Find the most likely price in Mumbai corresponding to the price of Rs. 70 at 
Kolkata from the following: 

    Kolkata   Mumbai 

Average price   65    67 

Standard Deviation  2.5    3.5 

Correlation coefficient between the prices of commodities in the two cities is 0.8. 
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 Let the prices (in Rs.) in Kolkata and Mumbai be denoted by X and Y respectively. Given 

 ̅=65,  ̅=67,   =2.5,   =3.5, r=0.8. We want Y corresponding to X=70. 

Line of regression of Y on X is: Y- ̅= r.
  

  
(X- ̅) ,or, Y=67+0.8 X 

   

   
(X-65).  

When X=70,  ̂=67+0.8 X 
   

   
(70-65)=72.6. 

Thus most likely price in Mumbai corresponding to the price of Rs .70 in Kolkata is Rs. 
72.60. 

Can Y=5+2.8 X and X=3-0.5Y be the estimated regression equations of Y on X 
and of X on Y respectively? 

 Line of regression of Y on X is: Y=5+2.8X ;thus bYX=2.8 

Line of regression of X on Y is:X=3-0.5Y; thus bXY=-0.5 
This is not possible, since the regression coefficients bYX, bXY must be of the same sign. 
Hence given equations can not be taken as lines of regression. 

Curvilinear Regression 

In many situations, variables X and Y may be related non-linearly. Extending the method of 
finding regression lines using method of least square, we like to fit a parabolic curve 
Y=a+b1X+b2X2 to the given set (x1,y1),(x2,y2),…,(xn,yn) of n observations. 

Using principle of least squares, we have to determine the constants a,b1,b2 so that E=∑     
 
 

           
    is minimum. Equating to zero the partial derivatives of E w.r.t. a,b1,b2, we 

obtain the normal equations : 

0=
  

  
=-2 ∑                

   
 , 0=

  

   
   ∑                  

   
 , 

0=
  

   
   ∑   

                
   

 .  

Simplifying, ∑        ∑     ∑  
 ,  ∑       ∑     ∑  

    ∑  
 ,  ∑   

     ∑  
  

  ∑  
    ∑  

 . Solving these equations simultaneously, we get a,b1,b2 corresponding to the 

curve of best fit. 

 For 10 randomly selected observations, following data were recorded: 

Overtime hours(X): 1 1 2 2 3 3 4 5 6 7 

Additional units(Y): 2 7 7 10 8 12 10 14 11 14 

Fit a parabolic curve to above data using method of least squares. 

Serial 
No. 

X Y X2 X3 X4 XY X2Y 

1 1 2 1 1 1 2 2 
2 1 7 1 1 1 7 7 
3 2 7 4 8 16 14 28 
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4 2 10 4 8 16 20 40 
5 3 8 9 27 81 24 72 
6 3 12 9 27 81 36 108 
7 4 10 16 64 256 40 160 
8 5 14 25 125 625 70 350 
9 6 11 36 216 1296 66 396 
10 7 14 49 343 2401 98 686 
Total 34 95 154 820 4774 377 1849 

 

Corresponding normal equations are: 10a+34b1+154b2=95,34a+154b1+820b2=377, 
154a+820b1+4774b2=1849. Solving , a=1.80,b1=3.48,b2=-0.27. Thus regression equation of Y 
on X is: Y=1.80+3.48X-0.27X2. 

 

INDEX NUMBERS 

 
 

An index number may be defined as a measure of the average change in a group of related 
variables over two different situations. The group of variables may be the prices of a specified 
set of commodities, the volumes of production in different sectors of an industry, the marks 
obtained by a student in different subjects and so on. The two different ‘situations’ may be 
either two different times or two different places. 

 The most commonly used index number is the index number of prices. Let p0 and p1 denote 
the prices of a commodity in suitable units in two different situations denoted by ‘0’and ‘1’. Any 
change in the price of the commodity from ‘0’ to ‘1’ may be expressed either in absolute or 
relative terms. The absolute change is p1-p0; the relative change is given by p1/p0, which is 
called a price relative. The problem is to combine these various individual changes in prices 
and get a measure of the overall change in the prices of the set of commodities. A price index 
number is a sort of average of these individual price relatives, and it measures the price 
changes of all the commodities collectively. 

Although different commodities may have peculiar characteristics in their price fluctuations, it 
has been empirically found that , taken as a whole, the distribution of price relatives is bell-
shaped  with a marked central tendency, provided the base period is in the recent past. Hence 
we are justified in taking an appropriate measure of central tendency in combining the 
different price relatives.  

Let us denote by p0i the price of i th commodity in the base period and by p1i the price of this 
commodity in the current period (i=1,…,k). If we use the arithmetic mean of price relatives for 

constructing the index number, then I01=
∑         

 
 is a simple or unweighted index number. 
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Choice of weights 

The commodities included in the index number are not all of equal importance. For instance, 
in constructing a wholesale price index for India, ‘rice’ should have greater importance than 
‘tobacco’. So the problem of weighting different commodities included in the index number 
according to  their importance deserves attention. If we ignore weights, we get an 
inappropriately weighted index. If wi be the weight attached to the price relative for the i th 
commodity, then we get the  weighted A.M. 

I01=
∑

   
   

  

∑  
 . Choosing different weight system, we get different index numbers: 

 Choosing wi=q0i (the base period quantities) we get Laspeyres’ index: I01=
∑        

∑        
. 

 Choosing wi=q1i (the current period quantities) we get Paasche’s index: I01=
∑        

∑        
 

 Choosing wi=(q1i+q0i)/2, we get Edgeworth-Marshall index: I01=
∑              

∑              
 

 Fisher’s ‘ideal’  index: I01=√
∑        

∑        

∑        

∑        
 

 Table below gives the wholesale prices (p) and quantities produced (q) of a 
number of commodities in Delhi. Calculate Laspeyres’, Paasche’s, Edgeworth-Marshall and 
Fisher’s index numbers for the year 1985 , with the year 1982 as base. 

Commodity      1982        1985 

       p   q    p           q 

Rice   277.92  1.1    366.67  6.2 

Wheat  176.25  106.0    186.58  116.9 

Jowar  151.00  4.2    182.57  5.5 

Barley  121.83  2.4    181.25  1.0 

Bajra   156.75  13.1    155.75  6.1 

Gram   273.00  1.0    498.83  0.6 

 Let p0i,q0i and p1i,q1i denote the prices and quantities for 1982 and 1985, 
respectively. Then  

∑        =22241.229, ∑        =23921.766, ∑        =24399.034, ∑        =26519.314. 

Thus Laspeyres’ Inex=
         

         
      =107.56 

 Paasche’s Index=
         

         
      =108.69 
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Edgeworth-Marshall Index=
        

         
      =108.15 

and Fisher’s  ‘ideal’ index number=√               =108.12. 

 

TIME SERIES ANALYSIS 

 
 

Time series is a series of observations recorded at different points or intervals of time. 
Maximum temperature of a place for different days of a month, yearly production of coal for 
last 20 years, monthly sales figure of some product  are examples of time series data. 

Let yt denotes the value of the variable y at time t (t=1,..,n).In case the figures relate to n 
successive periods (and not points of time), t is to be taken as the mid-point of the t th period. 

Components of time series 

A graphical representation of a time series shows continual change over time, giving us an 
overall impression of haphazard movement. A critical study  of the series will, however, reveal 
that the change is not totally haphazard and a part of it, at least, can be accounted for. The 
systematic part which can be accounted for may be attributed to several broad factors: 
(1)secular trend, (2)seasonal variation, (3)cyclical variation. Separation of the different 
components of a time series is of importance, because it may be that we are interested in a 
particular component of the systematic variation or that we want to study the series after 
eliminating the effect of a particular component. It may be noted that it is the systematic part 
of the time series which may be used in forecasting. 

Secular Trend or trend of a time series is the smooth, regular, long-term movement of the 
series if observed long enough. Sudden or frequent changes are incompatible with the idea of 
trend . 

Seasonal variation  

Seasonal variation stands for a periodic movement in a time series where the period is not 
longer than one year. It is the component which recurs or repeats at regular intervals of time. 
Example of seasonal fluctuation may be found in the passenger traffic during the 24 hours of a 
day, sales of a departmental store during the 12months of a year etc.  The study and 
measurement of this component is of prime importance in certain cases. The efficient running 
of any departmental store , for example, would necessitate a careful study of seasonal variation 
in the demand of the goods. 

Cyclical Fluctuation 

By cyclical fluctuation  we mean the oscillatory movement in a time series, the period of 
oscillation being more than a year. One complete period is called a cycle. The cyclical 
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fluctuations are not necessarily periodic, since the length of the cycle as also the intensity of 
fluctuations may change from one cycle to another. 

Irregular Fluctuation 

This component is either wholly unaccountable or are caused by such unforeseen events as 
wars, floods, strikes etc. 

Estimation of secular trend in a time series by elimination of seasonal and 
cyclical fluctuation 

In order to measure the trend , we are to eliminate from the time series the other three 
components. If the period of seasonal fluctuations be a year, then the yearly totals or tearly 
averages will be free from the seasonal effect. Thus, in determining the trend from monthly 
data, it is customary to start with the yearly totals or averages, which are free from seasonal 
effects. The monthly trend values can be obtained from the annual trend values by 
interpolation.to eliminate the other two components, viz. the cyclical and the irregular, we may 
consider the following methods: 

Method of moving averages 

The simple moving average of period k of a time series gives a new series of arithmetic means, 
each of k successive observations of the time series. We start with the first k observations. At 
the next stage, we leave the first and include the (k+1)th observation. This process is repeated  
until we arrive at the last k observations. Each of these means is centered against the time 
which is the mid-point of the time interval included in the calculation of the moving average. 
Thus when k, the period of moving average, is odd, the moving average values correspond to 
tabulated time values for which the time series is given. When k is even,the moving average 
falls midway between two tabulated values. In this case, we calculate a subsequent two-item 
moving average to make the resulting moving average values correspond to the tabulated time 
periods. 

The interpolation ofsimple moving averages is very simple. A k-point moving average may be 
interpreted as the estimated value for the middle of the period covered from successive linear 
curves fitted through the first k points, through the 2nd to the (k+1)th values and so on, and 
lastly through the last k points. 

Consider the first k points y1,…,yk. Let the origin be shifted to the middle of the period so that 
∑   =0. The normal equations for fitting a curve Y=a+bt through y1,…,yk are 

∑  =ka+b∑   ,∑       ∑     ∑   
  

So that   ̂  
∑  

 
  ̅  ̂  

∑    

∑  
 . Hence the estimated value for the middle of the period covered 

,that is, for t=0, from the curve Y= ̂+ ̂t is  ̂, which is the first moving average value. Similarly 
it can be shown that the estimated value from the fitted linear curve through y2,…,yk+1 would be 
 

 
∑   

   
   , the second moving average value and so on. 
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A moving average with a properly selected period will smooth out cyclical fluctuations from the 
series and give an estimate of the trend. The central problem in this method is thus the 
selection of an appropriate method which will eliminate all fluctuations that d raw the series 
away from the trend. 

  Apply 3-year moving average to the following data on production of cements. 
Plot the data and the trend values on the same graph. 

Year:    1992 1993 1994 1995 1996 1997 1998 1999 

Output(in ‘000 tons)  1542 1447 1552 2102 2612 3195 3597 3567 

 Determination of trend values by 3-yearly moving average 

year Output(in ‘000 
tons) 

3-yearly 
moving total 

3-yearly moving 
average(Trend 
values) 

1992 1542 .. .. 
1993 1447 4541 1513.7 
1994 1552 5101 1700.3 
1995 2102 6266 2088.7 
1996 2612 7909 2636.3 
1997 3195 9344 3114.7 
1998 3537 10299 3433.0 
1999 3567 .. .. 

 

 Work out the trend values by 4-yearly moving average from the following data 
on production of iron ore( in ‘000 tons) 

Year:   1983 ’84 ’85 ’86 ’87 ’88 ’89 ’90 ’91 ’92 ‘93 

Production: 110 125 118 134 121 132 145 155 159 148 162 

 Year   production 4-yearly  4-yearly        4-yearly(centered) 

     moving total moving average   moving average 
1983   110 
 
1984   125 
      487   121.75 
1985   118        123.125 
      498   124.5 
1986   134        125.370 
      505   126.25 
1987   121        129.620 
      532   133.00 
1988   132        135.625 
      553   138.25 
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1989   145        143.000 
      591   147.75 
1990   155        149.750 
      607   151.75 
1991   159        153.870 
      624   156.00 
1992   148 
 
1993   162 

  Calculate the trend values by the method of moving averages from the following 
data on quarterly production(in ‘000 tons): 

       year 

Quarter   1995   1996   1997 

I   15   15   20 

II   19   22   21 

III   21   23   25 

IV   18   20   20 

Is it possible to find the trend value for the first quarter of 1998 by the above method? Justify. 

Year Quarter Production    4-Quarter 4-Quarter  4-Quarter(centered) 

  (in’000 tons) moving total  moving average   moving average 

 I       15        ---- 

 

1995 II      19        ---- 

            73   18.25 

 III     21        18.250 

     73   18.25 

 IV     18        18.625 

     76 

 I        15     19.00 

     78      19.250 
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1996 II       22     19.50 

     80      19.750 

 III     23     20.00 

     85      20.625 

 IV     20     21.25 

     84      21.125 

 I       20     21.00 

     86      21.250 

1997 II      21     21.50 

     86      21.500 

 III      25     21.50 

           ---- 

 IV      20        ----- 

It is not possible to find the trend values for the 1st quarter of 1998 by the moving average 
method since there is no specific mathematical equation which can be used for interpolation or 
prediction purposes. 

Method of mathematical curves 

The trend values obtained by the method of moving averages , even though fairly smooth, is 
not representable by a simple mathematical formula.Since there does not exist any 
mathematically expressed trend equation, the method fails to achieve the main objective of 
trend analysis, that is, the interpolation and extrapolation of trend values.Therefore, attempt is 
made to fit the observed time series with a fairly simple mathematical curve. The fitting of 
mathematical curve has two parts: (1) determination of the appropriate trend curve, (2) 
determination of unknown parameters involved in the equation. From the graphical 
representation of the given time series , an investigator may guess the nature of the which fits 
the data best. The method is subjective in this sense. Determination of unknown constants 
appearing in the trend equation can be done by method of least squares. 

   Following table gives the number of hospital beds in West Bengal for the years 
1979 to 1986. Plot of year versus no. of beds suggest that a linear trend will be appropriate to fit 
to the given data. The necessary data are done in table below: 

Year No.of beds t=2(year- 
mid-period) 

tyt t2 Tt=a0+a1t 

1979 55477 -7 -388339 49 55938 
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1980 58045 -5 -290225 25 57365 
1981 58448 -3 -175344 9 58792 
1982 59876 -1 -59876 1 60219 
1983 61894 1 61894 1 61646 
1984 63734 3 191202 9 63073 
1985 64667 5 323335 25 64500 
1986 65319 7 457233 49 65927 
Total 487460 0 119880 168  
 

Since ∑  =0, the normal equations are 487460=8a0, 119880=168a1 so that a0=60932.5, 
a1=713.57. The linear trend equation is , therefore, Tt=60932.5+713.57t. 

 table below shows the data on passenger-kilometer(millions) for Indian 
Railways during 1983 to 1989. Fit a quadratic trend : 

Year Pass-Kilo T=year-
1986 

tyt t2yt t2 t4 

1983 6096 -3 -18288 54864 9 81 
1984 6379 -2 -12758 25516 4 16 
1985 6774 -1 -6774 6774 1 1 
1986 7327 0 0 0 0 0 
1987 7516 1 7516 7516 1 1 
1988 7863 2 15726 31452 4 16 
1989 8427 3 25281 75843 9 81 
Total 50382 0 10703 201965 28 196 

Here ∑   =0,∑   =0. Hence the normal equations are 

0= ∑ =7a0+28a1, 10703= ∑  =a2 ∑   , 201965=28a0+196a1. Solving, a0=7176.63, a1=5.20, 
a2=382.25. Thus trend equation is Tt=7176.63+5.20t+382.25t2. 

Quadratic Trend fitted to the data 

Year T=year-1986 a2t a1t2 Trend Tt=a0+a2t+a1t2 
1983 -3 -1146.75 46.80 6076.68 
1984 -2 -764.5 20.80 6432.93 
1985 -1 -382.25 5.20 6799.58 
1986 0 0 0 7176.63 
1987 1 382.25 5.20 7564.08 
1988 2 764.5 20.80 7961.93 
1989 3 1146.75 46.80 8370.18 
 

 

 



 

 

LINEAR PROGRAMMING  

CHAPTER I 

Mathematical formulation of Linear Programming Problem 

Let us consider two real life situations to understand what we mean by a 

programming problem. For any industry, the objective is to earn maximum profit 

by selling products which are produced with limited available resources, keeping 

the cost of production at a minimum. For a housewife the aim is to buy provisions 

for the family at a minimum cost which will satisfy the needs of the family.    

All these type of problems can be done mathematically by formulating a problem 

which is known as a programming problem. Some restrictions or constraints are to 

be adopted to formulate the problem. The function which is to be maximized or 

minimized is called the objective function. If in a programming problem the 

constraints and the objective function are of linear type then the problem is called a 

linear programming problem. There are various types of linear programming 

problems which we will consider through some examples. 

Examples 

1. (Production allocation problem) Four different type of metals, namely, iron, 

copper, zinc and manganese are required to produce commodities A, B and 

C. To produce one unit of A, 40kg iron, 30kg copper, 7kg zinc and 4kg 

manganese are needed. Similarly, to produce one unit of B, 70kg iron, 14kg 

copper and 9kg manganese are needed and for producing one unit of C, 50kg 

iron, 18kg copper and 8kg zinc are required. The total available quantities of 

metals are 1 metric ton iron, 5 quintals copper, 2 quintals of zinc and 

manganese each. The profits are Rs 300, Rs 200 and Rs 100 by selling one 

unit of A, B and C respectively. Formulate the problem mathematically. 

Solution: Let z be the total profit and the problem is to maximize z(called 

the objective function). We write below the given data in a tabular form: 

 

 

 

 

 



 

 

 Iron Copper Zinc Manganese Profit 

per unit 

in Rs 

A 40kg 30kg 7kg 4kg 300 

B 70kg 14kg 0kg 9kg 200 

C 60kg 18kg 8kg 0kg 100 

Available 

quantities  

1000kg 500kg 200kg 200kg  

  

To get maximum profit, suppose    units of A,    units of B and    units of 

C are to be produced. Then the total quantity of iron needed is       

          kg. Similarly, the total quantity of copper, zinc and 

manganese needed are                 kg ,              kg 

and              kg respectively. From the conditions of the problem 

we have,  

                    

  

                                                                          

                                                                                           

                                                                                             

The objective function is                     which is to be maximized. 

Hence the problem can be formulated as,  

Maximize                                                                      

                                   Subject to        

                    

  

                                                                          

                                                                                           

                                                                                             

As none of the commodities produced can be negative,                .                                    



 

 

 All these inequalities are known as constraints or restrictions. 

2. (Diet problem) A patient needs daily 5mg, 20mg and 15mg of vitamins A, B 

and C respectively. The vitamins available from a mango are 0.5mg of A, 

1mg of B, 1mg of C, that from an orange is  2mg of B, 3mg of C and that 

from an apple is 0.5mg of A, 3mg of B, 1mg of C. If the cost of a mango, an 

orange and an apple be Rs 0.50, Rs 0.25 and Rs 0.40 respectively, find the 

minimum cost of buying the fruits so that the daily requirement of the 

patient be met. Formulate the problem mathematically. 

Solution: The problem is to find the minimum cost of buying the fruits. Let z be 

the objective function. Let the number of mangoes, oranges and apples to be 

bought so that the cost is minimum and to get the minimum daily requirement 

of the vitamins be          respectively. Then the objective function is given 

by 

                                                                                 

      From the conditions of the problem 

                                                                       

                                               

                                                                                 and  

                                                                              

Hence the problem is  

Minimize                             .                                                       

     Subject to                             

                                                        

                                                            

                            and                  

 



 

 

3. (Transportation problem) Three different types of vehicles A, B and C have 

been used to transport 60 tons of solid and 35 tons of liquid substance. Type 

A vehicle can carry 7 tons solid and 3 tons liquid whereas B and C can carry 

6 tons solid and 2 tons liquid and 3 tons solid and 4 tons liquid respectively. 

The cost of transporting are Rs 500, Rs 400 and Rs 450 respectively per 

vehicle of type A, B and C respectively. Find the minimum cost of 

transportation. Formulate the problem mathematically. 

Solution: Let z be the objective function. Let the number of vehicles of type 

A, B and C used to transport the materials so that the cost is minimum be  

         respectively. Then the objective function is              

      . The quantities of solid and liquid transported by the vehicles are 

            tons and             tons respectively.                                  

By the conditions of the problem,                 and         

       .                 Hence the problem is  

Minimize                          

Subject to                          

                                        

                               And                

4. An electronic company manufactures two radio models each on a separate 

production line. The daily capacity of the first line is 60 radios and that of 

the second line is 75 radios. Each unit of the first model uses 10 pieces of a 

certain electronic component, whereas each unit of the second model uses 8 

pieces of the same component. The maximum daily availability of the 

special component is 800 pieces. The profit per unit of models 1 and 2 are 

Rs 500 and Rs 400 respectively. Determine the optimal daily production of 

each model. 

 

Solution: This is a maximization problem. Let        be the number of two 

radio models each on a separate production line. Therefore the objective 

function is               which is to be maximized. From the 

conditions of the problem we have       ,       ,             . 

Hence the problem is  

Maximize                    



 

 

Subject to                    

                                                           

                                                                                                                         

And                         

 

5. An agricultural firm has 180 tons of Nitrogen fertilizers, 50 tons of 

Phosphate and 220 tons of Potash. It will be able to sell 3:3:4 mixtures of 

these substances at a profit of Rs 15 per ton and 2:4:2 mixtures at a profit of 

Rs 12 per ton respectively. Formulate a linear programming problem to 

determine how many tons of these two mixtures should be prepares so as to 

maximize profit. 

 

Solution: Let the 3:3:4  mixture be called A and 2:4:2  mixture be called B. 

Let           tons of these two mixtures be produced to get maximum profit. 

Thus the objective function is                            which is to be 

maximized. Let us denote Nitrogen, Phosphate and Potash as N Ph and P 

respectively.  

Then in the mixture A ,   
 

 
 

  

 
 

 

 
   (say).                                  

                                                          

                                            .                                                   

Similarly for the mixture B ,                            

                                                        . 

Thus the constraints are  
 

  
   

 

 
       [since in A, amount of nitrogen 

= 
   

    
   

 

  
  ]            Similarly   

 

  
   

 

 
        and  

 

 
   

 

 
   

    .   Hence the problem is     

Maximize                  

Subject to            
 

  
   

 

 
       

                            
 

  
   

 

 
                   

                            
 

 
   

 

 
                                                                                                         

And                                       .  

 



 

 

6. A coin to be minted contains 40% silver, 50% copper, 10% nickel. The mint 

has available alloys A, B, C and D having the following composition and 

costs, and availability of metals: 

 

 % 

silver 

% 

copper 

% 

nickel 

Costs per 

Kg 

A 30 60 10 Rs 11 

B 35 35 30 Rs 12 

C 50 50 0 Rs 16 

D 40 45 15 Rs 14 

Availabil

ity of 

metals   

 Total 1000 Kgs 

  

Present the problem of getting the alloys with specific composition at 

minimum cost in the form of a L.P.P. 

Solution: Let               Kg s be the quantities of alloys A, B, C, D used 

for the purpose. By the  given condition                   . 

The objective function is                            

and the constraints are       0.3                            for 

silver 

                                           0.6                           for 

copper 

                                           0.1                                    for 

nickel 

Thus the L.P.P is  Minimize                            

Subject to         0.3                             

                         0.6                            

                         0.1                                     

                                                                      

                               And                

  

 

 

 



 

 

7. A hospital has the following minimum requirement for nurses. 

Period Clock time 

(24 hours 

day) 

Minimum 

number of 

nurses 

required 

1 6A.M-

10A.M 

60 

2 10A.M-

2P.M 

70 

3 2P.M-

6P.M 

60 

4 6P.M-

10P.M 

50 

5 10P.M-

2A.M 

20 

6 2A.M-

6A.M 

30 

 

Nurses report to the hospital wards at the beginning of each period and work for 

eight consecutive hours. The hospital wants to determine the minimum number of 

nurses so that there may be sufficient number of nurses available for each period. 

Formulate this as a L.P.P. 

Solution: This is a minimization problem. Let               be the number of 

nurses required for the period 1, 2, ……, 6. Then the objective function is  

Minimize,                  and the constraints can be written in the 

following manner. 

   nurses work for the period 1 and 2 and    nurses work for the period 2 and 3 

etc. Thus for the period 2,  

        . 

 Similarly, for the periods 3, 4, 5, 6, 1 we have,    

          

            



 

 

            

               

          ,                 

 

Mathematical formulation of a L.P.P 

From the discussion above, now we can mathematically formulate a general Linear 

Programming Problem which can be stated as follows. 

Find out a set of values               which will optimize (either maximize or 

minimize) the linear function 

                      

Subject to the restrictions 

                              

                              

…………………………………………….. 

                              

And the non-negative restrictions                 where              

                      are all constants and                  are 

variables. Each of the linear expressions on the left hand side connected to the 

corresponding constants on the right side by only one of the signs   , = and   ,is 

known as a constraint. A constraint is either an equation or an inequation. 

The linear function                       is known as the objective 

function. 

By using the matrix and vector notation the problem can be expressed in a compact 

form as  

Optimize       subject to the restrictions            ,  



 

 

where   [   ] is a m x n coefficient matrix., 

               
  is a n-component column vector, which is known as a cost 

or price vector, 

               
  is a n-component column vector, which is known as 

decision variable vector or legitimate variable vector and 

                 is a m-component column vector, which is known as 

requirement vector.  

In all practical discussions,        . If some of them are negative, we make them 

by multiplying both sides of the inequality by (-1). 

If all the constraints are equalities, then the L.P.P is reduced to 

Optimize       subject to           . 

This form is called the standard form. 

Feasible solution to a L.P.P: A set of values of the variables, which satisfy all the 

constraints and all the non-negative restrictions of the variables, is known as the 

feasible solution (F.S.) to the L.P.P. 

Optimal solution to a L.P.P: A feasible solution to a L.P.P which makes the 

objective function optimal is known as the optimal solution to the L.P.P 

There are two ways of solving a linear programming problem: (1) Geometrical 

method and (2) Algebraic method. 

A particular L.P.P is either a minimization or a maximization problem. The 

problem of minimization of the objective function   is nothing but the problem of 

maximization of the function      and vice versa and                with 

the same set of constraints and the same solution set. 

Graphical or Geometrical Method of Solving a Linear Programming Problem 

We will illustrate the method by giving examples. 

 



 

 

Examples  

Solve the following problems graphically. 

1. Maximize             

Subject to            

                             ,       . 

          

 

 

 

 

 

 

 

 

The constraints are treated as equations along with the non negativity relation. We 

confine ourselves to the first quadrant of the xy plane and draw the lines given by 

those equations. Then the directions of the inequalities indicate that the striped 

region in the graph is the feasible region. For any particular value of z, the graph of 

the objective function regarded as an equation is a straight line (called the profit 

line in a maximization problem) and as z varies, a family of parallel lines is 

generated. We have drawn the line corresponding to z=450. We see that the profit 

z is proportional to the perpendicular distance of this straight line from the origin. 

Hence the profit increases as this line moves away from the origin. Our aim is to 

find a point in the feasible region which will give the maximum value of z. In order 

to find that point we move the profit line away from origin keeping it parallel to 

itself. By doing this we find that (5,4) is the last point in the feasible region which 

the moving line encounters. Hence we get the optimal solution           for 

       . 
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Note: If we have a function to minimize, then the line corresponding to a particular 

value of the objective function (called the cost line in a minimization problem) is 

moved towards the origin.    

2. Solve graphically: 

Minimize         

Subject to          

                            

                                    

                                                   

 

 

 

 

 

 

 

 

 

 

Here the striped area is the feasible region. We have drawn the cost line 

corresponding to z=30. As this is a minimization problem the cost line is moved 

towards the origin and the cost function takes its minimum at           for 

         . 

 

 

In both the problems above the L.P.P. has a unique solution. 
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3.  

Solve graphically: 

Minimize       

Subject to            

                                

                                        ,        

Here the striped area is the feasible region. We have drawn the cost line 

corresponding to z=4. As this is a minimization problem the cost line 

when moved towards the origin coincides with the boundary line 

      and the optimum value is attained at all points lying on the 

line segment joining (2,0) and (0,2) including the end points. Hence there 

are an infinite number of solutions. In this case we say that alternative 

optimal solution exists. 
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4. Solve graphically 

Maximize         

Subject to            

                           

                        ,       

 

 

 

 

 

 

 

 

The striped region in the graph is the feasible region which is unbounded.. For any 

particular value of z, the graph of the objective function regarded as an equation is 

a straight line (called the profit line in a maximization problem) and as z varies, a 

family of parallel lines is generated. We have drawn the line corresponding to 

z=12. We see that the profit z is proportional to the perpendicular distance of this 

straight line from the origin. Hence the profit increases as this line moves away 

from the origin. As we move the profit line away from origin keeping it parallel to 

itself we see that there is no finite maximum value of z. 

Ex: Keeping everything else unaltered try solving the problem as a minimization 

problem. 
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5. Solve graphically 

Maximize         

Subject to            

                          

                             

  

 

 

 

 

It is clear that there is no feasible region. 

 

In algebraic method, the problem can be solved only when all constraints are 

equations. We now show how the constraints can be converted into equations. 

Slack and Surplus Variables 

When the constraints are inequations connected by the sign “ ≤ “ , in each 

inequation a variable is added on the left hand side of it to convert ind sidet into an 

equation. For example, the constraint 

             

is connected by the sign ≤ . Then a variable    is added to the left hand side and it 

is converted into an equation 

                

From the above it is clear that the slack variables are non-negative quantities. 

x+y=2 

 

x+y=4 
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If the constraints are connected by “ ≥ “ ,in each inequation a variable is subtracted 

from the left hand side to convert it into an equation. These variables are known as 

surplus variables. For example, 

             

is converted into an equation by subtracting a variable    from the left hand side. 

                

The surplus variables are also non-negative quantities. 

Let a general L.P.P containing r variables and m constraints be  

Optimize                      

subject to                                                

           

where one and only one of the signs       holds for each constraint, but the signs 

may vary from one constraint to another. Let   constraints out of the   be 

inequations (     ). Then introducing k slack or surplus variables 

                         , one to each of the inequations, all constraints can 

be converted into equations containing n variables. We further assume that    . 

The objective function is similarly accommodated with k slack or surplus variables 

                  , the cost components of these variables are assumed to be 

zero. Then the adjusted objective function is  

                                           , and then the 

problem can be written as 

Optimize         subject to          ,  

where   is an     matrix , known as coefficient matrix given by 

                , 

 where                    
  is a column vector associated with the vector 

               . 



 

 

                         is a n-component column vector,  

                                 
  is a n-component column vector, and 

                 is a m-component column vector.  

The components of   can be made positive by proper adjustments. 

It is worth noting that the column vectors associated with the slack variables are all 

unit vectors.             As the cost components of the slack and surplus variables are 

all zero, it can be verified easily that the solution set which optimizes     also 

optimizes  . Hence to solve the original L.P.P it is sufficient to solve the standard 

form of the L.P.P. So, for further discussions we shall use the same notation for 

    and  .   

Problems 

1. Transform the following Linear Programming Problems to the standard 

form: 

(i) Maximize               

Subject to               

                               

                                  ,              .   

Solution: First constraint is   type and the second one is a   type, so 

adding a slack and a surplus variable respectively, the two constraints 

are converted into equations. Hence the transformed problem can be 

written as  

 Maximize                       

Subject to                               

                                          

                                                    ,                  .   

(ii) Maximize            

Subject to                     

                                       

                                   ,              .   

 

 



 

 

Solution: The problem can be transformed as  

Maximize                        

Subject to                                            

                                                       

                                                                               , 

                              .   

      are surplus and    is a slack variable. Making the second 

component of   vector positive , the second equation can be written as 

                                  

                                                        slack 

variable. 

2. Express the following minimization problem as a standard maximization 

problem by introducing slack and surplus variables. 

Minimize                              

Subject to                       

                                     

                                         

                                       ,              .   

             Solution: After introducing slack variables in the first two constraints and a 

surplus in the fourth,                              the converted problem is,  Minimize     

                               

Subject to                                                

                                                              

                                                                         

                                                                ,        

        .   

                                                           m  

             Maximize                                    

Subject to                                                

                                                              

                                                                         

                                          ,                .   



 

 

Variable unrestricted in sign 

If a variable    is unrestricted in sign, then it can be expressed as a difference of 

two non-negative variables, say,   
 
    

  
 as      

 
    

  
,   

 
      

  
   . If 

  
 
    

  
, then      , if   

 
    

  
 , then       and if   

 
    

  
, then      . 

Hence    is unrestricted in sign. 

3. Write down the following L.P.P in the standard form.  

                           Maximize                

Subject to                       

                                    ,             ,    unrestricted 

in sign .  

       Solution: Introducing slack and surplus variables and writing      
 
    

  
, 

where   
 
     

  
  , 

       the problem in the standard form is  

                                 Maximize            
 
    

  
            

Subject to              
 
       

  
                     

                            
 
      

  
                   ,  

     
 
   

  
       .  
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