Mathematics booklet Y6

Summer Learning

Topics:

- Calculating with whole and decimal numbers
- 2D and 3D shapes.
- Place value - multiplying and dividing any number by 10,100,1000
- Factors and multiples
- Fractions

Week 1: Adding and subtracting using decimals.

Knowledge Quiz:

Section 1

Order these numbers from smallest to largest: $576094,567094,576904,567904$

Section 2

Round these numbers to the nearest 100000
\square

Section 4
Convert these measurements in litres to millilitres:

Section 3

Use these signs < or > to show which number is greater than or less than

Section 5

Draw lines to show which
fractions, decimals and
percentages match.
$\frac{7}{10}$
40%
$\frac{2}{5}$
$\frac{1}{l}$
$\frac{1}{100}$

Section 7

A shop assistant sold $£ 845$ worth of perfume. This was $£ 258$ more than yesterday. How much did she sell yesterday?

Section 6

Complete these calculations:

Section 8

Write these Roman numerals as digits:

CCLXVI	
CCCLXXIV	

Revision of learning:

Use written addition to add decimals; use rounding to estimate totals.

Round each number to the nearest whole, then add to estimate the total.

$$
\begin{gathered}
2.68+6.25 \\
3+6=9
\end{gathered}
$$

Remember to leave a blank row above the answer line.

Now let's find the exact total using the two methods for column addition, the 'expanded' method and the 'compact' method.

> Add the 0.01 s , then the 0.1 s , then the 1 s .

\[

\]

Use written addition to add decimals; use rounding to estimate totals.

Red ribbon: 2.23m Green ribbon: 3.71m
Blue ribbon: 4.84 m

Estimate the total length of the three ribbons by rounding each number to the nearest whole..

$$
2+4+5=11
$$

It's just like adding two numbers but we just have one more digit to add in each column...

Extra resources:

Learning Reminders

Here is a 'Place Value' chart. It shows us how changing the PLACE of a digit in a number affects its VALUE.
Remind yourself about the value of each row in the chart before having a go at the few questions below.

hundredths	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
tenths	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
ones	1	2	3	4	5	6	7	8	9
tens	10	20	30	40	50	60	70	80	90
hundreds	100	200	300	400	500	600	700	800	900

So, the 4 in 0.4 is worth 4 tenths, the 9 in 0.09 is worth 9 hundredths and so on...
What values do the underlined digits have:
500
$\begin{array}{ll}\mathbf{2} .7 & 10.08\end{array}$
0.63
41.1

Session 1: Solve the following additions and subtractions.

Practice Sheet Mild

Place value addition and subtraction

1. $4+0.53$
2. $6.07+0.5$
3. $5.78-0.08$
4. $8.64-0.6$
5. $8.23+0.1$
6. $4.56+0.01$
7. $8.47-0.01$
8. $9.35-0.1$
9. $6.21+0.2$
10. $9.34-0.2$
11. $8.25+0.03$
12. $7.38-0.03$

Practice Sheet Mild
 Ribbon decimals

Ribbon lengths:

Red	2.23 m
Orange	2.3 m
Yellow	1.72 m
Green	3.71 m
Blue	$\mathbf{4 . 8 4 m}$
Indigo	1.25 m
Violet	3.02 m

Estimate first!

1. Find the total length of the red and yellow ribbons.
2. Find the total length of the green and blue ribbons.
3. Find the total length of the indigo and violet ribbons.
4. Find the total length of the orange and indigo ribbons.
5. Find the total length of the indigo, red and yellow ribbons.
6. Find the total length of the green, blue and violet ribbons.

Challenge

Find the two ribbons whose total length is the closest to 5 m .

Session 3: Challenge yourself to answer SATS style questions:

Week 2: 2D and 3D shapes

Knowledge Quiz:

Section 1

In the number 576 213, which digit represents the number of ten thousands?

In the number 923 648, what place value does the digit ' 3 ' represent?

Section 2

Calculate the following in your head:

Section 3

Calculate:

Section 4

Use the < or > signs to compare these fractions:

$\frac{2}{3}$		$\frac{4}{6}$
$\frac{1}{4}$		$\frac{3}{16}$
$\frac{17}{20}$		$\frac{4}{5}$

Section 5

In order from smallest to largest, write the following numbers in digits:
four point seven two
four point seven
forty point six nine

Section 6

Calculate the perimeter of these composite rectilinear shapes.

Section 7

Explain why this shape is regular.

\qquad

Explain why this shape is irregular.

Section 8

Here is a table showing the number of boys and girls in each year group.

	Y 3	Y 4	Y 5	Y 6	Total
Boys			45		179
Girls	47	37		39	
Total		89	89	87	

[^0]Learning Reminders

Identify, visualise and describe properties of 3-D shapes; Sort 3-D shapes according to their properties.

How many of these 3-D
shapes could you name?

Describe properties of 2-D shapes including polygons.

Guess the shape

Shape properties some examples. Can you name the shapes?

1. This has 4 sides and no lines of symmetry.

2 and 3. These shapes are irregular polygons with 5 sides.
6. This shape has 6 vertices and all the sides are the same length.

Describe and name 3-D shapes and identify their properties.

Let's check some 3-D shape vocabulary...

Polyhedron - a shape with polygon faces

Polyhedra have faces, edges and vertices

Faces - the 2-D shapes that make up the outside of a 3-D shape.

Edges - where the 2-D shapes meet along a joined side.

Vertices - the corners of the 3-D shape.

Session 1: Fill in the missing shape information.

Shape practice

Fill in the missing shape information.

Name
Number of faces:
Number of edges:
-
Number of vertices: \qquad
Shape of faces: \qquad
Shape of faces: \qquad

Name: \qquad Name \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of edges: \qquad
Number of vertices: 5
Shape of faces: \qquad
Number of vertice \qquad Shape of faces: 2 hexagons, 6 rectangles

Name: \qquad
Number of faces: \qquad
Number of edges: \qquad
Number of vertices:
Shape of faces: \qquad

Name: octagonal prism
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad
Shape of faces: \qquad
\qquad
Name: pentagonal prism
Number of faces:
7
Number of edges: \qquad
Number of vertices: \qquad
Shape of faces: \qquad

Name: dodecahedron
Number of faces: \qquad
Number of edges: \qquad
Number of vertices: \qquad
Shape of faces: \qquad

Session 2:

Write the shape names in the right place in each Venn diagram.
1.

2.

3.

cuboid

triangular prism

Challenge

Create your own Venn diagram to sort these shapes: cone, cylinder, sphere, hemisphere.

Session 3: Challenge yourself to answer this SATS style question!
Here are diagrams of some 3-D shapes.
Tick each shape that has the same number of faces as vertices.

Square-based pyramid

Triangular prism

Triangular-based pyramid

Week 3: Place Value - multiplying and dividing any number by 10, 100, 1000.

Knowledge Quiz:

Section 1
Complete these linear sequences:

4562	5562				
41786 40786					
77309 87309					
627792 612792					

Section 2

Put the numbers from 1 to 20 on this Carroll Diagram:

	Prime Number	Not a Prime Number
Even number		
Odd number		

Section 3

Calculate:

$1200 \times 11=$

Section 4
Shade the following circles so the same fraction is shaded in both and write the fraction that they represent

.............
............

Section 5

Round the following numbers to the nearest whole number and nearest tenth:

Number	Nearest whole	Nearest tenth
16.45		
1.06		
2.98		
67.59		

New Learning:
multiply by 10

$$
23 \times 10=230
$$

Section 6

A bus journey starts at 16:13 and finishes at 18:05. How long is the journey?
\qquad

Section 7

For each of the following shapes, explain why they are or are not a rectangle.

\qquad
\qquad
\qquad

Section 8

Translate this shape from point A to point B :

Th H T O
23
230
multiply $=$ move to the left
multiply by 100
$68 \times 100=6800$
Th H T O

6800

Divide by 10

$$
680 \div 10=68
$$

Divide by 100
Th H TO.th

68.00
multiply = move to the left
divide $=$
digits
move to the right
divide $=$
97.00

Session 1: Complete the decimals multiplication challenge!

$2.3 \times 10=$	$0.3 \times 100=$	$1.7 \times 1000=$	$4.4 \times 10=$	$0.1 \times 100=$	$0.9 \times 1000=$
$5.5 \times 10=$	$5.18 \times 100=$	$3.56 \times 1000=$	$0.05 \times 10=$	$0.5 \times 100=$	$1.0 \times 1000=$
$2.88 \times 10=$	$1.0 \times 100=$	$2.05 \times 1000=$	$0.04 \times 10=$	$7.19 \times 100=$	$0.008 \times 1000=$
$22.1 \times 10=$	$4.7 \times 100=$	$11.90 \times 1000=$	$222.02 \times 10=$	$47.9 \times 100=$	$99.3 \times 1000=$
$0.03 \times 10=$	$234.9 \times 100=$	$3.06 \times 1000=$	$87.5 \times 10=$	$630.2 \times 100=$	$0.4 \times 1000=$
$100 \times 547.9=$	$1000 \times 0.06=$	$10 \times 0.3=$	$100 \times 1.8=$	$1000 \times 10.0=$	$10 \times 63.09=$
$100 \times 1.65=$	$1000 \times 3.33=$	$10 \times 0.022=$	$100 \times 2.22=$	$1000 \times 0.12=$	$10 \times 1.04=$
$100 \times 0.003=$	$1000 \times 0.8=$	$10 \times 1.86=$	$100 \times 0.35=$	$1000 \times 4.41=$	$10 \times 1.8=$
$100 \times 0.44=$	$1000 \times 22.5=$	$10 \times 5.55=$	$100 \times 47.11=$	$1000 \times 122.1=$	$10 \times 777.05=$
$100 \times 0.78=$	$1000 \times 192.6=$	$10 \times 8.0=$	$100 \times 120.4=$	$1000 \times 10.9=$	$10 \times 357.6=$
$0.03 \times 1000=$	$10 \times 63.5=$	$100 \times 17.9=$	$64.5 \times 10=$	$100 \times 2.79=$	$1000 \times 20.0=$
$1.7 \times 1000=$	$10 \times 4.04=$	$100 \times 16.5=$	$0.07 \times 10=$	$100 \times 3.55=$	$1000 \times 0.102=$
$0.08 \times 1000=$	$10 \times 1.59=$	$100 \times 0.08=$	$0.01 \times 10=$	$100 \times 0.009=$	$1000 \times 7.51=$
$90.3 \times 1000=$	$10 \times 707.7=$	$100 \times 0.04=$	$44.02 \times 10=$	$100 \times 0.34=$	$1000 \times 102.1=$
$0.14 \times 1000=$	$10 \times 857.3=$	$100 \times 0.78=$	$37.8 \times 10=$	$100 \times 0.58=$	$1000 \times 11.9=$

Session 2:

$5 \times 10=$	$5 \div 10=\square$
$6 \times 100=\square$	$8 \div 10=\square$
$7 \div 10=\square$	$7 \times 100=\square$
$4 \times 10=\square$	$8 \times 10=\square$
$70 \div 100=\square$	$3 \times 100=\square$
$6 \times 10=\square$	$2 \div 10=\square$
$2 \times 100=\square$	$80 \div 100=\square$
$28 \div 10=\square$	$9 \times 10=$

Fill in the missing numbers:
$7 \times$ \qquad $=700$
$64 \div \square=6.4$
$30 \div$ \qquad $=0.3$
$3 x$ \qquad $=30$

Fill in the space with either x or \div so that the calculation is correct:
62 \qquad
5 \qquad $100=500$
4 \qquad $10=40$

$$
40 _100=0.4
$$

True (T) or False (F):
$7 \times 100=70 \quad \square$
$30 \div 100=0.3 \square$

$$
79 \div 10=790
$$

$1 \times 10=10$ \square

Session 3:

Week 4:

Knowledge Quiz:

Section 1

The temperature is $4^{\circ} \mathrm{C}$ at 9 pm . By bam the following morning, the temperature has fallen by $9^{\circ} \mathrm{C}$. What is the temperature now?

Section 2

The new Wembley Stadium has 90000 seats. When the stadium is 75% full, what is the attendance to the nearest 1000 .

Section 5

Place three of the following numbers in the circles so the number in the square is the total of the numbers in the adjacent circles: $6.23,4.72,3.09$, $7.26,5.16,2.69$

Section 7

Write the name of these shapes:

\qquad

\qquad

Section 8

Children measure the temperature in the playground on each hour.

Time	Temperature
9am	-1
10 am	2
11 am	5
12 pm	7
1 pm	8

When is the highest temperature?

How much does the temperature rise between 9 am and 12 pm ?

Section 6

1 inch $=2.54 \mathrm{~cm}$
1 foot = 12 inches
How many centimetres in 1 foot?
\square

Section 3

Complete these calculations

Section 4

Order the following fractions from smallest to largest:
$\frac{3}{4} \frac{11}{12} \frac{7}{8} \frac{13}{16}$

Session 1: Factors and multiples
Create a factor bug for the following numbers:
24
42
36
56
33

Example:

Find the factors of 18

The factors of 18 are I, 2, 3, 6,9 and 18

Now, insert in the Venn Diagram all the multiples and the common multiples of the following numbers:

6
8

Session 2: Workout these equivalent fractions.
Example:

$$
\begin{aligned}
& \frac{4}{12}=\frac{8}{12} \\
& \frac{4}{?}=\frac{8}{12} \\
& 8 \div 4=2 \\
& 12 \div 2=6 \\
& \frac{4}{6}=\frac{8}{12}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { 1. } \frac{2}{3}=\frac{\square}{6} & \text { 2. } \frac{4}{\square}=\frac{2}{4} & \text { 3. } \frac{1}{5}=\frac{4}{\square} \\
\text { 4. } \frac{1}{4}=\frac{\square}{12} & \text { 5. } \frac{4}{\square}=\frac{8}{12} & \text { 6. } \frac{2}{\square}=\frac{1}{6}
\end{array}
$$

Challenge:
Sam says that $\frac{2}{3}$ is equivalent to $\frac{3}{9}$. Is he correct? Explain your answer.

Session 3: Simplify these fractions by finding the highest common factor.

Practise simplifying these and then complete the worksheet:

1. $\frac{3}{9}=$
2. $\frac{8}{16}=$
3. $\frac{2}{10}=$
4. $\frac{12}{36}=$
1) Use the bar models to help you simplify the fractions.
a)

b)

2) Join pairs of equivalent fractions.

$\frac{4}{5}$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{3}{7}$

$\frac{20}{25}$	$\frac{4}{24}$	$\frac{27}{63}$	$\frac{10}{15}$

$\frac{30}{36}$ in its simplest form is $\frac{10}{12}$

1) Is this statement correct? Explain your answer.
2) Marlon is blowing bubbles in the park.

- 8 bubbles landed on the grass.
- 10 bubbles floated away.
- 6 bubbles popped straight away.

Is Marlon correct? Explain your answer.

Week 5:

Knowledge Quiz:

Section 1

Write these Roman Numerals as numbers:
$\operatorname{CCIX} \longrightarrow \square$
DCLXXVII $\longrightarrow \square$

Section 4

Calculate:
$\frac{2}{3}+\frac{1}{6}=$
$\frac{7}{10}-\frac{3}{5}=$

Section 5

Draw lines to match the following:

$\frac{53}{100}$	13%
$\frac{13}{100}$	53%
$\frac{79}{100}$	79%

Section 2

Write all the square numbers from 1×1 to 12×12

Section 6

A plastic box weighs 25 g and six cricket balls weigh 300 g . How much do three plastic boxes, each with six cricket balls, weigh in kilograms?

Section 7

Write acute, obtuse or reflex underneath each angle:

Section 3

Use a formal written method to work out these calculations:

$$
216 \times 14
$$

$$
954 \div 6
$$

Section 8

Here is a bus timetable:

Jordanthorpe	$07: 19$	$07: 31$	$07: 43$
Nether Edge	$07: 48$	$08: 00$	$08: 12$
Sheffield	$08: 06$	$08: 18$	$08: 30$
Pitsmoor	$08: 20$	$08: 32$	$08: 44$
Shiregreen	$08: 40$	$08: 52$	$09: 04$

Do all the buses take the same time for each journey from Jordanthorpe to Shiregreen?

Jan needs to arrive in Sheffield by quarter past eight. Which bus should he catch from Nether Edge?

Session 1: Solve the following additions and subtractions. Use the grid to help you as shown in the example.

Example: $\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \quad \square$

1. $\frac{1}{3}+\frac{1}{6}=$

2. $\frac{2}{3}+\frac{1}{12}=$

3. $\frac{2}{3}+\frac{1}{6}=$

4. $\frac{1}{3}+\frac{2}{9}=$

5. $\frac{1}{2}+\frac{1}{6}=$

6. $\frac{2}{3}+\frac{1}{9}=$

7. $\frac{4}{5}+\frac{1}{10}=$

Example: $\quad \frac{2}{3}-\frac{1}{6}=\frac{3}{6}$

1. $\frac{1}{3}-\frac{1}{6}=$

2. $\frac{7}{8}-\frac{1}{2}=$

3. $\frac{1}{4}-\frac{1}{8}=$

4. $\frac{5}{8}-\frac{1}{4}=$

5. $\frac{3}{4}-\frac{5}{8}=$

6. $\frac{7}{10}-\frac{1}{5}=$

7. $\frac{3}{5}-\frac{3}{10}=$

8. $\frac{13}{20}-\frac{2}{5}=$

What fraction of the flag is green and blue?

$\frac{1}{6}$ of the flag is green
$\frac{1}{3}$ of the flag is blue

What fraction of the flag is not blue?

1a) What fraction of the flag is blue?

Why does this image help?

1b) What fraction of the flag is blue and red?

2a) What fraction of the flag is red?
2b) What fraction of the flag is black?

Why does this image help?

2c) What fraction of the flag is red and green?

Session 3:

$\frac{2}{6}-\frac{1}{8}=$

Ark Globe
Maths Answer Booklet
Academy

Week 1

Session 2:

Place value addition and subtraction (mild)

1. $4+0.53=4.53$
2. $6.07+0.5=6.57$
3. $5.78-0.08=5.7$
4. $8.64-0.6=8.04$
5. $8.23+0.1=8.33$
6. $4.56+0.01=4.57$
7. $8.47-0.01=8.46$
8. $9.35-0.1=9.25$
9. $\quad 6.21+0.2=6.41$
10. $9.34-0.2=9.14$
11. $8.25+0.03=8.28$
12. $7.38-0.03=7.35$

Session 2:

Ribbon decimal: (mild)

1. 3.95 m
2.8 .55 m
3.4 .27 m
2. 3.55 m
5.5 .2 m
3. 11.57 m

Challenge

Green $+\operatorname{Indigo}=3.71 \mathrm{~m}+1.25 \mathrm{~m}=4.96 \mathrm{~m}$ Can you go

closer?

Session 3:

1. 5.714
2. 5.55
3. 23.129

Ark Globe Academy

Session 1:

Shape practice (Hot)

Number of faces: 5
Number of edges: 9
Number of vertices: 6
Shape of faces: 2 triangles, 3 rectangles

Name: cone
Number of faces: \qquad
Number of vertices: 1
Shape of faces: 1 circle, 1 curved

Name: square-based pyramid

Name: octagonal prism

	$\frac{10}{24}$
Number of faces:	$\frac{24}{16}$

Number of vertices: 2 octagons,
Shape of faces: 8 rectangles

Name: pyramid

Number of faces:	
Number of edges:	6
Number of vertices: $\quad 4$	

Shape of faces: 4 triangles

Name: pentagonal prism
Number of faces: 7
Number of edges: $\quad 15$
Number of vertices: 10
Shape of faces: 2 pentagons, 5 rectangles

Name:	hexagonal prism
Number of faces:	8
Number of edges:	18
Number of vertices:	12

Shape of faces: $\frac{2 \text { hexagons, }}{6 \text { rectangles }}$

Name: dodecahedron
Number of faces: \qquad
Number of edges -30
Number of vertices: 20
Shape of faces: \qquad

Session 2:

Ark Globe Academy

Shape practice (Mild)
1.

2.
square faces rectangle faces

3.

Ark Globe Academy

Here are diagrams of some 3-D shapes.
Tick each shape that has the same number of faces as vertices.

Cube

Square-based pyramid

Triangular prism \square

Triangular-based pyramid

2 marks

Circle the pentagon with exactly four acute angles.

$\overline{1 \text { mark }}$

Week 3:

Session 1:

$\begin{aligned} & 2.3 \times 10= \\ & 23 \end{aligned}$	$\begin{aligned} & 0.3 \times 100= \\ & 30 \end{aligned}$	$\begin{aligned} & 1.7 \times 1000= \\ & 1700 \end{aligned}$	$\begin{aligned} & 4.4 \times 10= \\ & 44 \end{aligned}$	$\begin{aligned} & 0.1 \times 100= \\ & 10 \end{aligned}$	$\begin{aligned} & 0.9 \times 1000= \\ & 900 \end{aligned}$
$\begin{aligned} & 5.5 \times 10= \\ & 55 \end{aligned}$	$\begin{aligned} & 5.18 \times 100= \\ & 518 \end{aligned}$	$\begin{aligned} & 3.56 \times 1000= \\ & 3560 \end{aligned}$	$\begin{aligned} & 0.05 \times 10= \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \times 100= \\ & 50 \end{aligned}$	$\begin{aligned} & 1.0 \times 1000= \\ & 1000 \end{aligned}$
$\begin{aligned} & 2.88 \times 10= \\ & 28.8 \end{aligned}$	$\begin{aligned} & 1.0 \times 100= \\ & 100 \end{aligned}$	$\begin{aligned} & 2.05 \times 1000= \\ & 2050 \end{aligned}$	$\begin{aligned} & 0.04 \times 10= \\ & 0.4 \end{aligned}$	$\begin{aligned} & 7.19 \times 100= \\ & 719 \end{aligned}$	$\begin{aligned} & 0.008 \times 1000= \\ & 8 \end{aligned}$
$\begin{aligned} & 22.1 \times 10= \\ & 221 \end{aligned}$	$\begin{aligned} & 4.7 \times 100= \\ & 470 \end{aligned}$	$11.90 \times 1000=$ 11900	$\begin{aligned} & 222.02 \times 10= \\ & 2220.2 \end{aligned}$	$\begin{aligned} & 47.9 \times 100= \\ & 4790 \end{aligned}$	$\begin{aligned} & 99.3 \times 1000= \\ & 99300 \end{aligned}$
$\begin{aligned} & 0.03 \times 10= \\ & 0.3 \end{aligned}$	$\begin{aligned} & 234.9 \times 100= \\ & 23490 \end{aligned}$	$\begin{aligned} & 3.06 \times 1000= \\ & 3060 \end{aligned}$	$\begin{aligned} & 87.5 \times 10= \\ & 875 \end{aligned}$	$\begin{aligned} & 630.2 \times 100= \\ & 63020 \end{aligned}$	$\begin{aligned} & 0.4 \times 1000= \\ & 400 \end{aligned}$
$\begin{aligned} & 100 \times 547.9= \\ & 54790 \end{aligned}$	$\begin{aligned} & 1000 \times 0.06= \\ & 60 \end{aligned}$	$\begin{aligned} & 10 \times 0.3= \\ & 3 \end{aligned}$	$\begin{aligned} & 100 \times 1.8= \\ & 180 \end{aligned}$	$\begin{aligned} & 1000 \times 10.0= \\ & 10000 \end{aligned}$	$\begin{aligned} & 10 \times 63.09= \\ & 630.9 \end{aligned}$
$\begin{aligned} & 100 \times 1.65= \\ & 165 \end{aligned}$	$\begin{aligned} & 1000 \times 3.33= \\ & 3330 \end{aligned}$	$\begin{aligned} & 10 \times 0.022= \\ & 0.22 \end{aligned}$	$\begin{aligned} & 100 \times 2.22= \\ & 222 \end{aligned}$	$\begin{aligned} & 1000 \times 0.12= \\ & 120 \end{aligned}$	$\begin{aligned} & 10 \times 1.04= \\ & 10.4 \end{aligned}$
$\begin{aligned} & 100 \times 0.003= \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1000 \times 0.8= \\ & 800 \end{aligned}$	$\begin{aligned} & 10 \times 1.86= \\ & 18.6 \end{aligned}$	$\begin{aligned} & 100 \times 0.35= \\ & 35 \end{aligned}$	$\begin{aligned} & 1000 \times 4.41= \\ & 4410 \end{aligned}$	$\begin{aligned} & 10 \times 1.8= \\ & 18 \end{aligned}$
$\begin{aligned} & 100 \times 0.44= \\ & 44 \end{aligned}$	$\begin{aligned} & 1000 \times 22.5= \\ & 22500 \end{aligned}$	$\begin{aligned} & 10 \times 5.55= \\ & 55.5 \end{aligned}$	$\begin{aligned} & 100 \times 47.11= \\ & 4711 \end{aligned}$	$\begin{aligned} & 1000 \times 122.1= \\ & 122100 \end{aligned}$	$\begin{aligned} & 10 \times 777.05= \\ & 7770.5 \end{aligned}$
$\begin{aligned} & 100 \times 0.78= \\ & 78 \end{aligned}$	$\begin{aligned} & 1000 \times 192.6= \\ & 192600 \end{aligned}$	$\begin{aligned} & 10 \times 8.0= \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \times 120.4= \\ & 12040 \end{aligned}$	$\begin{aligned} & 1000 \times 10.9= \\ & 10900 \end{aligned}$	$\begin{aligned} & 10 \times 357.6= \\ & 3576 \end{aligned}$
$\begin{aligned} & 0.03 \times 1000= \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \times 63.5= \\ & 635 \end{aligned}$	$\begin{aligned} & 100 \times 17.9= \\ & 1790 \end{aligned}$	$\begin{aligned} & 64.5 \times 10= \\ & 645 \end{aligned}$	$\begin{aligned} & 100 \times 2.79= \\ & 279 \end{aligned}$	$\begin{aligned} & 1000 \times 20.0= \\ & 20000 \end{aligned}$
$\begin{aligned} & 1.7 \times 1000= \\ & 1700 \end{aligned}$	$\begin{aligned} & 10 \times 4.04= \\ & 40.4 \end{aligned}$	$\begin{aligned} & 100 \times 16.5= \\ & 1650 \end{aligned}$	$\begin{aligned} & 0.07 \times 10= \\ & 0.7 \end{aligned}$	$\begin{aligned} & 100 \times 3.55= \\ & 355 \end{aligned}$	$\begin{aligned} & 1000 \times 0.102= \\ & 102 \end{aligned}$
$\begin{aligned} & 0.08 \times 1000= \\ & 80 \end{aligned}$	$\begin{aligned} & 10 \times 1.59= \\ & 15.9 \end{aligned}$	$\begin{aligned} & 100 \times 0.08= \\ & 8 \end{aligned}$	$\begin{aligned} & 0.01 \times 10= \\ & 0.1 \end{aligned}$	$\begin{aligned} & 100 \times 0.009= \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1000 \times 7.51= \\ & 7510 \end{aligned}$
$\begin{aligned} & 90.3 \times 1000= \\ & 90300 \end{aligned}$	$\begin{aligned} & 10 \times 707.7= \\ & 7077 \end{aligned}$	$\begin{aligned} & 100 \times 0.04= \\ & 4 \end{aligned}$	$\begin{aligned} & 44.02 \times 10= \\ & 440.2 \end{aligned}$	$\begin{aligned} & 100 \times 0.34= \\ & 34 \end{aligned}$	$\begin{aligned} & 1000 \times 102.1= \\ & 102100 \end{aligned}$
$\begin{aligned} & 0.14 \times 1000= \\ & 140 \end{aligned}$	$\begin{aligned} & 10 \times 857.3= \\ & 8573 \end{aligned}$	$\begin{aligned} & 100 \times 0.78= \\ & 78 \end{aligned}$	$\begin{aligned} & 37.8 \times 10= \\ & 378 \end{aligned}$	$\begin{aligned} & 100 \times 0.58= \\ & 58 \end{aligned}$	$\begin{aligned} & 1000 \times 11.9= \\ & 11900 \end{aligned}$

Session 2:

$5 \times 10=\mathbf{5 0}$	$5 \div 10=\mathbf{0 . 5}$
$6 \times 100=\mathbf{6 0 0}$	$8 \div 10=\mathbf{0 . 8}$
$7 \div 10=\mathbf{0 . 7}$	$7 \times 100=\mathbf{7 0 0}$
$4 \times 10=\mathbf{4 0}$	$8 \times 10=\mathbf{8 0}$
$70 \div 100=\mathbf{0 . 7}$	$3 \times 100=\mathbf{3 0 0}$
$6 \times 10=\mathbf{6 0}$	$2 \div 10=\mathbf{0 . 2}$
$2 \times 100=\mathbf{2 0 0}$	$80 \div 100=\mathbf{0 . 8}$
$28 \div 10=\mathbf{2 . 8}$	$9 \times 10=\mathbf{9 0}$

Fill in the missing numbers:
$7 \times 100=700$
$64 \div \mathbf{1 0}=6.4$
$30 \div \mathbf{1 0 0}=0.3$
$3 \times 10=30$

Fill in the space with either x or \div so that the calculation is correct:
$62 \div 10=6.2$
$4 \times 10=40$
$5 \times 100=500$
$40 \div 100=0.4$

True (\mathbf{T}) or False (\mathbf{F}) :
$7 \times 100=70 \quad$ F
$79 \div 10=790 \quad$ F
$30 \div 100=0.3 \quad \mathrm{~T}$
$1 \times 10=10 \quad \mathrm{~T}$
$0.04 \div 10=$

$0.9 \times 200=$
$0.0 \times 100=90$
$90 \times 2=180$

Week 4:

Session 1:
Create a factor bug for the following numbers:

6
8

Session 2:
5

Ark Globe Academy

1. $\frac{2}{3}=\frac{4}{6}$
2. $\frac{4}{8}=\frac{2}{4}$
3. $\frac{1}{5}=\frac{4}{20}$
4. $\frac{1}{4}=\frac{3}{12}$
5. $\frac{4}{6}=\frac{8}{12}$
6. $\frac{2}{12}=\frac{1}{6}$

Challenge: Sam is incorrect.

Session 3:

1) a)

b)

2)

1) This is incorrect.

$\frac{10}{12}$ is equivalent to $\frac{30}{36}$ but to simplify it completely, the correct answer is $\frac{5}{6}$.
2) Marlon is correct.
$\frac{10}{24}$ simplifies to $\frac{5}{12}$.

1) Children should find all multiples of 30 that are divisible by 8 to find possible denominators, e.g. 120, 240, 360, $480,600,720,840,960$.
They should then use understanding of multiples and equivalent fractions to find all the possible fractions:

2) $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{4}, \frac{1}{11}, \frac{1}{11}, \frac{1}{12}$
$\frac{2}{3}, \frac{2}{5}, \frac{2}{7}, \frac{2}{9}, \frac{2}{11}$
$\frac{3}{4}, \frac{3}{5}, \frac{3}{7}, \frac{3}{8}, \frac{3}{10}, \frac{3}{11}$
$\frac{4}{5}, \frac{4}{7}, \frac{4}{9}, \frac{4}{11}$
$\frac{5}{6}, \frac{5}{7}, \frac{5}{8}, \frac{5}{9}, \frac{5}{11}, \frac{5}{12}$
$\frac{6}{7}, \frac{6}{11}$
$\frac{7}{8}, \frac{7}{4}, \frac{7}{10}, \frac{7}{11}, \frac{7}{12}$
$\frac{8}{9}, \frac{8}{11}$
$\frac{9}{10}, \frac{9}{11}$
$\frac{10}{11}, \frac{11}{12}$
All the fractions that cannot be simplified will have at least one odd number. Fractions with a numerator of I (unit fractions) cannot be simplified.

Week 5:

Session 1:
Use the grids to help you solve the calculations.
Example: $\quad \frac{1}{2}+\frac{1}{4}=\frac{3}{4}$ \square

1. $\frac{1}{3}+\frac{1}{6}=\frac{3}{6}$ \square 5. $\frac{2}{3}+\frac{1}{12}=\frac{9}{12}$

2. $\frac{2}{3}+\frac{1}{6}=\frac{5}{6}$

3. $\frac{1}{3}+\frac{2}{9}=\frac{5}{9}$

4. $\frac{1}{2}+\frac{1}{6}=\frac{4}{6}$

5. $\frac{2}{3}+\frac{1}{9}=\frac{7}{9}$

6. $\frac{4}{5}+\frac{1}{10}=\frac{9}{10}$

Use the grids to help you solve the calculations.
Example:
$\frac{2}{3}-\frac{1}{6}=\frac{3}{6}$

1. $\frac{1}{3}-\frac{1}{6}=\frac{1}{6}$

2. $\frac{7}{8}-\frac{1}{2}=\frac{3}{8}$

3. $\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$

4. $\frac{5}{8}-\frac{1}{4}=\frac{3}{8}$

5. $\frac{7}{10}-\frac{1}{5}=\frac{\mathbf{5}}{10}=\frac{1}{2}$

6. $\frac{3}{5}-\frac{3}{10}=\frac{3}{10}$

7. $\frac{13}{20}-\frac{2}{5}=\frac{5}{20}=\frac{1}{4}$

$$
\frac{1}{6}+\frac{1}{3}=\frac{3}{6}=\frac{1}{2}
$$

What fraction of the flag is green and blue?

$\frac{1}{2}$ of the flag
en and is gre

What fraction of the flag is not blue?

$$
\rightarrow 1-\frac{1}{3}=\frac{3-1}{3}=\frac{2}{3}
$$

1a) What fraction of the flag is blue?

bb) What fraction of the flag is blue and red?

2a) What fraction of the flag is red?
2b) What fraction of the flag is black?
Why does this image help?

2c) What fraction of the flag is red and green?

aa) $\frac{1}{3}$

$$
\begin{array}{ll}
\text { ab) } \frac{2}{9} & \text { ac) } \frac{1}{3}+\frac{2}{9}=\frac{5}{9}
\end{array}
$$

Ark Globe Academy

Session 3:

$$
\frac{3}{4}-\frac{3}{8}=
$$

$$
\begin{array}{r}
\frac{10+8+4}{40}=\frac{22}{40}=\frac{11}{20} \\
\frac{\frac{11}{20}}{\square}
\end{array}
$$

$$
\begin{aligned}
& 2 \frac{1}{3}+\frac{5}{6}= \\
& \quad \begin{aligned}
2 \frac{1}{3}+\frac{5}{6}=\frac{2+5}{6}
\end{aligned}
\end{aligned}
$$

$$
2 \frac{7}{6}
$$

$\frac{2}{6}-\frac{1}{8}=$

Mixed times tables

Times Table Test

1) $7 \times 8=$
2) $9 \times 4=$
3) $3 \times 6=$
4) $5 \times 4=$
5) $12 \times 3=$
6) $3 \times 9=$
7) $2 \times 12=$
8) $11 \times 6=$
9) $4 \times 2=$
10) $7 \times 9=$
11) $6 \times 2=$
12) $4 \times 8=$

Times Table Test

1) $3 \times 2=$
2) $7 \times 12=$
3) $5 \times 8=$
4) $6 \times 5=$
5) $11 \times 11=$
6) $8 \times 9=$
7) $2 \times 7=$
8) $9 \times 9=$
9) $8 \times 3=$
10) $11 \times 5=$
11) $3 \times 8=$
12) $10 \times 7=$

Ark Globe Academy

Times Table Test

1) $70 \times 5=$
2) $40 \times 80=$
3) $30 \times 2=$
4) $60 \times 40=$
5) $10 \times 90=$
6) $50 \times 4=$
7) $80 \times 80=$
8) $90 \times 4=$
9) $7 \times 30=$
10) $20 \times 50=$
11) $400 \times 4=$
12) $11 \times 30=$

Times Table Test

1) $21 \div 3=$
2) $40 \div 8=$
3) $110 \div 10=$
4) $12 \div 3=$
5) $50 \div 5=$
6) $36 \div 4=$
7) $42 \div 6=$
8) $28 \div 7=$
9) $63 \div 9=$
10) $27 \div 3=$
11) $84 \div 12=$
12) $121 \div 11=$

Ark Globe
Academy

Mired times tables

1) Andrew is buying some new computer games. He buys six new games for $£ 11$ each. Draw a representation of this below before writing out the calculation and finding the answer.
2) Find all the number facts you can for the triangle below:

3) Fill in the gaps below:

Mixed times tables

4) Fill in the gaps below:
$11 \times$ \qquad $=44$
$121 \div$ \qquad $=11$
$11 \times$ \qquad $=770$
$220 \div 11=$ \qquad
$11 \times$ \qquad $=132$
$110 \div$ \qquad $=11$
5) Sarah says "I know my 5 times table so I can work out $5 \times$ 70 without using a written method."

Explain why Sarah can do this.
6) A bicycle has 2 wheels. How many wheels are there on 6 bikes?
7) Create a word problem that requires you to use the $3 \times$ table.

Year 6 Summer Learning
Times Tables Booklet

Ark Globe
Academy

Mired times tables

11) Sarah says "Because 12 is a multiple of 4, that means any multiples of 12 will also be multiples of 4."

Is Sarah correct? Explain your reasoning.
12) Write the number sentences for the diagram below:

\qquad \times \qquad $=$ \qquad

\qquad x \qquad $=$ \qquad

\qquad \div \qquad $=$ \qquad

\qquad \div \qquad $=$ \qquad

Challenge Yourself!

Question 1:

How many ways can you represent the calculation below?

7×4 is equal to...

$40-12$

Question 2:

I am thinking of a number.
It is a multiple of 7.
It is not multiple of 9 or 6 . It is an even number where one digit has a value less than 6.
The number is greater than 30 and less than 150.

What could the mystery number be?
There may be more than one possible value for the mystery number.
How many different possible values could the mystery number be?
What if you removed one of the statements? Are there more or
fewer possible values? How do you know?
What if you removed two statements?

Question 3:

Here are the first ten multiples of seven:

$$
7,14,21,28,35,42,49,56,63,70
$$

Mike the Machine increases each multiple by the same value:

$$
11,18,25,32,39,46, \ldots
$$

What do you notice about the digits in the ones place?
Will the number 73 be in this new pattern? How do you know? How about the number 88 ?
Can you name a 3-digit number that will be in the pattern?
Explore other ways Mike the Machine could change the multiples and the number that will be in the patterns that are made.
Start with the first ten multiples of nine and explore changes that Mike the Machine could make and the patterns created.

Question 4:

My calendar wasn't printed correctly. Most of the dates are missing from this month!

Extra challenge!

What if this month began on Thursday, instead of Tuesday what would the date be on the $3^{\text {rd }}$ Saturday of
the month?
How about the $4^{\text {th }}$
Tuesday of the month?
Will there be four Tuesdays in the month? How do you know?

Question 5:

Do you agree or disagree with Joe? Explain your reasons why.

[^0]: Complete the table

