Surname								
Other Names								
Candidate Signature								
Centre Number				Candidate Number	er			
Examiner Comments						То	tal Mar	ks
	1							

MATHEMATICS

AS PAPER 1

 CM

Gold Set A (Edexcel Version)

Time allowed: 2 hours

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 12 questions in this question paper. The total mark for this paper is 100.

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

(3)
(2)

Question 1 continued	
TOTAL 5	S MARKS

2	The curve	C	has	the	equation
---	-----------	---	-----	-----	----------

$$y = \sqrt{x^3} + \frac{k}{\sqrt{x}}, \quad x > 0$$

where k is a constant.

The point P is a stationary point on C and has x coordinate 4.

(a) Find the y coordinate of P.

Show your working clearly.

(5)

(b) Show that *P* is the only stationary point on *C* and determine its nature.

(4)

Question 2 continued
TOTAL 9 MARKS

3 (a) Given that $\log_2 c = m$ and $\log_{16} d = n$, express $\frac{c^3}{\sqrt{d}}$ in the form 2^y , where	y is an expression
in terms of m and n .	(4)
(b) Solve the equation	
$4^x \times 5^{2-x} = 7^{3-2x}$	
	(4)
giving your answer to three significant figures.	(4)

Question 3 continued
TOTAL 8 MARKS

4 (a) Show that the equation	
$(2\sqrt{2}-2)x^2 + \sqrt{8}x + (1+\sqrt{2}) = 0$	
has two equal roots.	(3)
(b) Hence, or otherwise, solve the equation	
$(2\sqrt{2} - 2)x^2 + \sqrt{8}x + (1 + \sqrt{2}) = 0$	
Give your answer in the form $a + b\sqrt{2}$, where a and b are rational numbers to be found. Show all of your working.	(3)

Question 4 continued	
TOTAL CASA	
TOTAL 6 MAI	VV2

5 (a) Show that $5 - 3\sin^2 x > 0$ for all x.	(2)
(b) For $0 \le x < 360^{\circ}$, solve the equation	
$\log_4(5-3\sin^2x)=1$	
giving your answers to one decimal place.	(5)
(c) Explain how you have used part (a) in your answer to part (b).	(1)

Question 5 continued	
5	TOTAL 8 MARKS

6	A biologist is studying the population of fish in a lake.	
	He models the number of fish in the lake, N fish, to vary according to	
	A	
	$N = \frac{A}{1 + Be^{-Ct}}, t \ge 0$	
	where t is the time in years since the start of the study and A , B and C are positive constants.	
	At the start of the study, the population of fish in the lake is 50.	
	The population of fish in the lake tripled in the first year.	
	The limiting size of the population is 5000.	
	Find the values of A , B and C in the model. (6)	
	(6)	
		4

Question 6 continued
TOTAL 6 MARKS

7	(a)	In	ascending	powers	of x ,	find	the	first	three	terms	in	the	bino	mial	expan	sion	of
---	-----	----	-----------	--------	----------	------	-----	-------	-------	-------	----	-----	------	------	-------	------	----

$$\left(2+\frac{x}{3}\right)\left(3-\frac{x}{5}\right)^5$$

up to and including the term in x^2 .

(4)

(b) Given that n is a positive integer, use the definition

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

to prove that
$${}^{n}C_{2} = \frac{1}{2}n(n-1)$$
. (2)

In the expansion of $(5x + 1)^p$, where p is a positive integer, the coefficient of x^2 is 700.

(c) Find the value of <i>p</i> .	(2
----------------------------------	----

Question 7 continued						

Question 7 continued

Question 7 continued
TOTAL ON A DIZO
TOTAL 8 MARKS

8 Use the limit definition of the derivative twice to prove that	
$\frac{d^2}{dx^2}(x^2 - 2x^3) = 2 - 12x$	
	(5)

Question 8 continued
TOTAL 5 MARKS

9

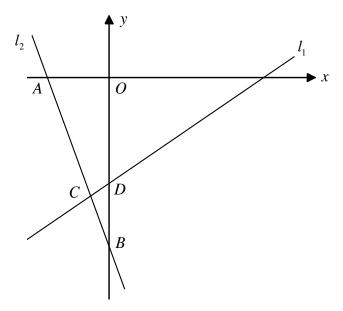


Figure 1

Figure 1 above shows two straight lines, l_1 and l_2 .

The line l_1 has the equation 2x - 4y - 10 = 0.

Given that l_1 and l_2 are perpendicular,

(a) find the gradient of
$$l_2$$
. (2)

The line l_2 crosses the x axis and the y axis at the points A and B respectively.

The area of the triangle OAB is 4 units², where O is the origin.

(b) Find the coordinates of
$$A$$
 and B . (4)

(c) Hence, determine the equation of the line l_2 .

Give your answer in the form ax + by + c = 0, where a, b and c are integers to be found. (1)

The lines l_1 and l_2 intersect at the point C. The point D is where l_1 meets the y axis.

(a) C	alculate the area of the	quadrilateral <i>OACD</i> .	(5	,)
-------	--------------------------	-----------------------------	----	----

Question 9 continued		

Question 9 continued		

Question 9 continued	
	TOTAL 12 MARKS

(4)

10

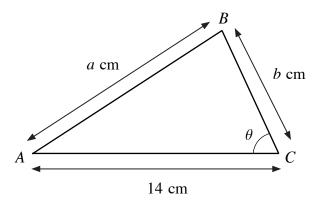


Figure 2

Figure 2 shows the triangle ABC which has AB = a cm, BC = b cm and AC = 14 cm. The perimeter of the triangle is 40 cm.

Given that the angle ACB is θ ,

(a) show that
$$\cos \theta = \frac{13}{7} - \frac{120}{7b}$$
. (4)

(b) Hence, show that the area of the triangle, $A \text{ cm}^2$, satisfies

$$A^2 = -120b^2 + 3120b - 14400 \tag{4}$$

(c) (i) Find the maximum area of the triangle *ABC*.

<u> </u>	

Question 10 continued		

Question 10 continued	,

Question 10 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
TOTAL 13 MARKS	

11

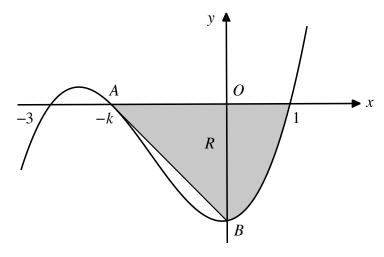


Figure 3

Figure 3 shows a sketch of the curve C with equation y = f(x), where

$$f(x) = (x - 1)(x + 3)(x + k)$$

where k is a constant.

(a) Sketch the curve with equation y = f(x + 2).

On your sketch, show clearly the coordinates of any points where the curve crosses or meets the coordinate axes. (3)

The point A has coordinates (-k, 0). The point B is where C intersects the y axis.

The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x axis, the lines x = -k and x = 1 and the line segment AB.

Given that the area of the shaded region *R* is $\frac{119}{12}$,

(b) show that
$$9k^2 + 10k - 56 = 0$$
. (7)

(c) Hence, find the value of k. (1)

Question 11 continued		

Question 11 continued		

Question 11 continued	
	TOTAL 11 MARKS

12	Leigh models the interaction of an octopus and a fish.		
	The octopus is able to catch the fish if it swims within a 5 metre radius of its position.		
	Leigh models the octopus as a fixed particle located at the point $(-7, 5)$.		
	She models the fish as a particle that swims on a path defined by $y = kx + 6$.		
	The unit of distance for Leigh's coordinate system is metres.		
	(a) Find the set of values of k such that the octopus does not catch the fish.	(8)	
	(b) State one limitation of the model.	(1)	
		, ,	

Question 12 continued		

Question 12 continued		
		

Question 12 continued	
END OF PAPER	TOTAL 9 MARKS
	TOTAL FOR PAPER IS 100 MARKS
	Copyright © 2019 crashMATHS Ltd.

