Surname	
Other Names	
Candidate Signature	

Centre Number						Candidate Number				

Examiner Comments	

MATHEMATICS

AS PAPER 1

Gold Set A (Edexcel Version)
Time allowed: 2 hours

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 12 questions in this question paper. The total mark for this paper is 100.

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

AS/M/P1

1 Relative to a fixed origin O, the points A and C have position vectors $-4 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{i}+8 \mathbf{j}$ respectively.

The point B lies on the straight line segment $A C$ such that the ratio $A B: B C=2: 3$.
(a) Find the position vector of B relative to O.

The point D is such that $O B C D$ is a parallelogram.
(b) Find the distance of the point D from O.

Question 1 continued

TOTAL 5 MARKS

2 The curve C has the equation

$$
y=\sqrt{x^{3}}+\frac{k}{\sqrt{x}}, \quad x>0
$$

where k is a constant.
The point P is a stationary point on C and has x coordinate 4 .
(a) Find the y coordinate of P.

Show your working clearly.
(b) Show that P is the only stationary point on C and determine its nature.

Question 2 continued

3 (a) Given that $\log _{2} c=m$ and $\log _{16} d=n$, express $\frac{c^{3}}{\sqrt{d}}$ in the form 2^{y}, where y is an expression in terms of m and n.
(b) Solve the equation

$$
4^{x} \times 5^{2-x}=7^{3-2 x}
$$

giving your answer to three significant figures.

Question 3 continued

4 (a) Show that the equation

$$
(2 \sqrt{2}-2) x^{2}+\sqrt{8} x+(1+\sqrt{2})=0
$$

has two equal roots.
(b) Hence, or otherwise, solve the equation

$$
(2 \sqrt{2}-2) x^{2}+\sqrt{8} x+(1+\sqrt{2})=0
$$

Give your answer in the form $a+b \sqrt{2}$, where a and b are rational numbers to be found. Show all of your working.

Question 4 continued

TOTAL 6 MARKS

5 (a) Show that $5-3 \sin ^{2} x>0$ for all x.
(b) For $0 \leq x<360^{\circ}$, solve the equation

$$
\log _{4}\left(5-3 \sin ^{2} x\right)=1
$$

giving your answers to one decimal place.
(c) Explain how you have used part (a) in your answer to part (b).

Question 5 continued

6 A biologist is studying the population of fish in a lake.
He models the number of fish in the lake, N fish, to vary according to

$$
N=\frac{A}{1+B \mathrm{e}^{-C t}}, t \geq 0
$$

where t is the time in years since the start of the study and A, B and C are positive constants.
At the start of the study, the population of fish in the lake is 50 .
The population of fish in the lake tripled in the first year.
The limiting size of the population is 5000 .
Find the values of A, B and C in the model.
\qquad

Question 6 continued

TOTAL 6 MARKS

7 (a) In ascending powers of x, find the first three terms in the binomial expansion of

$$
\left(2+\frac{x}{3}\right)\left(3-\frac{x}{5}\right)^{5}
$$

up to and including the term in x^{2}.
(b) Given that n is a positive integer, use the definition

$$
\begin{equation*}
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!} \tag{2}
\end{equation*}
$$

to prove that ${ }^{n} C_{2}=\frac{1}{2} n(n-1)$.
In the expansion of $(5 x+1)^{p}$, where p is a positive integer, the coefficient of x^{2} is 700 .
(c) Find the value of p.

Question 7 continued

Question 7 continued

Question 7 continued

8 Use the limit definition of the derivative twice to prove that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(x^{2}-2 x^{3}\right)=2-12 x
$$

Question 8 continued

TOTAL 5 MARKS

9

Figure 1

Figure 1 above shows two straight lines, l_{1} and l_{2}.
The line l_{1} has the equation $2 x-4 y-10=0$.
Given that l_{1} and l_{2} are perpendicular,
(a) find the gradient of l_{2}.

The line l_{2} crosses the x axis and the y axis at the points A and B respectively.
The area of the triangle $O A B$ is 4 units 2, where O is the origin.
(b) Find the coordinates of A and B.
(c) Hence, determine the equation of the line l_{2}.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers to be found. (1)
The lines l_{1} and l_{2} intersect at the point C. The point D is where l_{1} meets the y axis.
(d) Calculate the area of the quadrilateral $O A C D$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 continued

Question 9 continued

Question 9 continued

10

Figure 2
Figure 2 shows the triangle $A B C$ which has $A B=a \mathrm{~cm}, B C=b \mathrm{~cm}$ and $A C=14 \mathrm{~cm}$. The perimeter of the triangle is 40 cm .

Given that the angle $A C B$ is θ,
(a) show that $\cos \theta=\frac{13}{7}-\frac{120}{7 b}$.
(b) Hence, show that the area of the triangle, $A \mathrm{~cm}^{2}$, satisfies

$$
\begin{equation*}
A^{2}=-120 b^{2}+3120 b-14400 \tag{4}
\end{equation*}
$$

(c) (i) Find the maximum area of the triangle $A B C$.
(ii) State what type of triangle $A B C$ is when its area is a maximum.

Question 10 continued

Question 10 continued

Question 10 continued

11

Figure 3
Figure 3 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=(x-1)(x+3)(x+k)
$$

where k is a constant.
(a) Sketch the curve with equation $y=\mathrm{f}(x+2)$.

On your sketch, show clearly the coordinates of any points where the curve crosses or meets the coordinate axes.

The point A has coordinates $(-k, 0)$. The point B is where C intersects the y axis.
The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x axis, the lines $x=-k$ and $x=1$ and the line segment $A B$.

Given that the area of the shaded region R is $\frac{119}{12}$,
(b) show that $9 k^{2}+10 k-56=0$.
(c) Hence, find the value of k.

Question 11 continued

Question 11 continued

Question 11 continued

12 Leigh models the interaction of an octopus and a fish.
The octopus is able to catch the fish if it swims within a 5 metre radius of its position.
Leigh models the octopus as a fixed particle located at the point $(-7,5)$.
She models the fish as a particle that swims on a path defined by $y=k x+6$.
The unit of distance for Leigh's coordinate system is metres.
(a) Find the set of values of k such that the octopus does not catch the fish.
(b) State one limitation of the model.
\qquad

Question 12 continued

Question 12 continued

Question 12 continued

END OF PAPER TOTAL 9 MARKS

TOTAL FOR PAPER IS 100 MARKS

Copyright © 2019 crashMATHS Ltd.

