2015-DSE MATH CP PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2015

MATHEMATICS Compulsory Part PAPER 2

11.30 am - 12.45 pm (11/4 hours)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2015 Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$(x+1)(x^2+x+1) =$$

A.
$$x^3 + 1$$
.

B.
$$(x+1)^3$$
.

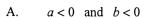
C.
$$x^3 + x^2 + x + 1$$
.

D.
$$x^3 + 2x^2 + 2x + 1$$
.

$$2. \qquad \frac{(3y^6)^4}{3y^2} =$$

A.
$$4y^5$$
.

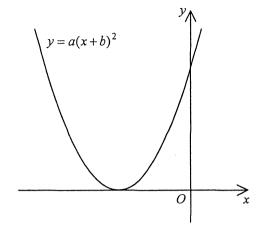
B.
$$4y^{8}$$


C.
$$27y^{12}$$
.

D.
$$27y^{22}$$
.

3. If
$$p+3q=4$$
 and $5p+9q=2$, then $p=$

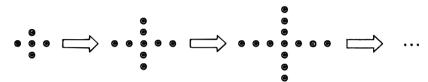
- 4. 0.0023456789 =
 - A. 0.00235 (correct to 6 decimal places).
 - B. 0.002345 (correct to 6 decimal places).
 - C. 0.002346 (correct to 6 significant figures).
 - D. 0.00234568 (correct to 6 significant figures).
- 5. If m and n are constants such that $x^2 + mx + n \equiv (x+4)(x-m) + 6$, then n =
 - A. -8.
 - B. -2.
 - C. 2.
 - D. 6.
- 6. The solution of 18+7x>4 or 5-2x<3 is
 - A. x > -2.
 - B. x > -1.
 - C. x > 1.
 - D. -2 < x < 1.
- 7. If β is a root of the equation $4x^2 5x 1 = 0$, then $7 + 10\beta 8\beta^2 =$
 - A. 5.
 - B. 7.
 - C. 9.
 - D. 11.


8. The figure shows the graph of $y = a(x+b)^2$, where a and b are constants. Which of the following is true?

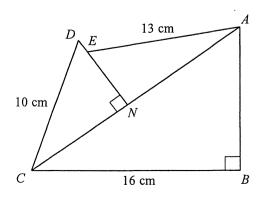
B.
$$a < 0$$
 and $b > 0$

C.
$$a > 0$$
 and $b < 0$

D.
$$a > 0$$
 and $b > 0$



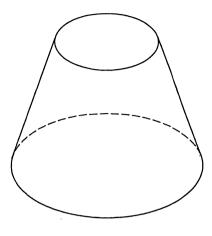
9. If the price of a souvenir is increased by 70% and then decreased by 60%, find the percentage change in the price of the souvenir.


10. A sum of \$50 000 is deposited at an interest rate of 6% per annum for 3 years, compounded quarterly. Find the amount correct to the nearest dollar.

11. Let a, b and c be non-zero numbers. If a:c=5:3 and b:c=3:2, then (a+c):(b+c)=

- 12. It is given that z varies as x^3 and y^2 . When x=2 and y=1, z=14. When x=3 and y=-2, z=
 - A. -189.
 - B. -126.
 - C. 126.
 - D. 189.
- 13. In the figure, the 1st pattern consists of 5 dots. For any positive integer n, the (n+1) th pattern is formed by adding 4 dots to the nth pattern. Find the number of dots in the 6th pattern.

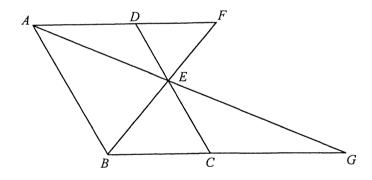
- A. 21
- B. 25
- C. 29
- D. 33
- 14. There is a bag of white sugar. The weight of white sugar in the bag is measured as $5 \, \text{kg}$ correct to the nearest kg. If the bag of white sugar is packed into n packets such that the weight of white sugar in each packet is measured as $10 \, \text{g}$ correct to the nearest g, find the greatest possible value of n.
 - A. 429
 - B. 500
 - C. 578
 - D. 579
- 15. In the figure, N is a point lying on AC and E is a point lying on DN. If DN = 6 cm and EN = 5 cm, then the area of $\triangle ABC$ is
 - $A. \qquad 24\ cm^2\ .$
 - B. 30 cm^2 .
 - C. $96 \,\mathrm{cm}^2$.
 - D. 192 cm^2 .


16. The height and the base radius of a right circular cone are 12 cm and 9 cm respectively. The figure shows a frustum which is made by cutting off the upper part of the circular cone. The height of the frustum is 8 cm. Find the volume of the frustum.

B.
$$312\pi \text{ cm}^3$$

C.
$$324\pi \text{ cm}^3$$

D.
$$936\pi \text{ cm}^3$$

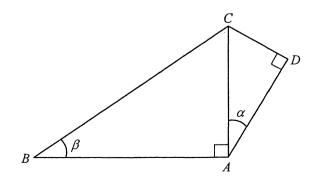

17. In the figure, ABCD is a parallelogram. E is a point lying on CD such that DE:EC=2:3. AD produced and BE produced meet at F while AE produced and BC produced meet at G. If the area of ΔDEF is 8 cm^2 , then the area of ΔCEG is

A.
$$12 \text{ cm}^2$$
.

B.
$$18 \text{ cm}^2$$
.

C.
$$20 \text{ cm}^2$$
.

D.
$$27 \text{ cm}^2$$
.

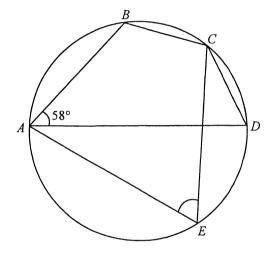

18. In the figure, $\frac{AD}{AB}$ =

A.
$$\cos \alpha \tan \beta$$
.

B.
$$\sin \alpha \tan \beta$$
.

C.
$$\frac{\cos \alpha}{\tan \beta}$$

D.
$$\frac{\sin \alpha}{\tan \beta}$$



19.
$$\frac{\cos 180^{\circ}}{1 + \sin(90^{\circ} + \theta)} + \frac{\cos 360^{\circ}}{1 + \sin(270^{\circ} + \theta)} =$$

- A. 0.
- B. $\frac{2}{\cos\theta}$.
- C. $\frac{2\cos\theta}{\sin^2\theta}$
- D. $\frac{2\sin\theta}{\cos^2\theta}$.
- 20. In the figure, AD is a diameter of the circle ABCDE. If $\angle BAD = 58^{\circ}$ and BC = CD, then $\angle AEC =$

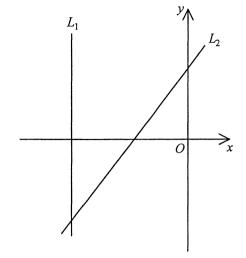
- B. 58°.
- C. 61°.
- D. 64°.

- 21. The diameters AC and BD of the circle ABCD intersect at the point E. If $\angle AEB = 90^{\circ}$ and AC = 24 cm, then the area of $\triangle AEB$ is
 - A. $41 \,\mathrm{cm}^2$.
 - $B. \qquad 72 \ cm^2 \ .$
 - C. 144 cm^2 .
 - D. 288 cm^2 .

- 22. If an interior angle of a regular polygon is 5 times an exterior angle of the polygon, which of the following is/are true?
 - I. Each interior angle of the polygon is 150°.
 - II. The number of diagonals of the polygon is 6.
 - III. The number of folds of rotational symmetry of the polygon is 6.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 23. The rectangular coordinates of the point A are $(\sqrt{3}, -1)$. If A is reflected with respect to the y-axis, then the polar coordinates of its image are
 - A. (1,210°).
 - B. (1,240°).
 - C. $(2, 210^{\circ})$.
 - D. (2,240°).

- 24. The coordinates of the points A and B are (2,0) and (1,5) respectively. If P is a moving point in the rectangular coordinate plane such that P is equidistant from A and B, then the locus of P is
 - A. the perpendicular bisector of AB.
 - B. the circle with AB as a diameter.
 - C. the straight line which passes through A and B.
 - D. the angle bisector of $\angle AOB$, where O is the origin.


In the figure, the equations of the straight lines L_1 and L_2 are ax = 1 and bx + cy = 1 respectively. Which of the following are true?

II.
$$a < b$$

III.
$$c > 0$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

26. A circle C passes through the point (0,3). If the coordinates of the centre of C are (-4,3), then the equation of C is

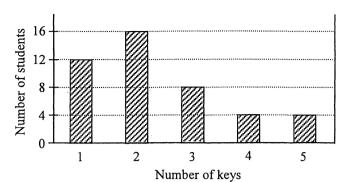
A.
$$x^2 + y^2 - 8x + 6y + 9 = 0$$
.

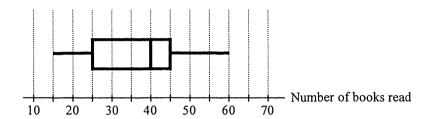
B.
$$x^2 + y^2 - 8x + 6y + 16 = 0$$
.

C.
$$x^2 + y^2 + 8x - 6y + 9 = 0$$
.

D.
$$x^2 + y^2 + 8x - 6y + 16 = 0$$
.

- 27. Two fair dice are thrown in a game. If the sum of the two numbers thrown is 7, \$36 will be gained; otherwise, \$6 will be gained. Find the expected gain of the game.
 - A. \$11
 - B. \$12
 - C. \$30
 - D. \$31


28. The bar chart below shows the distribution of the numbers of keys owned by the students in a class. Find the probability that a randomly selected student from the class owns 3 keys.


B.
$$\frac{2}{11}$$

C.
$$\frac{4}{11}$$

D.
$$\frac{9}{11}$$

29. The box-and-whisker diagram below shows the distribution of the numbers of books read by some teachers in a term. Find the inter-quartile range of the distribution.

30. Consider the following integers:

2 2 3 3 3 3 5 5 6 8 8 9 10 m

Let p, q and r be the mean, the median and the mode of the above integers respectively. If $3 \le m \le 5$, which of the following must be true?

I.
$$p > q$$

II.
$$p > r$$

III.
$$q > r$$

Section B

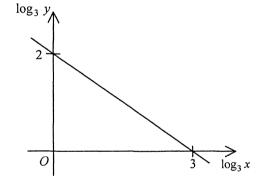
31.
$$\frac{1}{x^2 - 2x + 1} - \frac{1}{x^2 + x - 2} =$$

$$A. \qquad \frac{1}{(x-1)(x+2)} \ .$$

B.
$$\frac{1}{(x-1)^2(x+2)}$$
.

C.
$$\frac{3}{(x-1)^2(x+2)}$$
.

D.
$$\frac{2x+1}{(x-1)^2(x+2)} .$$

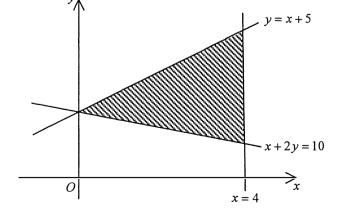

32. The graph in the figure shows the linear relation between $\log_3 x$ and $\log_3 y$. Which of the following must be true?

A.
$$x^2 y^3 = 729$$

B.
$$x^3y^2 = 729$$

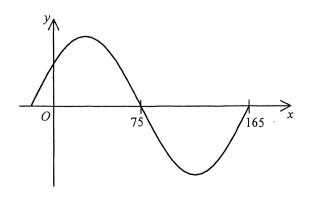
C.
$$x^2 + y^3 = 729$$

D.
$$x^3 + y^2 = 729$$

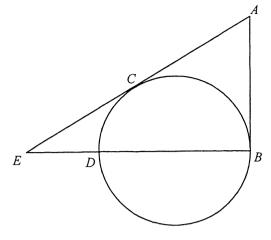


- 33. $11+2^6+2^{10}+2^{11}=$
 - A. 110001001011_2 .
 - B. 110100100011₂.
 - C. 1100001001011₂.
 - D. 1101001000011₂.

- 34. Let k be a constant. If the roots of the quadratic equation $x^2 + kx 2 = 0$ are α and β , then $\alpha^2 + \beta^2 = 0$
 - A. k^2 .
 - B. $k^2 + 4$.
 - C. $k^2 4$.
 - D. $k^2 8$.


- 35. Let $z = (a+5)i^6 + (a-3)i^7$, where a is a real number. If z is a real number, then a =
 - A. -5.
 - В. –3.
 - C. 3.
 - D. 5.

- 36. The figure shows a shaded region (including the boundary). If (a, b) is a point lying in the shaded region, which of the following are true?
 - I. $a \le 4$
 - II. $a \ge b 5$
 - III. $a \ge 10 2b$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III



- 37. Let x_n be the *n*th term of a geometric sequence. If $x_6 = 216$ and $x_8 = 96$, which of the following must be true?
 - I. $x_3 = 729$
 - $II. \quad \frac{x_5}{x_7} > 1$
 - III. $x_2 + x_4 + x_6 + \dots + x_{2n} < 2015$
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 38. For $0^{\circ} \le x < 360^{\circ}$, how many roots does the equation $\cos^2 x \sin x = 1$ have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 39. Let k be a positive constant and $-180^{\circ} < \theta < 180^{\circ}$. If the figure shows the graph of $y = \sin(kx^{\circ} + \theta)$, then
 - A. $k = \frac{1}{2}$ and $\theta = -30^{\circ}$.
 - B. $k = \frac{1}{2}$ and $\theta = 30^{\circ}$.
 - C. k = 2 and $\theta = -30^{\circ}$.
 - D. k = 2 and $\theta = 30^{\circ}$.

- 40. In the figure, AB and AC are the tangents to the circle at B and C respectively. BD is a diameter of the circle. AC produced and BD produced meet at E. If AB = 6 cm and AE = 10 cm, then BD = 10
 - A. 3 cm.
 - B. 5 cm.
 - C. 6 cm.
 - D. 8 cm.

- 41. Find the constant k such that the circle $x^2 + y^2 + 2x 6y + k = 0$ and the straight line x + y + 4 = 0 intersect at only one point.
 - A. -16
 - В. -8
 - C. 8
 - D. 16

- 42. Let O be the origin. The coordinates of the points P and Q are (0,60) and (96,48) respectively. The x-coordinate of the orthocentre of $\triangle OPQ$ is
 - A. 6.
 - B. 32.
 - C. 45.
 - D. 48.

- 43. A queue is formed by 6 boys and 2 girls. If no girls are next to each other, how many different queues can be formed?
 - A. 1440
 - B. 10 080
 - C. 30 240
 - D. 35280
- 44. Bag P contains 2 red balls and 4 green balls while bag Q contains 1 red ball and 3 green balls. If a bag is randomly chosen and then a ball is randomly drawn from the bag, find the probability that a green ball is drawn.
 - A. $\frac{3}{10}$
 - B. $\frac{7}{10}$
 - C. $\frac{7}{24}$
 - D. $\frac{17}{24}$
- 45. Let x_1 , y_1 and z_1 be the mean, the median and the variance of a group of numbers $\{a_1, a_2, a_3, \ldots, a_{50}\}$ respectively while x_2 , y_2 and z_2 be the mean, the median and the variance of the group of numbers $\{a_1, a_2, a_3, \ldots, a_{49}\}$ respectively. If $x_1 = a_{50}$, which of the following must be true?
 - $I. x_1 = x_2$
 - II. $y_1 \ge y_2$
 - III. $z_1 \le z_2$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III