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SUPPORT FOR THE AUSTRALIAN MATHEMATICAL 
OLYMPIAD COMMITTEE TRAINING PROGRAM  

The Australian Mathematical Olympiad Committee Training Program is an activity of the Australian Mathematical 
Olympiad Committee, a department of the Australian Mathematics Trust. 

Trustee 

The University of Canberra   

Sponsors 

Optiver is a market maker, offering trading opportunities on major global financial markets using their own capital at 
their own risk. They hire top talent at graduate and undergraduate levels with science, technology, engineering and 
mathematics (STEM) qualifications from the world’s leading universities. Optiver employs over 900 people across offices 
in the United States, Europe and Asia Pacific—including past Olympians and students that have been involved in AMT 
competitions and programs. 

The Mathematics/ Informatics Olympiads are supported by the Australian Government through the National Innovation 
and Science Agenda.

The Australian Mathematical Olympiad Committee (AMOC) also acknowledges the significant financial support it has 
received from the Australian Government towards the training of our Olympiad candidates and the participation of our 
team at the International Mathematical Olympiad (IMO).

The views expressed here are those of the authors and do not necessarily represent the views of the government. 

Special thanks 

With special thanks to the Australian Mathematical Society, the Australian Association of Mathematics Teachers and all 
those schools, societies, families and friends who have contributed to the expense of sending the 2017 IMO team to Rio 
de Janeiro.
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FROM THE AMT CHIEF EXECUTIVE OFFICER

This year’s IMO was the most challenging in the history of the competition.  Even so, the Australian team performed 

admirably, attaining three Silver and two Bronze medals and an Honourable Mention.  Linus Cooper was one of only 

two competitors (out of 615) to correctly solve problem 3 on Day 1.  

In 2017, the Australian Mathematics Trust applied to participate in the EGMO competition in 2018.  We were fortunate 

enough to have our application approved and we have appointed a Team Leader (Ms Thanom Shaw) and a Deputy 

Leader (Ms Michelle Chen).  A number of girls attended the AMOC School of Excellence in Melbourne and commenced 

their training for EGMO Florence 2018.  A team will be selected following the process for the IMO team. We wish them 

every success in their inaugural event.

There are a great many enthusiastic staff and volunteers that help support our Mathematical Olympiad programs.  

On behalf of the Australian Mathematics Trust, I would like to thank:

Emeritus Professor Cheryl Praeger AM, Australian Mathematical Olympiad Committee (AMOC), Chair

Dr Angelo Di Pasquale, AMOC Director of Training and International Mathematical Olympiad (IMO) Team Leader

Mr Andrew Elvey-Price, IMO Deputy Team Leader

Mr Mike Clapper, AMT Chief Mathematician

Dr Norman Do, Chair, AMOC Senior Problems Committee

Dr Kevin McAvaney, Chair, MCYA Challenge Committee

Members of the AMT Board and AMOC Committee

AMOC tutors, mentors, volunteers and ex-Olympians

Nathan Ford
December 2018
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BACKGROUND NOTES ON THE IMO AND AMOC

The Australian Mathematical Olympiad Committee
In 1980, a group of distinguished mathematicians formed the Australian Mathematical Olympiad Committee (AMOC) to 
coordinate an Australian entry in the International Mathematical Olympiad (IMO).

Since then, AMOC has developed a comprehensive program to enable all students (not only the few who aspire 
to national selection) to enrich and extend their knowledge of mathematics. The activities in this program are not 
designed to accelerate students. Rather, the aim is to enable students to broaden their mathematical experience  
and knowledge.

The largest of these activities is the MCYA Challenge, a problem-solving event held in second term, in which thousands 
of young Australians explore carefully developed mathematical problems. Students who wish to continue to extend their 
mathematical experience can then participate in the MCYA Enrichment Stage and pursue further activities leading to the 
Australian Mathematical Olympiad and international events.

Originally AMOC was a subcommittee of the Australian Academy of Science. In 1992 it collaborated with the Australian 
Mathematics Foundation (which organises the Australian Mathematics Competition) to form the Australian Mathematics 
Trust. The Trust, a not-for-profit organisation under the trusteeship of the University of Canberra, is governed by a Board 
which includes representatives from the Australian Academy of Science, Australian Association of Mathematics Teachers 
and the Australian Mathematical Society.

The aims of AMOC include:

(1) giving leadership in developing sound mathematics programs in Australian schools 
(2) identifying, challenging and motivating highly gifted young Australian school students in mathematics
(3) training and sending Australian teams to future International Mathematical Olympiads.

AMOC schedule from August until July for potential IMO team members
Each year hundreds of gifted young Australian school students are identified using the results from the Australian 
Mathematics Competition, the Mathematics Challenge for Young Australians program and other smaller mathematics 
competitions, including the Australian Intermediate Mathematics Olympiad. A network of dedicated mathematicians 
and teachers has been organised to give these students support during the year either by correspondence sets of 
problems and their solutions or by special teaching sessions. After participation in other invitational competitions, 
about 45 of these outstanding students  are identified and invited to attend the residential AMOC School of Excellence 
held in November/December.

In February approximately 100 students are invited to attempt the Australian Mathematical Olympiad. The best 20 or 
so of these students are then invited to represent Australia in the correspondence Asian Pacific Mathematics Olympiad 
in March. About 12 students are selected for the AMOC Selection School in April and about 15 younger students are 
also invited to this residential school. Here, the Australian team of six students plus one reserve for the International 
Mathematical Olympiad, held in July each year, is selected. A personalised support system for the Australian team 
operates during May and June.

It should be appreciated that the AMOC program is not meant to develop only future mathematicians. Experience has 
shown that many talented students of mathematics choose careers in engineering, computing, and the physical and 
life sciences, while others will study law or go into the business world. It is hoped that the AMOC Mathematics Problem-
Solving Program will help the students to think logically, creatively, deeply and with dedication and perseverance; that it 
will prepare these talented students to be future leaders of Australia.
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The International Mathematical Olympiad
The IMO is the pinnacle of excellence and achievement for school students of mathematics throughout the world. The 
concept of national mathematics competitions started with the Eötvos Competition in Hungary during 1894. This idea 
was later extended to an international mathematics competition in 1959 when the first IMO was held in Romania. The 
aims of the IMO include: 
(1) discovering, encouraging and challenging mathematically gifted school students 
(2) fostering friendly international relations between students and their teachers 
(3) sharing information on educational syllabi and practice throughout the world.

It was not until the mid-sixties that countries from the western world competed at the IMO. The United States of 
America first entered in 1975. Australia has entered teams since 1981. 

Students must be under 20 years of age at the time of the IMO and have not enrolled at a tertiary institution. The 
Olympiad contest consists of two four-and-a-half hour papers, each with three questions. 

Australia has achieved varying successes as the following summary of results indicate. HM (Honorable Mention) is 
awarded for obtaining full marks in at least one question.

The IMO will be held in Cluj-Napoca, Romania, in 2018.
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Summary of Australia’s achievements at previous IMOs

Year City Gold Silver Bronze HM Rank

1981 Washington 1 23 out of 27 teams
1982 Budapest 1 21 out of 30 teams
1983 Paris 1 2 19 out of 32 teams
1984 Prague 1 2 15 out of 34 teams
1985 Helsinki 1 1 2 11 out of 38 teams
1986 Warsaw 5 15 out of 37 teams
1987 Havana 3 15 out of 42 teams
1988 Canberra 1 1 1 17 out of 49 teams
1989 Braunschweig 2 2 22 out of 50 teams
1990 Beijing 2 4 15 out of 54 teams
1991 Sigtuna 3 2 20 out of 56 teams
1992 Moscow 1 1 2 1 19 out of 56 teams
1993 Istanbul 1 2 3 13 out of 73 teams
1994 Hong Kong 2 3 3 12 out of 69 teams
1995 Toronto 1 4 1 21 out of 73 teams
1996 Mumbai 2 3 23 out of 75 teams
1997 Mar del Plata 2 3 1 9 out of 82 teams
1998 Taipei 4 2 13 out of 76 teams
1999 Bucharest 1 1 3 1 15 out of 81 teams
2000 Taejon 1 3 1 16 out of 82 teams
2001 Washington D.C. 1 4 25 out of 83 teams
2002 Glasgow 1 2 1 1 26 out of 84 teams
2003 Tokyo 2 2 2 26 out of 82 teams
2004 Athens 1 1 2 1 27 out of 85 teams
2005 Merida 6 25 out of 91 teams
2006 Ljubljana 3 2 1 26 out of 90 teams
2007 Hanoi 1 4 1 22 out of 93 teams
2008 Madrid 5 1 19 out of 97 teams
2009 Bremen 2 1 2 1 23 out of 104 teams
2010 Astana 1 3 1 1 15 out of 96 teams
2011 Amsterdam 3 3 25 out of 101 teams
2012 Mar del Plata 2 4 27 out of 100 teams
2013 Santa Marta 1 2 3 15 out of 97 teams

2014 Cape Town
1 

Perfect Score 
by Alexander 

Gunning
3 2 11 out of 101 teams

2015 Chiang Mai 2 4 6 out of 104 teams
2016 Hong Kong 2 4 25 out of 109 teams
2017 Rio de Janeiro 3 2 1 34 out of 111 teams
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MATHEMATICS CHALLENGE FOR YOUNG AUSTRALIANS 

The Mathematics Challenge for Young Australians (MCYA) started on a national scale in 1992. It was set up to cater for 
the needs of the top 10 percent of secondary students in Years 7–10, especially in country schools and schools where the 
number of students may be quite small. Teachers with a handful of talented students spread over a number of classes 
and working in isolation can find it very difficult to cater for the needs of these students. The MCYA provides materials 
and an organised structure designed to enable teachers to help talented students reach their potential. At the same 
time, teachers in larger schools, where there are more of these students, are able to use the materials to better assist the 
students in their care. 

The aims of the Mathematics Challenge for Young Australians include: 

encouraging and fostering  

– a greater interest in and awareness of the power of mathematics  

– a desire to succeed in solving interesting mathematical problems  

– the discovery of the joy of solving problems in mathematics 

identifying talented young Australians, recognising their achievements nationally and providing support that will enable 
them to reach their own levels of excellence 

providing teachers with  

– interesting and accessible problems and solutions as well as detailed and motivating teaching discussion and extension 
materials  

– comprehensive Australia-wide statistics of students’ achievements in the Challenge. 

There are three independent stages in the Mathematics Challenge for Young Australians: 

• Challenge (three weeks during the period March–June)  

• Enrichment (April–September)   

• Australian Intermediate Mathematics Olympiad (September).  

Challenge 
Challenge consists of four levels. Middle Primary (Years 3–4) and Upper Primary (Years 5–6) present students with four 
problems each to be attempted over three weeks, students are allowed to work on the problems in groups of up to three 
participants, but each must write their solutions individually. The Junior (Years 7–8) and Intermediate (Years 9–10) levels 
present students with six problems to be attempted over three weeks, students are allowed to work on the problems with 
a partner but each must write their solutions individually.  

There were 13,649 submissions (1728 Middle Primary, 3716 Upper Primary, 5401 Junior, 2804 Intermediate) for the 
Challenge in 2017. The 2017 problems and solutions for the Challenge, together with some statistics, appear later in this 
book. 

Enrichment 
This is a six-month program running from April to September, which consists of seven different parallel stages of 
comprehensive student and teacher support notes. Each student participates in only one of these stages. 

The materials for all stages are designed to be a systematic structured course over a flexible 12–14 week period between 
April and September. This enables schools to timetable the program at convenient times during their school year. 

Enrichment is completely independent of the earlier Challenge; however, they have the common feature of providing 
challenging mathematics problems for students, as well as accessible support materials for teachers. 

Ramanujan (years 4–5) includes estimation, special numbers, counting techniques, fractions, clock arithmetic, ratio, 
colouring problems, and some problem-solving techniques. There were 342 entries in 2017.

Newton (years 5–6) includes polyominoes, fast arithmetic, polyhedra, pre-algebra concepts, patterns, divisibility and 
specific problem-solving techniques. There were 732 entries in 2017. 
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Dirichlet (years 6–7) includes mathematics concerned with tessellations, arithmetic in other bases, time/distance/speed, 
patterns, recurring decimals and specific problem-solving techniques. There were 1292 entries in 2017. 

Euler (years 7–8) includes primes and composites, least common multiples, highest common factors, arithmetic 
sequences, figurate numbers, congruence, properties of angles and pigeonhole principle. There were 1853 entries in 2017. 

Gauss (years 8–9) includes parallels, similarity, Pythagoras’ Theorem, using spreadsheets, Diophantine equations, counting 
techniques and congruence. Gauss builds on the Euler program. There were 1218 entries in 2017. 

Noether (top 10% years 9–10) includes expansion and factorisation, inequalities, sequences and series, number bases, 
methods of proof, congruence, circles and tangents. There were 692 entries in 2017. 

Polya (top 10% year 10) Topics include angle chasing, combinatorics, number theory, graph theory and symmetric 
polynomials. There were 271 entries in 2017.

Australian Intermediate Mathematics Olympiad  
This four-hour competition for students up to Year 10 offers a range of challenging and interesting questions. It is suitable 
for students who have performed well in the AMC (Distinction and above), and is designed as an endpoint for students 
who have completed the Gauss or Noether stage. There were 2251 entries for 2017 and 11 perfect scores.
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MEMBERSHIP OF MCYA COMMITTEES  

Mathematics Challenge for Young Australians Committee 2017 
Director 
Dr K McAvaney, Victoria 
Challenge Committee 
Adj Prof M Clapper, Australian Mathematics Trust, ACT 
Mrs B Denney, NSW 
Mr A Edwards, Queensland Studies Authority 
Mr B Henry, Victoria 
Ms J McIntosh, AMSI, VIC 
Mrs L Mottershead, New South Wales 
Ms A Nakos, Temple Christian College, SA  
Prof M Newman, Australian National University, ACT 
Dr I Roberts, Northern Territory 
Ms T Shaw, SCEGGS, NSW 
Ms K Sims, New South Wales  
Dr A Storozhev, Attorney General’s Department, ACT   
Dr S Thornton, Australian Capital Territory
Ms G Vardaro, Wesley College, VIC  
Moderators 
Mr W Akhurst, New South Wales  
Mr R Blackman, Victoria  
Mr A Canning, Queensland  
Dr E Casling, Australian Capital Territory  
Mr B Darcy, Rose Park Primary School, South Australia  
Mr J Dowsey, University of Melbourne, VIC 
Mr S Ewington, Sydney Grammar School
Mr S Gardiner, University of Sydney
Ms J Hartnett, Queensland  
Dr N Hoffman, Edith Cowan University, WA 
Ms R Jorgenson, Australian Capital Territory 
Dt T Kalinowski, University of Newcastle
Mr J Lawson, St Pius X School, NSW  
Ms K McAsey, Penleigh and Essendon Grammar School, VIC
Ms T McNamara, Victoria  
Mr G Meiklejohn, Department of Education, QLD 
Mr M O’Connor, AMSI, VIC 
Mr J Oliver, Northern Territory  
Mr G Pointer, Marratville High School, SA 
Dr H Sims, Victoria 
Mrs M Spandler, New South Wales  
Ms C Stanley, Queensland Studies Authority
Mr P Swain, Victoria
Dr P Swedosh, The King David School, VIC  
Mrs A Thomas, New South Wales  
Ms K Trudgian, Queensland  
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Australian Intermediate Mathematics Olympiad Problems Committee 
Dr K McAvaney, Victoria (Chair) 
Adj Prof M Clapper, Australian Mathematics Trust, ACT 
Mr J Dowsey, University of Melbourne, VIC  
Dr M Evans, International Centre of Excellence for Education in Mathematics, VIC  
Mr B Henry, Victoria  
Dr D Mathews, Monash University, VIC

Enrichment 
Editors 
Mr G R Ball, University of Sydney, NSW  
Adj Prof M Clapper, Australian Mathematics Trust, ACT
Dr M Evans, International Centre of Excellence for Education in Mathematics, VIC  
Mr K Hamann, South Australia  
Mr B Henry, Victoria  
Dr K McAvaney, Victoria 
Dr A M Storozhev, Attorney General’s Department, ACT 
Emeritus Prof P Taylor, Australian Capital Territory 
Dr O Yevdokimov, University of Southern Queensland
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MEMBERSHIP OF AMOC COMMITTEES

Australian Mathematical Olympiad Committee 2017
Chair
Prof C Praeger, University of Western Australia

Deputy Chair
Prof Andrew Hassall, Australian National University, ACT

Chief Executive Officer 
Mr Nathan Ford, Australian Mathematics Trust, ACT

Chief Mathematician
Mr Mike Clapper, Australian Mathematics Trust, ACT

Treasurer
Dr P Swedosh, The King David School, VIC

Chair, Senior Problems Committee
Dr N Do, Monash University, VIC

Chair, Challenge
Dr K McAvaney, VIC

Director of Training and IMO Team Leader
Dr A Di Pasquale, University of Melbourne, VIC

IMO Deputy Team Leader
Mr A Elvey Price, University of Melbourne, VIC

State Directors
Dr K Dharmadasa, University of Tasmania
Dr G Gamble, University of Western Australia
Dr Ian Roberts, Northern Territory
Assoc Prof D Daners, University of Sydney, NSW
Mr D Martin, South Australia
Dr A Offer, Queensland
Dr P Swedosh, The King David School, VIC
Dr Chris Wetherell, Radford College, ACT

Representatives
Ms J McIntosh, Challenge Committee
Ms A Nakos, Challenge Committee
Prof M Newman, Challenge Committee
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AMOC TIMETABLE FOR SELECTION OF THE TEAM TO 
THE 2018 IMO

August 2017—July 2018
Hundreds of students are involved in the AMOC programs which begin on a state basis. The students are given problem-
solving experience and notes on various IMO topics not normally taught in schools.

The students proceed through various programs with the top 25 students, including potential team members and other 
identified students, participating in a 10-day residential school in November/December.

The selection program culminates with the March Selection School during which the team is selected.

Team members then receive individual coaching by mentors prior to assembling for last minute training before the IMO.

Month Activity

August

Outstanding students are identified from AMC results, MCYA, other competitions and 
recommendations; and eligible students from previous training programs 

AMOC state organisers invite students to participate in AMOC programs

Various state-based programs

AMOC Senior Contest

September Australian Intermediate Mathematics Olympiad

November/
December

AMOC School of Excellence

January Summer Correspondence Program for those who attended the School of Excellence

February Australian Mathematical Olympiad

March Asian Pacific Mathematics Olympiad

March AMOC Selection School

May–June Personal Tutor Scheme for IMO team members

July
Short mathematics school for IMO team members

2018 IMO in Cluj-Napoca, Romania
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ACTIVITIES OF AMOC SENIOR PROBLEMS COMMITTEE 

This committee has been in existence for many years and carries out a number of roles. A central role is the collection and 
moderation of problems for senior and exceptionally gifted intermediate and junior secondary school students. Each year 
the Problems Committee provides examination papers for the AMOC Senior Contest and the Australian Mathematical 
Olympiad. In addition, problems are submitted for consideration to the Problem Selection Committees of the annual Asian 
Pacific Mathematics Olympiad and the International Mathematical Olympiad. 

AMOC Senior Problems Committee October 2016–September 2017
Adj Prof M Clapper, Australian Mathematics Trust, ACT
Dr A Devillers, University of Western Australia, WA
Dr A Di Pasquale, University of Melbourne, VIC
Dr N Do, Monash University, VIC, (Chair)
Dr I Guo, University of Sydney, NSW
Assoc Prof D Hunt, University of NSW
Dr J Kupka, Monash University, VIC
Dr K McAvaney, Deakin University, VIC
Dr D Mathews, Monash University, VIC
Dr A Offer, Queensland
Dr C Rao, NEC Australia, VIC
Dr B B Saad, Monash University, VIC
Assoc Prof J Simpson, Curtin University of Technology, WA
Dr I Wanless, Monash University, VIC 

1. 2017 Australian Mathematical Olympiad
The Australian Mathematical Olympiad (AMO) consists of two papers of four questions each and was sat on 14 and 
15 February. There were 105 participants including 12 from New Zealand, eight more participants than 2017. Three 
students, Matthew Cheah, William Hu and Guowen Zhang, achieved perfect scores and eight other students were 
awarded Gold certificates,17 students were awarded Silver certificates and 26 students were awarded Bronze 
certificates. 

2. 2017 Asian Pacific Mathematics Olympiad 
On Monday 13 and Tuesday 14 March students from nations around the Asia-Pacific region were invited to write the 
Asian Pacific Mathematics Olympiad (APMO). Of the top ten Australian students who participated, there were 1 Gold, 2 
Silver and 4 Bronze certificates awarded. Australia finished in 14th place overall. 

3. 2017 International Mathematical Olympiad, Rio De Janeiro, Brazil.
The IMO consists of two papers of three questions worth seven points each. They were attempted by teams of six 
students from 111 countries on 18 and 19 July in Rio de Janeiro, Brazil, with Australia being placed 34th. The results for 
Australia were three Silver, two Bronze medals and one Honourable Mention.

4. 2017 AMOC Senior Contest
Held on Tuesday 8 August, the Senior Contest was sat by 99 students (compared to 79 in 2016). There were ten 
students who obtained Gold certificates with perfect scores and three other students who also obtained a Gold 
certificates. Fourteen students obtained Silver certificates and 24 students obtained Bronze certificates.
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CHALLENGE PROBLEMS – MIDDLE PRIMARY2017 Challenge Problems - Middle Primary

Students may work on each of these four problems in groups of up to three, but must write their solutions individually.

MP1 Annabel’s Ants

Annabel made a shape by placing identical square tiles in a frame as shown in the diagram below. The tiles are
arranged in columns. Each column touches the base but no column touches the sides or top. There are no empty gaps
between columns. The frame can be enlarged as needed.

• •Start Finish

Annabel notices an ant walking along the edge of the shape made by the tiles. Beginning at the start, the ant follows
the thick line. It walks a total of 11 tile edges to reach the finish.

a Draw a diagram to show how to arrange the 7 tiles in the frame so that the ant walks a total of 15 tile edges to get
from the start to the finish.

b Draw a diagram to show how to arrange the 7 tiles so that the ant will walk exactly 8 tile edges.

c Show that it is possible to arrange the 7 tiles so that the ant walks exactly 9, 10, 11, 12, 13, 14 tile edges.

1
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MP2 Domino Chains

Dominoes are rectangular tiles, twice as long as they are wide, with two sets of dots separated by a line as shown
below. The number of dots in each set varies from 0 to 6. There are 28 different dominoes.
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In a game of dominoes, they are placed end-to-end to form a chain, always matching the number of dots where the
dominoes join. For example, the [2,5] and [1,5] dominoes can be placed as in the first diagram, but not the second.

•
•

•••
•• •• ••• •

allowed

•
•

•••
•• • •••

••

not allowed

a Make a chain of nine dominoes that includes all the dominoes that have at least one set of six dots.

Each domino has a domino product, that is, the product of the number of dots at one end with the number of dots at
the other. For example, the domino product of [2,5] is 2× 5 = 10.

b How many dominoes have an odd domino product? Justify your answer.

c List the ten dominoes which have the largest domino products.

d Make a chain of nine dominoes so that the sum of their domino products is 196.

2
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MP3 Lock Out

A combination padlock has three wheels, each with digits 0 to 9 engraved on it in order. The wheels can be turned
independently in either direction without stopping. A wheel clicks each time it is turned so that whichever digit is on
the marker line changes to either digit next to it on the wheel. The lock can be closed or opened when the correct
three digits line up on the marker line. This lock shows the number 259 at the marker line.

1 2 3

4 5 6

8 9 0

C
H
A
L
L
E
N
G
E

a What is the least number of clicks needed to change 259 to 961?

b From 259, the top wheel is clicked 5 times in one direction, the middle wheel 5 times in one direction, and the
bottom wheel 4 times in one direction. List all numbers that could then appear.

c From 259, how many different numbers can result with only one click? List them all.

d From 259, how many different numbers can result if each wheel is clicked once? List them all.

3
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MP4 Steps to Infinity

The numbers 1, 2, 3, . . . are arranged in steps as shown.

1 2

3

4

5

6

7

8

9

10

11

12

1st 2nd 3rd 4th 5th 6th

Columns

a Which column contains the number 41?

b The bottom number in a column is 65. What is the top number in that column?

c Which column contains the number 1000?

d How many numbers are in the column that contains the number 1000?

4
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2017 Challenge Problems - Upper Primary

Students may work on each of these four problems in groups of up to three, but must write their solutions individually.

UP1 Annabel’s Ants

Annabel made a shape by placing identical square tiles in a frame as shown in the diagram below. The tiles are
arranged in columns. Each column touches the base but no column touches the sides or top. There are no empty gaps
between columns. The frame can be enlarged as needed.

• •Start Finish

Annabel notices an ant walking along the edge of the shape made by the tiles. Beginning at the start, the ant follows
the thick line. It walks a total of 11 tile edges to reach the finish.

a Draw a diagram to show how to arrange the 7 tiles so that the ant will walk 8 tile edges.

b Draw three different arrangements of the 7 tiles, no two with the same maximum column height, so that the ant
will walk 9 tile edges.

c Show that it is possible to arrange the 7 tiles so that the ant walks exactly 10, 11, 12, 13, 14, 15 tile edges.

d Show that it is possible to arrange 49 tiles so that the ant walks fewer than 21 tile edges.

5
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UP2 Steps to Infinity

Each student in the class is given a diagram of a staircase like this:

1st 2nd 3rd 4th 5th 6th

Columns

Some students add extra rows at the bottom of this blank staircase so that each added row has its leftmost square in
column 1. They then write the numbers 1, 2, 3, etc. in the squares, starting with 1 in the bottom-left square of their
staircase and moving up each successive column without missing any squares.

a Ahmed doesn’t add any extra rows and places the numbers in the squares of his blank staircase as shown.

1 2

3

4

5

6

7

8

9

10

11

12

1st 2nd 3rd 4th 5th 6th

Columns

Continuing Ahmed’s pattern, one of the columns would have the number 145 in its bottom square. What would be
the top number in that column?

6
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b Basil takes his blank staircase, adds three extra rows at the bottom and numbers the squares as shown.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1st 2nd 3rd 4th 5th 6th

Columns

Continuing Basil’s pattern, what would be the top number in the 10th column of Basil’s staircase?

c Chelsea takes her blank staircase, adds a certain number of extra rows to the bottom and then numbers the squares.
The top number in the 15th column is 405. How many rows did Chelsea add to her blank staircase?

d Davina adds a certain number of extra rows to the bottom of her blank staircase and then numbers the squares.
The top number in one of the columns is 51. How many rows could Davina have added to her blank staircase? Give
all possible answers.

UP3 Square Parts

Sal cuts a square of integer (whole number) side length into smaller squares of integer side length. For example, she
might cut a 4× 4 square into four 1× 1 squares and three 2× 2 squares, giving a total of seven square pieces.

a Draw a diagram to show how Sal can cut a 5× 5 square into 10 square pieces.

b Draw a diagram to show how Sal can cut a 5× 5 square into 11 square pieces.

c Sal has two 4× 4 squares, three 3× 3 squares, four 2× 2 squares, and five 1× 1 squares. Draw a diagram to show
how she could place some or all of these squares together without gaps or overlaps to make a square that is as large
as possible. Explain why she cannot construct a larger square.

7
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UP4 Bracelets

Sam makes bracelets by threading beads on a chain. The beads are identical except for colour. After threading the
beads, he closes the chain by twisting together the two links at the ends to form a continuous chain. Two bracelets
are considered the same if one is a rotation or reflection (flip) of the other.

a Sam chose to make several bracelets each having 4 beads: 1 red and each of the others either black or white. How
many different bracelets could he make?

b Next Sam makes several bracelets each having 4 beads and each bead is either black or white. How many different
bracelets could he make?

c Next Sam makes several bracelets each having 5 beads: 1 red and each of the others either black or white. How
many different bracelets could he make?

d Next Sam makes several bracelets each having 5 beads and each bead is either black or white. How many different
bracelets could he make?

8
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CHALLENGE PROBLEMS – JUNIOR2017 Challenge Problems - Junior

Students may work on each of these six problems with a partner but each must write their solutions individually.

J1 Annabel’s Ants

Annabel made a shape by placing identical square tiles in a frame as shown in the diagram below. The tiles are
arranged in columns. Each column touches the base but no column touches the sides or top. There are no empty gaps
between columns. The frame can be enlarged as needed.

• •Start Finish

Annabel notices an ant walking along the edge of the shape made by the tiles. Beginning at the start, the ant follows
the thick line. It walks a total of 11 tile edges to reach the finish.

a Show that it is possible to arrange 7 tiles so that the ant walks exactly 8, 9, 10, 11, 12, 13, 14, 15 tile edges.

b Show six ways of arranging 7 tiles so that the ant walks a total of 9 tile edges.

c Show that it is possible to arrange 49 tiles so that the ant walks a total of less than 21 tile edges.

d Show four arrangements of 137 tiles, each arrangement with a different maximum height, so that the ant walks a
total of 34 tile edges.

J2 Steps to Infinity

See Upper Primary Problem 2.

J3 Square Parts

Sal cuts a square of integer (whole number) side length into smaller squares of integer side length. For example, she
might cut a 4× 4 square into four 1× 1 squares and three 2× 2 squares, giving a total of 7 square pieces.

a Draw a diagram to show how Sal can cut a 5× 5 square into 11 square pieces.

b Show that Sal cannot cut a 4× 4 square into 11 square pieces.

c Sal has two 4× 4 squares, three 3× 3 squares, four 2× 2 squares, and four 1× 1 squares. Draw a diagram to show
how she could place some or all of these squares together without gaps or overlaps to make a square that is as large
as possible. Explain why she cannot construct a larger square.

9
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J4 Tribonacci Sequences

A tribonacci sequence is a sequence of numbers such that each term from the fourth onwards is the sum of the previous
three terms. The first three terms in a tribonacci sequence are called its seeds. For example, if the three seeds are 6,
19, 22, then the next few terms are 47 (6 + 19 + 22), 88 (19 + 22 + 47), 157 (22 + 47 + 88), and 292 (47 + 88 + 157).

a Find the smallest 5-digit term in the sequence above.

b The 5th, 6th, 7th terms of a tribonacci sequence are respectively 36, 71, 135. What are the three seeds for this
sequence?

c The seeds of a tribonacci sequence are 20, 17, 2017. Is the 2017th term even or odd? Explain.

d If a tribonacci sequence has 20 as its second seed and 17 as its third seed, find all positive integers that can be its
first seed so that 2017 appears as a term somewhere in the sequence.

J5 Shower Heads

The jets (or holes) on a shower head are arranged in circles that are concentric with the rim. The jets are equally
spaced on each circle and there is at least one radius of the shower head that intersects every circle at a jet.

The angular separation of two jets on a circle is the size of the angle formed by the two radii of the circle that pass
through the jets. All angular separations are integers. For example, on the shower head shown, there are 10 jets on
the inner circle. Hence the angular separation of adjacent jets on the inner circle is 360◦/10 = 36◦.

•

•
•

••
•

•

•

•

•

•
•

• •
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•
••

•

•

•
• •

•

•36◦

a A shower head has three circles of jets: an inner circle with 12 jets, a middle circle with 18 jets, and an outer circle
with 36 jets. What is the angular separation of adjacent jets in each circle?

b For the shower head in Part a, how many radii of the shower head pass through three jets?

c For the shower head in Part a, how many radii of the shower head pass through just two jets?

d Another shower head has four circles with 10, 20, 30, and 45 jets respectively. Explain why no diameter of the
shower head passes through eight jets.

10
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J6 Circle Hopscotch

A hopping circuit is painted on a school playground pavement. It consists of 25 small circles arranged in a large circle
and numbered 0 to 24.

024
23

22

21

20

19

18

17

16

15

14
13 12

11

10

9

8

7

6

5

4

3

2
1

Each student starts at 0 and hops clockwise either 3 places (a 3-hop) or 4 places (a 4-hop) on each turn. For example,
a student’s first hop from 0 will end on either position 3 or 4. Students must go twice around the circuit and end back
at 0 to complete a game. All students list in order the numbers they land on and record the total number of hops
they take.

a In one game a student took 13 hops. Write down a possible list of numbers he landed on.

b Find all possible combinations of the number of 3-hops and the number of 4-hops in a game.

c What is the smallest number of different numbers a student can land on in one game? Explain your answer.

d Jo and Mike decide to play a longer version of the game according to the following rules. They take each of their
hops at the same time starting with both on 0. Whenever Jo takes a 4-hop, Mike takes a 3-hop; whenever Jo takes
a 3-hop, Mike takes a 4-hop.

Jo’s first five full hops on each lap are 4-hops. After that, she takes 3-hops until she next reaches or passes 0. How
many laps will each of them have completed when they next meet at 0?

11
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2017 Challenge Problems - Intermediate

Students may work on each of these six problems with a partner but each must write their solutions individually.

I1 Tribonacci Sequences

A tribonacci sequence is a sequence of numbers such that each term from the fourth onwards is the sum of the previous
three terms. The first three terms in a tribonacci sequence are called its seeds. For example, if the three seeds are 6,
19, 22, then the next few terms are 47 (6 + 19 + 22), 88 (19 + 22 + 47), 157 (22 + 47 + 88), and 292 (47 + 88 + 157).

a Find the smallest 5-digit term of the sequence above.

b The seeds of a tribonacci sequence are 20, 17, 2017. Is the 2017th term even or odd? Explain.

c A tribonacci sequence has second seed 20, third seed 17 and its eighth term is zero. Find its first seed.

d If a tribonacci sequence has 20 as its second seed and 17 as its third seed, find all positive integers that can be its
first seed so that 2017 appears as a term somewhere in the sequence.

I2 Rowing Machine

A person exercising on a rowing machine is kept informed about his/her progress by various numbers displayed by
the machine. Three numbers of particular importance are the total distance rowed in metres, the total time rowed in
minutes and seconds, and the current pace, which is the time it would take in minutes and seconds to row 500 metres.

For example, the diagram shows that this rower has covered a distance of 1000 metres, has been rowing for 5 minutes
and 50 seconds, and would take 2 minutes and 40 seconds to row 500 metres at the current pace.

Pace 2:40

Time 5:50

Distance 1000

a Thomas and Jack start rowing at the same time. Each aims to get to 1000m first. Thomas’ strategy is to row the
whole distance at a 3 minute pace. Jack decides to row at a slower 3 minute 20 second pace for the first 3 minutes
and then row faster at a 2 minute 40 second pace for the rest of the distance. Who gets to 1000m first?

b Thomas and Jack repeat the task of rowing to 1000m first. Thomas maintains his plan of rowing 1000m at a 3
minute pace. Jack changes his strategy to row the first 600m at a 3 minute 20 second pace, then the next 400m at
a 2 minute 40 second pace. Who gets to 1000m first?

c Jack plans to row 3000m in 15 minutes. He sets out at a 2 minute 38 second pace, but after rowing 600m realises
that he will not be able to cover 3000m in 15 minutes at his current pace. At what pace does he need to row the
remainder of his training session to reach his goal?

d Thomas rows 1000m at a 3 minute pace. Jack rows at a 3 minute 20 second pace at the beginning, and then he
rows at a 2 minute 40 second pace. For what distance should Jack row at a 3 minute 20 second pace to finish the
1000m at the same time as Thomas?

12
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I3 Blocking Circles

Three students each draw a circle of radius 12 cm with centre O. Then they draw four circles inside this circle which
may touch but not overlap.

a Student A draws the first interior circle with a radius of 4 cm so that it touches the large circle. She then draws
the remaining three interior circles in turn. Each has a radius of 4 cm and touches the large circle and the most
recently drawn small circle. When viewed from O, what fraction of the circumference of the large circle is blocked
by the interior circles?

b Student B also draws the four interior circles with radius 4 cm. Their centres are all the same distance from O, and
the circumference of the large circle is entirely blocked by the interior circles when viewed from O. How far are the
centres of the interior circles from O?

c Student C draws two circles of radius 4 cm with their centres on a diameter of the large circle and each at distance
5 cm from O. She then draws two more circles, this time each of radius 3 cm, so that the circumference of the large
circle is entirely blocked by all four interior circles when viewed from O.

What are the minimum and maximum distances from O to the centre of a circle of radius 3 cm?

I4 Shower Heads

The jets (or holes) on a shower head are arranged in circles that are concentric with the rim. The jets are equally
spaced on each circle and there is at least one radius of the shower head that intersects every circle at a jet.

The angular separation of two jets on a circle is the size of the angle formed by the two radii of the circle that pass
through the jets. All angular separations are integers. For example, on the shower head shown, there are 10 jets on
the inner circle. Hence the angular separation of adjacent jets on the inner circle is 360◦/10 = 36◦.
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a A shower head has three circles of jets: an inner circle with 12 jets, a middle circle with 18 jets, and an outer circle
with 36 jets. How many radii of the shower head pass through just two jets?

b Another shower head has three circles with 20, 30, and 45 jets respectively. Explain why no diameter of the outer
circle passes through six jets.

c A shower head with three circles of jets has a different number of jets in each circle. Exactly two diameters of the
shower head pass through six jets. If the total number of jets is 100, how many jets are there in each circle? Find
all combinations.

d Find the maximum number of jets in a shower head with three circles if only one radius of the shower head passes
through three jets, no radius passes through just two jets, and each circle has at least two jets.

13
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I5 Chance Encounters

The bottom-left corner of a 4× 4 grid is labelled A and the diagonally opposite corner B. Two other grid points are
labelled P and Q as shown.

•

•

• •

A

P

Q B

A counter is placed at A. Each second the counter moves along a grid line to an adjacent grid point, always increasing
its distance from A. It continues to do this until it reaches point B after 8 seconds. Where there are two possible
moves, they are equally likely.

a Explain why there is a 1 in 4 chance that the counter starting at A will be at P after 4 seconds.

b What is the probability that the counter starting at A will be at Q after 5 seconds?

A second counter is placed at B. Each second the counter moves along a grid line to an adjacent grid point, always
increasing its distance from B. It continues to do this until it reaches point A after 8 seconds. Where there are two
possible moves, they are equally likely.

The two counters start moving at the same time.

c Indicate on a diagram all the grid points at which the counters can meet. Explain why there are no other grid
points at which they could meet.

d What is the probability that the counters meet?

I6 Unequal Partitions

A partition of an integer into distinct positive parts (no two are equal) is called an unequal partition. For example,
there are seven unequal partitions of 12 into 3 parts: 12 = 9+ 2+ 1 = 8+ 3+ 1 = 7+ 4+ 1 = 7+ 3+ 2 = 6+ 5+ 1 =
6 + 4 + 2 = 5 + 4 + 3.

The span of a partition is the difference between the smallest and largest number in the partition. For example, the
spans of the unequal partitions of 12 into 3 parts listed above are respectively 8, 7, 6, 5, 5, 4, 2. Thus 2 is the smallest
span of an unequal partition of 12 into 3 parts.

a Find at least two unequal partitions of 2017 into 5 parts with a span of 7.

b Find an unequal partition of 2017 into 5 parts with the smallest possible span.

c Find the smallest number that has an unequal partition into 5 parts. Describe the set of all numbers that have an
unequal partition into 5 parts with a span of 4.

d Show that for each number that has an unequal partition into 5 parts, the smallest span for such partitions is 4 or
5.

14



32     Mathematics Contests The Australian Scene 2017

2017 Challenge Solutions - Middle Primary

MP1 Annabel’s Ants

a

• •S F

b Either one of the two possible arrangements.

• •S F • •S F

c Alternative i

Here is an arrangement for each total number of tile edges from 9 to 14. In each case there is at least one other
valid arrangement.

• •S F

9 edges
• •S F

10 edges

• •S F

11 edges
• •S F

12 edges

• •S F

13 edges
• •S F

14 edges

15
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Alternative ii

If 7 tiles are placed horizontally, then the ant walk has 9 tile edges.

• •S F

9 edges

One at a time, place the right tile above the left tile so as to make a column on top of the left tile. Each time this
is done, the horizontal edge on top of the left column is removed from the ant walk but two new (vertical) edges
are added to the ant walk, one on the tile that is moved and one on the tile that was next to it.

• •S F

So the number of edges in the ant walk increases by exactly 1. At least 5 tiles can be moved in this way. So 7 tiles
can be arranged to produce ant walks with 9, 10, 11, 12, 13, 14 tile edges.

MP2 Domino Chains

a There are seven dominoes with six dots at either end. The following chain of nine dominoes contains all seven: [0,6]
[6,6] [6,5] [5,4] [4,6] [6,3] [3,2] [2,6] [6,1].

There are other valid chains.

b The product of an even number with any other number is even. The product of two odd numbers is odd. Hence the
only dominoes with odd domino products are [1,1] [1,3] [1,5] [3,3] [3,5] [5,5]. Thus there are exactly six dominoes
with an odd domino product.

c The following table shows the domino product for each domino.

× 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 4 6 8 10 12
3 9 12 15 18
4 16 20 24
5 25 30
6 36

The 10 largest products, including repetitions, are 36, 30, 25, 24, 20, 18, 16, 15, 12, 12.

Hence the required dominoes are [6,6] [5,6] [5,5] [4,6] [4,5] [3,6] [4,4] [3,5] [3,4] [2,6].

d Adding various domino products from the table in Part c, we find the nine largest domino products 36, 30, 25, 24,
20, 18, 16, 15, 12 sum to 196. These domino products come from dominoes [6,6] [5,6] [5,5] [4,6] [4,5] [3,6] [4,4] [3,5],
along with either [3,4] or [2,6].

Choosing [2,6], we get the following chain: [2,6] [6,6] [6,5] [5,5] [5,4] [4,4] [4,6] [6,3] [3,5].

There are other acceptable chains.
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MP3 Lock Out

a The diagram shows the digits either side of 2, 5, 9.

4 5 6 7 8 9 0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 0

7 8 9 0 1 2 3 4 5 6 7

The least number of clicks needed to change 2 to 9 is 3.
The least number of clicks needed to change 5 to 6 is 1.
The least number of clicks needed to change 9 to 1 is 2.

So the least number of clicks needed to change 259 to 961 is 3 + 1 + 2 = 6.

b Five clicks of the top wheel in either direction gives digit 7.
Five clicks of the middle wheel in either direction gives digit 0.
Four clicks on the bottom wheel gives digits 3 or 5.

So the only numbers that could result are 703 and 705.

c One click would change 2 to 1 or 3, resulting in 159 or 359.
One click would change 5 to 4 or 6, resulting in 249 or 269.
One click would change 9 to 0 or 8, resulting in 250 or 258.

So six numbers could result: 159, 249, 250, 258, 269, 359.

d The tree diagram shows the digits at the marker line after one click for each wheel.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0

0

0

0

8

8

8

8

4

4

6

6

1

3

top wheel middle wheel bottom wheel

So eight numbers could result: 140, 148, 160, 168, 340, 348, 360, 368.
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MP4 Steps to Infinity

a In column order, the number of squares in the columns are 1, 3, 5, 7, . . .. So the numbers in the top squares in
column order are 1, 1 + 3 = 4, 1 + 3+ 5 = 9, 1 + 3+ 5+ 7 = 16, 1 + 3+ 5+ 7+ 9 = 25, 1 + 3+ 5+ 7+ 9+ 11 = 36,
1 + 3 + 5 + 7 + 9 + 11 + 13 = 49, . . .. Hence 41 is in column 7.

b As in Part a, the numbers in the top squares in column order are 1, 1 + 3 = 4, 4 + 5 = 9, 9 + 7 = 16, 16 + 9 = 25,
25 + 11 = 36, 36 + 13 = 49, 49 + 15 = 64, 64 + 17 = 81, . . .. So the top number in the column that has 65 at the
bottom is 81.

c As in Part a, the number at the top of column c is the sum of the first c odd numbers.

From a spreadsheet or calculator, the sum of the first 31 odd numbers is 961 and the sum of the first 32 odd numbers
is 1024.

(Alternatively, the 32nd odd number is 1 less than the 32nd even number, that is, 2 × 32 − 1 = 63. Now add the
first 32 odd numbers in an order that is easy to calculate, such as low numbers with high numbers: (1 + 63) +
(3 + 61) + (5 + 59) + · · · + (29 + 35) + (31 + 33) = 16 × 64 = 1024. Hence the sum of the first 31 odd numbers is
1024− 63 = 961.)

So 1000 occurs in the 32nd column.

d From Part c, 1000 is in the 32nd column. As in Part a, the number of numbers in the 32nd column is the 32nd
odd number, which is 63.

18



36     Mathematics Contests The Australian Scene 2017

2017 Challenge Solutions - Upper Primary

UP1 Annabel’s Ants

a There are two possible arrangements.

• •S F • •S F

b There is only one arrangement with maximum column height 1.

• •S F

There are four arrangements with maximum column height 2. Here is one arrangement.

• •S F

There are five arrangements with maximum column height 3. Here is one arrangement.

• •S F

c Alternative i

Here is one arrangement for each total number of tile edges from 10 to 15. There are several other arrangements.

• •S F

10 edges

• •S F

11 edges
• •S F

12 edges

• •S F

13 edges
• •S F

14 edges
• •S F

15 edges

19
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Alternative ii

In this arrangement of 7 tiles the ant walk has 10 tile edges.

• •S F

10 edges

One at a time, place the right tile above the left tile so as to make a column on top of the left tile. Each time this
is done, the horizontal edge on top of the left column is removed from the ant walk but two new (vertical) edges
are added to the ant walk, one on the tile that is moved and one on the tile that was next to it.

• •S F

So the number of edges in the ant walk increases by exactly 1. Five tiles can be moved in this way. So 7 tiles can
be arranged to produce ant walks with 10, 11, 12, 13, 14, 15 tile edges.

d There are only two possible arrangements: this one and its reflection about a vertical line.

• •S F

20 edges

UP2 Steps to Infinity

a From one column to the next, the number of squares increases by 2. So, in column order, the number of squares in
the columns of Ahmed’s staircase are the odd numbers 1, 3, 5, 7, . . .. From this we can calculate the numbers at
the top of various columns, as shown in this table.

Column Top number Column Top number
1 1 8 49 + 15 = 64
2 1 + 3 = 4 9 64 + 17 = 81
3 4 + 5 = 9 10 81 + 19 = 100
4 9 + 7 = 16 11 100 + 21 = 121
5 16 + 9 = 25 12 121 + 23 = 144
6 25 + 11 = 36 13 144 + 25 = 169
7 36 + 13 = 49 14 169 + 27 = 196

So 145 is at the bottom of column 13 and the top number of column 13 is 169.

b Alternative i

From Part a, the number at the top of the 10th column of Ahmed’s staircase is 100. Given Basil added 3 rows, the
number at the top of the 10th column of his staircase would be 100 + 3× 10 = 130.

20
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Alternative ii

From one column to the next, the number of squares increases by 2. So, in column order, the number of squares in
the columns of Basil’s staircase are the even numbers 4, 6, 8, . . .. From this we can calculate the numbers at the
top of various columns, as shown in this table.

Column Top number Column Top number
1 4 6 40 + 14 = 54
2 4 + 6 = 10 7 54 + 16 = 70
3 10 + 8 = 18 8 70 + 18 = 88
4 18 + 10 = 28 9 88 + 20 = 108
5 28 + 12 = 40 10 108 + 22 = 130

So the top number in the 10th column would be 130.

c Continuing the calculations in Part a, the number at the top of the 15th column of Ahmed’s staircase would have
been 225. The top number of the 15th column in Chelsea’s staircase is 405. Since 405− 225 = 180, the number of
rows that Chelsea added was 180÷ 15 = 12.

d The top number in column n of Davina’s staircase is the top number in the same column n of Ahmed’s staircase
plus a multiple of n. So the last column in which 51 could be the top number is column 7. In the following table,
A is the top number in column n in Ahmed’s table. We check if 51−A is a multiple of n.

n A 51−A Multiple of n?
1 1 50 yes
2 4 47 no
3 9 42 yes
4 16 35 no
5 25 26 no
6 36 15 no
7 49 2 no

Since 50 ÷ 1 = 50, Davina could have added 50 rows and then 51 would have been at the top of column 1. Since
42÷ 3 = 14, Davina could have added 14 rows and then 51 would have been at the top of column 3. These are the
only options available to Davina.

UP3 Square Parts

a One 4× 4 piece plus nine 1× 1 pieces.

b One 3× 3 piece, two 2× 2 pieces, and eight 1× 1 pieces.
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c The total area of the pieces is 2× (4× 4) + 3× (3× 3) + 4× (2× 2) + 5× (1× 1) = 80.
Since 8 × 8 = 64 and 9 × 9 = 81, the largest square that could be constructed from these pieces cannot be larger
than 8× 8.

Here is an 8× 8 square, made of all the available pieces except one 4× 4.

So the largest square that Sal can make is 8× 8.

UP4 Bracelets

a There are 6 different bracelets as shown in the diagram. The grey dot represents the red bead.

b There are 6 different bracelets.
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c There are 10 different bracelets.

d There are 8 different bracelets.
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2017 Challenge Solutions - Junior

J1 Annabel’s Ants

a Here is one arrangement for each total number of edges from 8 to 15. There are several other arrangements.

• •S F

8 edges
• •S F

9 edges
• •S F

10 edges

• •S F

11 edges
• •S F

12 edges

• •S F

13 edges
• •S F

14 edges
• •S F

15 edges

b There are 10 arrangements as we see in the following discussion. Any six of these are acceptable.

We sort the arrangements according to the maximum height for the tile columns in the frame. Notice that since
the ant starts and finishes at the same height, the number of vertical edges that it crawls up must equal the number
of vertical edges that it crawls down. So the number of vertical edges in any ant walk is even. Also notice that the
number of horizontal edges in any ant walk equals the number of columns in which the tiles are placed.

• Maximum column height of 1. There is only one arrangement.

• •S F

• Maximum column height of 2. There are at least 4 columns and at most 6 columns. If there are 4 or 6 columns,
then the number of tile edges in the walk is even so cannot be 9.

If there are 5 columns, then there are just 4 arrangements.

• •S F • •S F

• •S F • •S F
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• Maximum column height of 3. There are at least 3 columns and at most 5 columns. If there are 3 columns, then
there are just 5 arrangements.

• •S F • •S F

• •S F • •S F • •S F

If there are 4 or 5 columns, then the number of tile edges in the walk is at least 4 + 2 × 3 = 10, which is greater
than 9.

• Maximum column height of 4, 5, or 6. There are at least 2 columns. So the number of tile edges in the walk is
at least 2 + 2× 4 = 10, which is greater than 9.

• Maximum column height of 7. The number of tile edges in the walk is 1 + 2× 7 = 15, which is greater than 9.

c There are only two possible arrangements: this one and its reflection about any vertical line.

• •S F

20 edges

d Here are four arrangements. Their reflections about any vertical line are also acceptable.

Maximum height 7.

• •S F
34 edges

Maximum height 8.

• •S F
34 edges
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Maximum height 9.

• •S F
34 edges

Maximum height 10.

• •S F
34 edges

J2 Steps to Infinity

See Upper Primary Problem 2.

J3 Square Parts

a The diagram shows one way to cut a 5 × 5 square into 11 square pieces. The 11 pieces are: one 3 × 3 piece, two
2× 2 pieces, and eight 1× 1 pieces. There are several other possible partitions. For example, see Extension 1.

b Alternative i

The table shows all possible combinations of squares that form a 4× 4 square.

Largest square(s) Other squares Total
one 4× 4 none 1
one 3× 3 seven 1× 1 8
four 2× 2 none 4
three 2× 2 four 1× 1 7
two 2× 2 eight 1× 1 10
one 2× 2 twelve 1× 1 13
sixteen 1× 1 none 16
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No combination totals 11 squares.

Alternative ii

Suppose a 4× 4 square is divided into smaller square pieces. If all of the pieces were 1× 1, then we would have 16
pieces, which is more than 11. So, if we want exactly 11 pieces, then at least one piece must be bigger than 1× 1.

If one of the pieces is 3× 3 or bigger, then the number of pieces is at most 1 + (16− 9) = 8, which is less than 11.
So each piece is 1× 1 or 2× 2.

If two or more pieces are 2 × 2, then the number of pieces is at most 2 + (16 − 8) = 10, which is less than 11. So
only one piece is 2× 2 and the number of pieces is 1 + (16− 4) = 13 pieces, which is more than 11.

Hence it is impossible to divide a 4× 4 square into 11 smaller square pieces.

Alternative iii

Suppose a 4× 4 square is divided into 11 smaller square pieces. The table shows, for each number of 1× 1 pieces,
the least area covered by all 11 pieces.

No. of 1× 1 Least area of 11 pieces

0 0 + 11× 4 = 44
1 1 + 10× 4 = 41
2 2 + 9× 4 = 38
3 3 + 8× 4 = 35
4 4 + 7× 4 = 32
5 5 + 6× 4 = 29
6 6 + 5× 4 = 26
7 7 + 4× 4 = 23
8 8 + 3× 4 = 20
9 9 + 2× 4 = 17

In all cases the total area of the 11 pieces is more than 16. So there are either 10 or 11 pieces that are 1 × 1. If
all 11 pieces are 1 × 1, then their total area is less than 16. Hence there must be exactly 10 pieces that are 1 × 1.
But that leaves an area of 6 to be divided into two squares larger than 1× 1. This is impossible. So a 4× 4 square
cannot be divided into 11 smaller square pieces.

Alternative iv

Suppose a 4 × 4 square is divided into 11 smaller square pieces. All pieces must be smaller than 4 × 4. Let the
number of 3× 3 squares be a. Let the number of 2× 2 squares be b. Let the number of 1× 1 squares be c. Then
a + b + c = 11 and 9a + 4b + c = 16. Subtracting these two equations gives 8a + 3b = 5. Hence a = 0. Therefore
3b = 5, which is impossible. So a 4× 4 square cannot be divided into 11 smaller square pieces.

c The total area of the pieces is 2× (4× 4) + 3× (3× 3) + 4× (2× 2) + 4× (1× 1) = 79.
So the largest square that could be constructed from these pieces must be 8 × 8 or smaller. Since 79 − 64 = 15,
pieces with total area 15 must be removed before an 8× 8 square could be made. The only combinations of square
numbers that total 15 are 9 + 4 + 1 + 1, and 4 + 4 + 4 + 1 + 1 + 1.

Hence the only combinations of pieces that have total area 64 are
2× (4× 4) + 2× (3× 3) + 3× (2× 2) + 2× (1× 1), and
2× (4× 4) + 3× (3× 3) + 1× (2× 2) + 1× (1× 1).

If two 4× 4 squares occupy an 8× 8 square, then each must be against the boundary of the 8× 8 square. So they
are in separate 8× 4 rectangular halves of the 8× 8 square. (The boundary between these two rectangular halves is
either horizontal or vertical.) Since at least two 3× 3 squares must be used, at most one can cross the line dividing
these half-regions. So an entire 3× 3 square must occupy the vacant space of one of these half-regions. Therefore
the 4× 4 square in that half-region occupies a corner of that half-region or leaves a 1 × 4 space between the 4× 4
square and an end boundary of that half-region.

In the first case there will be a 1× 3 space between the 3 × 3 square and either the 4× 4 square or the boundary
of the 8 × 8 square. So three 1 × 1 squares are required to fill that 1 × 3 space. In the second case, four 1 × 1
squares are required to fill the 1× 4 space. Since at most two 1× 1 squares can be used, an 8× 8 square cannot be
constructed from the given pieces.

Here is a 7× 7 square made from some of the available pieces.
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So the largest square that Sal can make is 7× 7.

J4 Tribonacci Sequences

a Stopping at the smallest 5-digit number, the sequence is

6, 19, 22, 47, 88, 157, 292, 537, 986, 1815, 3338, 6139, 11292.

b Working backwards gives the earlier terms in the sequence.

Since the 4th term + the 5th term + the 6th term = the 7th term,
the 4th term is 135− 71− 36 = 28.
Similarly, the 3rd term is 71− 36− 28 = 7,
the 2nd term is 36− 28− 7 = 1,
and the 1st term is 28− 7− 1 = 20.

So the seeds are 20, 1, 7.

c The sum of one even and two odd numbers is even. The sum of two even and one odd number is odd. So the
tribonacci sequence 20, 17, 2017, . . . , gives the following sequence of even and odd numbers:

even, odd, odd, even, even, odd, odd, even, . . .

Thus the sequence ‘even, odd, odd, even’ repeats endlessly. Since 2017 = (4 × 504) + 1, the 2017th term will
correspond to the first term in the 505th occurrence of the sequence ‘even, odd, odd, even’. So the 2017th term is
an even number.

d Let a be the first seed. The sequence becomes

a, 20, 17, a+ 37, a+ 74, 2a+ 128, 4a+ 239, 7a+ 441, 13a+ 808, 24a+ 1488, 44a+ 2737, . . .

We set each term equal to 2017 to see if there is a solution for a.

The first term gives a = 2017.

The fourth term gives a = 1980.

The fifth term gives a = 1943.

The sixth term would give 2a = 1889, which is impossible since 1889 is odd.

The seventh term would give 4a = 1778, which is impossible because 4 does not divide 1778.

The eighth term would give 7a = 1576, which is impossible because 7 does not divide 1576.

The ninth term gives 13a = 1209, which gives a = 93.

The tenth term would give 24a = 529, which is impossible because 529 is odd.

Since a is positive, the eleventh term is more than 2017 and each term after the eleventh is bigger than its predecessor.
So all terms from the eleventh onwards are more than 2017.

So the only positive integer values of a are 2017, 1980, 1943, 93.

28



46     Mathematics Contests The Australian Scene 2017

J5 Shower Heads

a The angular separations of adjacent jets in the inner, middle, and outer circles are 360◦/12 = 30◦, 360◦/18 = 20◦,
360◦/36 = 10◦ respectively.

b The angular separation between radii that pass through three jets is the lowest common multiple of 30, 20, and 10
degrees, that is, 60◦. Hence the number of radii that pass through three jets is 360/60 = 6.

c Alternative i

From Part b, exactly six radii pass through a jet on all three circles.

The lowest common multiple of 30 and 10 is 30. Hence the number of radii that pass through a jet on the inner and
outer circles is 360/30 = 12. Of these, six pass through all three circles. So the number of radii that pass through
a jet on the inner and outer circles but not on the middle circle is 12− 6 = 6.

The lowest common multiple of 20 and 10 is 20. Hence the number of radii that pass through a jet on the middle
and outer circles is 360/20 = 18. Of these, six pass through all three circles. So the number of radii that pass
through a jet on the middle and outer circles but not the inner circle is 18− 6 = 12.

The lowest common multiple of 30 and 20 is 60. Hence all radii that pass through a jet on the inner and middle
circles also pass through a jet on the outer circle.

So the total number of radii that pass through just two jets is 6 + 12 = 18.

Alternative ii

From Part b, the pattern of jets on the three circles repeats every 60◦. The table shows the angles from 0◦ to 60◦

on each circle at which a radius passes through a jet.

outer circle 0 10 20 30 40 50 60
middle circle 0 20 40 60
inner circle 0 30 60

Thus in 60◦ exactly 3 radii pass through just two jets. So the number of radii in 360◦ that pass through just two
jets is 6× 3 = 18.

d Alternative i

Since the outer circle has an odd number of jets, no diameter passes through two jets on this circle. Hence no
diameter of the shower head passes through 8 jets.

Alternative ii

The angular separations for the four circles are 360/10 = 36◦, 360/20 = 18◦, 360/30 = 12◦, 360/45 = 8◦. The
lowest common multiple of 36, 18, 12, 8 is 72. Since 180 is not a multiple of 72, there is no diameter of the shower
head that passes through 8 jets.

J6 Circle Hopscotch

a Completing two laps requires a student to move a total of 50 places. Thirteen 4-hops moves 52 places around the
circle, which is 2 places too many. Hence twelve 4-hops and one 3-hop is 1 place too far. But eleven 4-hops and
two 3-hops will cover exactly 50 places. There are many acceptable orderings of these 13 hops. For example: 0, 3,
6, 10, 14, 18, 22, 1, 5, 9, 13, 17, 21, 0.

b From the solution to Part a, the maximum number of 4-hops in a total of 50 places is 11. If we reduce the number
of 4-hops then they must be replaced by 3-hops to keep the total of 50 places. The lowest common multiple of 4
and 3 is 12. So this table shows the only possible combinations of 4-hops and 3-hops in a game.

4-hops 11 8 5 2
3-hops 2 6 10 14

c The total length of any sequence of 6 hops is at most 6 × 4 = 24 places. So in order to go around the circuit, a
student must land on at least 7 different numbers.

One way to land on only 7 different numbers is to begin by going around the board once with 4 hops of length 4
and 3 hops of length 3. With this sequence of hops the student lands on 4, 8, 12, 16, 19, 22, 0. If the same sequence
of hops is repeated, the student lands on the same numbers again.

So 7 is the smallest number of different numbers a student can land on.
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d If Jo takes five 4-hops, she is at position 20. Two 3-hops will then move her to 1. On her second lap, the five 4-hops
will take her to 21. Then two 3-hops will take her to 2. On her third lap, five 4-hops takes her to 22 and one 3-hop
will bring her back to 0. After this, her pattern will repeat, so Jo will only be at 0 at the end of every three laps
that she completes.

We can see that in completing 3 laps, Jo takes fifteen 4-hops and five 3-hops. So, in the same time, Mike will take
fifteen 3-hops and five 4-hops. This is a total of 15× 3 + 5× 4 = 65 places, which means he will be at position 15
when Jo completes her three laps, that is, 10 places behind. Because Mike follows Jo’s pattern, he will advance 15
places after every 3 laps which Jo completes. The table shows Mike’s position after every 3 laps by Jo, up to lap
15.

Laps by Jo 3 6 9 12 15
Mike’s position 15 5 20 10 0

So the first time they meet at 0 after they start is when Jo has completed 15 laps. At that time Mike is behind by
5× 10 = 50 places, which is 2 laps. So Mike completes 13 laps.
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2017 Challenge Solutions - Intermediate

I1 Tribonacci Sequences

a Stopping at the smallest 5-digit number, the sequence is

6, 19, 22, 47, 88, 157, 292, 537, 986, 1815, 3338, 6139, 11292.

b The sum of one even and two odd numbers is even. The sum of two even and one odd number is odd. So the
tribonacci sequence 20, 17, 2017, . . . , gives the following sequence of even and odd numbers:

even, odd, odd, even, even, odd, odd, even, . . .

Thus the sequence ‘even, odd, odd, even’ repeats endlessly. Since 2017 = (4 × 504) + 1, the 2017th term will
correspond to the first term in the 505th occurrence of the sequence ‘even, odd, odd, even’. So the 2017th term is
an even number.

c Let a be the first seed. The sequence becomes a, 20, 17, a+ 37, a+ 74, 2a+ 128, 4a+ 239, 7a+ 441, . . .

The eighth term is 7a+ 441 = 0. Then 7a = −441 and a = −63.

d Let a be the first seed. The sequence becomes

a, 20, 17, a+ 37, a+ 74, 2a+ 128, 4a+ 239, 7a+ 441, 13a+ 808, 24a+ 1488, 44a+ 2737, . . .

We set each term equal to 2017 to see if there is a solution for a.

The first term gives a = 2017.

The fourth term gives a = 1980.

The fifth term gives a = 1943.

The sixth term would give 2a = 1889, which is impossible since 1889 is odd.

The seventh term would give 4a = 1778, which is impossible because 4 does not divide 1778.

The eighth term would give 7a = 1576, which is impossible because 7 does not divide 1576.

The ninth term gives 13a = 1209, which gives a = 93.

The tenth term would give 24a = 529, which is impossible because 529 is odd.

Since a is positive, the eleventh term is more than 2017 and each term after the eleventh is bigger than its predecessor.
So all terms from the eleventh onwards are more than 2017.

So the only positive integer values of a are 2017, 1980, 1943, 93.

I2 Rowing Machine

a Alternative i

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

At 3 minute 20 second pace, Jack rows 500m in 3 1
3 = 10

3 minutes. So in 3 minutes Jack rows 500 × (3 ÷ 10
3 ) =

450m. Hence Jack needs to row 1000− 450 = 550m at his second pace of 2 minute 40 seconds = 8
3 minutes. The

time this takes is 550
500 × 8

3 = 44
15 minutes. Jack’s total time is 3 + 44

15 = 5 14
15 minutes = 5 minutes 56 seconds.

So Jack reaches 1000m first.

Alternative ii

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

At 3 minute 20 second pace, Jack rows 500m in 3× 60 + 20 = 200 seconds. So the distance Jack rows at this pace
in 3 minutes is 500 × 180

200 = 450m. So Jack needs to row 1000 − 450 = 550m at his second pace of 2 minutes 40
seconds. At this pace he rows 500m in 2 × 60 + 40 = 160 seconds, hence 50m in 16 seconds. Jack’s total time is
180 + 160 + 16 = 356 seconds = 5 minutes 56 seconds.

So Jack reaches 1000m first.
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Alternative iii

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

At 3 minute 20 second pace, Jack rows 500m in 3 minutes 20 seconds, which is 500/(3 1
3 ) = 150m per minute.

At 2 minute 40 second pace, Jack rows 500m in 2 minute 40 seconds, which is 500/(2 2
3 ) = 187.5m per minute.

So in 6 minutes Jack would row 3× 150 + 3× 187.5 = 450 + 562.5 = 1012.5m.

So Jack reaches 1000m first.

Alternative iv

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

If Jack rowed 500m at 3 minute 20 second pace and 500m at 2 minute 40 second pace, then he would row 1000m
in 6 minutes.

If he rows at 3 minute 20 second pace for just 3 minutes and the remaining distance at 2 minute 40 second pace,
then he will row less than 500m at the slower rate and more than 500m at the faster rate, and therefore reach
1000m in less than 6 minutes.

So Jack reaches 1000m first.

b Alternative i

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

At 3 minute 20 second pace, Jack rows 600m in 600
500 × 10

3 = 4 minutes. At 2 minute 40 second pace, Jack rows
400m in 400

500 × 8
3 = 2 2

15 minutes. Jack’s total time is 4 + 2 2
15 = 6 2

15 minutes = 6 minutes and 8 seconds.

So Thomas reaches 1000m first.

Alternative ii

Thomas’s pace is (3× 60)/5 = 36 seconds per 100m.

Jack’s first pace is (3× 60+20)/5 = 200/5 = 40 seconds per 100m. So Jack takes 6× (40− 36) = 24 seconds longer
than Thomas to complete the first 600m.

Jack’s second pace is (2× 60+ 40)/5 = 160/5 = 32 seconds per 100m. So Thomas takes 4× (36− 32) = 16 seconds
longer than Jack to complete the last 400m.

Hence Jack takes 24− 16 = 8 seconds longer than Thomas to complete 1000m. So Thomas reaches 1000m first.

Alternative iii

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

If Jack rowed 500m at 3 minute 20 second pace and 500m at 2 minute 40 second pace, then he would row 1000m
in 6 minutes.

If he rows at 3 minute 20 second pace for 600m and the next 400m at 2 minute 40 second pace, then he will row
more than 500m at the slower rate and less than 500m at the faster rate, and therefore reach 1000m in more than
6 minutes.

So Thomas reaches 1000m first.

c Alternative i

Rowing at 2:38 pace Jack covers every 100m in (2 × 60 + 38)/5 = 158/5 = 31.6 seconds. So he covers 600m in
6× 31.6 = 189.6 seconds.

He wishes to row 3000m in 15 minutes, so must cover the remaining 2400m in 15× 60− 189.6 = 710.4 seconds. So
he must row every 100m in 710.4/24 = 29.6 seconds. This means 500m will take 5 × 29.6 = 148 seconds, or 2:28
pace.

Alternative ii

Jack wishes to row 3000m in 15 minutes, that is, row at pace 15/6 = 2:30. If Jack rows at 2:38 pace he will be 8
seconds slower per 500m than required. After 600m he has rowed 1/5 of the total distance, so has 4/5 of the total
distance remaining. So he has 4 times the distance to regain the time lost. This means the time lost (8 seconds
per 500m) must be regained at one quarter the pace, that is 2 seconds per 500m. So Jack must row the remaining
distance at a pace of 2:28.

Alternative iii

Jack wishes to row 3000m in 15× 60 = 900 seconds.

Rowing at 2:38 pace Jack covers 600m in (600/500)× (2× 60 + 38) = (6/5)× 158 = 189.6 seconds.

Suppose he rows the remaining 2400m at a pace of x. Then 189.6+ (2400/500)x = 900. So 24x/5 = 900− 189.6 =
710.4 and x = (5× 710.4)/24 = 3552/24 = 148 seconds = 2:28.
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d Alternative i

The average of the Jack’s two paces is (31
3 + 2 2

3 )/2 = 6/2 = 3 minutes, which is the same pace as Thomas. If Jack
rows for the same distance for each of his two paces, then his average pace for the total distance is the average of
the two paces. So if Jack rows at a 3 minute 20 second pace for the first 500m and at a 2 minutes 40 second pace
for the last 500m, he will finish at the same time as Thomas.

Alternative ii

At 3 minute pace, Thomas rows 1000m in 2× 3 = 6 minutes.

Suppose Jack rows for x metres at a 3 minute 20 second pace and 1000 − x metres at a 2 minute 40 second pace.
The total time in minutes that Jack takes to row 1000m is

(
x

500
× 10

3

)
+

(
1000− x

500
× 8

3

)
=

10x

1500
+

8000− 8x

1500
=

8000 + 2x

1500

So (8000 + 2x)/1500 = 6, 8000 + 2x = 9000, and x = 500. Thus Jack must row at a 3 minute 20 second pace for
500m.

I3 Blocking Circles

a Alternative i

Each of the small circles blocks the same amount of circumference from O. In the diagram, OA and OC are tangents
to the small circle with centre P .

O A

C

P

Q

So � OQP = 90◦. Also PQ = 4 cm and OP = 12− 4 = 8 cm. Hence reflecting �OQP about the line OQ produces
an equilateral triangle (with side length 8). Therefore � AOP = 30◦. Similarly, � COP = 30◦.

So the fraction of the circumference of the large circle that is blocked from O by one small circle is (30+ 30)/360 =
60/360 = 1/6. Hence the fraction of the circumference of the large circle that is blocked from O by all four small
circles is 4/6 = 2/3.

33



51     Mathematics Contests The Australian Scene 2017

Alternative ii

In the diagram, P , Q, R, S are the centres of the four small circles and OU , OV are tangents to two of them.

O

U V

P

Q R

S

Since OP = OQ = 12 − 4 = 8 cm and PQ = 4 + 4 = 8 cm, �OPQ is equilateral. Hence � POQ = 60◦. Similarly,
� QOR = 60◦ and � ROS = 60◦. Since PU = 4 cm and � PUO = 90◦, �OPU is half an equilateral triangle.
Therefore � UOP = 30◦. Similarly, � SOV = 30◦.

Hence the fraction of the circumference of the large circle that is blocked from O by the four small circles is
(30 + 60 + 60 + 60 + 30)/360 = 240/360 = 2/3.

b Each of the small circles blocks the same length of circumference from O. So each blocks exactly one quarter of
the circumference. Hence each small circle touches two perpendicular diameters of the large circle. So their centres
form a square of side length 8 cm as shown.

•O

From Pythagoras’ theorem, the diagonal of the square is
√
64 + 64 = 8

√
2 cm. So the distance from O to the centre

of each small circle is 4
√
2 cm.
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c We first find the minimum distance from the centre O to the centre of a circle of radius 3 cm.

Let P and Q be the centres of the circles of radius 4 cm. Since the interior circles cannot overlap, a circle of radius
3 cm will be closest to the centre of the large circle when it touches both circles of radius 4 cm. Let R be the centre
of the circle of radius 3 cm. Then RP = 3 + 4 = 7 cm = RQ.

Since OP = OQ, triangles ROP and ROQ are congruent. So R will be on the diameter of the large circle that
is perpendicular to the diameter through P and Q. In this configuration, the circumference of the large circle is
entirely blocked by all four interior circles when viewed from O.

••

•

•

OP Q

R

Applying Pythagoras’ theorem in �OPR gives OR =
√
PR2 − PO2 =

√
49− 25 =

√
24 = 2

√
6 cm.

So the minimum distance from the centre O to the centre of a circle of radius 3 cm is 2
√
6 cm.

Now we find the maximum distance from the centre O to a circle of radius 3 cm.

Let P and Q be the centres of the circles of radius 4 cm. Draw the tangents to these circles through O. The diameter
through P and Q bisects two of the angles between these tangents.

•• •

OP Q

For the circumference of the circle of radius 12 cm to be entirely blocked, the two circles of radius 3 cm must touch
these tangents. So the centre of each of the circles of radius 3 cm is equidistant to these tangents and therefore on
their angle bisector. Hence the centres of each of the circles of radius 3 cm must lie on the diameter of the large
circle that is perpendicular to the diameter through P and Q.

Let R be the centre of a circle of radius 3 cm as shown. The tangent from O to the circle of radius 4 cm meets that
circle at A and the circle of radius 3 cm at B. The diagram is not drawn to scale.
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•• •

•

OP Q

A

B

R

Since � ROQ = 90◦ and triangles OBR and OAQ are right-angled, � BOR = 90◦ − � AOQ = � AQO. Applying
Pythagoras’ theorem to �OAQ gives OA2 = OQ2 − AQ2 = 25 − 16 = 9. So OA = 3 cm = BR. Hence triangles
BOR and AQO are congruent. Therefore OR = OQ = 5 cm.

So the maximum distance from the centre O to the centre of a circle of radius 3 cm is 5 cm.

I4 Shower Heads

a The angular separations for the three circles are: 360/12 = 30◦, 360/18 = 20◦, 360/36 = 10◦.

The angular separation between radii that pass through three jets is the lowest common multiple of 30, 20, and 10
degrees, that is, 60◦. Hence the number of radii that pass through three jets is 360/60 = 6.

Alternative i

The lowest common multiple of 30 and 10 is 30. Hence the number of radii that pass through a jet on the inner and
outer circles is 360/30 = 12. Of these, six pass through all three circles. So the number of radii that pass through
a jet on the inner and outer circles but not on the middle circle is 12− 6 = 6.

The lowest common multiple of 20 and 10 is 20. Hence the number of radii that pass through a jet on the middle
and outer circles is 360/20 = 18. Of these, six pass through all three circles. So the number of radii that pass
through a jet on the middle and outer circles but not the inner circle is 18− 6 = 12.

The lowest common multiple of 30 and 20 is 60. Hence all radii that pass through a jet on the inner and middle
circles also pass through a jet on the outer circle.

So the total number of radii that pass through just two jets is 6 + 12 = 18.

Alternative ii

The pattern of jets on the three circles repeats every 60◦. The table shows the angles from 0◦ to 60◦ on each circle
at which a radius passes through a jet.

outer circle 0 10 20 30 40 50 60
middle circle 0 20 40 60
inner circle 0 30 60

Thus in 60◦ exactly 3 radii pass through just two jets. So the number of radii in 360◦ that pass through just two
jets is 6× 3 = 18.

b Alternative i

Since the outer circle has an odd number of jets, no diameter passes through two jets on this circle. Hence no
diameter of the shower head passes through six jets.

Alternative ii

The angular separations for the three circles are 360/20 = 18◦, 360/30 = 12◦, 360/45 = 8◦. The lowest common
multiple of 18, 12, 8 is 72. Since 180 is not a multiple of 72, there is no diameter of the shower head that passes
through 6 jets.
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c The lowest common multiple of the three angular separations must be 90◦. So the angular separations must be
different factors of 90. They must also be greater than 3◦ otherwise the number of jets will exceed 100. The
following table shows all acceptable angular separations for jets on a circle and the corresponding number of jets in
that circle.

Angle (degrees) 5 6 9 10 15 18 30 45 90
Jets 72 60 40 36 24 20 12 8 4

The only combinations of three jet numbers that total 100 are:
72, 24, 4; 72, 20, 8; 60, 36, 4; 40, 36, 24.
It is easy to check for each combination that the lowest common multiple of its corresponding angular separations
is indeed 90◦.

d Alternative i

Since there is only one radius that passes through 3 jets, the three angular separations must have a lowest common
multiple of 360◦. Since no radius passes through just 2 jets, every pair of angular separations must have a lowest
common multiple of 360◦.

Since 360 = 23×32×5, we are seeking three angular separations less than 360 of the form 2x3y5z, where 0 ≤ x ≤ 3,
0 ≤ y ≤ 2, 0 ≤ z ≤ 1.

Two of the angular separations must have factor 8, otherwise there are two angular separations that are not multiples
of 8 and they will therefore have a lowest common multiple less than 360. Similarly, two of the angular separations
must have factor 9 and two must have factor 5.

If two angular separations have factor 8 then both can’t have factor 9, otherwise one of them will also have factor
5 and that angular separation will therefore equal 360. Similarly, two angular separations can’t both have factors 8
and 5, and two can’t both have factors 9 and 5. So each angular separation has just two of the factors 8, 9, 5. The
three smallest angular separations that satisfy these conditions are 5× 8 = 40, 5× 9 = 45, and 8× 9 = 72. Hence
the maximum number of jets in the shower head is 360/40 + 360/45 + 360/72 = 9 + 8 + 5 = 22.

Alternative ii

The angular separation of adjacent jets in a circle multiplied by the number of jets in that circle is 360. Since
360 = 23 × 32 × 5, the number of jets in a circle is a multiple of one or more of 2, 3, or 5.

If a circle has an even number of jets, then the angular separation is a divisor of 180. Hence, when two circles have
an even number of jets, there are at least two radii that pass through two jets, which is disallowed.

If the number of jets in a circle is a multiple of 3, then the angular separation is a divisor of 120. Hence, when the
number of jets in two circles is a multiple of 3, there are at least three radii that pass through two jets, which is
disallowed.

If the number of jets in a circle is a multiple of 5, then the angular separation is a divisor of 72. Hence, when the
number of jets in two circles is a multiple of 5, there are at least five radii that pass through two jets, which is
disallowed.

So at most one circle has an even number of jets, at most one circle has a multiple of three jets, and at most one
circle has a multiple of five jets.

No jet can have a multiple of 6 jets, otherwise the other circles would both have 5 jets. Similarly, no jet has a
multiple of ten jets and none has a multiple of 15 jets. So one jet has 2, 4, or 8 jets, another has 3 or 9 jets, and
the third circle has 5 jets.

Hence the total number of jets in the shower head is at most 8+9+5 = 22. The angular separations in circles with
8, 9, and 5 jets are respectively 9× 5 = 45◦, 8× 5 = 40◦, and 8× 9 = 72◦. The lowest common multiple of 45, 40,
72 is 360 and the lowest common multiple of any two of these is also 360. Therefore only one radius of the shower
head passes through three jets and no radius passes through just two jets. So the maximum number of jets in the
shower head is 22.
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I5 Chance Encounters

a Alternative i

Each path from A to P has 4 grid lines: one horizontal (H) and three vertical (V) in some order. The probability
of each grid line being chosen is 1

2 . So the probability of each path is 1
2 × 1

2 × 1
2 × 1

2 = 1
16 . There are 4 paths from

A to P : HVVV, VHVV, VVHV, VVVH.

So the probability of arriving at P is 4× 1
16 = 1

4 .

Alternative ii

Each path that takes 4 seconds has 4 grid lines: some horizontal (H) and some vertical (V). There are 16 such paths
from A:
VVVV,
HVVV, VHVV, VVHV, VVVH,
HHVV, HVHV, HVVH, VHHV, VHVH, VVHH,
HHHV, HHVH, HVHH, VHHH,
HHHH

In each of these paths each grid line has probability 1
2 of being chosen. So the probability for each path is

1
2 × 1

2 × 1
2 × 1

2 = 1
16 . Four of these paths end at P . So the probability of arriving at P is 4× 1

16 = 1
4 .

b The counter can reach Q either from the grid point to the left of Q or from P .

There is only one path from A to Q via the grid point to the left of Q. This path comprises four vertical grid
lines, each taken with probability 1

2 , and one horizontal grid line taken with probability 1 (no choice). Hence, the
probability that the counter takes this path is 1

2 × 1
2 × 1

2 × 1
2 × 1 = 1

16 .

From Part a, the probability the counter will be at P after 4 seconds is 1
4 . The probability that the counter moves

from P to Q is 1
2 . Hence the probability the counter reaches Q via P is 1

4 × 1
2 = 1

8 .

Therefore the probability that the counter will be at Q after 5 seconds is 1
16 + 1

8 = 3
16 .

c The counters will meet if they are in the same place at the same time. Each of the grid points on the diagonal
through P can be reached in 4 seconds from A and in 4 seconds from B. Hence the counters could meet at any of
these five grid points.

•

•

•

•

•

•

•

A

P

B

To reach a grid point above this diagonal, the counter moving from A will take more than 4 seconds and the counter
moving from B will take less than 4 seconds. To reach a grid point below this diagonal, the counter moving from
A will take less than 4 seconds and the counter moving from B will take more than 4 seconds. So it is not possible
for the counters to meet at any grid point other than those on the diagonal through P .
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d Label the grid points on the diagonal through P from top to bottom 1, 2, 3, 4, 5.

•

•

•

•

•

•

•

A

P

B1

2

3

4

5

The number of paths from A to each of the grid points 1, 2, 3, 4, 5 is respectively 1, 4, 6, 4, 1.

Each of these paths has 4 grid lines and each grid line has probability 1
2 of being chosen. So each path has probability

1
2 × 1

2 × 1
2 × 1

2 = 1
16 . Hence the probability of the counter from A reaching grid points 1, 2, 3, 4, 5 is respectively

1
16 ,

4
16 ,

6
16 ,

4
16 ,

1
16 .

By symmetry the same probabilities apply to the counter from B.

So the probability the counters meet is ( 1
16 )

2+( 4
16 )

2+( 6
16 )

2+( 4
16 )

2+( 1
16 )

2 = (1+16+36+16+1)/256 = 70/256 =
35/128.

I6 Unequal Partitions

a Any two of the following partitions:

2017 = 400 + 401 + 403 + 406 + 407

= 400 + 401 + 404 + 405 + 407

= 400 + 402 + 403 + 405 + 407

= 399 + 403 + 404 + 405 + 406.

b Since there are five parts, the span must be at least 4. To have a span of 4, the parts must be consecutive. Since

401 + 402 + 403 + 404 + 405 = 2015

402 + 403 + 404 + 405 + 406 = 2020

no unequal partition of 2017 has span 4. Hence the span must be at least 5. Since 401+402+403+405+406 = 2017
and 406− 401 = 5, 401 + 402 + 403 + 405 + 406 is an unequal partition of 2017 with the smallest possible span.

c The smallest number that is the sum of 5 unequal parts is 1 + 2 + 3 + 4 + 5 = 15.

An unequal partition with 5 parts has a span of 4 if and only if its parts are consecutive. So all the numbers that
have an unequal partition into 5 parts with a span of 4 are of the form

n+ (n+ 1) + (n+ 2) + (n+ 3) + (n+ 4) = 5n+ 10

with n ≥ 1.

d If an unequal partition has 5 parts, then its span is at least 4. The smallest number with a 5-part unequal partition
is 1 + 2 + 3 + 4 + 5 = 15.

Every integer greater than or equal to 15 has one of the forms 5n + 10, 5n + 11, 5n + 12, 5n + 13, 5n + 14 with
n ≥ 1.

Each of the following 5-part partitions has a span of 4 or 5:
5n+ 10 = n+ (n+ 1) + (n+ 2) + (n+ 3) + (n+ 4)
5n+ 11 = n+ (n+ 1) + (n+ 2) + (n+ 3) + (n+ 5)
5n+ 12 = n+ (n+ 1) + (n+ 2) + (n+ 4) + (n+ 5)
5n+ 13 = n+ (n+ 1) + (n+ 3) + (n+ 4) + (n+ 5)
5n+ 14 = n+ (n+ 2) + (n+ 3) + (n+ 4) + (n+ 5)

So the smallest 5-part span for any integer is 4 or 5.
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CHALLENGE STATISTICS – MIDDLE PRIMARY

Score Distribution %/Problem

Score

Challenge Problem

1
Annabel’s Ants

2
Domino
Chains

3
Lock Out

4
Steps to
Infinity

Did not
attempt 1% 3% 4% 6%

0 4% 10% 10% 10%

1 5% 14% 14% 13%

2 12% 21% 19% 26%

3 20% 25% 25% 18%

4 59% 26% 28% 27%

Mean 3.3 2.4 2.5 2.4

Discrimination 
Factor 0.4 0.7 0.7 0.7

Mean Score/School Year/Problem

 Year Number of  
Students

Mean

Overall
Problem

1 2 3 4

3 589 9.6 3.1 2.2 2.3 2.3

4 1048 10.6 3.3 2.6 2.6 2.5

*ALL YEARS 1645 10.3 3.3 2.4 2.5 2.4

Please note:* This total includes students who did not provide their school year.

Please note:

The discrimination factor for a particular problem is calculated as follows:

(1)  The students are ranked in regard to their overall scores.

(2)  The mean score for the top 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean top score’.

(3)  The mean score for the bottom 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean bottom score’.

(4)  The discrimination factor =  mean top score – mean bottom score
 4

Thus the discrimination factor ranges from 1 to –1.  A problem with a discrimination factor of 0.4 or higher 
is considered to be a good discriminator.
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CHALLENGE STATISTICS – UPPER PRIMARY

Score Distribution %/Problem

Score

Challenge Problem

1
Annabel’s Ants

2
Steps to
Infinity

3
Square Parts

4
Bracelets

Did not attempt 0% 2% 4% 6%

0 1% 9% 9% 32%

1 4% 11% 5% 12%

2 10% 24% 36% 14%

3 24% 26% 17% 18%

4 61% 28% 30% 18%

Mean 3.4 2.5 2.6 1.7

Discrimination Factor 0.3 0.6 0.6 0.8

Mean Score/School Year/Problem

 Year Number of  
Students

Mean

Overall
Problem

1 2 3 4

5 1537 9.3 3.3 2.4 2.3 1.6

6 1890 10.5 3.5 2.6 2.7 1.9

7 104 11.0 3.7 2.8 3.0 1.6

*ALL YEARS 3543 10.0 3.4 2.5 2.6 1.7

Please note:* This total includes students who did not provide their school year.

Please note:

The discrimination factor for a particular problem is calculated as follows:

(1)  The students are ranked in regard to their overall scores.

(2)  The mean score for the top 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean top score’.

(3)  The mean score for the bottom 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean bottom score’.

(4)  The discrimination factor =  mean top score – mean bottom score
 4

Thus the discrimination factor ranges from 1 to –1.  A problem with a discrimination factor of 0.4 or higher 
is considered to be a good discriminator.
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CHALLENGE STATISTICS – JUNIOR

Score Distribution %/Problem

Score

Challenge Problem

1
Annabel’s 

Ants

2
Steps to
Infinity

3
Square Parts

4
Tribonacci
Sequences

5
Shower 
Heads

6
Circle

Hopscotch
Did not  
attempt 2% 5% 6% 11% 16% 17%

0 4% 8% 5% 10% 9% 15%

1 7% 11% 20% 15% 16% 23%

2 19% 21% 26% 22% 15% 21%

3 30% 26% 18% 28% 19% 16%

4 38% 30% 24% 14% 24% 8%

Mean 2.9 2.6 2.4 2.2 2.4 1.7

Discrimination 
Factor 0.5 0.7 0.7 0.7 0.8 0.7

Mean Score/School Year/Problem

 Year
Number of  
Students

Mean

Overall
Problem

1 2 3 4 5 6

7 2522 11.7 2.8 2.4 2.1 2.0 2.2 1.5

8 2557 14.2 3.1 2.8 2.6 2.5 2.6 2.0

*ALL 
YEARS 5101 13.0 2.9 2.6 2.4 2.2 2.4 1.7

Please note:* This total includes students who did not provide their school year.

Please note:

The discrimination factor for a particular problem is calculated as follows:

(1)  The students are ranked in regard to their overall scores.

(2)  The mean score for the top 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean top score’.

(3)  The mean score for the bottom 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean bottom score’.

(4)  The discrimination factor =  mean top score – mean bottom score
 4

Thus the discrimination factor ranges from 1 to –1.  A problem with a discrimination factor of 0.4 or higher 
is considered to be a good discriminator.
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CHALLENGE STATISTICS – INTERMEDIATE

Score Distribution %/Problem

Score

Challenge Problem

1

Tribonacci 
Sequences

2

Rowing 
Machine

3

Blocking 
Circles

4

Shower Heads

5
Chance 

Encounters

6
Unequal 

Partitions

Did not  
attempt 2% 4% 16% 15% 12% 15%

0 3% 5% 16% 12% 10% 8%

1 8% 5% 12% 15% 17% 9%

2 17% 11% 19% 29% 30% 15%

3 32% 20% 17% 17% 23% 21%

4 38% 55% 21% 13% 8% 32%

Mean 3.0 3.2 2.2 2.1 2.0 2.7

Discrimination 
Factor 0.5 0.6 0.8 0.7 0.6 0.8

Mean Score/School Year/Problem

 Year
Number of  
Students

Mean

Overall
Problem

1 2 3 4 5 6

9 1785 13.0 2.9 3.1 2.0 2.0 2.0 2.6

10 853 14.9 3.1 3.4 2.5 2.2 2.1 2.9

*ALL 
YEARS 2649 13.6 3.0 3.2 2.2 2.1 2.0 2.7

Please note:* This total includes students who did not provide their school year.

Please note:

The discrimination factor for a particular problem is calculated as follows:

(1)  The students are ranked in regard to their overall scores.

(2)  The mean score for the top 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean top score’.

(3)  The mean score for the bottom 25% of these overall ranked students is calculated for that particular 
problem including no attempts. Call this mean score the ‘mean bottom score’.

(4)  The discrimination factor =  mean top score – mean bottom score
 4

Thus the discrimination factor ranges from 1 to –1.  A problem with a discrimination factor of 0.4 or higher 
is considered to be a good discriminator.
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AUSTRALIAN INTERMEDIATE MATHEMATICS OLYMPIAD
Australian Intermediate Mathematics Olympiad 2017

Questions

1. The number x is 111 when written in base b, but it is 212 when written in base b− 2. What is
x in base 10?

[2 marks]

2. A triangle ABC is divided into four regions by three lines parallel to BC. The lines divide AB
into four equal segments. If the second largest region has area 225, what is the area of ABC?

[2 marks]

3. Twelve students in a class are each given a square card. The side length of each card is a whole
number of centimetres from 1 to 12 and no two cards are the same size. Each student cuts
his/her card into unit squares (of side length 1 cm). The teacher challenges them to join all
their unit squares edge to edge to form a single larger square without gaps. They find that this
is impossible.

Alice, one of the students, originally had a card of side length a cm. She says, ‘If I don’t use
any of my squares, but everyone else uses their squares, then it is possible!’

Bob, another student, originally had a card of side length b cm. He says, ‘Me too! If I don’t
use any of my squares, but everyone else uses theirs, then it is possible!’

Assuming Alice and Bob are correct, what is ab?

[3 marks]

4. Aimosia is a country which has three kinds of coins, each worth a different whole number of
dollars. Jack, Jill, and Jimmy each have at least one of each type of coin. Jack has 4 coins
totalling $28, Jill has 5 coins worth $21, and Jimmy has exactly 3 coins. What is the total
value of Jimmy’s coins?

[3 marks]

5. Triangle ABC has AB = 90, BC = 50, and CA = 70. A circle is drawn with centre P on AB
such that CA and CB are tangents to the circle. Find 2AP .

[3 marks]

6. In quadrilateral PQRS, PS = 5, SR = 6, RQ = 4, and � P = � Q = 60◦. Given that
2PQ = a+

√
b, where a and b are unique positive integers, find the value of a+ b.

[4 marks]

PLEASE TURN OVER THE PAGE FOR QUESTIONS 7, 8, 9 AND 10
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7. Dan has a jar containing a number of red and green sweets. If he selects a sweet at random,
notes its colour, puts it back and then selects a second sweet, the probability that both are
red is 105% of the probability that both are red if he eats the first sweet before selecting the
second. What is the largest number of sweets that could be in the jar?

[4 marks]

8. Three circles, each of diameter 1, are drawn each tangential to the others. A square enclosing
the three circles is drawn so that two adjacent sides of the square are tangents to one of the

circles and the square is as small as possible. The side length of this square is a +

√
b+

√
c

12
where a, b, c are integers that are unique (except for swapping b and c). Find a+ b+ c.

[4 marks]

9. Ten points P1, P2, . . . , P10 are equally spaced around a circle. They are connected in separate
pairs by 5 line segments. How many ways can such line segments be drawn so that only one
pair of line segments intersect?

[5 marks]

10. Ten-dig is a game for two players. They try to make a 10-digit number with all its digits
different. The first player, A, writes any non-zero digit. On the right of this digit, the second
player, B, then writes a digit so that the 2-digit number formed is divisible by 2. They take
turns to add a digit, always on the right, but when the nth digit is added, the number formed
must be divisible by n. The game finishes when a 10-digit number is successfully made (in
which case it is a draw) or the next player cannot legally place a digit (in which case the other
player wins).

Show that there is only one way to reach a draw.

[5 marks]

Investigation

Show that if A starts with any non-zero even digit, then A can always win no matter how B
responds.

[4 bonus marks]
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AUSTRALIAN INTERMEDIATE MATHEMATICS OLYMPIAD 
SOLUTIONS

Australian Intermediate Mathematics Olympiad 2017

Solutions

1. We have x = b2 + b+ 1 and x = 2(b− 2)2 + (b− 2) + 2 = 2(b2 − 4b+ 4) + b = 2b2 − 7b+ 8. 1

Hence 0 = (2b2 − 7b+ 8)− (b2 + b+ 1) = b2 − 8b+ 7 = (b− 7)(b− 1).

From the given information, b− 2 > 2. So b = 7 and x = 49 + 7 + 1 = 57. 1

2. Method 1

Let B1C1, B2C2, B3C3, be the lines parallel to BC as shown. Then triangles ABC, AB1C1,
AB2C2, AB3C3 are equiangular, hence similar. Region B3C3C2B2 has area 225.

A

B1

B2

B3

B

C1

C2

C3

C

225

1

Since the lines divide AB into four equal segments, the sides and altitudes of the triangles are
in the ratio 1:2:3:4. So their areas are in the ratio 1:4:9:16.

Let the area of triangle AB1C1 be x. Then 225 = |AB3C3| − |AB2C2| = 9x− 4x = 5x and the
area of triangle ABC is 16x = 16× 225

5 = 16× 45 = 720. 1

1
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Method 2

Let B1C1, B2C2, B3C3, be the lines parallel to BC. Draw lines parallel to AB as shown. This
produces 4 small congruent triangles and 6 small congruent parallelograms.

A

B1

B2

B3

B

C1

C2

C3

C 1

Drawing the diagonal from top left to bottom right in any parallelogram produces two triangles
that are congruent to the top triangle. Thus triangle ABC can be divided into 16 congruent
triangles. The region B3C3C2B2 has area 225 and consists of 5 of these triangles. Hence
225 = 5

16 × |ABC| and |ABC| = 16
5 × 225 = 720. 1

3. Method 1

Firstly, we note that the combined area of the 12 student cards is
1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 + 121 + 144 = 650. 1

(Alternatively, use 1 + 23 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.)

According to Alice and Bob, 650− x2 = y2 for some integers x and y, where 1 ≤ x ≤ 12.
So y2 ≥ 650− 144 = 506 and y2 ≤ 650− 1 = 649. Therefore 23 ≤ y ≤ 25. 1

If y = 23, then x = 11. If y = 24, then x is not an integer. If y = 25, then x = 5.

Thus a = 5 and b = 11 or vice versa. So ab = 5× 11 = 55. 1

Method 2

Firstly, we note that the combined area of the 12 student cards is
1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 + 121 + 144 = 650. 1

(Alternatively, use 1 + 23 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.)

According to Alice, 650− a2 = c2 for some integer c. Since 650 is even, a and c must both be
even or odd. If a and c are even, then a2 and c2 are multiples of 4. But 650 is not a multiple
of 4, so a and c are odd. 1

We try odd values for a from 1 to 11.

650− 12 = 649, which is not a perfect square.
650− 32 = 641, which is not a perfect square.
650− 52 = 625, which is 252, giving one of the solutions.
650− 72 = 601, which is not a perfect square.
650− 92 = 569, which is not a perfect square.
650− 112 = 529, which is 232, giving the second solution.

Thus a = 5 and b = 11 or vice versa. So ab = 5× 11 = 55. 1

2
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4. Method 1

Let the value of the three types of coin be a, b, c and let Jack’s collection be 2a + b + c = 28.
Then, swapping b with c if necessary, Jill’s collection is one of:

3a+ b+ c, 2a+ 2b+ c, a+ 2b+ 2c, a+ 3b+ c. 1

Since 3a + b + c and 2a + 2b + c are greater than 28, Jill’s collection is either a + 2b + 2c or
a + 3b + c. If a + 2b + 2c = 21, then adding 2a + b + c = 28 gives 3(a + b + c) = 49, which is
impossible since 3 is not a factor of 49. 1

So a + 3b + c = 21. Subtracting from 2a + b + c = 28 gives a = 2b + 7, which means a is odd
and at least 9. If a = 9, then b = 1 and c = 9. But a, b, c must be distinct, so a is at least 11.
Since b+ c ≥ 3, we have 2a ≤ 25 and a ≤ 12. Hence a = 11, b = 2, c = 4 and a+ b+ c = 17.

1

Method 2

Let the value of the three types of coin be a, b, c. Then Jill’s collection is one of:

2a+ 2b+ c, 3a+ b+ c.

And Jack’s collection is one of:

2a+ b+ c, a+ 2b+ c, a+ b+ 2c. 1

Suppose Jill’s collection is 2a+2b+c = 21. Since 2a+b+c and a+2b+c are less than 2a+2b+c,
Jack’s collection must be a+ b+ 2c = 28. Adding this to Jill’s yields 3(a+ b+ c) = 49, which
is impossible since 3 is not a factor of 49. 1

So Jill’s collection is 3a+ b+ c = 21. Since 2a+ b+ c is less than 3a+ b+ c, Jack’s collection
must be a + 2b + c = 28 or a + b + 2c = 28. Swapping b with c if necessary, we may assume
that a+ 2b+ c = 28. Subtracting 3a+ b+ c = 21 gives b = 2a+ 7 and c = 14− 5a. So a ≤ 2.
If a = 1, then b = 9 = c. Hence a = 2, b = 11, c = 4 and a+ b+ c = 17. 1

Method 3

Let the value of the three types of coin be a, b, c, where 1 ≤ a < b < c. Then Jack’s collection
is one of:

2a+ b+ c, a+ 2b+ c, a+ b+ 2c.

And Jills’ collection is one of:

3a+ b+ c, 2a+ 2b+ c, 2a+ b+ 2c, a+ 3b+ c, a+ 2b+ 2c, a+ b+ 3c.

All of Jill’s possible collections exceed 2a+ b+ c, so Jack’s collection is a+2b+ c or a+ b+2c.
All of Jill’s possible collections exceed a+2b+c, except possibly for 3a+b+c. If 3a+b+c = 21,
then subtracting from a+2b+c = 28 gives b = 7+2a ≥ 9. But then a+2b+c ≥ 1+18+10 > 28.

1

So Jack’s collection is a+b+2c = 28. Then a+b is even, hence b ≥ 3, a+b ≥ 4, 2c = 28−a−b ≤
24, and c ≤ 12. Of Jill’s possible collections, only 3a+ b+ c, 2a+2b+ c, and a+3b+ c could be
less than a+ b+ 2c. If a+ 3b+ c = 21, then subtracting from a+ b+ 2c = 28 gives c = 7+ 2b,
which means c ≥ 13. If 2a+2b+ c = 21, then subtracting from 2a+2b+4c = 56 gives 3c = 35,
which means c is a fraction. 1

So 3a+ b+ c = 21. Subtracting from a+ b+2c = 28 gives c = 7+2a, which means c is odd and
at least 9. If c = 9, then a = 1 and b = 9 = c. So c = 11, a = 2, b = 4 and a+ b+ c = 17. 1

3
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Method 4

Let the value of the three types of coin be a, b, c, where 1 ≤ a < b < c.

Then Jack’s collection is 28 = a + b + c + d where d equals one of a, b, c. Since a + b ≥ 3,
c+ d ≤ 25. So d ≤ 25− c ≤ 25− d. Then 2d ≤ 25, hence d ≤ 12, which implies a+ b+ c ≥ 16.

Jills’ collection is 21 = a+b+c+e where e is the sum of two of a, b, c with repetition permitted.
So e ≥ 2a ≥ 2. Hence a+ b+ c ≤ 19. 1

From a+ b+ c+ d = 28 and 16 ≤ a+ b+ c ≤ 19, we get 9 ≤ d ≤ 12.
If d = a, then a+ b+ c+ d > 4d ≥ 36. If d = b, then a+ b+ c+ d > 1 + 3d ≥ 28. So d = c.

From 21 = a+ b+ c+ e ≥ 16 + e ≥ 16 + 2a we get 2a ≤ 5, hence a ≤ 2. 1

The following table lists all cases. Note that each of x and y equals one of a, b, c.

a a+ b+ c d c b e comment

1 16 12 12 3 5 e �= x+ y
1 17 11 11 5 4 e �= x+ y
1 18 10 10 7 3 e �= x+ y
1 19 9 9 9 2 b = c
2 16 12 12 2 5 a = b
2 17 11 11 4 4 e = 2a
2 18 10 10 6 3 e �= x+ y
2 19 9 9 8 2 e �= x+ y

So a = 2, b = 4, c = 11, d = 11, e = 4, and a+ b+ c = 17. 1

5. Method 1

Let CA touch the circle at R and CB touch the circle at S. Let Q be a point on AB so that
CQ and AB are perpendicular.

A B

C

QP

R

S

1

Let r be the radius of the circle.
From similar triangles AQC and ARP , CQ/r = 70/AP .
From similar triangles BQC and BSP , CQ/r = 50/BP = 50/(90−AP ). 1

Hence 7(90−AP ) = 5AP , 630 = 12AP , 2AP = 105. 1

4
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Method 2

Let CA touch the circle at R and CB touch the circle at S.

A B

C

P

R

S

1

The radius of the circle is the height of triangle APC on base AC and the height of triangle
BPC on base BC. So ratio of the area of APC to the area of BPC is AC : PC = 7 : 5. 1

Triangles APC and BPC also have the same height on bases AP and BP . So the ratio of their
areas is AP : (90−AP ). Hence 5AP = 7(90−AP ), 12AP = 630, and 2AP = 105. 1

Method 3

Let CA touch the circle at R and CB touch the circle at S.

A B

C

P

R

S

1

Since PR = PS, right-angled triangles PRC and PSC are congruent. Hence CP bisects
� ACB. 1

From the angle bisector theorem, AP/PB = AC/BC = 7/5. Hence 5AP = 7(90 − AP ),
12AP = 630, and 2AP = 105. 1

5
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6. Method 1

Let SS′ and RR′ be perpendicular to PQ with S′ and R′ on PQ. Let RT be perpendicular to
SS′ with T on SS′.

P Q

R

S

R′S′

T

5
4

6

60◦ 60◦

1

Since � P = 60◦, PS′ = 5/2 and SS′ = 5
√
3/2.

Since � Q = 60◦, QR′ = 2 and RR′ = 2
√
3. 1

Hence ST = SS′ − TS′ = SS′ −RR′ = 5
√
3/2− 2

√
3 =

√
3/2.

Applying Pythagoras’ theorem to �RTS gives RT 2 = 36− 3
4 = 141/4. 1

So PQ = PS′ + S′R′ +R′Q = PS′ + TR+R′Q = 5/2 +
√
141/2 + 2.

Hence a+
√
b = 2PQ = 9 +

√
141. An obvious solution is a = 9, b = 141.

Given that a and b are unique, we have a+ b = 150. 1

Method 2

Let U be the point on PS so that UR is parallel to PQ. Let T be the point on RU so that ST
is perpendicular to RU . Extend PS and QR to meet at V .

P Q

V

R

S

R
U

T

4

1

4

6

60◦ 60◦

1

Triangle PQV is equilateral. Since UR ‖ PQ, �URV is equilateral and PU = QR = 4.

So US = 1, UT = 1
2 , ST =

√
3
2 . 1

Applying Pythagoras’ theorem to �RTS gives RT 2 = 36− 3
4 = 141/4. 1

We also have RT = RU − UT = RV − 1
2 = QV − 9

2 = PQ− 9
2 .

So 2PQ = 9 +
√
141 = a+

√
b. Given that a and b are unique, we have a+ b = 150. 1

6
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Method 3

Extend PS and QR to meet at V .

P Q

V

R

S

5
4

6

60◦ 60◦

1

Triangle PQV is equilateral. Let PQ = x. Then V S = x− 5 and V R = x− 4. 1

Applying the cosine rule to �RV S gives

36 = (x− 4)2 + (x− 5)2 − 2(x− 4)(x− 5) cos 60◦

= (x2 − 8x+ 16) + (x2 − 10x+ 25)− (x2 − 9x+ 20)

0 = x2 − 9x− 15 1

Hence 2x = 9 +
√
81 + 60 = a+

√
b. Given that a and b are unique, we have a+ b = 150. 1

Comment

We can prove that a and b are unique as follows. We have (a − 9)2 = 141 + b − 2
√
141b. So

2
√
141b is an integer, hence 141b is a perfect square. Since 141 = 3 × 47 and 3 and 47 are

prime, b = 141m2 for some integer m. Hence |a − 9| =
√
141|m − 1|. If neither side of this

equation is 0, then we can rewrite it as r =
√
141s where r and s are coprime integers, giving

r2 = 141s2 = 3 × 47 × s2. So 3 divides r2. Then 3 divides r, 9 divides r2, 9 divides 3s2, 3
divides s2, hence 3 divides s, a contradiction. So both sides of the equation are 0. Therefore
a = 9 and b = 141.

7
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7. Method 1

Let there be r red sweets and g green sweets. We may assume r ≥ 2. If Dan puts the first
sweet back, then the probability that the two selected sweets are red is

r

r + g
× r

r + g
. 1

If Dan eats the first sweet, then the probability that the two selected sweets are red is

r

r + g
× r − 1

r + g − 1
. 1

The first probability is 105% of the second, so dividing and rearranging gives

r

r + g
× r + g − 1

r − 1
=

105

100
=

21

20

20

(
r + g − 1

r + g

)
= 21

(
r − 1

r

)

20

(
1− 1

r + g

)
= 21

(
1− 1

r

)

21

r
= 1 +

20

r + g
> 1 1

So r < 21. If r = 20, then 1
20 = 20

r+g , and r + g = 400.

If r + g increases, then 1 + 20
r+g and therefore 21

r decrease, so r increases.
Since r cannot exceed 20, r + g cannot exceed 400.
So the largest number of sweets in the jar is 400. 1

Method 2

Let there be r red sweets and g green sweets. We may assume r ≥ 2. If Dan puts the first
sweet back, then the probability that the two selected sweets are red is

r

r + g
× r

r + g
. 1

If Dan eats the first sweet, then the probability that the two selected sweets are red is

r

r + g
× r − 1

r + g − 1
. 1

The first probability is 105% of the second, so dividing and rearranging gives

r

r + g
× r + g − 1

r − 1
=

105

100
=

21

20

20r(r + g − 1) = 21(r + g)(r − 1)

20r(r + g)− 20r = 21r(r + g)− 21(r + g)

r + 21g = r(r + g)

r + g = 1 + 21g/r 1

If r ≥ 21, then r + g ≥ 21 + g and 1 + 21g/r ≤ 1 + g, a contradiction. So r ≤ 20.

If r = 20, then 20 + g = 1 + 21g/20, hence g = 400− 20 = 380 and r + g = 400.

We also have the equation (21− r)g = r(r − 1).
If r < 20, then g < (21− r)g = r(r − 1) < 20× 19 = 380, hence r + g < 20 + 380 = 400.
So the largest number of sweets in the jar is 400. 1

8
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Method 3

Let there be r red sweets and g green sweets. We may assume r ≥ 2. Let n = r + g. Then the
probability of selecting two red sweets if the first sweet is put back is

r

n
× r

n 1

and the probability if Dan eats the first sweet before selecting the second is

r

n
× r − 1

n− 1
. 1

The first probability is 105% of the second, so dividing and rearranging gives

r

n
× n− 1

r − 1
=

105

100
=

21

20

20r(n− 1) = 21n(r − 1)

21n− nr − 20r = 0

(n+ 20)(21− r) = 420 1

Since n+ 20 is positive, 21− r is positive.
Hence n is largest when 21− r = 1 and then n+ 20 = 420.
So the largest number of sweets in the jar is 400. 1

Comment

Since 21 − r is a factor of 420 and 2 ≤ r ≤ 20, the following table gives all possible values of
r, n, g.

21− r n+ 20 r n g

1 420 20 400 380
2 210 19 190 171
3 140 18 120 102
4 105 17 85 68
5 84 16 64 48
6 70 15 50 35
7 60 14 40 26
10 42 11 22 11
12 35 9 15 6
14 30 7 10 3
15 28 6 8 2

.

9
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8. Let WXY Z be a square that encloses the three circles and is as small as possible. Let the
centres of the three given circles be A, B, C. Then ABC is an equilateral triangle of side length
1. We may assume that A, B, C are arranged anticlockwise and that the circle with centre A
touches WX and WZ. We may also assume that WX is horizontal.

Note that if neither Y X nor Y Z touch a circle, then the square can be contracted by moving
Y along the diagonal WY towards W . So at least one of Y X and Y Z must touch a circle and
it can’t be the circle with centre A. We may assume that XY touches the circle with centre B.

W X

YZ

•
A

•
B

•C

If Y Z does not touch a circle, then the 3-circle cluster can be rotated anticlockwise about A
allowing neither Y X nor Y Z to touch a circle. So Y Z touches the circle with centre C. 1

Method 1

Let ADEF be the rectangle with sides through C and B parallel to WX and WZ respectively.

W X

YZ

•
A

•B

•C

D

EF

1

Since AF = WZ − 1 = WX − 1 = AD, ADEF is a square.
Since AC = 1 = AB, triangles AFC and ADB are congruent. So FC = DB and CE = BE.
Let x = AD. Since AB = 1 and triangle ADB is right-angled, DB =

√
1− x2.

10
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Since CBE is right-angled isosceles with BC = 1, we have BE = 1/
√
2.

So x = DE =
√
1− x2 + 1/

√
2. 1

Squaring both sides of x− 1/
√
2 =

√
1− x2 gives

1− x2 = (x− 1/
√
2)2 = x2 −

√
2x+ 1/2

0 = 2x2 −
√
2x− 1/2

x = (
√
2±

√
2 + 4)/4

Since x > 0, we have x = (
√
2+

√
6)/4 = (

√
18+

√
54)/12. Hence WX = 1+ (

√
18+

√
54)/12.

We are told that WX = a + (
√
b +

√
c)/12 where a, b, c are unique integers. This gives

a+ b+ c = 1 + 18 + 54 = 73. 1

Method 2

Draw lines through A parallel to WX and WZ.

W X

YZ

•
A

•B

•C

x

z

1

With angles x and z as shown, we have

WX =
1

2
+AB cosx+

1

2
= 1 + cosx

WZ =
1

2
+AC cos z +

1

2
= 1 + cos z

Since WX = WZ, x = z. Since x+ 60◦ + z = 90◦, we have x = 15◦. So 1

WX = 1 + cos 15◦ = 1 + cos(45◦ − 30◦)

= 1 + cos 45◦ cos 30◦ + sin 45◦ sin 30◦

= 1 +
1√
2
×

√
3

2
+

1√
2
× 1

2

= 1 +
1 +

√
3

2
√
2

= 1 +

√
2 +

√
6

4
= 1 +

√
18 +

√
54

12

We are told that WX = a + (
√
b +

√
c)/12 where a, b, c are unique integers. This gives

a+ b+ c = 1 + 18 + 54 = 73. 1

11
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9. Method 1

Let the pair of intersecting lines be AC and BD where A,B,C,D are four of the ten given
points. These lines split the remaining six points into four subsets S1, S2, S3, S4. For each i,
each line segment beginning in Si also ends in Si, otherwise AC and BD would not be the only
intersecting pair of lines. Thus each Si contains an even number of points, from 0 to 6. 1

If Si contains 2 points, then there it has only 1 line segment. If Si contains 4 points, then there
are precisely 2 ways to connect its points in pairs by non-crossing segments. If Si contains 6
points, let the points be Q1, Q2, Q3, Q4, Q5, Q6 in clockwise order. To avoid crossing segments,
Q1 must be connected to one of Q2, Q4, Q6. So, as shown, there are precisely 5 ways to connect
the six points in pairs by non-crossing segments.

•

•
••

•

•Q1

Q2

Q3 Q4

Q5

Q6 •

•
••

•

•Q1

Q2

Q3 Q4

Q5

Q6

•

•
••

•

•Q1

Q2

Q3 Q4

Q5

Q6 •

•
••

•

•Q1

Q2

Q3 Q4

Q5

Q6 •

•
••

•

•Q1

Q2

Q3 Q4

Q5

Q6

1

In some order, the sizes of S1, S2, S3, S4 are {6, 0, 0, 0}, {4, 2, 0, 0}, or {2, 2, 2, 0}. We consider
the three cases separately.

In the first case, by rotation about the circle, there are 10 ways to place the Si that has 6
points. Then there are 5 ways to arrange the line segments within that Si. So the number of
ways to draw the line segments in this case is 10× 5 = 50. 1

In the second case, in clockwise order, the sizes of the Si must be (4, 2, 0, 0), (4, 0, 2, 0) or
(4, 0, 0, 2). In each case, by rotation about the circle, there are 10 ways to place the Si. Then
there are 2 ways to arrange line segments within the Si that has 4 points, and there is 1 way
to arrange the line segment within the Si that has 2 points. So the number of ways to draw
the line segments in this case is 3× 10× 2× 1 = 60. 1

In the third case, in clockwise order, the sizes of the Si must be (2, 2, 2, 0). By rotation about
the circle, there are 10 ways to place the Si. Then there is only 1 way to arrange the line
segment within each Si that has 2 points. So there are 10 ways to arrange the line segments in
this case.

In total, the number of ways to arrange the line segments is 50 + 60 + 10 = 120. 1

12
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Method 2

The pair of intersecting lines partition the circle into four arcs. In order to allow the remaining
points to be paired up without further crossings, we require each such arc to contain an even
number of points. 1

So each line of a crossing pair partitions the circle into two arcs, each of which contain an odd
number of points. Disregarding rotation of the circle, a crossing line is one of only two types.

•

•
••

•

•

•
• •

•

• •

•
••

•

•

•
• •

•

•

1

So, disregarding rotations, there are only four ways to have the pair of crossing lines. Under-
neath each diagram we list the number of ways of joining up the remaining pairs of points
without introducing more crossings. (The number 5 is justified in Method 1.)

•

•
••

•

•

•
• •

•

•

5

•

•
••

•

•

•
• •

•

•

2

•

•
••

•

•

•
• •

•

•

2

•

•
••

•

•

•
• •

•

•

1

•

•
••

•

•

•
• •

•

•

2 2

So, counting rotations, the number of pairings with a single crossing is
10× (5 + 2 + 2 + 1 + 2) = 120. 1

13
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10. Since the 2nd, 4th, 6th, 8th and 10th digits must be even, the other digits must be odd. Since
the last digit must be 0, the fifth digit must be 5. 1

Let a be the 3rd digit and b be the 4th digit. If b is 4 or 8, then 4 divides b but does not divide
10a since a is odd. Hence 4 does not divide 10a+ b. So the 4th digit is 2 or 6.

Now let a, b, c be the 6th, 7th, 8th digits respectively. If c is 8, then 8 divides 100a + c but
does not divide 10b since b is odd. Hence 8 does not divide 100a + 10b + c. If c is 4, then 8
divides 100a but does not divide 10b + c = 2(5b + 2) since b is odd. Hence 8 does not divide
100a+ 10b+ c. So the 8th digit is 2 or 6.

So each of the 2nd and 6th digits is 4 or 8. 1

Since 3 divides the sum of the first three digits and the sum of the first six digits, it also divides
the sum of the 4th, 5th, and 6th digits. So the 4th, 5th, and 6th digits are respectively 2 5 8
or 6 5 4. Thus we have two cases with a, b, c, d equal to 1, 3, 7, 9 in some order. 1

Case 1. a 4 b 2 5 8 c 6 d 0

Since 3 divides a + 4 + b, one of a and b equals 1 and the other is 7. Since 8 divides 8 c 6,
c is 9. So we have 1 4 7 2 5 8 9 6 d 0 or 7 4 1 2 5 8 9 6 d 0. But neither 1 4 7 2 5 8 9 nor
7 4 1 2 5 8 9 is a multiple of 7. 1

Case 2. a 8 b 6 5 4 c 2 d 0

Since 8 divides 4 c 2, c is 3 or 7.

If c = 3, then, because 3 divides a+ 8 + b, we have one of:
1 8 9 6 5 4 3 2 d 0, 7 8 9 6 5 4 3 2 d 0, 9 8 1 6 5 4 3 2 d 0, 9 8 7 6 5 4 3 2 d 0.

But none of 1 8 9 6 5 4 3, 7 8 9 6 5 4 3, 9 8 1 6 5 4 3, 9 8 7 6 5 4 3 is a multiple of 7.

If c = 7, then, because 3 divides a+ 8 + b, we have one of:
1 8 3 6 5 4 7 2 d 0, 1 8 9 6 5 4 7 2 d 0, 3 8 1 6 5 4 7 2 d 0, 9 8 1 6 5 4 7 2 d 0.

None of 1 8 3 6 5 4 7, 1 8 9 6 5 4 7, 9 8 1 6 5 4 7 is a multiple of 7.

This leaves 3 8 1 6 5 4 7 2 9 0 as the only draw. 1

Investigation

Note that B must play an even digit on each turn.

If A starts with 2, then B can only respond with 20, 24, 26, or 28. A may then leave one of 204,
240, 261, 285. B cannot respond to 261. The other numbers force respectively 20485, 24085,
28560. B cannot respond to any of these. bonus 1

If A starts with 4, then B can only respond with 40, 42, 46, or 48. A may then leave one of
408, 420, 462, 480. B cannot respond to 408 and 480. Each of the other numbers force one of
42085, 46205, 46280, 46285. B cannot respond to any of these. bonus 1

If A starts with 6, then B can only respond with 60, 62, 64, or 68. A may then leave one of 609,
621, 648, 684. B cannot respond to 621. The other numbers force respectively 60925, 64805,
68405. B can only respond with 609258. Then A may reply with 6092583, to which B has no
response. bonus 1

If A starts with 8, then B can only respond with 80, 82, 84, or 86. A may then leave one of
804, 825, 840, 864. B cannot respond to 804 and 840. The other numbers force respectively
82560, 86405. B cannot respond to either of these. bonus 1

14
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Distribution of Awards/School Year

Year
Number of 
Students

Number of Awards

Prize
High  

Distinction
Distinction Credit Participation

8 531 5 24 76 146 280

9 649 16 71 130 159 273

10 529 25 92 116 141 155

Other 542 2 9 44 117 370

All Years 2251 48 196 366 563 1078

Number of Correct Answers Questions 1–8 

Year
Number Correct/Question

1 2 3 4 5 6 7 8

8 263 277 378 358 34 19 36 6

9 390 361 484 490 117 88 84 28

10 324 301 451 427 81 98 112 43

Other 250 206 287 306 22 12 16 5

All Years 1227 1145 1600 1581 254 217 248 82

Mean Score/Question/School Year

Year
Number of 
Students

Mean Score

Overall MeanQuestion

1–8 9 10

8 531 7.8 0.4 0.8 8.6

9 649 9.7 0.6 1.1 10.9

10 529 11.5 0.7 1.2 12.9

Other 542 5.8 0.3 0.5 6.4

All Years 2251 8.7 0.5 0.9 9.7

AUSTRALIAN INTERMEDIATE MATHEMATICS OLYMPIAD 
STATISTICS
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AMOC SENIOR CONTEST

2017 AMOC SENIOR CONTEST

Tuesday, 8 August 2017

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. For each pair of real numbers (r, s), prove that there exists a real number x that

satisfies at least one of the following two equations.

x2 + (r + 1)x+ s = 0

rx2 + 2sx+ s = 0

2. Let ABCD be a quadrilateral with AB not parallel to CD. The circle with diameter

AB is tangent to the side CD at X. The circle with diameter CD is tangent to the

side AB at Y .

Prove that the quadrilateral BCXY is cyclic.

3. Let a1 < a2 < · · · < a2017 and b1 < b2 < · · · < b2017 be positive integers such that

(
2a1 + 1

)(
2a2 + 1

)
· · ·

(
2a2017 + 1

)
=

(
2b1 + 1

)(
2b2 + 1

)
· · ·

(
2b2017 + 1

)
.

Prove that ai = bi for i = 1, 2, . . . , 2017.

4. Find all positive integers n ≥ 5 for which we can place a real number at each vertex

of a regular n-sided polygon, such that the following two conditions are satisfied.

• None of the n numbers is equal to 1.

• For each vertex of the polygon, the sum of the numbers at the nearest four

vertices is equal to 4.

5. Let n be a positive integer. Consider 2n points equally spaced around a circle.

Suppose that n of the points are coloured blue and the remaining n points are

coloured red. We write down the distance between each pair of blue points in a list,

from shortest to longest. We write down the distance between each pair of red points

in another list, from shortest to longest. (Note that the same distance may occur

more than once in a list.)

Prove that the two lists of distances are the same.

c© 2017 Australian Mathematics Trust
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AMOC SENIOR CONTEST SOLUTIONS

2017 AMOC SENIOR CONTEST

Solutions

c© 2017 Australian Mathematics Trust

1. For each pair of real numbers (r, s), prove that there exists a real number x that satisfies

at least one of the following two equations.

x2 + (r + 1)x+ s = 0

rx2 + 2sx+ s = 0

Solution 1 (Norman Do)

In order to obtain a contradiction, suppose that there does not exist a real number x

that satisfies at least one of the two equations. The discriminants of the two quadratic

equations are (r + 1)2 − 4s and 4s2 − 4rs, respectively. Therefore, we have

(r + 1)2 − 4s < 0 and 4s2 − 4rs < 0.

Adding these two inequalities, we obtain

(r + 1)2 − 4s+ 4s2 − 4rs < 0 ⇒ (r + 1− 2s)2 < 0.

Since the square of a real number cannot be negative, this yields a contradiction. It follows

that there must exist a real number x that satisfies at least one of the two equations.

Solution 2 (Alice Devillers, Angelo Di Pasquale, Ivan Guo, Dan Mathews, Chaitanya Rao

and Ian Wanless)

If s ≤ 0, then the discriminant (r+1)2− 4s of the first quadratic equation is a sum of two

non-negative numbers. Hence, it is non-negative and the first equation has a real solution.

If s > 0 and s ≥ r, then the discriminant 4s2 − 4rs of the second quadratic equation is

non-negative. Hence, the second equation has a real solution.

The only case left to consider is 0 < s < r. Then the discriminant of the first quadratic

equation is

(r + 1)2 − 4s > (s+ 1)2 − 4s = (s− 1)2 ≥ 0.

Hence, the first equation has a real solution.

Solution 3 (Angelo Di Pasquale)

As in Solution 1, we wish to show that there do not exist real numbers r and s such that

(r + 1)2 − 4s < 0 and 4s2 − 4rs < 0.

1
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One can simply observe this from the graphs of these two inequalities, which are shown in

the figure below.

r

s

−6. −4. −2. 2. 4. 6.

−6.

−4.

−2.

2.

4.

6.

0

The parabola is clearly tangent to the r-axis. It only remains to see that it is tangent to

the line s = r. Computing the intersection of these two curves, we see that there is only

one intersection point and it occurs at (1, 1). Since the line s = r is not parallel to the

s-axis, it follows that it must be tangent to the parabola.

2
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2. Let ABCD be a quadrilateral with AB not parallel to CD. The circle with diameter AB

is tangent to the side CD at X. The circle with diameter CD is tangent to the side AB

at Y .

Prove that the quadrilateral BCXY is cyclic.

Solution 1 (Norman Do)

Let M and N be the midpoints of AB and CD, respectively. Then MX is perpendicular

to CD, since MX is the radius of a circle to which CD is tangent. Similarly, NY is

perpendicular to AB. It follows that the points M,N,X, Y lie on a circle.

A B

C

D

X

Y M

N

x

Let ∠ABX = x and note that ∠AMX = 2x, since it is the angle subtended at the centre

of the circumcircle of triangle ABX. It follows that ∠Y NX = ∠YMX = ∠AMX = 2x,

where we have used the fact that MNXY is a cyclic quadrilateral.

So ∠CNY = 180◦ − ∠Y NX = 180◦ − 2x. However, note that triangle CNY is isosceles

with CN = NY . Therefore, ∠NCY = ∠NY C = x. Since ∠XCY = ∠XBY = x, we have

deduced that the quadrilateral BCXY is cyclic.

A second case arises when X and Y are on different sides of the line MN , in which case

we have the equality ∠Y NX = 180◦ − ∠YMX rather than ∠Y NX = ∠YMX. This can

be handled in an analogous manner or with the use of directed angles.

Solution 2 (Norman Do)

Suppose that the lines AB and CD meet at O, and let ∠AOD = θ. If M is the midpoint of

AB, then the angle sum in right-angled triangleMXO yields ∠XMO = 90◦−θ. Therefore,

the angle subtended byAX in the circle with diameterAB is ∠ABX = 1
2∠AMX = 45◦− θ

2 .

A B

C

D

X

M
O θ

3
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An analogous calculation using the circle with diameter CD yields ∠DCY = 45◦ − θ
2 as

well. Since ∠XBY = ∠XCY = 45◦ − θ
2 , we have deduced that the quadrilateral BCXY

is cyclic.

Solution 3 (Angelo Di Pasquale)

Suppose that the lines AB and CD meet at O. The reflection of the semicircle AXB in

the bisector of ∠AOD, results in a semicircle A′X ′B′, as shown in the diagram below.

This semicircle is a dilation of the semicircle DY C with centre of dilation O. So using the

fact that OB′ = OB and OX ′ = OX, we find that

OB′

OC
=

OX ′

OY
⇒ OB

OC
=

OX

OY
⇒ OB ·OY = OC ·OX.

By the power of a point theorem, this implies that the quadrilateral BCXY is cyclic.

O

X

YA B

C

D
A′

B′

X ′

Solution 4 (Angelo Di Pasquale)

Suppose that the lines AB and CD meet at a point O. There is an orientation-reversing

similarity transformation that sends semicircle AXB to semicircle DY C. Since AB is not

parallel to CD, it is the composition of the reflection in the bisector of ∠AOD followed

by the dilation by factor DC
AB with centre O.

This implies that triangle ABX is similar to triangle DCY . Hence, ∠OBX = ∠OCY and

it follows that the quadrilateral BCXY is cyclic.

Solution 5 (Ivan Guo)

Suppose that BX and CY intersect at Z. By considering the angle sum in triangles BY Z

and CXZ, we have ∠BXC + ∠Y CX = ∠CY B + ∠XBY . Now we invoke the alternate

segment theorem to rewrite this as ∠XAB + ∠Y CX = ∠Y DC + ∠XBY . Using the fact

that AB and CD are diameters, we have 90◦−∠XBA+∠Y CX = 90◦−∠Y CD+∠XBY ,

which simplifies to ∠Y CX = ∠XBY . Therefore, the quadrilateral BCXY is cyclic.

Solution 6 (Daniel Mathews)

Let ∠CXB = a, ∠XBY = b, ∠XCY = c and ∠CY B = d. We will show that a = d and

b = c, from which it follows that the quadrilateral BCXY is cyclic.

4
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Since 180◦− a− c = 180◦− b− d is the angle between BX and CY , we have a+ c = b+ d.

We have a = ∠CXB = ∠XAB by the alternate segment theorem, and we also have

b = ∠XBY = 90◦ − ∠XAB from the right-angled triangle ABX. Therefore, a+ b = 90◦.

By the same argument, we have d = ∠CY B = ∠CDY by the alternate segment theorem,

and we also have c = ∠XCY = 90◦ − ∠CDY from the right-angled triangle CDY .

Therefore, c+ d = 90◦.

We now have a + b = 90◦, c + d = 90◦ and a + c = b + d, from which it follows that

a+ c = b+ d = 90◦. Hence, a = 90◦ − b = d and b = 90◦ − a = c, giving the desired result.

Solution 7 (Alan Offer)

Consider the effect of an inversion about a circle centred at Y : the line � through A and B

is fixed; the circle with diameter AB maps to a circle α with centre on �; the circle with

diameter CD maps to a line m parallel to �; the line through C and D maps to a circle β

through Y with centre on m and internally tangent to α at X ′, the image of X; and the

images B′ and C ′ of B and C, respectively, lie in the same direction from X ′ on their

respective circles.

Now circle α is related to β by a dilation about X ′, which maps m through the centre of β

to the parallel line � through the centre of α, so C ′ is mapped to B′. Hence, B′, C ′ and X ′

are collinear, which under the inversion reveals that BCXY is cyclic.

5
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3. Let a1 < a2 < · · · < a2017 and b1 < b2 < · · · < b2017 be positive integers such that
(
2a1 + 1

)(
2a2 + 1

)
· · ·

(
2a2017 + 1

)
=

(
2b1 + 1

)(
2b2 + 1

)
· · ·

(
2b2017 + 1

)
.

Prove that ai = bi for i = 1, 2, . . . , 2017.

Solution 1 (Norman Do)

Suppose that there is some i ∈ {1, 2, . . . , 2017} for which ai �= bi. Then if we cancel out

equal factors on both sides of the equation, we obtain an equation of the form

(2A1 + 1)(2A2 + 1) · · · (2An + 1) = (2B1 + 1)(2B2 + 1) · · · (2Bn + 1),

where we may assume that A1 < A2 < · · · < An, B1 < B2 < · · · < Bn and A1 < B1,

without loss of generality.

Expanding both sides of the equation yields an equation of the form

1 + 2A1 + [ higher powers of 2 ] = 1 + 2B1 + [ higher powers of 2 ],

from which we obtain

2A1 + [ higher powers of 2 ] = 2B1 + [ higher powers of 2 ].

However, note that 2B1 divides the right hand side but not the left hand side, which yields

the desired contradiction. It follows that ai = bi for i = 1, 2, . . . , 2017.

Solution 2 (Alice Devillers, Dan Mathews and Kevin McAvaney)

We will prove the following statement for all positive integers n by induction. If a1 < a2 <

· · · < an and b1 < b2 < · · · < bn are positive integers such that
(
2a1 + 1

)(
2a2 + 1

)
· · ·

(
2an + 1

)
=

(
2b1 + 1

)(
2b2 + 1

)
· · ·

(
2bn + 1

)
,

then ai = bi for i = 1, 2, . . . , n.

The statement is clearly true for n = 1, since 2a1 + 1 = 2b1 + 1 implies that a1 = b1.

Now assume that the statement is true for n = k−1 where k ≥ 2 is an integer and consider

the case n = k. Suppose that a1 < a2 < . . . < ak and b1 < b2 < . . . < bk are positive

integers such that
(
2a1 + 1

)(
2a2 + 1

)
· · ·

(
2ak + 1

)
=

(
2b1 + 1

)(
2b2 + 1

)
· · ·

(
2bk + 1

)
.

If a1 �= b1, we may assume without loss of generality that a1 < b1. We know that ai ≥ a1+1

for all 2 ≤ i ≤ k and bj ≥ a1 + 1 for all 1 ≤ j ≤ k. Now consider the equation above

modulo 2a1+1. The left side is 2a1 + 1, while the right side is 1, which yields the desired

contradiction.

So we have deduced that a1 = b1 and hence,
(
2a2 + 1

)(
2a3 + 1

)
· · ·

(
2ak + 1

)
=

(
2b2 + 1

)(
2b3 + 1

)
· · ·

(
2bk + 1

)

with a2 < a3 < · · · < ak and b2 < b3 < · · · < bk. By the induction hypothesis, we know

that ai = bi for all 2 ≤ i ≤ k. This completes the proof of the statement by induction and

we recover the original problem in the case n = 2017.

6
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4. Find all positive integers n ≥ 5 for which we can place a real number at each vertex of a

regular n-sided polygon, such that the following two conditions are satisfied.

None of the n numbers is equal to 1.

For each vertex of the polygon, the sum of the numbers at the nearest four vertices

is equal to 4.

Solution 1 (Angelo Di Pasquale)

The answer is any even n ≥ 6.

If n is even, the conditions are clearly satisfied if we alternate 0.5, 1.5, 0.5, 1.5, . . . around

the polygon.

Now suppose that n = 2m+1 is odd and let the numbers be x1, x2, . . . , xn in order around

the polygon. Here and throughout this proof, we consider the subscripts modulo n. Then

for each i, we have

xi + xi+1 + xi+3 + xi+4 = xi+1 + xi+2 + xi+4 + xi+5

⇒ xi + xi+3 = xi+2 + xi+5. (∗)

For each i, let Ai = xi + xi+3. Then equation (*) may be written as Ai = Ai+2. Thus, 
the sequence A1, A2, A3, . . . has period 2. However, it also has period n and hence, it has 
period gcd(2, n) = 1. In particular, we have Ai = Ai+3, which implies that xi = xi+6.

So we have deduced that the sequence x1, x2, x3, . . . has period 6. However, it also has 
period n and hence, it has period gcd(6, n) = 1 or 3. In either case, equation (*) simplifies to 
xi = xi+2. So the sequence x1, x2, x3, . . . has period 2. However, it also has period n and 
hence, it has period gcd(2, n) = 1. It follows that all of the xi are equal to 1, which yields the 
desired contradiction.

Solution 2 (Dan Mathews and Ian Wanless)

The answer is any even n ≥ 6.

If n is even, the conditions are clearly satisfied if we alternate 0.5, 1.5, 0.5, 1.5, . . . around 
the polygon.

Now suppose that n = 2m+1 is odd and let the numbers be x1, x2, . . . , xn in order around 
the polygon. Here and throughout this proof, we consider the subscripts modulo n.

Define yi = xi + xi+1 and observe that by the given conditions, we have yi = 4 − yi+3 for 
each i. By repeated application of this rule, we can deduce that yi = 4 − yi+3n, since n is 
odd. However, we have yi+3n = yi, so it follows that yi = 2 for all i.

Hence, xi + xi+1 = 2 = xi+1 + xi+2, from which we deduce that xi = xi+2. So the 
sequence x1, x2, x3, . . . has period 2. However, it also has period n and hence, it has 
period gcd(2, n) = 1. It follows that all of the xi are equal to 1, which yields the desired 
contradiction.

7
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5. Let n be a positive integer. Consider 2n points equally spaced around a circle. Suppose

that n of the points are coloured blue and the remaining n points are coloured red. We

write down the distance between each pair of blue points in a list, from shortest to longest.

We write down the distance between each pair of red points in another list, from shortest

to longest. (Note that the same distance may occur more than once in a list.)

Prove that the two lists of distances are the same.

Solution 1 (Kevin McAvaney)

The distance between two of the points is uniquely determined by the number of points

between them on the circle. So if two of the points have k− 1 points between them where

k ≤ n, we say that their chord length is k.

If n consecutive points are coloured blue, then the remaining n consecutive points are

coloured red. Due to the symmetry of this configuration, the two lists of distances are the

same.

If there are no n consecutive red points, then one can obtain n consecutive red points by

repeatedly switching colours on adjacent pairs of points. We show that the lists of chord

lengths are the same after one such switch if and only if they are the same before the

switch.

Consider a pair of adjacent points X and Y , where X is red and Y is blue. Draw a

diameter of the circle perpendicular to XY . For each point U on the same side of the

diameter as X, there is a corresponding point V on the same side of the diameter as Y

such that the chord lengths XU and Y V are equal to k for some 1 ≤ k ≤ n− 2.

For each 1 ≤ k ≤ n− 2, there are four possibilities for the colours of U and V — namely,

red-red, red-blue, blue-red and blue-blue.

In the first case, a red-red chord of length k is changed to a red-red chord of length

k + 1 and a red-red chord of length k + 1 is changed to a red-red chord of length k.

In the second case, a red-red chord of length k is changed to a red-red chord of length

k+1 and a blue-blue chord of length k is changed to a blue-blue chord of length k+1.

In the third case, a red-red chord of length k + 1 is changed to a red-red chord of

length k and a blue-blue chord of length k + 1 is changed to a blue-blue chord of

length k.

In the fourth case, a blue-blue chord of length k is changed to a blue-blue chord of

length k+ 1 and a blue-blue chord of length k+ 1 is changed to a blue-blue chord of

length k.

Thus, the lists of chord lengths are the same after a switch if and only if they are the same

before the switch. It follows that the lists of distances are the same for any colouring.

Solution 2 (Alice Devillers, Kevin McAvaney and Ian Wanless)

We use the notion of chord length defined in Solution 1.

8
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Let bk the number of pairs of blue points whose chord length is k. Let rk be the number

of pairs of red points whose chord length is k. Let mk be the number of pairs of points,

one blue and one red, whose chord length is k.

For 1 ≤ k < n, the number of blue points is equal to 2bk+mk
2 = n. Note that we divide

by 2 here, as each point is a member of two pairs whose chord length is k. Similarly, we

obtain that the number of red points is equal to 2rk+mk
2 = n. It immediately follows that

bk = rk.

Furthermore, the number of blue points is equal to 2bn +mn = n. Note that we do not

need to divide by 2 here, as each point is a member of only one pair whose chord length

is n. Similarly, we obtain that the number of red points is equal to 2rn + mn = n. It

immediately follows that bn = rn.

Since we have shown that bk = rk for 1 ≤ k ≤ n, it follows that the lists of distances are

the same.

9
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AMOC SENIOR CONTEST STATISTICS

School Year Number of 
Students Gold Silver Bronze HM Participation

10 30 2 4 6 7 11

11 45 9 8 12 7 9

Other 24 2 2 6 6 8

Total 99 13 14 24 20 28

Distribution of Awards/School Year

Problem 
Number 0 1 2 3 4 5 6 7 Mean

1 14 1 7 5 3 6 7 54 5.1

2 22 15 0 4 1 0 1 51 4.2

3 49 2 0 0 1 0 3 34 2.9

4 9 23 10 2 8 2 2 35 3.8

5 43 10 1 1 0 0 7 16 2.2

Score Distribution/Problem
Number of Students/Score

Note: These counts do not include students who did not attempt the problem.

School 
Year

Number of 
Students Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Overall 

Mean

10 30 4.5 3.6 2.2 3.2 2.1 14.7

11 45 6.0 4.6 3.7 4.5 2.5 19.9

Other 24 4.0 4.2 2.4 3.4 1.5 13.6

Total 99 5.1 4.2 2.9 3.8 2.2 16.8

Mean Score/Problem/School Year
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AMOC SCHOOL OF EXCELLENCE

The 2016 AMOC School of Excellence was held on 1–10 December at Newman College, University of Melbourne. The 
main qualifying exams for this are the AIMO and the AMOC Senior Contest.

A total of 31 students from around Australia attended the school.

The students are divided into a senior group and a junior group. There were 17 junior students, 13 of whom were 
attending for the first time. There were 14 students making up the senior group, 5 of whom were first-time seniors.

The program covered the four major areas of number theory, geometry, combinatorics and algebra. Each day would 
start at 8:30am with lectures or an exam and go until 12:30pm. After a one-hour lunch break they would resume the 
lecture program at 1:30pm. By 4pm participants would usually have free time, followed by dinner at 6pm. Finally, each 
evening would round out with a problem session, topic review, or exam review from 6:45pm until 8:30pm.

Many thanks to Adrian Agisilaou, Ross Atkins, Alexander Chua, and Andrew Elvey Price, who served as live-in staff.

My thanks also go to Thomas Baker, Michelle Chen, Aaron Chong, Yong See Foo, Ivan Guo, Patrick He, Alfred Liang, 
Daniel Mathews, Kim Ramchen, and Chaitanya Rao, who assisted in lecturing and marking.

Angelo Di Pasquale
Director of Training, AMOC
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AUSTRALIAN MATHEMATICAL OLYMPIAD

2017 AUSTRALIAN MATHEMATICAL OLYMPIAD

AUSTRAL IAN MATHEMAT ICAL  OLYMP IAD COMMITTEE

A DEPARTMENT OF THE AUSTRAL IAN MATHEMAT ICS  TRUST

AUSTRAL IAN MATHEMAT ICS  TRUST The Mathematics/Informatics Olympiads are supported by the Australian
Government through the National Innovation and Science Agenda.

Official sponsor of the Olympiad program.

AUSTRALIAN MATHEMATICAL OLYMPIAD

2017

DAY 1

Tuesday, 14 February 2017

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. For which integers n ≥ 2 is it possible to write the numbers 1, 2, 3, . . . , n in a row in

some order so that any two numbers written next to each other in the row differ by 2

or 3?

2. Given five distinct integers, consider the ten differences formed by pairs of these numbers.

(Note that some of these differences may be equal.)

Determine the largest integer that is certain to divide the product of these ten differences,

regardless of which five integers were originally given.

3. Determine all functions f defined for real numbers and taking real numbers as values

such that

f(x2 + f(y)) = f(xy)

for all real numbers x and y.

4. Suppose that S is a set of 2017 points in the plane that are not all collinear.

Prove that S contains three points that form a triangle whose circumcentre is not a

point in S.

c⃝ 2017 Australian Mathematics Trust

AUSTRALIAN MATHEMATICAL OLYMPIAD

2017

DAY 1

Tuesday, 14 February 2017

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. For which integers n ≥ 2 is it possible to write the numbers 1, 2, 3, . . . , n in a row in

some order so that any two numbers written next to each other in the row differ by 2

or 3?

2. Given five distinct integers, consider the ten differences formed by pairs of these numbers.

(Note that some of these differences may be equal.)

Determine the largest integer that is certain to divide the product of these ten differences,

regardless of which five integers were originally given.

3. Determine all functions f defined for real numbers and taking real numbers as values

such that

f(x2 + f(y)) = f(xy)

for all real numbers x and y.

4. Suppose that S is a set of 2017 points in the plane that are not all collinear.

Prove that S contains three points that form a triangle whose circumcentre is not a

point in S.

c⃝ 2017 Australian Mathematics Trust



91     Mathematics Contests The Australian Scene 2017

AUSTRALIAN MATHEMATICAL OLYMPIAD

2017

DAY 2

Wednesday, 15 February 2017

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

5. Determine the number of positive integers n less than 1 000 000 for which the sum

1

2× ⌊
√
1⌋+ 1

+
1

2× ⌊
√
2⌋+ 1

+
1

2× ⌊
√
3⌋+ 1

+ · · ·+ 1

2× ⌊
√
n⌋+ 1

is an integer.

(Note that ⌊x⌋ denotes the largest integer that is less than or equal to x.)

6. The circles K1 and K2 intersect at two distinct points A and M . Let the tangent to K1

at A meet K2 again at B, and let the tangent to K2 at A meet K1 again at D. Let C

be the point such that M is the midpoint of AC.

Prove that the quadrilateral ABCD is cyclic.

7. There are 1000 athletes standing equally spaced around a circular track of length

1 kilometre.

(a) How many ways are there to divide the athletes into 500 pairs such that the two

members of each pair are 335 metres apart around the track?

(b) How many ways are there to divide the athletes into 500 pairs such that the two

members of each pair are 336 metres apart around the track?

8. Let f(x) = x2 − 45x+ 2.

Find all integers n ≥ 2 such that exactly one of the numbers

f(1), f(2), . . . , f(n)

is divisible by n.

c⃝ 2017 Australian Mathematics Trust
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AUSTRALIAN MATHEMATICAL OLYMPIAD SOLUTIONS
Solutions to the 2017 Australian Mathematical Olympiad

1. Comment This problem was solved by 80 of the 104 contestants. We present
some of the many different approaches that were possible in arriving at a complete
solution.

Solution 1 (Christopher Ai, year 8, Knox Grammar School, NSW)

Answer: All integers n ≥ 4.

Clearly n = 2 does not work because 1 and 2 differ by 1. Also n = 3 does not work
because 2 cannot go next to either 1 or 3. It remains to show that all n ≥ 4 work.

Using 2,4,1,3 as a starting point, at each step we simply write the next number on
either side of the list with the odd numbers on the left and the even numbers on
the right until we reach the number n as follows.

. . . , 9, 7, 5, 2, 4, 1, 3, 6, 8, 10, . . . . �

Comments The above solution seems to be the simplest. This was the most
frequent solution found by the contestants.

In the remaining solutions, we only demonstrate that all n ≥ 4 work.

22
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Solution 2 (Ranit Bose, year 11, Narrabundah College, ACT)

For n = 4 and 5, we have working sequences 2,4,1,3 and 3,5,2,4,1, respectively.

For n ≥ 6 we have the following two cases.

Case 1 n is even

We have the working sequence

1, 3, 5, . . . , n− 3, n− 5

area 1

, n− 2, n, n− 3, n− 1, n− 4, n− 6, . . . , 6, 4, 2

area 2

.

Here area 1 consists of the odd numbers from 1 up to n− 5, while area 2 consists of
the even numbers from n− 4 down to 2.

Case 2 n is odd

We have the working sequence

2, 4, 6, . . . , n− 3, n− 5

area 1

, n− 2, n, n− 3, n− 1, n− 4, n− 6, . . . , 5, 3, 1

area 2

.

Here area 1 consists of the even numbers from 2 up to n− 5, while area 2 consists
of the odd numbers from n− 4 down to 1. �

Comment This solution is closely related to the first solution. Can you explain
the connection?

23
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Solution 3 (Ruiqian Tong, year 11, Presbyterian Ladies’ College, VIC)

For n = 4 and 5, we have working sequences 2,4,1,3 and 3,5,2,4,1, respectively.

In each of the three cases that follow, k is any integer greater than or equal to 2.

Case 1 n = 3k

We have the working sequence

1, 3, 6, 9, . . . , 3k

area 1

, 3k − 2, 3k − 5, 3k − 8, . . . , 4

area 2

, 2, 5, 8, . . . , 3k − 1

area 3

.

Here the numbers in area 1 go up by 3 each time, the numbers in area 2 go down
by 3 each time, and the numbers in area 3 go up by 3 each time.

Case 2 n = 3k + 1

We simply append 3k+1 to the above working sequence for n = 3k as shown below.

1, 3, 6, 9, . . . , 3k

area 1

, 3k − 2, 3k − 5, 3k − 8, . . . , 4

area 2

, 2, 5, 8, . . . , 3k − 1

area 3

, 3k + 1

Case 3 n = 3k + 2

We have the working sequence

1, 3, 6, 9, . . . , 3k

area 1

, 3k + 2, 3k − 1, 3k − 4, . . . , 2

area 2

, 4, 7, 10, . . . , 3k + 1

area 3

.

Again the numbers in area 1 go up by 3 each time, the numbers in area 2 go down
by 3 each time, and the numbers in area 3 go up by 3 each time. �

24
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Solution 4 (Charles Li, year 11, Camberwell Grammar School, VIC)

Consider the following repeating pattern of groups of four numbers.

2, 4, 1, 3

group 1

, 6, 8, 5, 7

group 2

, 10, 12, 9, 11

group 3

, 14, 16, 13, 15

group 4

, . . . (1)

Note that each group of four is formed by adding 4 to each member of the previous
group of four. In each of the four cases that follow, k is any positive integer.

Case 1 n = 4k

The first k groups in (1) form a working sequence.

Case 2 n = 4k + 1

Take the first k groups in (1) to get a working sequence for n = 4k whose last
member is 4k − 1. Appending 4k + 1 at the end yields a working sequence for
n = 4k + 1.

Case 3 n = 4k + 2

Take the first k − 1 groups in (1) to get a working sequence for n = 4k − 4 whose
last member is 4k − 5. Appending

4k − 3, 4k − 1, 4k + 1, 4k − 2, 4k, 4k + 2

at the end yields a working sequence for n = 4k + 2.

Case 4 n = 4k + 3

Take the first k − 1 groups in (1) to get a working sequence for n = 4k − 4 whose
last member is 4k − 5. Appending

4k − 3, 4k − 1, 4k + 2, 4k, 4k − 2, 4k + 1, 4k + 3

at the end yields a working sequence for n = 4k + 3. �
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Solution 5 (Ethan Tan, year 11, Cranbrook School, NSW)

We say that a working sequence for n is helpful if its rightmost term is n − 1. We
shall prove that there is a helpful working sequence for each integer n ≥ 4 .

To start with, we have the following helpful working sequences for n = 4, 5, 6, 7, 8.

n = 4 : 2, 4, 1, 3

n = 5 : 1, 3, 5, 2, 4

n = 6 : 1, 3, 6, 4, 2, 5

n = 7 : 2, 5, 7, 4, 1, 3, 6

n = 8 : 1, 3, 6, 8, 5, 2, 4, 7

Moreover, we can transform any helpful working sequence for n into a helpful work-
ing sequence for n+ 5 by appending

n+ 1, n+ 3, n+ 5, n+ 2, n+ 4

at the end.

The result now follows. �
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Solution 6 (Jordan Ka Truong, year 12, Sydney Technical High School, NSW)

Call a working sequence for n useful if n−2 and n are adjacent terms of the sequence.
We shall prove that there is a useful working sequence for each integer n ≥ 4 .

To start with, we have the following useful working sequences for n = 4, 5, 6, 7, 8.

n = 4 : 2, 4 , 1, 3

n = 5 : 1, 3, 5 , 2, 4

n = 6 : 1, 3, 6, 4 , 2, 5

n = 7 : 2, 5, 7 , 4, 1, 3, 6

n = 8 : 2, 4, 7, 5, 8, 6 , 3, 1

Moreover, we can transform any useful working sequence for n into a useful working
sequence for n+ 5 by inserting

n+ 1, n+ 4, n+ 2, n+ 5, n+ 3

or its reverse in between n− 2 and n.

The result now follows. �
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Comment 1 We invite the reader to find answers to the following variations on
the given problem.

• The same problem with the additional requirement that the sequence starts
with 1.1

• The same problem with the additional requirements that the sequence starts
with 1 and ends with n.

• The same problem with the additional requirement that the sequence is circu-
lar, that is, the difference between the first and last term is also 2 or 3.

Comment 2 It is convenient to visualise the situation using a graph G. Each of 
the positive integers 1, 2, . . . , n corresponds to a vertex of G, and two vertices are 
connected by an edge if and only if they differ by two or three. It is fairly simple to 
draw the graph by adding one vertex at a time as depicted below for n = 4, 5, 6, 7, 
8, 9.

3

1 4

2

4

3

1 4

2

4

5

3

1 4

2

4

5

6

3

1 4

2

4

5

6

7 3

1 4

2

4

5

6

7
8

3

1 4

2

4

5

6

7
8

9

Finding a valid sequence is equivalent to finding a path in the corresponding graph
that visits each vertex exactly once.

1Actually this was already done in solution 3.
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2. Solution (Andrew Chen, year 122, Saint Kentigern College, NZ)

Answer: 288

For the integers 1, 2, 3, 4, 5, we calculate directly that the product of the ten
differences is 25 × 32 = 288. Hence the answer is a factor of 288.

To show that the answer is 288, we shall show that 25 and 32 divide the product, P
say, of the ten differences.

Part 1 Show that 25 divides P .

By the pigeonhole principle, at least three of the five numbers have the same parity.

If four or more of the five numbers have the same parity, then each of the
(
4
2

)
= 6

differences between them is even. Thus 26, and hence 25 divides P .

If, on the other hand, exactly three of the numbers, say a, b, and c are of one parity,
and the other two, say d and e are of the other parity, then each of the differences
a− b, a− c, b− c, and d− e are even. Since a, b, and c have the same parity, either

a, b, c ∈ {0, 2} (mod 4) or a, b, c ∈ {1, 3} (mod 4).

In each case at least one of the differences a − b, a − c, or b − c is divisible by 4.
Hence again 25 divides P .

Part 2 Show that 32 divides P .

By the pigeonhole principle, two of the five numbers are congruent modulo 3.

If three of the numbers are congruent modulo 3, then each of the
(
3
2

)
= 3 differences

between them is divisible by 3. Thus 33, and hence 32 divides P .

If at most two numbers are congruent to each other modulo 3, say a ≡ b (mod 3),
then the other three numbers must come from the other two congruence classes.
Again by the pigeohole principle, it follows that two of the other three numbers are
congruent modulo 3, say c ≡ d (mod 3). It follows that 32 divides P . �

2Equivalent to year 11 in Australia.
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3. Solution 1 (William Hu, year 11, Christ Church Grammar School, WA)

Answers: f(x) = c for any real constant c.

For reference we are given

f(x2 + f(y)) = f(xy) for all x, y ∈ R. (1)

Put y = 0 in (1) to find

f(x2 + f(0)) = f(0) for all x ∈ R. (2)

Observe that x2 + f(0) covers all real numbers that are greater than or equal to
f(0). It follows that

f(x) = f(0) whenever x ≥ f(0). (3)

Next choose a ≥ f(0) with a �= 0. Put y = a into (1) and use (3) and then (2) to
find

f(xa) = f(x2 + f(a)) = f(x2 + f(0)) = f(0).

Since a �= 0, the expression xa covers all real numbers as x ranges over the reals.
Hence f(x) = f(0) for all x ∈ R. Thus f is a constant function. It is readily seen
that any such function satisfies (1). �
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Solution 2 (Marcus Rees, year 10, Taroona High School, TAS)

For reference we are given

f(x2 + f(y)) = f(xy) for all x, y ∈ R. (1)

Put y = 0 in (1) to deduce

f(x2 + f(0)) = f(0) for all x ∈ R. (2)

Put x = 0 in (1) to deduce

f(f(y)) = f(0) for all y ∈ R. (3)

Replacing y with f(y) in (1), and using (3) and then (2), we have for all x, y ∈ R

f(xf(y)) = f(x2 + f(f(y)) = f(x2 + f(0)) = f(0).

If f(y) = 0 for all y ∈ R, then it is readily checked that this function satisfies (1).

If, on the other hand, there is a real number y such that f(y) �= 0, then xf(y) covers
all real numbers as x ranges over the reals. Hence f(x) = f(0) for all x ∈ R. So f
is a constant function. It is readily seen that any such function satisfies (1). �
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4. Solution 1 (Stacey Tian, year 133, St Cuthbert’s College, NZ)

Let A and B be two points of S whose distance apart is minimal. Let � be the
perpendicular bisector of AB.

Case 1 The line � contains no point of S.

Since not all points of S are collinear, there exists a point X not on the line AB.
Consequently, the circumcentre of �ABX, which lies on �, is not in S, as required.

Case 2 The line � contains at least one point of S.

Let C be a point in S, lying on �, and of minimal distance to the line AB.

A B

C

Recall AB is the minimal distance between points of S. Thus CA = CB ≥ AB.
Therefore ∠ACB is the smallest angle in �ABC, and so ∠ACB ≤ 60◦. Since
�ABC is isosceles with CA = CB, we also have ∠BAC = ∠CBA < 90◦. Hence
�ABC is acute.

Acute triangles contain their circumcentres, so the circumcentre of �ABC, which
lies on �, also lies inside �ABC and is therefore closer to the line AB than the
point C. Since no point in S, that is also on �, lies closer to AB than C, it follows
that the circumcentre of �ABC is not in S, as required. �

3Equivalent to year 12 in Australia.
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Solution 2 (Based on the solution by Hadyn Tang, year 8, Trinity Grammar
School, VIC)

Let A and B be any two consecutive points on the convex hull of S. Orient the
diagram so that AB is horizontal and no point of S lies below the line AB. Of all
points in S that lie strictly above the line AB, let C be a point such that ∠ACB is
maximal. We shall prove that the circumcentre, O say, of �ABC is not in S.

Case 1 0◦ < ∠ACB < 90◦

We have ∠AOB = 2∠ACB. Hence 0◦ < ∠ACB < ∠AOB < 180◦. Thus O lies
above the line AB and satisfies ∠AOB > ∠ACB. From the maximality of ∠ACB,
we conclude that O is not in S, as desired.

A B

C

O

Case 2 ∠ACB = 90◦

The point O is the midpoint of AB. Since A and B were chosen to be consecutive
points on the convex hull of S, it follows that O is not in S, as desired.

Case 3 90◦ < ∠ACB < 180◦

The point O lies below the line AB and so is not in S, as desired. �
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Solution 3 (Based on the solution by Isabel Longbottom, year 12, Rossmoyne
Senior High School, WA)

Let ABC be a triangle formed from points in S that has minimal circumradius, R
say, and let O be the circumcentre of �ABC.

If O is not in S, then we are done.

If O is in S, then since the three directed angles (modulo 360◦) ∠AOB, ∠BOC, and
∠COA sum to 360◦, we may suppose without loss of generality that ∠AOB ≤ 120◦.
Let X be the circumcentre of �AOB. To complete the proof we shall show that X
is not in S.

A B

O

X

By symmetry OX bisects ∠AOB. Hence ∠XAO = ∠AOX = 1
2
∠AOB ≤ 60◦.

If ∠XAO = ∠AOX < 60◦, then ∠OXA > 60◦ is strictly the largest angle in
�AOX. Thus OA is strictly the largest side of �AOX. So OX < OA. Hence
�AOB has circumradius OX < OA = R, which contradicts the minimality of R.

If, on the other hand, ∠XAO = ∠AOX = 60◦, then �AOX is equilateral and has
circumradius equal to OA/

√
3 < OA = R. Since �ABC has minimal circumradius

formed from points in S, it follows that X is not in S, as desired. �
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Solution 4 (Matthew Cheah, year 12, Penleigh and Essendon Grammar School,
VIC)

Let ABC be a triangle formed from points in S that has minimal circumradius, and
let O be its circumcentre. For any triangle UVW , let RUVW denote its circumradius.

If O is not in S, then we are done.

If O is in S, let α, β, and γ be the angles at A, B, and C, respectively, in �ABC.

Case 1 �ABC is acute.

Note that ∠BOC = 2α. By the minimality of RABC , we have RABC ≤ RBOC . Using
the extended sine rule in �ABC and �BOC, to compute these circumradii, we
have

BC

sinα
≤ BC

sin 2α
=

BC

2 sinα cosα
⇒ cosα ≤ 1

2
.

Since 0◦ < α < 90◦ it follows that α ≥ 60◦. Similarly, β ≥ 60◦ and γ ≥ 60◦. But
α + β + γ = 180◦. Hence α = β = γ = 60◦, and so �ABC is equilateral.

Let X be the circumcentre of �BOC. If X is not in S, then we are done.

If X is in S, then ∠OXC = 2∠OBC = 60◦, and XO = XC, so that �OXC is
equilateral. However, equilateral �OXC is clearly smaller than equilateral �ABC.
Thus ROXC < RABC , which contradicts the minimality of RABC .

C B

O

2α

A

α

β

2β

X

O

C B

A

Case 2 �ABC is not acute.

Without loss of generality we may suppose that α ≥ 90◦. It follows that β+γ ≤ 90◦.
Without loss of generality we may assume that ∠β ≤ 45◦.

Note that ∠AOC = 2β ≤ 90◦. By the minimality of RABC , we have RABC ≤ RAOC .
Using the extended sine rule in �ABC and �AOC, to compute these circumradii,
we have

AC

sin β
≤ AC

sin 2β
⇒ sin 2β ≤ sin β.

However this is a contradiction because the sine function is strictly increasing on
the interval [0, 90◦]. Hence this case does not occur. �
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Solution 5 (Ivan Guo, AMOC Senior Problems Committee)

We will prove a stronger statement, namely, that S contains three non-collinear
points whose circumcircle does not contain a point of S anywhere in its interior.

Let A and B be two points of S separated by minimal distance. Consider the circle
with diameter AB. Note that this circle does not contain any other points of S.

One side of the line AB contains at least one point of S. Continuously expand the
circle towards that side, while making sure that it still passes through A and B.
Eventually, it must hit a third point of S. At this stage, the circle meets (at least)
three points of S but contains no points of S in its interior. �

Comment (Adrian Agisilaou, AMO marker)

Let S be any set of points that are not all collinear, and let H be the convex hull
of S. It is always possible to find a triangulation4 of H with the property that
the circumcircle of each such triangle does not contain any points of S strictly in
its interior. Such a triangulation is called a Delaunay triangulation. See https:

//en.wikipedia.org/wiki/Delaunay_triangulation for more details. Such tri-
angulations are a topic in contemporary mathematical research.

4By a triangulation, we mean a partition of H into triangles so that for each such triangle T , its three
vertices are points of S and no other point on the perimeter of T is a point of S.
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5. Solution 1 (William Steinberg, year 9, Scotch College, WA)

Answer: 999

For reference the given sum is

S =
1

2
⌊√

1
⌋
+ 1

+
1

2
⌊√

2
⌋
+ 1

+ · · ·+ 1

2
⌊√

n
⌋
+ 1

.

Let m be the unique positive integer satisfying m2 ≤ n < (m+ 1)2.

For each positive integer r, consider how many positive integers x there are such that⌊√
x
⌋
= r. We require r2 ≤ x < (r+1)2. So there are exactly (r+1)2 − r2 = 2r+1

values of x with
⌊√

x
⌋
= r. It follows that

1

2
⌊√

r2
⌋
+1

+
1

2
⌊√

r2+1
⌋
+1

+· · ·+ 1

2
⌊√

(r+1)2 − 1
⌋
+1

= (2r+1)× 1

2r+1
= 1. (1)

Using the above results, we can split S up into the following m smaller sums.

S =
1

2
⌊√

12
⌋
+ 1

+
1

2
⌊√

12 + 1
⌋
+ 1

+
1

2
⌊√

22 − 1
⌋
+ 1

+
1

2
⌊√

22
⌋
+ 1

+
1

2
⌊√

22 + 1
⌋
+ 1

+ · · ·+ 1

2
⌊√

32 − 1
⌋
+ 1

+
1

2
⌊√

32
⌋
+ 1

+
1

2
⌊√

32 + 1
⌋
+ 1

+ · · ·+ 1

2
⌊√

42 − 1
⌋
+ 1

...

+
1

2
⌊√

(m− 1)2
⌋
+ 1

+
1

2
⌊√

(m− 1)2 + 1
⌋
+ 1

+ · · ·+ 1

2
⌊√

m2 − 1
⌋
+ 1

+
1

2
⌊√

m2
⌋
+ 1

+
1

2
⌊√

m2 + 1
⌋
+ 1

+ · · ·+ 1

2 �
√
n�+ 1

.

From (1), each of the first m − 1 lines in the above has sum equal to 1. From the
discussion immediately preceding (1), the last line has sum equal to

1

2m+ 1
+

1

2m+ 1
+ · · ·+ 1

2m+ 1︸ ︷︷ ︸
n−m2 + 1 terms

=
n−m2 + 1

2m+ 1
.

However, since m2 ≤ n < (m+ 1)2 we see that

0 <
n−m2 + 1

2m+ 1
≤ 1.

Hence S is an integer if and only if n−m2 + 1 = 2m+ 1, that is, n = (m+ 1)2 − 1.

Since n is a positive integer less than one million, the sum S is an integer precisely
when n = 22 − 1, 32 − 1, . . . , 10002 − 1. Thus there are exactly 999 values of n for
which S is an integer. �
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Solution 2 (Matthew Cheah, year 12, Penleigh and Essendon Grammar School,
VIC)

For each positive integer n let

f(n) =
1

2
⌊√

1
⌋
+ 1

+
1

2
⌊√

2
⌋
+ 1

+ · · ·+ 1

2
⌊√

n
⌋
+ 1

.

Note that f is strictly increasing.

We claim that f(k2− 1) = k− 1 for each integer k ≥ 2. We prove this by induction.

For the base case k = 2, we calculate

f(3) =
1

2
⌊√

1
⌋
+ 1

+
1

2
⌊√

2
⌋
+ 1

+
1

2
⌊√

3
⌋
+ 1

=
1

3
+

1

3
+

1

3
= 1.

Hence the base case checks out.

For the inductive step, let us assume that f(k2 − 1) = k− 1 for some integer k ≥ 2.
We calculate

f((k + 1)2 − 1) = f(k2 − 1) +
1

2
⌊√

k2
⌋ + 1 +

1

2
⌊√

k2 + 1
⌋ + · · ·+ 1

2
⌊√

k2 + 2k
⌋

= k − 1 +
1

2k + 1
+

1

2k + 1
+ · · ·+ 1

2k + 1︸ ︷︷ ︸
2k + 1 terms

= k.

Note that the second line of the above calculation follows from the first because
all of k2, k2 + 1, . . . , k2 + 2k are greater than or equal to k2 but strictly less than
(k + 1)2. This completes the induction, thus establishing the claim.

Since f is strictly increasing, the claim implies that f(n) is an integer if and only if
n = k2 − 1 for some integer k ≥ 2.

Recall n is a positive integer less than one million. Hence f(n) is an integer precisely
when n = 22 − 1, 32 − 1, . . . , 10002 − 1. Thus there are exactly 999 values of n for
which S is an integer. �
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6. Solution 1 (William Hu, year 11, Christ Church Grammar School, WA)

By the alternate segment theorem, since circle AMD is tangent to AB, we may let
∠MAB = ∠MDA = α. Analogously, we may let ∠DAM = ∠ABM = β.

A

B

C

M

D

x

x

y

α

α

β

β

Therefore, �AMD ∼ �BMA (AA). Hence

DM

MA
=

AM

MB
.

Since AM = MC, it follows from the above equality that

DM

MC
=

CM

MB
. (1)

The external angle sums in triangles AMD and AMB yield

∠DMC = α + β = ∠CMB.

Combining this with (1) implies �DMC ∼ �CMB (PAP). Hence we may let
∠CDM = ∠BCM = x. Also let ∠MCD = y. These allows us to directly compute

∠DAB + ∠BCD = α + β + x+ y = 180◦,

where the last equality is due to the angle sum in �DMC.

Since ∠DAB + ∠BCD = 180◦, we conclude that ABCD is cyclic. �
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Solution 2 (Anthony Tew, year 11, Pembroke School SA)

As in solution (1), we may let ∠MAB = ∠MDA = α and ∠DAM = ∠ABM = β.

A

B

C

M

D

αβ

Therefore, �AMD ∼ �BMA (AA). Hence

DA

AM
=

AB

BM
.

Since AM = MC, it follows from the above equality that

DA

CM
=

AB

MB
. (2)

The exterior angle sum in �AMB yields ∠CMB = α + β = ∠DAB. Combining
this with (2) implies �DAB ∼ �CMB (PAP). It follows that

∠BDA = ∠BCM = ∠BCA.

Since ∠BDA = ∠BCA, it follows that ABCD is cyclic. �
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Solution 3 (Guowen Zhang, year 11, St Joseph’s College, QLD)

As in solution (1), we have �AMD ∼ �BMA.

Let S and T be the midpoints of AB and AD, respectively.

A

B

C

M

D

α

α

β

β

S
T

Since S and T are corresponding points in similar triangles BMA and AMD, it
follows that ∠MSB = ∠MTA. This implies that quadrilateral ASMT is cyclic.

However, since quadrilateral ABCD is the image of ASMT under a dilation of
factor 2 about A, it follows that ABCD is also cyclic. �

Comment Here is an alternative way of explaining the above solution. Since
�MDA ∼ �MAB, there is a spiral symmetry centred at M that sends DA to
AB.5 Since T and S are midpoints of DA and AB, respectively, the same spiral
symmetry sends T to S, and so sends �MTA to �MSB. Thus ∠MTA = ∠MSB
which implies that ASMT and hence also ABCD is cyclic.

5See the section entitled Similar Switch in chapter 5 of Problem Solving Tactics published by the AMT.
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Solution 4 (Anthony Pisani, year 10, St Paul’s Anglican Grammar School, VIC)

Let X and RX denote the centre and radius, respectively, of K1, and let Y and RY

denote the centre and radius, respectively, of K2. Let O be the intersection of the
perpendicular bisectors of AD and AB. We shall prove that O is the circumcentre
of quadrilateral ABCD.

A

B

C

D

M

X Y

O

Since AX is a radius of K1 and AB is a tangent of K1, we know that AX ⊥ AB.
However we also have Y O ⊥ AB. Hence AX ‖ Y O. Similarly AY ‖ XO. Hence
AXOY is a parallelogram. Thus Y O = AX = RX and XO = AY = RY .

Consider the reflection in the perpendicular bisector of XY . Let O′ be the image
of O under this reflection. We claim that O′ = M . To see this, observe that the
segment O′X is the image of OY under the reflection. Hence O′X = OY = RX .
Hence O′ lies on K1. Similarly, O′ lies on K2. Hence O′ is one of the intersection
points of K1 and K2. Since O′ lies on the same side of XY as O, we have O′ �= A.
Thus O′ = M . Furthermore, since XY ⊥ AM , we also have OM ⊥ AM .

Recall that M is the midpoint of AC. Thus OM is the perpendicular bisector of
AC. But OX is the perpendicular bisector of AD. Hence O is the circumcentre of
�ADC. Similarly O is the circumcentre of �ABC. These two deductions imply
that O is the circumcentre of quadrilateral ABCD, as claimed. �
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Solution 5 (Angelo Di Pasquale, Director of Training, AMOC)

This is a computational solution via complex numbers.

Without loss of generality we may assume that points M , B, and A are situated at
the complex numbers 0, 1, and z, respectively.

As in solution 1, we have �BMA ∼ �AMD. Hence D is situated at z2. Also since
M is the midpoint of AC, the point C is situated at −z.

A = z

B = 1

C = −z

M = 0

D = z2

Quadrilateral ABCD is cyclic if and only if ∠DAB +∠BCD = 180◦. We compute

∠DAB = arg

(
B − A

D − A

)
= arg

(
1− z

z2 − z

)
= arg

(
−1

z

)
= arg(−1)− arg z,

and

∠BCD = arg

(
D − C

B − C

)
= arg

(
z2 + z

1 + z

)
= arg(z).

Therefore ∠DAB + ∠BCD = arg(−1) = 180◦, as desired. �
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Solution 6 (James Bang, year 10, Baulkham Hills High School, NSW)

This is a solution via inversion.

Consider the inversion about A of radius AM . For any point Z, let Z∗ denote its
image under the inversion. Clearly M∗ = M , and C∗ is the midpoint of AM .

A

B

C

M = M∗

D

C∗
D∗

B∗

The lines AD, AM , and AB all pass through A, so they remain fixed under the
inversion. Circle ADM is tangent to the line AB. Thus circle ADM is mapped to
the line through M that is parallel to AB. From this we deduce that D∗ is the
intersection of AD and the line through M parallel to AB. Similarly B∗ is the
intersection of AB and the line through M parallel to AD. Hence AB∗MD∗ is a
parallelogram.

Any parallogram’s diagonals bisect each other. Since C∗ is the midpoint of AM ,
it is also the midpoint of B∗D∗. In particular, B∗, C∗, and D∗ are collinear. This
implies that circle BCD passes through A. Therefore quadrilateral ABCD is cyclic,
as required. �
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7. Solution (Ruiqian Tong, year 11, Presbyterian Ladies’ College, VIC) 

Answers: (a) 32 (b) 0

Let the athletes be A1, A2, . . . , A1000 in that order, clockwise around the track.

(a) Starting from A1 and proceeding clockwise around the track in intervals of 335
metres we meet athletes in the order:

A1, A336, A671, A6, A341, A676, A11, . . . , A331, A666, (A1).

Note that since 335 and 1000 are both divisible by 5, only athletes Ai with
i ≡ 1 (mod 5) can occur in the above list. Furthermore, the directed distance
between every third athlete in the above list is five metres. Thus the above list
contains precisely all Ai with i ≡ 1 (mod 5). Hence the list contains exactly
200 different athletes.

Athlete A1 can either be paired with A336 or A666. But once this pairing is
chosen, all of the rest of the pairings are forced. Thus there are exactly two
ways of pairing up all the athletes Ai for i ≡ 1 (mod 5).

There is nothing particularly special about starting a list with A1. We could
have started four other lists with A2, A3, A4, and A5, respectively. Analogous
arguments show that there are exactly two ways of pairing up the athletes in
each such list. Since the five lists are independent, the total number of pairings
is 25 = 32. �

(b) Starting from A1 and proceeding clockwise around the track in intervals of 336
metres we meet athletes in the order:

A1, A337, A673, A9, A345, A681, A17, . . . , A329, A665, (A1).

Note that since 336 and 1000 are both divisible by 8, only athletes Ai with
i ≡ 1 (mod 8) can occur in the above list. Furthermore, the directed distance
between every third athlete in the above list is eight metres. Thus the above list
contains precisely all Ai with i ≡ 1 (mod 8). Hence the list contains exactly 125
different athletes. However, since 125 is odd, it is not possible to pair everyone
up from the above list. Hence no such pairing is possible. �

Comment (Ivan Guo, AMOC Senior Problems Committee)

For the general problem of n (where n is an even positive integer) athletes standing
equally spaced around a circular track of length n metres, it can be shown that the
number of ways of dividing the athletes into n

2
pairs such that the members of each

pair are k metres apart is



2gcd(k,n), if n

gcd(k,n)
is even,

0, if n
gcd(k,n)

is odd.
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8. This was the most difficult problem of the 2017 AMO. Just six contestants managed
to solve it completely.

Solution 1 (Matthew Cheah, year 12, Penleigh and Essendon Grammar School, 
VIC)

Answer: n = 2017

We observe that the function f(x) = x2 − 45x + 2  is a parabola that is symmetric 
about x = 221

2 . Hence for any real number x we have

f(x) = f(45− x). (1)

Suppose that n | f(k) where k is an integer satisfying 1 ≤ k ≤ n. Using (1), it
follows that n | f(45− k). However, since f is a polynomial, we know that

a ≡ b (mod n) ⇒ f(a) ≡ f(b) (mod n). (2)

Hence if j ≡ 45− k (mod n), where 1 ≤ j ≤ n, then from (2) we have

f(j) ≡ f(45− k) ≡ 0 (mod n).

Since exactly one of the numbers f(1), f(2), . . . , f(n) is divisible by n, we have

k ≡ 45− k (mod n)

⇒ 2k ≡ 45 (mod n). (3)

We also know that n | f(k), and so we may compute as follows.

k2 − 45k + 2 ≡ 0 (mod n)

⇒ (2k)2 − 90× 2k + 8 ≡ 0 (mod n)

⇒ (45)2 − 90× 45 + 8 ≡ 0 (mod n) (from (3))

⇔ −2017 ≡ 0 (mod n)

Hence n | 2017. Since n ≥ 2 and 2017 is prime, we have n = 2017. However, we still
must check whether or not n = 2017 actually works.

Suppose that 2017 | f(k), where 1 ≤ k ≤ 2017. We compute as follows.

k2 − 45k + 2 ≡ 0 (mod 2017)

⇔ 4k2 − 180k + 8 ≡ 0 (mod 2017) (since 2017 is odd)

⇔ (2k − 45)2 ≡ 0 (mod 2017)

⇔ (2k − 45) ≡ 0 (mod 2017) (since 2017 is prime)

⇔ 2k ≡ 45 (mod 2017)

≡ 2062 (mod 2017)

⇔ k ≡ 1031 (mod 2017) (since 2017 is odd)

⇔ k = 1031 (since 1 ≤ k ≤ 2017)

This shows that k = 1031 is the only integer with 1 ≤ k ≤ 2017 such that f(k) is
divisible by 2017. �

46



117     Mathematics Contests The Australian Scene 2017

Solution 2 (Angelo Di Pasquale, Director of Training, AMOC)

Note that if x ≡ y (mod n), then it follows that f(x) ≡ f(y) (mod n). Therefore,
we are seeking all n such that f(x) ≡ 0 (mod n) has a unique solution modulo n.

Suppose that f(k) = an for some integer a. Using the quadratic formula, we find
that

k =
45±

√
2017 + 4an

2
. (1)

Hence, 2017 + 4an is an odd perfect square. So if one root of the quadratic is an
integer, then so is the other. By the condition of the problem, this implies that

45 +
√
2017 + 4an

2
≡ 45−

√
2017 + 4an

2
(mod n).

Transferring everything in the above congruence to the left yields

√
2017 + 4an ≡ 0 (mod n).

Squaring the above yields 2017 ≡ 0 (mod n). Since 2017 is prime and n ≥ 2, it
follows that n = 2017.

Conversely, if n = 2017, then the quadratic formula (1) tells us that for k to be an
integer, we require 1 + 4a = 2017j2 for some odd integer j = 2i + 1. Substituting
this into the equation yields k = 1031 + 2017i or k = −986 − 2017i. So the only
such value of k in the required range is k = 1031, which corresponds to i = 0, j = 1
and a = 504. �
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AUSTRALIAN MATHEMATICAL OLYMPIAD STATISTICS

Score Distribution/Problem

Number of 
Students/Score

Problem Number

1 2 3 4 5 6 7 8

0 0 4 34 81 4 33 21 82

1 6 9 16 5 0 14 2 10

2 7 5 12 0 1 8 1 1

3 0 1 7 0 3 1 1 0

4 1 5 0 0 4 1 5 3

5 3 7 2 3 0 1 22 2

6 7 26 7 2 37 1 0 0

7 80 47 26 13 55 45 52 6

Average 6.2 5.4 2.8 1.2 6.1 3.5 4.8 0.7
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ASIAN PACIFIC MATHEMATICS OLYMPIAD

XXIX Asian Pacific Mathematics Olympiad

March, 2017

Time allowed: 4 hours Each problem is worth 7 points

The contest problems are to be kept confidential until they are posted on the official
APMO website http://apmo.ommenlinea.org.
Please do not disclose nor discuss the problems over online until that date. The use
of calculators is not allowed.

Problem 1. We call a 5-tuple of integers arrangeable if its elements can be labeled
a, b, c, d, e in some order so that a − b + c − d + e = 29. Determine all 2017-tuples
of integers n1, n2, . . . , n2017 such that if we place them in a circle in clockwise order,
then any 5-tuple of numbers in consecutive positions on the circle is arrangeable.

Problem 2. Let ABC be a triangle with AB < AC. Let D be the intersection point
of the internal bisector of angle BAC and the circumcircle of ABC. Let Z be the
intersection point of the perpendicular bisector of AC with the external bisector of
angle ∠BAC. Prove that the midpoint of the segment AB lies on the circumcircle of
triangle ADZ.

Problem 3. Let A(n) denote the number of sequences a1 ≥ a2 ≥ . . . ≥ ak of positive
integers for which a1+ · · ·+ak = n and each ai+1 is a power of two (i = 1, 2, . . . , k).
Let B(n) denote the number of sequences b1 ≥ b2 ≥ . . . ≥ bm of positive integers for
which b1 + · · ·+ bm = n and each inequality bj ≥ 2bj+1 holds (j = 1, 2, . . . ,m− 1).

Prove that A(n) = B(n) for every positive integer n.

Problem 4. Call a rational number r powerful if r can be expressed in the form pk

q

for some relatively prime positive integers p, q and some integer k > 1. Let a, b, c be
positive rational numbers such that abc = 1. Suppose there exist positive integers
x, y, z such that ax + by + cz is an integer. Prove that a, b, c are all powerful.

Problem 5. Let n be a positive integer. A pair of n-tuples (a1, . . . , an) and
(b1, . . . , bn) with integer entries is called an exquisite pair if

|a1b1 + · · ·+ anbn| ≤ 1.

Determine the maximum number of distinct n-tuples with integer entries such
that any two of them form an exquisite pair.
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Solutions to the 2017 Asian Pacific Mathematical Olympiad

1. Solution (William Hu, year 11, Christ Church Grammar School, WA)

Answer: n1 = n2 = · · · = n2017 = 29

It is easy to see that the above is a valid 2017-tuple. We claim there are no others.

Note that in this solution to this problem all subscripts are taken modulo 2017.

We say that a 5-tuple of integers is k-arrangeable if its elements can be labelled a, 
b, c, d, e in some order such that a − b + c − d + e = k.
We say that a 2017-tuple n1, n2, . . . , n2017 of integers is k-good if every 5-tuple 
ni, ni+1, ni+2, ni+3, ni+4 (i = 1, 2, . . . , 2017) is k-arrangeable. We are asked to de-

termine all 2017-tuples of integers that are 29-good.

For any integers a, b, c, d, e, observe that

a− b+ c− d+ e = 29

if and only if

(a− 29)− (b− 29) + (c− 29)− (d− 29) + (e− 29) = 0.

Thus n1, n2, . . . , n2017 is 29-good if and only if m1,m2, . . . ,m2017 is 0-good where
mi = ni − 29 for i = 1, 2, . . . , 2017. We shall prove that the only 0-good sequence is
m1 = m2 = · · · = m2017 = 0.

Suppose there is a 0-good sequence with the property that not all mi are 0. Choose
m1,m2, . . . ,m2017 to be such a sequence that minimises

|m1|+ |m2|+ · · ·+ |m2017|. (1)

Note that if a − b + c − d + e = 0, then a + b + c + d + e = 2(b + d) ≡ 0 (mod 2).
Hence for each i we have

mi +mi+1 +mi+2 +mi+3 +mi+4 ≡ 0 (mod 2). (2)

Replacing i with i+ 1 in (2) yields

mi+1 +mi+2 +mi+3 +mi+4 +mi+5 ≡ 0 (mod 2). (3)

Subtracting (2) from (3) yields

mi ≡ mi+5 (mod 2). (4)

Since gcd(5, 2017) = 1, equation (4) implies that all the mi are congruent to the
same thing modulo 2. From (2) we see that all the mi are even.

Consider the sequence of integers m1

2
, m2

2
, . . . , m2017

2
. It is also 0-good. However,

0 <
∣∣∣m1

2

∣∣∣+
∣∣∣m2

2

∣∣∣+ · · ·+
∣∣∣m2017

2

∣∣∣ < |m1|+ |m2|+ · · ·+ |m2017|.

This contradicts the minimality of the expression at (1).

Thus we have shown that the only 0-good sequence is m1 = m2 = · · · = m2017 = 0.
This corresponds to n1 = n2 = · · · = n2017 = 29. �
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2. Solution 1 (Frank Zhao, year 10, Geelong Grammar School, VIC)

Let α = ∠BAD = ∠DAC. Let M and N be the midpoints of AB and AC, respec-
tively. Let O be the circumcentre of triangle ABC. Thus O lies on the perpendicular
bisectors of AB, AC, and AD. Let line AD intersect lines MO and NO at R and
S, respectively.

A

B C

D

Z

M
N

O
S

R

Since the internal and external bisectors of an angle are perpendicular, we have
∠CAZ = 90◦ − α. The angle sum in �ANZ yields ∠AZN = α. The angle sum in
�SAN yields

∠OSR = ∠NSA = 90◦ − α.

Summing the angles in �MAR yields

∠SRO = ∠ARM = 90◦ − α = ∠OSR.

If � is the line through O that is perpendicular to AD, then R and S are symmetric
in �. Since O is the centre of circle ABC, we have OA = OD. So A and D are also
symmetric in �. It follows that AS = RD.

Recall ∠MAR = α = ∠AZN , and ∠RMA = 90◦ = ∠SAZ. It follows that
�RMA ∼ �SAZ (AA). Therefore

MR

MA
=

AS

AZ
=

RD

AZ
.

Furthermore,

∠MRD = 180◦ − ∠ARM = 90◦ + α = ∠SAZ + ∠MAR = ∠MAZ.

Hence �MRD ∼ �MAZ (PAP). Therefore, ∠AZM = ∠RDM = ∠ADM . Thus
MAZD is cyclic. Therefore circle ADZ passes through M , as required. �
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Solution 2 (Jerry Mao, year 11, Caulfield Grammar School, VIC)

Let α = ∠BAD = ∠DAC. Let L, M , and N be the midpoints of BC, AB, and
AC, respectively.

A

B C

D

Z

M
N

L

Claim 1 �DLC ∼ �CNZ.

Proof Since the internal and external bisectors of an angle are perpendicular, we
have ∠CAZ = 90◦ − α. The angle sum in �ANZ yields ∠AZN = α. Since ZN is
the perpendicular bisector of AC, we have �ANZ ≡ �CNZ. Thus ∠NZC = α.

We know AD bisects ∠BAC. Hence DB = DC. Since L is the midpoint of BC, and
�BCD is isosceles with DB = DC, it follows that DL ⊥ BC. From circle ABDC,
we have ∠BCD = ∠BAD = α = ∠NZC. We also have ∠DLC = 90◦ = ∠CNZ.
Hence �DLC ∼ �CNZ (AA). �

Claim 2 �DCZ ∼ �MNZ.

Proof Since M and N are the midpoints of AB and AC, respectively, we have
MN ‖ BC, and MN = 1

2
BC = LC.

The angle sum in �CNZ yields ∠ZCN = 90◦ − α. Hence

∠ZCD = 90◦ − α + ∠ACB + α = 90◦ + ∠ANM = ∠ZNM.

From �DLC ∼ �CNZ, we also have

DC

CZ
=

LC

NZ
=

MN

NZ
.

Hence �DCZ ∼ �MNZ (PAP). �

Finally, from �DCZ ∼ �MNZ we have

∠MZD = ∠NZD + ∠MZN = ∠NZD + ∠DZC = ∠NZC = α = ∠MAD.

Hence MAZD is cyclic, and so circle ADZ passes through M , as required. �
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Solution 3 (James Bang, year 10, Baulkham Hills High School, NSW)

This is a computational solution via complex numbers. Refer to the diagram in
solution 1.

Without loss of generality we may assume that circle ABCD is the unit circle in
the complex plane. For convenience, we suppose that A, B, C, and D are positioned
at complex numbers a2, b2, c2, and d2, where |a| = |b| = |c| = |d| = 1.

If O is the centre of circle ABCD, then ∠BOD = 2∠BAD = 2∠DAC = ∠DOC.
Thus OD bisects ∠BOC. Hence d2 = b2c2, and so d = ±bc. By changing b to −b, if
necessary, we may assume that (A,B,C,D) = (a2, b2, c2, bc).

Let z and m be the complex numbers representing Z and M , respectively. Note
that m = a2+b2

2
because M is the midpoint of AB. The place where the internal

and external bisectors of an angle of a triangle meet the triangle’s circumcircle, are
diametrically opposite on the circumcircle. Hence the line AZ meets circle ABCD
at the point represented by the complex number −bc. Since a2, z, and −bc are
collinear, we have z−a2

−bc−a2
is a real number. Therefore

z − a2

a2 + bc
=

(
z − a2

a2 + bc

)
=

z̄ − ā2

ā2 + b̄c̄
=

z̄ − 1
a2

1
a2

+ 1
bc

=
a2bc

(
z̄ − 1

a2

)
a2 + bc

.

Here we have used the fact that if |u| = 1, then ū = 1
u
. Tidying up yields

z = a2 − bc+ a2bcz̄. (1)

Next, ZO is the perpendicular bisector of AC. So z
a2−c2

is a pure imaginary number.
Hence

z

a2 − c2
= −

(
z

a2 − c2

)
=

z̄

c̄2 − ā2
=

z̄
1
c2
− 1

a2

=
a2c2z̄

a2 − c2
.

Therefore
z̄ =

z

a2c2
. (2)

Substituting (2) into (1) and solving for z yields

z =
c(a2 − bc)

c− b
.

To prove that MAZD is cyclic, it suffices to show that arg
(
m−d
z−d

)
= arg

(
m−a
z−a

)
. This

is equivalent to showing that E = (m−d)(z−a)
(z−d)(m−a)

is real. First we simplify matters by
writing everything in terms of a, b, and c. We compute

E =

(
a2+b2

2
− bc

)(
c(a2−bc)

c−b
− a2

)
(

c(a2−bc)
c−b

− bc
)(

a2+b2

2
− a2

) =
(a2 + b2 − 2bc)(a2b− bc2)

(a2c+ b2c− 2bc2)(b2 − a2)
=

b(a2 − c2)

c(b2 − a2)

Finally, we show E is real by showing E = E. We have

E =

(
b(a2 − c2)

c(b2 − a2)

)
=

b̄(ā2 − c̄2)

c̄(b̄2 − ā2)
=

1
b

(
1
a2

− 1
c2

)
1
c

(
1
b2
− 1

a2

) =
b(a2 − c2)

c(b2 − a2)
= E,

as required. �
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Solution 4 (Linus Cooper, year 11, James Ruse Agricultural High School, NSW)

This is a computational solution via coordinate geometry.

Toss the problem onto the Cartesian plane so that circle ABCD is centred at the
origin O = (0, 0) and has radius 1. Rotate the figure so that AD is horizontal.

O

A D

B

C

Z

M

We have
A = (−a, b) and D = (a, b)

for some a, b ∈ R with a2 + b2 = 1.

Let m be the gradient of line AB. Therefore B = (−a + c, b + cm) for some c �= 0.
Since B is on the unit circle we have (−a+ c)2+(b+ cm)2 = 1. Expanding this out,
remembering that a2 + b2 = 1 and c �= 0, we deduce c = 2a−2bm

m2+1
. Hence

B =

(
−a+

2a− 2bm

m2 + 1
, b+

m(2a− 2bm)

m2 + 1

)
.

Since AD bisects ∠BAC, the gradient of AC is −m. Hence we find C as per B
using −m instead of m.

C =

(
−a+

2a+ 2bm

m2 + 1
, b− m(2a+ 2bm)

m2 + 1

)

Let M be the midpoint of AB. Thus

M =

(
−a+

a− bm

m2 + 1
, b+

m(a− bm)

m2 + 1

)
.

The line AZ is vertical because the internal and external bisectors of an angle are
perpendicular. Since AZ contains A = (−a, b), the equation of AZ is x = −a.

The perpendicular bisector of AC passes through the centre O of the unit circle.
The gradient of the line AC is −m. Since OZ ⊥ AC, the gradient of line OZ is 1

m
.

Hence the equation of OZ is y = 1
m
x
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It is straightforward to compute that the intersection of lines AZ and OZ is

Z =
(
−a,− a

m

)
.

The gradient of ZM is given by

b+ m(a−bm)
m2+1

+ a
m

−a+ a−bm
2m2+1

+ a
=

bm+ a(m2 + 1)

m(a− bm)
.

The gradient of MD is given by

b+ m(a−bm)
m2+1

− b

−a+ a−bm
m2+1

− a
= − m(a− bm)

bm+ a(2m2 + 1)
.

The product of the gradients of ZM and MD is equal to −1. Thus ZM ⊥ MD.
Hence ∠ZMD = 90◦ = ∠ZAD. It follows that MAZD is cyclic. �
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3. Solution 1 (Isabel Longbottom, year 12, Rossmoyne Senior High School, WA)

Let A and B denote the set of sequences counted by A(n) and B(n), respectively.
We show A(n) = B(n) by showing there is a bijection between A and B.

Step 1 Produce a map from B to A.

Let b1 ≥ b2 ≥ · · · ≥ bm be a sequence in B. For convenience, let bm+1 = 0. Since
bi ≥ 2bi+1 we can define non-negative integers xm, xm−1, . . . , x1 by

xi = bi − 2bi+1 for i = m,m− 1, . . . , 1. (1)

Note that xm = bm > 0.

Consider the sequence a1 ≥ a2 ≥ · · · ≥ ak consisting of xm copies of 2m−1, followed
by xm−1 copies of 2m−1 − 1, and so on, down to x1 copies of 1. We calculate

k∑
i=1

ak =
m∑
i=1

xi(2
i − 1) (2)

=
m∑
i=1

bi(2
i − 1)−

m∑
i=1

2bi+1(2
i − 1) (3)

= b1 +
m∑
i=2

bi(2
i − 1)−

m+1∑
i=2

bi(2
i − 2) (4)

=
m∑
i=1

bi (since bm+1 = 0)

= n.

Hence a1 ≥ a2 ≥ · · · ≥ ak is a sequence in A.

Step 2 Produce a map from A to B.

Let a1 ≥ a2 ≥ · · · ≥ ak be a sequence in A. For each positive integer i let xi denote
the number of terms of that sequence that are equal to 2i − 1. So we have

m∑
i=1

xi(2
i − 1) = n,

where xm is the last nonzero term of the sequence x1, x2, . . ..

For convenience, let bm+1 = 0. Define bm, bm−1, . . . , b1 recursively using (1). Observe
that bi ≥ 2bi+1 for i = 1, 2, . . . ,m− 1. Calculating similarly to step 1, we have

m∑
i=1

bi = RHS(4) = RHS(3) = RHS(2) = n.

Hence b1, b2, . . . , bm is a sequence in B.

Step 3 Note that steps 1 and 2 both use the invertible system of equations (1),
but in opposite directions. Hence the mappings from steps 1 and 2 are inverses of
each other, and are therefore bijections. Hence A(n) = B(n). �
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Solution 2 (Matthew Cheah, year 12, Penleigh and Essendon Grammar School,
VIC)

Let A and B denote the set of sequences counted by A(n) and B(n), respectively.
We show A(n) = B(n) by showing there is a bijection between A and B.

Step 1 Produce a mapping from A to B.

Let a1 ≥ a2 ≥ · · · ≥ ak be a sequence in A. For each positive integer i let xi denote
the number of terms of that sequence that are equal to 2i − 1. So we have

m∑
i=1

xi(2
i − 1) = n,

where xm is the last nonzero term of the sequence x1, x2, . . ..

From the sequence x1, x2, . . . , xm, construct the sequence b1, b2, . . . , bm as follows.
For convenience, let bm+1 = 0 and define bm, bm−1, . . . , b1 recursively by

bi = xi + 2bi+1 for i = m,m− 1, . . . , 1. (1)

Observe that bi ≥ 2bi+1 for i = 1, 2, . . . ,m − 1. Using the above recurrence and
remembering that bm+1 = 0, we calculate

m∑
i=1

bi =
m∑
i=1

xi + 2
m∑
i=2

bi

=
m∑
i=1

xi + 2
m∑
i=2

xi + 4
m∑
i=3

bi

=
m∑
i=1

xi + 2
m∑
i=2

xi + 4
m∑
i=3

xi + 8
m∑
i=4

bi

...

=
m∑
i=1

xi + 2
m∑
i=2

xi + 4
m∑
i=3

xi + · · ·+ 2m−1

m∑
i=m

xi

=
m∑
i=1

xi(1 + 2 + 22 + · · ·+ 2i−1)

=
m∑
i=1

xi(2
i − 1) (2)

= n.

Thus we have shown that b1 ≥ b2 ≥ · · · ≥ bm is a sequence in B.

Step 2 Produce a mapping from B to A.

Let b1 ≥ b2 ≥ · · · ≥ bm be a sequence in B. For convenience, let bm+1 = 0. Since
bi ≥ 2bi+1 we define non-negative integers x1, x2, . . . , xm using (1).

Note that xm = bm > 0. We run a calculation very similar to one the above except
that we start with n =

∑m
i=1 bi and end at (2). From (2) we produce a sequence in

A by listing out xm terms all equal to 2m−1, then xm−1 terms all equal to 2m−1−1,
and so on, down to x1 terms all equal to 1.

Step 3 Observe that the mappings from steps 1 and 2 are inverses of each other,
and are therefore bijections. Hence A(n) = B(n). �
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Solution 3 (William Hu, year 11, Christ Church Grammar School, WA)

Let A and B denote the set of sequences counted by A(n) and B(n), respectively.
We show A(n) = B(n) by showing there is a bijection between A and B. We do
this indirectly by constructing a set of matrices M and showing there is a bijection
between A and M , and a bijection between B and M . But first we give an example
to illustrate how we will do this.

Given a sequence in A, we construct a corresponding sequence in B as follows.
Write each number of the sequence in A as a sum of consecutive powers of 2 and
then stack them in rows to form a rectangular matrix. Summing the columns of the
matrix yields a sequence in B. For example, from the sequence 31, 31, 15, 3, 3, 3, 1 in
A, we derive the corresponding sequence 47, 23, 10, 5, 2 in B as shown.







31 16 8 4 2 1
31 16 8 4 2 1
15 8 4 2 1 0
3 2 1 0 0 0
3 2 1 0 0 0
3 2 1 0 0 0
1 1 0 0 0 0

47 23 10 5 2

Note that as shown in the above example, except for the rows corresponding to the
maximal members of the sequence, we have filled out each row using 0s once all the
powers of 2 have been used.

Step 1 Describe the set M .

We call a matrix X useful if it satisfies the following conditions.

(i) The entries in the top row from left to right are 2x, 2x−1, 2x−2, . . . , 1 for some
non-negative integer x.

(ii) The entries in each row from left to right are 2y, 2y−1, . . . , 1, 0, . . . , 0 for some
non-negative integer y ≤ x, and where there are x− y trailing 0s.

(iii) The row sums of X form a weakly decreasing sequence from top to bottom.

(iv) The sum of the entries of X is n.

For example, if n = 87 then the following matrices X1 and X2 are useful.

X1 =




16 8 4 2 1

16 8 4 2 1

8 4 2 1 0

2 1 0 0 0

2 1 0 0 0

2 1 0 0 0

1 0 0 0 0




and X2 =




32 16 8 4 2 1

8 4 2 1 0 0

4 2 1 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0




Step 2 Produce a bijection from A to M .

Let a1 ≥ a2 ≥ · · · ≥ ak be a sequence in A. Thus ai = 2xi − 1 for some positive
integers x1 ≥ x2 ≥ · · · ≥ xk. Let X be the matrix with k rows and xi columns such
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that the entries in the ith row from left to right are 2xi−1−1, 2xi−2−1, . . . , 1, 0, . . . , 0
where there are x1 − xi trailing 0s.

For example, if n = 87 and (a1, a2, a3, a4, a5, a6, a7) = (31, 31, 15, 3, 3, 3, 1) then we
produce the matrix X1 shown above.

Observe that by construction, any such produced matrix X is useful. Conversely,
any useful matrix X can be turned into a sequence in A by letting ai be the sum
of the entries in the ith row of X. Furthermore, these two operations are mutually
inverse. Hence each of these operations are bijections.

Step 3 Produce a bijection from B to M .

Let b1 ≥ b2 ≥ · · · ≥ bm be a sequence in B. Form a matrix X with m columns and
b1 − b2 − b3 − · · · − bm rows as follows.

While bm > 0, repeat the following loop.

• The next row of X from left to right is 2m−1, 2m−2, . . . , 1.

• Replace each bi that is positive by bi − 2m−i.

It is easy to check that the new sequence has the property that the ith term is at
least double the (i+ 1)st term.

Once bm = 0, we move on to bm−1 and do a similar thing.

While bm−1 > 0, repeat the following loop.

• The next row of X from left to right is 2m−2, 2m−3, . . . , 1.

• Replace each bi that is positive by bi − 2m−1−i.

We similarly keep progressing through all the bi until b1 = 0.

For example, starting with (b1, b2, b3, b4, b5) = (47, 23, 10, 5, 2) we compute as follows.

47 23 10 5 2
( )→ 16 8 4 2 1
31 15 6 3 1
( )→ 16 8 4 2 1
15 7 2 1 0
( )→ 8 4 2 1 0
7 3 0 0 0

( )→ 2 1 0 0 0
5 2 0 0 0

( )→ 2 1 0 0 0
3 1 0 0 0

( )→ 2 1 0 0 0
1 0 0 0 0

( )→ 1 0 0 0 0
0 0 0 0 0

−→




16 8 4 2 1

16 8 4 2 1

8 4 2 1 0

2 1 0 0 0

2 1 0 0 0

2 1 0 0 0

1 0 0 0 0




By construction, any such produced matrix X is useful and has the property that
the sum of the entries in the jth column is bj for j = 1, 2, . . . ,m. Hence we have
produced a map from B to M .

Conversely, we produce a map from M to B as follows. Given any useful matrix
X, let bj be the sum of the elements in the jth column of X. Note that bj ≥ 2bj+1
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because each entry of X is at least double that of its neighbour to the right. Thus
the bj form a sequence in B.

It is obvious that the composition of the mappings from B to M to B is the identity
map on B. To show that the individual mappings from B to M and from M to
B are bijections, it is enough to show that the mapping from M to B is injective.
But this is obvious because bm determines the rightmost column of X. After this
bm−1 determines the (m− 1)st column of X, and so on, until b1 determines the first
column of X.

Step 4 Since there are bijections between M and each of A and B, we conclude
that |A| = |B| = |M |, as required. �

Comment The resulting mappings between A and B in all the solutions presented
are actually the same mappings. It is just that the exposition of solution is different
in each case.
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4. Solution (Matthew Cheah, year 12, Penleigh and Essendon Grammar School,
VIC)

Let (a, b, c) =

(
d

g
,
e

h
,
f

i

)
, where gcd(d, g) = gcd(e, h) = gcd(f, i) = 1.

We have

ax + by + cz =
dxhyiz + gxeyiz + gxhyf z

gxhyiz
. (1)

Since LHS(1) is an integer, we have gx | gxhyiz | dxhyiz + gxeyiz + gxhyf z. Hence
gx | dxhyiz. Since gcd(d, g) = 1, it follows that

gx | hyiz. (2)

Similarly, we find

gxhyiz
. (1)

Since LHS(1) is an integer, we have gx | gxhyiz | dxhyiz + gxeyiz + gxhyf z. Hence
gx | dxhyiz. Since gcd(d, g) = 1, it follows that

gx | hyiz. (2)

Similarly, we find

hy | gxiz (3)

We are given abc = 1, and so
def = ghi. (4)

Suppose p is a prime factor of f . From (4) and gcd(f, i) = 1, we deduce that p | gh.
Without loss of generality p | g. From (2) and gcd(f, i) = 1, we have p | h.

For a positive integer n and a prime number p, the notation νp(n) denotes the
exponent of p in the prime factorisation of n. Put another way, if k = νp(n), this
means that pk ‖ n. That is, pk | n but pk+1 � n.

We have p | f, g, h and p � d, e, i from gcd(d, g) = gcd(e, h) = gcd(f, i) = 1. Hence
from (4), we have

νp(f) = νp(g) + νp(h). (5)

Recall that p � i. So from (2), we have νp(g
x) ≤ νp(h

y). And from (3), we have
νp(h

y) ≤ νp(g
x). Thus νp(g

x) = νp(h
y). Therefore

xνp(g) = yνp(h). (6)

Combining (5) and (6), we find

yνp(f) = (x+ y)νp(g).

This may be rearranged as

νp(f)

(3)

We are given abc = 1, and so
def = ghi. (4)

Suppose p is a prime factor of f . From (4) and gcd(f, i) = 1, we deduce that p | gh.
Without loss of generality p | g. From (2) and gcd(f, i) = 1, we have p | h.

For a positive integer n and a prime number p, the notation νp(n) denotes the
exponent of p in the prime factorisation of n. Put another way, if k = νp(n), this
means that pk ‖ n. That is, pk | n but pk+1 � n.

We have p | f, g, h and p � d, e, i from gcd(d, g) = gcd(e, h) = gcd(f, i) = 1. Hence
from (4), we have

νp(f) = νp(g) + νp(h). (5)

Recall that p � i. So from (2), we have νp(g
x) ≤ νp(h

y). And from (3), we have
νp(h

y) ≤ νp(g
x). Thus νp(g

x) = νp(h
y). Therefore

xνp(g) = yνp(h). (6)

Combining (5) and (6), we find

yνp(f) = (x+ y)νp(g).

This may be rearranged as

νp(f)

νp(g)
=

(x+ y)/ gcd(x+ y, y)

y/gcd(x+ y, y)
. (7)

The fraction in RHS(7) is in lowest terms. So νp(f) is divisible by k = x+y
gcd(x+y,y)

> 1.

But this is true for all primes p dividing f . Hence f = mk for some integer m, and
so c = f

i
= mk

i
. Thus c is powerful.

Similar reasoning shows that a and b are also powerful. �
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5. Answer: The maximum is n2 + n+ 1.

There are two parts to the solution of this problem.

(a) Exhibit n2 + n+ 1 n-tuples such that each pair is exquisite.

(b) Show that any collection containing more than n2 + n+ 1 n-tuples has a pair
that is not exquisite.

Solution to part (a) (Marcus Rees, year 10, Taroona High School, TAS) 

Consider the following five types of n-tuples as shown in the table

Type Tuples Number of

A (0, 0, . . . , 0) 1

B (0, 0, . . . , 0, 1, 0, . . . , 0) n

C (0, 0, . . . , 0,−1, 0, . . . , 0) n

D (0, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . 0)
(
n
2

)

E (0, 0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . 0)
(
n
2

)

Type A consists of the n-tuple all of whose entries are 0.

Type B consists of all n-tuples with n− 1 0s and a 1.

Type C consists of all n-tuples with n− 1 0s and a −1.

Type D consists of all n-tuples with n− 2 0s and two 1s.

Type E consists of all n-tuples with n− 2 0s and a 1 and a −1 such that the −1 is
to the left of the 1.

It is easy to see that if any of the above n2+n+1 n-tuples is paired with an n-tuple
from A, B, or C, the result is an exquisite pair. Also any two members from D form
an exquisite pair, as do any two members from E. Finally we observe that if we
select one member from each of D and E we always form an exquisite pair. �

Solution to part (b) (Problem Selection Committee)

Let us recast the problem in the language of vectors. An n-tuple is simply an
n-dimensional vector with integer coordinates. Two such vectors a and b form an
exquisite pair if and only if their inner product satisfies |a · b| ≤ 1.

Let us call a set A of vectors exquisite if every pair of vectors in A is exquisite.
We shall show that if A is an exquisite set of n-dimensional integer vectors, then
|A| ≤ n2 + n+ 1.

Claim If Ai is any exquisite set of n-dimensional integer vectors such that the last
non-zero coordinate of each vector is in the ith position, then |Ai| ≤ 2i.

Note that the result follows immediately from the claim as follows. For each positive
integer i, with 1 ≤ i ≤ n, we let Ai denote the set of vectors in A whose last non-zero
coordinate is in the ith position. Since the Ai partition the non-zero vectors of A,
the claim tells us that the number of non-zero vectors in A is at most

n∑
i=1

|Ai| ≤
n∑

i=1

2i = n2 + n.
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Hence it suffices to prove the claim. To help us, we first prove the following lemma.

Lemma Let i be any positive integer. For any set of 2i + 1 different non-zero
i-dimensional vectors, there exist two of them, a and b say, such that a ·b > 0. Here
the vectors are only required to have real, not necessarily integer, coordinates.

Proof We proceed by induction. The base case i = 1 is trivial because for any
three different non-zero real numbers, two of them have the same sign.

Assume the lemma is true for i − 1 and consider any set of 2i + 1 i-dimensional
vectors. Since the inner product is invariant under rotation, we may rotate our
2i+ 1 vectors in i-dimensional space so that one of them lies on the ith coordinate
axis, and so has the form (0, 0, . . . , 0, r). Next scale all of the vectors by a factor of
−1

r
. This reduces us to the case where one of the vectors is a = (0, 0, . . . , 0,−1).

If one of the remaining vectors b has negative ith coordinate, then a · b > 0, as
desired. So we may assume that each of the remaining vectors has a non-negative
last coordinate.

For each of our 2i+1 i-dimensional vectors x, let x′ be the (i−1)-dimensional vector
obtained from x by truncating its last coordinate. Let S be the multiset consisting
of these 2i+ 1 truncated vectors.

Note that a′ consists entirely of zeros. If a′ = b′ = c′ for different a, b, c, then two
of a, b, c would have entries of the same sign in their ith coordinates and therefore
have positive inner product. Hence we may assume that at most two members of S
are the zero vector. Let T be the multiset of non-zero vectors of S. Thus |T | ≥ 2i−1.

If two members, b′ and c′ say, of T were equal, then since b and c both have non-
negative last coordinate their inner product would be positive. Hence T must consist
of at least 2i− 1 distinct non-zero vectors. Applying the inductive assumption to T
yields b′ · c′ > 0 for some two different members of T . And since b and c both have
non-negative last coordinate, it follows that b · c > 0, as desired. �

To complete the proof of the given problem, we prove the claim as follows. First
observe that the claim is trivial for i = 1, so we restrict ourselves to i ≥ 2.

If Ai contains three or more vectors, a, b, c say, whose only nonzero coordinate is in
the ith position, then one of them, a say, has a number in the ith coordinate that is
an integer whose absolute value is at least 2. It then follows that |a · b| ≥ 2, which
is a contradiction. Hence there are at most two such vectors in Ai. Let us remove
them from Ai to form the exquisite set Bi. It suffices to show that |Bi| ≤ 2i− 2.

For each vector a in Bi with a negative ith coordinate, let us replace a with −a.
Since |(−x) · y| = |x · y|, for any vectors x and y, this does not change whether
or not each pair in Bi is exquisite. Hence we may assume without loss of generality
that the ith coordinate of each vector in Bi is positive.

Case 1 There are two vectors a and b in Bi that agree in their first i−1 coordinates.

Let a = (r1, r2, . . . , ri−1, a) and b = (r1, r2, . . . , ri−1, b). Then

a · b = r21 + r22 + · · ·+ r2i−1 + ab.

Since r21 + r22 + · · ·+ r2i−1 ≥ 1 and ab ≥ 1, the result follows.

Case 2 No two vectors a and b in Bi agree in their first i− 1 coordinates.

For each vector x ∈ Bi, let x′ be the (i − 1)-dimensional vector obtained from x
by truncating its last coordinate. Let Ci−1 be the set of such truncated vectors.
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Therefore Ci−1 is a set of (i−1)-dimensional integer vectors satisfying |Ci−1| = |Bi|.
(Note that Ci−1 is not necessarily exquisite.) It suffices to show that |Ci−1| ≤ 2i−2.

Suppose, for the sake of contradiction, that |Ci−1| ≥ 2i − 1. From lemma 1 with i
replaced by i− 1, there exist two vectors a′ and b′ in Ci such that a′ · b′ > 0.

Let a′ = (a1, a2, . . . , ai−1) and b′ = (b1, b2, . . . , bi−1). Reversing the truncation yields
vectors a = (a1, a2, . . . , ai−1, ai) and b = (b1, b2, . . . , bi−1, bi) in Bi. Hence

a · b = a1b1 + a2b2 + · · ·+ ai−1bi−1 + aibi = a′ · b′ + aibi.

However we know that aibi > 0 and a′ · b′ > 0. Since all coordinates of the vectors
are integers it follows that aibi ≥ 1 and a′ ·b′ ≥ 1. Hence a ·b ≥ 2, which contradicts
that a and b form an exquisite pair. Hence |Ci−1| ≤ 2i− 2, as desired. �
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Country scores

Rank Country
Number of 

Contestants
Score Gold Silver Bronze Hon.Men

1 USA 10 295 1 2 4 3

2 Republic of Korea 10 294 1 2 4 3

3 Thailand 10 270 1 2 4 3

4 Japan 10 264 1 2 4 3

5 Russia 10 263 1 2 4 3

6 Islamic Republic 
of Iran 10 253 1 2 4 3

7 Taiwan 10 241 1 2 4 3

8 Canada 10 230 1 2 4 3

9 Singapore 10 208 1 2 4 3

10 Brazil 10 207 1 2 4 3

11 Philippines 10 190 1 2 4 3

12 Hong Kong 10 176 1 2 4 3

13 Indonesia 10 173 1 2 4 3

14 Australia 10 170 1 2 4 3

15 Peru 10 158 1 2 4 3

16 India 10 157 0 3 4 3

17 Mexico 10 149 1 2 4 3

18 Argentina 10 132 0 3 3 2

19 Saudi Arabia 10 116 1 0 3 4

20 Bangladesh 10 109 0 1 2 7

21 New Zealand 10 93 0 0 2 8

22 Tajikistan 10 92 0 1 0 9

23 Kazakhstan 10 81 0 0 1 9

24 Turkmenistan 10 67 0 0 1 6

25 Nicaragua 8 65 0 1 1 4

26 Macedonia 8 63 0 0 1 6

27 Kyrgyzstan 7 58 0 0 2 3

28 Malaysia 10 57 0 1 2 0

29 Syria 9 55 0 0 1 5

30 El Salvador 9 48 0 0 2 2

ASIAN PACIFIC MATHEMATICS OLYMPIAD RESULTS
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Rank Country
Number of 

Contestants
Score Gold Silver Bronze Hon.Men

31 Cambodia 10 44 0 0 0 4

32 Sri Lanka 9 43 0 0 1 3

33 Pakistan 10 28 0 0 0 2

34 Ecuador 10 24 0 0 1 0

35 Colombia 5 23 0 0 1 0

36 Bolivia 7 19 0 0 0 1

37 Trinidad and 
Tobago 9 17 0 0 0 1

38 Costa Rica 1 8 0 0 0 1

39 Panama 1 8 0 0 0 1

Total 353 4948 17 42 92 129



137     Mathematics Contests The Australian Scene 2017

AMOC SELECTION SCHOOL
The 2017 AMOC Selection School was held on 16–25 April at Robert Menzies College, Macquarie University, Sydney. The 
main qualifying exams are the AMO and the APMO.

A total of 30 students from around Australia attended the school.

The routine is similar to that for the AMOC School of Excellence; however, there is the added interest of the actual 
selection of the Australian IMO team. This year the IMO would be held in Rio de Janeiro, Brazil.

The students are divided into a junior group and a senior group. This year there were 16 juniors and 14 seniors. It is from 
the seniors that the team of six for the IMO plus one reserve team member is selected. This year we wanted to explore 
the possibility of sending a team to the European Girls’ Mathematical Olympiad the following year, so five of the junior 
places were reserved for girls. I am pleased to report that all Australian states, plus the ACT were represented among 
the students.

Many thanks to Adrian Agisilaou, Ross Atkins, Michelle Chen, Alexander Chua, and Andrew Elvey Price, who assisted me 
as live-in staff members.

My thanks also go to Peter Brown, Stephen Farrar, Victor Khou, Vickie Lee, Johnny Lim, Seyoon Ragavan, Andy Tran, 
Gareth White, Rachel Wong, Sampson Wong, Kevin Xian, and Jonathan Zheng, all of whom came in to give lectures or 
help with the marking of exams.

Angelo Di Pasquale
Director of Training, AMOC

 2017 Australian IMO Team

Name School Year

James Bang Baulkham Hills High School NSW 10

Matthew Cheah Penleigh and Essendon Grammar School VIC 12

Linus Cooper James Ruse Agricultural High School NSW 11

William Hu Christ Church Grammar School WA 11

Hadyn Tang Trinity Grammar School VIC 8

Guowen Zhang St Joseph's College (Gregory Terrace) QLD 11

Reserve

Haowen Gao Knox Grammar School NSW 11

The 2017 Australian IMO team was completely new. No team member had been to an IMO before. The last time this  
occurred was in 2007.



138     Mathematics Contests The Australian Scene 2017

From left: James Bang, Matthew Cheah, Linus Cooper, Minister for Industry, Innovation and 
Science, Senator the Hon Arthur Sinodinos AO, William Hu, Haydn Tang and Guowen Zhang.
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IMO TEAM PREPARATION SCHOOL

For the week preceding the IMO, our team met with our British counterparts for a final dose of training and 
acclimatisation to the IMO conditions. This year we stayed at a lovely hotel in Itaipava, about 70 km north 
of central Rio. I was accompanied by Nathan Ford for the entire camp, and Angelo Di Pasquale for the first 
few days, after which he left to do his leader duties at the IMO. The British delegation at the camp consisted 
of the six team members, their deputy leader, Dominic, and observer, Jill. The British brought an extremely 
experienced team, who already collectively owned nine IMO medals which was quite a contrast to our 
entirely new team.

As it happened, I had been visiting the UK just before the IMO, so I travelled from London with the British 
team, who were all at the airport well before the flight. I hear that this was not the case for our own team. It 
came down to the wire for one or two of the Australians, but fortunately everyone managed to board their 
flights, and we all arrived in Brazil without any more drama.

After we arrived everyone had a full free day to adjust to the time zone and mingle. Our students somewhat 
reluctantly went outside for a while, but otherwise played a variety of indoor games.

The next five days all started the same way, with an IMO style exam for all 12 students. There was a very loud 
rooster next door, which was excellent for training everyone to ignore such distractions, as you never know 
what to expect at the IMO. We considered introducing a variety of other distractions for the students but 
in the end decided that the rooster was distraction enough. After the exam each morning, the teams were 
given free time for the rest of the day while Angelo, Dominic and I marked their exams. During the free time 
they mostly played games or visited some local attractions.

As tradition dictates, the fifth and final exam was designated the mathematical ashes, in which our teams 
compete for glory and an urn containing burnt remains of some British scripts from 2008. The UK had an 
extremely strong team this year, and sadly it showed as they defeated us 83–63, thereby extending their hold 
on the ashes to 9 consecutive years. I have a good feeling about next year though...

Once again, this camp was a great way to wind up both teams’ training before the IMO. The co-training 
experience was hugely beneficial for all involved, as the students learnt a lot from each other, and as trainers 
we learnt a bit too. This tradition will hopefully continue well into the future. Many thanks to everyone who 
made this a success, in particular, the UKMT, the entire UK delegation and our local guides in Itaipava.

Andrew Elvey Price
IMO Deputy Leader
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THE MATHEMATICS ASHES
The 2017 Mathematical Ashes: AUS v UK

Exam

1. Point A1 lies inside acute scalene triangle ABC and satisfies

∠A1AB = ∠A1BC and ∠A1AC = ∠A1CB.

Points B1 and C1 are similarly defined. Let G and H be the centroid and orthocentre,
respectively, of triangle ABC.

Prove that A1, B1, C1, G, and H all lie on a common circle.

2. (a) Prove that for every positive integer n, there exists a fraction a
b

where a and b

are integers satisfying 0 < b <
√
n+ 1 and

√
n ≤ a

b
≤

√
n+ 1.

(b) Prove there are infinitely many positive integers n such that there is no fraction
a
b

where a and b are integers satisfying 0 < b <
√
n and

√
n ≤ a

b
≤

√
n+ 1.

3. Let n be a given positive integer. Determine the smallest positive integer k with the
following property:

It is possible to mark k cells on a 2n×2n square array so that there exists
a unique partition of the board into 1 × 2 and 2 × 1 dominoes, none of
which contains two marked cells.

Results

Q1 Q2 Q3 Σ

AUS 1 7 7 0 14

AUS 2 7 3 0 10

AUS 3 0 7 0 7

AUS 4 2 3 2 7

AUS 5 2 5 2 9

AUS 6 7 7 2 16

Total 25 32 6 63

Q1 Q2 Q3 Σ

UNK 1 7 6 2 15

UNK 2 7 7 0 14

UNK 3 7 7 0 14

UNK 4 7 7 2 16

UNK 5 6 2 0 8

UNK 6 7 7 2 16

Total 41 36 6 83

7
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THE MATHEMATICS ASHES RESULTS

The 10th Mathematics Ashes competition at the joint pre-IMO training camp in Rio de Janeiro was won by the UK. The 
results for the two teams were as follows, with Australia scoring a total of 63 and the UK scoring a total of 83:

Australia

United Kingdom

Q1 Q2 Q3

AUS 1 7 7 0 14

AUS 2 7 3 0 10

AUS 3 0 7 0 7

AUS 4 2 3 2 7

AUS 5 2 5 2 9

AUS 6 7 7 2 16

Total 25 32 6 63

Q1 Q2 Q3

UNK 1 7 6 2 15

UNK 2 7 7 0 14

UNK 3 7 7 0 14

UNK 4 7 7 2 16

UNK 5 6 2 0 8

UNK 6 7 7 2 16

Total 41 36 6 83
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IMO TEAM LEADER’S REPORT

The 58th International Mathematical Olympiad (IMO) was held on 12–23 July 2017 in Rio de Janeiro, Brazil. This 
was the largest IMO in history with a record number of 615 high school students from 111 countries participating. 
Of these, 62 were girls.

Each participating country may send a team of up to six students, a Team Leader and a Deputy Team Leader. At 
the IMO the Team Leaders, as an international collective, form what is called the Jury. This Jury was ably chaired by 
Nicolau Saldanha.

The first major task facing the Jury is to set the two competition papers. During this period the Leaders and their 
observers are trusted to keep all information about the contest problems completely confidential. The local 
Problem Selection Committee had already shortlisted 32 problems from 150 problem proposals submitted by 51 
of the participating countries from around the world. During the Jury meetings three of the shortlisted problems 
had to be discarded from consideration due to being too similar to material already in the public domain. 
Eventually, the Jury finalised the exam questions and then made translations into the 57 languages required by 
the contestants.

The six questions that ultimately appeared on the IMO contest are described as follows.

 1. An easy number theoretic sequence problem proposed by South Africa.

 2. A medium to difficult functional equation proposed by Albania.

 3. A difficult game theory problem with incomplete information proposed by Austria.

 4. A relatively easy classical geometry problem proposed by Luxembourg.

 5. A medium to difficult combinatorics problem reminiscent of the Erd}os-Szekeres 
theorem. It was proposed by Russia.

 6. A difficult problem, somewhat reminiscent of Lagrange interpolation, combining number theory and 
polynomials. It was proposed by the United States of America.

These six questions were posed in two exam papers held on Tuesday 18 July and Wednesday 19 July. Each paper 
had three problems. The contestants worked individually. They were allowed four and a half hours per paper to 
write their attempted proofs. Each problem was scored out of a maximum of seven points.

For many years now there has been an opening ceremony prior to the first day of competition. Following the 
formal speeches there was the parade of the teams and the 2017 IMO was declared open.

After the exams the Leaders and their Deputies spent about two days assessing the work of the students from 
their own countries, guided by marking schemes, which had been agreed to earlier. A local team of markers called 
Coordinators also assessed the papers. They too were guided by the marking schemes but are allowed some 
flexibility if, for example, a Leader brought something to their attention in a contestant’s exam script that is not 
covered by the marking scheme. The Team Leader and Coordinators have to agree on scores for each student 
of the Leader’s country in order to finalise scores. Any disagreements that cannot be resolved in this way are 
ultimately referred to the Jury.

Problem 1 turned out to be the easiest problem in the IMO for many years1 with an average score of 5.94. In 
contrast, problem 3 ended up being the most difficult problem ever in the IMO’s 58 year history. It averaged only 
0.04. Just two students managed to score full marks on it, while 608 students were unable to score a single point.

The medal cuts were set at 25 for gold, 19 for silver and 16 for bronze. Consequently, there were 291 (=47.3%) 
medals awarded. The medal distributions2 were 44 (=7.8%) gold, 90 (=14.6%) silver and 153 (=24.9%) bronze. These 
awards were presented at the closing ceremony. Of those who did not get a medal, a further 222 contestants 
received an honourable mention for solving at least one question perfectly.

1 We have to go back to the IMO in 1981 to find problems with higher average scores.

2 The total number of medals must be approved by the Jury and should not normally exceed half the total number of contestants. The 
numbers of gold, silver, and bronze medals should be approximately in the ratio 1:2:3.
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No contestant was able to achieve a perfect score of 42. The top score was 35 which was obtained by the following 
three students.

Amirmojtaba Sabour, Iran
Yuta Takaya, Japan
Hũu Quốc Huy Hoàng, Vietnam

In an effort to encourage female participation at the IMO, five girls were each given a special award at the closing 
ceremony.

Congratulations to the Australian IMO team on their solid performance this year. They finished 34th in the 
rankings,3 bringing home three Silver and two Bronze medals. 

The three Silver medallists were Matthew Cheah, year 12, Penleigh and Essendon Grammar School, VIC, Linus 
Cooper, year 11, James Ruse Agricultural High School, NSW, and Guowen Zhang, year 11, St Joseph’s College, QLD.

The Bronze medallists were James Bang, year 10, Baulkham Hills High School, NSW, and William Hu, year 11, Christ 
Church Grammar School, WA.

Hadyn Tang, year 8, Trinity Grammar School, VIC received an Honourable Mention for his complete solution to 
problem 1.

The 2017 IMO was organised by Brazil’s National Institute of Pure and Applied Mathematics (IMPA), and the 
Brazilian Mathematical Society.

The 2018 IMO is scheduled to be held July 3–14 in Cluj-Napoca, Romania. Venues for future IMOs have been 
secured up to 2022 as follows.

2019 United Kingdom

2020 Russia

2021 United States

2022 Norway

Much of the statistical information found in this report can also be found at the official website of the IMO. 
www.imo-official.org

Angelo Di Pasquale 
IMO Team Leader, Australia

3 The ranking of countries is not officially part of the IMO general regulations. However, countries are ranked each year on the IMO’s official 
website according to the sum of the individual student scores from each country.
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INTERNATIONAL MATHEMATICAL OLYMPIAD

Tuesday, July 18, 2017

Problem 1. For each integer a0 > 1, define the sequence a0, a1, a2, . . . by:

an+1 =

{ √
an if

√
an is an integer,

an + 3 otherwise, for each n � 0.

Determine all values of a0 for which there is a number A such that an = A for infinitely many values
of n.

Problem 2. Let R be the set of real numbers. Determine all functions f : R → R such that, for
all real numbers x and y,

f (f(x)f(y)) + f(x+ y) = f(xy).

Problem 3. A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit’s
starting point, A0, and the hunter’s starting point, B0, are the same. After n−1 rounds of the game,
the rabbit is at point An−1 and the hunter is at point Bn−1. In the nth round of the game, three
things occur in order.

(i) The rabbit moves invisibly to a point An such that the distance between An−1 and An is
exactly 1.

(ii) A tracking device reports a point Pn to the hunter. The only guarantee provided by the tracking
device to the hunter is that the distance between Pn and An is at most 1.

(iii) The hunter moves visibly to a point Bn such that the distance between Bn−1 and Bn is
exactly 1.

Is it always possible, no matter how the rabbit moves, and no matter what points are reported
by the tracking device, for the hunter to choose her moves so that after 109 rounds she can ensure
that the distance between her and the rabbit is at most 100?

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 1 Tuesday, July 18, 2017

Problem 1. For each integer a0 > 1, define the sequence a0, a1, a2, . . . by:

an+1 =

{ √
an if

√
an is an integer,

an + 3 otherwise, for each n � 0.

Determine all values of a0 for which there is a number A such that an = A for infinitely many values
of n.

Problem 2. Let R be the set of real numbers. Determine all functions f : R → R such that, for
all real numbers x and y,

f (f(x)f(y)) + f(x+ y) = f(xy).

Problem 3. A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit’s
starting point, A0, and the hunter’s starting point, B0, are the same. After n−1 rounds of the game,
the rabbit is at point An−1 and the hunter is at point Bn−1. In the nth round of the game, three
things occur in order.

(i) The rabbit moves invisibly to a point An such that the distance between An−1 and An is
exactly 1.

(ii) A tracking device reports a point Pn to the hunter. The only guarantee provided by the tracking
device to the hunter is that the distance between Pn and An is at most 1.

(iii) The hunter moves visibly to a point Bn such that the distance between Bn−1 and Bn is
exactly 1.

Is it always possible, no matter how the rabbit moves, and no matter what points are reported
by the tracking device, for the hunter to choose her moves so that after 109 rounds she can ensure
that the distance between her and the rabbit is at most 100?

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 1



145     Mathematics Contests The Australian Scene 2017

Wednesday, July 19, 2017

Problem 4. Let R and S be different points on a circle Ω such that RS is not a diameter. Let �
be the tangent line to Ω at R. Point T is such that S is the midpoint of the line segment RT . Point
J is chosen on the shorter arc RS of Ω so that the circumcircle Γ of triangle JST intersects � at two
distinct points. Let A be the common point of Γ and � that is closer to R. Line AJ meets Ω again
at K. Prove that the line KT is tangent to Γ.

Problem 5. An integer N � 2 is given. A collection of N(N + 1) soccer players, no two of whom
are of the same height, stand in a row. Sir Alex wants to remove N(N − 1) players from this row
leaving a new row of 2N players in which the following N conditions hold:

(1) no one stands between the two tallest players,

(2) no one stands between the third and fourth tallest players,

...

(N) no one stands between the two shortest players.

Show that this is always possible.

Problem 6. An ordered pair (x, y) of integers is a primitive point if the greatest common divisor
of x and y is 1. Given a finite set S of primitive points, prove that there exist a positive integer n
and integers a0, a1, . . . , an such that, for each (x, y) in S, we have:

a0x
n + a1x

n−1y + a2x
n−2y2 + · · ·+ an−1xy

n−1 + any
n = 1.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 2
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starting point, A0, and the hunter’s starting point, B0, are the same. After n−1 rounds of the game,
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(i) The rabbit moves invisibly to a point An such that the distance between An−1 and An is
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(ii) A tracking device reports a point Pn to the hunter. The only guarantee provided by the tracking
device to the hunter is that the distance between Pn and An is at most 1.

(iii) The hunter moves visibly to a point Bn such that the distance between Bn−1 and Bn is
exactly 1.

Is it always possible, no matter how the rabbit moves, and no matter what points are reported
by the tracking device, for the hunter to choose her moves so that after 109 rounds she can ensure
that the distance between her and the rabbit is at most 100?

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 1
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INTERNATIONAL MATHEMATICAL OLYMPIAD  
SOLUTIONS

Solutions to the 2017 International Mathematical Olympiad

1. Solution 1 (Hadyn Tang, year 8, Trinity Grammar School, VIC. Hadyn achieved
an honourable mention with the 2017 Australian IMO team.)

Answer: All positive integers n that are multiples of 3.

Case 1 a0 ≡ 0 (mod 3)

Clearly all terms of the sequence are multiples of 3. Let ai be term of the sequence
having minimal value.

Suppose for the sake of contradiction that ai > 9. Let x ≥ 1 be the largest integer
such that 32

x
< ai. The sequence ai, ai+1, ai+2, . . . is formed by adding 3 each time

until a perfect square, aj say, is reached. Note that aj cannot exceed 32
x+1

because
32

x+1
is also a perfect square that is a multiple of 3. It follows that

aj+1 =
√
aj ≤

√
32x+1 = 32

x

< ai,

which contradicts the minimality of ai.

Hence ai ≤ 9. It follows that the sequence enters the cycle

3 → 6 → 9 → 3 → 6 → 9 → · · ·
which contains the number 3 infinitely many times.

Case 2 a0 ≡ 2 (mod 3)

Since no perfect square is congruent to 2 modulo 3, it follows inductively that
an+1 = an + 3 for all non-negative integers n. As the sequence is strictly increasing,
it cannot contain the same value infinitely many times.

Case 3 a0 ≡ 1 (mod 3)

Clearly no term of the sequence is a multiple of 3.

If ai ≡ 2 (mod 3) for some positive integer i, then by a similar argument as given
in case 2, the sequence contains the same value infinitely many times.

We are left to discuss the case an ≡ 1 (mod 3) for all non-negative integers n. Let ai
be a term of the sequence having minimal value.

Suppose for the sake of contradiction that ai > 16. Let x ≥ 1 be the largest integer
such that 22

x
< ai. The sequence ai, ai+1, ai+2, . . . is formed by adding 3 each time

until a perfect square, aj say, is reached. Note that aj cannot exceed 22
x+1

because
22

x+1
is also a perfect square that is congruent to 1 modulo 3. It follows that

aj+1 =
√
aj ≤

√
22x+1 = 22

x

< ai,

which contradicts the minimality of ai.

Hence ai ≤ 16. It is easy to see inductively that a0 > 1 implies an > 1 for all positive
integers n. And since

7 → 10 → 13 → 16 → 4 → 2,

we see that any such sequence eventually reaches the number 2 which is not con-
gruent to 1 modulo 3. This final contradiction concludes the proof. �

Comment The final contradiction in the above proof might lead one to think that
if a0 ≡ 1 (mod 3), then the resulting sequence always contains the number 2. But
this does not follow from the above logic. Rather, the final contradiction merely
shows is that it is impossible to have ai ≡ 1 (mod 3) for all non-negative integers i.
For example, if a0 = 19, then a1 = 22, a2 = 25, and a3 = 5 ≡ 2 (mod 3).
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Solution 2 (William Hu, year 11, Christ Church Grammar School, WA. William
was a Bronze medallist with the 2017 Australian IMO team.)

Case 1 a0 ≡ 0 (mod 3)

Clearly all terms of the sequence are multiples of 3. Let 9x2 be the smallest square
number that is a multiple of 3 and that is greater than a0.

We claim that an ≤ 9x2 for all positive integers n. If this is not true, let i ≥ 1 be
the smallest index such that ai > 9x2.

Since 3 | ai, this implies that ai ≥ 9x2 + 3. Furthermore, since i is the smallest
index with ai > 9x2, we cannot have ai−1 = a2i . Hence ai−1 = ai − 3 ≥ 9x2. Again
since i is the smallest index with ai > 9x2, it follows that ai−1 = 9x2. But then
ai =

√
ai−1 = 3x < 9x2, which contradicts ai ≥ 9x2 + 3.

From the above, it follows that the sequence is bounded above by 9x2. Since all
terms of the sequence are positive integers with an upper bound, by the infinite
pigeonhole principle at least one of the numbers 1, 2, 3, . . . , 9x2 occurs an infinite
number of times in the sequence, as desired.

For the remaining cases, note that if a0 �≡ 0 (mod 3), then ai �≡ 0 (mod 3) for all
non-negative integers i.

Case 2 ai ≡ 2 (mod 3) for some non-negative integer i.

Since no perfect square is congruent to 2 modulo 3, it follows inductively that
an+1 = an + 3 ≡ 2 (mod 3) for each integer n ≥ i. Hence the sequence is strictly
increasing from the ith term onward and so attains no value infinitely many times.

Case 3 ai ≡ 1 (mod 3) for all non-negative integers i.

Let m be the smallest value that the sequence attains. Thus ai = m for some i.
Since m ≡ 1 (mod 3) we also have (m− 2)2 ≡ 1 (mod 3).

The sequence ai, ai+1, ai+2, . . . is formed by adding 3 each time until a perfect square,
aj say, is reached.

If (m− 2)2 ≥ m then aj cannot exceed (m− 2)2 because (m− 2)2 is also a perfect
square that is congruent to 1 modulo 3. In this case we would have

aj+1 =
√
aj ≤ m− 2 < ai

which contradicts the minimality of m.

Thus (m− 2)2 < m, and so m < 4. Since m ≡ 1 (mod 3), we have m = 1. However
it is easy to see inductively that a0 > 1 implies an > 1 for all positive integers n. So
case 3 never occurs. �
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2. Solution (Based on the presentation of Guowen Zhang, year 11, St Joseph’s Col-
lege, QLD. Guowen was a Silver medallist with the 2017 Australian IMO team.)

Answers: f(x) = 0, f(x) = x − 1, and f(x) = 1 − x. It is straightforward to verify
that these satisfy the given functional equation.

For reference we are given

f(f(x)f(y)) + f(x+ y) = f(xy) for all x, y ∈ R. (1)

Putting x = y = 0 in (1) yields f(f(0)2) = 0. Hence 0 is in the range of f .

Case 1 There exists a real number a �= 1 such that f(a) = 0.

Putting x = a in (1) yields

f(0) + f(a+ y) = f(ay).

Since a �= 1, we may solve the equation a + y = ay for y. This allows us to deduce
f(0) = 0. Then putting x = 0 in (1) yields f(y) = 0 for all y ∈ R.

Case 2 We have f(1) = 0 and f(a) �= 0 for all a �= 1.

Since f(f(0)2) = 0, it follows that f(0)2 = 1. Note that f(x) solves (1) if and only
if −f(x) solves (1). So it suffices to consider only the case f(0) = 1.

Putting y = 0 into (1) yields

f(f(x)) + f(x) = 1 for all x ∈ R. (2)

Replacing x with f(x) in (2) yields

f(f(f(x))) + f(f(x)) = 1 for all x ∈ R. (3)

Subtracting (2) from (3) yields

f(f(f(x))) = f(x) for all x ∈ R. (4)

If f were injective then (4) would imply

f(f(x)) = x for all x ∈ R. (5)

Putting (5) into (2) would then yield f(x) = 1− x for all x ∈ R.

It only remains to prove that f is injective.

Recall that f(x) is a solution if and only if −f(x) is. So we may return to the earlier
situation where we had f(0)2 = 1 and only consider the case f(0) = −1.

Putting y = 1 in (1) yields f(x + 1) = f(x) + 1 for all x ∈ R. An easy induction
yields.

f(x+ n) = f(x) + n for all x ∈ R and for all n ∈ N+. (6)

Comment The remainder of this proof is by the Problem Selection Committee.

Recall that it only remains to prove that f is injective.

Suppose that f(a) = f(b) for some a, b ∈ R. From (6) we see that

f(a+ n+ 1) = f(b+ n) + 1 for all n ∈ N+. (7)
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Consider the following the system of equations.

x+ y = a+ n+ 1 (8a)

xy = b+ n (8b)

By Vieta’s formulas, x and y are the roots of

z2 − (a+ n+ 1)z + b+ n = 0.

This has real solutions if and only if

(a+ n+ 1)2 ≥ 4(b+ n),

which is true provided that n is sufficiently large.

So choose n sufficiently large so that there exist real x and y solving (8a) and (8b).
Putting these x and y into (1) yields

f(f(x)f(y)) + f(a+ n+ 1) = f(b+ n)

⇒ f(f(x)f(y)) + 1 = 0 (from (7))

⇒ f(f(x)f(y) + 1) = 0 (from (6))

⇒ f(x)f(y) + 1 = 1 (we are in case 2)

⇒ f(x)f(y) = 0.

By symmetry, we may assume without loss of generality that f(x) = 0. Since we
are in case 2, we have x = 1. Thus (8b) yields y = b+n, and then (8a) yields a = b.
It follows that f is injective, which concludes the proof. �
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3. This was by far the hardest problem of the 2017 IMO. In fact it was the hardest
problem ever set on an IMO. Its average score was just 0.04 out of 7.1 Only two2 of
the 615 contestants were able to solve3 this problem and only a further 5 contestants
managed to achieve a nonzero4 score on it.

Discussion Let us call the point being reported by the tracking device on each
move a ping.5 Part of the difficulty of the problem is that it is very tempting to
think that since the rabbit is invisible, the hunter’s best strategy is simply to follow
the ping on each move. However, this is simply not the case as the following concrete
example shows.

Without loss of generality we may assume that initially both the hunter and the
rabbit are at the origin of the Cartesian plane. Suppose that the first ping is at

(1, 1). In following the ping, the hunter arrives at
(√

2
2
,
√
2
2

)
on her first move.

Suppose that the second ping is at (3, 0). Then it is obvious that the only place
the rabbit could be after its second move is at (2, 0), and the hunter is capable of
deducing this. So the best strategy for the hunter on her second move is not to
follow the ping and move towards (3, 0), but instead to follow the rabbit by moving
towards (2, 0) because she knows exactly where it is!

1 2 3

−1

1

The astute reader might counter that the above scenario only arises because the
second ping makes it possible to determine the exact location of the rabbit. However
if the second ping were instead at (2.99, 0), then the hunter cannot determine the
exact location of the rabbit. Yet the hunter can still deduce that the rabbit is very
much closer to (2, 0) than to (2.99, 0). So even in this case where the exact location
of the rabbit is not known, the hunter can still sufficiently narrow down the location
of the rabbit to see that following the ping is still not necessarily the best strategy.

What is the fundamental flaw in assuming that following the ping is the best strategy
for the hunter? It is that we are basically assuming that the hunter is handicapped
with some sort of amnesia that prevented her from remembering any information
about previous pings. If the hunter did have such amnesia, then yes, following the
ping would be her best strategy. However, we are not entitled to assume this. Con-
sequently, any attempt at the problem that implicitly assumed the hunter had such
amnesia was awarded 0 points.

1The previous record low average was for problem 6 in the 2007 IMO which averaged 0.15 out of 7.
2Problem 3 in the 2007 IMO was also only solved by two contestants that year, however its average score
was 0.3 out of 7.

3The two contestants who solved this problem were Linus Cooper from Australia and Mikhail Ivanov
from Russia.

4So 608 of the 615 contestants scored 0 points for this problem. No other problem in the history of the
IMO has scored so many 0s.

5We are imagining that the tracking device is a sort of radar.
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Solution (Linus Cooper, year 11, James Ruse Agricultural High School, NSW.
Linus was a Silver medallist with the 2017 Australian IMO team.)

We shall prove that there is no strategy for the hunter that guarantees that the
distance between her and the rabbit is at most 100 after 109 rounds.

The key to the problem is to consider the scenario illustrated in the diagram below.
Recall that An and Bn denote the respective positions of the rabbit and the hunter
after n rounds. Let � denote the line BnAn, and let x be the distance between Bn

and An. Points Q1 and Q2 are at distance 1 from the line � and are at distance d
from the point An, where d > x is a positive integer to be chosen later.

AnBn

Q1

Q2

B
P

1

1
d

d

x

y

d− x

Imagine the rabbit at An flipping a coin. If it comes up heads, the rabbit proceeds
directly to Q1 in the next d rounds. If it comes up tails, then the rabbit proceeds
directly to Q2 in the next d rounds.6 Suppose further that for each round, the
tracking device reports the point that is at the foot of the perpendicular from the
rabbit’s location to the line �. Note that these reported points are consistent with
the rabbit’s path irrespective of whether it heads to Q1 or Q2.

Turning out attention to the hunter, one possibility is that she moves one unit to
the right along � per round. This would place her at point B which is at distance d
from Bn. In this case, after d rounds the distance between the hunter and the rabbit
would be y = BQ1 = BQ2. Note that if the hunter does anything else she will end
up strictly to the left of B. If she ends up on or above �, then the distance between
her and Q2 would be more than y. If she ends up below �, then the distance between
her and Q1 would be more than y. So no choice of the hunter can guarantee that
the distance between her and the rabbit is less than y after d rounds.

Let us compute a lower bound for y. Pythagoras’ theorem applied to �AnPQ1

yields AP =
√
d2 − 1. Thus BP =

√
d2 − 1− (d− x). Pythagoras’ theorem applied

to �BPQ1 yields

y2 = 12 + (x+
√
d2 − 1− d)2

= x2 + 2d2 − 2d
√
d2 − 1− 2x(d−

√
d2 − 1)

= x2 + 2(d− x)(d−
√
d2 − 1)

= x2 +
2(d− x)

d+
√
d2 − 1

> x2 +
2(d− x)

d+
√
d2

= x2 + 1− x

d
.

6Alternatively, we could loosely think of the rabbit as being a quantum rabbit which has the two possible
quantum states of either being at Q1 or Q2 after d rounds.
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Choosing d = 2 �x� yields y2 > x2 + 1
2
. But for x ≥ 1 we have x2 + 1

2
> (x+ 1

5x
)2. It

follows that

y > x+
1

5x
.

To summarise, we have shown the following lemma.

Lemma If at some stage the distance between the hunter and the rabbit is x > 1,
then after a further 2 �x� rounds, the distance between the hunter and the rabbit
potentially exceeds x+ 1

5x
.

To clarify terminology, when we say that the distance between the hunter and the
rabbit is potentially something, we mean that the hunter cannot guarantee that the
distance between her and the rabbit is less than the said potential.

We call a set of moves in the lemma that the rabbit might make a swoop if it results
in the distance between the hunter and the rabbit potentially exceeding x+ 1

5x
.

We use the lemma and the swoop concept to finish the problem.

To start with, note that after one round, the distance between the hunter and the
rabbit is potentially equal to 2. This is because the tracking device might simply
report the original starting position of the rabbit and hunter, which gives no new
information to the hunter. So whatever direction the hunter moves in for round 1,
the rabbit might have gone in the opposite direction.

Next suppose that after some rounds, the distance between the hunter and the rabbit
is at least x ≥ 2. Let n = �x�. We claim that after a further 10(n+ 1)2 rounds the
potential distance between the hunter and the rabbit is at least n+ 1.

Assume for the sake of contradiction that this is not the case. Hence by the lemma,
each swoop potentially increases the distance between the hunter and the rabbit by
more than 1

5(n+1)
. Hence after at most 5(n + 1) swoops, the distance between the

hunter and the rabbit is potentially increased by more than 1, and so is potentially
at least n+ 1. Since each swoop requires no more than 2(n+ 1) rounds, at total of
at most 2(n+1)× 5(n+1) = 10(n+1)2 rounds have been used in the process. This
contradiction establishes the claim.

From the claim we may calculate an upper bound U for the number of rounds needed
to ensure that the distance between the hunter and the rabbit is potentially at least
101. It is given by

U ≤ 1 + 10 · 32 + 10 · 42 + · · ·+ 10 · 1012

� 10 · 100 · 1012

� 109.

So the distance between the hunter and the rabbit potentially exceeds 100 in well un-
der 109 rounds. Once this occurs the rabbit could simply hop directly away from the
hunter until all 109 rounds have occurred. In this way the hunter cannot guarantee
that the distance between her and the rabbit is at most 100. �

Comment The number 100 in the given problem is nowhere near sharp. Taking
a little more care in the above final calculation would show that after 109 rounds,
the distance between the rabbit and the hunter is potentially at least 668.
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4. Solution 1 (Found independently by Matthew Cheah, year 12, Penleigh and Es-
sendon Grammar School, VIC, and William Hu, year 11, Christ Church Grammar
School, WA. Matthew was a Silver medallist and William was a Bronze medallist
with the 2017 Australian IMO team.)

From cyclic quadrilaterals RKSJ and STAJ we have

∠JKR = ∠JSR = ∠JAT.

Since A, J , and T are collinear, it follows that RK ‖ AT .

Let X be the intersection of lines AS and RK. Since RX ‖ AT and S is the midpoint
of RT , it follows that RXTA is a parallelogram.7

S
R T

J

A

K

X

Ω

Γ

From parallelogram RXTA and using the alternate segment theorem on circle Ω
and line AR, we have

∠SKR = ∠SRA = ∠XTS.

Hence quadrilateral KXTS is cyclic.

This along with parallelogram RXTA imply

∠STK = ∠SXK = ∠SAT.

Therefore, by the alternate segment theorem, KT is tangent to Γ at T . �

7An easy way to see this is to note that �SRX ≡ �STA (AAS), and so RX = TA.
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Solution 2 (James Bang, year 10, Baulkham Hills High School, NSW. James was
a Bronze medallist with the 2017 Australian IMO team.)

From cyclic quadrilaterals RKSJ and STAJ we have

∠KRS = ∠KJS = ∠ATS.

Since AR is tangent to Ω at R, by the alternative segment theorem we have

∠SKR = ∠TRA.

Hence �SKR ∼ �ART (AA).

Let M be the midpoint of KR. Note that since S is also the midpoint of RT , we
have MS ‖ KT .

S
R T

J

A

K

M

Ω

Γ

Since M and S are the corresponding midpoints of KR and RT in similar triangles
SKR and ART , it follows that SKMR ∼ ARST . Using this and parallel lines SM
and KT , we deduce

∠SAT = ∠RSM = ∠STK.

Therefore, by the alternate segment theorem, KT is tangent to Γ at T . �
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Solution 3 (Guowen Zhang, year 11, St Joseph’s College, QLD. Guowen was a
Silver medallist with the 2017 Australian IMO team.)

From cyclic quadrilaterals RKSJ and STAJ we have

∠KRS = ∠KJS = ∠ATS.

Hence RK ‖ AT .

Let I be the intersection of lines KS and AT . Since RK ‖ IT and S is the midpoint
of RT , it follows that RKTI is a parallelogram.8

S
R T

J

A

K

I

Ω

Γ

From parallelogram RKTI and using the alternate segment theorem on circle Ω
and line AR, we have

∠SIT = ∠SKR = ∠SRA.

Hence quadrilateral RSIA is cyclic.

This along with parallelogram RKTI imply

∠SAT = ∠SRI = ∠STK.

Therefore, by the alternate segment theorem, KT is tangent to Γ at T . �

8An easy way to see this is to note that �SRK ≡ �STI (AAS), and so RK = TI.
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Solution 4 (Angelo Di Pasquale, Leader of the 2017 Australian IMO team)

Since AR is tangent to Ω at R, by the alternative segment theorem we have

∠SKR = ∠TRA.

Let B be the second intersection point of line RA with circle Γ. Then

∠KRS = ∠KJS = ∠ABS.

S
R T

J

A

K

B

S
R T

K

B

From here on, we focus on the part of the diagram shown on the right above.

We have �KRS ∼ �RBS (AA). Hence

KS

SR
=

SR

SB
.

Since SR = ST , it follows from the above equality that

KS

ST
=

ST

SB
. (1)

The external angle sums in triangles KRS and RBS yield

∠KST = ∠SKR + ∠KRS = ∠SRB + ∠RBS = ∠TSB.

Combining this with (1) implies �KST ∼ �TSB. Therefore ∠STK = ∠SBT .
Hence by the alternate segment theorem, circle BST is tangent to KT at T . Since
circle BST is Γ, the result follows. �

Comment This solution shows a connection between this problem and problem 6
of the 2017 Australian Mathematical Olympiad (AMO). See solution 1 of the AMO
problem found earlier in this document. It is readily seen that points A, B, C,
D, and M in the AMO problem correspond to points R, B, T , K, and S in this
solution to the IMO problem. The IMO Jury was made aware of the this connection
but decided that the two problems were sufficiently dissimilar to permit the use of
the proposed IMO problem.

73



157     Mathematics Contests The Australian Scene 2017

Solution 5 (Dan Carmon, Leader of the 2017 Israeli IMO team)

Consider an inversion of arbitrary radius about R. For any object Z, let Z ′ denote
its image under the inversion. We determine the images of the objects given in the
problem statement as follows.

• Since S is the midpoint of RT , it follows that T ′ is the midpoint of RS ′.

• Circle Γ through S, T , A, and J becomes circle Γ′ through S ′, T ′, A′, and J ′.

• Line � through R and A becomes line �′ through R and A′.

• Since the circle Ω through R, K, S, and J is tangent to the line � at R, it
follows that Ω becomes the line Ω′ through K ′, S ′, and J ′, and is parallel to �′.

• The line through A, J , and K becomes a circle through R, A′, J ′, and K ′.

• The line through K and T becomes a circle through R, K ′, and T ′.

• It is required to prove that circle RK ′T ′ is tangent to Γ′.

�′

Ω′

Γ′

R

S′

T ′

A′

J ′K ′

B′

Let B′ be the second intersection point of circle S ′T ′A′J ′ with line RA′.9

We have ∠A′RK ′ = 180◦ − ∠S ′J ′A′ = ∠A′B′S ′. Thus K ′R ‖ S ′B′. Since also
K ′S ′ ‖ RB′, we see that RK ′S ′B′ is a parallelogram.

The diagonals of any parallelogram bisect each other. But T ′ is the midpoint of RS ′.
So it is also the midpoint of K ′B′.

The half turn about T ′ interchanges points R and K ′ with points S ′ and B′, re-
spectively. So it interchanges circle T ′RK with circle TS ′B′. Since T ′ is common to
both these circles, it follows that the two circles are tangent at T ′, as desired. �

9The point B′ happens to be the image under the inversion of point B from solution 4.
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Solution 6 (Problem Selection Committee)

As in solution 2, we deduce the equal angles as marked in the diagram so that
�ART ∼ �SKR (AA). Hence

RT

KR
=

AT

SR
=

AT

ST
.

Since also ∠KRT = ∠ATS, it follows that �KRT ∼ �STA (PAP). Hence
∠RTK = ∠SAT . The result now follows from the alternate segment theorem. �

S
R T

J

A

K
Ω

Γ
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5. Solution (Matthew Cheah, year 12, Penleigh and Essendon Grammar School,
VIC. Matthew was a Silver medallist with the 2017 Australian IMO team.)

Let us give T-shirts in n different colours to the players as follows. The shortest
n + 1 players wear T-shirts with colour 1, the next shortest n + 1 players wear
T-shirts with colour 2, and so on up to the tallest n + 1 players who wear T-shirts
with colour n. It suffices to show that we can remove n(n − 1) players such that
each colour T-shirt is represented twice among the remaining 2n players, and for
each such colour, the two players who wear the T-shirt of that colour have no other
players between them.

We present the formal proof along with an example that illustrates what is happen-
ing at each stage. The example is the case n = 4, where the T-shirt colours from
left to right are as follows.

4 2 1 2 3 2 4 3 1 1 4 1 3 2 3 4 4 1 2 3

We start by scanning from left to right until we identify two T-shirts of the same
colour for the first time. Note that this will happen within the first n + 1 players.
Suppose that colour X is the first colour to occur twice. In our example X = 2.
Remove each player to the left of the second X who is wearing a T-shirt that does
not have colour X. In our example this yields the following.

�4 2 �1 2 3 2 4 3 1 1 4 1 3 2 3 4 4 1 2 3

Next, remove every occurrence of X that is to the right of the second X. In our
example this yields the following.

2 2 3 �2 4 3 1 1 4 1 3 �2 3 4 4 1 �2 3

Note that colour X now occurs exactly twice, and that the two instances of X lie
to the left of everything else. Also every other colour occurs either n or n+1 times.

Next, for each colour that is not X and that occurs n+1 times, remove one instance
of that colour at random. In our example we only need to remove one 3. We choose
one at random to yield the following.

2 2 3 4 �3 1 1 4 1 3 3 4 4 1 3

Thus we reach the situation where we have XX followed by a group G of n(n− 1)
players. Note that in G, there are n− 1 different coloured T-shirts, each occurring
n times. This shows that the truth of the case with n different coloured T-shirts
where each colour occurs n+ 1 times follows inductively from the truth of the case
with n−1 different coloured T-shirts where each colour occurs n times. To complete
the proof, we need only to remark that the base case n = 1 is trivially true. �
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6. Solution (Dan Carmon, Leader of the 2017 Israeli IMO team)

We are asked to prove that for any finite set S of primitive points there exists a
homogeneous polynomial p(x, y) of positive degree whose coefficients are integers
such that p(u, v) = 1 whenever (u, v) is a point in S.

A simplifying step is to show that, at any stage, we can assume that one of the
points in S is (1, 0). We justify this as follows. If (r, s) is a point in S, then since
gcd(r, s) = 1, there are integers a and b such that ar + bs = 1. Consider the
transformation

t : (x, y) �→ (ax+ by, ry − sx).

Let S1 = {t(u, v) : (u, v) ∈ S}. Note that t(r, s) = (1, 0) ∈ S1.

It is readily checked that the inverse of t is given by

t−1 : (x, y) �→ (rx− by, sx+ ay).

This implies that each point of S1 is primitive.

Now if p1 is a polynomial satisfying the requirements of the problem for S1 = t(S),
then the polynomial p = p1 ◦ t is a polynomial satisfying the requirements of the
problem for S. This completes our justification of the simplifying step.

The simplifying step will help us to complete the proof by using induction on the
size of S.

For the base case, if S consists of the single point (1, 0), then p(x, y) = x+y satisfies
the requirements of the problem.

For the inductive step, assume that a required polynomial exists whenever S has
size at most n. Consider any S with n + 1 points. By our simplifying step we may
assume that (1, 0) is in S. Let S ′ = {(ui, vi) : i = 1, 2, . . . , n} be the set obtained
by removing (1, 0) from S. By the inductive assumption there is a homogeneous
polynomial f(x, y) = a0x

m + a1x
m−1y + · · · + amy

m with integer coefficients such
that

f(ui, vi) = 1 for all (ui, vi) ∈ S ′. (1)

Consider the homogeneous polynomial

g(x, y) = (v1x− u1y)(v2x− u2y) · · · (vnx− uny). (2)

Observe that g(ui, vi) = 0 for i = 1, 2, . . . , n.

We claim that the homogeneous polynomial

p(x, y) = f(x, y)j − cxmj−ng(x, y)

satisfies the conditions of the problem for appropriately chosen integers j and c.

From (1) and (2) we have p(ui, vi) = 1 for all (ui, vi) ∈ S ′. To complete the inductive
step, we require p(1, 0) = 1. Since p(1, 0) = f(1, 0)j − cg(1, 0), this is the same as

aj0 − 1 = cv1v2 · · · vn. (3)

If d | a0 and d | vi, then d | f(ui, vi) = 1. Hence gcd(a0, vi) = 1. It follows that
gcd(a0, v1v2 · · · vn) = 1.

If v1v2 · · · vn = 0, then |a0| = 1. Thus j = 2 and c = 0 satisfies (3).

If v1v2 · · · vn �= 0, let j be a multiple of ϕ(|v1v2 · · · vn|) such that mj − n ≥ 0. Then
aj0 ≡ 1 (mod v1v2 · · · vn) by Euler’s theorem. This allows us to find c satisfying (3).

In either case we have completed the inductive step and hence also the proof. �
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INTERNATIONAL MATHEMATICAL OLYMPIAD 
RESULTS

Mark Q1 Q2 Q3 Q4 Q5 Q6

0 40 183 608 47 451 557

1 16 110 3 93 46 24

2 17 26 0 42 47 9

3 5 138 0 14 9 5

4 12 79 1 15 0 4

5 54 10 1 4 2 2

6 25 8 0 6 1 0

7 446 61 2 394 59 14

Total 615 615 615 615 615 615

Mean 5.94 2.30 0.04 5.03 0.97 0.29

Name Q1 Q2 Q3 Q4 Q5 Q6 Score Award

James Bang 7 3 0 7 0 0 17 Bronze

Matthew Cheah 7 1 0 7 7 0 22 Silver

Linus Cooper 7 2 7 1 2 0 19 Silver

William Hu 7 0 0 7 2 0 16 Bronze

Hadyn Tang 7 0 1 2 0 0 10 Honourable 
Mention

Guowen Zhang 7 4 0 7 0 1 19 Silver

Totals 42 10 8 31 11 1 103

Australian average 7.0 1.67 1.33 5.17 1.83 0.17 17.17

IMO average 5.94 2.30 0.04 5.03 0.97 0.29 14.58

The medal cuts were set at 25 for gold, 19 for silver and 16 for bronze.

Australian scores at the IMO

Mark distribution by question



162     Mathematics Contests The Australian Scene 2017

Rank Country Total

1 South Korea 170

2 China 159

3 Vietnam 155

4 United States of America 148

5 Iran 142

6 Japan 134

7 Singapore 131

7 Thailand 131

9 Taiwan 130

9 United Kingdom 130

11 Russia 128

12 Georgia 127

12 Greece 127

14 Belarus 122

14 Czech Republic 122

14 Ukraine 122

17 Philippines 120

18 Bulgaria 116

18 Italy 116

18 Netherlands 116

18 Serbia 116

22 Hungary 115

22 Poland 115

22 Romania 115

25 Kazakhstan 113

26 Argentina 111

26 Bangladesh 111

26 Hong Kong 111

29 Canada 110

30 Peru 109

31 Indonesia 108

32 Israel 107

33 Germany 106

34 Australia 103

35 Croatia 102

35 Turkey 102

37 Brazil 101

37 Malaysia 101

39 France 100

39 Saudi Arabia 100

Some country totals
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Distribution of awards at the 2017 IMO

Country Total Gold Silver Bronze HM

Albania 67 0 0 1 5

Algeria 70 0 0 1 4

Argentina 111 1 2 1 2

Armenia 99 0 2 2 1

Australia 103 0 3 2 1

Austria 74 0 2 0 2

Azerbaijan 98 0 0 4 2

Bangladesh 111 0 2 2 2

Belarus 122 1 1 4 0

Belgium 80 0 1 2 2

Bolivia 41 0 0 0 4

Bosnia and Herzegovina 95 0 0 4 2

Botswana 19 0 0 0 1

Brazil 101 0 2 1 3

Bulgaria 116 0 4 2 0

Cambodia 11 0 0 0 1

Canada 110 1 2 2 1

Chile 67 0 0 1 4

China 159 5 1 0 0

Colombia 81 0 0 1 5

Costa Rica 58 0 0 0 5

Croatia 102 0 2 3 1

Cuba 13 0 0 0 1

Cyprus 93 0 0 5 1

Czech Republic 122 1 2 2 1

Denmark 77 0 0 1 5

Ecuador 66 0 0 1 4

Egypt 3 0 0 0 0

El Salvador 57 0 0 1 3

Estonia 72 0 1 0 4

Finland 56 0 0 0 6

France 100 0 2 2 2

Georgia 127 1 2 3 0

Germany 106 0 1 3 2

Ghana 6 0 0 0 0

Greece 127 1 4 1 0
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Country Total Gold Silver Bronze HM

Guatemala 20 0 0 0 1

Honduras 12 0 0 0 0

Hong Kong 111 1 1 3 1

Hungary 115 2 1 1 1

Iceland 45 0 0 0 3

India 90 0 0 3 3

Indonesia 108 0 2 3 1

Iran 142 2 3 1 0

Iraq 13 0 0 0 1

Ireland 80 0 0 2 4

Israel 107 0 3 2 0

Italy 116 2 1 1 2

Ivory Coast 11 0 0 0 0

Japan 134 2 2 2 0

Kazakhstan 113 1 2 1 1

Kenya 8 0 0 0 0

Kosovo 55 0 0 1 2

Kyrgyzstan 75 0 0 2 3

Latvia 84 0 0 3 2

Liechtenstein 22 0 0 0 2

Lithuania 69 0 0 2 3

Luxembourg 45 0 0 1 1

Macau 94 1 0 0 5

Macedonia (FYR) 77 0 0 1 4

Malaysia 101 0 2 2 2

Mexico 96 0 1 2 3

Moldova 83 0 1 0 4

Mongolia 93 0 1 2 3

Montenegro 42 0 0 1 2

Morocco 75 0 0 1 4

Myanmar 15 0 0 0 1

Nepal 3 0 0 0 0

Netherlands 116 1 2 1 1

New Zealand 94 0 0 3 3

Nicaragua 44 0 0 1 2

Nigeria 51 0 0 0 4

Norway 71 0 0 2 3

Pakistan 58 0 0 1 3
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Country Total Gold Silver Bronze HM

Panama 15 0 0 0 1

Paraguay 48 0 0 0 2

Peru 109 0 2 3 1

Philippines 120 0 3 3 0

Poland 115 1 0 5 0

Portugal 89 0 0 2 2

Puerto Rico 55 0 0 0 4

Romania 115 0 3 2 1

Russia 128 1 3 2 0

Saudi Arabia 100 0 2 2 1

Serbia 116 0 4 2 0

Singapore 131 2 1 2 1

Slovakia 75 0 0 1 5

Slovenia 90 0 0 2 4

South Africa 81 0 0 2 4

South Korea 170 6 0 0 0

Spain 86 0 0 3 2

Sri Lanka 80 0 0 3 3

Sweden 91 0 1 2 3

Switzerland 83 0 0 1 5

Syria 85 0 1 0 5

Taiwan 130 1 4 1 0

Tajikistan 95 0 0 3 3

Tanzania 5 0 0 0 0

Thailand 131 3 0 2 1

Trinidad and Tobago 15 0 0 0 1

Tunisia 59 0 0 1 3

Turkey 102 0 1 3 2

Turkmenistan 93 0 0 2 4

Uganda 22 0 0 0 1

Ukraine 122 1 2 2 1

United Kingdom 130 3 0 2 1

United States of America 148 3 3 0 0

Uruguay 43 0 0 0 3

Uzbekistan 69 0 1 0 4

Venezuela 59 0 0 2 2

Vietnam 155 4 1 1 0

Total (111 teams, 615 contestants) 48 90 153 222



166     Mathematics Contests The Australian Scene 2017

ORIGIN OF SOME QUESTIONS

AMOC Senior Contest 2017
Questions 1, 2 and and 3 were submitted by Norman Do.

Question 4 was submitted by Angelo Di Pasquale.

Question 5 was submitted by Kevin McAvaney.

Australian Mathematical Olympiad 2017
Questions 1, 2, 5 and 6 were submitted by Norman Do.

Questions 3, 4 and 8 were submitted by Angelo Di Pasquale.

Question 7 was submitted by Ivan Guo. 

Asian Pacfic Mathematics Olympiad 2017
Question 3 was composed by Norman Do and submitted by the AMOC Senior Problems Committee.

International Mathematical Olympiad 2017
Although no problem submitted by Australia appeared on the final IMO papers, three appeared on the IMO 2017 shortlist, 
which will be available to the public after the conclusion of IMO 2018.

 y Problem A7 on the 2017 IMO shortlist was composed by Alan Offer. Alan is the AMOC State Director for 
Queensland and a member of the AMOC Senior Problems Committee. He represented Australia at the 1989 
IMO, where he was awarded a Silver medal.

 y Problem C2 on the 2017 IMO shortlist was composed by Ross Atkins. Ross represented Australia at the 2003 
IMO, where he was awarded a Bronze medal.

 y Problem G8 on the 2017 IMO shortlist was composed by Ivan Guo. Ivan is a member of the AMOC Senior 
Problems Committee. He represented Australia at the 2003 IMO and the 2004 IMO, where he was awarded a 
Bronze medal and a Gold medal, respectively. 
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MATHEMATICS CHALLENGE FOR YOUNG AUSTRALIANS 
HONOUR ROLL 

Because of changing titles and affiliations, the most senior title achieved and later affiliations are generally used, except for the 
Interim committee, where they are listed as they were at the time.

Problems Committee for Challenge
Dr K McAvaney Victoria, (Director) 12 years; 2006–2017
 Member  1 year; 2005-2006
Mr B Henry Victoria (Director) 17 years; 1990–2006
 Member  12 years; 2006–2017
Prof P J O’Halloran University of Canberra, ACT 5 years; 1990–1994
Dr R A Bryce Australian National University, ACT 23 years; 1990–2012
Mr M Clapper Australian Mathematics Trust, ACT 5 years; 2013–2017
Ms L Corcoran Australian Capital Territory 3 years; 1990–1992
Ms B Denney New South Wales 8 years; 2010–2017
Mr J Dowsey University of Melbourne, VIC 8 years; 1995–2002
Mr A R Edwards Department of Education, QLD 28 years; 1990–2017
Dr M Evans Scotch College, VIC 6 years; 1990–1995
Assoc Prof H Lausch Monash University, VIC 24 years; 1990–2013
Ms J McIntosh AMSI, VIC 16 years; 2002–2017
Mrs L Mottershead New South Wales 26 years; 1992–2017
Miss A Nakos Temple Christian College, SA 25 years; 1993–2017
Dr M Newman Australian National University, ACT 28 years; 1990–2017
Ms F Peel St Peter’s College, SA 2 years; 1999, 2000
Dr I Roberts Northern Territory 5 years; 2013–2017
Ms T Shaw SCEGGS, NSW 5 years; 2013–2017
Ms K Sims New South Wales 19 years; 1999–2017
Dr A Storozhev Attorney General’s Department, ACT 23 years; 1994–2016
Prof P Taylor Australian Mathematics Trust, ACT 20 years; 1995–2014
Mrs A Thomas New South Wales 18 years; 1990–2007
Dr S Thornton reSolve, ACT 20 years; 1998–2017 
Miss G Vardaro Wesley College, VIC 24 years: 1993–2006, 2008–2017

Visiting members
Prof E Barbeau University of Toronto, Canada 1991, 2004, 2008
Prof G Berzsenyi Rose Hulman Institute of Technology, USA 1993, 2002
Dr L Burjan Department of Education, Slovakia 1993
Dr V Burjan Institute for Educational Research, Slovakia 1993
Mrs A Ferguson Canada 1992
Prof B Ferguson University of Waterloo, Canada 1992, 2005
Dr D Fomin St Petersburg State University, Russia 1994
Prof F Holland University College, Ireland 1994
Dr A Liu University of Alberta, Canada 1995, 2006, 2009
Prof Q Zhonghu Academy of Science, China 1995
Dr A Gardiner University of Birmingham, United Kingdom 1996
Prof P H Cheung Hong Kong 1997
Prof R Dunkley University of Waterloo, Canada 1997
Dr S Shirali India 1998
Mr M Starck New Caledonia 1999
Dr R Geretschläger  Austria 1999, 2013
Dr A Soifer United States of America 2000
Prof M Falk de Losada Colombia 2000
Mr H Groves United Kingdom 2001 
Prof J Tabov Bulgaria 2001, 2010
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Prof A Andzans Latvia 2002 
Prof Dr H-D Gronau University of Rostock, Germany 2003 
Prof J Webb University of Cape Town, South Africa 2003, 2011
Mr A Parris Lynwood High School, New Zealand 2004
Dr A McBride University of Strathclyde, United Kingdom 2007
Prof P Vaderlind Stockholm University, Sweden 2009, 2012
Prof A Jobbings United Kingdom 2014 
Assoc Prof D Wells United States of America 2015
Dr P Neumann United Kingdom 2016

Moderators for Challenge
Mr W Akhurst New South Wales
Ms N Andrews ACER, Camberwell, VIC
Mr L Bao Leopold Primary School, VIC
Prof E Barbeau University of Toronto, Canada
Mr R Blackman Victoria
Ms J Breidahl St Paul’s Woodleigh, VIC
Ms S Brink Glen Iris, VIC
Prof J C Burns Australian Defence Force Academy, ACT
Mr A. Canning Queensland 
Mrs F Cannon New South Wales
Mr J Carty ACT Department of Education, ACT
Dr E Casling Australian Capital Territory
Mr B Darcy South Australia
Ms B Denney New South Wales
Mr J Dowsey Victoria
Mr S Ewington Sydney Grammar School, NSW
Br K Friel Trinity Catholic College, NSW
Dr D Fomin St Petersburg University, Russia
Mrs P Forster Penrhos College, WA
Mr T Freiberg Queensland
Mr W Galvin University of Newcastle, NSW
Mr S Gardiner University of Sydney, NSW
Mr M Gardner North Virginia, USA
Ms P Graham Tasmania
Mr B Harridge University of Melbourne, VIC
Ms J Hartnett Queensland 
Mr G Harvey Australian Capital Territory
Ms I Hill South Australia
Ms N Hill Victoria
Dr N Hoffman Edith Cowan University, WA
Prof F Holland University College, Ireland
Mr D Jones Coff’s Harbour High School, NSW
Ms R Jorgenson Australian Capital Territory
Dr T Kalinowski University of Newcastle, NSW
Assoc Prof H Lausch Victoria
Mr J Lawson St Pius X School, NSW
Mr R Longmuir China
Ms K McAsey Victoria 
Dr K McAvaney Victoria
Ms J McIntosh AMSI, VIC
Ms N McKinnon Victoria
Ms T McNamara Victoria
Mr G Meiklejohn Queensland School Curriculum Council, QLD
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Moderators for Challenge continued
Mr M O’Connor AMSI, VIC
Mr J Oliver Northern Territory
Mr S Palmer New South Wales
Dr W Palmer University of Sydney, NSW
Mr G Pointer South Australia
Prof H Reiter University of North Carolina, USA
Mr M Richardson Yarraville Primary School, VIC
Mr G Samson Nedlands Primary School, WA
Mr J Sattler Parramatta High School, NSW
Mr A Saunder Victoria
Mr W Scott Seven Hills West Public School, NSW
Mr R Shaw Hale School, WA
Ms T Shaw New South Wales
Dr B Sims University of Newcastle, NSW
Dr H Sims Victoria
Ms K Sims New South Wales
Prof J Smit The Netherlands
Mrs M Spandler New South Wales
Mr G Spyker Curtin University, WA
Ms C Stanley Queensland 
Dr E Strzelecki Monash University, VIC
Mr P Swain Victoria
Dr P Swedosh The King David School, VIC
Prof J Tabov Academy of Sciences, Bulgaria
Mrs A Thomas New South Wales
Ms K Trudgian Queensland
Ms J Vincent Melbourne Girls Grammar School, VIC
Prof J Webb University of Capetown, South Africa
Dr D Wells USA

Mathematics Enrichment Development
Enrichment Committee — Development Team (1992–1995)
Mr B Henry Victoria (Chairman)
Prof P O’Halloran University of Canberra, ACT (Director)
Mr G Ball University of Sydney, NSW
Dr M Evans Scotch College, VIC
Mr K Hamann South Australia
Assoc Prof H Lausch Monash University, VIC
Dr A Storozhev Australian Mathematics Trust, ACT 
Polya Development Team (1992–1995)
Mr G Ball University of Sydney, NSW (Editor)
Mr K Hamann South Australia (Editor)
Prof J Burns Australian Defence Force Academy, ACT
Mr J Carty Merici College, ACT
Dr H Gastineau-Hill University of Sydney, NSW
Mr B Henry Victoria
Assoc Prof H Lausch Monash University, VIC
Prof P O’Halloran University of Canberra, ACT
Dr A Storozhev Australian Mathematics Trust, ACT
Polya Development Team (2013–2015)
Adj Prof M Clapper Australian Mathematics Trust, ACT (Editor)
Dr R Atkins New Zealand
Dr A di Pasquale University of Melbourne, VIC
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Dr R Geretschläger  Austria
Dr D Mathews  Monash University, VIC
Dr K McAvaney Australian Mathematics Trust, ACT
Euler Development Team (1992–1995)
Dr M Evans Scotch College, VIC (Editor)
Mr B Henry Victoria (Editor)
Mr L Doolan Melbourne Grammar School, VIC
Mr K Hamann South Australia
Assoc Prof H Lausch Monash University, VIC
Prof P O’Halloran University of Canberra, ACT
Mrs A Thomas Meriden School, NSW
Gauss Development Team (1993–1995)
Dr M Evans Scotch College, VIC (Editor)
Mr B Henry Victoria (Editor)
Mr W Atkins University of Canberra, ACT
Mr G Ball University of Sydney, NSW
Prof J Burns Australian Defence Force Academy, ACT
Mr L Doolan Melbourne Grammar School, VIC
Mr A Edwards Mildura High School, VIC
Mr N Gale Hornby High School, New Zealand
Dr N Hoffman Edith Cowan University, WA
Prof P O’Halloran University of Canberra, ACT
Dr W Pender Sydney Grammar School, NSW
Mr R Vardas Dulwich Hill High School, NSW
Noether Development Team (1994–1995)
Dr M Evans Scotch College, VIC (Editor)
Dr A Storozhev Australian Mathematics Trust, ACT (Editor)
Mr B Henry Victoria
Dr D Fomin St Petersburg University, Russia
Mr G Harvey New South Wales
Newton Development Team (2001–2002)
Mr B Henry Victoria (Editor)
Mr J Dowsey University of Melbourne, VIC
Mrs L Mottershead New South Wales
Ms G Vardaro Annesley College, SA
Ms A Nakos Temple Christian College, SA
Mrs A Thomas New South Wales
Dirichlet Development Team (2001–2003)
Mr B Henry Victoria (Editor)
Mr A Edwards Ormiston College, QLD
Ms A Nakos Temple Christian College, SA
Mrs L Mottershead New South Wales
Mrs K Sims Chapman Primary School, ACT
Mrs A Thomas New South Wales
Ramanujan Development Team (2014–2016)
Mr B Henry Victoria (Editor)
Adj Prof M Clapper Australian Mathematics Trust, ACT
Ms A Nakos Temple Christian College, SA
Mr A Edwards Department of Education, QLD
Dr K McAvaney Australian Mathematics Trust, ACT
Dr I Roberts Charles Darwin University, NT
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Australian Intermediate Mathematics Olympiad Committee
Dr K McAvaney  Victoria (Chair) 11 years; 2007–2017
Mr M Clapper Australian Mathematics Trust, ACT 4 years; 2014–2017
Mr J Dowsey University of Melbourne, VIC 19 years; 1999–2017
Dr M Evans AMSI, VIC 19 years; 1999–2017
Mr B Henry Victoria (Chair) 8 years; 1999–2006
 Member 11 years; 2007–2017
Assoc Prof H Lausch Monash University, VIC 17 years; 1999–2015
Mr R Longmuir China 2 years; 1999–2000
Dr D Mathews Monash University, VIC 1 year; 2017
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AUSTRALIAN MATHEMATICAL OLYMPIAD COMMITTEE 
HONOUR ROLL 

Because of changing titles and affiliations, the most senior title achieved and later affiliations are generally used, except 
for the Interim committee, where they are listed as they were at the time.

Interim Committee 1979–1980
Mr P J O’Halloran Canberra College of Advanced Education, ACT, Chair
Prof A L Blakers University of Western Australia
Dr J M Gani Australian Mathematical Society, ACT,
Prof B H Neumann Australian National University, ACT,
Prof G E Wall University of Sydney, NSW
Mr J L Williams University of Sydney, NSW

The Australian Mathematical Olympiad Committee was founded at a meeting of the Australian Academy of 
Science at its meeting of 2–3 April 1980. 

* denotes Executive Position
Chair*
Prof B H Neumann Australian National University, ACT 7 years; 1980–1986
Prof G B Preston Monash University, VIC 10 years; 1986–1995
Prof A P Street University of Queensland  6 years; 1996–2001
Prof C Praeger University of Western Australia 16 years; 2002–2017
Deputy Chair*
Prof P J O’Halloran University of Canberra, ACT 15 years; 1980–1994
Prof A P Street University of Queensland 1 year; 1995
Prof C Praeger, University of Western Australia 6 years; 1996–2001
Assoc Prof D Hunt University of New South Wales 14 years; 2002–2015
Prof A Hassell Australian National University 2 years; 2016–2017
Executive Director*
Prof P J O’Halloran University of Canberra, ACT 15 years; 1980–1994
Prof P J Taylor University of Canberra, ACT 18 years; 1994–2012
Adj Prof M G Clapper University of Canberra, ACT 4 years; 2013–2016
Chief Executive Officer*
Mr J N Ford Australian Mathematics Trust, ACT 1 year; 2017

Secretary
Prof J C Burns Australian Defence Force Academy, ACT 9 years; 1980–1988
Vacant   4 years; 1989–1992
Mrs K Doolan Victorian Chamber of Mines, VIC 6 years; 1993–1998

Treasurer*
Prof J C Burns Australian Defence Force Academy, ACT 8 years; 1981–1988
Prof P J O’Halloran University of Canberra, ACT 2 years; 1989–1990
Ms J Downes CPA 5 years; 1991–1995
Dr P Edwards Monash University, VIC 8 years; 1995–2002
Prof M Newman Australian National University, ACT 6 years; 2003–2008
Dr P Swedosh The King David School, VIC 9 years; 2009–2017

Director of Mathematics Challenge for Young Australians*
Mr J B Henry Deakin University, VIC 17 years; 1990–2006
Dr K McAvaney Deakin University, VIC 12 years; 2006–2017

Chair, Senior Problems Committee
Prof B C Rennie James Cook University, QLD 1 year; 1980
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Mr J L Williams University of Sydney, NSW 6 years; 1981–1986
Assoc Prof H Lausch Monash University, VIC 27 years; 1987–2013
Dr N Do Monash University, VIC 4 years; 2014–2017

Director of Training*
Mr J L Williams University of Sydney, NSW 7 years; 1980–1986
Mr G Ball University of Sydney, NSW 3 years; 1987–1989
Dr D Paget University of Tasmania 6 years; 1990–1995
Dr M Evans Scotch College, VIC 3 months; 1995
Assoc Prof D Hunt University of New South Wales 5 years; 1996–2000
Dr A Di Pasquale University of Melbourne, VIC 17 years; 2001–2017

Team Leader
Mr J L Williams University of Sydney, NSW 5 years; 1981–1985
Assoc Prof D Hunt University of New South Wales 9 years; 1986, 1989, 1990, 1996–2001
Dr E Strzelecki Monash University, VIC 2 years; 1987, 1988
Dr D Paget University of Tasmania 5 years; 1991–1995
Dr A Di Pasquale University of Melbourne, VIC 15 years; 2002–2010, 2012–2017
Dr I Guo University of New South Wales 1 year; 2011

Deputy Team Leader
Prof G Szekeres University of New South Wales 2 years; 1981–1982
Mr G Ball University of Sydney, NSW 7 years; 1983–1989
Dr D Paget University of Tasmania 1 year; 1990
Dr J Graham University of Sydney, NSW 3 years; 1991–1993
Dr M Evans Scotch College, VIC 3 years; 1994–1996
Dr A Di Pasquale University of Melbourne, VIC 5 years; 1997–2001
Dr D Mathews University of Melbourne, VIC 3 years; 2002–2004
Dr N Do University of Melbourne, VIC 4 years; 2005–2008
Dr I Guo University of New South Wales 4 years; 2009–10, 2012–2013
Mr G White University of Sydney, NSW 1 year; 2011
Mr A Elvey Price Melbourne University, VIC 4 years; 2014–2017

State Directors
Australian Capital Territory
Prof M Newman Australian National University  1 year; 1980
Mr D Thorpe ACT Department of Education  2 years; 1981–1982
Dr R A Bryce Australian National University  7 years; 1983–1989
Mr R Welsh Canberra Grammar School  1 year; 1990
Mrs J Kain Canberra Grammar School  5 years; 1991–1995
Mr J Carty ACT Department of Education  17 years; 1995–2011
Mr J Hassall Burgmann Anglican School  2 years; 2012–2013
Dr C Wetherell Radford College  4 years; 2014–2017
New South Wales
Dr M Hirschhorn University of New South Wales 1 year; 1980
Mr G Ball University of Sydney, NSW 16 years; 1981–1996
Dr W Palmer University of Sydney, NSW 20 years; 1997–2016
Assoc Prof D Daners University of Sydney, NSW 1 year; 2017
Northern Territory
Dr I Roberts Charles Darwin University 4 years; 2014–2017
Queensland
Dr N H Williams University of Queensland 21 years; 1980–2000
Dr G Carter Queensland University of Technology 10 years; 2001–2010
Dr V Scharaschkin University of Queensland 4 years; 2011–2014
Dr A Offer Queensland 3 years; 2015 –2017
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South Australia/Northern Territory
Mr K Hamann SA Department of Education 19 years; 1980–1982,  1991–2005, 2013
Mr V Treilibs SA Department of Education 8 years; 1983–1990
Dr M Peake Adelaide 8 years; 2006–2013
Dr D Martin Adelaide 4 years; 2014–2017
Tasmania
Mr J Kelly Tasmanian Department of Education 8 years; 1980–1987
Dr D Paget University of Tasmania 8 years; 1988–1995
Mr W Evers St Michael’s Collegiate School 9 years; 1995–2003
Dr K Dharmadasa University of Tasmania 14 years; 2004–2017
Victoria
Dr D Holton University of Melbourne 3 years; 1980–1982
Mr B Harridge Melbourne High School 1 year; 1982
Ms J Downes CPA 6 years; 1983–1988
Mr L Doolan Melbourne Grammar School 9 years; 1989–1998
Dr P Swedosh The King David School 20 years; 1998–2017
Western Australia
Dr N Hoffman WA Department of Education 3 years; 1980–1982
Assoc Prof P Schultz University of Western Australia 14 years; 1983–1988, 1991–1994, 1996–1999
Assoc Prof W Bloom Murdoch University 2 years; 1989–1990
Dr E Stoyanova WA Department of Education 7 years; 1995, 2000–2005
Dr G Gamble University of Western Australia 12 years; 2006–2017

Editor
Prof P J O’Halloran University of Canberra, ACT 1 year; 1983
Dr A W Plank University of Southern Queensland 11 years; 1984–1994
Dr A Storozhev Australian Mathematics Trust, ACT 15 years; 1994–2008
Editorial Consultant
Dr O Yevdokimov University of Southern Queensland 9 years; 2009–2017

Other Members of AMOC (showing organisations represented where applicable)
Mr W J Atkins Australian Mathematics Foundation 18 years; 1995–2012
Dr S Britton University of Sydney, NSW 8 years; 1990–1998
Prof G Brown Australian Academy of Science, ACT 10 years; 1980, 1986–1994
Dr R A Bryce Australian Mathematical Society, ACT 9 years; 1991–1998
  Mathematics Challenge for Young Australians 14 years; 1999–2012
Mr G Cristofani Department of Education and Training 2 years; 1993–1994
Ms L Davis IBM Australia 4 years; 1991–1994
Dr W Franzsen Australian Catholic University, ACT 9 years; 1990–1998
Dr J Gani Australian Mathematical Society, ACT 1980
Assoc Prof T Gagen ANU AAMT Summer School 6 years; 1993–1998
Ms P Gould Department of Education and Training 2 years; 1995–1996
Prof G M Kelly University of Sydney, NSW 6 years; 1982–1987
Ms J McIntosh Australian Mathematical Sciences Institute,VIC 
  Mathematics Challenge for Young Australians 6 years; 2012–2017
Prof R B Mitchell University of Canberra, ACT 5 years; 1991–1995
Ms Anna Nakos Mathematics Challenge for Young Australians 15 years; 2003–2017
Mr S Neal Department of Education and Training 4 years; 1990–1993
Prof M Newman Australian National University, ACT 15 years; 1986–1998
  Mathematics Challenge for Young Australians 19 years; 1999–2017,  
  (Treasurer during the interim) 2003–2008
Prof R B Potts University of Adelaide, SA 1 year; 1980
Mr H Reeves Australian Association of Maths Teachers 15 years; 1988–1998
  Australian Mathematics Foundation 2014–2017
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Mr N Reid IBM Australia 3 years; 1988–1990
Mr M Roberts Tasmania 4 years; 2014–2017
Mr R Smith Telecom Australia 5 years; 1990–1994
Prof P J Taylor Australian Mathematics Foundation 6 years; 1990–1994, 2013
Prof N S Trudinger Australian Mathematical Society, ACT 3 years; 1986–1988
Assoc Prof I F Vivian University of Canberra, ACT 1 year; 1990
Dr M W White IBM Australia 9 years; 1980–1988

Associate Membership (inaugurated in 2000)
Mr G Ball  17 years; 2000–2016
Ms S Britton   17 years; 2000–2016
Dr M Evans  18 years; 2000–2017
Dr W Franzsen  17 years; 2000–2016
Prof T Gagen   17 years; 2000–2016
Mr H Reeves   15 years; 2000–2014

AMOC Senior Problems Committee
Current members
Dr N Do Monash University, VIC (Chair) 4 years; 2014–2017
  (member) 11 years; 2003–2013
Mr M Clapper Australian Mathematics Trust 5 years; 2013–2017
Dr A Devillers University of Western Australia, WA 2 years; 2016–2017
Dr A Di Pasquale University of Melbourne, VIC 17 years; 2001–2017
Dr I Guo University of Sydney, NSW 10 years; 2008–2017
Dr J Kupka Monash University, VIC 14 years; 2003–2016
Dr K McAvaney Deakin University, VIC 22 years; 1996–2017
Dr D Mathews Monash University, VIC 17 years; 2001–2017
Dr A Offer Queensland 6 years; 2012–2017
Dr C Rao Telstra, VIC 18 years; 2000–2017
Dr B B Saad Monash University, VIC 24 years; 1994–2017
Dr J Simpson Curtin University, WA 19 years; 1999–2017
Dr I Wanless Monash University, VIC 18 years; 2000–2017

Previous members
Mr G Ball University of Sydney, NSW 16 years; 1982–1997
Mr M Brazil LaTrobe University, VIC 5 years; 1990–1994
Dr M S Brooks University of Canberra, ACT 8 years; 1983–1990
Dr G Carter Queensland University of Technology 10 years; 2001–2010
Dr M Evans Australian Mathematical Sciences Institute, VIC 27 years; 1990–2016
Dr J Graham University of Sydney, NSW 1 year; 1992
Dr M Herzberg Telecom Australia 1 year; 1990
Assoc Prof D Hunt University of New South Wales 29 years; 1986–2014
Dr L Kovacs Australian National University, ACT 5 years; 1981–1985
Assoc Prof H Lausch Monash University, VIC (Chair) 27 years; 1987–2013
  (member) 2 years; 2014–2015
Dr D Paget University of Tasmania 7 years; 1989–1995
Prof P Schultz University of Western Australia 8 years; 1993–2000 
Dr L Stoyanov University of Western Australia 5 years; 2001–2005
Dr E Strzelecki Monash University, VIC 5 years; 1986–1990
Dr E Szekeres University of New South Wales 7 years; 1981–1987
Prof G Szekeres University of New South Wales 7 years; 1981–1987
Em Prof P J Taylor Australian Capital Territory 1 year; 2013
Dr N H Williams University of Queensland 20 years; 1981–2000
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Mathematics School of Excellence
Dr S Britton University of Sydney, NSW (Coordinator) 2 years; 1990–1991
Mr L Doolan Melbourne Grammar, VIC (Coordinator) 6 years; 1992, 1993–1997
Mr W Franzsen Australian Catholic University, ACT (Coordinator) 2 years; 1990–1991
Dr D Paget University of Tasmania (Director) 5 years; 1990–1994
Dr M Evans Scotch College, VIC 1 year; 1995
Assoc Prof D Hunt University of New South Wales (Director) 4 years; 1996–1999
Dr A Di Pasquale University of Melbourne, VIC (Director) 18 years; 2000–2017

International Mathematical Olympiad Selection School
Mr J L Williams University of Sydney, NSW (Director) 2 years; 1982–1983
Mr G Ball University of Sydney, NSW (Director) 6 years; 1984–1989
Mr L Doolan Melbourne Grammar, VIC (Coordinator)  3 years; 1989–1991
Dr S Britton University of Sydney, NSW (Coordinator) 7 years; 1992–1998
Mr W Franzsen Australian Catholic University, ACT (Coordinator) 8 years; 1992–1996, 1999–2001
Dr D Paget University of Tasmania (Director) 6 years; 1990–1995
Assoc Prof D Hunt University of New South Wales (Director) 5 years; 1996–2000
Dr A Di Pasquale University of Melbourne, VIC (Director) 17 years; 2001–2017




