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Reference:

■ Francesco Bullo and Andrew Lewis [2005], Geometric Control of

Mechanical Systems: Modeling, Analysis and Design for Simple

Mechanical Control Systems, Springer, ISBN: 0-387-22195-6 (chapter 3,
Sects. 3.1-3.5)

■ Vladimir Igorevich Arnold 1991, [1974], Mathematical Methods of Classical

Mechanics, Springer-Verlag, ISBN: 0-387-96890-3 (chapter 4, section on
manifolds)

■ Ralph Abraham, Jerrold E. Marsden and Tudor Ratiu, 1991, [1983],
Manifolds, Tensor Analysis and Applications, Springer, ISBN
978-1-4612-6990-8 (chapters 3 and 4 for serious study).
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Many control problems can be stated as follows: given the system with state
space R

n:

ẋ = f(x, u)

y = g(x)

we seek to find a control function u(x) such that y(t) is regulated to zero.

Differentiating y gives

ẏ =
∂g

∂x
f(x, u)

In principle, we can solve for u = u(x) from here to attain the intended
objective. Substituting u(x) into the system equations gives

ẋ = f(x, u(x)) = fu(x)

g(x) = 0

Now we have a differential equation whose states evolve in something more specific than
R

n. They are constrained to the surface (“manifold”) described by g(x) = 0.



Example: simple pendulum

4 / 19

The dynamics of a simple pendulum are given by

ml2ẍ1 +mgl sin(x1) = 0

Using angle x1 and angular velocity x2 as state variables:

ẋ1 = x2

ẋ2 = −g
l
sin(x1)

We usually define the state as belonging to R
2, but we know that the motion

of the pendulum is restricted to circular trajectories. We can reveal this by
involving the Cartesian coordinates of the mass, x = l cosx1 and
y = −l sin(x1) and their velocities vx and vy.



Example: simple pendulum
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We can easily describe the geometric locus of the positions by x2 + y2 = l2.
The velocities satisfy: vx = yx2 and vy = −xx2. We can then write
xvx + yvy = 0. Therefore, the pendulum evolves in a higher-dimensional
manifold described by

M = {(x, y, vx, vy) : x2 + y2 = l2, xvx + yvy = 0}

The manifold is like g(x) in our previous example, it only gives the “shape” of
the place where the system evolves. A separate time evolution equation can
parameterize actual trajectories for various initial conditions.

The manifold contains key information about system dynamics. For instance,
the ratio of Cartesian positions is the negative reciprocal of the ratio of
negative Cartesian velocities. Have you thought of pendulum motion like that
before?

Thus, can have a dynamic description on R
2 (based on the angle and angular

velocity), or we can have a description on the manifold (based on two
Cartesian positions and two Cartesian velocities).



Intuitive idea of manifolds
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A manifold is a set whose points can be mapped to a subset of Euclidean
space via a set of continuous functions with continuous inverses (local charts).
These charts cover overlapping portions of the manifold.

Example: the unit circle S = {(x, y) : x2 + y2 = 1} can be mapped to a
subset of R with two charts:

■ Chart “North” is defined on the arc S − {(0, 1)} by stereographic

projection.

■ Chart “South” is defined on the arc S − {(0,−1)} by stereographic
projection.

x

y

(x, y)

N(x, y)

S(x, y)

1



Unit circle as a manifold...
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We can’t cover the whole circle using a single chart (this can be proven using
topology). Our two charts have overlapping domains, and are defined by:

N(x, y) =
x

1− y
, (x, y) ∈ S, y 6= 1

S(x, y) =
x

1 + y
, (x, y) ∈ S, y 6= −1

The ranges of N(x, y) and S(x, y) are both equal to R. It can be easily
verified that each function is continuous and invertible in its domain
(homeomorphism).



Transition maps
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If we start with one point on Euclidean space, we don’t know where it came
from on the manifold without selecting a chart. If we select one chart, we can
uniquely find a point on the manifold. Then we can map forward with another
chart, to find a point on Euclidean space. This composite mapping is called
transition map.

The transition map coincides with our idea of coordinate transformation. For
example, coordinates (x, y, z) ∈ R

3 can be changed to and from coordinates
(ρ, θ, φ) ∈ R

3 using the spherical transformation.



Charts and Atlases
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A diffeomorphism is a continuously differentiable mapping between two open
sets having a continuously differentiable inverse. A Ck diffeomorphism can be
differentiated k times.

A chart on a set S is a bijection φ from U ∈ S to an open subset of Rn. A Ck

atlas is a collection of charts on S such that:

■ The union of the charts equals S

■ Any two charts (Ui, φi), (Uj , φj) with Ui ∩ Uj 6= ∅ are compatible: If
φi(Ui ∩ Uj) is open, consider the restriction of the transition mapping
φji = φj ◦ φ−1

i to φi(Ui ∩ Uj). This restricted mapping must be a Ck

diffeomorphism.



Differentiable Manifolds
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Define an equivalence relation on all Ck atlases on a set S by: A1 ρ A1 if
A1 ∪A1 is still a Ck atlas. It can be shown that ρ is indeed an equivalence
relation.

As we saw before, ρ partitions the set of all Ck atlases into equivalence
classes. We call such classes Ck differentiable structures on S.

A differentiable manifold M is a pair (S,D), where S is a set and D is a
differentiable structure on S.

For convenience, we identify M with S in the notation.

We note that Rn is a trivial example of a manifold, with a single chart that
works in the whole set: the identity mapping.

A manifold has dimension n if every chart takes values in an n-dimensional
linear space.



Submanifolds in R
n
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Submanifolds are a generalization of the idea of linear subspaces.

A set M ∈ R
n is a (differentiable) submanifold if for all a ∈ M, there are

open sets U, V ∈ R
n with a ∈ U and a diffeomorphism φ : U 7→ V such that

φ(U ∩M) = φ(U) ∩
(

R
k × {0}

)

The dimension of M is k.



The submanifold property
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Example
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The unit circle M = {(x, y) : x2 + y2 = 1} is a 1-dimensional submanifold of
R
2. As an example, we take the point (

√
2/2,

√
2/2) = a ∈ M and use the

polar-Cartesian coordinate transformation as the diffeomorphism φ.

Let U be an open rectangle in R
n defined by U = (0.25, 1.5)× (0.25, 1.5)

which contains a. The mapping

φ(x, y) 7→ (tan−1(y/x),
√

x2 + y2 − 1)

is a diffeomorphism in U mapping it to some region V ∈ R
2. Its inverse is

φ−1(θ, r) 7→ ((r + 1) cos(θ), (r + 1) sin(θ))



Example...
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In this case, the set R1 × {0} is {(θ, r) ∈ R
2 : r = 0}, the horizontal axis. As

the figure shows, if V = φ(U) is intersected with R
1 × {0}, the result is the

same as the mapping only U ∩M through φ.
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Example...
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This code explains the figure:

for x=[0.25:0.01:1.5];

for y=[0.25:0.01:1.5];

th=atan(y/x);

r=sqrt(xˆ2+yˆ2)-1;

if abs(r)<0.005,

color=’.k’; %to plot φ(U ∩M)
else

color=’.c’; %to plot φ(U)
end

plot(th,r,color);hold on

end



The Tangent Space of a Submanifold of Rn
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Informally, the tangent space of a submanifold M at a point a is the set of all
vectors v ∈ R

n which are tangent to a some continuously differentiable curve
contained in M passing through a.

Let M be a submanifold of Rn and let a ∈ M. The tangent space of M at a
is given by

TaM = {v ∈ R
n : ∃γ : (−s, s) 7→ R

n :

γ(t) ∈ M for some s > 0 and t ∈ (−s, s), γ(0) = a, γ̇(0) = v}
with γ ∈ C∞

A tangent vector can be identified with γ̇(0).

https://en.wikipedia.org/wiki/Tangent_space

https://en.wikipedia.org/wiki/Tangent_space


Tangent Space as a Linear Space
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Vectors in TaM form a linear space. To define addition and scalar
multiplication, we select an arbitrary chart φ : U 7→ R

n and carry tangent
vectors to R

n with a mapping (dφ)a : TaM 7→ R
n defined by

(dφ)a(γ̇(0)) =
d

dt
(φ ◦ γ)(0)

1. The images of dφa can be operated upon using the standard addition and
multiplication in R

n.

2. Because TaM is a linear space, the linear combination of tangent vectors
is some tangent vector w, so there must be a curve δ with the properties
required by the definition such that (δ̇)(0) = w.



Finding the Tangent Space
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If M can be described by the equation g(x) = 0 in some neighborhood of a,
then

TaM = null g′(a) = {v ∈ R
n : g′(a)v = 0}

Example: Find the tangent space of the unit sphere centered at the origin at
(1, 0, 0).

The sphere is described everywhere by g(x, y, z) = x2 + y2 + z2 − 1 = 0. The
derivative of g (gradient) is

g′ = (2x, 2y, 2z)

We need to find the set of v ∈ R
3 such that (2, 0, 0).v = 0. This is the set of

all vectors orthogonal to (1, 0, 0), which is just

TaM = span {(0, 1, 0), (0, 0, 1)}



Vector Fields and Differential Equations on Manifolds

19 / 19

Let M be a submanifold of Rn. A vector field on M is a C1 mapping
f : M 7→ R

n such that f(x) ∈ TxM for all x ∈ M.

A differential equation on M is written as

ẋ = f(x)

A solution x(t) is a curve defined on an interval I (time) such that
ẋ(t) = f(x(t)) for all t ∈ I.
Example: Back to the pendulum equation, the dynamic evolution of Cartesian
positions and velocities can be described by:

ẋ = vx

ẏ = vy

v̇x = hx(x, y, vx, vy)

v̇y = hy(x, y, vx, vy)

Exercise for you to find hx and hy

Given an initial condition for 2 posi-
tions and 2 velocities on the manifold,
a solution curve lying on the mani-
fold is obtained. Of course, there are
smaller representations for the same
dynamics. In some cases, reduction
to a smaller representation is not so
easy.
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