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1 LINEAR EQUATIONS

1.1 Straight line graphs

1.1.1

y

x0−2

(−2,−3) −3

2

(2,−3)

(2, 3)(−2, 3) 3

1.1.2 (a) passes through (−1, 0) and (0, 1), (b) through (3, 0) and (0,−3), (c) through (−8, 0) and
(0, 8). All lines have slope 1.

y = x+ 6.

1.1.3 (a) passes through (−3
2 , 0) and (0, 3), (b) through (3, 0) and (0, 3), (c) through (38 , 0) and

(0, 3). All lines have intercept 3.

y = −3x+ 3.

1.1.4

y

x
0−3

5

4

3

2

1

−1

54321

a

b c

d

e

f

1.1.5 (a) y = −4x− 1, (b) y = 7x− 5, (c) y = −4x, (d) x = 7.

1



1.2 An economic application: supply and demand

1.2.1

p

q0

5

4

5
2

3 15

S

D

Equilibrium at p = 4, q = 3.

1.2.2 In equilibrium with positive price and quantity,

p =
4 + k

10
, q =

k

2
− 2.

If k = 2 none of the good is supplied or demanded; price must be less than 0.4 for any positive
quantity to be demanded, and such a price is too low to elicit any supply.

p

q0

3.2

2.4

1.2

0.8

12 1641 6

S

D (k = 16)

D (k = 12)

D (k = 6)

1.3 Simultaneous equations

1.3.1 x = 5, y = −1.

1.3.2 x = 1
4(1 + 10s), y = s, where s is any number.

1.3.3 x = 1
5 , y = −2

5 , z = 4
5 .

1.3.4 x = −1, y = 0, z = 1.

1.4 Input-output analysis

1.4.1 55 of X, 80 of Y, 80 of Z.

1.4.2 50 of X, 75 of Y.
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2 LINEAR INEQUALITIES

2.1 Inequalities

2.1.1 (a) x > −1
2 , (b) x ≥

8
3 , (c) x ≥ −12, (d) x > −2

5 .

2.1.2 The required region is on the same side of x + 2y = 3 as the origin and on the opposite side
of 2x− 3y = 13 to the origin.

2.2 Economic applications

2.2.1 Denoting by x1 and x2 the amounts consumed of fish and chips respectively, the budget set
consists of the points satisfying 2x1 + 3x2 ≤ 10 and x1 ≥ 0, x2 ≥ 0.

If the prices are reversed, the budget set consists of the points satisfying 3x1 + 2x2 ≤ 10 and
x1 ≥ 0, x2 ≥ 0.

2.2.2 The budget set consists of the points satisfying x1 + 32x2 ≤ 18 and x1 ≥ 0, x2 ≥ 0.

In (a), (b) and (c) the budget set is identical to the original one.

In general, for income 18a and prices a and 3a, where a is any positive constant, the budget
set is identical to the original one.

2.2.3 Let x and y be the amounts produced per day of products X and Y respectively. The feasible
set consists of the points where 16x+ 8y ≤ 240, 10x+ 20y ≤ 300, x ≥ 0, y ≥ 0.

2.2.4 The feasible set consists of the points satisfying the constraints in 2.2.3, together with

2x+ 3y ≤ 48.

In (a), the additional constraint does not restrict the original feasible set any further. In (b),
the feasible set reduces to that defined by the carbon emissions constraint and x ≥ 0, y ≥ 0.

2.3 Linear programming

2.3.1 10 of X, 10 of Y; 15 of X, 0 of Y.

2.3.2 10.5 of X, 9 of Y; 12 of X, 0 of Y.

3 SETS AND FUNCTIONS

3.1 Sets

3.1.1 (a) A ⊂ B, (b) B ⊂ A, (c) A ⊂ B, (d) neither.

3.1.2 A, A ∪ C, cannot be simplified, B ∩ C.

A

B

C

3.1.3 All can be simplified: A, Ac ∪B, A ∩ (B ∪ Cc).
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3.2 Real numbers

3.2.1 (a) is the interval {x ∈ R : −1 < x ≤ 2 }, (b) is the interval R, neither (c) nor (d) is an
interval.

3.2.2 (a) x2 − 12x+ 36, (b) 4x2 − 9y2, (c) 12a2 + 6ab, (d) x2 + 2x− 3.

3.2.3 (a) 3x(y − z), (b) 3x− 4y + 4, (c) 5a+ 6b− 3, (d) 6(a2 − b2)− c2 − 5(a+ [c− 1]b).

3.2.4 (a) (x+ 6)2 − 33, (b) 4(x− 3
2)2 [or (2x− 3)2], (c) −(x− 4)2 + 9.

3.2.5 (a) 18, R2; (b) 2, R18.

3.3 Functions

3.3.1 −3, 0, 0, 2a2 + 5a− 3, 2b2− 5b− 3, 2(a− b)2 + 5(a− b)− 3 [or 2a2− 4ab+ 2b2 + 5a− 5b− 3].

3.3.2 All are V-shaped with the corner at the origin. The graph of y = |2x| rises most steeply, then
y = |x| and y = |12x| is the least steep.

3.3.3 All are U-shaped with the bottom of the U at the origin. The graph of y = 2x2 rises most
steeply, then y = x2 and y = 1

2x
2 is the least steep.

3.3.4 5, 5, x2 + y2 = 25.

3.3.5 Original function is f(x1, x2, x3) = 4x1 + 2x2 + x3 and the new function is F (x1, x2, x3) =
3x1 + 3x2 + 2x3.

(a) f(g1, g2, g3), i.e. 4g1 + 2g2 + g3.

(b) F (g1, g2, g3), i.e. 3g1 + 3g2 + 2g3.

(c) F (h1, h2, h3), i.e. 3h1 + 3h2 + 2h3.

(d) f(h1, h2, h3), i.e. 4h1 + 2h2 + h3.

3.4 Mappings

3.4.1 The image of (x, y) under h is its reflection in the x–axis.

Points of the form (x, 0) i.e. the x–axis.

3.4.2 (−y,−x), (y, x).
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4 QUADRATICS, INDICES AND LOGARITHMS

4.1 Quadratic functions and equations

4.1.1

(a) y

x0

5

−3

−2

(b) y

x0−1
3

−1 1
3

1
2

3
4

−4
3

4.1.2 (a) 2, 4; (b) 1
4(5±

√
17); (c) 2, −2

5 .

4.1.3 (a) y = x2 − 4: U-shaped with vertex at (0,−4). (2, 0) and (−2, 0). |x| > 2.

(b) y = x2 − 8x+ 16: U-shaped with vertex at (4, 0). (4, 0). x 6= 4.

(c) y = x2 + 2x + 4: U-shaped with vertex at (−1, 3). Does not meet x–axis. Every real
number.

4.1.4 (a) 6x2 − 7x− 5 = 0. 5
3 , −

1
2 .

(b) 5x2 − 13x+ 8 = 0. 8/5, 1.

(c) Same as (b).

(d) x2 − 3 = 0. ±
√

3.

4.1.5 The roots of the equation are
−b+ d

2a
and

−b− d
2a

, where d =
√
b2 − 4ac.

−b+ d

2a
+
−b− d

2a
=
−2b

2a
= − b

a
,
−b+ d

2a
× −b− d

2a
=
b2 − d2

4a2
=

4ac

4a2
=
c

a
.

4.2 Maximising and minimising quadratic functions

4.2.1 (a) U-shaped with vertex at (12 ,−4). −4.

(b) U-shaped with vertex at (3,−8). −8.

(c) U-shaped with vertex at (−1
2 ,−2). −2.

−4, −8, −1.

4.2.2
9

4
,

57

8
.
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4.2.3
9− t

4
,

9t− t2

4
,

9

2
.

[Explanation: in 4.2.2, the demand schedule may be written p = 11 − 2x, so revenue is
11x− 2x2 and profit Π is −2x2 + 9x− 3. After some manipulation,

Π = −1

2

(
2x− 9

2

)2

+
57

8
.

In 4.2.3, tx is added to the cost, so the 9 in the first expression for Π is replaced by 9− t.]

4.2.4 100 cm2.

4.3 Indices

4.3.1 (a) 3.728×102, (b) 3.728×10−3, (c) 3.728×100.

4.3.2 (a) (x+ y)3 = (x+ y)(x+ y)2. Now

x(x+ y)2 = x(x2 + 2xy + y2) = x3 + 2x2y + xy2,

y(x+ y)2 = (x2 + 2xy + y2)y = x2y + 2xy2 + y3.

Hence by addition,

(x+ y)3 = x3 + (2 + 1)x2y + (1 + 2)xy2 + y3.

(b) x3 − y3 = x(x2 − y2) + xy2 − y3 = x(x+ y)(x− y) + (x− y)y2 = (x− y)(x2 + xy + y2).

4.3.3 (a) x−1 − y−1 =
1

x
− 1

y
=
y − x
xy

; now divide by x− y.

(b) x−2 − y−2 =
1

x2
− 1

y2
=
y2 − x2

x2y2
= −(x+ y)(x− y)

x2y2
; now divide by x− y.

4.3.4

y

x0

1

1

y = x4

y = x3
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4.3.5

y

x0

1

1

y = x−1

y = x−2

(a)

y

x0

1

1

y = x1/3

y = x1/2

(b)

4.3.6 (−x)2 = (−x)×(−x) = x×x = x2. Hence (−x)3 = (−x)×(−x)2 = (−x)×x2 = −x3 and
(−x)4 = (−x)×(−x)3 = (−x)×(−x3) = x×x3 = x4. [Continuing in this way, we see that
(−x)n = −xn if n is odd, while (−x)n = xn if n is even.]

y

x0

1

1−1

−1

y = x2

y = x3

y = x4
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4.3.7

y

x0

1

1

−1

−1

y = x−1

y = x−1

y = x−2

y = x−2

4.3.8 (a) x10, (b) x5/3, (c) y8/x, (d)
5x2

16y2
.

4.3.9 x = 2−1/3z4/3, y = 22/3z4/3.

4.4 Logarithms

4.4.1 (a) 3, (b) −3, (c) 2, (d) 2
3 , (e)

8
3 .

4.4.2 loga x× logx a = loga a by the change-of-base formula L5, and loga a = 1 because a1 = a.

4.4.3 log Y = log 2 + 1
2 logK + 1

3 logL+ 1
6 logR.

5 SEQUENCES, SERIES AND LIMITS

5.1 Sequences

5.1.1 (a) 7, 10, 13, arithmetic progression;

(b) −1, −7, −13, arithmetic progression;

(c) 4, 16, 64, geometric progression;

(d) −10, 20, −40, geometric progression;

(e) 3, 18, 81, neither.

5.1.2 (a) 2, 7, 12, nth term 5n− 3; (b) 4, 12, 36, nth term 4×3n−1.

5.1.3 (a) No limit (un →∞), (b) no limit (un → −∞), (c) 0, (d) 0.
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5.2 Series

5.2.1 5050.

5.2.2 (a) 87, 1
2n(7n− 13); (b) −87, 1

2n(13− 7n); (c) 1
2(76 − 1), 1

2(7n − 1);

(d)−21

8
× 76 − 1

76
, −21

8
× 7n − (−1)n

7n
.

5.2.3 (a) No; (b) no; (c) no; (d) yes, −21/8.

5.3 Geometric progressions in economics

5.3.1 (a) 196 (Usurian dollars), (b) 214.36, (c) 140, (d) 100.

5.3.2 0.072.

5.3.3 (a) £563.71, (b) 7.

5.3.4 £357.71.

5.3.5 (a) £839.20, (b) £805.23.

5.4 Limits and continuity

5.4.1 (a) 3, (b) no limit, (c) −1.

5.4.2 (a) Yes, (b) Yes. No, because of discontinuity at x = 2.

5.4.3 (a) Any a and b such that b = 2a.

(b) a = b = 0.

(c) No real numbers a and b satisfy the conditions.

5.4.4 Let f(x) = x5 + 3x − 12, which is a polynomial and therefore continuous. Here f(1) = −8
and f(2) = 26. Thus f(1) < 0 < f(2), so a solution exists by the intermediate value theorem.

(a) Yes, by a similar argument using the fact that f(1.5) > 0. [To see this, notice that

f(1.5) =
243

32
+

9

2
− 12 and

240

32
+

9

2
=

15 + 9

2
= 12.]

(b) No. Since the graph of y = f(x) is obviously upward-sloping, the equation has at most
one solution. We have just shown that there is a solution, but it is slightly less than 1.5.

6 INTRODUCTION TO DIFFERENTIATION

6.1 The derivative

6.1.1
f(x+ h)− f(x)

h
=
x2 − (x+ h)2

2h
= −x− 1

2h,

which is close to −x if |h| is small. Hence f ′(x) = −x.
(a) −4, (b) 5.

y = 7− 2x.
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6.1.2 Using the result of Exercise 4.3.2(a),

f(x+ h)− f(x)

h
=

3x2h+ 3xh2 + h3

h
= 3x2 + h(3x+ h),

which is close to 3x2 if |h| is small. Hence f ′(x) = 3x2.

Alternatively, one can use the result of Exercise 4.3.2(b):

f(x+ h)− f(x) = h
(
(x+ h)2 + x(x+ h) + x2

)
.

Thus (f(x + h) − f(x))/h is the sum of the three terms (x + h)2, x(x + h) and x2, each of
which approaches x2 as h→ 0. Hence f ′(x) = 3x2.

Tangents: y = a2(3x− 2a), y = a2(3x+ 2a). Two parallel lines.

6.1.3 Using the result of Exercise 4.3.3(b),

f(x+ h)− f(x)

h
= − 2x+ h

(x+ h)2x2
.

In the fraction on the right-hand side, the numerator is close to 2x and the denominator is
close to x4 if |h| is small. Hence f ′(x) = −2x−3.

−1

4
, − 2

125
.

6.2 Linear approximations and differentiability

6.2.1 (a) −0.02, (b) 0.04.

6.2.2 (a) 0.0125 (exact value 0.012985 to six decimal places), (b) −0.0016 (−0.001553).

6.2.3 The graph can be drawn without lifting the pencil from the paper, but cannot be approximated
by a straight line through the point (1, 1).

y

x0 1 2

1

3
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6.3 Two useful rules

6.3.1 (a) 6x, (b) 7x6 − 4x−5, (c) 21x2 − 4x+ 5, (d) 8x3 + 7x−2, (e) 4x5 − 1
2x
−4,

(f) −2.8x−5 − 9.3x2, (g) 3ax2, (h) 8ax+ 6bx−3, (i) 6abx5 − 2a2bx.

6.3.2 (a) 16x3 − 6x2, (b) 3x2 + 6x+ 2, (c)
3

2
− 1

2x2
, (d) 2 + x−2, (e) 2x+ 2a2x−3, (f) − 2

bx3
+

3a

bx4
.

6.3.3 f ′(x) = 5x4 + 3 ≥ 3 > 0 for all x. This confirms that the curve y = f(x) is upward-sloping,
which was obvious anyway.

6.4 Derivatives in economics

6.4.1 5x− 1
2x

2, 5− x.

6.4.2 2x+ 3.

6.4.3 2, 3
2 ,

4
3 .

6.4.4 2, 2, 2. The elasticity is constant.

6.4.5 0.2 + 0.1Y .

7 METHODS OF DIFFERENTIATION

7.1 The product and quotient rules

7.1.1 (a) (4x3 − 6x)(5x+ 1) + 5(x4 − 3x2),

(b) (18x2 + 1)(x6 − 3x4 − 2) + (6x5 − 12x3)(6x3 + x),

(c) mxm−1(5x2 + 2x−n) + (10x− 2nx−n−1)(xm + 8),

(d) (16x3 + 4x)(xn+1 + 5xn) + ([n+ 1]xn + 5nxn−1)(4x4 + 2x2 − 1).

7.1.2 (a)
4

(1− 2x)2
, (b)

2x− 6x2 − 2x4

(2x3 + 1)2
,

(c) −2ax+ bx2 + 8ax3 + 6bx4

0.3(x2 + 2x4)2
, (d)

3b− 2ax− 3x2

(x2 + b)2
.

7.1.3 −5(1 + 4t)−2.

7.2 The composite function rule

7.2.1 (x4 − 2)3 + 1, (x3 + 1)4 − 2; 12x3(x4 − 2)2, 12x2(x3 + 1)3.

7.2.2 (a) 30(3x− 7)9, (b) 15x2(x3 + 1)4,

(c)
2

(4x+ 9)1/2
, (d)

4x5

(x6 − 1)1/3
, (e)

3(x1/4 + 5)5

2x3/4
,

(f)
4x3 − 6x+ 5

4(x4 − 3x2 + 5x+ 1)3/4
, (g) − 14x

(x2 − 1)8
, (h) − 20√

x (
√
x+ 2)6

.

7.2.3 (a) 2x(x3 + 1)5 + 15x2(x3 + 1)4(x2 − 1).

(b) (30x4 − 44
3 x

13/3 − 2
3x
−2/3)(x5 − 2)−4.

7.2.4 −1
4 .
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7.2.5 6
5(4 + 3t)−3/5.

7.2.6 By the composite function rule,

d

dx

(
1

v

)
=

d

dv

(
v−1
)
× dv
dx

= − 1

v2
dv

dx
.

Writing
u

v
= u× 1

v
and using the product rule,

d

dx

(u
v

)
=

1

v

du

dx
+ u

d

dx

(
1

v

)
=

1

v

du

dx
− u

v2
dv

dx
=

1

v2

(
v
du

dx
− udv

dx

)
.

7.2.7 By the composite function rule,

dy

dx
= −u−2 du

dx
=

2x−3 − x−2

(1− x−1 + x−2)2
.

Multiplying above and below by x4, we obtain the same result as before

7.3 Monotonic functions

7.3.1 (a) monotonic (↑); (b) monotonic (↑); (c) neither; (d) monotonic (↓); (e) neither;
(f) monotonic (↓); (g) weakly monotonic (↑); (h) monotonic (↑).
[↑ means increasing, ↓ decreasing.]

7.3.2 In (a) and (b), f ′(x) > 0 if |x| is large, f ′(x) < 0 if −2 − a < x < 2 − a (remember that
24 = 16). Thus (a) if x is unrestricted, the function cannot be monotonic for any value of a.
In (b), we require x > 0; the function is then monotonic increasing provided a ≥ 2 (because
in that case values of x which are less than 2− a may be ignored).

In (c), f(x) is monotonic decreasing if a ≥ 40−1/3 (0.2924 to 4 decimal places).

7.3.3
RHS =

1− x− (1 + x)

(1 + x)(1− x)
= − 2x

1− x2
= LHS.

As x increases, 1 + x rises and 1 − x falls; hence (1 + x)−1 falls and (1 − x)−1 rises, so the
difference between them falls.

7.4 Inverse functions

7.4.1 (a) 1
3(x2 + 1)−1, (b) (45x4 + 3x2 + 4)−1, (d) −1

6x
−5, (f) −1

2(x− 1)2;
(h) 1 if x < 0, 1

3 if x > 0, not differentiable at x = 0.

7.4.2 Demand function: x =
√

3− p (0 ≤ p ≤ 3).

Using equation (7.5) in the text, the elasticity is

3− x2

x×(−2x)
= − p

2(3− p)
.

7.4.3 p =
10

(x+ 1)1/3
,

10(2x+ 3)

3(x+ 1)4/3
.
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8 MAXIMA AND MINIMA

8.1 Critical points

8.1.1 If y = x2 then dy/dx = 2x. Hence dy/dx = 0 if x = 0, dy/dx < 0 if x = 0−, dy/dx > 0 if
x = 0+. Hence the graph has a minimum point at the origin; the same is true for y = xn,
where n is any even positive integer.

If y = x3 then dy/dx = 3x2. Hence dy/dx = 0 if x = 0, dy/dx > 0 if x = 0−, dy/dx > 0 if
x = 0+. Hence the graph has a critical point of inflexion at the origin; the same is true for
y = xn, where n is any odd integer greater than 1.

8.1.2 (1, 11) is a maximum point, (7,−97) is a minimum point.

y

x0

11

−97

1 7
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8.1.3 3/8 is a maximum value.

y

x
0

3
8

−1

1
1
2

8.2 The second derivative

8.2.1

(a) (b) (c) (d)

8.2.2 (4,−43) is a point of inflexion.

8.2.3 No points of inflexion.

8.2.3 Critical points of inflexion at (
√

3, 24
√

3) and (−
√

3,−24
√

3). Non-critical point of inflexion
at (0, 0).

y

x
0

−24
√

3

24
√

3

√
3−

√
3

Graph of inverse function is the same but with axes reversed.
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8.3 Optimisation

8.3.1 (1, 11) is a local maximum; (7,−97) is a local minimum. There are no global maxima and no
global minima.

When x ≥ 0 is imposed, (1, 11) is a local maximum, while (0, 1) and (7,−97) are local minima.
There are no global maxima but (7,−97) is now the global minimum.

8.3.2 (a) (1,−11) is a local minimum; (7, 97) is a local maximum. There are no global maxima
and no global minima.

(b) (1,−11) is a local minimum; (0,−1) and (7, 97) are local maxima. There are no global
minima; (7, 97) is the global maximum.

(c) (1, 115) is a local maximum; (7,−975) is a local minimum; there are no global maxima
and no global minima. When x ≥ 0 is imposed, (1, 115) is a local maximum, while (0, 1)
and (7,−975) are local minima. There are no global maxima; (0,−975) is the global
minimum.

8.3.3 (a) Marginal cost is x2 − 12x+ 160. By completing the square,
MC = (x− 6)2 + 124 ≥ 124 > 0.

(b) 8.

(24,24)

8.3.4 (a, f(a)) is the global maximum.

8.3.5
p

MC
=

η

1 + η
(or

ε

ε− 1
, where ε = |η|).

8.3.6 y > 0 if 0 < x < 1, y < 0 if x > 1. The only critical point is a global minimum at (2,−1/4).
The (non-critical) point of inflexion is at (3,−2/9). As x→∞ both x−1 and x−2 approach 0,
so y → 0 also. Since y = (1− x)x−2, y is the product of something close to 1 and something
very large if x is small, so y →∞ as x→ 0. Therefore, the asymptotes are the axes.

y

x0

−1/4

1 2 3
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8.4 Convexity and concavity

8.4.1 (a) and (d) are convex; (e) and (h) are concave.

(b) is neither convex nor concave because it has a critical point of inflexion at (0, 1); this is
easily shown using the method of Section 8.1.

(c) is neither convex nor concave because the second derivative has the same sign as x.

(f) is neither convex nor concave because it has a local minimum at the origin and local
maxima where x = ±1

2 .

(g) is neither convex nor concave because it has a local minimum at the origin and local
maxima where x = ±

√
2.5.

8.4.2 (2, 11).

8.4.3 (0, 3), (2, 11).

(a) Local minimum point is (1, 8), global maximum is (2, 11).

(b) No local minimum, global maximum is (2, 11).

(c) No local minimum, global maximum is (3, 0).

8.4.4 Assume −1 < x < 1. It is easiest to begin by noticing that y = (1 + x)−1 + (1− x)−1. Thus
d2y/dx2 = 2(1 + x)−3 + 2(1− x)−3 > 0, so the function is convex. The global minimum is at
(0, 2).

y

x

2

0 1−1

8.4.5 Profit Π is 50− 2x− 50

1 + x
.
d2Π

dx2
= −100(1 + x)−3 < 0, so Π is concave in x.

At optimum, x = 4 and p = 10.

8.4.6 Assume x > 0 throughout. d2y/dx2 = 2x−3 > 0, so the function is convex. Global minimum
at (1, 2). Asymptotes are y–axis and y = x.

x ≥ 1
2 : global minimum at (1, 2), local maximum at (12 ,

5
2).

x ≥ 2: global minimum at (2, 52), no local maximum.
0 < x ≤ 2: global minimum at (1, 2), local maximum at (2, 52).
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y

x0 1 2

2

9 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9.1 The exponential function

9.1.2 (a) £740.12, (b) £745.42, (c) £745.91. The more frequent the compounding, the greater is
the value.

With the shorter time period, we have (a) £540.80, (b) £552.49, (c) £552.58.

9.1.3 (a) £285.19, (b) £282.16, (c) £281.88. The more frequent the discounting, the smaller is the
value.

9.1.4 (a) 2e2x − 12e−4x, (b) (2x+ 1)e2x, (c)
1 + (1− x)ex

1 + ex)2
, (d) 12e3x(e3x − 1)3.

9.2 Natural logarithms

9.2.1 ln(1 + s).

9.2.2 (a)
1

x
, (b)

4x3

x4 + 1
, (c) 1 + lnx, (d) xx(1 + lnx), (e)

ex

ex + 1
, (f) exp(1 +x+ ex), (g)

2(1− x4)
x(1 + x4)

.

9.2.3 (a) Let y = cx, so that ln y = x ln c. Differentiating, and using the composite function rule
on the left-hand side,

1

y

dy

dx
= ln c, so

dy

dx
= y ln c = cx ln c.

(b) Let y = exp(−1
2x

2), so that ln y = −1
2x

2. Differentiating,

1

y

dy

dx
= −x, so

dy

dx
= −xy = −x exp(−1

2x
2).
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9.2.4 Critical points are (0, 0), (1, a) and (−1, a), where a = 1 − 2 ln 2 = −0.3863 to four decimal
places. The origin is a local maximum, the other two points are local minima.

y

x−1 10

a

9.2.5 dy/dx = (1 − x)e−x, which always has the same sign as 1 − x. Therefore, the only critical
point is (1, 1/e) and this is the global maximum.

d2y/dx2 = (x − 2)e−x, which always has the same sign as x − 2. So there is one point of
inflexion at (2, 2/e2), and the function is (a) convex for all x > 2, (b) concave for all x < 2.

9.2.6 (Aapa +Bbpb)
/

(Apa +Bpb) , which → b when p→ 0 and → a when p→∞.

9.3 Time in economics

9.3.1 (a) (b+ 2ct)/(a+ bt+ ct2), (b) (b+ c+ 2ct)/(a+ bt+ ct2).

9.3.2
b

a+ bt
, m,

b

a+ bt
−m.

9.3.3 (a) Apply ‘the economist’s favourite approximation’ where x is the rate of growth in discrete
time, as usually defined.

(b) Since ln(y/z) = ln y − ln z,

ln(Ct+1/Lt+1)− ln(Ct/Lt) = (lnCt+1 − lnCt)− (lnLt+1 − lnLt).

(c) In the notation of the text,
Ct+1

Lt+1
=

1 + gt
1 + ht

×Ct
Lt
.

If gt and ht are small then (1 + gt)/(1 + ht) ≈ 1, so C/L also grows slowly. But then

pt ≈ ln(Ct+1/Lt+1)− ln(Ct/Lt) by (a)
= (lnCt+1 − lnCt)− (lnLt+1 − lnLt) by (b)
≈ gt − ht by (a) again.

9.3.4 (a) r, (b) er − 1, (c) r.

9.3.5 (a) ln c, (b) c− 1, (c) ln c.

9.3.6 (a) yes, (b) no.
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10 APPROXIMATIONS

10.1 Linear approximations and Newton’s method

10.1.1 (a) y = 12x− 16, (b) y = 27x− 54.

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
12x− 16 9.2 10.4 11.6 12.8 14.0 15.2 16.4 17.6 18.8
27x− 54 2.7 5.4 8.1 10.8 13.5 16.2 18.9 21.6 24.3
x3 9.3 10.7 12.2 13.8 15.6 17.6 19.7 22.0 24.4

As x increases from 2 to 3, the tangent at x = 2 becomes a worse approximation to the true
function, while the tangent at x = 3 becomes a better one.

10.1.2 1.414. With the other starting point, the method leads to −1.414, an approximation to −
√

2.

10.1.3 2
3 , 0.678.

10.2 The mean value theorem

10.2.1 2.

10.2.2 ±1/
√

3.

10.2.3 (a) 0.64, (b)
ln(1 + r)− ln(1 + s)

r − s
, (c) 0.5.

10.3 Quadratic approximations and Taylor’s theorem

10.3.1 (a) L(x) = 4 ln 2 + (4 ln 2 + 2)(x− 2),
Q(x) = 4 ln 2 + (4 ln 2 + 2)(x− 2) + (ln 2 + 3

2)(x− 2)2.

x 1.80 1.95 2.02 2.10 2.25
L(x) 1.8181 2.5340 2.8680 3.2498 3.9657
Q(x) 1.9058 2.5394 2.8689 3.2718 4.1028
f (x) 1.9044 2.5394 2.8689 3.2719 4.1053

(b) f ′′′(x) =
2

x
, so

f ′′′(1)

3!
=

1

3
and

f ′′′(2)

3!
=

1

6
.

The cubic expansion of f(x) about x = 1 is C(x) = Q(x) + 1
3(x− 1)3, where Q(x) is the

quadratic expansion as in the text.

x 0.80 0.95 1.02 1.10 1.25
C(x) −0.1427 −0.0463 0.0206 0.1153 0.3490

The cubic expansion of f(x) about x = 2 is C(x) = Q(x) + 1
6(x− 2)3, where Q(x) is the

quadratic expansion as in part (a) of this exercise.

x 1.80 1.95 2.02 2.10 2.25
C(x) 1.9045 2.5394 2.8689 3.2719 4.1054

10.3.2 4x3 − 9x2 + 16x+ 5, 12x2 − 18x+ 16, 24x− 18, 24; all derivatives higher than the fourth are
zero.

5, 16, −18, 24; the coefficients of x, x2, x3, x4 are these values divided by 1!, 2!, 3!, 4!
respectively. The constant term is f(0) = −2.

For a polynomial of degree n, the nth order Taylor ‘approximation’ is the exact function.
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10.4 Taylor series

10.4.1 (a) 2.718 and 0.368, taking 7 terms in each case; (b) 0.1, 0.095, 0.0953.

True value is 0.0953 to 4 decimal places. The accuracy of the approximation is particularly
good because the terms of the expansion alternate in sign.

10.4.2
ex − 1

x
= 1 + x

[
1

2!
+
x

3!
+
x2

4!
+ . . .

]
.

The expression in square brackets approaches 1
2 as x→ 0.

10.4.3 (a) The series for ex expresses ex as the sum of x2/2 and other terms, all of which are
positive if x > 0. Therefore for all x > 0, ex/x > x/2, so 0 < xe−x < 2/x. Hence
limx→∞ xe

−x = 0.
y

x1 20

1/e y = xe−x

(b) Again from the series for ex, ex > x3/3! if x > 0. Therefore for all x > 0, ex/x2 > x/6,
so 0 < x2e−x < 6/x. Hence x2e−x → 0 as x→∞.
By a similar argument, if n is any positive integer, then 0 < xne−x < (n + 1)!/x for all
x > 0, so xne−x → 0 as x → ∞. More generally, if a is any positive real number then
xae−x → 0 as x→∞. To see why, let a > 0 and let n be an integer such that n > a. If
x > 1, then xa < xn. Hence xae−x is squeezed between 0 and xne−x for all x > 1 and
therefore approaches 0 as x→∞.

(c) Let y = − lnx. Then x = e−y and y →∞ as x ↓ 0. Thus

lim
x↓0

x lnx = − lim
y→∞

ye−y = 0,

by (a). Since xx = (elnx)x = ex lnx for all x > 0, limx↓0 x
x = e0 = 1.

10.4.4 2x+ 2
3x

3 + 2
5x

5 + . . ., valid for |x| < 1. ln 3 = 1.099, by taking 5 terms.

10.4.5 (a) 1 + 2x+ 2x2 + . . .+
2n

n!
xn + . . . , valid for all x.

(b) 3x− 9

2
x2 + 9x3 − . . .− (−3)n

n
xn + . . . , valid for −1

3 < x ≤ 1
3 .

(c) 1 +
x

2
− x2

8
+ . . .+

1
2
( 1
2
− 1) . . . ( 1

2
− [n− 1])xn

n!
+ . . . , valid for |x| < 1.

(d) 1 + 5x+ 25x2 + . . .+ 5nxn + . . . , valid for |x| < 1
5 .

10.4.6 (a) 1 + 3x+ 3x2 + x3, (b) 1 + 4x+ 6x2 + 4x3 + x4, (c) 1− 6x+ 12x2 − 8x3,
(d) x4 + 4x3y + 6x2y2 + 4xy3 + y4.
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11 MATRIX ALGEBRA

11.1 Vectors

11.1.1 Components of a+b are the sums of Anne’s and Bill’s weekly expenditures on food, clothing
and housing; components of 52a are Anne’s annual expenditures on food, clothing and housing.

11.1.2 The vectors are [
3
5

]
,

[
6
6

]
,

[
−4
−12

] [
2
−6

]
.

a + b is at the fourth vertex of the parallelogram of which the lines from the origin to a and
to b form two sides. 3a is at the end of the line obtained by stretching the line from the origin
to a by a factor of 3. −4b is the reflection of the end of the line obtained by stretching the
line from the origin to b by a factor of 4. 3a− 4b is at the fourth vertex of the parallelogram
of which the lines from the origin to 3a and −4b form two sides.

11.1.3 p = −1
2 , q = −5, r = 1.

11.1.4 In each part, denote the vectors by a,b, c.

(a) Yes: a + b− c = 0. (b) Linearly independent.

(c) Yes: a− 2b + c = 0. (d) Yes: 0a + 1b + 0c = 0.

(e) Linearly independent. (f) Yes: 2a + b− 2c = 0.

11.2 Matrices

11.2.1 [
6 0 7
−1 7 4

]
,

[
10 −5 0
5 15 25

]
,

[
−8 −2 −14

4 −8 2

]
,

[
2 −7 −14
9 7 27

]
.

11.2.2 wa is Anne’s total expenditure; w(a− b) is the difference between Anne’s total expenditure
and Bill’s.

11.2.3 Answers to (a), (b), (c) are respectively[
−x1
−x2

]
,

[
3x1
3x2

]
,

[
−2x1
−2x2

]
.

In (a), A maps x into its reflection in the origin. In (b), A maps x into the end of the line
obtained by stretching the line from the origin to x by a factor of 3. In (c), A maps x into the
reflection in the origin of the end of the line obtained by stretching the line from the origin
to x by a factor of 2.

11.2.4 Ax = 0, where

A =

[
1 −3 1
2 −4 4

]
.

x = λc is a solution for every scalar λ.

11.2.6
[

1 0
0 −1

]
.

11.2.7
1√
2

[
1 −1

1 1

]
.
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11.3 Matrix multiplication

11.3.1 
5 2 7
2 0 −2
−3 −2 −9

1 −2 −13

 ,


6 −4 1 1
8 −8 6 2
2 −4 5 1

18 −20 17 5

 , [
4 0
0 4

]
.

11.3.3 [
A1B1 O
O A2B2

]
11.3.4 [

0 1
−1 0

] [
1 0
0 −1

]
=

[
0 −1
−1 0

]
,

[
1 0
0 −1

] [
0 1
−1 0

]
=

[
0 1
1 0

]
.

The right-hand sides of the two equations are not the same: the effect of a reflection followed
by a rotation differs from that of the same rotation followed by the same reflection. [The
mapping g is clockwise rotation through a right-angle.]

11.4 Square matrices

11.4.1 Any square matrices of the same order which satisfy AB 6= BA will do.

11.4.2
[

0 −4
4 8

]
,
[
−4 −12
12 20

]
.

11.4.3 Examples are
[

0 0
1 0

]
and

[
−2 1
−4 2

]
.

Suggested method: let A =

[
a b
c d

]
and see what is required to make the off-diagonal entries

of A2 zero; then find what is needed to make the diagonal entries of A2 zero.

11.4.4  3a −a+ 2b 6a+ b− 5c
0 2d d− 5e
0 0 −5f


The product of two upper [lower] triangular matrices of the same order is upper [lower] trian-
gular.

12 SYSTEMS OF LINEAR EQUATIONS

12.1 Echelon matrices

12.1.1 Examples of matrices (a) and (b) are respectively ? · 0 ·
0 ? 0 ·
0 0 0 ·

 and


0 ? ·
0 0 ?
0 0 0
0 0 0

 ,
where ? denotes a non-zero number and · denotes a number which may be either zero or
non-zero.

In (a), x3 does not occur in the system of equations. In (b), x1 does not occur in the system
of equations.
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12.1.2 (a) x1 = −1
2 + 5

6λ−
1
3µ, x2 = 1

2(1 + λ), x3 = λ, x4 = µ.

(b) x1 = −2, x2 = 2, x3 = −5, x4 = −2.

(c) No solution.

(d) No solution.

(e) x1 = 1
2(7− λ− 3µ), x2 = λ, x3 = µ, x4 = −4.

12.2 More on Gaussian elimination

12.2.1 (a) x1 = −3
2λ− µ−

1
10 , x2 = λ− µ− 1

5 , x3 = λ, x4 = µ.

(b) No solution.

(c) x1 = λ, x2 = 1
3 − 2λ, x3 = λ.

12.2.2 x1 = −3λ, x2 = λ, x3 = 0.

After each elimination step, the right-hand sides stay at 0. Hence they can be omitted.

12.2.3 The left-hand sides of the systems are the same.
(a) x1 = 2, x2 = −1, x3 = 5. (b) x1 = 20, x2 = −5, x3 = −17.

12.3 Inverting a matrix

12.3.1 P

 a
b
c

 =

 b
c
a

, whence P−1

 u
v
w

 =

 w
u
v

. Therefore P−1 =

 0 0 1
1 0 0
0 1 0

.
12.3.2 Non-singular, singular, singular, non-singular.

12.3.3 [
1/5 1/5
−2/5 3/5

]
,

 −11/8 −1/8 1/2
−1/4 1/4 0

5/8 −1/8 −1/10

 ,
 3 −4 −9

3 −4 −8
−2 3 6

 .
(a) x1 = 4, x2 = 7. (b) x1 = 1, x2 = 3, x3 = −1.

12.3.4 If A has a row of zeros, reduction to echelon form leads to a Type 4 matrix. If A has a column
of zeros, there is a vector x with one component equal to 1 and all others equal to zero which
satisfies the equation Ax = 0; hence A is singular.

12.3.5 A−1 −A, 3B + 4A, C−1BA−1.

12.3.6 (a) If A were invertible we could pre-multiply AB = O by A−1; this gives B = O, contrary
to hypothesis. If B were invertible we could post-multiply AB = O by B−1; this gives
A = O, contrary to hypothesis.

(b) I + A is invertible with inverse I−A and vice versa.

12.3.7
1

t2 − 1

[
t −1
−1 t

]
.

If t = ±1, A is singular. To see why, let y =

[
−1

1

]
, z =

[
1
1

]
. If t = 1, Ay = 0; if t = −1,

Az = 0.
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12.4 Linear dependence and rank

12.4.1 (a) x1 = 0, x2 = 0, x3 = 0. The columns of A are linearly independent.
(b) x1 = 4λ, x2 = −4λ, x3 = λ for any λ. The columns of A are linearly dependent. For

example, α1 = 4, α2 = −4, α3 = 1.

12.4.2 (a) 2, (b) 1, (c) 2.

12.4.3 (a) 2, (b) 3, (c) 2, (d) 2, (e) 3, (f) 2.

12.4.4 (a) If Bx = 0 for some non-zero vector x, then ABx = 0.
(b) Yes: apply (a), with B replaced by the relevant submatrix.
(c) Choose the corresponding columns. For example, if columns 2, 4, 5 and 9 of AB are

linearly independent, so are columns 2, 4, 5 and 9 of B.
(d) rank of B ≥ rank of AB.

13 DETERMINANTS AND QUADRATIC FORMS

13.1 Determinants

13.1.1 −40, 1 + abc, −16.

13.1.2 All values except 0 and −3.

13.1.3 D5 Let A,B,C be 3×3 matrices. Let the second row of A be [u v w], the second row
of B [u′ v′ w′] and the second row of C [u + u′ v + v′ w + w′]. Let A,B,C be
otherwise identical; then they all have the same cofactors for the second row, say ũ, ṽ, w̃.
Expanding determinants by their second row,

detC = (u+ u′)ũ+ (v + u′)ṽ + (w + w′)w̃

= (uũ+ vṽ + ww̃) + (u′ũ+ v′ṽ + w′w̃)

= detA + detB.

The same argument applies when ‘second’ is replaced by ‘first’ or ‘third’.
D6 Let A and B be 3×3 matrices. Let the second row of A be [u v w], and let the second

row of B be [λu λv λw]. Let A and B be otherwise identical; then they both have the
same cofactors for the second row, say ũ, ṽ, w̃. Expanding determinants by their second
row,

detB = λuũ+ λvṽ + λww̃ = λ(uũ+ vṽ + ww̃) = λ detA.

The same argument applies when ‘second’ is replaced by ‘first’ or ‘third’.

13.2 Transposition

13.2.1  −1 3 0
0 2 −1
1 −4 1


13.2.2 The determinant is −1 and the adjoint is −3 4 9

−3 4 8
2 −3 −6

 .
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13.2.3 Letting p = (1 + abc)−1 we have x = (1− b+ ab)p, y = (1− c+ bc)p, z = (1− a+ ca)p.

13.2.4 The three-equation system may be written in matrix form as 1 −1 0
−c1 1 c1
−t1 0 1

 Y
C
T

 =

 I +G
c0
t0

 .
Solution by Cramer’s rule gives the same answers as for Problem 2–1: see “Solutions to
Problems”.

13.3 Inner products

13.3.1 Since bTa = aTb, (λa + µb)T(λa + µb) = λ2aTa + 2λµaTb + µ2bTb. L3 now follows from
the fact that xTx = ‖x‖2 for every vector x.

13.3.2 |aTb| ≤ 1 by L4, so −1 ≤ aTb ≤ 1. Examples:

(a)

[
1
0

]
,

[
1
0

]
; (b)

[
1
0

]
,

[
−1

0

]
; (c)

[
1
0

]
,

[
0
1

]
; (d)

[
0.8
0.6

]
,

[
0.6
0.8

]
.

13.3.3 Immediate from L3 and the fact that (−1)2 = 1.

13.3.4 For any invertible matrix A, det(A−1) = (detA)−1 and det(AT) = detA. In the special case
where A−1 = AT, (detA)−1 = detA, so detA = ±1.

Examples:
[

1 0
0 1

]
,
[

0 1
1 0

]
.

13.3.5 Denoting the matrix
1√
2

[
1 −1

1 1

]
by A, we see that

ATA =
1

2

[
1 1

−1 1

][
1 −1

1 1

]
=

[
1 0

0 1

]
.

13.3.6 For example

 1 0
0 1
0 0

, which is not an orthogonal matrix because it is not square.

13.3.7 λ =
1√
2
, µ =

1

3
, ν =

1

3
√

2
or their negatives.

13.4 Quadratic forms and symmetric matrices

13.4.1 If a =

[
a1
a2

]
then aaT =

[
a21 a1a2
a1a2 a22

]
.

If a is an n–vector, aaT is a symmetric n×n matrix.

13.4.2 
n∑
i=1

x21i

n∑
i=1

x1ix2i

n∑
i=1

x1ix2i

n∑
i=1

x22i



25



13.4.3 Let C = BTAB. Then CT = BTAT(BT)T. AT = A by assumption and (BT)T = B always,
so CT = C as required.

13.4.4 q(x1, x2, x3) = x21 + (x2 − 1
2x3)

2 + 3
4x

2
3 ≥ 0. If q(x1, x2, x3) = 0 then x1, x2 − 1

2x3 and x3 are
all 0, so x2 is also 0. Hence q is positive definite. 1 0 0

0 1 −1
2

0 −1
2 1



13.4.5 The matrix A is
[

2 2
2 3

]
, which has positive diagonal entries and determinant 2.

13.4.6 (a) t >
√

2, (b) t =
√

2, (c) t < −
√

2, (d) t = −
√

2, (e) −
√

2 < t <
√

2.

13.4.7 Positive definite, indefinite, negative semidefinite.

13.4.8 The fact that CTC is symmetric follows immediately from the rules (AB)T = BTAT and
(AT)T = A. For any k–vector w, wTCTCw = ‖Cw‖2 ≥ 0. In particular, wTCTCw > 0
if Cw 6= 0, which happens if w 6= 0 and the columns of C are linearly independent. Thus
CTC is always positive semidefinite, and is positive definite if the columns of C are linearly
independent, which requires that k ≤ n.

14 FUNCTIONS OF SEVERAL VARIABLES

14.1 Partial derivatives

14.1.1 (a)
[

3
12y2

]
,

[
0 0
0 24y

]
.

(b)
[

3x2 ln y + 12xy3 + 2e2xy
x3/y + 18x2y2 + e2x

]
,

[
6x ln y + 12y3 + 4e2xy 3x2/y + 36xy2 + 2e2x

3x2/y + 36xy2 + 2e2x −x3/y2 + 36x2y

]
.

(c) −(x2 + 4y2)−3/2
[
x
4y

]
, 2(x2 + 4y2)−5/2

[
x2 − 2y2 6xy

6xy −2x2 + 16y2

]
.

(d)
[

(1− 2x− 8y)e−2x + e3y

4e−2x + (4− 3x− 12y)e−3y

]
,

[
4(−1 + x+ 4y)e−2x −8e−2x − 3e−3y

−8e−2x − 3e−3y 3(−8 + 3x+ 12y)e−3y

]
.

14.1.2 (a)
[

6x
10y4

]
,

[
6 0
0 40y3

]
;

[
6

160

]
,

[
6 0
0 −320

]
.

(b)
[

6xy3 + 6x2y2

9x2y2 + 4x3y

]
,

[
6y3 + 12xy2 18xy2 + 12x2y

18xy2 + 12x2y 18x2y + 4x3

]
;

[
−24

28

]
,

[
0 48

48 −32

]
.
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(c) (x2 + y2)−2
[
−3x2 + 3y2 + 4xy
−2x2 + 2y2 − 6xy

]
,

(x2 + y2)−3
[

6x3 − 12x2y − 18xy2 + 4y3 4x3 + 18x2y − 12xy2 − 6y3

4x3 + 18x2y − 12xy2 − 6y3 −6x3 + 12x2y + 18xy2 − 4y3

]
;

[
1/25

18/25

]
,

[
−74/125 −32/125
−32/125 74/125

]
.

(d)
[

ln(1 + y2)
2xy/(1 + y2)

]
, 2(1 + y2)−2

[
0 y + y3

y + y3 x(1− y2)

]
;

[
ln 5
−0.8

]
,

[
0 −0.8
−0.8 −0.24

]
.

14.1.3 −2x2 − y2 + 2xy + 25x+ 20y, −4x+ 2y + 25, −2y + 2x+ 20.

You would have needed first to find pX and pY in terms of x and y.

14.1.4 −2, −1
2 ,

1
2 ,

1
2 .

14.2 Approximations and the chain rule

14.2.1 (a) 0.17, (b) 0.36, (c) 0.53, (d) 0.33.

14.2.2 6(3x2y4 + ey)− 3(4x3y3 + xey).

14.2.3  y2

2xy + z2

2yz

 , 2

 0 y 0
y x z
0 z y

 .


x22
2x1x2 + x23
2x2x3 + x24
2x3x4 + x25

2x4x5

 , 2


0 x2 0 0 0
x2 x1 x3 0 0
0 x3 x2 x4 0
0 0 x4 x3 x5
0 0 0 x5 x4

 .

14.2.4 (a) −x1
4t

, −x2
2t

. (b) −x1
4t

, −x2
2t

, −2x1
u

,
x2
2u

.

Rate of change of quantity demanded of good 1 if the exchange rate is held constant.

14.2.5
∂f

∂Y
+
∂f

∂T
g′(Y ).

14.3 Production functions

14.3.1 K/(K + L), K2
/

(K + L)2 .

14.3.2 (a) Letting Z = δKγ + (1− δ)Lγ , we have Qγ = AγZ, so by the composite function rule

γQγ−1
∂Q

∂K
= Aγ

∂Z

∂K
= AγδγKγ−1.

Simplifying, ∂Q/∂K = δAγ(Q/K)1−γ . Similarly, the marginal product of labour is
(1− δ)Aγ(Q/L)1−γ .
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(b) Let Z be as in the answer to (a) and let W = ZK−γ = δ + (1 − δ)(L/K)γ . Then
Q/K = AZ1/γK−1 = AW 1/γ . If 0 < γ < 1, Q/K is an increasing function of W and W
is an increasing function of L/K; if γ < 0, Q/K is a decreasing function of W and W is
a decreasing function of L/K; so in both cases, Q/K is an increasing function of L/K.
Using the answer to (a) and the fact that γ < 1, we see that ∂Q/∂K is also an increasing
function of L/K. In particular, ∂Q/∂K is a decreasing function of K for given L, so we
have diminishing returns to capital. Diminishing returns to labour is proved similarly.

14.3.3 α < 1, β < 1.

14.3.4 αm+ βn.

14.4 Homogeneous functions

14.4.1 Decreasing if α+ β < 1, constant if α+ β = 1, increasing if α+ β > 1.

Q = AKαL1−α (A > 0, 0 < α < 1).

14.4.2 Constant.

Decreasing if ν < 1, constant if ν = 1, increasing if ν > 1.

14.4.3 Let x1 = f1(p1, p2,m) and denote the own-price elasticity, the cross-price elasticity and the
income elasticity by a, b, c respectively. Then

a =
p1
x1

∂f1
∂p1

, so p1
∂f1
∂p1

= ax1.

Similarly, p2
∂f1
∂p2

= bx1 and m
∂f1
∂m

= cx1. Applying Euler’s theorem with r = 0 we see that

ax1 + bx1 + cx1 = 0, whence a+ b+ c = 0.

15 IMPLICIT RELATIONS

15.1 Implicit differentiation

15.1.1 (a) −x(4− x2)−1/2, (b) −x/y.

15.1.2 Similar to Example 1.

15.1.3

y

0 x

T1

T2

I1

I2
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The tangents T1 and T2 are parallel.

Answer to last part is yes. If the utility function is homogeneous of degree r, its partial
derivatives are homogeneous of degree r− 1, so their ratio is homogeneous of degree 0. Hence
the slope of the indifference curve at any point on the line y = cx is the same as the slope of
the indifference curve at the point (1, c).

15.1.4 Q−2 = aK−2 + bL−2, so −2Q−3(∂Q/∂K) = −2aK−3, whence ∂Q/∂K = a(Q/K)3. Similarly
∂Q/∂L = b(Q/L)3. The slope of an isoquant is therefore given by

dL

dK
= −a

b

(
L

K

)3

,

which is obviously negative. Notice also that |dL/dK| is an increasing function of L/K:
so as we move rightward along an isoquant, increasing K and decreasing L, |dL/dK| falls.
Therefore, isoquants are convex.

Asymptotes are K = Q
√
a, L = Q

√
b.

L

0 K

15.2 Comparative statics

15.2.1 Y = m(a + I), C = m(a + bI), ∆Y = m(I1 − I0) where m = 1/(1 − b). Assuming I1 > I0,
∆Y is positive and in fact greater than I1 − I0.

15.2.2 1 /(1− f ′(Y )) , which is greater than one.

15.2.3 (a) Letting g be the inverse function of f , we may write the equation x/s = f(p) in the form
p = g(x/s). Hence revenue px is equal to xg(x/s). Since f is a decreasing function, so
is g. Profit-maximising output x is given by

g(x/s) + (x/s)g′(x/s) = c1.

This determines x/s, given c1; so when s increases, x increases by the same proportion
and p does not change.

(b) It is easiest to work with the variable z = x/s. We know from the answer to (a) that MR
is g(z)+zg′(z), which we denote by h(z). Hence the first-order condition for a maximum,
MR = MC, may be written h(z) = c1 + 2c2sz.
Suppose s increases. Since c2 > 0, the profit-maximising z decreases, as may be seen
from the second-order condition and/or a diagram. Hence p increases. Under the usual
assumption that h is a decreasing function, sz increases, so x increases (but by a smaller
proportion than s).
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15.3 Generalising to higher dimensions

15.3.1 (a)
[

2x −2y
2y 2x

]
, (b)

[
2x −2y
2yz 2xz

]
.

15.3.2 (a) p = y(3+4α)/γ , P = y(12+β)/γ , where γ = 18− 2αβ.

(b) Sufficient, but not necessary, conditions for dp/dY and dP/dY to be positive are α > 0,
β > 0 and αβ < 9.

(c) α > 0 corresponds to ∂f/∂P > 0; β > 0 corresponds to ∂F/∂p > 0; αβ < 9 corresponds
to cross-price effects being small.

16 OPTIMISATION WITH SEVERAL VARIABLES

16.1 Critical points and their classification

16.1.1
∂f

∂x
= 5y − 4x,

∂f

∂y
= 5x− 4y. Both are zero if x = y = 0.

(a) f(x, 0) = −2x2, which is maximised at x = 0.

(b) f(0, y) = −2y2, which is maximised at y = 0.

(c) f(x, x) = x2, which is minimised at x = 0.

To draw the contour map, notice first that

f(x, y) = −(x− 2y)(2x− y)

for all (x, y). Thus f(x, y) = 0 on each of the two straight lines y = 1
2x and y = 2x, labelled

L and M respectively in the diagram below. On a straight line of the form y = tx, where
1
2 < t < 2, f(x, y) > 0 at each point other than the origin, and f(x, y) increases as we move
away from the origin in either direction. On every other straight line through the origin,
f(x, y) < 0 at each point other than the origin, and f(x, y) becomes more negative as we
move away from the origin. The contour diagram is therefore as follows.

y

x

L

M

16.1.2 (a) local minimum, (b) local maximum, (c) saddle point, (d) saddle point.

By considering small movements away from x = 0, y = 0 and using the fact that, for instance,
x2 > 0 for x 6= 0.
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16.1.3 In each case, the Hessian is the zero matrix at x = 0, y = 0, so the test in terms of the
Hessian fails. The alternative method of Exercise 16.1.2 gives the following results: (a) local
minimum, (b) local maximum, (c) saddle point, (d) saddle point.

16.1.4 The gradient is obviously zero. In the direction of the y–axis, the function has a point of
inflexion at the origin. Thus the origin is not a maximum or a minimum point. Nor is it
a saddle point, because the function does not have a local maximum at the origin in any
direction. To prove this, it suffices to consider directions other than that of the y–axis. Let
a and b be constants such that a 6= 0. If (x, y) = (λa, λb), then z = λ2(a2 + λb3), which is
positive if λ is sufficiently close, but not equal, to zero.

16.1.5 (a) Saddle point at (4,−2, 32), local minimum point at (12,−6, 0).

(b) Saddle point at (0, 0, 0), local minimum points at (−1,−1,−1) and (1, 1,−1).

(c) Local minimum points at (−1,−1,−2) and (1, 1,−2), saddle point at (0, 0, 0).

16.2 Global optima, concavity and convexity

16.2.1 In Exercises 16.1.2a and 16.1.3a, (0, 0, 0) is the global minimum. In Exercises 16.1.2b and
16.1.3b, (0, 0, 0) is the global maximum.

16.2.2
[
−4x+ 4y + 10

4x− 6y − 14

]
,

[
−4 4

4 −6

]
, 27/2.

16.2.3 9 of X, 6 of Y.

16.2.4 0, 1.

(a) D2f(x, y) is a diagonal matrix with negative diagonal entries.

(b) H(u) = expu and exp is a strictly increasing function.

[For any constant k, the surface z = g(x, y) intersects the plane y = kx in a bell-shaped curve;
hence g is not a concave function.]

16.2.5 (a) Let 0 ≤ α ≤ 1. Also let

A = f
(
αx1 + (1− α)x2, αy1 + (1− α)y2, αz1 + (1− α)z2

)
− αf(x1, y1, z1)− (1− α)f(x2, y2, z2),

B = g
(
αx1 + (1− α)x2, αy1 + (1− α)y2

)
− αg(x1, y1)− (1− α)g(x2, y2).

f is concave if and only if A ≥ 0 for all values of the arguments, while g is concave if and
only if B ≥ 0 for all values of the arguments. But A = B, by assumption.

(b) Let 0 ≤ α ≤ 1. Then

u
(
αx1 + (1− α)x2, αy1 + (1− α)y2

)
− αu(x1, y1)− (1− α)u(x2, y2)

= 3
[
f
(
αx1 + (1− α)x2, αy1 + (1− α)y2

)
− αf(x1, y1)− (1− α)f(x2, y2)

]
+ 4

[
g
(
αx1 + (1− α)x2, αy1 + (1− α)y2

)
− αg(x1, y1)− (1− α)g(x2, y2)

]
If f and g are concave, then the RHS of this equation is non-negative for all values of
the arguments, so u is concave. If g is also linear then −g is also concave; in this case
concavity of v may be proved in the same way as concavity of u, with g replaced by −g.
Answer to last part is no: if g is concave and nonlinear and f = 2g, then v and f are
the same concave function.
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16.2.6 The sum of three convex functions is convex.

16.2.7 (a) Denote the Hessian by H. Then one diagonal entry of H has the same sign as α(α− 1),
the other has the same sign as β(β − 1), and detH has the sign of

αβ(α− 1)(β − 1)− α2β2 = αβ(1− α− β).

Since α and β are positive, detH has the same sign as 1− α− β. Thus if α+ β > 1 the
function is not concave; if α+ β ≤ 1 the function will be concave provided the diagonal
entries of H are non-positive. But the three inequalities α > 0, β > 0 and α + β ≤ 1
imply that 0 < α < 1 and 0 < β < 1, and hence that the diagonal entries of H are
negative; therefore α+ β ≤ 1 is sufficient as well as necessary for concavity.

(b) U is concave because its Hessian is a diagonal matrix with negative diagonal entries, V
is concave if and only if α+ β ≤ 1.

16.3 Non-negativity constraints

16.3.1 19/2.

16.3.2 25/3 of X, 0 of Y.

16.3.3 x1 = 0, x2 = 9, profit is 28.5. For any given x ≥ 0, revenue is independent of how x is split
between x1 and x2, cost is lowest when x1 = 0, x2 = x.

17 PRINCIPLES OF CONSTRAINED OPTIMISATION

17.1 Lagrange multipliers

17.1.1 3. The optimum is where the line 3x+ 4y = 12 is tangent to the highest attainable member
of the family of curves xy = k.

17.1.2 4
√

6. The optimum is where the curve xy = 2 is tangential to the lowest attainable member
of the family of straight lines 3x+ 4y = k.

With the alternative constraint, the optimum is attained at the same values of x and y as in
Exercise 17.1.1.

17.1.3 375/7.

17.1.4 2
√

5, −2
√

5. The maximum is at the point of tangency of the circle x2 + y2 = 4 and the
highest attainable member of the family of straight lines 2x+ y = k. The minimum is at the
point of tangency of the same circle and the lowest attainable member of the same family of
straight lines.

17.1.5 (a) The circle x2 + y2 = k meets the straight line 2x + y = a for arbitrarily large k. Hence
there is no solution.

(b) The solution is where the straight line 2x+ y = a is tangential to the smallest attainable
member of the family of circles x2 + y2 = k.

17.2 Extensions and warnings

17.2.1 3
√

14, −3
√

14.

17.2.2 32/3.

17.2.3 4/3.
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17.3 Economic applications

17.3.1 (a) Maximise xα1x
β
2 subject to p1x1 + p2x2 = m.

(b) αxα−11 xβ2 = λp1, βx
α
1x

β−1
2 = λp2. They are sufficient because the indifference curves are

negatively sloped and convex.

x1 =
αm

(α+ β)p1
, x2 =

βm

(α+ β)p2
.

(c)
α

α+ β
and

β

α+ β
are the proportions of income spent on the two goods.

17.3.2 (a) Minimise rK + wL subject to AKαLβ = q.
(b) r = µαAKα−1Lβ, w = µβAKαLβ−1. They are sufficient because the isoquants are

negatively sloped and convex.

K =

([
αw

βr

]β q
A

) 1
α+β

, L =

([
βr

αw

]α q

A

) 1
α+β

.

(c) C =
[
γrαwβ(q/A)

]1/(α+β), where γ is a constant depending on α and β. Doubling both
r and w doubles total cost. Doubling q multiplies total cost by the factor 21/(α+β).
[If α + β = 1 then C = p̄q, where p̄ is as defined at the end of our solution to Problem
16–2. Profit is then (p− p̄)q, where p is the price of the product; the final results in that
solution follow immediately.]

17.4 Quasi-concave functions

17.4.1 The isoquants are negatively sloped and convex. The function is concave for ν ≤ 1.

17.4.2 U is concave, Ũ is quasi-concave.

17.4.3 Convex objective function, linear constraint. v(b) = 1
2b

2.

17.4.4 Convex objective function, linear constraint. First-order conditions and constraint imply that
x = y3 and y3 + 2y = b. If b = 3, these conditions are satisfied by x = y = 1, so v(3) = 2.

18 FURTHER TOPICS IN CONSTRAINED
OPTIMISATION

18.1 The meaning of the multipliers

18.1.1 k2/48, k/24.

(a) 49/48, (b) 4/3, (c) 27/25, (d) 7/24.

The increase in the maximum value when k increases from 7 to 7.2 is approximately 0.2 times
the value of the Lagrange multiplier when k = 7.

18.1.2 First method: v′(b) =
d

db

(
b2/2

)
= b. To apply the second method, let the Lagrange multiplier

be λ. The first-order conditions and the constraint imply that λ = b, so v′(b) = b.

18.1.3 Let the Lagrange multiplier be λ. The first-order conditions imply that λ = 2x. We know
that if b = 3 then v(b) = 2 and x = 1 at the optimum. Hence v′(3) = λ = 2 and the small
increments formula tells us that v(3.01) ≈ 2 + 0.1×2 = 2.02.
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18.1.4 b1 ln(βm′/p1) + b2 ln((1− β)m′/p2), where β = b1/(b1 + b2) and m′ = m− p1c1 − p2c2.
Since the indirect utility function may be written in the form

V (p1, p2,m) = (b1 + b2) lnm′ +W (p1, p2)

and
∂m′

∂m
= 1,

∂V

∂m
=
b1 + b2
m′

.

To verify equation (18.4) of the text, we must show that this expression is equal to λ, the
Lagrange multiplier evaluated at the optimum. In fact,

λ =
1

p1

∂U

∂x1
=

b1
p1(x1 − c1)

,

where x1 and x2 are also evaluated at the optimum. Then p1(x1 − c1) = βm′, so

λ =
b1
βm′

=
b1 + b2
m′

.

18.1.5 Let a constrained maximum be attained at (x∗, y∗, z∗, w∗). Then the function

f(x, y, z, w)− v
(
g(x, y, z, w), h(x, y, z, w)

)
attains its unconstrained maximum at (x∗, y∗, z∗, w∗). The first-order conditions for this
unconstrained maximum give the Lagrange multiplier rule.

18.2 Envelope theorems

18.2.1 (a) Upward-sloping convex curves in the non-negative quadrant, hitting the vertical axis at
the points (0, b/4), (0, b) and (0, 4b) respectively. For any given Q > 0 the slope of
the curve is less, the greater is K. Crossing points: C(12 , Q) = C(1, Q) at Q = 1/

√
2,

C(1, Q) = C(2, Q) at Q =
√

2 and C(12 , Q) = C(2, Q) at Q = 1,
(b) Minimising C(K,Q) with respect to K we have K = Q, in which case C = 2bQ2.
(c) The slope of the short-run cost curve is 4bK−2Q3 . At the point where the curve meets

the long-run cost curve, Q = K. At that point the slope of the short-run cost curve is
equal to 4bQ, which is the slope of the long-run cost curve.

18.2.2 (a) A = 3(αβ2Q/4)1/3. The curve lies in the non-negative quadrant. It is positively sloped,
concave and passes through the origin, where its slope is infinite.

(b) A = 2(αβ2Q)1/3. The curve is similar to that in (a) but is above it except at the origin
where the two curves meet. [3×4−1/3 ≈ 1.89 < 2.]

18.2.3 Denote the Lagrangian by L(x1, . . . , xn, λ, p1, . . . , pn,m). By the envelope theorem,

∂V/∂pi = ∂L/∂pi = −λxi, ∂V/∂m = ∂L/∂m = λ;

Roy’s identity follows by division.

18.2.4 Let β = b1/(b1 + b2) and m′ = m− p1c1 − p2c2 as in the earlier exercise. Then

∂V

∂p1
= − b1

p1
+ (b1 + b2)

∂

∂p1
(lnm′) = −(b1 + b2)

(
β

p1
+
c1
m′

)
,

∂V

∂p2
= −(b1 + b2)

(
1− β
p2

+
c2
m′

)
,

∂V

∂m
= (b1 + b2)

∂

∂m
(lnm′) =

b1 + b2
m′

.

Hence by Roy’s identity,

x1 =
βm′

p1
+ c1, x2 =

(1− β)m′

p2
+ c2.
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18.3 Non-negativity constraints again

18.3.1 (a) 40 at (5, 1), (b) 5 at (1, 0).

18.3.2 Let the utility function be U and let β = b1/(b1 + b2). If m > 3p1 +
5β

1− β
p2,

quantities demanded are

x1 = 3 +
β

p1
(m− 3p1 + 5p2), x2 = −5 +

1− β
p2

(m− 3p1 + 5p2).

If 3p1 < m ≤ 3p1 +
5β

1− β
p2, quantities demanded are x1 = m/p1, x2 = 0.

Now let the utility function be Ũ . Again let β = b1/(b1 + b2); also let

a1 =
3(1− β)

β
p1 − 5p2, a2 =

5β

1− β
p2 − 3p1.

Then a1 and a2 are of opposite signs. If m > a1 ≥ 0 ≥ a2 or m > a2 > 0 > a1, quantities
demanded are

x1 = −3 +
β

p1
(m+ 3p1 + 5p2), x2 = −5 +

1− β
p2

(m+ 3p1 + 5p2).

If a1 < 0 < m ≤ a2, quantities demanded are x1 = m/p1, x2 = 0. If a2 < 0 < m ≤ a1,
quantities demanded are x1 = 0, x2 = m/p2.

18.3.3 (a) 25, 200; (b) 12.5, 0.

18.4 Inequality constraints

18.4.1 (a) 0 at (1, 1), (b) 4/25 at (19/25, 17/25).

18.4.2 (a) The Lagrangian is f(x, y) + λx + µy, where the multipliers λ and µ are required to be
non-negative.

(b) The Lagrangian is f(x, y)−λg(x, y)+µx+νy, where the multipliers µ and ν are required
to be non-negative.

(c) ∂L/∂x ≤ 0 with equality if x > 0, ∂L/∂y ≤ 0 with equality if y > 0,
λ ≥ 0, g(x, y) ≤ 0 and λg(x, y) = 0.

18.4.3 (a) Yes.

(b) No: z = xy, defined for all real numbers x and y, is not a quasi-concave function.
Conditions are satisfied by x∗ = y∗ = λ∗ = 0, which is obviously not optimal.

(c) x = y = −1−
√

2.5, solution value 6.66 to 2 decimal places.

(d) x = y =
√

2.5− 1, solution value 0.34 to 2 decimal places.

19 INTEGRATION

19.1 Areas and integrals

19.1.1 1
2

(
32 − (−2)2

)
= 9

2 −
4
2 = 5

2 .

This is the difference between the areas of two right-angled triangles, one with base = height =
3, the other with base = height = 2.
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19.1.2 1
2c(b

2 − a2).

19.1.3 17, the sum of the areas of a 5×3 rectangle and a right-angled triangle with base = height = 2.

19.1.4 2x6, 1330.

19.2 Rules of integration

19.2.1 (a)
x8

8
+ C, (b) 2

√
x+ C, (c) C − 1

4e4t
.

19.2.2 (a) 31/5, (b) −5/2, (c) 4(e3/4 − 1).

19.2.3 (a) 1
2x

4 + 3
2x

2 − x+ C, (b) 2x3/2 − 4 ln |x| − x+ C, (c) 2
5e

5t − e−5t − 5
2 t

2 + C.

19.2.4 (a) 11, (b) 4(
√

2− ln 2)− 3, (c) 2
5(e10 − e5)− e−10 + e−5 − 15

2 .

19.2.5 (a) 1
3x

3 − x2 − 3x+ C, (b) 4
3x

3/4 − 6 ln |x|+ C, (c) 1
5(e5x − e−5x) + ex − e−x + C.

19.2.6 2 ln(1 + 3)− 2 ln(0 + 3) = 2 ln 4
3 .

Range of integration [−5, −4]: the limits are on the same side of −3 and the integral is −2 ln 2.

Range of integration [−4, −2]: the limits are on opposite sides of −3, so the integral is not
defined.

19.2.7
∫ (

4 +
13

x− 3

)
dx = 4x+ 13 ln |x− 3|+ C.

19.3 Integration in economics

19.3.1 6x− x2, p = 6− x.

19.3.2 8, 8(33/2 − 1), 8×33/2, 8t3/2 + 25.

19.3.3 (a) (Y/r)(erT − 1), (b) (Y/r)(1− e−rT ).

19.4 Numerical integration

19.4.1 11.5.

19.4.2 0.835.

19.4.3 ln 2.

(a) 0.708, (b) 0.694. The true value is 0.693 to 3 decimal places, so approximation (b) is much
more accurate than (a).

19.4.4 1/(n+ 1),
(
1 + 22−n

)
/6.

4.12%, 12.5%.

19.4.5 3666.67, 0.27.

19.4.6 (400− 2q1 − q2 − 2q3 − q4 − 2q5)/450, 8/9. The approximation is more accurate than the one
given in the text if the true value of the Gini coefficient is close to 1.

36



20 ASPECTS OF INTEGRAL CALCULUS

20.1 Methods of integration

20.1.1 (a) 2
15(3x− 2)(x+ 1)3/2 + C, (b) 18

125 .

20.1.2 (a) (x+a)(ln(x+a)−1) +C, (b) 1
4(x+a)2(2 ln(x+a)−1) + (b−a)(x+a)(ln(x+a)−1) +C.

20.1.3 (a)
∫

(t2 − 1)t(2t)dt =

∫
(2t4 − 2t2)dt = 2

15(3t2 − 5)t3 +C. Substituting t = (x+ 1)1/2 into

this expression, we obtain the same answer as before.

(b)
∫ 1

0
(u2 + 1)u(2u du) =

∫ 1

0
(2u4 + 2u2)du = 2

5 + 2
3 = 16

15 .

20.1.4 (a) (x2 + 1)11/22, (b) 1
4 exp(x4 + 1) + C, (c) 3 ln(x2 + 1) + C.

20.1.5 3
2

(
exp

(
−a2/3

)
− exp

(
−b2/3

))
.

20.1.6 ln(1 + ex) + C, 2 + ln 2− ln(1 + e2), ln(1 + e2)− ln 2.

20.2 Infinite integrals

20.2.1 (a) 2
(
1−X−1/2

)
, 2.

(b) lnX →∞ as X →∞.

(c) Integral exists for α > 1.

20.2.2 (a) 3
2(1− δ2/3), 3

2 .

(b) ln δ → −∞ as δ ↓ 0.

(c) Integral exists for α < 1.

20.2.3 c.

20.2.4 3
2(e−γ − e−1) where γ = δ2/3, 3

2(e−1 − e−Y ) where Y = X2/3, 3/2.

20.2.5 Let t > 0. By integration by parts,∫ ∞
0

xte−x dx =
[
−xte−x

]∞
0

+ t

∫ ∞
0

xt−1e−x dx.

xte−x takes the value 0 when x = 0 (since t > 0) and approaches 0 as x→∞ (by the answer
to Exercise 10.4.3). Hence the first term on the right-hand side of the equation is 0, and
Γ(t+ 1) = tΓ(t). Since Γ(1) = 1, it follows that Γ(n) = (n− 1)! for every positive integer n.

20.3 Differentiation under the integral sign

20.3.1 LHS =
d

dr

(
Y

r

[
1− e−rT

])
= −Y

r2
(
1− e−rT

)
+
Y T

r
e−rT . By integration by parts,

RHS =
Y T

r
e−rT −

∫ T

0

Y

r
e−rtdt =

Y T

r
e−rT − Y

r2
(
1− e−rT

)
= LHS.

A similar but simpler argument applies when T is replaced by ∞.
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20.3.2 (a) −
∫ 5
1 (x+ y)−2f(x) dx,

(b) f(y exp y) exp y +
∫ exp y
1 xf ′(xy) dx,

(c) −f(0)−
∫ 1
y f
′(x− y) dx, (d) f(1− y).

By making the substitution x = y+u, we may evaluate the answer to (c) as −f(1−y), so the
answers to (c) and (d) sum to zero. The reason for this is as follows. Substituting x = y + u
in the integral of (c), and x = u in the integral of (d), we may write the sum of these integrals
as
∫ 1
0 f(u) du, which is independent of y.

20.4 Double integrals

20.4.1
9

5
.

20.4.2 1.

20.4.3 −1568

15
.

20.4.4
1

18
.

21 PROBABILITY

21.1 Events and their probabilities

21.1.1
1

4
,

1

4
,

1

8
,

3

8
.

21.1.2
11

45
.

21.1.3 P (A) + P (B) + P (C)− P (B ∩ C)− P (C ∩A)− P (A ∩B) + P (A ∩B ∩ C).

21.1.4 1−
(
17
3

)/ (
20
3

)
= 23/57.

21.1.5 0.063, 0.3276.

21.2 Conditional probability and independence

21.2.1 2
3 .

21.2.2 No, because P (E|F ) = 1
4 .

21.2.3 Let A be the event that she answers correctly, B the event that she knew the answer. Let x
be the required conditional probability; then x = P (B|A) = P (B)/P (A), since B ⊂ A. Now
P (B) = p and P (A) = p+m−1(1− p) = m−1(1 + [m− 1]p), so

x =
mp

1 + (m− 1)p
.

(a) ↑, since m/x = m− 1 + 1/p; (b) ↑, since p/x = p+ (1− p)/m; (c) → 1.

21.2.4 (a) (k + 1)n×10−n, (b) ((k + 1)n − kn)×10−n.
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21.2.5 (a) If your current cumulative score is 0, your cumulative score after the next trial will be 1
with probability p, −1 with probability 1 − p. Hence x = py + (1 − p)z. By similar
arguments, y = p + (1 − p)x and z = px. Substituting the second and third equations
into the first, x = p2 + 2p(1− p)x. Therefore

x =
p2

1− 2p(1− p)
=

p2

(1− p)2 + p2
.

(b)
x

1− x
=

(
p

1− p

)2

.

21.3 Random variables

21.3.1

y

1

a

b

c

y = FX(x)

0 1 2 3 x

a = 0.4135

b = 0.8494

c = 0.9871

21.3.2 0.75, 0.6875.

21.3.3 For fX to be a density function, we need n > 0, in which case

FX(x) =


0 if x < 0,

1− (1− x)n if 0 ≤ x < 1,

1 if x ≥ 1.

21.3.4 Let z be a real number. Since P (X = −z) = 0, P (X ≥ −z) = P (X > −z). Therefore
P (−X ≤ z) = 1− Φ(−z) = Φ(z).

21.3.5 (a) Make the substitution x = 1
2z

2. Then x−1/2dx =

√
2

z
×z dz =

√
2 dz and

Γ(12) =

∫ ∞
0

√
2 exp(−1

2z
2) dz = 2

√
π

∫ ∞
0

φ(z) dz =
√
π.

(b) If n is odd, Γ(12n) may be calculated using the formula Γ(t+ 1) = tΓ(t) and the answer
to (a):

Γ(1/2) =
√
π, Γ(3/2) =

1

2

√
π, Γ(n/2) =

1

2
× 3

2
×. . .×n− 2

2
×
√
π for n = 5, 7, . . .
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If n is even, Γ(12n) may be calculated using the formula Γ(t + 1) = tΓ(t) and the fact
that Γ(1) = 1:

Γ(12n) = (12n− 1)! for n = 2, 4, 6, . . .

21.4 The binomial, Poisson and exponential distributions

21.4.1 If a = 0 the result is obvious; if a 6= 0 we may write (a+ b)m in the form am(1 + x)m, where
x = b/a, and apply the binomial theorem as given in the text.

Alternatively, we may modify the proof of the binomial theorem sketched in Section 21.1 of
the text. Writing (a+b)m in the form (a+b)(a+b) . . . (a+b) and multiplying out the brackets,
we obtain a sum of terms of the form cra

rbm−r (r = 0, 1, . . . ,m). For each r, cr is the number
of ways of choosing r ‘a’s from the m bracketed terms and is therefore equal to

(
m
r

)
.

The sum of the probabilities taken by a B(n, p) variate is (1− p+ p)n and is therefore equal
to 1.

21.4.2 (a)
500

65
= 0.06430,

11

36×1.25
= 0.04935. (b)

(
n− 1

k − 1

)
pk(1− p)n−k.

21.4.3 (a)
65

5!
e−6 = 0.1606 , (b) 1− e−4

[
4∑

k=0

4k/k!

]
= 0.3712.

21.4.4 Arrival rate of acceptable offers is λG(z). Required probability q is exp(−tλG(z)).

∂q

∂t
= −λG(z)q < 0,

∂q

∂λ
= −tG(z)q < 0,

∂q

∂z
= −tλG′(z)q > 0,

where the last inequality comes from the fact that G is a decreasing function.

21.4.5 Let T be exponential with parameter λ. Since t > s, {T > t} ⊂ {T > s}. Therefore

P (T > t |T > s) = P (T > t)
/
P (T > s) = e−λt

/
e−λs = e−λ(t−s) = P (T > t− s).

22 EXPECTATION

22.1 Expected value

22.1.1
161

36
.

22.1.2 1.

22.1.3 k = 2, EX = 12.

22.1.4 (λG(z))−1, by the result of Example 4 in the text. .

22.1.5 (a) Let EX = µ. Since the differentiable function g is convex, it is certain that

g(X) ≥ g(µ) + (X − µ)g′(µ).

Now take expectations: E(g(X)) ≥ g(µ) + 0.

(b) Since the function g is not convex, there are real numbers x1, x2, α such that 0 < α < 1
and

g(αx1 + (1− α)x2) > αg(x1) + (1− α)g(x2).

Let X take the values x1 and x2 with probabilities α and 1− α respectively.
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22.2 The variance and higher moments

22.2.1 1.9715, 0.2.

22.2.2 Expected values 0, µ/σ, 0; standard deviations σ, 1, 1. et/3M(t/3).

22.2.3
∫ ∞
−∞

x2φ(x) dx = −
∫ ∞
−∞

xφ′(x) dx. Integrating by parts and using the fact that xφ(x) ap-

proaches 0 as x→ ±∞, we see that∫ ∞
−∞

x2φ(x) dx =

∫ ∞
−∞

φ(x) dx = 1.

Thus if Z is a standard normal variate, E(Z2) = 1; since EZ = 0, varZ is also 1.

22.2.4 0.3745, 0.5223, 0.5530, 0, 0.3099, 0.6844, 0.8997.

22.2.5 Y ∼ N(aµ+ b, a2σ2).

22.2.6 E(Xk) = k!/λk for every positive integer k.

22.2.7 (pet + 1− p)n, np, np(1− p).

22.2.8 FY (y) =

{
2Φ(
√
y)− 1 if y > 0

0 if y ≤ 0
, fY (y) =

{
φ(
√
y)/
√
y if y > 0

0 if y ≤ 0
.

MY (t) = (1− 2t)−1/2 (t < 1
2). To see why, notice first that

MY (t) = E(exp(tX2)) =

∫ ∞
−∞

exp(tx2)φ(x) dx.

Now exp(tx2)φ(x) = (2π)−1/2 exp([t − 1
2 ]x2), so the integral converges if t < 1

2 . Assuming
this, and making the substitution u = x

√
1− 2t, we see that

exp(tx2)φ(x) = (2π)−1/2 exp(−1
2u

2) = φ(u)

and dx = (1− 2t)−1/2du. Hence

MY (t) = (1− 2t)−1/2
∫ ∞
−∞

φ(u) du = (1− 2t)−1/2.

22.3 Two or more random variables

22.3.1 Means:
7

2
,

7

2
, 7,

49

4
. Variances:

35

12
,

35

12
,

35

6
,

11515

144
.

[To find var(XY ), notice that independence of X and Y implies that of X2 and Y 2. Therefore
E
(
(XY )2

)
= E

(
X2
)
E
(
Y 2
)
and var(XY ) = E

(
X2
)
E
(
Y 2
)
− (EX)2(EY )2.]

22.3.2 Let X ′ = X − EX, Y ′ = Y − EY , Z ′ = Z − EZ. Then

aY + bZ + c− E(aY + bZ + c) = aY ′ + bZ ′,

whence
cov(X, aY + bZ + c) = E(X ′(aY ′ + bZ ′))

= aE(X ′Y ′) + bE(X ′Z ′)

= a cov(X,Y ) + b cov(X,Z).
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22.3.3 corr(X,Y ) = β

[
β2 +

varU

varX

]−1
2
, which depends on varX and varU only via their ratio. As

varU → 0,

corr(X,Y )→

{
+1 if β > 0,

−1 if β < 0.

22.3.4 Let A =

[
a11 a12
a21 a22

]
, b =

[
b1
b2

]
. Then EX = b1, EY = b2,

varX = a211 + a212, varY = a221 + a222, cov(X,Y ) = a11a21 + a12a22.

22.3.5 (a) If W = 1, XY = X2. Hence E(XY |W = 1) = E(X2|W = 1). This, together with the
fact that X and W are independent, shows that

E(XY |W = 1) = E(X2) = 1.

Similarly, E(XY |W = −1) = E(−X2) = −1. Therefore E(XY |W = k) = k whether k
is 1 or −1, so E(XY |W ) = W . Hence, by the law of iterated expectations, E(XY ) =
EW = 0. Since EX = 0, cov(X,Y ) is also 0.

(b) Y is standard normal: for any y,

P (Y ≤ y) = P (W = 1 and X ≤ y) + P (W = −1 and X ≥ −y)

= 1
2P (X ≤ y) + 1

2P (X ≥ −y) since X and W are independent
= P (X ≤ y) since X is standard normal.

(c) We show first that X and Y are not independent, by proving that

P (X ≥ a and Y ≥ a) > P (X ≥ a)P (Y ≥ a)

for any positive number a. Let θ = 1 − Φ(a). Then P (X ≥ a) = θ, and P (Y ≥ a) = θ
by (b). Hence

P (X ≥ a)P (Y ≥ a) = θ2.

Also, since X and Y have the same sign if and only if W = 1, and X and W are
independent,

P (X ≥ a and Y ≥ a) = P (X ≥ a and W = 1) = P (X ≥ a)P (W = 1) = θ/2.

Since a > 0, 0 < θ < 1/2. Therefore θ/2 > θ2 and the required inequality holds.
Since X and Y are uncorrelated by (a) but are not independent, the pair (X,Y ) is not
bivariate normal.
General conclusion: ifX and Y are normal variates, then the pair (X,Y ) is not necessarily
bivariate normal. In particular, if X and Y are uncorrelated normal variates, then X
and Y are not necessarily independent.

22.3.6 var(XY ) = varX varY + (EX)2 varY + (EY )2 varX. Under the usual assumption that
neither varX nor varY is zero, var(XY ) = varX varY if and only if EX = EY = 0.

22.3.7 The number of Successes in a sequence of m+ n Bernoulli trials is the sum of the number of
Successes in the first m trials and the number of Successes in the last n trials.

MX+Y (t) = MX(t)MY (t) = umun = um+n,

where u = pet + 1− p, and the result follows from the uniqueness theorem.
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22.3.8 If Y ∼ χ2
n, then MY (t) = (m(t))n, where m(t) is the moment generating function of a χ2

1

variate. By the result of Exercise 22.2.8, MY (t) = (1− 2t)−n/2 (t < 1
2).

Let fY be as in the stated formula. To show that fY is indeed a density function, one must
show that ∫ ∞

0
fY (y) dy = 1.

To do this, make the substitution x = y/2. To prove that fY is the density function of a χ2
n

variate, one must show that∫ ∞
0

etyfY (y) dy = (1− 2t)−n/2 if t < 1
2 ;

the result then follows from the uniqueness theorem. To evaluate the integral, make the
substitution u =

[
1
2 − t

]
y.

22.4 Random samples and limit theorems

22.4.1

(n− 1)S2 =
n∑
i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

=
n∑
i=1

X2
i − (2X)(nX) + nX

2
=

n∑
i=1

X2
i − nX

2
.

Taking expected values, (n− 1)E(S2) = n(σ2 + µ2)− n((σ2/n) + µ2) = (n− 1)σ2.

Under the usual assumption that varS 6= 0, ES < σ.

22.4.2 First part follows immediately from first line of answer to preceding exercise and implies that

S2 =
n

n− 1

(
U −X2

)
, where U =

1

n

n∑
i=1

X2
i .

If n is large,
n

n− 1
≈ 1, X is probably close to µ by the law of large numbers and U is

probably close to σ2 +µ2, also by the law of large numbers. Hence S2 is probably close to σ2.

Let T = (X − µ)
√
n/S2. Then T = Z/

√
Q, where Q = S2/σ2 and Z = (X − µ)

√
n/σ2. If n

is large, Q is probably close to 1 and Z is approximately standard normal by the central limit
theorem, so T is approximately standard normal

22.4.3 Let Z = (X − µ)
√
n/σ. If n is large, then Z is approximately standard normal. Setting

β = α
√
n/σ,

P (|X − µ| < α) = P (−β < Z < β) ≈ Φ(β)− Φ(−β) = 2Φ(β)− 1.

22.4.4 Probability is approximately Φ
(
−10.5

/√
60
)
, which is 0.088 to 2 significant figures.

23 INTRODUCTION TO DYNAMICS

23.1 Differential equations

23.1.1 y = 1
4 t

4 + C. The solution curves are U-shaped with vertex at (0, C).

(a) y = 1
4 t

4 + 4, (b) y = 1
4 t

4 − 64.

23.1.2 (a) y = 1
6 t

6 + C, (b) y4 = (A− 4t)−1.
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23.1.3 y = 2 exp(32 t
2).

23.1.4 (a) p = 3/(A− t3), p = 3/(1− t3); (b) p = A exp(13 t
3), p = 3 exp(13 t

3).

23.1.5 We separate the variables and integrate, using the ‘generalised Rule 2’ of Section 19.2:

at =

∫
1

y
dy +

∫
b

a− by
dy = ln |y| − ln |a− by|+ constant.

Taking exponentials,

eat = C

∣∣∣∣ y

a− by

∣∣∣∣ , (∗)

where C is a constant. Since the left-hand side of (∗) is finite and positive for all t, the
expression inside the | signs is nonzero for all t; hence, by continuity, y/(a− by) never changes
sign. By our assumptions on y0, this sign is positive, so 0 < y < a/b for all t. But then the |
signs in (∗) may be suppressed. Solving (∗) for y then gives

y = a
/

(b+ Ce−at) ,

while setting t = 0 in (∗) gives C = (a− by0)/y0. Since a > 0, y → a/b as t→∞.

23.2 Linear equations with constant coefficients

23.2.1 (a) y = 2 +Ae−7t; y → 2 as t→∞.

(b) y = −2 +Ae7t. When A > 0, y →∞ as t→∞; when A < 0, y → −∞ as t→∞, when
A = 0, y = −2 for all t.

23.2.2 y = 3 +Ae−4t.

(a) y = 3 − e−4t: y increases as t increases. The graph meets the vertical axis at y = 2; as
t→∞, y → 3.

(b) y = 3: the graph is a horizontal line.

(c) y = 3 + e−4t: y decreases as t increases. The graph meets the vertical axis at y = 4; as
t→∞, y → 3.

23.2.3 y = 14 +Ae−t/7, y = 14− 9e−t/7.

23.2.4 (a) y = 3e−t +Ae−2t, (b) y = (3t+A)e−2t.

23.2.5 y = 1
9(10e3t − 12t− 1).

23.2.6
dp

dt
+

5p

2
=

5

2
, p = 1 +Ae−5t/2, p→ 1 as t→∞.

23.3 Harder first-order equations

23.3.1 y = 3e−t +Ae−2t.

23.3.2 (a) y = 2t2 +At1/2, (b) y = 6
5 t

2 +At−1/2.

When t is small and positive, (a) |y| is small and has the same sign as A, (b) |y| is large and
has the same sign as A.

23.3.3 y =

[
t

4
+

1

32
+Ae8t

]−1/2
.
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23.3.4 (a) y = (1 + t)−1(A+ tet).

(b) y = (1 + t)−2(A+ (1 + t2)et). If y = 0 when t = 0 then A = −1.

23.3.5
dy

dt
− ay = −by2; hence

dx

dt
+ ax = +b, where x = y−1. The general solution is y−1 =

(b/a) + ke−at, where k is a constant. Letting C = ka and rearranging, we obtain the same
solution as in Exercise 23.1.5.

23.4 Difference equations

23.4.1 Putting ∆yt = 0 gives the constant particular solution Yt = b/a. In the text the equation is
written in the form yt+1 +(a−1)yt = b; the constant particular solution is obtained by setting
yt+1 = yt = Y and solving for Y . Putting ∆yt = 0 is equivalent to this but more directly
analogous to finding the constant particular solution of a first order differential equation by
setting dy/dt = 0.

23.4.2 yt = 3 +A(−3)t, yt = 3− (−3)t.

23.4.3 (a) Not equivalent, yt = 3 +A(−1/3)t.

(b) Equivalent, yt = 3 +A(−3)t.

23.4.4 yt = 2
[
1 + (−2/3)t

]
.

23.4.5 (a) yt = 2 +A(−5/3)t, yt = 2− 2(−5/3)t.

(b) yt = 2 +A(−3/5)t, yt = 2− 2(−3/5)t.

23.4.6 (a) yt = A×2t − 5t− 6, (b) yt = A×2t + 3t, (c) yt = (A+ 1
2 t)2

t.

23.4.7 pt = 1+(−3/2)tA, explosive alternations. Same model as Exercise 23.2.6 except that dynamics
are discrete, very different conclusion.

23.4.8 pt = 1 + (−4)tA, explosive alternations.

24 THE CIRCULAR FUNCTIONS

24.1 Cycles, circles and trigonometry

24.1.1 (a) 0.175, (b) 1.484, (c) 0.332.

24.1.2 (a) 68.75◦, (b) 48.70◦, (c) 19.10◦.

24.1.3 (a) 2, (b) 2.

(c) If the straight line y = ax+ b makes an angle θ with the x–axis, then tan θ = a.

24.1.4 3/
√

10, 3.

24.2 Extending the definitions

24.2.1 Sines: 1/
√

2, −1/2, −
√

3/2, 1/2, −
√

3/2. Cosines: −1/
√

2, −
√

3/2, 1/2,
√

3/2, 1/2.
Tangents: −1, 1/

√
3, −
√

3, 1/
√

3, −
√

3.

24.2.2 (a) The graphs are similar to those of sinx, cosx and tanx but with periods π, π and π/2
respectively.
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(b) Again similar to those of sinx, cosx and tanx but with periods 2π/3, 2π/3 and π/3
respectively.

(c) As (b), with 3 replaced by n.

(d) As (b), with 3 replaced by a. The difference between this case and the others is that, if
a is not a natural number, then the original periods 2π, 2π and π no longer contain a
whole number of the new periods.

24.2.3 Since tanα < 1 and sinβ < 1/
√

2, each of α and β is less than π/4, so α+ β < π/2.

cos(α+ β) =
3√
10
× 2√

5
− 1√

10
× 1√

5
=

5√
50

=
1√
2
,

so α+ β = π/4.

24.2.4 For the first part, use the addition formulae with β = α. For the second part, note that

sin 3α = sin(2α+ α) = sin 2α cosα+ cos 2α sinα.

Now use the first part and the fact that cos2 α = 1− sin2 α:

sin 3α = 2 sinα cos2 α+ (cos2 α− sin2 α) sinα

= 2 sinα (1− sin2 α) + sinα (1− 2 sin2 α)

= 3 sinα− 4 sin3 α.

24.2.5 tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
.

24.3 Calculus with circular functions

24.3.1 (a) a cos ax, (b) −a sin ax, (c) a/ cos2 ax, (d) 5 sin4 x cosx, (e) 5x4 cos(x5),
(f) sinx+ x cosx, (g) 5x4 tan 2x+ 2x5/ cos2 2x, (h) −(x sinx+ cosx)/x2.

24.3.2 dy/dx = Am cosmx−Bm sinmx, whence

d2y/dx2 = −Am2 sinmx−Bm2 cosmx = −m2y.

24.3.3 (a)
sin7 x

7
+A, (b)

π + 4

4
√

2
− 1.

24.3.4 0.841, 0.540.

24.3.5 (a) π/3, (b) 2π/3, (c) π/4, (d) −π/6.

24.3.6 −(1− x2)−1/2, 3/(1 + 9x2).

24.3.7
tan θ

θ
=

sin θ

θ
× 1

cos θ
. As θ → 0, both

sin θ

θ
and cos θ approach 1, so

tan θ

θ
→ 1.

Let θ = arctanx. As x→ 0, θ → 0, so

lim
x→0

arctanx

x
= lim

θ→0

θ

tan θ
= 1.
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24.4 Polar coordinates

24.4.1 (a) (2, π/3), (b) (
√

8, 3π/4), (c) (1, −2π/3), (d) (
√

2, −π/4).

24.4.2 (a) (12 ,
1
2

√
3), (b) (−

√
2,
√

2), (c) (14
√

3, −1
4), (d) (−0.42, 0.91).

24.4.3 (a) Circle of radius 2 and centre (0,0).
(b) Straight line through the origin of slope tan 1 ≈ 1.56.
(c) Straight line parallel to y–axis, 4 units to the right of it.
(d) Straight line parallel to x–axis, 3 units above it.

25 COMPLEX NUMBERS

25.1 The complex number system

25.1.1 1, −32i, −1, i, −i.

25.1.2 1 + 5i, −17i, 8 + 25i.

25.1.3 (a) −2± 3i, (b) 1
2(5± i

√
11).

25.1.4
u

v
= −20− 17i

13
,
v

u
= −20 + 17i

53
.

25.1.5 Let v = w/z. Then vz = w, so |v||z| = |w|, whence |v| = |w|/|z|.

25.1.6 z = 1
2(u− iv), w = 1

2(u+ iv). If u and v are real, w = z̄.

25.2 The trigonometric form

25.2.1 c = 1
2

√
11 = 1.66 to two decimal places.

y

x−2 2.5

c

3

−c

−3a−

a+

b−

b+

25.2.2 (−y, x), (x,−y).

25.2.3 (a) 1 + i
√

3, 2, π3 , 2(cos π3 + i sin π
3 ).

(b) −2 + 2i, 2
√

2, 3π
4 , 2
√

2(cos 3π
4 + i sin 3π

4 ).
(c) −1

2(1 + i
√

3), 1, −2π
3 , cos(−2π

3 ) + i sin(−2π
3 ).

(d) 1− i,
√

2, −π
4 ,
√

2
[
cos(−π

4 ) + i sin(−π
4 )
]
.

25.2.4 2(cos 0 + i sin 0), cos π2 + i sin π
2 , cosπ + i sinπ,√

2(cos π4 + i sin π
4 ),
√

2(cos 3π
4 + i sin 3π

4 ),
√

2
[
cos(−3π

4 ) + i sin(−3π
4 )
]
.

25.2.5 −220.
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25.3 Complex exponentials and polynomials

25.3.1
√

2eπi/4,
√

2e3πi/4, 2eπi/3, e−2πi/3.

25.3.2 (a) 1
2(1 + i

√
3), (b) −

√
2(1 + i), (c)

√
3, (d) i

√
3.

25.3.3 (1 + 2i)z2 + (3− i)z − 4− 3i.

25.3.4 1, 1
2(−1± i

√
3); −2, 1± i

√
3; −i, 1

2(i±
√

3).

25.3.5 3i± (1− i)
√

2.

25.3.6 By direct calculation, using the fact that
d2

dx2
eimx = (im)2eimx = −m2eimx, and similarly

when m is replaced by −m. Alternatively, set A = P + Q, B = i(P −Q) and proceed as in
Exercise 24.3.2.

26 FURTHER DYNAMICS

26.1 Second-order differential equations

26.1.1
d2u

dt2
=

d

dt

([
dy

dt
− py

]
e−pt

)
=

(
d2y

dt2
− 2p

dy

dt
+ p2y

)
e−pt.

Multiplying through by ept and recalling that 2p = −b and p2 = c by definition of p, we get
the desired result.

The differential equation reduces to d2u/dt2 = 0, This implies that du/dt is a constant, say B.
Integrating again, we have the general solution u = A + Bt, where A and B are arbitrary
constants. (26.7) now follows from the fact that y = uept.

26.1.2 (a) y = Ae3t +Be−2t, (b) y = Ae3t +Be−2t − 1
2 , (c) y = Ce−2t cos(t+ α),

(d) y = Ce−2t cos(t+ α) + 2, (e) y = (A+Bt)e−5t, (f) y = (A+Bt)e−5t + 2
5 .

26.1.3 (a) y = Aet/3 +Be−t − 6, (b) y = (At+B)e−3t − 3t− 5

27
.

26.1.4 From (26.5), y = egt[Aeiht + Be−iht]. The expression in square brackets may be written
A cosht + iA sinht + B cosht − iB sinht. Hence (26.6′) holds with A′ = A + B and B′ =
i(A− B). If A = a+ ib and B = a− ib, where a and b are real numbers, then A′ is the real
number 2a and B′ is the real number −2b.

26.1.5 (a) y = 3 cos 2t+ 4 sin 2t+ 5, (b) y = −1
2e
t − e2t + 3

2e
3t.

26.2 Qualitative behaviour

26.2.1 (a) UN, (b) UN, (c) SO, (d) SO, (e) SN, (f) SN.

26.2.2 Let v = u/c, p = |c|1/2. If c < 0, the general solution is y = Aept + Be−pt + v, where A and
B are constants; if A 6= 0 then, as t → ∞, y → ±∞ depending on the sign of A. If c > 0,
the general solution is y = C cos(pt + α) + v, where C and α are constants; if C 6= 0 then y
displays regular oscillations around v.

26.2.3 (a) θ < 2
√
α/β, (b) σ < 2

√
β/α.
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26.3 Second-order difference equations

26.3.1 (a) yt =
1√
5

([
1 +
√

5

2

]t
−

[
1−
√

5

2

]t)
.

(b) yt = 2
3((−4)t + 21+t), (c) yt = 1

3(5×2t − 21−t).

26.3.2 (a) yt = 2tA+ (−3)tB − 3
2 . UN: yt alternates eventually and |yt| → ∞ as t→∞.

(b) yt = 2t/2C cos(34πt+ α) + 6
5 . UO: yt oscillates explosively about 6

5 .

(c) yt = 4t(A+Bt) + 2
3 . UN: eventual monotonic behaviour, |yt| → ∞ as t→∞.

26.3.3 yt = C cos(23πt+ α) + 4
3 t− 1.

26.3.4 (a) pt+2 − 1
2pt+1 + 2pt = 5

2 .

pt = 1 + 2t/2C cos(θt+ α), where θ = arctan
√

31 = 1.39 to 2 decimal places and C and
α are arbitrary constants.

(b) Coefficients of supply and demand functions are as in Exercises 23.4.7 and 23.4.8; model
combines the disequilibrium dynamics of the former with the lagged supply response of
the latter. In the general solution, explosive oscillations replace the explosive alternations
of the two earlier exercises.

26.3.5 Yt − 2Yt−1 + 4
3Yt−2 = 20, 60.

Yt =

(
4

3

)t/2
C cos

(
πt

6
+ α

)
+ 60, explosive oscillations..

27 EIGENVALUES AND EIGENVECTORS

27.1 Diagonalisable matrices

27.1.1 −2, 7.

The eigenvectors corresponding to −2 are non-zero multiples of [1 − 1]T. The eigenvectors
corresponding to 7 are non-zero multiples of [4 5]T.

27.1.2 The eigenvalues of θA are θ times the eigenvalues of A. For θ 6= 0, the eigenvectors are the
same as those of A. For θ = 0, any non-zero vector is an eigenvector.

The eigenvalues of A + θI are θ plus the eigenvalues of A. The eigenvectors are the same as
those of A.

27.1.3 Possibilities are D =

[
2 0
0 0

]
, S =

[
1 1
1 −1

]
.

Ak =

[
1 1
1 −1

] [
2k−1 0

0 0

] [
1 1
1 −1

]
= 2k−1

[
1 1
1 1

]
.

27.2 The characteristic polynomial

27.2.1 The eigenvalues are the diagonal entries.

27.2.2 The sum of all entries in the ith row of P is the ith diagonal entry of BC; hence trBC is
the sum of all entries of P. The sum of all entries in the jth column of P is the jth diagonal
entry of CB; hence trCB is also the sum of all entries of P.
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27.2.3 (a) Possibilities are D =

[
1 + i

√
3 0

0 1− i
√

3

]
, S =

[
1 1

−i
√

3 i
√

3

]
.

Ak =
2k√

3

[ √
3 cos(kπ/3) − sin(kπ/3)

3 sin(kπ/3)
√

3 cos(kπ/3)

]
.

(b) Possibilities are D =

[
2 + 2i 0

0 2− 2i

]
, S =

[
1 1

−1− 2i −1 + 2i

]
.

Ak = 2(3k/2)−1

[
2 cos(kπ/4)− sin(kπ/4) − sin(kπ/4)

5 sin(kπ/4) 2 cos(kπ/4) + sin(kπ/4)

]
.

27.2.4 (a) αI.
(b) The result of (a) implies that the only 2×2 d–matrix with eigenvalues 0, 0 is O. The

given matrix has eigenvalues 0, 0 but is not O; therefore it is not a d–matrix.

27.2.5 All eigenvectors are multiples of
[

2
−5

]
.

27.2.6 If the eigenvalues are p, p then a = −p2, b = 2p and eigenvectors are multiples of
[

1
p

]
.

Let A =

[
0 1
a b

]
. If A is diagonalisable it has two linearly independent eigenvectors and

hence, by first part, two distinct eigenvalues. The converse is true for every matrix.

The matrix
[
b a
1 0

]
has the same characteristic polynomial as A; if its eigenvalues are p, p

then all eigenvectors are multiples of
[
p
1

]
. Second part follows as before.

27.3 Eigenvalues of symmetric matrices

27.3.1 Possibilities are D =

[
11 0
0 −2

]
, S =

1√
13

[
3 −2
2 3

]
.

27.3.2 2×2 matrices with real entries whose off-diagonal entries are both non-negative or both non-
positive.

27.3.3 They have at least one positive and one negative eigenvalue.

27.3.4 A1/2 = SD1/2ST.

B and B2 are positive definite symmetric matrices, and B2 = A−1. This last fact, together
with the definition of B, makes it reasonable to refer to B as A−

1
2 .

27.3.5 (a) If A =

[
cosα − sinα
sinα cosα

]
, then ATA = I by direct calculation.

(b) Let A be an orthogonal 2×2 matrix. Because each column of A has length 1, there

are real numbers α and β such that A =

[
cosα cosβ
sinα sinβ

]
. Since the two columns of A

are orthogonal, cos(α − β) = 0, so α − β = (k − 1
2)π for some integer k. If k is even

(e.g. k = 0) then cosβ = − sinα, sinβ = cosα, detA = 1 and A is the anticlockwise
rotation about the origin through the angle α. If k is odd (e.g. k = 1) then cosβ = sinα,
sinβ = − cosα, detA = −1 and A is not a rotation.
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28 DYNAMIC SYSTEMS

28.1 Systems of difference equations

28.1.1 (a) y(t) = (12)tc1

[
5
−1

]
+ (−1

4)tc2

[
2
−1

]
.

y(t)→ 0 as t→∞.

(b) x(t) =

[
18
−2

]
+ (12)tc1

[
5
−1

]
+ (−1

4)tc2

[
2
−1

]
.

x(t)→
[

18
−2

]
as t→∞.

28.1.2 (a) x(t) =

[
1
1

]
+ (12)t

[
2
1

]
.

x(t)→
[

1
1

]
as t→∞.

(b) x(t) =

[
1
1

]
+ (12)t

[
2
1

]
− (−2)t

[
3
−1

]
.

As t→∞, the components of x(t) display explosive alternations.

28.1.3 (a)

y(t) =

yt+2

yt+1

yt

 , A =

−f −g −h1 0 0
0 1 0

 .
(b)

x(t) =


xt+3

xt+2

xt+1

xt

 , A =


−b1 −b2 −b3 −b4

1 0 0 0
0 1 0 0
0 0 1 0

 , b =


b5
0
0
0

 .
28.2 Systems of differential equations

28.2.1 General solution is y(t) = c1e
2t

[
−1

2

]
+ c2e

5t

[
1
1

]
. The boundary condition implies that

c1 = 1, c2 = 3.

28.2.2 General solution is

y(t) = c1e
4t

[
1
1

]
+ c2e

−t
[

6
1

]
+

[
−3
−1

]
.

The boundary condition implies that c1 = c2 = 1.

28.2.3 x = et cos at, y = −et sin at.

28.2.4 y = c1

1
1
1

+ c2e
2t

 1
1
−1

+ c3e
−2t

−1
1
1

.
28.2.5 If x = ectp where p is constant, then ẋ−Ax = ect(cI−A)p. Since c is not an eigenvalue of

A, the matrix cI−A is invertible. Hence x = ectp is a solution if and only if p = (cI−A)−1b.

Numerical part: p =

[
2
1

]
.
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28.3 Qualitative behaviour

28.3.1 (a) (−1, 1), saddle point. (b) (2.6,−1.4), centre.
(c) (4,−1), spiral sink. (d) (0, 0), source.

26.3.2 In Exercise 28.2.1, (0, 0) is a source. In Exercise 28.2.2, (−3,−1) is a saddle point: the stable
branch is the straight line through (−3,−1) of slope 1

6 .

28.3.3 (a) The eigenvalues are 1 + 5i and 1− 5i.

(b) a = p+ q, b = i(p− q).
(c) From the first differential equation of the system, y = [ẋ − x]/5. But by differentiating

the solution for x given in (b) using the product rule,

ẋ = x+ et
d

dt
(a cos 5t+ b sin 5t).

Hence

y =
et

5

d

dt
(a cos 5t+ b sin 5t) = (−a sin 5t+ b cos 5t)et.

The general solution is [
x
y

]
= aet

[
cos 5t
− sin 5t

]
+ bet

[
sin 5t
cos 5t

]
.

28.3.4 It is obtained by replacing x by −x in the system depicted in Figure 28.5. Therefore the phase
portrait is obtained by reflecting that of Figure 28.5 in the y–axis. Hence the origin is a spiral
sink approached via clockwise spirals.

ẋ = x− 5y, ẏ = 5x+ y.

28.3.5 The equation of the stable branch is y = −cx, where c = 1
2(
√

5 − 1). The phase diagram is
very similar to Figure 28.9 in the text. The phase portrait is as follows:

y

x

y = xy = x/c

y = −cx
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28.3.6 The fixed points for the old and the new systems of differential equations lie on the line
q = p− p̃, with the new fixed point (C in diagram) to the right of the old one (A). S0 is the
old stable branch; the new stable branch S1 is a downward-sloping line through the new fixed
point. The economy’s reaction to the increase in m from m0 to m1 is an immediate move
from A to the point B on S1 with the same p–coordinate. Therefore the value to which q tends
as t → ∞ (i.e. the vertical coordinate of C) is higher than the value of q before time 0, but
the value of q immediately after time 0 is higher still.

q

p0

q = p− p̃

m1−γm0−γ

A

S0

B

C

S1

28.4 Non-linear systems

28.4.1 The fixed points are (0, 0) and (0, 1/a). At (0, 0) the product of the eigenvalues of the Jacobian
is −1, so we have a local saddle point. At (0, 1/a) the eigenvalues of the Jacobian are 1

2(−1±
i
√

3, so we have a locally stable focus.

28.4.2 The fixed point in the positive quadrant (P in the diagram) has coordinates (1, 3). The other
fixed point Q is the point (−1,−3). At P, the eigenvalues of the Jacobian are −4 and −5: P
is a locally stable node. At Q, the product of the eigenvalues of the Jacobian is −20, so we
have a local saddle point.

y

x0

P

Q

y = 3x
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29 DYNAMIC OPTIMISATION IN DISCRETE TIME

29.1 The basic problem

29.1.1 The control conditions are

∂Ht

∂wt
= 0,

∂Ht

∂xt
= 0 (t = 0, 1, . . . , T )

The costate equations are

∂Ht

∂yt
= λt−1 − λt,

∂Ht

∂zt
= µt−1 − µt (t = 1, . . . , T )

29.1.2 Equation (29.4) of the text, together with the fact that u′(c) > 0 for all c, implies that
u′(ct) ≷ u′(ct−1) according as ρ ≷ rt. Now replace t by t+1: if rt+1 > ρ then u′(ct+1) < u′(ct);
since u′ is a decreasing function, it follows that ct+1 > ct. Similarly, ct+1 < ct if rt+1 < ρ.

29.1.3 Equation (29.5) is replaced by ct = νtc0 (t = 1, . . . , T ) where

ν =

[
1 + r

1 + ρ

]1/γ
.

Hence the term (1 +ρ)−t on the right-hand side of (29.6) is replaced by νt(1 + r)−t. It follows
that

c0 = ρ̃

T∑
t=0

(1 + r)−twt,

where

ρ̃ =
1− (1 + r)−1ν

1− (1 + r)−T−1νT+1
=

1− (1 + ρ)−1/γ(1 + r)(1−γ)/γ

1− (1 + ρ)−(1+T )/γ(1 + r)(1+T )(1−γ)/γ
.

29.1.4 (a) We proceed as in the text until the equation before (29.6), whose RHS is now B rather
than 0. Hence (1+r)−TB must be subtracted from the LHS of (29.6). The optimal path
of consumption is given by (29.5) and

c0 = ρ∗
T∑
t=0

(1 + r)−twt − ρ∗(1 + r)−TB,

where θ and ρ∗ are as in the text.

(b) Consider first the general problem of this section, with the difference that Φ(yT+1) is
added to the maximand and yT+1 is now chosen by the agent. Then Φ(yT+1) is added to
the Lagrangian at the top of page 653, and we have the additional first-order condition
Φ′(yT+1) = λT . In the case at hand, this first-order condition becomes β/B = λT . Now
1/λT = (1 + ρ)T cT by the control condition. Hence B = β(1 + ρ)T cT . Using (29.5) and
the definition of θ, we see that B = β(1 + r)T c0. The solution is therefore as in (a), but
with (1 + r)−TB = βc0. The optimal path of consumption is given by (29.5) and

c0 =
ρ∗

1 + βρ∗

T∑
t=0

(1 + r)−twt,

where θ and ρ∗ are as in the text.
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29.2 Variants of the basic problem

29.2.1 Since πt = π0 for all t,

µt =
π0

1 + r

1− θT−t

1− θ
=
π0(1− θT−t)

δ + r
.

In particular, µT = 0, µT−1 =
π0

1 + r
and µt ≈

π0
δ + r

if T − t is large. Also,

It = max

(
µt − a

2b
, 0

)
for all t. Thus if a <

π0
δ + r

and T is sufficiently large,

I0 > I1 > . . . > Iτ−1 > 0 = Iτ = . . . = IT

for some τ ≤ T . If also a > π0
1 + r

, then τ < T .

29.2.2 Let β =
(1 + g)(1− δ)

1 + r
. Then It = max

[
µt − a

2b
, 0

]
for all t, where

µt
(1 + g)t

= π0
1 + g

1 + r

(
1 + β + . . .+ βT−t−1

)
.

Hence by the geometric series formula,

µt =
(1 + g)t+1(1− βT−t)
r − g + (1 + g)δ

.

Here there is no reason for µ (and hence I) to be falling monotonically over time, though
investment will eventually be zero. Indeed if β < 1, which will be true if but not only if g < r,
µt will be growing at a rate close to g when T − t is large.

29.3 Dynamic programming

29.3.1 For 1 ≤ t ≤ T − 1,

vt(K) = qtK + wt

= max
I≥0

{
πtK − C(I) + (1 + r)−1qt+1((1− δ)K + I) + (1 + r)−1qt+1

}
,

where qT = πT and wT = 0. The first-order condition for maximisation is

C ′(It) = (1 + r)−1qt+1 if qt+1 > (1 + r)C ′(0), It = 0 otherwise.

Thus It is given by (29.7) in the text, except that µt is now equal to (1 + r)−1qt+1. It remains
to show that this µt is the same as the one in Section 29.2.

By direct substitution,

qt = πt +
1− δ
1 + r

qt+1, wt =
qt+1It + wt+1

1 + r
− C(It).

Letting θ = (1− δ)/(1 + r) as in Section 29.2,

qT = πT , qT−1 = πT−1 + θπT , qT−2 = πT−2 + θπT−1 + θ2πT
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and in general
qt = πt + θπt+1 + . . .+ θT−tπT (t = 0, 1, . . . , T ).

Recalling that µt = (1 + r)−1qt+1, we see that

µt = (1 + r)−1
[
πt+1 + θπt+2 + . . .+ θT−t−1πT

]
(t = 0, 1, . . . , T − 1).

This is the solution for µt given on page 659 of the text.

29.3.2 x4 = x7 = 0, xi = 1 otherwise (or x6 = x7 = 0, xi = 1 otherwise), solution value 16.

29.3.3 From the first-order condition for maximisation,

I = max

[
(1 + r)−1q − a

2b
, 0

]
.

Equating coefficients, q = π0 +
1− δ
1 + r

q. Hence q =
1 + r

r + δ
π0 and

I = max

[
(r + δ)−1π0 − a

2b
, 0

]
.

Thus the result of Exercise 29.2.1 implies that if T−t is large then It ≈ I∗, where I∗ is optimal
investment for the corresponding infinite-horizon problem.

30 DYNAMIC OPTIMISATION IN CONTINUOUS TIME

30.1 The basic problem and its variants

30.1.1 The Euler equation can be written as
d2y

dt2
− y = −3e2t; this has general solution

y = Aet +Be−t − e2t.

(a) Boundary conditions are A+B = 1, Ae+Be−1 = 2 + e2. Solution is

y = Aet + (1−A)e−t − e2t,

where A = (e3 + 2e− 1)/(e2 − 1) = 3.84 to 2 decimal places.
(b) Transversality condition is ẏ(1) = 0, so boundary conditions are A+B = 1, Ae−Be−1 =

2e2. Solution is as in (a), except that now A = (2e3 + 1)/(e2 + 1) = 4.91 to 2 decimal
places.

30.1.2 (a) The problem is equivalent to maximising −
∫ 2

1
ẏ2 dt subject to the same endpoint con-

ditions. The Euler equation is d2y/dt2 = 0, with general solution y = At+B. From the
endpoint conditions, A+B = 1 and 2A+B = 5; hence A = 4, B = −3 and the solution
is y = 4t− 3.

(b) y = 1 makes the integral 0 and satisfies the left-endpoint condition; hence it is the
solution. Recall from (a) that the Euler equation is d2y/dt2 = 0 for all t; the transversality
condition says that dy/dt = 0 if t = 2. If y = 1 for all t then dy/dt = 0 for all t, so the
Euler equation and the transversality condition are both satisfied.

30.1.3 (a) The Hamiltonian is
H(c, a, λ, t) = e−ρtu(c) + λ(ra+ w − c).

The control condition is e−ρtu′(c) = λ and the costate equation is λr = −λ̇.
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(b) From the control condition, lnu′(c) = ρt + lnλ. Differentiating both sides with respect
to t and using the costate condition gives the required result.

(c) In this case lnu′(c) = − ln c; so by the result of (b),

d

dt
ln c = r − ρ.

Integrating, c = Ae(r−ρ)t where A is a constant. To find A, we multiply the state equation
by the integrating factor e−rt:

d

dt
(e−rta) = e−rt(w − c) = e−rtw −Ae−ρt.

Integrating from t = 0 to t = T and using the endpoint conditions,

0 =

∫ T

0
e−rtw(t) dt−A

∫ T

0
e−ρtdt.

Therefore

A =
ρ

1− e−ρT

∫ T

0
e−rtw(t) dt.

(d) In this case, the result of (b) becomes

d

dt
ln c =

r − ρ
γ

.

Integrating, c = Be(r−ρ)t/γ where B is a constant. To find B, we again multiply the state
equation by the integrating factor e−rt: in this case

d

dt
(e−rta) = e−rtw −Be−νt,

where ν = γ−1ρ+(1−γ−1)r. The constant B is determined by proceeding as in (c) with
ρ replaced by ν.

30.2 The maximum principle

30.2.1 H(w, x, y, z, λ, µ, t) = f(w, x, y, z, t) + λg(w, x, y, z, t) + µh(w, x, y, z, t),

H(y, z, λ, µ, t) = max
w,x

H(w, x, y, z, λ, µ, t).

Along the optimal path,

H(w(t), x(t), y(t), z(t), λ(t), µ(t), t) = H(y(t), z(t), λ(t), µ(t), t) for all t

and
ẏ =

∂H
∂λ

, λ̇ = −∂H
∂y

, ż =
∂H
∂µ

, µ̇ = −∂H
∂z

.

30.2.2 (a) H̃(x, y, µ, t) = 4y − 10y2 − x2 + µx. The maximised current-value Hamiltonian is

H̃(x, y, µ, t) = 4y − 10y2 + 1
4µ

2.

(b) In this case, the system (30.5) is ẏ = 1
2µ, µ̇ = 3µ− (4− 20y).
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(c) Eliminating µ between the two equations in (b) gives

2
d2y

dt2
= 6

dy

dt
− 4 + 20y,

which is the required differential equation.

30.2.3 The problem is equivalent to maximising
∫ T
0 f(x, y, t) dt subject to the state equation ẏ = x,

and fixed endpoints. The Hamiltonian is

H(x, y, λ, t) = f(x, y, t) + λx.

Since f is a concave function of the two variables x, y for any given t, it follows that H is
concave in x, y for any given λ, t. Hence, by the sufficiency condition stated in the text, the
Euler equation is sufficient for a maximum.

30.2.4 (a) H̃(I,K, µ, t) = π(t)K − C(I) + µ(I − δK). The control condition is

C ′(I) ≥ µ with equality if I > 0.

The costate equation is µ̇ = (r + δ)µ− π.
(b) Identical to Figure 29.1.
(c) Multiplying the costate equation by the integrating factor e−(r+δ)t and rearranging,

d

dt

(
e−(r+δ)tµ(t)

)
= −e−(r+δ)tπ(t).

This, together with the transversality condition µ(T ) = 0, gives

µ(t) =

∫ T

t
e(r+δ)(t−s)π(s) ds.

(d) µ(t) =
π̄

r + δ

[
1− e−(r+δ)(T−t)

]
, I(t) = max

[
µ− a

2b
, 0

]
.

30.2.5 H̃(I,K, µ, t) = π̄K−aI+µ(I−δK). The costate equation and the solution for µ(t) (0 ≤ t ≤ T )
are as in part (d) of Exercise 30.2.4. By the maximum principle,

I(t) =

{
θa−1π̄K(t) if µ(t) > a,
0 if µ(t) < a.

Assuming that π̄ > (δ + r)a, there is exactly one time τ (0 < τ < T ) such that µ(τ) = a.
Notice that we do not need to worry about how I(t) is determined when µ(t) = a, since this
happens only instantaneously at t = τ . Thus for 0 ≤ t < τ , K(t) grows at rate θa−1π̄− δ and
I(t) = θa−1π̄K(t); for τ ≤ t ≤ T , K(t) grows at rate −δ and I(t) = 0.

30.3 Two applications to resource economics

30.3.1 (a) q∗ =
√
a/b, γ =

√
ab. The result for λ̄ follows from the result

p(T )− γ = λ̄erT

of the text. Since
p− λ̄ert > p− λ̄erT =

√
ab > 0

for 0 ≤ t < T , C ′(φ(t, λ̄)) = p − λ̄ert. The expression for φ(t, λ̄) follows from the fact
that C ′(q) = bq.
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(b) Use R(0) =

∫ T

0
φ(t, λ̄) dt. Setting

F (t, p) =
pt− bR(0)

p−
√
ab

, G(t, r) =
1− e−rt

r
,

we may draw the graphs of u = F (t, p) and u = G(t, r) for t ≥ 0 and given p, r. The
graph of F is a straight line with slope > 1 and negative intercept. The graph of G
is strictly concave, increasing, contains the origin and tends to 1/r as t → ∞. There
is therefore exactly one point of intersection, in the positive quadrant; at that point,
t = T (p, r).

(c) Using the notation of (b), ∂G/∂r < 0; it is clear from the diagram that ∂T/∂r < 0. By
the quotient rule, ∂F/∂p has the same sign as t − F (t, p). But G(t, r) < t for all t > 0.
Hence ∂F/∂p > 0 when t = T (p, r). It can be seen from the diagram that ∂T/∂p < 0.

30.3.2 If the condition holds, then

p(t)− λ̄ert > p(T )− γ + C ′(0)− λ̄ert = λ̄(erT − ert) + C ′(0) > +C ′(0) (0 ≤ t < T ).

It follows from condition (ii) of the text that q(t) > 0.

30.3.3 If q(t) > 0 then n(t) = λ̄ert and the result follows.

30.3.4 (a) Ṗ (t) = g′(s̃(t)), Ṁ(t) = g′(s∗(t)). In Figure 30.2, s̃(t)) < s∗(t) when 0 ≤ t < t1. Since g
is strictly concave, it follows that Ṁ(t) < Ṗ (t) for such t. Thus P (t) −M(t) is strictly
increasing in t for 0 ≤ t < t1; but P (t1) = M(t1); hence P (t) −M(t) < 0 if 0 ≤ t < t1,
and the result follows.

(b) In Figure 30.2, s̃(t)) > s∗(t) when t2 < t ≤ T . Using the strict concavity of g as in (a),
we infer that M(t) − P (t) is strictly increasing in t for t2 < t ≤ T ; but M(t2) = P (t2);
hence M(t)− P (t) > 0 if t2 < t ≤ T , and the result follows.

30.3.5 Putting ṗ = 0 in (30.8) leads to s̃ =
k(r − ρ)

2r
.

30.3.6 (a) The resource manager’s problem is to

maximise
∫ T

0
e−ρt[p(t)h(t) + τs(t)] dt

subject to ṡ(t) = g(s(t))− h(t) (0 ≤ h(t) ≤ h̄, 0 < t < T )

and the endpoint conditions s(0) = s0, s(T ) = s1. Here h̄ is the maximal feasible harvest
rate.

(b) H̃(h, s, µ, t) = ph+ τs+ µ[g(s)− h].

(c) The costate equation is µ̇ = ρµ − τ − µg′(s). By the maximum principle h(t) is chosen
to

maximise [p(t)− µ(t)]h(t) subject to 0 ≤ h(t) ≤ h̄.

The solution may be split into time-intervals of the same type as in the example in the
text. Inside an interval of type (iii), µ(t) = p(t); therefore, by the costate equation,

ṗ = ρp− τ − pg′(s).

This is the equation for the singular solution.
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(d) If p is constant, the equation for the singular solution reduces to g′(s) = −θ, where

θ = (τ/p)− ρ.

In the logistic case, g′(s) = r(1− 2k−1s) and the singular solution is

s̃ =
(r + θ)k

2r
.

(e) (i) If θ ≥ r, i.e. τ ≥ (ρ+ r)p, then s̃ ≥ k. In this case, the singular solution corresponds
to not harvesting at all.

(ii) If θ ≤ −r, i.e. τ ≤ (ρ−r)p, then s̃ ≤ 0. In this case, the singular solution corresponds
to extinction.

30.4 Problems with an infinite horizon

30.4.1 For parts (a)–(c), answers are as in Exercise 30.2.4 with T replaced by ∞, provided the
relevant integral converges (if it doesn’t, the problem has no solution). For part (d), µ(t) = µ̄

for all t, where µ̄ = π̄/(r+ δ). Assuming that µ̄ > a, I(t) =
µ̄− a

2b
for all t. The transversality

condition for this problem is similar to (30.11), with ρ replaced by r. The condition is satisfied

because r > 0, µ is constant and K(t)→ µ̄− a
2bδ

as t→∞.

30.4.2 The maximum principle gives the same expression for I(t), given K(t) and µ(t), as in Exercise
30.2.5. As in Exercise 30.4.1, µ(t) = π̄/(r + δ) for all t. Hence I(t)/K(t) = J for all t, where
the constant J is given by

J =

{
θπ̄/a if π̄ > (r + δ)a,
0 otherwise.

30.4.3 αA(K∗)α−1 = ρ+ δ > δ = αA(K†)α−1. Hence (K†/K∗)α−1 < 1. Since α < 1, it follows that
K† > K∗.

30.4.4 (a) Recall from the text that

ψ′(K) = − U
′(C)

U ′′(C)

αAKα−1 − (ρ+ δ)

AKα − δK − C
.

Hence ψ′(K∗) = `C∗/γ, where

` = lim
K→K∗

αAKα−1 − (ρ+ δ)

AKα − δK − C
.

Since
A(K∗)α−1 =

ρ+ δ

α
=
C∗

K∗
+ δ, (∗)

we may apply l’Hôpital’s rule:

` = lim
K→K∗

α(α− 1)AKα−2

αAKα−1 − δ − (dC/dK)
=
α− 1

K∗
· αA(K∗)α−1

αA(K∗)α−1 − δ − ψ′(K∗)
.

Setting z = ψ′(K∗) and using (∗) again, we see that

z =
`C∗

γ
=
α− 1

γ
· C
∗

K∗
· ρ+ δ

ρ− z
=

1− α
γ
· ρ+ (1− α)δ

α
· ρ+ δ

z − ρ
.

60



Hence z satisfies the quadratic equation

z2 − ρz − φ = 0,

where
φ =

1− α
αγ

(ρ+ δ)(ρ+ [1− α]δ).

Since 0 < α < 1, φ > 0, so the quadratic equation has two real roots of opposite sign.
We know from Figure 30.3 that the stable branch is upward-sloping in the vicinity of the
point (K∗, C∗), so the positive root should be taken.

(b) ψ(K) ≈ C∗ + z(K −K∗), where z = ψ′(K∗) as in (a).
(c) Let ζ = αC∗/K∗ = ρ+ (1− α)δ. Then

s(K∗) = 1− ζ

αA(K∗)α−1
= 1− ρ+ (1− α)δ

ρ+ δ
=

αδ

ρ+ δ
.

For any K, s′(K) =
1

AKα

[
αC

K
− dC

dK

]
. Thus s′(K∗) has the same sign as ζ − z, where

ζ is as above and z is as in (a) and (b). Now ζ − z has the same sign as ζ2 − ρζ − φ (to
see this, sketch the graph of the function y = x2 − ρx− φ), and

ζ2 − ρζ − φ = (1− α)ζ

{
δ − ρ+ δ

αγ

}
.

Therefore s′(K∗) has the same sign as γ − γ0, where γ0 =
ρ+ δ

αδ
=

1

s(K∗)
. Note that

γ0 > 1; thus in the case where U(C) = lnC, i.e. γ = 1, s(K) is a decreasing function of
K for values of K close to K∗.

30.4.5 Let K∗ be as in the model of the text, i.e.

K∗ =

[
αA

ρ+ δ

]1/(1−α)
.

If K = K∗, C = C∗, where C∗ is as in the text; then K remains at K∗. This singular
solution, in the sense of Section 30.3, corresponds to µ taking the value 1. If K < K∗,
µ > 1 and C = 0; K then rises, attaining the value K∗ in finite time. If K > K∗, µ < 1
and C = AKα; K then falls, attaining the value K∗ in finite time.

31 INTRODUCTION TO ANALYSIS

31.1 Rigour

31.1.1 Q⇒ P , P ⇔ R and R⇒ S; hence Q⇒ R and P ⇒ S.

31.1.2 Let Pn be the propostion to be proved. P1 is obvious, so it remains to prove that Pn ⇒ Pn+1.
Let a > 0, n ∈ N and suppose Pn holds. Then

(1 + a)n+1 = (1 + a)(1 + a)n

≥ (1 + a)(1 + na+ 1
2n(n− 1)a2) by Pn

≥ (1 + a)(1 + na) + 1
2n(n− 1)a2 since a3 > 0

= 1 + (n+ 1)a+
[
1 + 1

2(n− 1)
]
na2

= 1 + (n+ 1)a+ 1
2(n+ 1)na2,

so Pn+1 holds as required.
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31.1.3 Let Pn be the proposition to be proved. P1 is obvious, so it remains to prove that Pn ⇒ Pn+1.
Suppose Pn holds for some n ≥ 1. Let x0, x1, . . . , xn be members of I and let α0, α1, . . . , αn
be n + 1 positive numbers that sum to 1. Let λ = 1 − α0, βi = αi/λ for i = 1, . . . , n; then
0 < λ < 1 and β1, . . . , βn are n positive numbers that sum to 1. Let u = β1x1 + . . . + βnxn;
then by Pn,

f(u) ≥ β1f(x1) + . . .+ βnf(xn). (∗)

But then

f(α0x0 + α1x1 + . . .+αnxn) = f((1− λ)x0 + λu)

≥ (1− λ)f(x0) + λf(u) since f is concave
≥ (1− λ)f(x0) + λβ1f(x1) + . . .+ λβnf(xn) by (∗)
= α0f(x0) + α1f(x1) + . . .+ αnf(xn),

and Pn+1 holds as required.

31.1.4 I×J is the square with corners (0, 1), (0, 3), (2, 3) and (2, 1). J×I is the square with corners
(1, 0), (3, 0), (3, 2) and (1, 2).

31.2 More on the real number system

31.2.1 A is bounded above and has a greatest member: maxA = supA = 2. A is also bounded
below and has a least member: minA = inf A = −2. Answers for B are as for A.

C is not bounded above and therefore has no greatest member. C is bounded below and has
a least member: minC = inf C = 1. D is not bounded above and therefore has no greatest
member. D is bounded below, with inf D = 0, but has no least member.

31.2.2 Let u = supS, x ∈ R; we must show that x ≥ u if and only if x is an upper bound for S. ‘If’
is true because u is the least upper bound for S. ‘Only if’ is true because u is an upper bound
for S: u ≥ s ∀ s ∈ S. If x ≥ u, then x ≥ s ∀ s ∈ S, so x is indeed an upper bound for S.

31.2.3 a2 < 2 < b2 and a2 − b2 = (a − b)(a + b); hence (a − b)(a + b) < 0. But since a and b are
positive, a+ b > 0. Therefore a− b < 0.

31.2.4 (a) Apply (31.2) with y replaced by −y, recalling that | − y| = |y|.
(b) |x| = |x− y + y| ≤ |x− y|+ |y| by (31.2).
(c) Let z = |x| − |y|. By (b), z ≤ |x − y|. Interchanging x and y, −z ≤ |y − x|. But
|y − x| = |x− y|. Therefore max(z,−z) ≤ |x− y|, as required.

(d) Suppose y 6= 0 and let z = x/y. Then |x| = |yz| = |y| |z| by (31.1); now divide by |y|.

31.3 Sequences of real numbers

31.3.1 Yes and no respectively. To prove the latter, let u = 0, xn = −n−1 ∀n ∈ N. To prove the
former, let ε be any positive real number; then u < xn < x+ ε for all sufficiently large n, so
u− x < ε. Since this is true for any positive ε, however small, u− x ≤ 0.

31.3.2 Let ε > 0. Since an → x, we may choose a positive integerN1 such that x−ε < an < x+ε ∀n >
N1. Since bn → x, we may choose a positive integer N2 such that x−ε < bn < x+ε ∀n > N2.
Let N = max(N1, N2). Then, for all n > N ,

x− ε < an ≤ xn ≤ bn < x+ ε.

Hence |xn − x| < ε ∀n > N . Since this argument is valid for every positive ε, xn → x.

62



31.3.3 Suppose 0 < b < 1. Then b−1 > 1, so we may apply the given inequality with a = b−1 − 1,
inferring that b−n > n(b−1 − 1). Therefore

0 < bn <

(
b

1− b

)
1

n
for all n.

The required conclusion now follows from SQ1 and the fact that 1/n→ 0 as n→∞.

31.3.4 (a), (b) and (c) are true. (d) is false: if xn is 0 for all even n and 1 for all odd n, then
limn→∞ x2n = 0 but the sequence {xn} does not converge.

31.3.5 Let xn → x. Let ε be any positive real number; then we may choose N ∈ N such that
|xn − x| < ε/2 ∀n > N . If m > N and n > N , then

|xm − xn| ≤ |xm − x|+ |x− xn| < ε.

Hence {xn} is a Cauchy sequence.

31.4 More on limits and continuity

31.4.1 Let yn = |xn| − |x|. From Exercise 31.2.4(c), |yn| is squeezed between 0 and |xn − x| for all n
and therefore converges to 0, so |xn| → |x|.
Let f be continuous and let x0 ∈ I. By Proposition 3 of this section, f(xn)→ f(x0) for every
sequence {xn} of members of I that converges to x0. Hence, by first part, |f(xn)| → |f(x0)|
for every such sequence. Hence, by Proposition 3, |f | is continuous.

31.4.2 By Proposition 3, it suffices to show that if {xn} is a sequence in [a, b] that converges to
a member x0 of [a, b], then g(f(xn)) → g(f(x0)). Since f is continuous, it follows from
Proposition 3 that f(xn) → f(x0). The required result now follows from the fact that g is
continuous and another appeal to Proposition 3.

31.4.3 Let I = [0, 1] and let {xn} be a Cauchy sequence in I. By SQ7 the sequence converges to a
real number x0. Since 0 ≤ xn ≤ 1 for all n, x0 satisfies the same inequalities and is therefore
a member of I. Since f is continuous, it follows from Proposition 3 that the sequence {f(xn)}
converges to f(x0) and is therefore a Cauchy sequence.
The answer to the second question is No. Let I = (0, 1). Let the continuous function
f : I → R and the sequence {xn} in I be defined by f(x) = 1/x, xn = 1/n. Then {xn}
is a Cauchy sequence (considered as a sequence in R, it converges to 0) but {f(xn)} is not
(|f(xm)− f(xn)| ≥ 1 if m 6= n). [The argument of the first part does not apply here, because
limn→∞ xn /∈ I. Recall that going to the limit preserves weak inequalities but not strict ones.]

31.4.4 Let ε > 0. Let δ1 and δ2 be positive numbers such that |f(x) − `| < ε/2 if x ∈ I and
0 < |x− x0| < δ1, while |g(x)−m| < ε/2 if x ∈ I and 0 < |x− x0| < δ2. Let δ = min(δ1, δ2).
Then for any x ∈ I such that 0 < |x− x0| < δ,

|(f(x) + g(x))− (`+m)| ≤ |f(x)− `|+ |g(x)−m| < ε.

31.4.5 Let limn→∞ f(xn) = f(x0) for every sequence {xn} of members of I that converges to x0.
Then in particular, f(xn) → f(x0) under the additional assumption that xn 6= x0 ∀n ∈ N.
Hence limx→x0 f(x) = f(x0) by Proposition 1: f is continuous at x0.
Conversely, suppose that f is continuous at x0. Let {xn} be a sequence of members of I such
that xn → x0; we wish to show that f(xn)→ f(x0). Let ε > 0. Since limx→x0 f(x) = f(x0),
there exists a positive number δ such that |f(x) − f(x0)| < ε whenever x ∈ I, x 6= x0 and
|x−x0| < δ. Since ε > 0 it follows that |f(x)−f(x0)| < ε if x ∈ I and |x−x0| < δ, whether or
not x is equal to x0. Since xn → x0, we may choose N ∈ N such that |xn − x0| < δ ∀n > N .
Then |f(xn)−f(x0)| < ε ∀n > N . Since this argument is valid for any ε > 0, f(xn)→ f(x0).
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32 METRIC SPACES AND EXISTENCE THEOREMS

32.1 Metric spaces

32.1.1 Putting y = x in M0 and applying M2, we see that 2d(x, z) ≥ 0 for all x, z in X; this implies
M1. Putting z = x in M0 and applying M2, we see that d(x, y) ≤ d(y, x). Since this is so
for all x, y in X it remains true if x and y are interchanged, so M3 holds as required.

32.1.2 (a) The easiest method is to use the result of Exercise 32.1.1. M2 clearly holds, so it remains
to prove M0. Let x, y, z be points of X and let

p = d(x, y), q = d(x, z) + d(y, z).

We wish to show that p ≤ q. This is obvious if p = 0. If p = 1 then x 6= y; but then at
least one of x and y is distinct from z, so q ≥ 1.

(b) We proceed as in (a), with the same notation. If p ≤ 1, the argument of (a) applies. If
p = 2 then x, y, ω are all different and z is x, or y, or ω or none of them; the corresponding
values of q are respectively 2, 2, 2 and 4.

32.1.3 Suppose xn → x and xn → y; we want to show that x = y. Let ε > 0, and let M,N be
integers such that

d(xn, x) < ε ∀n > M, d(xn, y) < ε ∀n > N.

Let n > max(M,N): by M3 and M4, d(x, y) ≤ d(xn, x) + d(xn, y) < 2ε. Since d(x, y) < 2ε
for all positive ε, d(x, y) ≤ 0. But then x = y by M1 and M2.

32.1.4 Each element of the sequence is a point on the circle of radius 1 whose centre is at the
origin. The sequence is therefore bounded: by the Bolzano–Weierstrass theorem, it has a
convergent subsequence. Since each member of the sequence is obtained from the previous
one by a rotation through 1 radian, the distance between the nth and (n + 1)th members
of the sequence is the same positive number for all n. Hence the sequence is not a Cauchy
sequence, and is therefore not convergent.

32.1.5 (a) We want to prove that

−d(y, z) ≤ d(x, y)− d(x, z) ≤ d(y, z). (∗)

The left-hand inequality in (∗) may be written d(x, z) ≤ d(x, y)+d(y, z); this is just M4,
with y and z interchanged. The right-hand inequality in (∗) may be written d(x, y) ≤
d(x, z) + d(y, z); this follows immediately from M3 and M4.

(b) By M3,

|d(x, y)− d(z, w)| = |d(y, x)− d(y, z) + d(z, y)− d(z, w)|
≤ |d(y, x)− d(y, z)|+ |d(z, y)− d(z, w)|,

and the result now follows from (a).

(c) From (b), |d(xn, yn) − d(x, y)| ≤ d(xn, x) + d(yn, y). The result now follows from SQ1
and SQ2 in the preceding chapter.

32.1.6 f(0) = 1, f(x) = 0 if 0 < x ≤ 1. Yes. No.
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32.1.7 Let ε > 0. Since convergence is uniform, there is an integer m such that |fm(x)− f(x)| < ε/3
for all x in [a, b]. Since fm is continuous at x0 we may choose δ > 0 with the property that
|fm(x)− fm(x0)| < ε/3 for all x such that a ≤ x ≤ b and |x− x0| < δ. Then for all such x,

|f(x)− f(x0)| ≤ |f(x)− fm(x)|+ |fm(x)− fm(x0)|+ |fm(x0)− f(x0)| <
ε

3
+
ε

3
+
ε

3
= ε.

Since this argument is valid for every ε > 0, f is continuous at x0.

If each fn is a continuous function then the argument above is valid for every x0 ∈ [a, b], so f
is also continuous.

32.1.8 If convergence were uniform then f would be continuous, and we know that it isn’t.

32.2 Open, closed and compact sets

32.2.1 A set A in X that is not open must contain a point with a certain property (specifically, every
open ball with that point as centre also contains a point of Ac). A set B in X that is not
compact must contain a sequence of points with a certain property (specifically, no convergent
subsequence). Since ∅ contains no points, it is both open and compact. Being compact, it is
closed and bounded.

32.2.2 Denoting such a set by S, supS is a boundary point. Since S is closed, supS ∈ S. Therefore
S has a greatest member.

32.2.3 The complement of (0, 1] in P is the set Y = { y ∈ P : y > 1 }. If y ∈ Y and 0 < δ ≤ y − 1,
then the open interval (y−δ, y+δ) is contained in Y . Hence Y is open in P , so (0, 1] is closed.
Also (0, 1] is contained in the open interval (0, 2) and hence is bounded. The sequence {n−1}
has no subsequence that converges to a point of (0, 1], so (0, 1] is not compact.

32.2.4 In each case, the boundary points are the points on the parabola y = x2 such that −1 ≤ x ≤ 1,
and the points on the line y = 1 such that −1 ≤ x ≤ 1.

(a) Closed since it contains all its boundary points.

(b) Open since it contains none of its boundary points.

(c) Neither since it contains some but not all its boundary points.

32.2.5 (a) Suppose that X is contained in the open ball in R` with centre x0 and radius r, and Y is
contained in the open ball in Rm with centre y0 and radius s. Then X×Y is contained
in the open ball in R`+m with centre (x0, y0) and radius

√
r2 + s2.

(b) Let X and Y be closed sets, and let {(xn, yn)} be a sequence in X×Y converging to a
point (x0, y0) of R`+m. To prove that X×Y is closed it suffices, by Proposition 2, to
show that (x0, y0) ∈ X×Y . Since each component sequence of {(xn, yn)} converges to
the corresponding component of (x0, y0), xn → x0 and yn → y0. But X and Y are closed
sets. Therefore x0 ∈ X and y0 ∈ Y , so (x0, y0) ∈ X×Y as required.

(c) By the Bolzano–Weierstrass theorem, a subset of Rk is compact if and only if it is closed
and bounded. Since this is so for k = `, k = m and k = ` + m, (c) follows immediately
from (a) and (b). [One can also prove (c) directly from the definition of compactness by
arguing as in the derivation of the Bolzano–Weierstrass theorem from SQ6.]

32.2.6 (a) The proof is by contraposition. Let x1 be a point such that d(x1, x0) 6= r; we wish to
show that x1 is not a boundary point of the open ball B with centre x0 and radius r. If
d(x1, x0) < r then x1 ∈ B, and the result follows from the fact that B is an open set. It
remains to consider the case where x1 belongs to the set {x ∈ X : d(x, x0) > r }. Since
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this set is open, there exists an open ball C with centre x1 such that d(x, x0) > r ∀x ∈ C.
Hence x1 is not a boundary point of B.

(b) Let S = {x ∈ Rm : ‖x‖ = 1 }. By (a), every boundary point of B is in S; we must prove
the converse. Let x ∈ S and let D be an open ball with centre x. Let the radius of D be
ρ, and let α be a real number such that 0 < α < min(1, ρ). Then (1− α)x and (1 + α)x
are points in D, (1− α)x ∈ B and (1 + α)x ∈ Bc.
Generalisation: the boundary of the open ball {x ∈ Rm : ‖x − x0‖ < r } is the set
{x ∈ Rm : ‖x− x0‖ = r }.

(c) Let B be the open ball with centre x0 and radius 1. As in any metric space, x0 is not
a boundary point of B. In this case, B has just one member, namely x0. If x1 6= x0,
then the open ball with centre x1 and radius 1 also has just one member, namely x1,
and therefore contains no member of B; thus x1 is not a boundary point of B. It follows
that B has no boundary points; by contrast, {x ∈ X : d(x, x0) = 1 } is the non-empty
set of all points in X other than x0.

32.2.7 Immediate from Proposition 2.

32.2.8 Suppose A is closed in X. Since X is complete, every Cauchy sequence in A converges to
a point in X, which is also in A by Proposition 2. Hence the metric space A is complete.
Conversely, suppose A is not closed. Then by Proposition 2 we may choose a sequence of points
in A which converges to a point of X that is not in A. We then have a Cauchy sequence in A
that does not converge to a point of A, so the metric space A is not complete.

32.3 Continuous mappings

32.3.1 (a) Let x0 ∈ X and let C ⊂ X ′ be an open ball with centre f(x0). Let the radius of C be r,
and let B ⊂ X be the open ball with centre x0 and radius r/β. Then for any x ∈ B,

d′(f(x), f(x0)) ≤ β d(x, x0) < r,

so f(x) ∈ C.
(b) |x2 − y2| = |x + y||x − y|. Since |x + y| can be as large as we like, f does not have the

property mentioned in (a), but f is continuous.
(c) If X = [0, 1], |x2 − y2| ≤ 2|x − y|; f now does have the property mentioned in (a), and

is therefore continuous.

32.3.2 (a) Let x ∈ X and suppose xn → x. Define a second sequence {wn} by setting wn = x0 ∀n ∈
N. Then, by Exercise 32.1.5 part (c), d(wn, xn)→ d(x0, x), so f(xn)→ f(x). It follows
that f is continuous at x and hence on all of X.

(b) Let f be as in (a); then f is continuous. Since K is compact we may apply Weierstrass’s
theorem: there exists y0 ∈ K such that f(y0) ≤ f(y) ∀ y ∈ K. The result follows.

(c) Let y1 be any member of A and let K = { y ∈ A : |y−x0| ≤ |y1−x0| }; it suffices to show
that there is a member y0 of K that is closest to x0. Now K is a closed and bounded set
in R and is therefore compact. Since y1 ∈ K, K is also non-empty. The required result
now follows from (b). If x0 = 0 and A = { y ∈ R : y ≥ 1 }, y0 must be 1; if x0 = 0 and
A = { y ∈ R : |y| ≥ 1 }, y0 may be 1 or −1. The result extends to Rm because closed
and bounded sets in Rm are also compact.

32.3.3 (a) By definition of the function f , there is a member a of A such that d(y, a) < f(y) + ε.
Since a ∈ A, d(x, a) ≥ f(x). Hence by subtraction,

d(x, a)− d(y, a) > f(x)− f(y)− ε.
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This, together with the triangle inequality, implies that f(x)− f(y) < d(x, y) + ε for any
positive number ε, however small. Hence f(x)− f(y) ≤ d(x, y). Reversing the roles of x
and y, we see that f(y)− f(x) ≤ d(y, x) = d(x, y). Therefore |f(x)− f(y)| ≤ d(x, y).

(b) Recall Exercise 32.3.1, part (a).
(c) Suppose f(x) = 0. Then we may choose a sequence {xn} of points in A such that

d(x, xn) < 1/n for all n. Then xn → x, so x ∈ A if A is closed.
(d) φ(x) = f(x)/[f(x)+g(x)], where f(x) is the distance from x to A and g(x) is the distance

from x to B.

32.3.4 For this exercise, it is helpful to use the notation for half-open intervals introduced in Exercise
32.2.3. In general, a half-open interval is a set of the form

[a, b) = {x ∈ R : a ≤ x < b } or (a, b] = {x ∈ R : a < x ≤ b },

where a, b are real numbers such that a < b. Such a set is neither open nor closed in the
metric space R, since it contains just one of its two boundary points.

(a) f is continuous and I is open. Sketching the graph of f using the methods of Chapter 8,
one can see that { f(x) : x ∈ I } is the half-open interval [0, 4), which is not an open set
in R.

(b) f is continuous and Z is a closed subset of X. { f(x) : x ∈ Z } is the half-open interval
(0, 1], which is not a closed subset of Y .

(c) Generalisations of Propositon 4 that replace ‘compact’ by ‘open’ or ‘closed’ are not true.

32.4 Fixed point theorems

32.4.1 (a) |F (x)− F (y)| = 1
2 |x− y|; therefore F is a contraction mapping.

(b) 1
2x = x only for x = 0, and 0 is not a member of X.

(c) The metric space X is not complete.

32.4.2 Let a, x and y be m–vectors, and suppose 0 ≤ α ≤ 1. Then

‖αx + (1− α)y − a‖ = ‖α(x− a) + (1− α)(y − a)‖
≤ ‖α(x− a)‖+ ‖(1− α)(y − a)‖ by (32.1)
= α‖x− a‖+ (1− α)‖y − a‖.

If x and y belong to the closed ball B with centre a and radius r, then ‖x− a‖ = r − β and
‖y − a‖ = r − γ for some non-negative numbers β and γ. Therefore

‖αx + (1− α)y − a‖ ≤ α(r − β) + (1− α)(r − γ) = r − [αβ + (1− α)γ] ≤ r.

This shows that B is a convex set. The convexity of the open ball with centre a and radius r
is proved similarly; in this case β and γ are positive, so αβ + (1− α)γ > 0.

32.4.3 The rotation of a circle about its centre by, say, π/3 radians is a continuous mapping that has
no fixed point.

32.4.4 X is nonempty because 0 ∈ X, closed because it contains all its boundary points and bounded
because it is contained in any open ball with centre 0 and radius greater than 1. Thus
X is closed and bounded and therefore compact. X is obviously convex. Similarly, Y is
a nonempty, compact, convex set in Rn. The functions u and v are quadratic forms and
therefore continuous. For each y ∈ Y , the function u(·,y) : X → R is linear and therefore
quasi-concave. Similarly, for each x ∈ X, the function v(x, ·) : Y → R is quasi-concave. Thus
the conditions of the theorem are all met and the result follows.
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32.4.5 If (x̄, ȳ) is a Nash equilibrium, then

|x̄− y| ≥ |x̄− ȳ| ≥ |x− ȳ|

for all x, y ∈ [0, 1]. But if the left-hand inequality is true for all y ∈ [0, 1], then x̄ = ȳ, in which
case the right-hand inequality is false whenever x 6= ȳ. Therefore, no Nash equilibrium exists.

u(x, y) is not a quasi-concave function of x for given y.
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