MATHEMATICS FOR MANAGEMENT RBMP1103

TOPIC 2 : LINEAR AND QUADRATIC FUNCTION

Objectives:

1. Identify linear and quadratic functions
2. Find the slope of a line
3. Determine whether two lines are parallel or perpendicular
4. Sketch graphs of linear and quadratic functions
5. Find intersection point.

INTRODUCTION

1. In general, linear function is related with the previous topic where a linear function is one to one relation
2. There are many applications of linear function in our daily lives especially in economic field.

4.1 LINEAR EQUATIONS AND GRAPH SKETCHING

4.1.1 Linear Equations

1. The general form $y=m x+c$

Where:
$m \quad$ is the gradient
$c \quad$ is the intercept

Example:

Obtain the gradient and y intercept for each of the linear equations below:
(a) $y=\frac{2}{3} x+1$
(b) $y=6-3 x$
(c) $y=-\frac{x}{4}$
(d) $2 y+6 x=9$

Solutions:

(Express the following equations in general form $y=m x+c$. Then calculate the value for m (scalar for x) and the y intercept, c).
(a) $\quad m=\frac{2}{3}$ and $c=1$
(b) $m=-3$ and $c=6$

MATHEMATICS FOR MANAGEMENT BRMP 1103

(c) $m=-\frac{1}{4}$ and $c=0$
(d) $2 y=-6 x+9$

$$
\begin{aligned}
& y=\frac{9-6 x}{2} \\
& y=-3 x+\frac{9}{2} \\
& m=-3 \text { and } c=\frac{9}{2}
\end{aligned}
$$

4.1.2 Slope

1. If two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are given, a slope can be derived by using the formula below:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Examples:

Find the slope for the following points:
(a) $\quad A(1,4)$ and $B(-2,5)$
(b) $\quad C(0,-3)$ and $D(7,-1)$
(c) $\quad E(-6,6)$ and $F(1,6)$

Solutions:

(a) $m=\frac{5-4}{-2-1}$
(a) $=-\frac{1}{3}$
(b) $m=\frac{-1-(-3)}{7-0}$

$$
=-\frac{2}{7}
$$

(c) $m=\frac{6-6}{1-(-6)}$

$$
=0
$$

MATHEMATICS FOR MANAGEMENT RBMP1103

4.1.3 Types of Straight Lines

1.

2.

3.

4.

Horizontal Line

- $y=a$
- Symmetrical to x-axis
- Its gradient is zero

Vertical Line

- $x=b$
- Its gradient is infinite

Ascending-Slant Line

- $y=m x+c$
- Ascending line form left to right
- Its gradient is positive

Descending-Slant Line

- $y=m x+c$
- Descending line form left to right
- Its gradient is negative

4.1.4 Graph Sketching (Linear Function)

The following are steps for sketching a linear function graph:
(a) Find two different points of coordinate and plot them
(i) The y intercept can be obtained by letting $x=0$. Substituting $x=0$ into the equation and calculate the corresponding value for y
(ii) The x intercept can be obtained by letting $y=0$. Substituting $y=0$ into the equation and calculate the corresponding value for x

MATHEMATMCS FDR MANAGEMENT BPMP1103

(b) Connect the two points to form a straight line

Examples:

Sketch graph for each of the following linear functions:
(a) $y=2 x-1$
(b) $y=-4 x$
(c) $2 y+3 x=6$

Solutions:

(a) $y=2 x-1$

Step 1: Find the y intercept
Let $x=0$,
$y=2(0)-1$
$y=-1$
\therefore Hence, the point of y intercept is $(0,-1)$
Step 2: Find the x intercept
Let $y=0$,

$$
0=2 x-1
$$

$2 x=1$
$x=\frac{1}{2}$
\therefore Hence, the point of x intercept is $\left\{\left(\frac{1}{2}, 0\right)\right.$
Step 3: Sketch the graph $y=2 x-1$

(b) $y=-4 x$

Step 1: Find the y intercept
Let $x=0$,
$y=-4(0)$
$y=0$
\therefore Hence, the point of y intercept is $(0,0)$

MATHEMATICS FDR MANAGEMENT BIBMP1103

Step 2: Find the x intercept
Let $x=2$,
$y=-4(2)$
$y=-8$
\therefore Hence, the point of x intercept is $(2,-8)$
Step 3: Sketch the graph $y=-4 x$

(c) $2 y+3 x=6$

Step 1: Find the y intercept
Let $x=0$,

$$
\begin{aligned}
2 y+3(0) & =6 \\
2 y & =6 \\
y & =3
\end{aligned}
$$

\therefore Hence, the point of y intercept is $(0,3)$
Step 2: Find the x intercept
Let $y=0$,

$$
\begin{aligned}
2(0)+3 x & =6 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

\therefore Hence, the point of x intercept is $(2,0)$
Step 3: Sketch the graph $2 y+3 x=6$

4.2 PARALLEL AND PERPENDICULAR LINES

1. Two lines are said to be parallel if and only if have the same gradient.

Example 1:

Determine wether a straight line $2 y-3 x+6=0$ is parallel to another straight line $4 y=6 x+3$?

Solution:

Step 1:

(Express the equations into the general form)

$$
\begin{array}{rlrl}
2 y-3 x+6 & =0 & 4 y & =6 x+3 \\
2 y & =3 x-6 & y & =\frac{6}{4} x+\frac{3}{4} \\
y & =\frac{3}{2} x-6 & y & =\frac{3}{2} x+\frac{3}{4}
\end{array}
$$

Step 2:

(Identify the gradient)
$m_{1}=\frac{3}{2}, m_{2}=\frac{3}{2}$

Step 3:

Since the gradients are the same, these two lines are parallel.

Example 2:

Find an equation of a straight line that passes through point $(-2,10)$ and which is parallel to another straight line $5 x-y=0$.

MATHEMATICS FDR MANAGEMENT BBMP1 103

Solution:

Step 1:

(Determine the gradient)

$$
\begin{aligned}
5 x-y & =0 \\
-y & =-5 x \\
y & =5 x \\
m & =5
\end{aligned}
$$

Step 2:

(Substitute $m=5$ into equation $y=m x+c$)

$$
y=5 x+c
$$

Step 3:

(Find c. Substitute $x=-2$ and $y=10$ into equation $y=5 x+c$)

$$
\begin{aligned}
y & =5 x+c \\
10 & =5(-2)+c \\
c & =20
\end{aligned}
$$

Step 3:

(Form the equation)

$$
y=5 x+20
$$

Example 3:

Find an equation of a straight line that passes through point $(1,2)$ and which is parallel to another straight line $x+5 y=2$.

Solution:

Step 1:

(Determine the gradient)

$$
\begin{aligned}
x+5 y & =2 \\
5 y & =-x+2 \\
y & =-\frac{1}{5} x+\frac{2}{5} \\
m & =-\frac{1}{5}
\end{aligned}
$$

MATHEMATMCS FDR MANAGEMENT BBMP1 103

Step 2:

(Find the gradient of the required line)

$$
\begin{aligned}
\left(-\frac{1}{5}\right)\left(m_{2}\right) & =-1 \\
m_{2} & =5
\end{aligned}
$$

Step 3:

(Substitute $m_{2}=5$ into equation $y=m x+c$)
$y=5 x+c$

Step 4:

(Find c. Substitute $x=1$ and $y=2$ into equation $y=5 x+c$)
$y=5 x+c$
$2=5(1)+c$
$c=-3$

Step 5:

(Form the equation)
$y=5 x-3$

MATHEMATICS FOR MANAGEMENT HBMP1 103

Exercise 4.1

(a) For each of the following equations, determine their gradient and y intercept:
(i) $y=\frac{x}{2}-1$
(ii) $y=-5-5 x$
(iii) $y=-3 x$
(iv) $3 y=5-2 x$
(b) Find the equation of a straight line with gradient of -1 and passes through point $(3,2)$.
(c) Given two points $A(2,4)$ and $B(5,12)$ Determine the equation of a straight line that passes through them.
(d) Find an equation of a straight that passes through point (2,1) and parallel to $2 y+x=5$.
(e) Obtain an equation of a straight line that passes through point (3,-2) and which is perpendicular to line $3 x-y+3=0$.

Exercise 4.2

Sketch a graph for each of the linear functions below:
(a) $y=3 x+2$
(b) $y=\frac{-x}{2}$
(c) $3 y+2 x=2$

MATHEMATICS FDR MANAGEMENT BBMP1 103

Solution 4.1

(a) For each of the following equations, determine their gradient and y intercept:
(i) $y=\frac{x}{2}-1$

$$
m=\frac{1}{2}, c=-1
$$

(ii) $y=-5-5 x$
$y=-5 x-5$
$m=-5, c=-5$
(iii) $y=-3 x$
$m=-3, c=0$
(iv) $3 y=5-2 x$
$3 y=-2 x+5$
$y=-\frac{2}{3} x+\frac{5}{3}$
$m=-\frac{2}{3}, c=\frac{5}{3}$
(b) Find the equation of a straight line with gradient of -1 and passes through point $(3,2)$.

Step 1: (Determine the gradient)
$m=-1$
Step 2: (Substitute $m=-1$ into equation $y=m x+c$)
$y=-x+c$
Step 3: (Find c. Substitute $x=3$ and $y=2$ into equation $y=-x+c$)
$y=-x+c$
$2=-3+c$
$c=5$
Step 3: (Form the equation)

$$
y=-x+5
$$

MATHEMATICS FDR MANAGEMENT BBMP1 103

(c) Given two points $A(2,4)$ and $B(5,12)$ Determine the equation of a straight line that passes through them.

Step 1: (Determine the gradient)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m & =\frac{12-4}{5-2} \\
m & =\frac{8}{3}
\end{aligned}
$$

Step 2: (Substitute $m=\frac{8}{3}$ into equation $y=m x+c$)

$$
y=\frac{8}{3} x+c
$$

Step 4: (Find c. Substitute $x=2$ and $y=4$ into equation $y=\frac{8}{3} x+c$)
$y=\frac{8}{3} x+c$
$4=\frac{8}{3}(2)+c$
$c=-\frac{4}{3}$
Step 5: (Form the equation)

$$
y=\frac{8}{3} x-\frac{4}{3}
$$

$3 y=8 x-4$
(d) Find an equation of a straight that passes through point $(2,1)$ and parallel to $2 y+x=5$.

Solution:

Step 1: (Determine the gradient)

MATHEMATICS FDR MANAGEMENT BPMPI103

$$
\begin{aligned}
2 y+x & =5 \\
2 y & =-x+5 \\
y & =-\frac{1}{2} x+\frac{5}{2} \\
m & =-\frac{1}{2}
\end{aligned}
$$

Step 2: (Find the gradient of the required line)

$$
m_{1}=m_{2}=-\frac{1}{2}
$$

Step 3: (Substitute $m_{2}=-\frac{1}{2}$ into equation $y=m x+c$) $y=-\frac{1}{2} x+c$

Step 4: (Find c. Substitute $x=2$ and $y=1$ into equation $y=2 x+c$)
$y=-\frac{1}{2} x+c$
$1=-\frac{1}{2}(2)+c$
$c=2$
Step 5: (Form the equation)

$$
\begin{aligned}
y & =-\frac{1}{2} x+2 \\
2 y & =-x+4 \\
2 y+x & =4
\end{aligned}
$$

(e) Obtain an equation of a straight line that passes through point $(3,-2)$ and which is perpendicular to line $3 x-y+3=0$.

Step 1: (Determine the gradient)

$$
\begin{aligned}
3 x-y+3 & =0 \\
y & =3 x+3 \\
m & =3
\end{aligned}
$$

Step 2: (Find the gradient of the required line)

MATHEMATICS FDR MANAGEMENT BPMP1103

$$
\begin{aligned}
3\left(m_{2}\right) & =-1 \\
m_{2} & =-\frac{1}{3}
\end{aligned}
$$

Step 3: (Substitute $m_{2}=-\frac{1}{3}$ into equation $y=m x+c$)

$$
y=-\frac{1}{3} x+c
$$

Step 4: (Find c. Substitute $x=3$ and $y=-2$ into equation $y=-\frac{1}{3} x+c$)

$$
\begin{aligned}
y & =-\frac{1}{3} x+c \\
-2 & =-\frac{1}{3}(3)+c \\
c & =-1
\end{aligned}
$$

Step 5: (Form the equation)

$$
\begin{aligned}
& y=-\frac{1}{3} x-1 \\
& 3 y+x+3=0
\end{aligned}
$$

MATHEMATICS FOR MANAGEMENT HBMP1103

Solution 4.2

Sketch a graph for each of the linear functions below:
(a) $y=3 x+2$

Step 1: Find the y intercept
Let $x=0$,
$y=3(0)+2$
$y=2$
\therefore Hence, the point of y intercept is $(0,2)$

Step 2: Find the x intercept

Let $y=0$,
$0=3 x+2$
$3 x=-2$
$x=-\frac{2}{3}$
\therefore Hence, the point of x intercept is $\left(-\frac{2}{3}, 0\right)$
Step 3: Sketch the graph $y=3 x+2$

(b) $y=\frac{-x}{2}$

Step 1: Find the y intercept
Let $x=2$,

$$
\begin{aligned}
y & =\frac{-2}{2} \\
& =-1
\end{aligned}
$$

\therefore Hence, the point of y intercept is $(2,-1)$
Step 2: Find the x intercept
Let $y=0$,

MATHEMATMCS FDR MANAGEMENT HBMIP1103

$$
\begin{aligned}
0 & =\frac{-x}{2} \\
& =0
\end{aligned}
$$

\therefore Hence, the point of x intercept is $(0,0)$
Step 3: Sketch the graph $y=\frac{-x}{2}$

(c) $3 y+2 x=2$

Step 1: Find the y intercept
Let $x=0$,
$\begin{aligned} 3 y+2(0) & =2 \\ 3 y & =2\end{aligned}$

$$
y=\frac{2}{3}
$$

\therefore Hence, the point of y intercept is $\left(0, \frac{2}{3}\right)$
Step 2: Find the x intercept
Let $y=0$,
$3(0)+2 x=2$
$2 x=2$

$$
x=1
$$

\therefore Hence, the point of x intercept is $(1,0)$
Step 3: Sketch the graph $3 y+2 x=2$

MATHEMATICS FOR MANAGEMENT HBMP1 103

4.3 QUADRATIC EQUATIONS AND GRAPH SKETCHING

1. The general form of a quadratic equation is $y=a x^{2}+b x+c$ Where:
a, b, c are real numbers
$a \neq 0$
2. The highest degree for x in this equation is 2 .
3. The graph of such function is parabola.

4. The following are steps for sketching graph of quadratic function $f(x)=a x^{2}+b x+c$.

Step 1:

(Determine the direction of parabola, max or min value)

$$
f(x)=a x^{2}+b x+c
$$

Step 2:

(Find the turning point (x, y))

$$
x=-\frac{b}{2 a}, y=\frac{4 a c-b^{2}}{4 a} \text { or } y=f\left(-\frac{b}{2 a}\right)
$$

MATHEMATMCS FDR MANAGEMENT BBMP1 103

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(0) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

Hence, $(0, c)$ is the y-intercept.

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The nature of the graph whether it crosses the x-axis or not, depends on the value of $b^{2}-4 a c$.
(a) When $b^{2}-4 a c>0$, the graph crosses the x-axis at two points
(b) When $b^{2}-4 a c=0$, the graph crosses the x-axis at only one point
(c) When $b^{2}-4 a c<0$, the graph does not cross on the x-axis

Step 5:
(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

Example:

Sketch graphs for each of the following quadratic functions:
(a) $f(x)=x^{2}-4 x$
(b) $f(x)=3-2 x-x^{2}$
(c) $f(x)=2 x^{2}+2 x+1$

Solutions:

(a) $\quad f(x)=x^{2}-4 x$

Step 1:

(Determine the direction of parabola, max or min value)

$$
\begin{aligned}
& f(x)=x^{2}-4 x \\
& a=1, b=-4, c=0
\end{aligned}
$$

MATHEMATICS FDR MANAGEMENT BBMP1 103

\therefore The value of a is positive, minimum value, hence the parabola opens upward.

Step 2:

(Find the turning point (x, y))

$$
\begin{array}{rlrl}
x & =-\frac{b}{2 a} & y & =\frac{4 a c-b^{2}}{4 a} \\
& =-\frac{(-4)}{2(1)} & & =\frac{4(1)(0)-(-4)^{2}}{4(1)} \\
& =2 & & =\frac{0-16}{4} \\
& & =-4
\end{array}
$$

\therefore The turning point is $(2,-4)$

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(x) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

$\therefore c=0$

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(0)}}{2(1)} \\
& =\frac{4+\sqrt{16-0}}{2}, \frac{4-\sqrt{16-0}}{2} \\
& =4,0
\end{aligned}
$$

$\therefore x=4, x=0$
\therefore Two points are $(4,0),(0,0)$

MATHEMATMCS FDR MANAGEMENT BBMP1 103

Step 5:

(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

(b) $\quad f(x)=3-2 x-x^{2}$

Step 1:

(Determine the direction of parabola, max or min value)

$$
\begin{aligned}
& f(x)=3-2 x-x^{2} \\
& f(x)=-x^{2}-2 x+3 \\
& a=-1, b=-2, c=3
\end{aligned}
$$

\therefore The value of a is negative, maximum value, hence the parabola opens downward.

Step 2:

(Find the turning point (x, y))

$$
\begin{array}{rlrl}
x=-\frac{b}{2 a} & y & =4 a c-b^{2} \\
& =-\frac{(-2)}{2(-1)} & & \frac{4}{a} \\
& =-1 & & =\frac{4(-1)(3)-(-2)^{2}}{4(-1)} \\
& & =\frac{-12-4}{-4} \\
& & =4
\end{array}
$$

\therefore The turning point is $(-1,4)$

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

MATHEMATMCS FDR MANAGEMENT BBMP1 103

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(x) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

$\therefore c=3$

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(-1)(3)}}{2(-1)} \\
& =\frac{2+\sqrt{4+12}}{-2}, \frac{2-\sqrt{4+12}}{-2} \\
& =-3,1
\end{aligned}
$$

$\therefore x=-3, x=1$
\therefore Two points are $(-3,3),(1,3)$

Step 5:

(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

(c) $f(x)=2 x^{2}+2 x+1$

Step 1:

(Determine the direction of parabola, max or min value)

$$
\begin{aligned}
& f(x)=2 x^{2}+2 x+1 \\
& a=2, b=2, c=1
\end{aligned}
$$

\therefore The value of a is positive, minimum value, hence the parabola opens upward.

MATHEMATICS FDR MANAGEMENT BBMP1 103

Step 2:

(Find the turning point (x, y))

$$
\begin{array}{rlrl}
x & =-\frac{b}{2 a} & y & =\frac{4 a c-b^{2}}{4 a} \\
& =-\frac{2}{2(2)} & & =\frac{4(2)(1)-(2)^{2}}{4(2)} \\
& =-\frac{1}{2} & & =\frac{8-4}{8} \\
& & =\frac{1}{2}
\end{array}
$$

\therefore The turning point is $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(x) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

$\therefore c=1$

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(2) \pm \sqrt{(2)^{2}-4(2)(1)}}{2(2)} \\
& =\frac{-2+\sqrt{4-8}}{4}, \frac{-2-\sqrt{4-8}}{4}
\end{aligned}
$$

$\therefore \sqrt{b^{2}-4 a c}<0$
\therefore The graph has no x-intercept

MATHEMATMCS FDR MANAGEMENT BBMP1 103

Step 5:

(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

Exercise 5.1

Sketch graphs for each of the quadratic functions below:
(a) $\quad f(x)=x^{2}-6 x+5$
(b) $f(x)=x^{2}+4 x$
(c) $f(x)=4 x-x^{2}-3$
(d) $f(x)=-x^{2}-2 x-3$
(e) $f(x)=3 x^{2}=7 x+2$
(f) $f(x)=x^{2}-16$
(g) $f(x)=(x-1)(3-x)$
(h) $\quad f(x)=(x+1)^{2}-2$

MATHEMATMCS FDR MANAGEMENT BBMP1 103

Solutions 5.1

Sketch graphs for each of the quadratic functions below:
(a) $\quad f(x)=x^{2}-6 x+5$

Step 1:

(Determine the direction of parabola, max or min value)

$$
\begin{aligned}
& f(x)=x^{2}-6 x+5 \\
& a=1, b=-6, c=5
\end{aligned}
$$

\therefore The value of a is positive, minimum value, hence the parabola opens upward.

Step 2:

(Find the turning point (x, y))

$$
\begin{array}{rlrl}
x & =-\frac{b}{2 a} & y & =\frac{4 a c-b^{2}}{4 a} \\
& =-\frac{(-6)}{2(1)} & & =\frac{4(1)(5)-(-6)^{2}}{4(1)} \\
& =3 & & =\frac{20-36}{4} \\
& & =-4
\end{array}
$$

\therefore The turning point is $(3,-4)$

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(x) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

$\therefore c=5$

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

MATHEMATICS FDR MANAGEMENT BBMP1 103

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(5)}}{2(1)} \\
& =\frac{6+\sqrt{36-20}}{2}, \frac{6-\sqrt{36-20}}{2} \\
& =5,1
\end{aligned}
$$

$\therefore x=5, x=1$

Step 5:

(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

(b) $f(x)=x^{2}+4 x$

Step 1:

(Determine the direction of parabola, max or min value)

$$
\begin{aligned}
& f(x)=x^{2}+4 x \\
& a=1, b=4, c=0
\end{aligned}
$$

\therefore The value of a is positive, minimum value, hence the parabola opens upward.

Step 2:

(Find the turning point (x, y))

$$
\begin{array}{rlrl}
x & =-\frac{b}{2 a} & y & =\frac{4 a c-b^{2}}{4} \\
& =-\frac{4}{2(1)} & & a \\
& =-2 & & \frac{4(1)(0)-(4)^{2}}{4(1)} \\
& & =\frac{0-16}{4} \\
& & =-4
\end{array}
$$

MATHEMATMCS FDR MANAGEMENT BBMP1 103

\therefore The turning point is $(-2,-4)$

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(x) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

$\therefore c=0$

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(4) \pm \sqrt{(4)^{2}-4(1)(0)}}{2(1)} \\
& =\frac{-4+\sqrt{16-0}}{2}, \frac{-4-\sqrt{16-0}}{2} \\
& =0,-4
\end{aligned}
$$

$\therefore x=0, x=-4$

Step 5:

(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

(c) $\quad f(x)=4 x-x^{2}-3$

Step 1:
(Determine the direction of parabola, max or min value)

MATHEMATICS FDR MANAGEMENT BBMP1 103

$$
\begin{aligned}
& f(x)=4 x-x^{2}-3 \\
& f(x)=-x^{2}+4 x-3 \\
& a=-1, b=4, c=-3
\end{aligned}
$$

\therefore The value of a is negative, maximum value, hence the parabola opens downward.

Step 2:

(Find the turning point (x, y))

$$
\begin{array}{rlrl}
x & =-\frac{b}{2 a} & y & =\frac{4 a c-b^{2}}{4 a} \\
& =-\frac{4}{2(-1)} & & =\frac{4(-1)(-3)-(4)^{2}}{4(-1)} \\
& =2 & & =\frac{12-16}{-4} \\
& & =1
\end{array}
$$

\therefore The turning point is $(2,1)$

Step 3:

(Find the y-intercept, at which $x=0$.)
Substitute $x=0$ into the quadratic function.

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
f(x) & =a(0)^{2}+b(0)+c \\
& =c
\end{aligned}
$$

$\therefore c=-3$

Step 4:

(Find the x-intercept (if exist))
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(4) \pm \sqrt{(4)^{2}-4(-1)(-3)}}{2(-1)} \\
& =\frac{-4+\sqrt{16-12}}{-2}, \frac{-4-\sqrt{16-12}}{-2} \\
& =1,3
\end{aligned}
$$

$\therefore x=1, x=3$

MATHEMATMCS FDR MANAGEMENT BBMP1 103

Step 5:

(Plot all the predetermined points forms. Draw a smooth curve passing through the points)

(d) $f(x)=-x^{2}-2 x-3$
(e) $f(x)=3 x^{2}=7 x+2$
(f) $\quad f(x)=x^{2}-16$
(g) $\quad f(x)=(x-1)(3-x)$

MATHEMATICS FOR MANAGEMENT HBMP1 103

4.4 INTERSECTION POINT (LINEAR FUNCTIONS)

1. The point of intersection between two straight lines can be obtained by solving the equations of the two lines.

Examples 1:

Find the intersection point for lines $2 x+y=4$ and $x-y=2$.

Solutions:

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{array}{r}
2 x+y=4 \\
+\quad x-y=2 \\
\hline 3 x=6 \\
x=2
\end{array}
$$

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
2-y & =2 \\
y & =0
\end{aligned}
$$

Step 3: (Find the point of intersection)
\therefore Therefore, the point of intersection is $(2,0)$

Examples 2:

Find the intersection point for lines $2 x+4 y=6$ and $6 x+3 y=18$.

Solutions:

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{aligned}
2 x+4 y & =6 \longrightarrow \text { Multiply by } 3 \text { (to equate the scalar of } \mathrm{x} \text {) } \\
6 x+3 y & =18 \\
\hline 6 x+12 y & =18 \\
-\quad 6 x+3 y & =18 \\
9 y & =0 \\
y & =0
\end{aligned}
$$

MATHEMATICS FDR MANAGEMENT BBMP1 103

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
2 x+4 y & =6 \\
2 x+4(0) & =6 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

Step 3: (Find the point of intersection)
\therefore Therefore, the point of intersection is $(3,0)$

MATHEMATICS FDR MANAGEMENT BBMP1 103

Exercise 4.3

(a) For each of the following equations, find their point of intersection:
(i) $2 x+y=10$ and $6 x+y=14$
(ii) $3 x+y-2=0$ and $3 x-4 y+8=0$
(iii) $2 x-3 y=7$ and $3 x+2 y=4$
(b) Find the equation of a straight line which passes through point of intersection between $x=y$ and $y=2 x-3$, and with gradient of -2 .
(c) Given two straight line $x+y=5$ and $3 x-y=1$. Determine the equation of a straight line that passes through their intersection point and is perpendicular to $2 x+y=7$.

MATHEMATICS FDR MANAGEMENT BBMP1 103

Solutions 4.3

(a) For each of the following equations, find their point of intersection:
(i) $2 x+y=10$ and $6 x+y=14$

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{aligned}
2 x+y & =10 \\
-\quad 6 x+y & =14 \\
\hline-4 x & =-4 \\
x & =1
\end{aligned}
$$

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
2(1)+y & =10 \\
y & =8
\end{aligned}
$$

Step 3: (Find the point of intersection)
\therefore Therefore, the point of intersection is $(1,8)$
(ii) $3 x+y-2=0$ and $3 x-4 y+8=0$

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{aligned}
3 x+y-2 & =0 \\
-3 x-4 y+8 & =0 \\
\hline 5 y-10 & =0 \\
5 y & =10 \\
y & =2
\end{aligned}
$$

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
3 x+2-2 & =0 \\
3 x+0 & =0 \\
x & =0
\end{aligned}
$$

Step 3: (Find the point of intersection)
\therefore Therefore, the point of intersection is $(0,2)$

MATHEMATICS FDR MANAGEMENT BBMP1 103

(iii) $2 x-3 y=7$ and $3 x+2 y=4$

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{aligned}
2 x-3 y & =7 \\
3 x+2 y & =4
\end{aligned} \longrightarrow \text { Multiply by } 3 \text { (to equate the scalar of } \mathrm{x} \text {) } \text { Multiply by } 2 \text { (to equate the scalar of } \mathrm{x} \text {) }
$$

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
2 x-3 y & =7 \\
2 x-3(-1) & =7 \\
2 x+3 & =7 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

Step 3: (Find the point of intersection)
\therefore Therefore, the point of intersection is $(2,-1)$
(b) Find the equation of a straight line which passes through point of intersection between $x=y$ and $y=2 x-3$, and with gradient of -2 .

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{aligned}
x & =y \\
y & =2 x-3 \\
\hline x-y & =0 \\
-2 x-y & =3 \\
\hline-x & =-3 \\
x & =3
\end{aligned}
$$

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
& x=y \\
& 3=y
\end{aligned}
$$

Step 3: (Find the point of intersection)

MATHEMATICS FDR MANAGEMENT BBMP1 103

\therefore Therefore, the point of intersection is $(3,3)$

Step 4: (Find the equation)

$$
\begin{aligned}
& y=m x+c \\
& \therefore m=-2, \text { passes through point }(3,3) \\
& y=-2 x+c \\
& 3=-2(3)+c \\
& c=9
\end{aligned}
$$

\therefore Therefore, the equation is $y=-2 x+9 @ y=9-2 x$
(c) Given two straight line $x+y=5$ and $3 x-y=1$. Determine the equation of a straight line that passes through their intersection point and is perpendicular to $2 x+y=7$.

Step 1: (Solve the two equations simultaneously. Eliminate x or y)

$$
\begin{aligned}
& x+y=5 \\
&+\quad 3 x-y=1 \\
& \hline 4 x=6 \\
& x=\frac{6}{4} \\
& \hline x=\frac{3}{2}
\end{aligned}
$$

Step 2: (Substitute x or y into equation)

$$
\begin{aligned}
x+y & =5 \\
\frac{3}{2}+y & =5 \\
y & =5-\frac{3}{2} \\
y & =\frac{7}{2}
\end{aligned}
$$

Step 3: (Find the point of intersection)
\therefore Therefore, the point of intersection is $\left(\frac{3}{2}, \frac{7}{2}\right)$
Step 4: (Find the equation)

MATHEMATMCS FDR MANAGEMENT BBMP1 103

$$
\begin{aligned}
& -2\left(m_{2}\right)=-1 \\
& \quad m_{2}=\frac{1}{2} \\
& \therefore m=\frac{1}{2}, \text { passes through point }\left(\frac{3}{2}, \frac{7}{2}\right) \\
& y=\frac{1}{2} x+c \\
& 7 \quad 1,3 \\
& \overline{2}=\frac{7}{2}(\overline{2}) c \\
& \frac{7}{2}=\frac{3}{4}+c \\
& c=\frac{11}{4} \\
& \therefore \text { Therefore, the equation is } y=\frac{1}{2} x+\frac{11}{4} @ 4 y=2 x+11
\end{aligned}
$$

4.5 INTERSECTION POINT (QUADRATIC FUNCTIONS)

1. The point of intersection between two graph can be obtained by solving the equations of the two graphs.

Example 1:

Find the intersection point for curves $y=4 x-x^{2}$ and $y=x^{2}-6$.

Solution 1:

Step 1:

(Solve the equations)

$$
\begin{gathered}
y=4 x-x^{2}, y=x^{2}-6 \\
4 x-x^{2}=x^{2}-6 \\
x^{2}+x^{2}-4 x-6=0 \\
2 x^{2}-4 x-6=0
\end{gathered}
$$

Step 2:

(Apply the quadratic formula)

$$
a=2, b=-4, c=-6
$$

Step 3:

MATHEMATICS FDR MANAGEMENT HPMPI103

(Find the x values)
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(-6)}}{2(2)} \\
& =\frac{4+\sqrt{16+48}}{4}, \frac{4-\sqrt{16+48}}{4} \\
& =3,-1
\end{aligned}
$$

$\therefore x=3, x=-1$
Step 4:
(Find the y values by applying the x values into one of the equations)

$$
\begin{array}{rlrl}
\therefore x=3 & \therefore x=-1 \\
y & =x^{2}-6 & y & =x^{2}-6 \\
& =3^{2}-6 & & =(-1)^{2}-6 \\
& =3 & & =-5
\end{array}
$$

$\therefore y=3, y=-5$

Step 5:

(Find the intersection points)
\therefore Hence, the intersection points are $(3,3)$ and $(-1,-5)$.

Example 2:

Find the intersection point for curves $x^{2}+y-3=0$ and $2 x+y=0$.

Solution 1:

Step 1:

(Solve the equations)

$$
\begin{aligned}
x^{2}+y-3 & =0,2 x+y=0 \\
3-x^{2} & =-2 x \\
x^{2}-2 x-3 & =0
\end{aligned}
$$

MATHEMATICS FDR MANAGEMENT BBMP1 103

Step 2:

(Apply the quadratic formula)

$$
a=1, b=-2, c=-3
$$

Step 3:

(Find the x values)
Can be solved by using factored method or quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-3)}}{2(1)} \\
& =\frac{2+\sqrt{4+12}}{2}, \frac{2-\sqrt{4+12}}{2} \\
& =3,-1
\end{aligned}
$$

$\therefore x=3, x=-1$

Step 4:

(Find the y values by applying the x values into one of the equations)

$$
\begin{array}{rlrl}
\therefore x=3 & \therefore x=-1 \\
2 x+y & =0 & 2 x+y & =0 \\
2(3)+y & =0 & 2(-1)+y & =0 \\
& =-6 & & =2
\end{array}
$$

$\therefore y=-6, y=2$

Step 5:

(Find the intersection points)
\therefore Hence, the intersection points are $(3,-6)$ and $(-1,2)$.

MATHEMATICS FOR MANAGEMENT HBMP1103

Exercise 4.5

Find the intersection points for each of the followings pair:
(a) $y=8-x^{2}$ and $4 x-y+11=0$
(b) $y=2 x^{2}-3 x$ and $y=x^{2}-2$
(c) $y=x^{2}+6 x+2$ and $y=2 x^{2}+2 x+5$

GOOD LUCK

