Mathematics Glossary

A Mathematics Toolkit, including curriculum guidance materials and resources is located on the Department's Web site. Please see:

- Mathematics Toolkit for Grades Prekindergarten-8 http://www.p12.nysed.gov/ciai/mst/math/toolkit.html
- Mathematics Toolkit Grades 9-12:
http://www.p12.nysed.gov/ciai/mst/math/toolkit.html\#grade

Term	Definition
Add	The combining of two or more quantities to find a sum.
Algebraic (or Numeric) equations or inequalities (also referred to as a sentence)	Equation: mathematical sentence (numeric/algebraic) where the left side of the equal sign has the same value as the right side. Example: $6+4=10$ Inequality: mathematical sentence (numeric/algebraic) built from expressions using one or more of the symbols $\neq,>,<, \geq$, and/or \leq. Example: $x-3 \geq 4$ Note regarding equations or inequalities: An equation or inequality is made up of two or more expressions. It must be presented, written, shown, etc., in a horizontal format. Examples: $4+x=10 ; a+b=c+d ; 2+3<7 ; 4-1>1+1 ; 5+5=n ; 4 \leq n \leq 7$ - A verbal sentence is given in words, for example, "the sum of eight and a number equals twenty-eight." - A written sentence is given in words and/or numbers, for example, " 8 plus some number is 28 ." - An algebraic sentence is the translation of a verbal expression into numbers and/or variables (letters) and operation symbol(s); for example, " $8+n=28$ " is the algebraic expression of the verbal and written expressions given above. Note: A variable can be used on either side of the equality/inequality sign. Examples: $5-x=2$ or $2=5-x$ or $5-2=x$ - A numeric sentence is a mathematical combination made from mathematical symbols. $\begin{aligned} & \text { Examples: } 5+5=10 ; 1+1=0+2 ;(6-1) \times 3 \neq 25 \\ & 30+30+30>40+2 \end{aligned}$ Note regarding translating: The student must show/select the numeric/algebraic equation (sentence). For the translated equation to be considered correct, it must be horizontal. Note regarding evaluating, solving, or simplifying: The equation must be presented horizontally; however, the student may solve the equation by putting it into a vertical (working) format before indicating the answer. For further information, see Evaluate/Solve an expression (numeric/algebraic) and equation (numeric/algebraic) (also referred to as "find the value") or Simplify an expression (numeric/algebraic) and equation (numeric/algebraic).

Page 1-2014-15 NYSAA Frameworks Glossary - Mathematics

Term	Definition
Algebraic (or Numeric) expression (also referred to as a phrase)	Mathematical expression (numeric/algebraic): one mathematical symbol or a group of symbols representing a number or quantity. It may include numbers, variables, constants, operators, and grouping symbols. One side of an equation is also an expression. Generally, an expression does not contain an equality symbol (=) except when comparing or evaluating/finding the value/solving/simplifying. Note regarding expressions: An expression must be presented, written, shown, etc., in a horizontal format. Examples: $25+5 ; 10-6 ; 7+1+1 ; 8 x+4 ; 3 m+4 b ; 5 \times 5 ; 2+8-4 ; 10-3-(2+4)$ - A verbal expression is given in words, for example, "the sum of ten and a number." - A written expression is given in words and/or numbers, for example, "some number plus 10." - An algebraic expression is the translation of a verbal expression into numbers and/or variables (letters) and operation symbol(s); for example, " $x+10$ " is the algebraic expression of the verbal and written expressions given above. - A numeric expression is a mathematical combination made from mathematical symbols. Examples: $-6+4 ; 3 \times 4 ;(10+10) \times 3$; $1+1+1$ Note regarding translating: The student must show/select the numeric/algebraic expression (phrase). For the translated expression to be considered correct, it must be horizontal and does not include an = sign. Also, the student only needs to translate the verbal/written expression; the student does not need to solve it. Note regarding translating verbal or written expressions (phrases) into algebraic expressions, given word problems: One of the steps of solving a word problem is deciding on the plan-deciding the correct operation and which numbers and/or variables to use- thus, translating the words into mathematical expressions. In this case, the student does not need to solve the problem, just develop the plan to solve it by showing/selecting the appropriate expression in horizontal format. The expression does not have to include an = sign to be considered correct. Note regarding evaluating, solving, or simplifying: The expression must be presented horizontally; however, the student may put it into a vertical (working) format before indicating the answer. For further information, see Evaluate/Solve an expression (numeric/algebraic) and equation (numeric/algebraic) (also referred to as "find the value") or Simplify an expression (numeric/algebraic) and equation (numeric/algebraic).
Analog clock	A clock, usually with a round face, twelve numbers, and at least two hands (one pointing to the hour and the other pointing to the minute).
Angle	The union of two rays and their common endpoint.

Term	Definition
Angles (acute, obtuse, right, and straight)	A pair of rays sharing a common end point. Three types of angles are: Acute: An angle measuring less than 90 degrees. Obtuse: An angle measuring more than 90 degrees. Right: An angle measuring 90 degrees. Straight: An angle measuring 180 degrees.
Area	The extent of a 2-dimensional surface that is enclosed within a boundary. For rectangles, area is found by multiplying the length by the width. It is also acceptable to find area by adding the total number of unit squares (defined in Unit Square) that cover the region.
Array	A set of objects or numbers arranged in order, commonly in rows and columns.
Attribute	A characteristic of an object. Example: sorting by color when playing a sorting game Example: Attributes may include shape, size, number of sides, number of angles, texture, weight, density.
Axes on a graph	x-axis: the horizontal line on the coordinate plane that intersects at the origin with the y-axis. y-axis: the vertical line on the coordinate plane that intersects at the origin with the x-axis. Example:
Bar graph	A graph that uses horizontal or vertical bars to represent numbers in a set of data. Examples:

Page 3-2014-15 NYSAA Frameworks Glossary - Mathematics

Term	Definition
Base 10 Blocks	Blocks that show the base 10 number system. Include single unit cubes, rods of 10 , plates of 100, and cubes of 1,000 .
Biased data	Data gathered from a sample that is not representative of the entire population that is being sampled. Note regarding biased and unbiased data: If the sample is representative of the entire population being sampled, that data are unbiased. It is important to note that bias, or the lack thereof in a set of data, results from how the data were collected, and not from the data themselves.
Box and Whisker Plot (Box Plot)	A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. The box shows the middle 50% of the data. Example:
Capacity	The maximum amount that a container can hold (volume).
Chart	A tool for providing graphical, tabular, or diagrammatical information; generally, it contains data displayed in a visual representation. It is often also called a graph. See Graph or Table. Examples: a pie chart, a column chart, a bar chart, a line chart
Circle	A collection of points connected in a plane that are all the same distance from a fixed point.
Collect	To gather information by using surveys, observations, etc.
Common factors	Numbers that are factors of two or more numbers. Example: The factors of 12 are $1,2,3,4,6$, and 12 . The factors of 10 are 1 , 2,5 , and 10 . The common factors of 12 and 10 are 1 and 2 .
Commutative principle (addition or multiplication)	The principle that states that numbers may be added or multiplied in any order. This term is also referred to as the commutative property, law, or rule.
Commutative property of addition	The property that states that the sum stays the same when the order of the addends is changed. Example: $6+4=4+6$
Compare	To examine two or more objects, numbers, etc. in order to note similarities and differences.

Term	Definition
Compare numbers	Given two numbers, determine if one number is greater than, less than, or equal to the other number.
Complementary angles	A pair of angles whose measures have a sum of 90°.
Concrete object	See Manipulative.
Congruent angles	Angles that have the same measure. If one angle is placed on top of another, they are congruent if they fit exactly.
Congruent figures	Figures that have the same shape and same size. Example:
Congruent sides of a triangle	The sides of a triangle that are equal in length.
Contrast	To compare in order to show unlikeliness or differences.
Conversion	The process of changing into a different form or property. An example is performing a conversion from inches to feet.
Coordinate system	A system that uses coordinates (x, y) to establish position.
Coordinate grid	A two-dimensional system in which the coordinates of a point are its distances from the origin (the location where the two axes intersect).
Coordinate plane	See Coordinate Grid
Coordinates	An ordered pair of numbers that identifies an exact location of a point or object on a grid, coordinate plane, or map written as (x, y). Example: The coordinates of the point in the example on the graph are $(3,2)$. Coordinates can be letters (C, G), numbers (2, 3), or a combination (1, K).
Create	All words that can refer to the act of writing and include the creation of original material, possibly by voice; by organizing or shaping information or ideas; and/or by using objects, visual language (selecting pictures, symbols, etc., to convey information), sign language (American Sign Language (ASL) or other gestural communication system), stamping, and any communication aids such as a voice synthesizer or speech-generating device that has audible speech output, from single switch through computer-based options, to communicate ideas, choices, or information.
Customary units of length (not inclusive)	Miles, yards, feet, inches.

Mathematics - Glossary

Term	Definition
Customary units of liquid capacity (not inclusive)	Cups, pints, , quarts, gallons, cubic inches, cubic yards.
Customary units of mass (not inclusive)	Tons, pounds, ounces.
Data	Information that has been collected, such as from a survey. For further information, see Qualitative Data or Quantitative Data.

Term	Definition
Decimal	A linear array of digits that represents a real number with every decimal place indicating a multiple of a negative power of 10 . For example, the decimal $0.1=1 / 10,0.12={ }^{12} / 100,0.003=3 / 1000$. Also called decimal fraction; a number written using base 10 . Note regarding place value of decimals: The number 0.123 has 1 in the tenths place, 2 in the hundredths place, and 3 in the thousandths place. Note regarding reading/writing decimals (in non-money contexts): The number 49.8 is read/written as forty-nine and eight tenths; 9.1 is read/written as nine and one tenth; 5.23 is read/written as five and twenty-three hundredths; 14.02 is read/written as fourteen and two hundredths; 2.918 is read/written as two and nine hundred eighteen thousandths; 0.5 is read/written as five tenths; 0.13 is read/written as thirteen hundredths; 0.483 is read/written as four hundred eighty-three thousandths. Note: When using a whole number and a decimal, the word "and" is important because its usage denotes that a decimal is present. Also, using the word "and" and place value designation is important for mathematics AGLIs. Note regarding reading/writing decimals (in money contexts): 6.11 as money is $\$ 6.11$ and is read/written as six dollars and eleven cents; 30.8 as money is $\$ 30.80$ and is read/written as thirty dollars and eighty cents; 0.45 as money is $\$ 0.45$ and is read/written as forty-five cents. Note regarding comparing decimals: Start with the tenths place, then go on to the hundredths place, etc. If one decimal has a higher number in the tenths place, it is larger than a decimal with fewer tenths. If the tenths are equal, compare the hundredths, then the thousandths, etc., until one decimal is larger or there are no more places to compare. For example, comparing 0.5 ($5 / 10$) and 0.05 ($5 / 100$) could be thought of in fractional terms, with 0.5 being $50 / 100$ and 0.05 being ($5 / 100$), making it clear 0.5 that is greater than 0.05 . The same method of comparison applies to comparing money to the hundredths place. For example, a comparison of $\$ 0.20(20 / 100)$ and $\$ 0.02$ $(2 / 100)$ would be $\$ 0.20>\$ 0.02$; a comparison of $\$ 0.55(55 / 100)$ and $\$ 0.60$ (60/100) would be $\$ 0.55<\$ 0.60$; a comparison of $\$ 0.75$ (75/100) and $\$ 0.77$ $(77 / 100)$ would be $\$ 0.75<\$ 0.77$. Note regarding ordering decimals in ascending or descending order: To arrange decimals in ascending order, for example, start with 3.15 and 5.2; the number 5.184 would come between them; the number 3.1 would come before them; and the number 5.28 would come after them. The same concept applies to when ordering decimals in money to the hundredths place. To arrange money in ascending order, for example, start with $\$ 0.75$ and $\$ 1.00$; the money amount $\$ 0.80$ would come between them; the money amount $\$ 0.50$ would come before them; and the money amount $\$ 1.01$ would come after them. Extensions Note: When working on decimals to the hundredths place in the context of money, item amounts need to include cents and not just whole number costs. Whole numbers may be used for items, but need to show/include 0.00 for the cents' decimal representation.

Term	Definition
Denomination	As related to money, the value of currency amounts. The most common denominations are $\$ 1, \$ 5$, and $\$ 10$ bills. Today, our government also prints $\$ 20, \$ 50$, and $\$ 100$ bills. Example: If you have a $\$ 5$ bill and a $\$ 1$ bill, the two bills are different denominations.
Denominator	The bottom number of a fraction, which represents the number of parts the whole is divided into. In the fraction $1 / 4$, the 4 is the denominator.
Digital clock	A clock that gives the time by using numbers and a colon. Example: 3:30
Dilation	A transformation in which all distances are proportionally lengthened by a common factor. Example: Dilation of a Geometric Figure ${ }^{\prime}$ (original figure) image
Display	To show or exhibit data in an organized manner by using tables, graphs, etc.
Divide	Separating a number into equal groups.
Equation	See Algebraic (or Numeric) equations or inequalities (also referred to as a sentence).
Equilateral triangle	A triangle whose three sides (and angles) are all congruent (equal in length).
Equivalent	Equal in value or able to be placed in a one-to-one correspondence.
Evaluate	To figure out or to find an answer by computing. For example: To evaluate 3 $+4 \times 7$ would be to figure out the answer to the expression.
Evaluate/Solve an expression (numeric/algebraic) and equation (numeric/algebraic) (also referred to as "find the value")	To find a numerical value for an expression, to 'work it out.' Note regarding presentation of expression/equation: An expression/equation must be presented to the student horizontally, but the student may rewrite it/represent it vertically (in a working format) to solve it.
Factor	One of two or more numbers that are multiplied together to get another number. Example: 3 and 4 are factors of 12 because $3 \times 4=12$
First quadrant	The quadrant located in the upper right portion of the coordinate plane. In the first quadrant, both the x - and y-coordinates are positive numbers.

Term	\quad Definition
Fraction	A number in the form $\frac{a}{b}$ or a / b where a is called the numerator and b is called the denominator. A fraction names a part of a whole or a part of a 2
	collection. Example: The shaded portion represents $\frac{2}{3}$ of the circle.

Term	Definition
Improper fraction	A fraction in which the numerator is greater than the denominator. Example: $\frac{3}{2}$
Integer	The set of numbers containing zero, all natural numbers, and the negatives of all natural numbers. Example: $\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots$ are integers.
Interpret	To give or provide the meaning of, or to explain.
Irrational numbers	Written as decimals; irrational numbers neither repeat nor terminate. Examples: $\pi ; \sqrt{ } 3 ; 0.15115111511115111115 \ldots$
Isosceles triangle	A triangle with at least two sides that are congruent (equal in length). Note: An equilateral triangle is also an isosceles triangle.
Length	Distance from one end to the other; how long something is. Height can be considered length.
Line	The straight path connecting two points and then extending beyond those points infinity in both directions.
Line Plot (Dot Plot)	A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot.
Line segment	All points between two given points (including the given points themselves). Example: line segment $\overline{\mathrm{AB}}$
Line symmetry	Figures that match exactly when folded in half have line symmetry. Example: The dotted line denotes the line symmetry of this triangle.

Term	\quad Definition
Linear	A relationship that can be represented by a straight line on a graph. Linear equations are often written $y=m x+\mathrm{b}$
List	A series of names or other items written or printed together in a meaningful grouping or sequence so as to constitute a record.
Manipulative (Concrete object)	It can be considered a strategy. A manipulative can be a physical object (such as a counting block, token.), or a non-three-dimensional object (such as a sticker, tally mark, a printed image or picture, Touch Math dot or point). A non-three-dimensional manipulative can be made tactile to allow the student to use it.
Mass	The quantity of matter in an object, often confused with weight. An object's mass does not depend on gravity (for example, an object having a mass of 3 kg on Earth, would still have a mass of 3 kg in space). An object's weight combines the object's mass and the gravitational force acting upon the object (for example, an object weighing 100 lbs on Earth would weigh 0 lbs in space).
Measurement	The process of assigning a number to a physical property. Types of measurement include length, weight, area, volume, time, etc.
Metric units of length	kilometers, meters, centimeters, and millimeters.
Metric units of liquid	kiloliters, liters, centiliters, and milliliters.
Metric units of mass	kilograms, grams, and milligrams.
Mixed number	A whole number together with a proper fraction. Enape/Figure
Example: $\frac{1}{2}$.	

Term	Definition
Number line	A line representing the set of all real numbers. The number line is typically marked showing integer values. Example:
Numeral	A symbol for a number. Example: 3 is the numeral for three.
Numerator	The top portion of a fraction representing the number of parts of the whole. For example, in the fraction $3 / 4$, the 3 is the numerator.
Numeric equation (sentence)	See Algebraic (or Numeric) equations or inequalities.
Numeric expression (phrase)	See Algebraic (or Numeric) expression.
Operation	Addition, subtraction, multiplication, and division.
Order numbers	Given a list of three or more numbers, put the numbers in order from least to greatest or from greatest to least.
Order of operations	The standard order of operations is as follows: Carry out all exponents and roots from left to right. Carry out all multiplication and division from left to right. Carry out all addition and subtraction from left to right. Parentheses are used to indicate that operations are to be done in a different order than the one given above. When parentheses appear, carry out the operation(s) within each pair of parentheses (from the inside out, if multiple levels of parentheses are used) and then follow the order of operations given above. Examples: $\begin{aligned} & 4+6 \div 2-1+7 \times 2 \rightarrow 4+3-1+14 \rightarrow 40 \\ & (4+6) \div 2-[(1+7) \times 2] \rightarrow 10 \div 2-[8 \times 2] \rightarrow 5-16 \rightarrow-11 \end{aligned}$
Ordinal numbers	Numbers that show place or position (first, second, third...to tenth). Example: The first person in line.
Parallel lines	Lines that are in the same plane and never intersect.
Pattern (Duplicate)	To copy a specified pattern exactly as given.
Pattern (Extend)	To continue and lengthen a pattern at the end of the sequence. For example: 2, 4, 6, \qquad \qquad ,
Pattern (Fill in missing element)	A pattern with a missing element somewhere in/near the middle of the pattern. Note: A missing element to be filled in needs to occur in/near the middle and not at the very end or very beginning of the pattern.

Term	Definition
Pattern (Growing)	Patterns that involve a progression from step to step. Patterns can grow larger or smaller. Example: This pattern is growing by one in each step.
Pattern (Number)	A pattern of numbers arranged according to a rule.
Pattern (Repeating)	A pattern with a cyclic structure (e.g., [A, B] pattern [blue-red, blue-red] or [A, $B, C]$ pattern [blue-red-green, blue-red-green]). Note: The pattern should be shown or demonstrated at least twice to be considered a pattern.
Pattern (Shape)	A pattern of geometric shapes arranged according to a rule. Notes: Geometric shapes can be represented by real-world examples; e.g., a DVD disc can represent a circle, a window can represent a rectangle. The pattern should be shown or demonstrated at least twice to be considered a pattern. Example:
Percent	An amount that represents part of 100 . Example: 25% means $\frac{25}{100}$
Perimeter	The sum of the lengths of the sides of a polygon or the distance around a shape/figure..
Perpendicular	Lines that intersect at a 90 degree angle.
Pictograph	A record of data collected that consists of categories of data and uses pictures or symbols to represent the frequency that each category occurred. Example:
Pictorial Representation	A method used to display information in the form of a picture.
Pie graph (pie chart/sector graph)	A graph using a divided circle in which each section includes part of the total.

Term	Definition
Place value of whole numbers	Each digit is a specific place value. Example: In the number 3,819,274, 3 equals the number of millions, 8 equals the number of hundred thousands, 1 equals the number of ten thousands, 9 equals the number of thousands, 2 equals the number of hundreds, 7 equals the number of tens, and 4 equals the number of ones.
Polygon	A closed figure on a flat surface that is made up of three or more line segments joined end to end. The line segments of a polygon may not cross. The name of a polygon describes the number of sides: triangle (3), quadrilateral (4), pentagon (5), hexagon (6), heptagon (7), octagon (8), nonagon (9), decagon (10), undecagon (11), dodecagon (12). Examples:
Prime factorization	To write a number as the product of its prime factors. Example: $24=2 \times 2 \times 2 \times 3$
Prime numbers	Numbers that have only two factors, 1 and the number itself. Example: 13 is a prime number, since its only factors are 1 and 13 , but 9 is not a prime number, since it has three factors, 1,3 , and 9.
Prism	A solid 3-dimensional object with congruent parallel bases. All other faces of a prism are rectangles or parallelograms. Prisms take their names from the shape of their base (i.e., rectangular prisms have rectangles for bases, pentagonal prisms have pentagons for bases).
Probability	The likelihood or chance that an event will occur. Probabilities can be described as - Likely, if the event will most probably happen; - Certain, if the event will definitely happen (a probability equal to 1); - Impossible, if the event cannot happen or (a probability equal to 0); or - Unlikely, if there is little chance that the event will happen. A probability can also be expressed as a fraction. Example: A spinner has three equal-sized sections labeled A, B, and C . The probability that the spinner will land on C is $\frac{1}{3}$. In this example, the numerator is 1 because only one of the sections is labeled C . The denominator is 3 because there are only three sections on the spinner.
Proper fraction	A fraction with a smaller numerator than denominator. Example: ${ }^{\frac{3}{4}}$

Term	Definition
Proportion	An equation that states that two ratios are equal. Example: $\frac{6}{8}=\frac{9}{12}$
Quadrant	Regions on a coordinate plane. Quadrant I has a positive x value and a positive y value. Quadrant II has a negative x value and a positive y value. Quadrant III has a negative x value and a negative y value. Quadrant IV has a positive x value and a negative y value. See Coordinates.
Quadrilateral	A four-sided polygon. Quadrilaterals include rectangles, squares, parallelograms, rhombi, trapezoids, and diamonds (kites).
Qualitative data	Data that are divided into categories rather than quantities. Examples: favorite colors, kinds of fruit, leisure activities
Quantitative data	Data that can be either counted (discrete data) or measured (continuous data). Examples of discrete data: students in a class, courses taken, jellybeans in a jar Examples of continuous data: height, amount of rainfall, temperature. Note that some data that appear in numerical form may not be quantitative. Examples: zip code, social security number, shoe size
Quantity	An exact or specified amount or measure.
Quotient	The result of dividing one number by another.
Rate	A ratio that compares quantities measured in different units (i.e., miles per hour)
Ratio	A comparison of two amounts. Ratios can be written many ways, including $3: 4,3$ to 4 , or $\frac{3}{4}$.
Ray	A part of a line. It consists of one endpoint and all of the points to one side of that endpoint.
Real world	Within the realm of practical or actual experience. The circumstances and place where one actually lives.
Recognize	To identify from knowledge of appearance or characteristic. To select from a set of given choices
Rectangle	A four-sided polygon with all right angles; a parallelogram with four right angles.
Reflection (flip)	A transformation in which a figure is flipped over a line. Example:
Right triangle	A triangle with one right (90 degree) angle.

Term	Definition
Rotation (turn)	A transformation in which a figure is rotated around a fixed point. Example:
Rounding	The process of approximating the value of a number, to a given degree of accuracy (i.e., 17 rounded to the nearest ten is 20)
Rule for a pattern	A sentence or equation that describes how to extend a pattern or how to find a certain term of a pattern.
Sample	As a noun, a section or subset of a whole group; as a verb, to get data from part of a group and use that data to obtain information about the whole group.
Scale	The size of each interval on the axes of a graph. The sizes of the intervals on any axis must be equal. Each interval is given a number. The numbers can be consecutive or the result of skipping.
Scatter plot	A graph of paired data in which the data values are plotted as (x, y) points. Example:
Similar shapes	Two figures that have the same shape, equal angles, and proportionate corresponding sides. Example:
Simplify an expression (numeric/algebraic) and equation (numeric/algebraic)	Use order of operations to reduce it to a point where it is possible to evaluate/solve the expression/equation for its value. Note regarding presentation of expression/equation: The expression/equation must be presented horizontally, but the student may rewrite it/represent it vertically (in a working format) to simplify the expression/equation; the student does not need to solve it. For more information about evaluate/solve, see Evaluate/Solve an expression (numeric/algebraic) and equation (numeric/algebraic).
Skip count	Count by 2's, 3's, 5's, etc., skipping the numbers in between.

Term	Definition
Slope	The number used to indicate the steepness of a line as well as indicate if a line is positive or negative. The slope represents the rise (the change in y) over the run (the change in x) of a line.
Square	A rectangle with all sides congruent.
Standard units of measure	All customary and metric units of measure.
Strategies (computational strategies related to addition, subtraction, multiplication, and/or division)	Any method used to carry out a computation, whether a formal, traditional pencil-and-paper algorithm (method); an informal written or mental strategy; use of objects; or some combination of these methods, including but not limited to calculators, multiplication tables, number lines, Touch Math, manipulatives, memory strategies (double, backwards 1, number + 1, etc.), base-ten blocks, geometrically (visually, using a grid or an array), tally marks, fact tables. A strategy can include instructional methods such as activities involving number puzzles, number-related games, multiple solution strategies, etc.
Subtract	The process of taking one amount from another or finding the difference between two numbers.
Supplementary angles	A pair of angles whose measures have a sum of 180°. Example: In this diagram, angles 1 and 2 are supplementary angles, since the measure of angle $1+$ the measure of angle $2=180^{\circ}$.
Surface Area	Total area of the surface of a 3-dimensional object
Symmetric	A geometric figure or graph that consists of two congruent parts.
Table	An orderly arrangement of data, especially one in which the data are arranged in columns and rows in an essentially rectangular form.
Transformation	An operation that alters the form of a figure. Transformations include translations, dilations, compressions, reflections, and rotations.
Translation (slide)	A transformation in which a figure is slid in any direction. Example:
Triangle	A three-sided polygon. Triangle types include equilateral, isosceles, scalene, acute, obtuse, and right.

Term	Definition
Word Problem	A mathematical computation imbedded within a context.

Resources:

- www.mathwords.com
- www.amathdictionaryforkids.com
- The American Heritage ${ }^{\circledR}$ Dictionary of the English Language, Fourth Edition copyright ©2000 by Houghton Mifflin Company
- http://www.aaamath.com
- http://www.themathleague.com/
- Collins English Dictionary - Complete and Unabridged © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003
- http://dictionary.reference.com/

Disclaimer: The New York State Education Department does not recommend specific texts or publishers. Other resources may be visited for definitions.

Resources:

- NAEP Reading for 2009 and Writing for 2011 Framework (prepublication editions, 2007) available at http://www.nagb.org/publications/frameworks.htm
- Standards for the English Language Arts Book, created by NCTE and IRA, published by NCTE
- Webster's II New Collegiate Dictionary (Houghton Mifflin Co., 2001)
- http://www.thefreedictionary.com/:
- The American Heritage $®$ Dictionary of the English Language, Fourth Edition copyright ©2000 by Houghton Mifflin Company
- Collins English Dictionary - Complete and Unabridged © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003
- http://www.merriam-webster.com/dictionary/
- http://dictionary.reference.com/
- Random House Dictionary, © Random House, Inc. 2011.
- http://www.maine.gov/education/lres/pei/glossary032008.pdf
- School Improvement Maryland available at http://mdk12.org/instruction/curriculum/reading/glossary.shtml
- http://www.indiana.edu/~wts/pamphlets/outlines.shtml
- Disclaimer: The New York State Education Department does not recommend specific texts or publishers. Other resources may be visited for definitions.

