MATHEMATICS EXTENSION 1 HSC Exam* Questions by Topic

	a	1
proi	lectmai	ths
P ~ ~J		

2021 - 2017

Year 11 Course	Year 12 Course	Complete Papers
Functions	Proof	<u>2021 HSC</u>
F1.1 Graphical relationships	P1 Proof by mathematical induction	2020 HSC 2020 NESA Sample
F1.2 Inequalities	Vectors	
F1.3 Inverse functions	V1.1 Introduction to vectors	Question Difficulty
F1.4 Parametric form of function or rel.	V1.2 Further operations with vectors	Easy
F2.1 Remainder and factor theorems	V1.3 Projectile motion	
F2.2 Sums & products of roots of polyns	Trigonometric Functions	Mid-range
Trigonometric Functions	T3 Trigonometric equations	Difficult
T1 Inverse trigonometric functions	Calculus	
T2 Further trigonometric identities	C2 Further calculus skills	
Calculus	C3.1 Further area and volume of solid	s
C1.1 Rates of change with respect to time	C3.2 Differential equations	
C1.2 Exponential growth & decay	Statistical Analysis	
C1.3 Related rates of change	Statistical finalysis	ng
Combinatorics	S1.2 Normal approx for the sample pr	on ⁿ
A1.1 Permutations and combinations	Sing round approx for the sample pr	~P
A1.2 Binomial expansion & Pascal's Δ		

Mathematics Advanced, Ext 1, Ext 2 Reference Sheet (2021 HSC)

Questions by Topic from ...

- 2017 2020 HSCs (MX1: Mathematics Extension 1, M: Mathematics)
- NESA Sample HSC examination [SP]
- Additional NESA sample questions [SQ]
- NESA Topic Guidance [TG] selected questions

HSC Examination Papers Mathematics and Mathematics Extension 1 (2017-2021) © NSW Education Standards Authority for and on behalf of the Crown in right of the state of New South Wales.

page 1

Licensed

from NESA

projectmaths

Year 11: Calculus

C1.2 Exponential growth and decay

Syllabus: updated November 2019. Latest version @

https://educationstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/stage-6-mathematics/mathematics-extension-1-2017

Students:

- - establish the simple growth model, $\frac{dN}{dt} = kN$, where N is the size of the physical quantity, N = N(t) at time t and k is the growth constant
 - verify (by substitution) that the function $N(t) = Ae^{kt}$ satisfies the relationship $\frac{dN}{dt} = kN$, with A being the initial value of N
 - sketch the curve $N(t) = Ae^{kt}$ for positive and negative values of k
 - recognise that this model states that the rate of change of a quantity varies directly with the size of the quantity at any instant

• establish the modified exponential model, $\frac{dN}{dt} = k(N - P)$, for dealing with problems such as 'Newton's Law of Cooling' or an ecosystem with a natural 'carrying capacity' **AAM** $\frac{1}{2}$

- verify (by substitution) that a solution to the differential equation $\frac{dN}{dt} = k(N - P)$ is

 $N(t) = P + Ae^{kt}$, for an arbitrary constant *A*, and *P* a fixed quantity, and that the solution is N = P in the case when A = 0

- sketch the curve $N(t) = P + Ae^{kt}$ for positive and negative values of k
- note that whenever k < 0, the quantity N tends to the limit P as t → ∞, irrespective of the initial conditions
- recognise that this model states that the rate of change of a quantity varies directly with the difference in the size of the quantity and a fixed quantity at any instant
- solve problems involving situations that can be modelled using the exponential model or the modified exponential model and sketch graphs appropriate to such problems AAM ^(*)

21 12 A bottle of water, with temperature 5°C, is placed on a table in a room. The Solution
 MX b temperature of the room remains constant at 25°C. After *t* minutes, the temperature of the water, in degrees Celsius, is *T*.

The temperature of the water can be modelled using the differential equation

$$\frac{dT}{dt} = k(T - 25) \text{ (Do NOT prove this.)}$$

where k is the growth constant.

(i) After 8 minutes, the temperature of the water is 10°C.

By solving the differential equation, find the value of t when the temperature of the water reaches 20°C. Give your answer to the nearest minute.

(ii) Sketch the graph of *T* as a function of *t*.

NESA 2021 Mathematics Extension 1 HSC Examination

Reference Sheet

3

ΤG	1	The growth rate of a population of bacteria is 10% of the population.	<u>Solution</u>
		At $t = 0$, the population is 1.0×10^6 .	
		Sketch the graph of population against time and determine the population after 3.5 hours, correct to four significant figures.	
		NESA Mathematics Extension 1 Year 11 Topic Guide: Calculus	
TG	2	On an island, the population in 1960 was 1732, and in 1970 it was 1260.	<u>Solution</u>
		Find the annual growth rate to the nearest percent, assuming it is proportional to the population.	
		In how many years will the population be half of what it was in 1960?	
		NESA Mathematics Extension 1 Year 11 Topic Guide: Calculus	
ΤG	3	Professor Smith has a colony of bacteria. Initially, there are 1000 bacteria. The	<u>Solution</u>
12	14	number of bacteria, $N(t)$, after t minutes is given by $N(t) = 1000e^{\kappa t}$. (i) After 20 minutes there are 2000 bacteria	
M	C	Show that $k = 0.0347$ correct to four decimal places.	
		(ii) How many bacteria are there when $t = 120$? 1	
		(iii) What is the rate of change of the number of bacteria per minute, when 1	
		(iv) How long does it take for the number of bacteria to increase from 1000 to 2 100 000?	
		NESA Mathematics Extension 1 Year 11 Topic Guide: Calculus NESA 2012 Mathematics HSC Examination	
TG	4	One model for the number of mobile phones in use worldwide is the exponential	<u>Solution</u>
07 M	8a	growth model, $N = Ae^{kt}$, where N is the estimate for the number of mobile phones in use (in millions), and t is the time in years after 1 January 2008. (i) It is estimated that at the start of 2009, when $t = 1$, there will be 1600 3 million mobile phones in use, while at the start of 2010, when $t = 2$, there	
		 will be 2600 million. Find A and k. (ii) According to the model, during which month and year will the number of 2 mobile phones in use first exceed 4000 million? 	
		NESA Mathematics Extension 1 Year 11 Topic Guide: Calculus NESA 2007 Mathematics HSC Examination	
ТG 05	5 2d	A salad, which is initially at a temperature of 25°C, is placed in a refrigerator that has a constant temperature of 3°C. The cooling rate of the salad is proportional to the difference between the temperature of the refrigerator and the temperature,	<u>Solution</u>
МХ 1		T, of the salad. That is, T satisfies the equation $\frac{dT}{dt} = -k(T - 3)$, where t is the	
		number of minutes after the salad is placed in the refrigerator.	
		(i) Show that $T = 3 + Ae^{-kt}$ satisfies this equation. 1	
		 (ii) The temperature of the salad is 11°C after 10 minutes. 3 Find the temperature of the salad after 15 minutes. NESA Mathematics Extension 1 Year 11 Topic Guide: Calculus NESA 2005 Mathematics Extension 1 HSC Examination 	

19	12	A refrigerator has a constant temperature of 3°C. A can of drink with temperature		Solution	
MX	d	30°C is placed in the refrigerator.			
1		After being in the refrigerator for 15 minutes, the temperature of the can of drink			
		is 28°C.			
		The change in the temperature of the can of drink can be modelled by			
		$\frac{dT}{dt} = k(T - 3)$, where T is the temperature of the can of drink, t is the time in			
		minutes after the can is placed in the refrigerator and k is a constant.			
		(i) Show that $T = 3 + Ae^{kt}$, where A is a constant, satisfies $\frac{dT}{dt} = k(T - 3)$.			
		(ii) After 60 minutes, at what rate is the temperature of the can of drink changing?	3		
		NESA 2019 Mathematics Extension 1 HSC Examinati	on		
18 МХ 1	5	The diagram shows the number of penguins, $P(t)$, on an island at time t . P Which equation best represents this graph?	1	Solution	
		A. $P(t) = 1500 + 1500e^{-kt}$ 3000			
		B. $P(t) = 3000 - 1500e^{-kt}$			
		C. $P(t) = 3000 + 1500e^{-kt}$			
		D. $P(t) = 4500 - 1500e^{-kt}$			
		NESA 2018 Mathematics Extension 1 HSC Examinati	on		
17 M	14 с	Carbon-14 is a radioactive substance that decays over time. The amount of carbon-14 present in a kangaroo bone is given by $C(t) = Ae^{kt}$, where A and k are constants, and t is the number of years since the kangaroo died.		<u>Solution</u>	
		(i) Show that $C(t)$ satisfies $\frac{dC}{dt} = kC$.	1		
		(ii) After 5730 years, half of the original amount of carbon-14 is present. 2 Show that the value of k , correct to 2 significant figures, is -0.00012.			
		(iii) The amount of carbon-14 now present in a kangaroo bone is 90% of the original 2 amount. Find the number of years since the kangaroo died.			
		Give your answer correct to 2 significant figures.			
		NESA 2017 Mathematics HSC Examinati	on		

projectmaths

Year 12: Vectors

V1.3 Projectile motion

Sylla https:/	abus: //educatio	updated November 2019. Latest version @ onstandards.nsw.edu.au/wps/portal/nesa/11-12/stage-6-learning-areas/stage-6-mathematics/mathematics-extension-1-2017			
Stu	idents:				
• •	under that: - th - th p mode derive - re re - d - u use e proble apply AAM	rstand the concept of projectile motion, and model and analyse a projectile's path assuming the projectile is a point the force due to air resistance is negligible the only force acting on the projectile is the constant force due to gravity, assuming that the projectile is moving close to the Earth's surface all the motion of a projectile as a particle moving with constant acceleration due to gravity and the equations of motion of a projectile AAM appresent the motion of a projectile using vectors accognise that the horizontal and vertical components of the motion of a projectile can be appresented by horizontal and vertical vectors lerive the horizontal and vertical equations of motion of a projectile understand and explain the limitations of this projectile model equations for horizontal and vertical components of velocity and displacement to solve eens on projectiles to calculus to the equations of motion to solve problems involving projectiles (ACMSM115)	Reference Sheet		
21 MX 1	13 b	When an object is projected from a point <i>h</i> metres above the origin with initial speed <i>V</i> m/s at an angle of θ° to the horizontal, its displacement vector, <i>t</i> seconds after projection, is $r(t) = Vt \cos \theta i + (-5t^{2} + Vt \sin \theta + h) j . \text{ (Do NOT prove this.)}$ A person, standing in an empty room which is 3 m high, throws a ball at the far wall of the room. The ball leaves their hand 1 m above the floor and 10 m from the far wall. The initial velocity of the ball is 12 m/s at an angle of 30° to the horizontal.	Solution		
		without hitting the floor. NESA 2021 Mathematics Extension 1 HSC Examination			
SP MX 1	11 a	A particle is fired from the origin O with initial velocity 18 ms ⁻¹ at an angle 60° to the horizontal. The equations of motion are $\frac{d^2x}{dt^2} = 0$ and $\frac{d^2y}{dt^2} = -10$	<u>Solution</u>		
		(i) Show that $x = 9t$.1(ii) Show that $y = 9\sqrt{3}t - 5t^2$.2(ii) Hence find the Cartesian equation for the trajectory of the particle.1NESA Mathematics Extension 1 Sample HSC Examination Paper (2020)			

	Mather	natics Ext 1 Higher School Certificate Examinations by Topics compiled by projectmaths.com.au page	6
TG	1	A ball is thrown in the air with speed 12 ms ⁻¹ at an angle of 70° to the horizontal.	Solution
		The position vector is given as $r(t) = Vt \cos \theta i + (Vt \sin \theta - \frac{1}{2}gt^2) j$.**	
		Using $g = 9.8 \text{ ms}^{-2}$, find	
		(a) its position vector* after 1.5 seconds	
		(b) its velocity vector* after 1.5 seconds.	
		* projectmaths included the word 'vector'.	
		** This vector information was provided by projectmaths. NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors	
TG	2	A golf ball is driven with a speed of 45 ms ⁻¹ at 37° to the horizontal across a horizontal	<u>Solution</u>
		fairway. The position vector is given as $r(t) = Vt \cos \theta i + (Vt \sin \theta - \frac{1}{2}gt^2) j$.**	
		Use $g = 9.8 \text{ ms}^{-2}$.	
		(a) How high above the ground does the ball rise?	
		(b) How far away from the tee does it first land?	
		** This vector information was provided by projectmaths. NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors	
TG	3	A famine relief aircraft, flying over horizontal ground at a height of 160 metres, drops a	<u>Solution</u>
		sack of food. The position vector is given as $r(t) = Vt \cos \theta i + (Vt \sin \theta - \frac{1}{2}gt^2) j$.**	
		Use $g = 10 \text{ ms}^{-2}$.	
		(a) Calculate the time that the sack takes to fall.	
		(b) Calculate the vertical component of the velocity with which the sack hits the ground.	
		(c) If the speed of the aircraft is 70 ms ⁻¹ , at what distance before the target zone should the sack be released?	
		** This vector information was provided by projectmaths.	
		NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors	
ΤG	4	A projectile reaches its greatest height after two seconds, when it is 35 metres from its point of projection.	Solution
		The position vector is given as $r(t) = Vt \cos \theta i + (Vt \sin \theta - \frac{1}{2}gt^2) j$.**	
		Using $g = 9.8 \text{ ms}^{-2}$, determine the initial velocity.	
		** This vector information was provided by projectmaths.	
		NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors	
ΤG	5	A particle is projected upwards at velocity u and an angle of θ to the horizontal from a point A . Find an expression for the horizontal distance away from point A at which the	Solution
		point in this an expression for the nonzontal distance away north point A at which the	

particle reaches its greatest height, in terms of u and θ . The position vector is given as $r(t) = ut \cos \theta i + (ut \sin \theta - \frac{1}{2}gt^2) j$.**

** This vector information was provided by projectmaths.

NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors

ΤG In a cricket match a batsman hits the ball for six, and it is measured by the cameras Solution 6 after two seconds as moving at a horizontal velocity of 30 ms⁻¹ and a vertical velocity of 10 ms⁻¹ upwards. Calculate the initial velocity and angle of projection at which the ball was hit by the batter. Use $q = 9.8 \text{ ms}^{-2}$. The position vector is given as $r(t) = Vt \cos \theta i + (Vt \sin \theta - \frac{1}{2}gt^2) j$.** ** This vector information was provided by projectmaths. NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors TG 7 An experimental rocket is at a height Solution of 5000 m, ascending with a velocity 05 6b of $200\sqrt{2}$ m s⁻¹ at an angle of 45° to 5000 m MX the horizontal, when its engine stops. 1 After this time, the equations of motion of the rocket are: x = 200t $y = -4.9t^2 + 200t + 5000$ where t is measured in seconds after the engine stops. (Do NOT show this.) What is the maximum height the rocket will reach, and when will it reach (i) 2 this height? (ii) The pilot can only operate the ejection seat when the rocket is descending 3 at an angle between 45° and 60° to the horizontal. What are the earliest and latest times that the pilot can operate the ejection seat? 2 (iii) For the parachute to open safely, the pilot must eject when the speed of the rocket is no more than 350 m s⁻¹. What is the latest time at which the pilot can eject safely? NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors NESA 2005 Mathematics Extension 1 HSC Examination TG (a) Prove that the range on a horizontal plane of a particle projected upwards at an Solution 8 angle α to the plane with velocity V metres per second is $\frac{V^2 \sin 2\alpha}{2}$ metres, where *q* metres per second per second is the acceleration due to gravity. (b) A garden sprinkler sprays water symmetrically about its vertical axis at a constant speed of V metres per second. The initial direction of the spray varies continuously between angles of 15° and 60° to the horizontal. Prove that, from a fixed position O on level ground, the sprinkler will wet the (i) surface of an annular region with centre O and with internal and external radii $\frac{V^2}{2a}$ metres and $\frac{V^2}{a}$ metres respectively. (ii) Deduce that, by locating the sprinkler appropriately relative to a rectangular garden bed of size 6 metres by 3 metres, the entire bed may be watered provided that $\frac{V^2}{2a} \ge 1 + \sqrt{7}$.

The position vector is given as $r(t) = Vt \cos \alpha i + (Vt \sin \alpha - \frac{1}{2}gt^2) j$.**

** This vector information was provided by projectmaths. NESA Mathematics Extension 1 Year 12 Topic Guide: Vectors

page 7

TG 9 A skier accelerates down a slope and then skis up a short ski jump (see diagram below). The skier leaves the jump at a speed of 12m/s and at an angle of 60° to the horizontal. The skier performs various gymnastic twists and lands on a straight line section of the 45° down-slope *T* seconds after leaving the jump.

Let the origin O of a Cartesian coordinate system be at the point where the skier leaves the jump, with i a unit vector in the positive x

direction, and j a unit vector in the positive y

direction. Displacements are measured in metres, and time in seconds.

(a) Show that the initial velocity of the skier when leaving the jump is $6i + 6\sqrt{3}j$.

(b) The acceleration of the skier, *t* seconds after leaving the ski jump, is given by

$$\sum_{i=1}^{n} f(t) = -0.1t \, i_{i} - (g - 0.1t) \, j_{i}, \, 0 \leq t \leq T.$$

Show that the position vector of the skier, *t* seconds after leaving the jump, is given by $r(t) = (6t - \frac{1}{60}t^3) \frac{i}{2} + (6t\sqrt{3} - \frac{1}{2}gt^2 + \frac{1}{60}t^3) \frac{j}{2}, 0 \le t \le T.$

- (c) Show that $T = \frac{12}{3}(\sqrt{3} + 1)$.
- (d) At what speed, in metres per second, does the skier land on the down-slope?

Give your answer correct to one decimal place.

(Source: Question 4, VCE Specialist Mathematics 2, 2005 $\Circ VCAA$, reproduced by permission.)

HSC Mathematics Extension 1 © NSW Education Standards Authority for and on behalf of the Crown in right of State of NSW

Solution

projectmaths

Year 12: Calculus

C3.1 Further area and volume of solids

page 10

SP	14	(i) Sketch the graph of $y = x \cos x$ for $-\pi \le x \le \pi$ and hence explain why 3	Solution
МХ 1	а	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x dx = 0.$	
		(ii) Consider the volume of the solid of revolution produced by rotating about the <i>x</i> -axis the shaded region between the graph of $y = x - \cos x$, the <i>x</i> -axis and the lines $x = -\frac{\pi}{2}$ and $x = -\frac{\pi}{2}$. Using the results of part (a), or otherwise, find the volume of the solid	
		NESA Mathematics Extension 1 Sample Examination Paper (2020)	
TG	1	Sketch the region bounded by the curve $y = x^2$ and the lines $y = 4$ and $y = 9$. Evaluate the area of this region.	Solution
		NESA Mathematics Extension 1 Year 12 Topic Guide: Calculus	
ΤG	2	The graphs of the curves $y = x^2$ and	<u>Solution</u>
		$y = 12 - 2x^2$ are shown in the diagram.	
		(a) Find the points of intersection of the two curves. $y = x^2$	
		(b) The shaded region between the curves and the <i>y</i> -axis is rotated about the <i>y</i> -axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.	
		NESA Mathematics Extension 1 Year 12 Topic Guide: Calculus	Calatian
ΤG	3	The region bounded by the curve $y = (x - 1)(3 - x)$ and the x-axis is rotated about the line $x = 3$ to form a solid.	Solution
		When the region is rotated, the horizontal line segment at height y sweeps out an annulus.	
		(a) Find the area of the annulus as a function of y .	
		(b) Find the volume of the solid.	
		NESA Mathematics Extension 1 Year 12 Topic Guide: Calculus	
TG	4	The region enclosed by the curve $y = 4\sqrt{x}$ and the <i>x</i> -axis between $x = 0$ and $x = 4$ is rotated about the <i>x</i> -axis. Find the volume of the solid of revolution.	Solution
TG	5	A curved funnel has a shape formed by rotating part of the parabola $v = 2\sqrt{x}$ about	<u>Solution</u>
_		the y-axis, where x and y are given in cm. The funnel is 4 cm deep. Find the volume of liquid which the funnel will hold if it is sealed at the bottom. NESA Mathematics Extension 1 Year 12 Topic Guide: Calculus	

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

$$\log_a a^x = x = a^{\log_a x}$$
$$\log_a x = \frac{\log_b x}{\log_b a}$$
$$a^x = e^{x \ln a}$$

Relations

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$\sin A = \frac{\operatorname{opp}}{\operatorname{hyp}}, \quad \cos A = \frac{\operatorname{adj}}{\operatorname{hyp}}, \quad \tan A = \frac{\operatorname{opp}}{\operatorname{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$1$$

$$C^{2} = a^{2} + b^{2} - 2ab\cos C$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^{2}\theta$$

$$1 \tan A = \frac{\operatorname{opp}}{\operatorname{adj}}$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$
An outlier is a score
less than $Q_1 - 1.5 \times IQR$
or
more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^nC_r p^r (1 - p)^{n - r}}$$

$$X \sim Bin(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x} p^x (1 - p)^{n - x}, x = 0, 1, ..., n$$

$$E(X) = np$$

$$Var(X) = np(1 - p)$$

- 2 -

Differential Calculus

Integral Calculus

FunctionDerivative
$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$$

where $n \neq -1$ $y = f(x)^n$ $\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$ $\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$
where $n \neq -1$ $y = uv$ $\frac{dy}{dx} = u\frac{dy}{dx} + v\frac{du}{dx}$ $\int f'(x)\sin f(x) dx = -\cos f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\int f'(x)\cos f(x) dx = \sin f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dy}{dx}}{v^2}$ $\int f'(x)\cos^2 f(x) dx = \sin f(x) + c$ $y = u$ $\frac{dy}{dx} = f'(x)\cos f(x)$ $\int f'(x)e^{f(x)} dx = e^{f(x)} + c$ $y = \sin f(x)$ $\frac{dy}{dx} = -f'(x)\sin f(x)$ $\int f'(x)a^{f(x)} dx = e^{f(x)} + c$ $y = e^{f(x)}$ $\frac{dy}{dx} = f'(x) \sec^2 f(x)$ $\int f'(x)a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + c$ $y = e^{f(x)}$ $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1}\frac{f(x)}{a} + c$ $y = \log_n f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \cos^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{d$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \underbrace{u}_{i} \right| &= \left| x \underbrace{i}_{i} + y \underbrace{j}_{i} \right| = \sqrt{x^{2} + y^{2}} \\ \underbrace{u}_{i} \underbrace{v}_{i} &= \left| \underbrace{u}_{i} \right| \left| \underbrace{v}_{i} \right| \cos \theta = x_{1} x_{2} + y_{1} y_{2}, \\ \text{where } \underbrace{u}_{i} &= x_{1} \underbrace{i}_{i} + y_{1} \underbrace{j}_{i} \\ \text{and } \underbrace{v}_{i} &= x_{2} \underbrace{i}_{i} + y_{2} \underbrace{j}_{i} \end{split}$$

$$r = a + \lambda b$$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

page 17

2021 HSC Paper

		2021 HSC Paper				Back	
21 MX	1	Given $\overrightarrow{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ and	and $\overrightarrow{OQ} = \binom{2}{5}$, what is	s ₽Q?		1	Solution
1		A. $\begin{pmatrix} 1 \\ -6 \end{pmatrix}$	$B. \begin{pmatrix} -1 \\ 6 \end{pmatrix}$	C. $\binom{5}{4}$	D. $\begin{pmatrix} -5 \\ -4 \end{pmatrix}$		
				NESA 2021 Mathematic	cs Extension 1 HSC Examination	on	
21 MX	2	Which of the following integrals is equivalent to $\int \sin^2 3x dx$?			1	Solution	
1		A. $\int \frac{1 + \cos 6x}{2} dx$	B. $\int \frac{1 - \cos 6x}{2} dx$	C. $\int \frac{1+\sin 6x}{2} dx$	D. $\int \frac{1-\sin 6x}{2} dx$		
21	2	What is the remain	dor when $P(x) = x^3$	NESA 2021 Mathematic	es Extension 1 HSC Examination	n 1	Solution
21 MX 1	3	A. –14	B. -2	C. 2	D. 14	T	
				NESA 2021 Mathematic	cs Extension 1 HSC Examination	on	
21 MX	4	Consider the differe	ential equation $\frac{dy}{dx} =$	$\frac{x}{y}$.		1	Solution
1		Which of the follow	ng equations best rep	, presents this relations	hip between x and y ?		
		A. $y^2 = x^2 + c$		B. $y^2 = \frac{x^2}{2} + c$			
		C. $y = x \ln y + c$		D. $y = \frac{x^2}{2} \ln y + c$			
				NESA 2021 Mathematic	s Extension 1 HSC Examinatio	n	Calatian
21 MX 1	5	For the two vectors Which of the followi	\vec{OA} and \vec{OB} it is knong statements MUST	wn that $\vec{OA} t \vec{OB} < 0.$ be true?		1	
		A. Either, \vec{OA} is neg	gative and \vec{OB} is posi	tive, or, \vec{OA} is positiv	e and \overrightarrow{OB} is negative.		
		B. The angle betwee	en \vec{OA} and \vec{OB} is obt	use.			
		C. The product $ \overrightarrow{OA} \overrightarrow{OB} $ is negative. D. The points O, A and B are collinear.					
				NESA 2021 Mathematic	s Extension 1 HSC Examinatio	n	Colution
21 MX 1	6	Bernoulli trials. The	e x represents the nu probability of succes	s is $p = 0.9$ in each tr	ial.	1	
1		Let $r = P(X \ge 1)$.					
		Which of the follow	ng describes the valu	ie of <i>r</i> ?			
		A. <i>r</i> > 0.9	B. <i>r</i> = 0.9	C. 0.1 < <i>r</i> < 0.9	D. <i>r</i> ≤ 0.1		
		NESA 2021 Mathematics Extension 1 HSC Examination					

page 19

21 MX	11 c	Use the substitution $u = x + 1$ to find $\int x \sqrt{x + 1} dx$.	3	Solution
1		NESA 2021 Mathematics Extension 1 HSC Examinati	on	
21	11	A committee containing 5 men and 3 women is to be formed from a group of 10	1	Solution
МХ 1	d	men and 8 women. In how many different ways can the committee be formed?		
		NESA 2021 Mathematics Extension 1 HSC Examinati	on	
21	11	A spherical bubble is moving up through a liquid.	2	Solution
МХ 1	е	As it rises, the bubble gets bigger and its radius increases at the rate of 0.2 mm/s.		
		At what rate is the volume of the bubble increasing when its radius reaches 0.6 mm?		
		Express your answer in mm ³ /s rounded to one decimal place.		
		NESA 2021 Mathematics Extension 1 HSC Examinati	on	
21 MX	11f	Evaluate $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{1-x^2}} dx$.	2	Solution
1		$\sqrt[6]{\sqrt{4-x^2}}$		
		NESA 2021 Mathematics Extension 1 HSC Examination	on	
21 мх	11	By factorizing, or otherwise, solve $2\sin^3 x + 2\sin^2 x - \sin x - 1 = 0$ for $0 \le x \le 2\pi$.	3	Solution
1	g			
		NESA 2021 Mathematics Extension 1 HSC Examination	on	
21	11	The roots of $x^4 - 3x + 6 = 0$ are α , β , γ and δ .	7	Solution
MY	 h		2	
 МХ 1	h	What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$?	2	
 МХ 1	h	What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$? NESA 2021 Mathematics Extension 1 HSC Examinat	ion	
MX 1 21 MX 1	h 12 a	What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$?NESA 2021 Mathematics Extension 1 HSC ExaminatThe direction field for a differentialequation is given on page 1 of the $2^{\frac{\gamma}{4}}$ Question 12 Writing Booklet. $2^{\frac{\gamma}{4}}$	ion L	Solution
^{MX} 1 21 MX 1	h 12 a	What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$?NESA 2021 Mathematics Extension 1 HSC ExaminatThe direction field for a differential equation is given on page 1 of the Question 12 Writing Booklet.The graph of a particular solution to the differential equation passes through the point <i>P</i> .	ion L	Solution

page 21

21 13 The region enclosed by
X c
y = 2 - |x| and
$$y = 1 - \frac{B}{4 + x^2}$$
 is
shaded in the diagram.
Find the exact value of the area of
the shaded region.
13 (i) The numbers A, B and C are related by the equations $A = B - d$ and $C = B + d$, **2** Solution
21 13 (i) The numbers A, B and C are related by the equations $A = B - d$ and $C = B + d$, **2** Solution
21 13 (ii) The numbers A, B and C are related by the equations $A = B - d$ and $C = B + d$, **2** Solution
21 13 (iii) Hence, or otherwise, solve $\frac{\sin \frac{59}{2} + \sin \frac{69}{7}}{\cos \frac{59}{7} + \cos \frac{59}{7}} = \sqrt{3}$, for $0 \le \theta \le 2\pi$.
21 14 A plane needs to travel to a destination that is on a bearing of 063°. The engine is
3 solution
14 A plane needs to travel to a destination that is on a bearing of 063°. The engine is
3 solution
14 A plane needs to travel to a destination that is on a bearing of 063°. The engine is
3 solution
1 constant speed of 42 km/h.
On what constant bearing, to the nearest degree, should the direction of the plane
be set in order to reach the destination?
11 14 In a certain country, the population of deer was estimated in 1980 to be 150 000.
1 b The population growth is given by the logistic equation $\frac{d}{dt} = 0.1P(\frac{C-P}{C})$ where *t* is
the number of years after 1980 and C is the carrying capacity.
In the year 2000, the population of deer was estimated to be 600 000.
Use the fact that $\frac{C}{P(C-P)} = \frac{1}{P} + \frac{1}{C-P}$ to show that the carrying capacity is
approximately 1 130 000.
10 Not ro scale
11 10 In the trapezium ABCD, BC is parallel to
AD and $|AC| = |BD|$.
Let $a = AB$, $b = BC$ and $AD = kBC$, where $k > 0$.
Using part (i) or otherwise, show that $2a \cdot b + (1 - k) |b|_{1}^{2} = 0$.
10 NESA 2021 Mathematics Extension 1 HSC Examination
11 12 Mathematics Extension 1 HSC Examination
13 14 In the trapezium ABCD, BC is parallel to
AD and $|AC| = |BD|$.
Let $a = AB$, $b = BC$ and $AD = kBC$, where $k > 0$.
Using part (i) or otherwise, sho

21	14	At a certain factory, the proportion of faulty items produced by a machine is 3	<u>Solution</u>
мх 1	d	$p = \frac{3}{500}$, which is considered to be acceptable.	
		To confirm that the machine is working to this standard, a sample of size n is taken	
		and the sample proportion \hat{p} is calculated.	
		It is assumed that \hat{p} is approximately normally distributed with $\mu = p$ and	
		$\sigma^2 = \frac{p(1-p)}{n}.$	
		Production by this machine will be shut down if $\hat{p} \geq \frac{4}{500}$.	
		The sample size is to be chosen so that the chance of shutting down the machine unnecessarily is less than 2.5%.	
		Find the approximate sample size required, giving your answer to the nearest thousand.	
		NESA 2021 Mathematics Extension 1 HSC Examination	
21	14	The polynomial $g(x) = x^3 + 4x - 2$ passes through the point (1, 3). 2	<u>Solution</u>
МХ 1	е	Find the gradient of the tangent to $f(x) = xg^{-1}(x)$ at the point where $x = 3$.	

NESA 2021 Mathematics Extension 1 HSC Examination