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What does a mathematical proof prove?*

Ordinary working mathematicians with no philosophical inclinations
were not interested in it. Its original objective was limited: to prove
the consistency of classical mathematics. Its original method wasre
stricted to austere, simple means. Now it has become a live, growing
mathematical discipline with unlimited objectives and tools.* It is
acquiring an ever more important and possibly crucial influence in the
growth of classical mathematical disciplines. Non-standard analysis
signifies that meta-mathematics, having failed to achieve its original
intended purpose, to erect ultimate and infallible foundations for the
whole of mathematics, now may make up for its fascinating failure by
fascinating unintended contributions to the growth of fallible mathe
matics. Infallible foundations to be gained by restricted methods have
given way to unharnessed fallible growth with rich content.
This is not the first time that foundational studies have petered out

without achieving their purpose, ultimate rigour, but have stimulated
and suggested further growth. The ‘cunning of reason’ turns each
increase in rigour into an increase in content. This also happened to
the Weierstrassian theory of real numbers: first it was treated by the
vast majority of ordinary working mathematicians as uninteresting
pedantry, until it turned (not without a sharp struggle) into a theory
with immense heuristic power, a theory indispensable for the creative
mathematician.1
One should mention what may be regarded from this point of view

as a ‘ shortcoming’ of non-standard analysis: according to Luxem
burg’s theorem everything that can be proved by non-standard analysis
can also be proved by classical analysis. The scope of the two theories
are then the same: non-standard analysis opened up a new channel
of growth but only within the old country: the Berstein—Robinson
theorem too will be proved one day by classical methods. Non-standard
arithmetic in this sense may seem more promising: (it aims immed
iately for results beyond the scope of classical arithmetic).t However,
this advantage of non-standard arithmetic over non-standard analysis
may lead to some spectacular growth beyond its present scope and,
on the other hand, classical arithmetic may still produce informal
proofs leading beyond the present Dedekind—Peano framework.
There is no way of predicting how the relative strength of theories
may change in the course of their growth.
* A modern view of the significance’ of meta-mathematics has been expressed by G.
Sacks in his [1972]: ‘The subject of mathematical logic splits fourfold into: recursive
functions, the heart of the subject, proof theory which includes the best theorem in
the subject, sets and dasses whose romantic appeal far outweight their mathematical
substance, and model theory, whose value is its applicability to, and roots in, algebra.’
An earlier, but more penetrating estimate of the importance of meta-mathematical
methods in mathematics is contained in a review-article by G. Kreisel ([i956—7]).
(J. P. C.)

I Cf. above, chapter i.
t Lakatos later underlined the bracketed passage in pencil and added an emphatic
‘No’ in the margin of the manuscript. (J. P. C.)
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On the face of it there should be no disagreement about mathematical
proof. Everybody looks enviously at the alleged unanimity of mathe

t maticians; but in fact there is a considerable amount of controversy
t: in mathematics. Pure mathematicians disown the proofs of applied

mathematicians, while logicians in turn disavow those of pure mathe
maticians. Logicists disdain the proofs of formalists and some intui

I tionists dismiss with contempt the proofs of logicists and formalists.
f. I shall begin with a rough classification of mathematical proofs; I
,

dassify all proofs accepted as such by working mathematicians or
logicians under three heads:
(I) pre-formal proofs

i’ (2) formal proofs
I (3) post-formal proofs.
i Of these (I) and (3) are kinds of informal proofs.
1 I am afraid that some ardent Popperite may already be rejecting

all that I am about to say on account of my classification. He will say
that these misnomers clearly prove that I really think that mathematics
has some necessary, or at least standard, pattern of historical develop-

i’ ment — pre-formal, formal and post-formal stages, and that I am
already showingmy hand — that I want to inject a disastrous historicism

I, into sound mathematical philosophy.
I It wifi turn out in the course of my paper that this, in fact, is just

what I should like to do; I am quite convinced that even the poverty
of historicism is better than the complete absence of it — always pro-
viding of course that it is handled with the care necessary in dealing

: with any explosives.
As a consequence of the unhistorical conception of ‘ formal theory’

there has been a lot of discussion as to what constitutes a respectable
I-’ formal system out of the immense multitude of capriciously proposed
‘

consistent formal systems which are mostly uninterestinggames. Form-F: alists had to disentangle themselves from these difficulties. They could
I of course have done this by dropping their basic outlook, but they have
; * This paper seems to have been written some time between 1959 and ig6i for Dr

‘

T. J. Smiley’s seminar at Cambridge. Lakatos’s own copy contains several handwritten
corrections; some by himself and some by Dr Smiley. We have incorporated them

- t’ into the text. There is no indication that Lakatos ever returned to this paper after
‘t•. 1961. He subsequently changed his mind on some of the points made in the paper
f and had no plans to publish it himself. (Eds.)
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tended to prefer complicated ad hoc corrections. They look for criteria
distinguishing those formal systems which are ‘ interesting’ or ‘ accep
table’ and so on, thus betraying their bad consciences in accepting the
pure formalist conception according to which mathematics is the set
of all consistent formal systems. For instance, Kneale says that a
mathematical system should be ‘interesting’. His definition runs as
follows: ‘A possible — [possible means complying with some usual
concept of modern rigour — i.e. consistent] system is interestingmathe
marically if it is rich in theorems and has many connections with other
parts of mathematics, and in particular with the arithmetic of natural
numbers.’1Curry, who is a most extreme representative of formalism,
introduces the notion of ‘acceptability’. He says: ‘The primary crit
erion of acceptability is empirical; and the most important conside
rations are adequacy and simplicity.’2I fear there is a point on which
I slightly disagree with their approach: they select from a previously
given set of formal systems those which are interesting or acceptable.
I should like to reverse the order: we should speak of formal systems
only if they are formalizations of established informal mathematical
theories. No further criteria are needed. There is indeed no respec
table formal theory which does not have in some way or another a
respectable informal ancestor.
Now I come back to our original subject: proofs. Most of the

students of the modern philosophy of mathematics will instinctively
define proof according to their narrow formalist conception of math-
ematics. That is, they will say that a proof is a finite sequence of
formulae of some given system, where each formula of the sequence
is either an axiom of the system or a formula derived by a rule of the
system from some of the preceding formulae. ‘ Pure ‘ formalismadmits
any formal system, so we must always specify in which system S we
operate; then we speak only about an S-proof. Logicism admits
essentially only one large distinguished system, and so essentially
admits a single concept of proof.
One of the most outstanding features of such a formal proof is that

we can mechanically decide of any given alleged proof if it really was
a proof or not.
But what about an informal proof? Recently there have been some

attempts by logicians to analyse features of proofs in informal theories.
Thus a well known modern text-book of logic says that an ‘ informal
proof ‘ is a formal proof which suppresses mention of the logical rules
of inference and logical axioms, and indicates only every use of the
specific postulates.3
Now this so-called ‘informal proof’ is nothing other than a proof

in an axiomatized mathematical theory which has already taken the
shape of a hypothetico-deductive system, but which leaves its under-
1 Kneale [‘955], p. io6. 2 Curry [1958], p. 62.
3 Suppes [19571, p. 128.
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lying logic unspecified. At the present stage of development in mathe
matical logic a competent logician can grasp in a very short time what
the necessary underlying logic of a theory is, and can formalize any
such proof without too much brain-racking.
But to call this sort of proof an informal proof is a misnomer and

a misleading one. It may perhaps be called a quasi-formal proof or
a ‘ formal proof with gaps ‘ but to suggest that an informal proof is
just an incomplete formal proof seems to me to be to make the same
mistake as early educationalists did, when, assuming that a child was
merely miniature grown-up, they neglected the direct study of child-
behaviour in favour of theorizing based on simple analogy with adult
behaviour.
But now I should like to exhibit some truly informal, or, to be more

precise, pre-formal proofs.
My first example will be a proof of Euler’s well-known theorem on

simple polyhedra.’ The theorem is this: Let V denote the number of
vertices, E the number of edges and F the number of faces of a simple
polyhedron; then invariably

V-E+F=2
By a polyhedron is meant a solid whose surface consists of a number
of polygonal faces, and a simple polyhedron is one without ‘ holes ‘, so
that its surface can be deformed continuously into the surface of a
sphere. The proof of this theorem runs as follows:
Let us imagine a simple polyhedron to be hollow, with a surface

made of thin rubber (see Figure i (a)). Then if we cut out one of the
faces of the hollow polyhedron, we can deform the remaining surface
until it stretches out fiat on a plane (see Figure i (b)). Of course, the
areas of the faces and the angles between the edges of the polyhedron
will have changed in this process. But the network of vertices and edges
in the plane will contain the same number of vertices and edges as
did the original polyhedron, while the number of polygons will be one
less than in the original polyhedron, since one face was removed. We
shall now show that for the plane network, V—E+F= i , so that, if the
removed face is counted, the result is V—E+F= 2 for the original
polyhedron.

Figurei
(b)

1 For a full discussion of the history of this theorem, see Lakatos [i 976C1.
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We ‘ triangulate ‘ the plane network in the following way: in some
polygon of the network which is not already a triangle we draw a
diagonal. The effect of this is to increase both E and F by i thus
preserving the value of V—E+F. We continue drawing diagonals
joining pairs of points until the figure consists entirely of triangles, as
it must eventually (see Figure 2 (a) ). In the triangulated network,
V—E+F has the value that it had before the division into triangles,
since the drawing of diagonals has not changed it. Some of the
triangles have edges on the boundary of the plane network. Of these
some, such as ABC, have only one edge on the boundary, while other
triangles may have two edges on the boundary. We take any boundary
triangle and remove that part of it which does not also belong to some
other triangle. Thus, from ABCwe remove the edge AC and the face,
leaving the vertices A, B, C, and the two edges AB and BC [see Figure
2(a)]; while from DEF we remove the face, the two edges DF and FE,
and the vertex F [see Figure 2(b)J. The removal of a triangle of type
ABC decreases E and F by i , while V is unaffected, so that V—E+F
remains the same. The removal of a triangle of type DEF decreases
V by I , E by 2 and F by i , so that V—E+ F again remains the same.
By a properly chosen sequence of these operations we can remove
triangles with edges on the boundary (which changes with each re
moval) until finally only one triangle remains, with its threeedges, three
vertices and one face. For this simple network V—E+F 3—3+ I = I.
But we have seen that by constantly erasing triangles V—E+Fwas not
altered. Therefore in the original plane network V—E+Fmust equal
I also, and thus equals i for the polyhedron with one face missing.
We conclude that V—E+F= 2 for the complete polyhedron.

(a) (b)
Figure 2

I think that mathematicians would accept this as a proof, and some
of them will even say that it is a beautiful one. It is certainly sweepingly
convincing. But we did not trove anything in any however liberally
interpreted logical sense. There are no postulates, no well-defined
underlying logic, there does not seem to be any feasible way to
formalize this reasoning. What we were doing was intuitively showing
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that the theorem was true. This is a very common way of establishing
mathematical facts, as mathematicians now say. The Greeks called this
process deikmyne and I shall call it thought experiment.
Now is this a proof? Can we give a definition of proof which would

allow us to decide at least practically, in most cases, if our proof is really
a proof or not? I am afraid the answer is ‘no’. In a genuine low-
level pre-formal theory proof cannot be defined; theorem cannot
be defined. There is no method of verification. As a strict logician
like Dr Nidditch would surely say, it is — I quote — ‘ mere persuasive
argumentation, rhetorical appeal, reliance on intuitive insight or
worse
But if there is no method of verification, there is certainly a method

of falsification. We can point out some hitherto unthought of pos
sibilities. For instance assume that we had omitted to stipulate that the
polyhedron be simple. We may not have thought of the possibility of
the polyhedron having a hole in it (in which case the theorem would
be subject to many counterexamples).* Actually Cauchy made this
‘mistake’2This is the frequently occurring phenomenon of mathe
matical theorems being ‘stated in a false generality’.
For the sake of a better and simpler illustration let me quote

another famous thought experiment with a celebrated falsification.
The problem is to find the two points P and Q that are as far apart
as possible on the surface or boundary of any triangle. The answer
is easy to guess; P and Q are the ends of the longest side. This can
easily be proved by the sort of thought experiment which we just
used: no axioms, no rules, but convincing force. Let us see:
If one of the points, say F, lies on the inside of the triangle, then

PQ obviously does not have its maximum length. For on the extension
of the line PQ there is obviously a point F that is further from Q than
P is, and that is still inside the triangle. If both P and Q lie on the
boundary of the triangle, but one of them, say P, is not a vertex, then
we can obviously find a nearby point F on the boundary that is
further from than the distance PQ. Therefore PQ can be a maxi
mum only if both P and Q are vertices; otherwise it certainly is not.
Thus PQ is a side of the triangle and must obviously be the longest
side.
It is obvious that the same thought experiment can be accomplished

for polygons to ‘ prove ‘ the following theorem: in order that two points
on the surface of a polygon be farthest apart, they must be two of the
vertices that are farthest apart.
I think this should be quite convincing. Nevertheless there is an

unthought-of possibility which may spoil our pleasure. Apply the
same thought-experimental procedure to this figure:
1 Nidditch [1957], p. 5.
* One such counrerexample is the ‘picture frame’ (Lakatos [iq6c], p. 19) (ed.s.).
2 Cauchy [i813].
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I?

Suppose P and Q lie anywhere inside the figure or on the boundary,
even including the possibility that they may be at any of the four
vertices A, B, C, D. [Unless PQ is exactly the side AB, a nearby point
F’ can be found within the figure such that the distance P’Qis greater
than the distance PQ.] Just as in the earlier cases, for each pair of points
F, Q we can find a nearby pair that are further apart in every case
except when the pair is A, B. No pair other than A, B can give a
maximum. If we now follow the previous argument strictly, we must
conclude that AB is the maximum.
The falsification of our argument ran along the same lines as in the

case of Euler’s theorem for all polyhedra. We thoughtwe showed more
than we actually did. In our second case, we showed only that the
maximum must be such and such if the maximum exists at all. In the
case of Euler’s theorem we only showed the truth of the theorem for
the case where our rubber sheet could really be stretched out to the
plane without any holes in it.
I should like to emphasize that the correction of such mistakes can

be accomplished on the level of the pre-formal theory, by a new
pre-formal theory.
The thought experiments I have just presented constitute only one

type of pre-formal proof. There are others, basically different; ones
for instance with the rather exciting property that in a certain sense
we may say that contrary to the thought experiments we have just
considered, they may be verified but not falsified. They give quite an
insight into the nature of rules in a pre-formal theory and in pre-formal
rigour.*
But now let us turn to axiomatized theories. Up to now no informal

mathematical theory could escape being axiomatized. We mentioned
that when a theory has been axiomatized, then any competent logician
can formalize it. But this means that proofs in axiomatized theories
can be submitted to a peremptory verification procedure, and this can
be done in a foolproof, mechanical way. Does this mean that for
instance if we prove Euler’s theorem in Steenrod’s and Eilenberg’s fully
formalized postulate system’ it is impossible to have any counter-
example? Well, it is certain that we won’t have any counterexample
formalizable in the system [assuming the system is consistent]; but we
* We have been unable to find out what Lakatos had in mind here (eds.).
1 Eilenberg and Steenrod [1952].

have no guarantee at all that our formal system contains the full
empirical or quasi-empirical stuff in which we are really interested and
with which we dealt in the informal theory. There is no formal
criterion as to the correctness of formalization.

: Well-known examples of ‘ falsified ‘ formalizations are ( i) the form-
alization of the theory of manifolds by Riemann, where there is no

. account of Möbius-strips; (2) the Kolmogorov-axiomatization of
probability theory, in which you cannot formalize such intuitive state-

; ments as ‘ every number turns up in the set of natural numbers with
the same probability’.* As a final but most interesting example I
should mennon (3) Godel s opinion that the Zermelo—Fraenkel and
kindred systems of formalized set theory are not correct formalizations
of pre-formal set theory as one cannot disprove in them Cantor’s
continuum-hypothesis.t
I will show with a trivial example how little formalization may add

to the demonstrative or convincing force of informal thought
I experiments. You remember the proof of Euler’s theorem? A formalist

wifi certainly reject it. But it won’t be easy for him to reject the
following ‘ proof’: set up a formal system, with one axiom: A; no rules

; [except that all axioms are theorems!]. The interpretation of A is
i Euler’s theorem. This system I think complies with the strictest de

t mands of formalism.
Does all this mean that proof in a formalized theory does not add

anything to the certainty of the theorem involved Not at all [In the
informal proof it may turn out that we failed to make some assumption
explicit which results in there being a counterexample to the theorem.

‘ But on the other hand if we manage to formalize a proof of our
theorem within a formal system we know that there will never be a

.

counterexample to it which could itself be formalized within the
: system, as long as that system is consistent.] For instance, if we had

a formal proof of Fermat’s last theorem, then if our formalized
! number theory is consistent it would be impossible for there to be a
t counterexample to the theorem formalizable within the system.

Now we see that if formalization (we shall use this term from now
on as essentially having the samemeaning as axiomatization) conforms
with some informal requirements such as enough intuitive counter
examples being formalized in it and so on, we gain quite a lot in the
value of proofs. But if we try to formalize a pre-formal theory too early,
there can be unfortunate results I wonderwhatwould have happened
if probability theory had been axiomatized just in order to supply
foundations for probability theory before the discovery of Lebesgue
measure Or to take another example it is clear that it would have
been wasted time and effort to formalize meta-mathematics at the time
* See Renyi [1955] (eds.).
t For more detail on this point and references to Godel s opinions see this volume
chapter 2 (ed.c)

C.’

D

Figure 3
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of finitary illusionism, because later it turned out that the only useful
methods must reach not only just beyond finitary tools but even
beyond the object-theory in question. In animmaturely axiomatized
algebra — axiomatized so as not to allow for complex numbers, say —

we could never prove for instance that an equation of nth degree
cannot have more than n real roots. Sometimes a well-formed formula
of a theory T may be undecidable in the theory, but it may well be
decided if suitably interpreted in a different theory, which may not
even be an extension of the original theory. It is very difficult to decide
in which theory a mathematical statement is really provable: for
instance just take some theorems formalizable in the theory of real
functions but provable only in the theory of complex functions, or
theorems formalizable in measure theory, but provable only in the

% theory of distributions and so on. ven after a theory has been
fruitfully axiomatized, there may arise issues which can bring about
a change in axiomatization. This is now going on in probability theory.
Axiomatization is a big turning point in the life of a theory, and its
importance surpasses its impact on proofs; but its impact on proofs
is immense in itself. tWhile in an informal theory there really are
unlimited possibilities for introducingmoreandmore terms, more and
more hitherto hidden axioms, more and more hitherto hidden rules
in the form of new so-called ‘obvious’ insights, in a formalized theory
imagination is tied down to a poor recursive set of axioms and some
scanty rules.

Letme finally turn to the third part of my dassification: topost-formal
proofs. Here I shall just make a few programmatic remarks.
Two types of post-formal proofs are well-known. The first type is

represented by the Duality Principle in Projective Geometrywhich says
that any properly-worded valid statement concerning incidences of
points and lines on a projective plane gives rise to a second valid
statement when the words ‘point’ and ‘line’ are interchanged. For
instance if the statement ‘ Any two distinct lines in the same plane
determine a unique point’ is valid, then so is the statement ‘Any two
distinct points in the same plane determine a unique line’. But then
in proving the second statement we use a theorem of the system and
another theorem, a meta-theorem, which we cannot specify, and still
less prove, without specifying the concepts of provability in the system,
theorem in the system and so on. This meta-theorem which we use
like a lemma in our proof of an informal mathematical theory is not
just about lines or points but about lines, points, provability, theorem-
hood and so on. Although projective geometry is a fully axiom-
atized system, we cannot specify the axioms and rules used to prove
the Principle of Duality, as the meta-theory involved is informal.
The second class of post-formal proofs I should mention is the class

of proofs of undecidability. As students of mathematical logic know,
68

in the last few years it has turned out that formal proofs really prove
much more than we want them to prove. Namely, to put it very
roughly indeed, axioms in the most important mathematical theories
implicitly define not just one, but quite a family of structures. For
instance, Peano’s axioms may be satisfied not only by our familiar
natural numbers, but by some quite queer structures, Skølem’s func
tions, which are far from being isomorphic with the set of natural
numbers. Thus it turns out that when we fight hard to prove an
arithmetical theorem, we prove at the same time some theorem in this
other absolutely unintended structure. Now there are always state-
ments, which are true in one structure but false in the other. Such
statements are undecidable in the common formal structure. Are we
helpless in such a situation? To see the point better, let us take a
concrete, though hypothetical example. If we could prove that Fer
mat’s theory is undecidable, then are we forever helpless to say any-
thing about the truth of Fermat’s theorem? Not at all. We may again
call informal reasoning to our help, and try to operate informally only
in the intended model. A concrete example of this is Godel’s proof
[that his undecidable sentences are true (i.e. true in the standard
model)]. But such post-formal proofs are certainly informal and so
they are subject to falsification by the later discovery of some not-

, thought-of possibility.
Now at the present stage of our mathematical knowledge undecid

able sentences occur only in rather artificial examples and do not affect
the bulk of mathematics. But this situation may turn out similar to
the case of transcendental numbers, which occurred first rather as: exceptions and later turned out to be the more general case. So
post-formal methods may gain in importance as undecidabiity en-
croaches more and more on mathematics.

And now a brief summary. We saw that mathematical proofs are
: essentially of three different types: pre-formal; formal; post-formal.
. Roughly the first and third prove something about that sometimes
: clear and empirical, sometimes vague and ‘quasi-empirical’ stuff,

which is the real though rather evasive subject of mathematics. This
sort of proof is always liable to some uncertainty on account of

: hitherto unthought-of possibilities. The second sort of mathematical
proof is absolutely reliable; it is a pity that it is not quite certain —

although it is approximately certain — what it is reliable about.
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