Chapter 1

Mathematics Involved in Electromagnetic Theory

Gradiant of a scalar function:

If $\phi(x, y, z)$ be a scalar function then $\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}$ is called the gradient of the scalar function ϕ. And is denoted by grad ϕ.

Thus, $\quad \operatorname{grad} \phi=\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}$

$$
\begin{aligned}
& \operatorname{grad} \phi=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \phi(x, y, z) \\
& \operatorname{grad} \phi=\vec{\nabla} \phi
\end{aligned}
$$

Geometrical Meaning of Gradient, Normal:

If a surface $\phi(x, y, z)=c$ passes through a point P . The value of the function at each point on the surface is the same as at P . Then such a surface is called a level surface through P . For example, if $\phi(x, y, z)$ represents potential at the point P , then equipotential surface $\phi(x, y, z)=c$ is a level surface.

Two level surfaces can not intersect.
Let the level surface pass through the point P at which the value of the function is ϕ. Consider another level surface passing through Q , where the value of the function is $\phi+d \phi$.

Let \vec{r} and $\vec{r}+\delta \vec{r}$ be the position vector of P and Q then $\overrightarrow{P Q}=\delta \vec{r}$

$$
\begin{aligned}
\vec{\nabla} \phi \cdot d \vec{r} & =\left(\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}\right) \cdot(\hat{i} d x+\hat{j} d y+\hat{k} d z) \\
& =\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z=d \phi
\end{aligned}
$$

If Q lies on the level surface of P , then $d \phi=0$
Equation (1) becomes, $\vec{\nabla} \phi \cdot d \vec{r}=0$, then $\vec{\nabla} \phi$ is perpendicular to $d \vec{r}$ (tangent)
Hence, $\vec{\nabla} \phi$ is normal to the surface $\phi(x, y, z)=c$

The Divergence:

From the defnition of ∇ we construct the divergence:

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{v} & =\left(\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}\right) \cdot\left(v_{x} \hat{x}+v_{y} \hat{y}+v_{z} \hat{z}\right) \\
& =\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
\end{aligned}
$$

Observe that the divergence of a vector function \vec{v} is itself a scalar $\vec{\nabla} \cdot \vec{v}$

Gemetrical interpretation :

The name divergence is well chosen, for $\vec{\nabla} \cdot \vec{v}$ is a measure of how much the vector \vec{v} spreads out (diverges) from the point in question. For example, the vector function in figure (a) has a large (positive) divergence (if the arrows pointed in, it would be a large negative divergence), the function in figure (b) has zero divergence, and the function in figure (c) again has a positive divergence.

The Curl:

From the defintion ∇ we construct the curl:

$$
\vec{\nabla} \times \vec{v}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|=\hat{x}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+\hat{y}\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right)+\hat{z}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)
$$

Notice that the curl of a vector function \vec{v} is, like any cross product, a vector. Carl of a scalar does not exist.

Geometrical interpretation :

The name curl is also well chosen, for $\vec{\nabla} \times \vec{v}$ is a measure of how much the vector \vec{v} 'curls around' the point in question. Thus the three functions in figure (a) have a substantial curl, pointing in the z-direction, as the natural right-hand rule would suggest.

Product rules:

(i) $\vec{\nabla}(\mathrm{fg})=\mathrm{f} \vec{\nabla} \mathrm{g}+\mathrm{g} \vec{\nabla} \mathrm{f}$
(ii) $\vec{\nabla}(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}})=\overrightarrow{\mathrm{A}} \times(\vec{\nabla} \times \overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{B}} \times(\vec{\nabla} \times \overrightarrow{\mathrm{A}})+(\overrightarrow{\mathrm{A}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{B}}+(\overrightarrow{\mathrm{B}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{A}}$,
(iii) $\vec{\nabla} \cdot(\mathrm{f} \overrightarrow{\mathrm{A}})=\mathrm{f}(\vec{\nabla} \cdot \overrightarrow{\mathrm{A}})+\overrightarrow{\mathrm{A}} \cdot(\vec{\nabla} \mathrm{f})$
(iv) $\vec{\nabla} \cdot(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})=\overrightarrow{\mathrm{B}} \cdot(\vec{\nabla} \times \overrightarrow{\mathrm{A}})-\overrightarrow{\mathrm{A}} \cdot(\vec{\nabla} \times \overrightarrow{\mathrm{B}})$,
(v) $\vec{\nabla} \times(f \vec{A})=f(\vec{\nabla} \times \overrightarrow{\mathrm{A}})-\overrightarrow{\mathrm{A}} \times(\vec{\nabla} \mathrm{f})$
(vi) $\vec{\nabla} \times(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})=(\overrightarrow{\mathrm{B}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{A}}-(\overrightarrow{\mathrm{A}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}(\vec{\nabla} \cdot \overrightarrow{\mathrm{B}})-\overrightarrow{\mathrm{B}}(\vec{\nabla} \cdot \overrightarrow{\mathrm{A}})$

Problem-1: Find the gradients of the following functions:
(a) $f(x, y, z)=x^{2}+y^{3}+z^{4}$
(b) $f(x, y, z)=x^{2} y^{3} z^{4}$
(c) $f(x, y, z)=e^{x} \sin (y) \ln (z)$

Problem-2: Let ' r ' be the separation vector from a fixed point ($x^{\prime}, y^{\prime}, z$ ') to the point (x, y, z) and let ' r ' be its length. Show that
(a) $\vec{\nabla}\left(\mathrm{r}^{2}\right)=2 \overrightarrow{\mathrm{r}}$
(b) $\vec{\nabla}(1 / r)=-\hat{r} / r^{2}$
(c) what is the general formula $\vec{\nabla}\left(\mathrm{r}^{\mathrm{n}}\right)$?

Problem-3: Calculate the divergence of the following vector functions
(a) $\vec{v}_{a}=x^{2} \hat{x}+3 x z^{2} \hat{y}-2 x z \hat{z}$
(b) $\overrightarrow{\mathrm{v}}_{\mathrm{b}}=x y \hat{x}+2 y z \hat{y}+3 z x \hat{z}$
(c) $\vec{v}_{c}=y^{2} \hat{x}+\left(2 x y+z^{2}\right) \hat{y}+2 y z \hat{z}$

Problem-4: The vector function, $v=\frac{\hat{\mathrm{r}}}{\mathrm{r}^{2}}$ compute its divergence.
The gradient, the divergence, and the curl are the only first derivatives we can make with ∇; by applying ∇ twice we can construct five species of second derivatives. The gradient $\nabla \mathrm{T}$ is a vector, so we can take the divergence and curl of it.
(1) Divergence of gradient: $\quad \vec{\nabla} \cdot(\vec{\nabla} \mathrm{T})=\nabla^{2} \mathrm{~T} \quad$ (Laplacian of T)
(2) Curl of gradient:

$$
\vec{\nabla} \times(\vec{\nabla} \mathrm{T})=0
$$

(3) Gradient of divergence: $\quad \vec{\nabla}(\vec{\nabla} \cdot \vec{v}) \quad$ (This is not same as laplacian)
(4) Divergence of curl:

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{v})=0
$$

(5) Curl of curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{v})=\vec{\nabla}(\vec{\nabla} \cdot \vec{v})-\nabla^{2} \vec{v}
$$

Problem-5: Calculate the Laplacian of the following functions:
(a) $T_{a}=x^{2}+2 x y+3 z+4$
(b) $\mathrm{T}_{\mathrm{b}}=\sin \mathrm{x} \sin \mathrm{y} \sin \mathrm{z}$
(c) $T_{c}=e^{-5 x} \sin 4 y \cos 3 z$
(d) $v=x^{2} \hat{x}+3 x z^{2} \hat{y}-2 x z \hat{z}$

Problem-6: Calculate the line integral of the function $\vec{v}=y^{2} \hat{x}+2 x(y+1) \hat{y}$ from the point $a=(1,1,0)$ to the point $b=(2,2,0)$, along the paths (1) and (2) in the following figure. What is \oint v.dI for the loop that goes from ' a ' to ' b ' along (1) and returns to ' a ' along (2)?

Problem-7: Calculate the surface integral of $v=2 x z \hat{x}+(x+2) \hat{y}+y\left(z^{2}-3\right) \hat{z}$ over five sides (excluding the bottom) of the cubical box (side 2) in figure. Let "upward and outward" be the positive direction, as indicated by the arrows.

Problem-8: Calculate the volume integral of $\mathrm{T}=\mathrm{xyz}^{2}$ over the prism in figure.
Soln. You can do the three integrals in any order. Let's do ' x ' first: it runs from 0 to ($1-y$); then y (it goes from 0 to 1); and finally z (0 to 3):

$$
\int \mathrm{Td} \tau=\int_{0}^{3} \mathrm{z}^{2}\left\{\int_{0}^{1} \mathrm{y}\left[\int_{0}^{1-\mathrm{y}} \mathrm{xdx}\right] \mathrm{dy}\right\} \mathrm{dz}=\frac{1}{2} \int_{0}^{3} \mathrm{z}^{2} \mathrm{dz} \int_{0}^{1}\left(1-\mathrm{y}^{2}\right)^{2} \mathrm{ydy}=\frac{1}{2} \times 9 \times \frac{1}{12}=\frac{3}{8}
$$

Problem-9: Calculate the line integral of the function $v=x^{2} \hat{x}+2 y z \hat{y}+y^{2} \hat{z}$ from the origin to the point (1, $1,1)$ by three different routes:
(a) $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$
(b) $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$
(c) The direct straight line.

Example-10: Let $\mathrm{T}=\mathrm{xy}^{2}$, and take point ' a ' to be the origin $(0,0,0)$ and ' b ' the point $(2,1,0)$. Check the fundamental theorem for gradients.

Problem-11: Check the fundamental theorem for the gradients, using $T=x^{2}+4 x y+2 y^{3}$, the points $\mathrm{a}=(0,0,0), \mathrm{b}=(1,1,1)$ and the three paths in figures (a), (b) and (c) are
(a) $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$
(b) $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$
(c) The parabolic path $\mathrm{z}=\mathrm{x}^{2} ; \mathrm{y}=\mathrm{x}$

Problem-12: Check the divergence theorem using the function

$$
\vec{v}=y^{2} \hat{x}+\left(2 x y+z^{2}\right) \hat{y}+(2 y z) \hat{z}
$$

and the unit cube situated at the origin has shown in the following figure.

Problem-13: Suppose $\vec{v}=\left(2 x z+3 y^{2}\right) \hat{y}+\left(4 y z^{2}\right) \hat{z}$. Check Stokes' theorem for the square surface shown in figure.

Problem-14: Test Stokes' theorem for the function $\vec{v}=(x y) \hat{x}+(2 y z) \hat{y}+(3 z x) \hat{z}$, using the triangular shaded area of figure.

Problem-15: Evaluate the integral

$$
\int_{0}^{\infty} \mathrm{xe}^{-x} \mathrm{dx}
$$

Formulas for gradient divergence and curl for spherical coordinates.
Gradient: $\quad \vec{\nabla} \mathrm{T}=\frac{\partial \mathrm{T}}{\partial \mathrm{r}} \hat{\mathrm{r}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{T}}{\partial \theta} \hat{\theta}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{T}}{\partial \phi} \hat{\phi}$
Divergence: $\quad \vec{\nabla} \cdot \overrightarrow{\mathrm{v}}=\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^{2} \mathrm{v}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \mathrm{v}_{\theta}\right)+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial \mathrm{v}_{\phi}}{\partial \phi}$

Curl:

$$
\begin{gathered}
\vec{\nabla} \times \overrightarrow{\mathrm{v}}=\frac{1}{\mathrm{r} \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \mathrm{v}_{\phi}\right)-\frac{\partial \mathrm{v}_{\theta}}{\partial \phi}\right] \hat{\mathrm{r}}+\frac{1}{\mathrm{r}}\left[\frac{1}{\sin \theta} \frac{\partial \mathrm{v}_{\mathrm{r}}}{\partial \phi}-\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rv}_{\phi}\right)\right] \hat{\theta} \\
+\frac{1}{\mathrm{r}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rv}_{\theta}\right)-\frac{\partial \mathrm{v}_{\mathrm{r}}}{\partial \theta}\right] \hat{\phi}
\end{gathered}
$$

Laplacian: $\quad \nabla^{2} T=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\mathrm{r}^{2} \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}\right)+\frac{1}{\mathrm{r}^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \mathrm{~T}}{\partial \theta}\right)+\frac{1}{\mathrm{r}^{2} \sin ^{2} \theta} \frac{\partial^{2} \mathrm{~T}}{\partial \phi^{2}}$

Problem-16: Compute the divergence of the function

$$
\overrightarrow{\mathrm{v}}=(\mathrm{r} \cos \theta) \hat{\mathrm{r}}+(\mathrm{r} \sin \theta) \hat{\theta}+(\mathrm{r} \sin \theta \cos \phi) \hat{\phi}
$$

Check the divergence theorem for this function, using as your volume the inverted hemispherical bowl of radius R , resting on the xy-plane and centered at the origin (Figure)

Problem-17: Find the formulas for r, θ, ϕ in terms of $\hat{x}, \hat{y}, \hat{z}$.

Problem-18: Express the unit vector, $\hat{r}, \hat{\theta}, \hat{\phi}$ in terms of $\hat{x}, \hat{y}, \hat{z}$.

Problem-19: Express the cylinderical unit vectors $\hat{s}, \hat{\phi}, \hat{z}$ in terms of $\hat{x}, \hat{y}, \hat{z}$. Invert your formulas to get $\hat{x}, \hat{y}, \hat{z}$ in terms of $\hat{s}, \hat{\phi}, \hat{z}$.

Problem-20: Check the divergence theorem for the function

$$
\overrightarrow{\mathrm{v}}=\mathrm{r}^{2} \cos \theta \hat{\mathrm{r}}+\mathrm{r}^{2} \cos \phi \hat{\theta}-\mathrm{r}^{2} \cos \theta \sin \phi \hat{\phi}
$$

using as your volume one octant of the sphere of radius R. Make sure you include the entire surface.
Ans. $\pi \mathrm{R}^{4} / 4$.

Problem-21: Compute the line integral of

$$
\vec{v}=6 \hat{x}+y z^{2} \hat{y}+(3 y+z) \hat{z}
$$

along the triangular path shown in figure. Check your answer using Stoke's theorem.
Ans. 8/3.

Coordinate System:

Coordinate system	\hat{u}_{1}	\hat{u}_{2}	\hat{u}_{3}	h_{1}	h_{2}	h_{3}	$d s$	$d v$
Cartesian	\hat{x}	\hat{y}	\hat{z}	1	1	1	$d x d y$ or $d y d z$ or $d z d x$	$d x d y d z$
Spherical	\hat{r}	$\hat{\theta}$	$\hat{\phi}$	1	r	$r \sin \theta$	$r d \theta r \sin \theta d \phi$	$r^{2} \sin \theta d r d \theta d \phi$
Cylindrical	$\hat{\rho}$	$\hat{\theta}$	\hat{z}	1	ρ	1	$r d \theta d z$	$\rho d \rho d \theta d z$

(i) $\nabla=\frac{1}{h_{1}} \frac{\partial}{\partial u_{1}} \hat{e}_{1}+\frac{1}{h_{2}} \frac{\partial}{\partial u_{2}} \hat{e}_{2}+\frac{1}{h_{3}} \frac{\partial}{\partial u_{3}} \hat{e}_{3}$
(ii) $\vec{\nabla} \cdot \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} A_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{1} h_{3} A_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} A_{3}\right)\right]$
(iii) $\vec{\nabla} \times \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}^{3} \\ \frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\ h_{1} A_{1} & h_{2} A_{2} & h_{3} A_{3}\end{array}\right|$
(iv) $\vec{\nabla}^{2} \phi=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \phi}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial \phi}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \phi}{\partial u_{3}}\right)\right]$

Dirac-delta function:

(A) One dimensional delta function:

$\delta\left(x-x_{0}\right)= \begin{cases}0 & \text { for } x \neq x_{0} \\ \infty & \text { for } x=x_{0}\end{cases}$

Properties of delta function:

(1) The delta function is even $\delta(-x)=\delta(x)$
(2) $\delta(a x)=\frac{1}{|a|} \delta(x) \quad(a \neq 0)$
(3) $\int_{-\infty}^{\infty} \delta(x) d x=1$
(4) $\int_{a}^{b} f(x) \delta\left(x-x_{0}\right) d x= \begin{cases}f\left(x_{0}\right) & \text { if } a<x_{0}<b \\ 0 & \text { elsewhere }\end{cases}$
(5) $\int \delta(a-x) \delta(x-b) d x=\delta(a-b)$
(6) $\delta[(x-a)(x-b)]=\frac{1}{|a-b|}[\delta(x-a)+\delta(x-b)](a \neq b)$
(7) $\delta\left(x^{2}-a^{2}\right)=\frac{1}{2|a|}[\delta(x-a)+\delta(x+a)](a \neq 0)$
(8) $\int_{a}^{b} f(x) \delta^{n}\left(x-x_{0}\right) d x=(-1)^{n} f^{n}\left(x_{0}\right) \quad a<x_{0}<b$
(B) Three dimensional delta function:
(1) The three dimensional form delta function in cartesian coordinates is

$$
\delta\left(\vec{r}-\vec{r}_{0}\right)=\delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) \delta\left(z-z_{0}\right)
$$

(2) In spherical coordinate

$$
\delta\left(\vec{r}-\vec{r}_{0}\right)=\frac{1}{r^{2} \sin \theta} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right) \delta\left(\phi-\phi_{0}\right)
$$

