Chapter 1

Mathematics Involved in Electromagnetic Theory

Gradiant of a scalar function:

If $\phi(x, y, z)$ be a scalar function then $\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}$ is called the gradient of the scalar function ϕ .

And is denoted by grad ϕ .

Thus.

$$grad \ \phi = \hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}$$
$$grad \ \phi = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \phi(x, y, z)$$
$$grad \ \phi = \vec{\nabla}\phi$$

Geometrical Meaning of Gradient, Normal:

If a surface $\phi(x, y, z) = c$ passes through a point P. The value of the function at each point on the surface is the same as at P. Then such a surface is called a level surface through P. For example, if $\phi(x, y, z)$ represents potential at the point P, then equipotential surface $\phi(x, y, z) = c$ is a level surface.

Two level surfaces can not intersect.

Let the level surface pass through the point P at which the value of the function is ϕ . Consider another level surface passing through Q, where the value of the function is $\phi + d\phi$. î ↑

Let \vec{r} and $\vec{r} + \delta \vec{r}$ be the position vector of P and Q then $\overrightarrow{PQ} = \delta \vec{r}$

$$\vec{\nabla}\phi \cdot d\vec{r} = \left(\hat{i}\frac{\partial\phi}{\partial x} + \hat{j}\frac{\partial\phi}{\partial y} + \hat{k}\frac{\partial\phi}{\partial z}\right) \cdot \left(\hat{i}dx + \hat{j}dy + \hat{k}dz\right)$$

$$= \frac{\partial\phi}{\partial x}dx + \frac{\partial\phi}{\partial y}dy + \frac{\partial\phi}{\partial z}dz = d\phi$$
... (1)

If Q lies on the level surface of P, then $d\phi = 0$

Equation (1) becomes, $\vec{\nabla}\phi \cdot d\vec{r} = 0$, then $\vec{\nabla}\phi$ is perpendicular to $d\vec{r}$ (tangent)

Hence, $\vec{\nabla}\phi$ is normal to the surface $\phi(x, y, z) = c$

The Divergence:

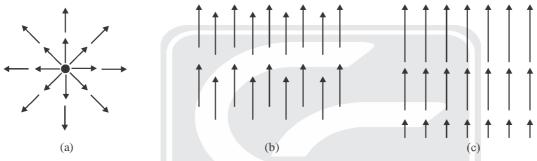
From the definition of ∇ we construct the divergence:

$$\vec{\nabla} \cdot \vec{v} = \left(\hat{x}\frac{\partial}{\partial x} + \hat{y}\frac{\partial}{\partial y} + \hat{z}\frac{\partial}{\partial z}\right) \cdot \left(v_x \hat{x} + v_y \hat{y} + v_z \hat{z}\right)$$
$$= \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Observe that the divergence of a vector function \vec{v} is itself a scalar $\vec{\nabla} \cdot \vec{v}$

Gemetrical interpretation :

The name divergence is well chosen, for $\vec{\nabla} \cdot \vec{v}$ is a measure of how much the vector \vec{v} spreads out (diverges) from the point in question. For example, the vector function in figure (a) has a large (positive) divergence (if the arrows pointed in, it would be a large negative divergence), the function in figure (b) has zero divergence, and the function in figure (c) again has a positive divergence.



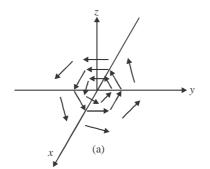
The Curl: From the definiton ∇ we construct the curl:

$$\vec{\nabla} \times \vec{v} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_x & v_y & v_z \end{vmatrix} = \hat{x} \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) + \hat{y} \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) + \hat{z} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_z}{\partial y} \right)$$

Notice that the curl of a vector function \vec{v} is, like any cross product, a vector. Carl of a scalar does not exist.

Geometrical interpretation :

The name curl is also well chosen, for $\vec{\nabla} \times \vec{v}$ is a measure of how much the vector \vec{v} 'curls around' the point in question. Thus the three functions in figure (a) have a substantial curl, pointing in the z-direction, as the natural right-hand rule would suggest.



$$(i) \ \vec{\nabla} (fg) = f \ \vec{\nabla} g + g \vec{\nabla} f$$

$$(ii) \ \vec{\nabla} (\vec{A}.\vec{B}) = \vec{A} \times (\vec{\nabla} \times \vec{B}) + \vec{B} \times (\vec{\nabla} \times \vec{A}) + (\vec{A}.\vec{\nabla})\vec{B} + (\vec{B}.\vec{\nabla})\vec{A},$$

$$(iii) \ \vec{\nabla}.(f\vec{A}) = f (\vec{\nabla}.\vec{A}) + \vec{A}.(\vec{\nabla}f)$$

$$(iv) \ \vec{\nabla}.(\vec{A} \times \vec{B}) = \vec{B}.(\vec{\nabla} \times \vec{A}) - \vec{A}.(\vec{\nabla} \times \vec{B}),$$

$$(v) \ \vec{\nabla} \times (f\vec{A}) = f (\vec{\nabla} \times \vec{A}) - \vec{A} \times (\vec{\nabla}f)$$

$$(vi) \ \vec{\nabla} \times (\vec{A} \times \vec{B}) = (\vec{B}.\vec{\nabla})\vec{A} - (\vec{A}.\vec{\nabla})\vec{B} + \vec{A}(\vec{\nabla}.\vec{B}) - \vec{B}(\vec{\nabla}.\vec{A})$$

Problem-1: Find the gradients of the following functions:

(a)
$$f(x, y, z) = x^{2} + y^{3} + z^{4}$$
 (b) $f(x, y, z) = x^{2}y^{3}z^{4}$ (c) $f(x, y, z) = e^{x} \sin(y)\ln(z)$

Problem-2: Let 'r' be the separation vector from a fixed point (x', y', z') to the point (x, y, z) and let 'r' be its length. Show that

(a)
$$\vec{\nabla}(\mathbf{r}^2) = 2\vec{\mathbf{r}}$$
 (b) $\vec{\nabla}(1/\mathbf{r}) = -\hat{\mathbf{r}}/\mathbf{r}^2$ (c) what is the general formula $\vec{\nabla}(\mathbf{r}^n)$?

Problem-3: Calculate the divergence of the following vector functions

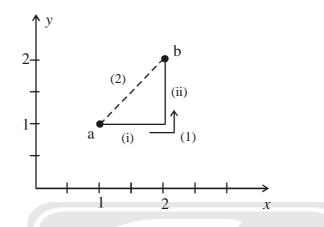
(a)
$$\vec{v}_{a} = x^{2}\hat{x} + 3xz^{2}\hat{y} - 2xz\hat{z}$$
 (b) $\vec{v}_{b} = xy\hat{x} + 2yz\hat{y} + 3zx\hat{z}$
(c) $\vec{v}_{c} = y^{2}\hat{x} + (2xy + z^{2})\hat{y} + 2yz\hat{z}$

Problem-4: The vector function, $v = \frac{\hat{r}}{r^2}$ compute its divergence.

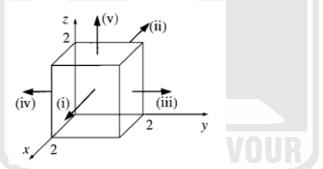
The gradient, the divergence, and the curl are the only first derivatives we can make with ∇ ; by applying ∇ twice we can construct five species of second derivatives. The gradient ∇T is a vector, so we can take the divergence and curl of it.

(1) Divergence of gradient:	$\vec{\nabla} \cdot (\vec{\nabla} T) = \nabla^2 T$	(Laplacian of T)				
(2) Curl of gradient:	$\vec{\nabla} \times \left(\vec{\nabla} T \right) = 0$					
(3) Gradient of divergence:	$ec{ abla} \left(ec{ abla} . ec{ abla} ight)$	(This is not same as laplacian)				
(4) Divergence of curl:	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{v} \right) = 0$					
(5) Curl of curl:	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{v} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{v} \right)$	$-\nabla^2 \vec{v}$				
Problem-5: Calculate the Lapla	oblem-5: Calculate the Laplacian of the following functions:					
(a) $T_a = x^2 + 2xy + 3z + 4$	(b) T _b	$= \sin x \sin y \sin z$				
(c) $T_c = e^{-5x} \sin 4y \cos 3z$	(d) v	$= x^2 \hat{x} + 3xz^2 \hat{y} - 2xz \hat{z}$				

Problem-6: Calculate the line integral of the function $\vec{v} = y^2 \hat{x} + 2x (y+1) \hat{y}$ from the point a = (1, 1, 0) to the point b = (2, 2, 0), along the paths (1) and (2) in the following figure. What is $\oint v.dI$ for the loop that goes from 'a' to 'b' along (1) and returns to 'a' along (2)?



Problem-7: Calculate the surface integral of $v = 2xz\hat{x} + (x+2)\hat{y} + y(z^2-3)\hat{z}$ over five sides (excluding the bottom) of the cubical box (side 2) in figure. Let "upward and outward" be the positive direction, as indicated by the arrows.



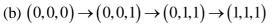
Problem-8: Calculate the volume integral of $T = xyz^2$ over the prism in figure.

Soln. You can do the three integrals in any order. Let's do 'x' first: it runs from 0 to (1-y); then y(it goes from 0 to 1); and finally z (0 to 3):

$$\int Td\tau = \int_0^3 z^2 \left\{ \int_0^1 y \left[\int_0^{1-y} x dx \right] dy \right\} dz = \frac{1}{2} \int_0^3 z^2 dz \int_0^1 (1-y^2)^2 y dy = \frac{1}{2} \times 9 \times \frac{1}{12} = \frac{3}{8}$$

Problem-9: Calculate the line integral of the function $v = x^2 \hat{x} + 2yz \hat{y} + y^2 \hat{z}$ from the origin to the point (1, 1, 1) by three different routes:

(a) $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$



(c) The direct straight line.

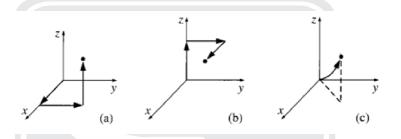
Example-10: Let $T = xy^2$, and take point 'a' to be the origin (0, 0, 0) and 'b' the point (2, 1, 0). Check the fundamental theorem for gradients.

Problem-11: Check the fundamental theorem for the gradients, using $T = x^2 + 4xy + 2yz^3$, the points a = (0,0,0), b = (1,1,1) and the three paths in figures (a), (b) and (c) are

(a)
$$(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$$

(b)
$$(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1)$$

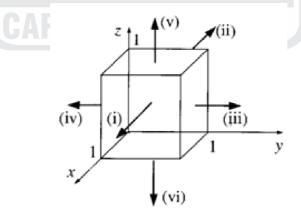
(c) The parabolic path $z = x^2$; y = x



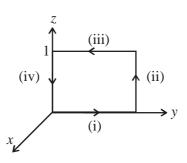
Problem-12: Check the divergence theorem using the function

$$\vec{\mathbf{v}} = \mathbf{y}^2 \hat{\mathbf{x}} + (2\mathbf{x}\mathbf{y} + \mathbf{z}^2)\hat{\mathbf{y}} + (2\mathbf{y}\mathbf{z})\hat{\mathbf{z}}$$

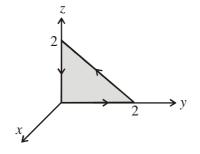
and the unit cube situated at the origin has shown in the following figure.



Problem-13: Suppose $\vec{v} = (2xz + 3y^2)\hat{y} + (4yz^2)\hat{z}$. Check Stokes' theorem for the square surface shown in figure.



Problem-14: Test Stokes' theorem for the function $\vec{v} = (xy)\hat{x} + (2yz)\hat{y} + (3zx)\hat{z}$, using the triangular shaded area of figure.



Problem-15: Evaluate the integral

$$\int_0^\infty x \ e^{-x} dx$$

Formulas for gradient divergence and curl for spherical coordinates.

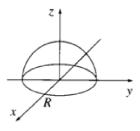
$$\begin{aligned} \mathbf{Gradient:} \quad \vec{\nabla}\mathbf{T} &= \frac{\partial \mathbf{T}}{\partial \mathbf{r}} \hat{\mathbf{r}} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{T}}{\partial \theta} \hat{\mathbf{\theta}} + \frac{1}{\mathbf{r} \sin \theta} \frac{\partial \mathbf{T}}{\partial \phi} \hat{\mathbf{\phi}} \\ \mathbf{Divergence:} \quad \vec{\nabla}.\vec{\mathbf{v}} &= \frac{1}{\mathbf{r}^2} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r}^2 \mathbf{v}_r) + \frac{1}{\mathbf{r} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \, \mathbf{v}_\theta) + \frac{1}{\mathbf{r} \sin \theta} \frac{\partial \mathbf{v}_\phi}{\partial \phi} \\ \mathbf{Curl:} \quad \vec{\nabla} \times \vec{\mathbf{v}} &= \frac{1}{\mathbf{r} \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \mathbf{v}_\phi) - \frac{\partial \mathbf{v}_\theta}{\partial \phi} \right] \hat{\mathbf{r}} + \frac{1}{\mathbf{r}} \left[\frac{1}{\sin \theta} \frac{\partial \mathbf{v}_r}{\partial \phi} - \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \mathbf{v}_\phi) \right] \hat{\theta} \\ &\quad + \frac{1}{\mathbf{r}} \left[\frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \mathbf{v}_\theta) - \frac{\partial \mathbf{v}_r}{\partial \theta} \right] \hat{\phi} \end{aligned}$$

$$\mathbf{Laplacian:} \quad \nabla^2 \mathbf{T} &= \frac{1}{\mathbf{r}^2} \frac{\partial}{\partial \mathbf{r}} \left(\mathbf{r}^2 \frac{\partial \mathbf{T}}{\partial \mathbf{r}} \right) + \frac{1}{\mathbf{r}^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \mathbf{T}}{\partial \theta} \right) + \frac{1}{\mathbf{r}^2 \sin^2 \theta} \frac{\partial^2 \mathbf{T}}{\partial \phi^2} \end{aligned}$$

Problem-16: Compute the divergence of the function

 $\vec{v} = (r\cos\theta)\hat{r} + (r\sin\theta)\hat{\theta} + (r\sin\theta\cos\phi)\hat{\phi}$

Check the divergence theorem for this function, using as your volume the inverted hemispherical bowl of radius R, resting on the xy-plane and centered at the origin (Figure)



Problem-17: Find the formulas for r, θ, ϕ in terms of $\hat{x}, \hat{y}, \hat{z}$.

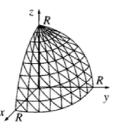
Problem-18: Express the unit vector, \hat{r} , $\hat{\theta}$, $\hat{\phi}$ in terms of \hat{x} , \hat{y} , \hat{z} .

Problem-19: Express the cylinderical unit vectors $\hat{s}, \hat{\phi}, \hat{z}$ in terms of $\hat{x}, \hat{y}, \hat{z}$. Invert your formulas to get

 \hat{x} , \hat{y} , \hat{z} in terms of \hat{s} , $\hat{\phi}$, \hat{z} .

Problem-20: Check the divergence theorem for the function

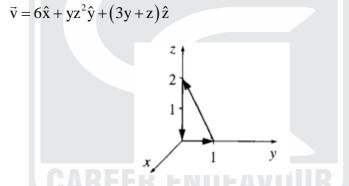
 $\vec{v} = r^2 \cos \theta \, \hat{r} + r^2 \cos \phi \, \hat{\theta} - r^2 \cos \theta \sin \phi \, \hat{\phi}$



using as your volume one octant of the sphere of radius R. Make sure you include the entire surface.

Ans. $\pi R^4/4$.

Problem-21: Compute the line integral of



along the triangular path shown in figure. Check your answer using Stoke's theorem. Ans. 8/3.

Coordinate System:

Coordinate system	\hat{u}_1	\hat{u}_2	\hat{u}_3	h_1	h_2	h_3	ds	dv
Cartesian	â	ŷ	ź.	1	1	1	dxdy or dydz or dzdx	dxdydz
Spherical	r	$\hat{ heta}$	$\hat{\phi}$	1	r	$r\sin\theta$	$rd heta r\sin heta d\phi$	$r^2\sin\theta drd\theta d\phi$
Cylindrical	$\hat{ ho}$	$\hat{ heta}$	<i>î</i> .	1	ρ	1	rdθdz	ho d ho d heta d z

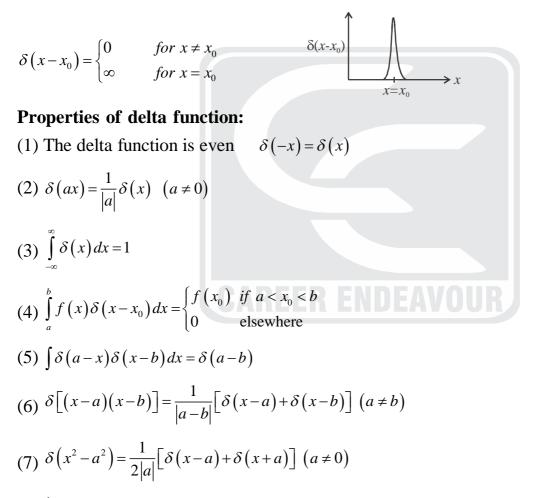
(i)
$$\nabla = \frac{1}{h_1} \frac{\partial}{\partial u_1} \hat{e}_1 + \frac{1}{h_2} \frac{\partial}{\partial u_2} \hat{e}_2 + \frac{1}{h_2} \frac{\partial}{\partial u_2} \hat{e}_2$$

(ii)
$$\vec{\nabla} \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (h_2 h_3 A_1) + \frac{\partial}{\partial u_2} (h_1 h_3 A_2) + \frac{\partial}{\partial u_3} (h_1 h_2 A_3) \right]$$

(iii)
$$\vec{\nabla} \times \vec{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{e}_1 & h_2 \hat{e}_2 & h_3 \hat{e}^3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$$

(iv) $\vec{\nabla}^2 \phi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial \phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \phi}{\partial u_3} \right) \right]$

Dirac-delta function: (A) One dimensional delta function:



(8)
$$\int_{a}^{b} f(x) \delta^{n}(x-x_{0}) dx = (-1)^{n} f^{n}(x_{0}) \quad a < x_{0} < b$$

(B) Three dimensional delta function:

(1) The three dimensional form delta function in cartesian coordinates is

$$\delta\left(\vec{r}-\vec{r}_{0}\right)=\delta\left(x-x_{0}\right)\delta\left(y-y_{0}\right)\delta\left(z-z_{0}\right)$$

(2) In spherical coordinate

$$\delta\left(\vec{r}-\vec{r}_{0}\right)=\frac{1}{r^{2}\sin\theta}\delta\left(r-r_{0}\right)\delta\left(\theta-\theta_{0}\right)\delta\left(\phi-\phi_{0}\right)$$