Mathematics Problem Solving Official Scoring Guide

Apply mathematics in a variety of settings. Build new mathematical knowledge through problem solving. Solve problems that arise in mathematics and in other contexts. Apply and adapt a variety of appropriate strategies to solve problems. Monitor and reflect on the process of mathematical problem solving.

Process Dimensions	**6/5	4	3	*2 / 1
Making Sense of the Task Interpret the concepts of the task and translate them into mathematics.	The interpretation and/or translation of the task are - thoroughly developed and/or - enhanced through connections and/or extensions to other mathematical ideas or other contexts.	The interpretation and translation of the task are - adequately developed and - adequately displayed.	The interpretation and/or translation of the task are - partially developed, and/or - partially displayed.	The interpretation and/or translation of the task are - underdeveloped, - sketchy, - using inappropriate concepts, - minimal, and/or - not evident.
Representing and Solving the Task Use models, pictures, diagrams, and/or symbols to represent and solve the task situation and select an effective strategy to solve the task.	The strategy and representations used are - elegant (insightful), - complex, - enhanced through comparisons to other representations and/or generalizations.	The strategy that has been selected and applied and the representations used are - effective and - complete.	The strategy that has been selected and applied and the representations used are - partially effective and/or - partially complete.	The strategy selected and representations used are - underdeveloped, - sketchy, - not useful, - minimal, - not evident, and/or - in conflict with the solution/outcome.
Communicating Reasoning Coherently communicate mathematical reasoning and clearly use mathematical language.	The use of mathematical language and communication of the reasoning are - elegant (insightful) and/or - enhanced with graphics or examples to allow the reader to move easily from one thought to another.	The use of mathematical language and communication of the reasoning - follow a clear and coherent path throughout the entire work sample and - lead to a clearly identified solution/outcome.	The use of mathematical language and communication of the reasoning - are partially displayed with significant gaps and/or - do not clearly lead to a solution/outcome.	The use of mathematical language and communication of the reasoning are - underdeveloped, - sketchy, - inappropriate, - minimal, and/or - not evident.
Accuracy Support the solution/outcome.	The solution/outcome is correct and enhanced by - extensions, - connections, - generalizations, and/or - asking new questions leading to new problems.	The solution/outcome given is - correct, - mathematically justified, and - supported by the work.	The solution/outcome given is - incorrect due to minor error(s), or - a correct answer but work contains minor error(s) - partially complete, and/or - partially correct	The solution/outcome given is - incorrect and/or - incomplete, or - correct, but o conflicts with the work, or o not supported by the work.
Reflecting and Evaluating State the solution/outcome in the context of the task. Defend the process, evaluate and interpret the reasonableness of the solution/outcome.	Justifying the solution/outcome completely, the student reflection also includes - reworking the task using a different method, - evaluating the relative effectiveness and/or efficiency of different approaches taken, and/or - providing evidence of considering other possible solution/outcomes and/or interpretations.	The solution/outcome is stated within the context of the task, and the reflection justifies the solution/outcome completely by reviewing - the interpretation of the task - concepts, - strategies, - calculations, and - reasonableness.	The solution/outcome is not stated clearly within the context of the task, and/or the reflection only partially justifies the solution/outcome by reviewing - the task situation, - concepts, - strategies, - calculations, and/or - reasonableness.	The solution/outcome is not clearly identified and/or the justification is - underdeveloped, - sketchy, - ineffective, - minimal, - not evident, and/or - inappropriate.

[^0]*2 for a given dimension would be underdeveloped or sketchy, while a 1 would be minimal or nonexistent.

Assessment

Guide to Writing Quality Mathematics Work Samples

Effective tasks must provide an opportunity for scoring across all five process dimensions of the Mathematics Problem Solving Official Scoring Guide. Tasks must elicit developmentally appropriate problem solving skills and be tied to grade level content standards. A good task must be a non-familiar application requiring multiple steps and, ideally, have more than one method of solution. When appropriate, work samples should be embedded in the curriculum and may be used as a culminating assessment.

Task Writing Process	
	Select the standard(s) to be addressed. Students working toward a solution may be required to apply standards from earlier grades.
	Determine a real-world context that students have previous experience with. Ideas may come from textbooks, online resources, etc.
	Write a task that provides an opportunity for students to demonstrate proficiency in the selected standard(s).
	Determine if there are implied assumptions or interpretations that may vary between students.
solving strategies and approaches.	

Matrix for Evaluating Mathematics Work Sample Tasks

In designing a task, writers may consider the following matrix. Task writers may use the matrix to reflect on and revise their work, or as a training tool for use in developing tasks in teams.

Process Dimension	Questions	Yes/No Ideas for Revision
Making Sense of the Task	Does the task ask students to change important information into mathematical ideas?	\square
Representing and Solving the Task	Are there clear math strategies students can use to solve this problem?	\square
Communicating Reasoning	Does the task require a logical chain of reasoning that is robust enough for the student to demonstrate communication?	\square
Accuracy	Is there one answer? Does the task allow students to make their own connections and determine which steps to take?	\square
Reflecting and Evaluating	Is there a reasonable way for the student to rework the problem by solving with an alternate method, by working backwards or double- checking the result?	\square
Characteristic	Questions	Yes/No Ideas for Revision
Gias, Sensitivity and Accessibility	Gill the task be used to Grade level standards are addressed demonstrate Essential Skills? Does the complexity of the task deter students from addressing below grade level standards?	\square
Non-routine	Does the task deviate from a straightforward? Is the task equitable, free of stereotypes, and within the students' realm of experience? template? Does the task suggest an approach that is neither automatic nor routine?	\square
	Is the task too hard, too easy, not enough steps?	\square

Quadrilateral ABCD

Quadrilateral $A B C D$ has the points $A(1,1), B(3,3), C(3,5), D(1,6)$. If $A B C D$ is reflected across the y-axis and then the x-axis, what is the location of the points $A^{\prime}, B^{\prime}, C^{\prime}$, and D'?

El cuadrilátero $A B C D$ tiene los puntos $A(1,1), B(3,3), C(3,5), D(1,6)$. Si $A B C D$ se refleja a travéz del eje " y " y después el eje " x ", ¿cuál es la ubicación de los puntos A ', B ', C' y D'?

Четырёхугольник ABCD имеет вершины в точках $\mathrm{A}(1,1), \mathrm{B}(3,3), \mathrm{C}(3,5), \mathrm{D}(1,6)$. Какие координаты будут у точек $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, и D^{\prime}, если поначалу отразить четырёхугольник ABCD относительно оси y , а затем - относительно оси x ?

Assessment

Guide to Writing Quality Mathematics Work Samples

Effective tasks must provide an opportunity for scoring across all five process dimensions of the Mathematics Problem Solving Official Scoring Guide. Tasks must elicit developmentally appropriate problem solving skills and be tied to grade level content standards. A good task must be a non-familiar application requiring multiple steps and, ideally, have more than one method of solution. When appropriate, work samples should be embedded in the curriculum and may be used as a culminating assessment.

Task Writing Process	
	Select the standard(s) to be addressed. Students working toward a solution may be required to apply standards from earlier grades.
	Determine a real-world context that students have previous experience with. Ideas may come from textbooks, online resources, etc.
	Write a task that provides an opportunity for students to demonstrate proficiency in the selected standard(s).
	Determine if there are implied assumptions or interpretations that may vary between students.
solving strategies and approaches.	

Matrix for Evaluating Mathematics Work Sample Tasks

In designing a task, writers may consider the following matrix. Task writers may use the matrix to reflect on and revise their work, or as a training tool for use in developing tasks in teams.

Process Dimension	Questions	Yes/No Ideas for Revision
Making Sense of the Task	Does the task ask students to change important information into mathematical ideas?	\square
Representing and Solving the Task	Are there clear math strategies students can use to solve this problem?	\square
Communicating Reasoning	Does the task require a logical chain of reasoning that is robust enough for the student to demonstrate communication?	\square
Accuracy	Is there one answer? Does the task allow students to make their own connections and determine which steps to take?	\square
Reflecting and Evaluating	Is there a reasonable way for the student to rework the problem by solving with an alternate method, by working backwards or double- checking the result?	\square
Characteristic	Questions	Yes/No Ideas for Revision
Gias, Sensitivity and Accessibility	Gill the task be used to Grade level standards are addressed demonstrate Essential Skills? Does the complexity of the task deter students from addressing below grade level standards?	\square
Non-routine	Does the task deviate from a straightforward? Is the task equitable, free of stereotypes, and within the students' realm of experience? template? Does the task suggest an approach that is neither automatic nor routine?	\square
	Is the task too hard, too easy, not enough steps?	\square

Gopher Security

Gopher Security Company has been hired to create a security system for the Portland Museum to guard the famous Hope Diamond. They will be installing a laser bean triggered security system. You will help them determine the distance the beam will travel around the room to protect the diamond. If the beam is broken, the alarm will be triggered.

The display box will be placed in the center of the room.
The beam travels from the sensor at point A to sensor B to sensor C to sensor D and back to sensor A.

What is the total distance the beam will travel around the room?
Show all work and reasoning to complete the task.

Calibration Packet

Overview:

This packet contains a series of papers completed by students during a mathematics field test. The purpose of this calibration activity is to ensure that papers scored across the state are looked at similarly and scored comparably.

Directions:

- Solve the task "Roads In Prezville"
- Determine the solution and key concepts, first individually and then as a table.
- Establish key concepts for the score site.
- Score paper J-5 and J-I2 individually and then as a table. Record key points or scoring considerations.
- As a score site check table scores against key scores. If you are somewhat lenient or severe based on this comparison, adjust your scoring appropriately so that you are "calibrated" to the expectations that all raters are being asked to match as reflected in the keys scores.
- Individually score paper J-15, J-27 and J-28.
- With your table lead check the key scores to see how your scores compare. If you are off by one score point discuss with your table lead the rational for that score point. If you are off by more than two score points on two or more process dimensions please see the scoring director to score additional papers.

Paper \#	Task Title	Making Sense of the Task	Representing and Solving the Task	Communicating Reasoning	Accuracy	Reflecting and Evaluating
J-5	Roads in Prezville					
J-12	Roads in Prezville					
J-15	Roads in Prezville					
J-27	Roads in Prezville					
J-28						

Mathematics Work Sample Assessment
 Roads in Prezville

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

Student:
SSID: \qquad

Teacher: \qquad
School: \qquad

In the city of Prezville, Adams Street and Washington Street both cross Jefferson Avenue and Monroe Avenue at intersections labeled X, Y, Z and R, as shown. The distance from X to Y along Washington Street is equal to the distance from Z to R along Adams Street AND equal to the distance from Y to Z along the diagonal. Two of the angles formed by the diagonal $\overline{Y Z}, \angle X Y Z$ and $\angle R Z Y$ are congruent. Prove that Washington St. is parallel to Adams St. AND Jefferson Ave. is parallel to Monroe Ave.

Mathematics Work Sample Assessment
Roads in Prezville

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#J5

In the city of Prezville, Adams Street and Washington Street both cross Jefferson Avenue and Monroe Avenue at intersections labeled X, Y, Z and R, as shown. The distance from X to Y along Washington Street is equal to the distance from Z to R along Adams Street AND equal to the distance from Y to Z along the diagonal. Two of the angles formed by the diagonal $\overline{Y Z}, \angle X Y Z$ and $\angle R Z Y$ are congruent. Prove that Washington St. is parallel to Adams St. AND Jefferson Ave. is parallel to Monroe Ave.

Note: Figures not drawn to scale.
$\triangle R 2 Y \cong \Delta x y 2$ by $s A S$ and are isosceles $\Delta ' s$, because they are isosceles $\triangle \triangle 2 Y Y_{\rho \cong} \cong \Delta y 2 x$ and $4 Y_{R} 2 \cong \triangle 2 \times Y$, also, that means $\overline{x_{2}} \cong \overline{Y_{R}}$. Because $\triangle R 2 Y \cong \Delta X Y Z$ and are isosceles Δ this makes it a parallelogram because there are two pairs of opposite \cong-sides which are Washington, Adams st. I Jefferson, Monroe Ave. and there are two pairs of
and wag: opposite \cong angles.
Because $\triangle R Z Y \cong \triangle X Y Z$ by $S A S, S S S, A A A, A S A$, and form a parallelogram with 2 pairs of opp. *angles' +2 pairs of opp. \cong sides, washington st. Adams st.tMonroe Ave., Jefferson ave are parallel by CPCTC.

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\# J 12
In the city of Prezville, Adams Street and Washington Street both cross Jefferson Avenue and Monroe Avenue at intersections labeled X, Y, Z and R, as shown. The distance from X to Y along Washington Street is equal to the distance from Z to R along Adams Street AND equal to the distance from Y to Z along the diagonal. Two of the angles formed by the diagonal $\overline{Y Z}, \angle X Y Z$ and $\angle R Z Y$ are congruent. Prove that Washington St. is parallel to Adams St. AND Jefferson Ave. is parallel to Monroe Ave.

Given: the figure,

$$
\angle x y z \cong \angle R Z y
$$

Note: fIgures not drawn to scale.
\qquad

$$
\frac{1}{x y}=\overline{z R}=\frac{1}{y z}
$$

I Included segment ya
because dolistinterts determine
Prove: $\overrightarrow{x y}\|\overrightarrow{z R}, \overrightarrow{x z}\| \overrightarrow{y R}$
statements

1. $\angle x y z \cong \angle R z y$
2. $\overline{x y}=\overline{z R}=\overline{y z}$
3. $\overline{x y} \frac{x y}{2 y} \cong \overline{z R} \cong \overline{y z}$
4. $\Delta x y z \cong \triangle R z y$
5. $\angle x z y \cong \angle R y z$
6. $\angle x y z$ and $\angle R z y$ are alternate interior \angle 's
*7. $\overleftrightarrow{x y} \| \overrightarrow{Z R}$.

Reasons

1. Given
2. Given
3. $D f_{n} \cong$ line segments of equal
3.5 Reflex line in th are congruent (2)
4. SAS SA (side-angle-side) (in
$(1,3,3,5)$
5. CPCTC (corresponding parts of congruent triangles are congruent (4)
6. Afn of alt. int. \angle / s
7. When alternate interior angles are congruent lines are parallel (excl. transversal) (1,6)
8. $\angle x z y$ and $\angle R y z$
9. Afn alt. int. L's are alternate interior \angle 's

* 9. $\widehat{x \vec{z}} \overrightarrow{\overrightarrow{y R}}$

9. When alt int. L's are \cong, the lies are parallel that form them (excl .transversal)
I could have also proven that $\stackrel{x z}{\|} \overleftrightarrow{Y R}$ by first proving that $\square x y R z$ is a parallelogram because \rightarrow i. a quadrilateral with one pair of sides that are both parallel and congruent is a parallelogram. Then I could have said that in a parallelogram, opposite sides are congruent.

Mathematics Work Sample Assessment
Roads in Prezville
Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#J15

In the city of Prezville, Adams Street and Washington Street both cross Jefferson Avenue and Monroe Avenue at intersections labeled X, Y, Z and R, as shown. The distance from X to Y along Washington Street is equal to the distance from Z to R along Adams Street AND equal to the distance from Y to Z along the diagonal. Two of the angles formed by the diagonal $\overline{Y Z}, \angle X Y Z$ and $\angle R Z Y$ are congruent. Prove that Washington St. is parallel to Adams St. AND Jefferson Ave. is parallel to Monroe Ave.

If $\angle X Y_{2} \cong \angle R Z Y$ and are alternate interior L 's, and $\overline{X Y} \cong \overline{Z R}$, then $\overline{X Y}$ and $\overline{Z R}$ are Parallel.
$\Delta x / 2 \cong \simeq R 27$ by ASA
$\angle X Z Y \cong L R Y z$ by alternate extenor L 'S
then $\overline{X_{2}} \cong \overline{R y}$ and is also parallel
\#J27
In the city of Prezville, Adams Street and Washington Street both cross Jefferson Avenue and Monroe Avenue at intersections labeled X, Y, Z and R, as shown. The distance from X to Y along Washington Street is equal to the distance from Z to R along Adams Street AND equal to the distance from Y to Z along the diagonal. Two of the angles formed by the diagonal $\overline{Y Z}, \angle X Y Z$ and $\angle R Z Y$ are congruent. Prove that Washington St. is parallel to Adams St. AND Jefferson Ave. is parallel to Monroe Ave.

Because $L X Y Z$ and LRZY is congruent, then $\angle Y$ is congivent. to $L Z$. $\angle X$ is congivent to $L 2$ and $L Y$ is congruent to $L R$. Therefore, Washington Street is parallel to Adcoms street, and Jefferson Avenue is parallel to Monroe Avenue.

Mathematics Work Sample Assessment

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#J28

In the city of Prezville, Adams Street and Washington Street both cross Jefferson Avenue and Monroe Avenue at intersections labeled X, Y, Z and R, as shown. The distance from X to Y along Washington Street is equal to the distance from Z to R along Adams Street AND equal to the distance from Y to Z along the diagonal. Two of the angles formed by the diagonal $\overline{Y Z}, \angle X Y Z$ and $\angle R Z Y$ are congruent. Prove that Washington S. is parallel to Adams St. AND Jefferson Ave. is parallel to Monroe Ave.

$\overline{Z N} \mathbb{N}$ by line of reflection of congruence
$<y$ and $<z$ are both Alternate interior Angles
$\triangle X X Z \triangle R Z y$ because of Side Angle Side therefore warrington st is paralell to Adam st. $\psi x z \cong x R z y$
$\overline{X y} \cong \overline{R z}$
Jefferson Ave. and monroe Ave. are parralell because it's a parallelogram and from (CPCTC) Congruence parts: connect to congruence.

Calibration Packet

Overview:

This packet contains a series of papers completed by students during a mathematics field test. The purpose of this calibration activity is to ensure that papers scored across the state are looked at similarly and scored comparably.

Directions:

- Solve the task "Homework \& Grades"
- Determine the solution and key concepts, first individually and then as a table.
- Establish key concepts for the score site.
- Score paper M-6 and M-8 individually and then as a table. Record key points or scoring considerations.
- As a score site check table scores against key scores. If you are somewhat lenient or severe based on this comparison, adjust your scoring appropriately so that you are "calibrated" to the expectations that all raters are being asked to match as reflected in the keys scores.
- Individually score paper M-10, M-22 and M-29.
- With your table lead check the key scores to see how your scores compare. If you are off by one score point discuss with your table lead the rational for that score point. If you are off by more than two score points on two or more process dimensions please see the scoring director to score additional papers.

Paper \#	Task Title	Making Sense of the Task	Representing and Solving the Task	Communicating Reasoning	Accuracy	Reflecting and Evaluating
M-6	Homework \& Grades					
M-8	Homework \& Grades					
M-10	Homework \& Grades					
M-22	Homework \& Grades					
M-29	Homework \& Grades					

Mathematics Work Sample Assessment Homework \& Grades

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

Student:
SSID: \qquad

Math teachers always claim that doing homework helps students get better grades in their math classes. To test this theory a survey of high school math students was conducted and the following results were obtained:

- 48% complete math homework regularly
- 55% have a B average or better in math class
- 40% do not complete math homework regularly AND have less than a B average in math class.

Using this data, does it appear that students who complete math homework regularly are more likely to have an average of B or better in math class? Justify your answer using mathematics.

Mathematics Work Sample Assessment Homework \& Grades

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#m6
Math teachers always claim that doing homework helps students get better grades in their math classes. To test this theory a survey of high school math students was conducted and the following results were obtained:

- 48% complete math homework regularly
- 55% have a B average or better in math class
- 40% do not complete math homework regularly AND have less than a B average in math class.

Using this data, does it appear that students who complete math homework regularly are more likely to have an average of B or better in math class? Justify your answer using mathematics.
Solution
I decided to make a probaloily tree

label
$a-h$

$$
\begin{aligned}
& a-h \\
& e=1-.48=.52 \\
& h=.40 \div .52 \div .769 \\
& f=1-.769=.231 \\
& 9=.52(.281) \div .12 \\
& f=.55-.12=.43
\end{aligned}
$$

$$
a=.43 \div .48=.896
$$

$$
\begin{aligned}
& c=1-.896=.104 \\
& d=1-(.43+.12+.40)=.05
\end{aligned}
$$

The curare is overwhelming of those who complete Aw regularly, 89.68 git an 8 or better compared to 10.4% why da worse.
(6) those who DONT Compute How Requarery, 76.9% get butow a B compare to a mede 27.1% who bo bath
 or bette.

Refection
Here is a Venn diggram-which is an easier way.

$A=$ Stuents who do homework regularly
$B=$ Students who get a B or better

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
.6=.48+.55-P(A \cap B)
\end{gathered}
$$

or

$$
\begin{aligned}
& \rho(A \cap B)=.43 \\
& .48-.43=.05 \\
& .55-.43=.12
\end{aligned}
$$

43\% Do homework AND have a 13 or better
to D Dent do homework AND have less than a B only 12% have AB or butler dents do homework 5% homeworts ans have less than a B My conclusion Stands! No your homework if you want a good grate in Math!

Mathematics Work Sample Assessment
Homework \& Grades
Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\# 18
Math teachers always claim that doing homework helps students get better grades in their math classes. To test this theory a survey of high school math students was conducted and the following results were obtained:

- 48% complete math homework regularly
- 55% have a B average or better in math class
- 40% do not complete math homework regularly AND have less than a B average in math class.

Using this data, does it appear that students who complete math homework regularly are more likely to have an average of B or better in math class? Justify your answer using mathematics.
$\rightarrow 5 \%$ do not
complete how and have baverage or above

$$
\frac{u}{30}=.12
$$

$$
\frac{17}{30}=.55
$$

17 students

$$
\frac{12}{30}=.40
$$

- 12 students don't do homework
have beverage or above.
- U students inaccounted for.
This means some
students (appro x.3) do not
regularly do homework
and still recieve b
avg, or above.

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\# ml 10
Math teachers always claim that doing homework helps students get better grades in their math classes. To test this theory a survey of high school math students was conducted and the following results were obtained:

- 48% complete math homework regularly
- 55% have a B average or better in math class
- 40% do not complete math homework regularly AND have less than a B average in math class.

Using this data, does it appear that students who complete math homework regularly are more likely to have an average of B or better in math class? Justify your answer using mathematics.
$.40 \%$ of class < $B^{n o}$
$.55 \%$ of class $>B$
. 48% complete n-work

Do	Don't	
$B \downarrow 5 / 100$	$40 / 100$	$45 / 100$
$B \uparrow 43 / 100$	$12 / 100$	$55 / 100$
$48 / 100$	$52 / 100$	

Yes it does! first only 12% of Students who don't do h-work. have a B average or better. Then if you look at the 48% of students who do h-work 43\% of them B's or better compared to the 5% That do h-work with less than B's. If you look at it a second way you get the same answer. Take a look at the students with B's 43% do their n-work and only 12\% can 100 students get a B withal h-work.
48 do their h-work and 43 would have B 's
55 have B's the majority 43 do h-work.

Mathematics Work Sample Assessment Homework \& Grades

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#m22

Math teachers always claim that doing homework helps students get better grades in their math classes. To test this theory a survey of high school math students was conducted and the following results were obtained:

- 48% complete math homework regularly
- 55% have a B average or better in math class
- 40% do not complete math homework regularly AND have less than a B average in math class.

Using this data, does it appear that students who complete math homework regularly are more likely to have an average of B or better in math class? Justify your answer using mathematics.

$40 \%-B \frac{1}{7}$
55% - BA
5% - other
45% do not have B's, 40\% of them don't do homework, 5% do. 55% have B's, 48% of Students ratios:

$$
\frac{45}{40}=1.125
$$

do homework.

$$
\frac{55}{48}=1.146
$$

\leftarrow more Students do homework and pass with B's or nigher.

Mathematics Work Sample Assessment
 Homework \& Grades

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

\#M29

Math teachers always claim that doing homework helps students get better grades in their math classes. To test this theory a survey of high school math students was conducted and the following results were obtained:

- 48% complete math homework regularly
- 55% have a B average or better in math class
- 40% do not complete math homework regularly AND have less than a B average in math class.

Using this data, does it appear that students who complete math homework regularly are more likely to have an average of B or better in math class? Justify your answer using mathematics.

do complete m.homework r. 48% doit do homework and do not completeminomework $: 100-48=52 \%$ how have poet grades, and $\left[\begin{array}{l}\geq B \\ <B\end{array}\right.$
 some Kids, who do homework and doit have adela arcades

Q do complete minor $+\angle B$: 2

(1) $N o t \angle B$	$1+2 \rightarrow 52 \%$	$1=40 \%$	$2=12 \%$
\Leftrightarrow NOt $\geq B$	$1+3 \rightarrow 45 \%$	$1=40 \%$	$3=5 \%$
(3) du $\angle B$	$2+4 \rightarrow 55 \%$	$2=12 \%$	$4=48 \%$
(4) do $\geq B$	$3+4 \rightarrow 48 \%$	$3=5 \%$	$4=43 \%$

Calibration Packet

Overview:

This packet contains a series of papers completed by students during a mathematics field test. The purpose of this calibration activity is to ensure that papers scored across the state are looked at similarly and scored comparably.

Directions:

- Solve the task "Don't Hit the Ceiling"
- Determine the solution and key concepts, first individually and then as a table.
- Establish key concepts for the score site.
- Score paper B-1 and B-7 individually and then as a table. Record key points or scoring considerations.
- As a score site check table scores against key scores. If you are somewhat lenient or severe based on this comparison, adjust your scoring appropriately so that you are "calibrated" to the expectations that all raters are being asked to match as reflected in the keys scores.
- Individually score paper B-11, B-24 and B-28.
- With your table lead check the key scores to see how your scores compare. If you are off by one score point discuss with your table lead the rational for that score point. If you are off by more than two score points on two or more process dimensions please see the scoring director to score additional papers.

Paper \#	Task Title	Making Sense of the Task	Representing and Solving the Task	Communicating Reasoning	Accuracy	Reflecting and Evaluating
B-1	Don't Hit the Ceiling					
B-7	Don't Hit the Ceiling					
B-11	Don't Hit the Ceiling					
B-24	Don't Hit the Ceiling					
B-28	Don't Hit the Ceiling					

Mathematics Work Sample Assessment
 Don't Hit the Ceiling

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

Student:
SSID: \qquad

Teacher:

\qquad
School: \qquad

A group of friends have made up a game to play in the gym. Each person throws a ball toward the ceiling and the one who comes closest to the ceiling without touching it is the winner. After everyone has a turn, Hannah and Jake, with the two best tosses, go again.

The ceiling of the gym is 30 feet high. Hannah stands in the middle of the gym and throws the ball straight up. Jake stands near the gym door and throws the ball at an angle toward the ceiling.
Each equation represents the height of the ball (h), in feet, after t seconds.
Who wins?
Hannah: $h=-28 t^{2}+56 t+4$
Jake: $h=-6 t^{2}+24 t+5$

Mathematics Work Sample Assessment
Don't Hit the Ceiling

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#B1

A group of friends have made up a game to play in the gym. Each person throws a ball toward the ceiling and the one who comes closest to the ceiling without touching it is the winner. After everyone has a turn, Hannah and Jake, with the two best tosses, go again.

The ceiling of the gym is 30 feet high. Hannah stands in the middle of the gym and throws the ball straight up. Jake stands near the gym door and throws the ball at an angle toward the ceiling.
Each equation represents the height of the ball (h), in feet, after t seconds.

Who wins?

Hannah: $h=-28 t^{2}+56 t+4$

$$
\begin{gathered}
t=\frac{56}{2(-28)} \\
t=\frac{56}{-56} \\
t=-1 \\
H=-28(-1)^{2}+56(-1)+4 \\
H=-28-56+4 \\
H=-80
\end{gathered}
$$

$$
\begin{aligned}
& \text { Jake: } h=-6 t^{2}+24 t+5 \\
& t=\frac{24}{2(-6)} \\
& t=\frac{24}{-12} \\
& t=-2 \\
& H=-6(-2)^{2}+24(-2)+5 \\
& H=-24-48+5 \\
& H=-67
\end{aligned}
$$

Mathematics Work Sample Assessment
Don't Hit the Ceiling
Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.
\#B7

A group of friends have made up a game to play in the gym. Each person throws a ball toward the ceiling and the one who comes closest to the ceiling without touching it is the winner. After everyone has a turn, Hannah and Jake, with the two best tosses, go again.

The ceiling of the gym is 30 feet high. Hannah stands in the middle of the gym and throws the ball straight up. Jake stands near the gym door and throws the ball at an angle toward the ceiling.
Each equation represents the height of the ball (h), in feet, after t seconds.

$$
\begin{aligned}
& \text { Who wins? } \\
& \text { Height }=1 \mathrm{ft} \quad \text { Hannah: } h=-28 t^{2}+56 t+4 \\
& \text { Second } 5=32 \mathrm{se} \\
& h=\frac{-56}{2(-28)} \\
& h=1 \\
& -28(1)^{2}+56(1)+4 \\
& t=32 \\
& h=2 \quad \text { Seconds }=29 \mathrm{sec} \\
& -6(2)^{2}+24(2)+5 \\
& t=29
\end{aligned}
$$

In order for me to find the Maxiumunlminimum I need to find the vertex,y. for me to find the vertex 1 need to use the equation $x=\frac{-b}{2 a}$, In the equation for the height of the ball " $n=-28 t^{2}+56 t+4$ " label the number Sections A, B, C and then fill out the vertex equation, Do that for both jake and Hannah. When you find the height plug the number 1 back into Hannah's equation and solve for " x ". Then do the same thing for Jake. You should come out with Jake being the winner.

$$
\begin{aligned}
& \quad \text { Hannah } \\
& \text { Height }=1 \mathrm{ft} \\
& \text { Seconds }=32
\end{aligned}
$$

Mathematics Work Sample Assessment

Don't Hit the Ceiling
Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

\#B1I

A group of friends have made up a game to play in the gym. Each person throws a ball toward the ceiling and the one who comes closest to the ceiling without touching it is the winner. After everyone has a turn, Hannah and Jake, with the two best tosses, go again.

The ceiling of the gym is $\underline{30}$ feet high. Hannah stands in the middle of the gym and throws the ball straight up. Jake stands near the gym door and throws the ball at an angle toward the ceiling.
Each equation represents the height of the ball (h), in feet, after tseconds.
Who wins? analyze, solve, answer, prove

$$
\text { Hannah: } h=-28 t^{2}+56 t+4
$$

I need to find the maximums of both of the equations. llssuming the ball is Breally infentesimally small, the size of a point infentesimally small, the size of a point then at 30 feet or higher the ball"has gines me the x values of the vertices. Hannah's x value was 1, Jake's was 2.
I pligg those values back into the original equatioms to find y velwes and the maximum valus.
Answer: Hannah's ball would hit the ceiling because the y value of her throw is higher than 30 ft . Jake's throw wing because he does not hit the ceiling. Check: Gimph the two functions on a culculabor. Hannains graph has a verters at $(I, 3)$ which exceeds the celling height. Jake's was at $(2,29)$ which does not exceed the ceiling height.

Jake: $h=-6 t^{2}+24 t+5$
$-28 t^{2}+56 t+4$
[团 x
$-28 \cdot 1^{2}+56 \cdot 1+4$

$$
-28 \cdot 1+56+4
$$

$$
-28+60
$$

$$
32=y
$$

Mathematics Work Sample Assessment
 Don't Hit the Ceiling

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

\#B24

A group of friends have made up a game to play in the gym. Each person throws a ball toward the ceiling and the one who comes closest to the ceiling without touching it is the winner. After everyone has a turn, Hannah and Jake, with the two best tosses, go again.

The ceiling of the gym is 30 feet high. Hannah stands in the middle of the gym and throws the ball straight up. Jake stands near the gym door and throws the ball at an angle toward the ceiling.
Each equation represents the height of the ball (h), in feet, after t seconds.

Who wins?

$$
\text { Hannah: } h=-28 t^{2}+56 t+4
$$

Hannahs work
You will need to x using
the foumala $x=\frac{-B}{a \times 2}$

$$
x=-\frac{55}{28 \times 2}=\frac{-56}{-56}=1
$$

56 will be a negative because B will always be the oppisite of a positive or negative of the equcuion, Also A will always be times by 2 because of its square root.
second plug in x valucinto t in the original problem.

$$
H=-28(1)^{2}+56(1)+4
$$

Find the square root first times all the numbers near a prendents. $C 7$

$$
H=-28(1)+56(1) 1-4
$$

$$
H=-28+561-4
$$

add or subract
$H=60-28$
Then you will find Hannans Height

Jake: $h=$| A |
| :---: |
| $-6 t^{2}$ |

Jacks Height
Again you will need to find the foumala by using $x=\frac{-B}{a}$

$$
x=\frac{-24}{-6 \times 2}=\frac{-24}{-12}=2
$$

24 will be a negative because b will always be the oppisite of the original equation. -6 will also be times by 2 because of its square root plug in x value into it in the original equation

$$
H=-6\left(2^{2}\right)+24(2)+5
$$

Times all the numbers near
prenteic $\mathrm{H}=-6(4)+24(2)+5$
$H=24^{\frac{1}{4}}+48^{\frac{1}{2}}+5$
$H=24+48+s$ add 48 and's

$$
53
$$

$$
\begin{gathered}
53 \\
\text { Substact } 24 \text { from } 53
\end{gathered}
$$

$$
H e \lg n t=29
$$

Hannah Kick the highest

Mathematics Work Sample Assessment Don't Hit the Ceiling

Use the information provided to solve the problem listed below. Be sure to show your work at all phases of problem solving. Refer to the Mathematics Problem Solving Official Scoring Guide to receive the highest score in each of the five process dimensions.

\#B28

A group of friends have made up a game to play in the gym. Each person throws a ball toward the ceiling and the one who comes closest to the ceiling without touching it is the winner. After eqenione has a turn, Hannah and Jake, with the two best tosses, go again.

The ceiling of the gym is 30 feet high. Hanna $h^{5}{ }^{\circ}$ stands in the middle of the gym and throws the ball straight up. Jake stands near the gym door and throws the ball at an angle toward the ceiling. Each equation represents the height of the bill (h), in feet, after t seconds.

Who wins?

Hannah: $h=-28 t^{2}+56 t+$| -100 |
| :---: |
| 100 |

Jake: $h=-6 t^{2}+24 t+5$

I made a graph plotting these
numbers but first I made a chant and the number

1 made a chart and 32
was the number that made -120 the graph off which means it equals 3 aft.

Hannah won because she got 3 more feet than Jake

[^0]: **6 for a given dimension would have most attributes in the list; 5 would have some of those attributes.

