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Gradient-based learning

Gradient-based training algorithms are the workhorse of modern
machine learning.

Deriving gradients by hand is tedious and error prone.

This becomes quickly infeasible for complex models.

Changes to the model require rederiving the gradient.

Deep learning = GPU + data + autodiff
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Automatic differentiation

Evaluates the derivatives of a function at a given point.

Not the same as numerical differentiation.

Not the same as symbolic differentiation, which returns a
“human-readable” expression.

In a neural network context, reverse autodiff is often known as
backpropagation.
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Automatic differentiation

A program is defined as the composition of primitive operations that
we know how to derive.

The user can focus on the forward computation / model.
import jax.numpy as jnp

from jax import grad, jit

def predict(params, inputs):

for W, b in params:

outputs = jnp.dot(inputs, W) + b

inputs = jnp.tanh(outputs)

return outputs

def loss_fun(params, inputs, targets):

preds = predict(params, inputs)

return jnp.sum((preds - targets)**2)

grad_fun = jit(grad(loss_fun))
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Automatic differentiation

Modern frameworks support higher-order derivatives
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def tanh(x):

y = jnp.exp(-2.0 * x)

return (1.0 - y) / (1.0 + y)

fp = grad(tanh)

fpp = grad(grad(tanh))

...
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Derivatives

Definition of derivative of g : R→ R

g′(a) =
∂g(a)
∂a

= lim
h→0

g(a + h)− g(a)
h

g′(a) is called Lagrange notation.

∂g(a)
∂a is called Leibniz notation.

Interpretations: instantaneous rate of change of g, slope of the
tangent of g at a.
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Gradient

The gradient of f : Rn → R is

∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ∈ Rn

i.e., a vector that gathers the partial derivatives of f .

Applying the definition of derivative coordinate-wise:

[∇f (x)]j =
∂f
∂xj

(x) = lim
h→0

f (x + hej)− f (x)
h

j ∈ {1, . . . ,n}

where ej = [0,0, . . . ,0, 1︸︷︷︸
j

,0, . . . ,0]> ∈ {0,1}n is the j th standard

basis vector.
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Numerical gradient

Finite difference:

[∇f (x)]j =
∂f
∂xj

(x) ≈
f (x + εej)− f (x)

ε
j ∈ {1, . . . ,n}

where ε is a small value (e.g., 10−6).

Central finite difference:

[∇f (x)]j =
∂f
∂xj

(x) ≈
f (x + εej)− f (x− εej)

2ε
j ∈ {1, . . . ,n}

Computing ∇f (x) approximately by (central) finite difference is
n + 1 times (2n times) as costly as evaluating f .
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Directional derivative

Derivative of f : Rn → R in the direction of v ∈ Rn

Dvf (x) = lim
h→0

f (x + hv)− f (x)
h

∈ R

Interpretation: rate of change of f in the direction of v, when moving
away from x.

[∇f (x)]i is the derivative in the direction of ei .

Finite difference (and similarly for the central finite difference):

Dvf (x) ≈ f (x + εv)− f (x)
ε

Only 2 calls to f are needed, i.e., independent of n.
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Directional derivative

Fact. The directional derivative is equal to the scalar product
between the gradient and v, i.e.,

Dvf (x) = ∇f (x) · v

Proof. Let g(t) = f (x + tv). We have

g′(t) = lim
h→0

f (x + (t + h)v)− f (x + tv)
h

and therefore g′(0) = Dv(x). By the chain rule, we also have

g′(t) = ∇f (x + tv) · v.

Hence, g′(0) = Dv(x) = ∇f (x) · v.
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Jacobian

The Jacobian of f : Rn → Rm

Jf(x) =
∂f(x)
∂x

=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


=

[
∂f
∂x1

, . . . ,
∂f
∂xn

]

=

∇f1(x)>
...

∇fm(x)>


The size of the Jacobian matrix is m × n.

The gradient’s transpose is thus a “wide” Jacobian (m = 1).
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Jacobian vector product (“JVP”)
Right-multiply the Jacobian with a vector v ∈ Rn

Jf(x)v =

∇f1(x)>
...

∇fm(x)>

v

=

∇f1(x) · v
...

∇fm(x) · v


= lim

h→0

f(x + hv)− f(x)
h

Finite difference (and similarly for the central finite difference):

Jf(x)v ≈
f(x + εv)− f(x)

ε

Computing the JVP approximately by (central) finite difference
requires only 2 calls to f.
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Vector Jacobian Product (“VJP”)

Left-multiply the Jacobian with a vector u ∈ Rm

u>Jf(x) = u>
[
∂f
∂x1

, . . . ,
∂f
∂xn

]
=

[
u · ∂f

∂x1
, . . . ,u · ∂f

∂xn

]
Finite difference (and similarly for the central finite difference):

∂f
∂xi
≈ f(x + εei)− f(x)

ε

Computing the VJP approximately by (central) finite difference
requires n + 1 calls (2n calls) to f.
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Chain rule

Let F (x) = f (g(x)) = f ◦ g(x), where f ,g : R→ R. Then,

F ′(x) = f ′(g(x))g′(x)

Alternatively, let y = g(x) and z = f (y), then

∂z
∂x

=
∂z
∂y

∂y
∂x

=
∂z
∂y

∣∣∣
y=g(x)

∂y
∂x

∣∣∣
x=x

Let f (x) = h(g(x)), where g : Rn → Rd and h : Rd → R. Then,

∇f (x)︸ ︷︷ ︸
n×1

= (∇h(g(x))>︸ ︷︷ ︸
1×d

Jg(x)︸ ︷︷ ︸
d×n

)> = Jg(x)>︸ ︷︷ ︸
n×d

∇h(g(x))︸ ︷︷ ︸
d×1

and similarly using Leibniz notation
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Chain compositions

x = x1 f1 f2 f3 f4 o

Assume f : Rn → Rm decomposes as follows:

o = f(x)
= f4 ◦ f3 ◦ f2 ◦ f1(x)
= f4(f3(f2(f1(x))))

where f1 : Rn → Rm1 , f2 : Rm1 → Rm2 , ..., f4 : Rm3 → Rm.

How to compute the Jacobian Jf(x) = ∂o
∂x ∈ Rm×n efficiently?
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Chain rule

x = x1 f1 f2x2
f3x3

f4x4
o

Sequence of operations

x1 = x
x2 = f1(x1)

x3 = f2(x2)

x4 = f3(x3)

o = f4(x4)

By the chain rule, we have
∂o
∂x

=
∂o
∂x4

∂x4

∂x3

∂x3

∂x2

∂x2

∂x

=
∂f4(x4)

∂x4

∂f3(x3)

∂x3

∂f2(x2)

∂x2

∂f1(x)
∂x

= Jf4(x4)Jf3(x3)Jf2(x2)Jf1(x)
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Forward differentiation

Recall that ∂f
∂xj
∈ Rm is the j th column of Jf(x).

Jacobian vector product (JVP) with ej ∈ Rn extracts the j th column

Jf(x)e1 =
∂f
∂x1

Jf(x)e2 =
∂f
∂x2

...

Jf(x)en =
∂f
∂xn

Computing a gradient (m = 1) requires n JVPs with e1, . . . ,en.
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Forward differentiation

Jacobian-vector product with v ∈ Rn

Jf(x)v = Jf4(x4)︸ ︷︷ ︸
m×m3

Jf3(x3)︸ ︷︷ ︸
m3×m2

Jf2(x2)︸ ︷︷ ︸
m2×m1

Jf1(x)︸ ︷︷ ︸
m1×n

v

Multiplication from right to left is more efficient.

Cost of computing n JVPs:

n(mm3 + m3m2 + m2m1 + m1n)

Cost of computing a gradient (m = 1, m3 = m2 = m1 = n):

O(n3)
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Forward differentiation

o = f(x) = fK ◦ · · · ◦ f2 ◦ f1(x)

[Jf(x)]:,j = JfK (xK ) . . . Jf2(x2)Jf1(x)ej j ∈ {1, . . . ,n}

Algorithm 1 Compute o = f(x) and Jf(x) alongside
1: Input: x ∈ Rn

2: x1 ← x
3: vj ← ej ∈ Rn j ∈ {1, . . . ,n}

4: for k = 1 to K do
5: xk+1 ← fk (xk )
6: vj ← Jfk (xk )vj j ∈ {1, . . . ,n}
7: end for

8: Returns: o = xK+1, [Jf(x)]:,j = vj j ∈ {1, . . . ,n}
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Backward differentiation

Recall that ∇fi(x)> ∈ Rn is the i th row of Jf(x).

Vector Jacobian product (VJP) with ei ∈ Rm extracts the i th row

e>1 Jf(x) = ∇f1(x)>

e>2 Jf(x) = ∇f2(x)>

...

e>mJf(x) = ∇fm(x)>

Computing a gradient (m = 1) requires only 1 VJP with e1 ∈ R1.
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Backward differentiation

Vector Jacobian product with u ∈ Rm

u> Jf4(x4)︸ ︷︷ ︸
m×m3

Jf3(x3)︸ ︷︷ ︸
m3×m2

Jf2(x2)︸ ︷︷ ︸
m2×m1

Jf1(x)︸ ︷︷ ︸
m1×n

Multiplication from left to right is more efficient.

Cost of computing m VJPs:

m(mm3 + m3m2 + m2m1 + m1n)

Cost of computing a gradient (m = 1, m3 = m2 = m1 = n):

O(n2)
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Backward differentiation

o = f(x) = fK ◦ · · · ◦ f2 ◦ f1(x)

[Jf(x)]i,: = e>i JfK (xK ) . . . Jf2(x2)Jf1(x) i ∈ {1, . . . ,m}

Algorithm 2 Compute o = f(x) and Jf(x)
1: Input: x ∈ Rn

2: x1 ← x, ui ← ei ∈ Rm i ∈ {1, . . . ,m}

3: for k = 1 to K do
4: xk+1 ← fk (xk )
5: end for

6: for k = K to 1 do
7: u>i ← u>i Jfk (xk ) i ∈ {1, . . . ,m}
8: end for

9: Returns: o = xK+1, [Jf(x)]i,: = u>i i ∈ {1, . . . ,m}
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Feedforward networks

x = x1 f1

θ1

f2x2

θ2

f3x3

θ3

f4x4

θ4

o

Each function can now have two arguments: fk (xk , θk ), where xk is
the previous output and θk are learnable parameters.

Example one hidden layer, one output layer, squared loss

f = f4 ◦ · · · ◦ f1

x2 = f1(x,W1) = W1x W1 ∈ Rm1×n

x3 = f2(x2, ∅) = relu(x2)

x4 = f3(x3,W3) = W3x3 W3 ∈ R1×m3

o = f4(x4, y) =
1
2
‖x4 − y‖2
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Feedforward network example

x = x1 f1

θ1

f2x2

θ2

f3x3

θ3

f4x4

θ4

o

Applying the chain rule once again we have
∂o
∂θ4
∂o
∂θ3

=
∂o
∂x4

∂x4

∂θ3
∂o
∂θ2

=
∂o
∂x4

∂x4

∂x3

∂x3

∂θ2
...

Apart from the last multiplication, the Jacobians ∂o
∂xk

and ∂o
∂θk

share
the same computations!
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Backprop for feedforward networks

Algorithm 3 Compute o = f(x, θ1, . . . , θK ) and its Jacobians.
1: Input: x ∈ Rn, θ1, . . . , θK
2: x1 ← x
3: ui ← ei ∈ Rm i ∈ {1, . . . ,m}
4: for k = 1 to K do
5: xk+1 ← fk (xk , θk )
6: end for
7: for k = K to 1 do
8: ji,k ← u>i

∂fk (xk ,θk )
∂θk

i ∈ {1, . . . ,m}
9: u>i ← u>i

∂fk (xk ,θk )
∂xk

i ∈ {1, . . . ,m}
10: end for
11: Returns: o = xK+1,

[
∂o
∂x

]
i,: = u>i ,

[
∂o
∂θk

]
i,:
= ji,k i ∈ {1, . . . ,m}, k ∈ {1, . . . ,K}
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Examples of VJPs

Let W ∈ Ra×b, u ∈ Ra, x ∈ Rb.

f(x) = g(x) (element-wise)
f maps Rb to Rb

Jf(x) = Jf(x)> = diag(g′(x)) maps Rb to Rb, i.e., b × b matrix

u>Jf(x) = Jf(x)>u = u ∗ g′(x) ∈ Rb, where ∗ means element-wise
multiplication

f(x) = Wx
f maps Rb to Ra

Jf(x) = W maps Rb to Ra, i.e., a× b matrix

Jf(x)> = W> maps Ra to Rb, i.e., b × a matrix

u>Jf(x) = Jf(x)>u = W>u ∈ Rb
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Examples of VJPs

f(W ) = Wx
f maps Ra×b to Ra

Jf(W ) maps Ra×b to Ra, i.e., a× (a× b) matrix

Jf(W )> maps Ra to Ra×b, i.e., (a× b)× a matrix

Jf(W )>u = ux>

VJPs make things easier when dealing with matrix or tensor inputs.
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Summary: Forward vs. Backward

Forward
Uses Jacobian vector products (JVPs)

Each JVP call builds one column of the Jacobian

Efficient for tall Jacobians (m ≥ n)

Need not store intermediate computations

Backward
Uses vector Jacobian products (VJPs)

Each VJP call builds one row of the Jacobian

Efficient for wide matrices (m ≤ n)

Needs to store intermediate computations
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Machine learning use case

Most objectives in machine learning can be written in the form

min
x∈Rn

f (x) =
N∑

i=1

`i(fi(x))

where f : Rn → RM and `i : RM → R.

The minimization needs to be w.r.t. a scalar valued loss.

This corresponds to the m = 1 setting, for which backward
differentiation is more efficient.

This explains the immense success of reverse autodiff in machine
learning.
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Computational graph

f (x1, x2) = x2ex1
√

x1 + x2ex1

Operations in topological order
x3 = f3(x1) = ex1

x4 = f4(x2, x3) = x2x3

x5 = f5(x1, x4) = x1 + x4

x6 = f6(x5) =
√

x5

x7 = f7(x4, x6) = x4x6

Directed acyclic graph traversal

x1 f3

x2 f4

x3

f5

x4

f6x5
f7x6

x4

x7
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Forward differentiation example

x1 f3

x2 f4

x3

f5

x4

f6x5
f7x6

x4

x7 = o

x4 is influenced by x3 and x2, therefore

∂x4

∂x1
=
∂x4

∂x3

∂x3

∂x1
+
∂x4

∂x2

∂x2

∂x1

x7 is influenced by x4 and x6, therefore

∂x7

∂x1
=
∂x7

∂x4

∂x4

∂x1
+
∂x7

∂x6

∂x6

∂x1
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Forward differentiation example

x1 f3

x2 f4

x3

f5

x4

f6x5
f7x6

x4

x7 = o

Recurse in topological order
∂x1

∂x1
= Idn

∂x2

∂x2
= Idn

∂x3

∂x1
=

∂x3

∂x1

∂x1

∂x1

∂x4

∂x1
=

∂x4

∂x3

∂x3

∂x1
+

∂x4

∂x2

∂x2

∂x1

...

Everything can be computed in terms of JVPs
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Forward differentiation

fi fjxi
fkxj

parents children

In the general case, we have

∂xj

∂x1
=

∑
i∈Parents(j)

∂xj

∂xi

∂xi

∂x1

∂xj
∂xi

is easy to compute as fj is a direct function of xi .

∂xi
∂x1

is obtained from the previous iterations in topological order.
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Backward differentiation example

x1 f3

x2 f4

x3

f5

x4

f6x5
f7x6

x4

x7 = o

x5 influences only x6, therefore

∂o
∂x5

=
∂o
∂x6

∂x6

∂x5

x4 influences x5 and x7, therefore

∂o
∂x4

=
∂o
∂x5

∂x5

∂x4
+

∂o
∂x7

∂x7

∂x4
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Backward differentiation example

x1 f3

x2 f4

x3

f5

x4

f6x5
f7x6

x4

x7 = o

Recurse in reverse topological order
∂o
∂x7

=
∂x7

∂x7
= Idm

∂o
∂x6

=
∂o
∂x7

∂x7

∂x6

∂o
∂x5

=
∂o
∂x6

∂x6

∂x5

∂o
∂x4

=
∂o
∂x5

∂x5

∂x4
+

∂o
∂x7

∂x7

∂x4

...

Everything can be computed in terms of VJPs
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Backward differentiation

fi fjxi
fkxj xk

parents children

In the general case, we have

∂o
∂xj

=
∑

k∈Children(j)

∂o
∂xk

∂xk

∂xj

∂o
∂xk

is obtained from previous iterations (reverse topological order)
and is known as “adjoint”.

∂xk
∂xj

is easy to compute as fk is a direct function of xj .

Mathieu Blondel Automatic differentiation 38 / 62



Outline

1 Numerical differentiation

2 Chain compositions

3 Computational graphs

4 Implementation

5 Advanced topics

6 Conclusion

Mathieu Blondel Automatic differentiation 39 / 62



Obtaining the computational graph

Ahead of time
Read from source or abstract syntax tree (AST). Ex: Tangent.

API for composing primitive operations (the graph is fully built before
the program is evaluated). Ex: Tensorflow.

Just in time
Tracing: monitor the program execution (the graph is built while the
program is being executed). Ex: Tensorflow Eager, JAX, PyTorch.

import jax.numpy as jnp

from jax import grad

def add(a, b):

return a + b

a = jnp.array([1, 2, 3])

b = jnp.array([4, 5, 6])

print(grad(add)(a, b))
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Key components of an implementation

VJP for all primitive operations

Node class

Topological sort

Forward pass

Backward pass

We will now briefly review each component using a rudimentary
implementation (link to code).
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VJPs for primitive operations
def dot(x, W):

return np.dot(W, x)

def dot_make_vjp(x, W):

def vjp(u):

return W.T.dot(u), np.outer(u, x)

return vjp

dot.make_vjp = dot_make_vjp

def add(a, b):

return a + b

def add_make_vjp(a, b):

gprime = np.ones(len(a))

def vjp(u):

return u * gprime, u * gprime

return vjp

add.make_vjp = add_make_vjp

Mathieu Blondel Automatic differentiation 42 / 62



Node class
class Node(object):

def __init__(self, value=None, func=None, parents=None, name=""):

# Value stored in the node.

self.value = value

# Function producing the node.

self.func = func

# Inputs to the function.

self.parents = [] if parents is None else parents

# Unique name of the node (for debugging and hashing).

self.name = name

# Gradient / Jacobian.

self.grad = 0

if not name:

raise ValueError("Each node must have a unique name.")

def __hash__(self):

return hash(self.name)

def __repr__(self):

return "Node(%s)" % self.name
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DAG

x1 f3

x2 f4

x3

f5

x4

f6x5
f7x6

x4

x7 = o

def create_dag(x):

x1 = Node(value=np.array([x[0]]), name="x1")

x2 = Node(value=np.array([x[1]]), name="x2")

x3 = Node(func=exp, parents=[x1], name="x3")

x4 = Node(func=mul, parents=[x2, x3], name="x4")

x5 = Node(func=add, parents=[x1, x4], name="x5")

x6 = Node(func=sqrt, parents=[x5], name="x6")

x7 = Node(func=mul, parents=[x4, x6], name="x7")

return x7

A good implementation would support tracing, instead of building the
DAG manually.
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Topological sort
def dfs(node, visited):

visited.add(node)

for parent in node.parents:

if not parent in visited:

# Yield parent nodes first.

yield from dfs(parent, visited)

# And current node later.

yield node

def topological_sort(end_node):

visited = set()

sorted_nodes = []

# All non-visited nodes reachable from end_node.

for node in dfs(end_node, visited):

sorted_nodes.append(node)

return sorted_nodes
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Forward pass
def evaluate_dag(sorted_nodes):

for node in sorted_nodes:

if node.value is None:

values = [p.value for p in node.parents]

node.value = node.func(*values)

return sorted_nodes[-1].value
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Backward pass
def backward_diff_dag(sorted_nodes):

value = evaluate_dag(sorted_nodes)

m = value.shape[0] # Output size

# Initialize recursion.

sorted_nodes[-1].grad = np.eye(m)

for node_k in reversed(sorted_nodes):

if not node_k.parents:

# We reached a node without parents.

continue

# Values of the parent nodes.

values = [p.value for p in node_k.parents]

# Iterate over outputs.

for i in range(m):

# A list of size len(values) containing the vjps.

vjps = node_k.func.make_vjp(*values)(node_k.grad[i])

for node_j, vjp in zip(node_k.parents, vjps):

node_j.grad += vjp

return sorted_nodes
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Checkpointing (best seen in presentation mode)

During the forward pass, save computations at intermediate
locations only (checkpoints).

During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

Tradeoff between memory and computation time.

x f1 f2 f3 f4 f5 f6 o

f4 f5 f6f1 f2 f3
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JAX

NumPy and SciPy compatible

Automatic differentiation (grad)

Just-in-time compilation (jit)

Automatic vectorization (vmap)

Code transformations are composable

Actively developed by Google

Gaining a lot of popularity among ML and science researchers
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Hessian

The matrix gathering second-order derivatives

∇2f =



∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n


Hessian vector product = gradient of directional derivative

∇2f (x)v = ∇(∇f (x) · v)

JAX supports fully closed tracing: we can “trace through tracing”
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Recovering JVPs from VJPs

Suppose we already have a VJP routine for computing u>Jf(x)

By linearity we have

∂u>Jf(x)
∂u

= Jf(x)>

and therefore

v>
∂u>Jf(x)

∂u
= v>Jf(x)> = (Jf(x)v)>

The VJP w.r.t. u of the VJP w.r.t. x is equal to the transopose of the
JVP w.r.t. x.

The trick does not work in the other direction!

Mathieu Blondel Automatic differentiation 52 / 62



Differentiating min problems

Consider the function

f (θ) = min
x

E(x , θ) = E(x?(θ), θ)

From Danskin’s theorem (a.k.a. envelope theorem)

∇f (θ) = ∇2 E(x?(θ), θ)

where ∇2 indicates the gradient w.r.t. the second argument.

Informally, the theorem says that we can treat x?(θ) as if it did not
depend on θ.
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Differentiating argmin problems

Now, consider the function

x?(θ) = argmin
x

E(x , θ)

f (θ) = L(x?(θ), θ)

By the chain rule, we have

∇f (θ) = (J x?(θ))>∇1L(x?(θ), θ) +∇2L(x?(θ), θ)

How to compute J x?(θ) = ∂x?(θ)
∂θ ?
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Fixed points

Consider the following fixed point iteration

x?(θ) = g(x?(θ), θ)⇔ h(x?(θ), θ) = 0

where h(x , θ) = x − g(x , θ)

By the implicit function theorem

J x?(θ) = −(J1h(x?(θ), θ))−1J2h(x?(θ), θ)

where J1 and J2 are the Jacobians w.r.t. the 1st and 2nd variables
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Differentiating argmin problems

Recall that
x?(θ) = argmin

x
E(x , θ)

We have the fixed point iteration (gradient descent)

x?(θ) = x?(θ)−∇1E(x?(θ), θ)

Choosing h(x , θ) = ∇1E(x , θ), we get

J x?(θ) = −(J1∇1E(x?(θ), θ))−1J2∇1E(x?(θ), θ)

= −(∇2
1E(x?(θ), θ))−1J2∇1E(x?(θ), θ)

In practice, we need to replace x?(θ) by an approximate solution.
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Differentiating argmin problems

Example: hyper-parameter optimization for ridge regression

E(x , θ) =
1
2
‖Ax − b‖2 + θ

2
‖x‖2 ∈ R

∇1E(x , θ) = A>(Ax − b) + θx ∈ Rd

∇2
1E(x , θ) = A>A + θI ∈ Rd×d

J2∇1E(x , θ) = x ∈ Rd×1

x?(θ) = (A>A + θI)−1A>b

J x?(θ) is therefore obtained by solving the following linear system

(A>A + θI)[J x?(θ)] = −x?(θ)
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Differentiating argmin problems

An alternative idea to obtain J x?(θ) is to to backpropagate through
gradient descent:

x t+1(θ) = x t(θ)− ηt∇1E(x t(θ), θ)

No longer needs to solve a linear system...

...but needs to store intermediate iterates x t(θ) or checkpoints

Possibility to use truncated backpropagation

Possibility to use reversible dynamics in some cases
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Inference in graphical models

Gibbs distribution

P(Y = y ; θ) ∝ exp(y · θ)

where y ∈ Y ⊂ {0,1}n

Log-partition function

f (θ) = log
∑
y∈Y

exp(y · θ)

Fact.
(P(Yi = 1; θ))n

i=1 = E[Y ] = ∇f (θ)

If we know how to compute f (θ), we can get expectations /
marginal probabilities by autodiff! Recovers forward-backward
algorithms as special case. For a proof, see e.g. this paper.
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Summary

Automatic differentiation is one of the keys that enabled the deep
learnnig “revolution”.

Backward / reverse differentiation is more efficient when the
function has more inputs than outputs.

Which is the de-facto setting in machine learning!

Even if you use Tensorflow / JAX / PyTorch, implementing a
rudimentary autodiff library is a very good exercise.
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