Mathletics

E Student \square

Addition and Subtraction

Copyright © 2009 3P Learning. All rights reserved.

First edition printed 2009 in Australia.
A catalogue record for this book is available from 3P Learning Ltd.
ISBN 978-1-921860-57-7

Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise.

You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent.

Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource.

Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme.

Published 3P Learning Ltd
For more copies of this book, contact us at: www.3plearning.com/contact
Designed 3P Learning Ltd
Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein.

Series E - Addition and Subtraction

Contents

Topic 1 - Addition mental strategies (pp. 1-15)
Date completed

- number complements \qquad
- doubles and near doubles \qquad
- bridge to ten \qquad
\square
- jump strategy \qquad
\square
- split strategy version 1 \qquad

- split strategy version 2

- applying the split strategy \qquad / /
- compensation strategy \qquad

- category match - apply \qquad / /

Topic 2 - Subtraction mental strategies (pp. 16-27)

- addition and subtraction

- subtraction strategy review \qquad

- jump strategy \qquad

- split strategy _-_

- compensation strategy \square
- subtract to zero - apply \qquad
\square
- subtraction grid puzzles - solve \square
\square

Series E - Addition and Subtraction

Contents

Topic 3 - Written methods (pp. 28-35)
Date completed

- 3 digit addition with regrouping

- 3 digit subtraction with regrouping
- 4 digit addition \qquad
- addition and subtraction challenges \qquad
\square
- biggest total - apply \qquad
- claim the difference - apply \square / /

Topic 4 - Money (pp. 36-41)

- coin combinations \qquad
- finding change \qquad
- using money \qquad
- calculate the change - apply \square

Series Author:

Nicola Herringer

Addition mental strategies - number complements

Two numbers that add together are called complements.
12 and 8 are complements to 20 because $12+8=20$
35 and 65 are complements to 100 because $35+65=100$

1 Loop the complements in each set:
a Complements to 20. There are three to find.
The first one has been done for you.

7	4	14
10	1	6
10	12	8

b Complements to 50 . There are eight to find:

26	12	30	20
24	38	15	35
17	45	5	40
33	18	32	10

2 Complete these complement webs. Start with the centre number and subtract. Write your answers in the ovals:

3 Show how knowing the complements to 20, 50 and 100 makes adding easier. You may want to loop the complements first. The first one has been done for you.
$a 80+20+15+5$

$$
=100+20=120
$$

b $18+2+30+20+10+10=$
c $25+25+40+30+20+10=$
d $15+35+20+30+10+12=$
\qquad
\qquad
\qquad

Addition mental strategies - number complements

4 Complete the complements to 50:
$a \square+38=50$
b \square
d $32+\square$ $=50$
c $25+\square=50$
f \square $+28=50$
e

$+\quad 46$
$=50$
g $14+\square=50$
h 7 \square $=50$

5 Complete the complements to 100:
$a \square 54=100$
b \square $+22=100$
c \square $+\quad 4$
d $33+\square=100$
e

g
$\square+45=100$
$\mathrm{f} 25+\square=100$
h \square $48=100$

6 Complete the addition crosses where the numbers add to 100 vertically and horizontally. The rules are, they must be symmetrical and only contain multiples of 5.

Addition and Subtraction

Addition mental strategies - doubles and near doubles

Doubles facts are the same number added together.

$$
3+3=6 \text { is the same as saying double } 3 \text { is } 6 .
$$

Near doubles is when you use the doubles fact and then adjust either by adding or subtracting.

$$
\text { See: } 6+7
$$

Think: double $6+1$

1. Circle all the doubles facts. The first two are circled for you.
Next, shade all the doubles facts +1 , then the double facts -1 :

$\boldsymbol{4}$	0	1	2	3	4	5	6	7	8	9
$\mathbf{0}$	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

a double $1=\square$

double $3=\square$
double $4=\square$
double $5=\square$
double $6=\square$
double $7=\square$
double $8=$
double $9=$
\square
c double 1-1 = \quad, double 2-1 = $\quad \square$ double 3-1 = \square double 4-1 = $\quad \square$ double 5-1 = $\quad \square$ double 6-1 = $\quad \square$ double $7-1=\square$ double $8-1=\square$ double 9-1 = $\quad \square$

Addition mental strategies - doubles and near doubles

2 Complete each near double diagram. Start with the double in the centre and work clockwise. You will need to think in doubles and then adjust.

3 Show how you would explain to someone how to add each of these using near doubles.
a $30+32$
b $25+23$
c $100+97$

Addition mental strategies - bridge to ten

Bridge to ten is when we count on to the next 10 and then add what is left.
$122+12=134$

1 How many to the next ten? The first one has been done for you.
a

b

c

d

e

2 Use the number lines to bridge to ten:

Addition mental strategies - bridge to ten

3 Write a problem that matches the number line:
a

$\mathbf{b} \square+\square=\square$

c $\square+\square=\square$

4 Complete these addition grids by bridging to the next ten in your head:

a | + | 356 | 78 | 586 | 287 | 385 | 984 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | | | | | | |

b

+	298	566	252	176	368	146
16						

Addition and Subtraction

Addition mental strategies - jump strategy

When we add, we can use the jump strategy to help us. Look at $57+22$:
1 First we jump up by the tens.
2 Then we jump up by the ones.

$57+22=79$

1 Practise jumping in tens along the arrows:
a

b

2 Use the jump strategy to add these:

Addition mental strategies - jump strategy

3 Below are some number lines that only show the jumps. Complete the number line for the problem that matches and then write the complete problem.

$$
\begin{array}{l|l|}
\hline 187+54 & 179+62 \\
\hline
\end{array}
$$

a

b $\square+\square=\square$

c

4 Use the jump strategy to add these:

Shirt sales				
Day	Red	Green	Striped	Plaid
Saturday	165	82	55	135
Sunday	43	98	65	36

a How many red shirts were sold over the weekend?

b How many green and striped shirts were sold on Saturday?

c How many plaid shirts were sold over the weekend?

Addition and Subtraction

Addition mental strategies - split strategy version 1

When adding large numbers in our heads, it can be easier to split one of the numbers into parts and add each part separately.

$$
112+46 \underset{40}{4} \begin{gathered}
40 \\
6
\end{gathered} \rightarrow 112+40=152 \longrightarrow 152+6=158
$$

1 Practise separating these numbers into tens and ones. The first one has been done for you.
a

b 63

c 52

d 27

2 Practise adding the tens to these numbers:

+	20	50	30	70	60
123					
214					

3 Use the split strategy with these problems. The first one has been done for you.

b $65+38$

c $112+25$
 $\longrightarrow \square$
d $332+$

\square $\longrightarrow \square$

Addition mental strategies - split strategy version 2

Here is another way to use the split strategy.

$$
\begin{aligned}
42+32 & =(4 \text { tens }+3 \text { tens })+(2 \text { ones }+2 \text { ones }) \\
& =7 \text { tens }+4 \text { ones } \\
& =74
\end{aligned}
$$

1 Use this way to add these:
a $63+37=({\underset{\text { tens }}{ }}_{\square_{\text {tens }}}^{\square_{\text {anes }}}+\underbrace{\square_{\text {one }}}_{\text {ones }})$
$=\square_{\text {tens }}^{\square}+\square_{\text {ones }}$
$=\square$
b $88+23=\left({\underset{\text { tens }}{ }}_{\square}^{\square}\right)+(\square_{\text {tens }}^{\square}+\underbrace{\square}_{\text {ones }})$
$=\square_{\text {tens }}+\square_{\text {ones }}$
$=\square$
c $56+15=(\square_{\text {tens }}+\underbrace{\square}_{\text {tens }})+(\square_{\text {ones }}+\underbrace{\square_{\square}}_{\text {ones }})$
$=\square_{\text {tens }}^{\square}+\square_{\text {ones }}$
$=\square$

d $65+28=\left({\underset{\text { tens }}{ }}_{\square}^{\square}+{ }_{\text {tens }}\right)+(\square_{\text {ones }}+\underbrace{\square}_{\text {ones }})$
$=\square_{\text {tens }}^{\square_{\text {ones }}}$
$=\square$

2 Use either version of the split strategy to complete this table:

+	23	78	63	55	36
45					
39					

Addition mental strategies - applying the split strategy

1 Complete these addition wheels with the split strategy:
a

b

The split strategy is useful when adding three 2 digit numbers.
Try adding tens, then the ones and recording it this way:

$$
61+43+44=14 \text { tens }+8 \text { ones }=140+8=148
$$

2 Record these place value amounts:
a 8 tens $=\square$
b 17 tens $=\square$
c 15 tens $=\square$
d 5 ones $=\square$
e 12 tens $=\square$
f 16 ones $=\square$

3 At circus school, a competition was held to see who could stay on a unicycle the longest. The time was recorded in seconds. Using the split strategy, add up each person's time. The first one has been done for you.

	Time in seconds	Working	Total in seconds
	22, 14, 3	3 tens + 9 ones	39
	23, 4, 11		
	21, 6, 14		
	20, 8, 12		
	4, 22, 12		

The winner is:

Addition mental strategies - compensation strategy

Sometimes we round one number in the problem to make it easier to do in our heads. Then we adjust our answer to compensate:

$$
\begin{array}{ll}
23+19 & =42 \\
23+20 \\
43-1 ; & \text { I rounded up by } 1, \\
4 & =42 \text { so I subtract } 1
\end{array}
$$

1 Practise rounding:
a

b

c

d

f $199 \rightarrow \square$

2 Use the compensation method with these problems. Round the second number up to the closest ten. Compensate by subtracting.
a $32+29$ \square
$32+30$

b $55+38$ \square
$55+40$

c $66+19$

d $22+39$

$66+$ \qquad

$$
22+
$$

Addition mental strategies - compensation strategy

3 Now let's try the compensation method with rounding the second number down. Round these numbers down to the closest ten. Compensate by adding.
a $75+22$ \square

b $45+41$ \square

When we round down we compensate by adding. When we round up we compensate by subtracting.
c $26+32$

d $66+53$

4 Use the compensation method to solve this riddle.
What vehicle is spelled the same forwards as it is backwards?
Match the letter to the answer in the grid at the bottom.
a $125+48=\mathrm{A}$
b $115+41=\mathrm{R}$
c $55+51=\mathrm{C}$
d $715+28=E$

156	173	106	743	106	173	156

Category match

This is a game for two players．Each player will need to copy and cut out the cards on page 15 as well as the game board below．

What

 to doEach player cuts out a set of the cards．Join both sets and shuffle well．Place face down into one pile in the centre．Each player turns over four of the digit cards and places each digit on their game board．Digit cards can＇t be moved once they have been placed．

Players then use a mental strategy to work out the answer and score points according to which category the answer fits into． Some answers may fit into more than one category．

Ends in even number	1 point
Ends in odd number	2 points
Less than 50	5 points
Greater than 150	10 points
Multiple of 5	10 points
Between 120 and 140	5 points

ハーーーーーーー，	ハーーーーーーー，		ィーーーーーーー，	ィーーーーーーー，
I 1	I 1		1	I 1
I I	I I		I I	I I
I I	I I		I I	I I
I I	I I	－	1 I	I I
I I	I I		I I	I I
I I	I I		I I	I I
I I	I I		1 I	I I
1 I	I I		1 I	I I

Subtraction mental strategies - addition and subtraction

Knowing one addition fact means you also know two related subtraction facts.
Because $7+3=10$ you know that $10-7=3$ and $10-3=7$

1 Make a group of facts for each pair of numbers. The first one has been done for you.
a

15
$15+35=50$
$50-15=35$
$50-35=15$

b

c

d

105

e

2 Complete each number trail:
a

b $200 \xrightarrow{-50} \square$

c $\square 99 \xrightarrow{+11} \square+50 \square \xrightarrow{+50} \square \square \square$

Subtraction mental strategies - subtraction strategy review

Look for patterns: 6-2 = 4 so $60-20=40$ and $600-200=400$ $72-9=63$ so $62-9=53$ and $52-9=43$

Count on: When numbers are close together, you can count on to find the difference.

Complements: $\quad 35+65=100$ so $100-35=65$

$$
12+8=20 \text { so } 20-8=12
$$

Near doubles: \quad See: $15-7$ Think: $(14-7)+1$

1 This hundred grid makes it easier to see subtraction patterns. Use it to complete the sets.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

2 Extend these subtractions according to the patterns:

	$9-6=$	$90-60=$	$900-600=$
b	$14-8=$	$140-80=$	$1400-800=$
c $24-14=$			
d $69-32=$			

Subtraction mental strategies - subtraction strategy review

3 Use counting on to complete these:
a $32-29=\square$
b $33-28=\square$
c $34-27=\square$
d $71-68=$
e $82-76$ \square f $73-69=\square$
g $83-77=$ \square
h $112-109=$ \square
i $201-196=$ \square

4 Complete these function tables using counting on:

In	Rule	Out
120		
123		
126		
124		
124		

b

In	Rule	Out
102	-96	
104		
108		
101		

C

In	Rule	Out
87		
81	81	
85		
83		
83		

5 Complete this cross number puzzle. Using complements to 100 will help.

Across

1 100-80= \square
\square
$8100-49=$ \square
$9100-61=$ \square
3 100-5= \square
4 100-28=

5 100-22= \square
7 100-64=
$10100-52=$ \square
11 100-66= \square
$12100-75=$ \square

Down

1 100-78= 7 100-62= $=\square$
$2100-88=$ \square
$8100-46=$ \square

3 100-2 = \qquad
$9100-65=$ \square

Subtraction mental strategies - subtraction strategy review

6 Use your knowledge of doubles and near doubles to complete these subtraction tables. The first one in each has been done for you.
a

See	Think
$19-9=\square$	$(18-9)+1$
$201-100=\square$	
$141-70=\square$	
$71-35=\square$	

b

See	Think
$15-8=\square$	$(16-8)-1$
$31-16=\square$	
$99-50=\square$	
$87-44=\square$	

C

See	Think
$26-12=\square$	$(24-12)+2$
$52-25=\square$	
$68-33=\square$	
$104-51=\square$	

d

See	Think
$24-13=\square$	$(26-13)-2$
$48-25=\square$	
$70-36=\square$	
$78-40=\square$	

7 Complete this near double web, which is based on the subtraction double in the centre. Start in the centre and work clockwise:

Subtraction mental strategies - jump strategy

When we subtract, we can use the jump strategy to help us. Look at 99-42:
1 First we jump back by the tens.
2 Then we jump back by the ones.

$$
99-42=57
$$

1 Solve these using the jump strategy:
a $125-42=\square$
b $168-36=\square$

c $335-54=$ \square
d $245-45=\square$

Subtraction mental strategies - jump strategy

2 It's inventory time at the sporting goods store. Use the jump strategy to work out how many items of each type have been sold.

Item	Started with	Amount left	Sold
Baseballs	254	45	
Soccer balls	186	58	
Hockey sticks	145	65	
Basketballs	165	34	

a Baseballs

\square
b Soccer balls

c Hockey sticks

d Basketballs

21

Subtraction mental strategies - split strategy

When subtracting large numbers in our heads it can be easier to split the number to be subtracted into parts and work with each part separately.

$255-132$	100
30	
2	$\rightarrow 255-100=155 \rightarrow 155-\mathbf{3 0}=125 \rightarrow 125-2=123$

1 Practise splitting numbers into hundreds, tens and ones:
a

b

c

d 834

2 Complete these subtraction trails:
a $768 \xrightarrow{-200} \square \xrightarrow{-20} \square \xrightarrow{-300} \square \square$
b $463 \xrightarrow{-100} \square \xrightarrow{-50} \square \xrightarrow{-20} \square \square$

3 Use the split strategy with these problems:
a 456-212

$378-100=$ \qquad

- - $60=$ \qquad
_- $-5=$ \qquad

$$
\begin{aligned}
& 456-200= \\
&-10= \\
&-2= \\
&-
\end{aligned}
$$

So, $456-212=$ \qquad So, $378-165=$ \qquad

Subtraction mental strategies - split strategy

4 Try these subtractions with the split strategy:
a $479-45=$ \qquad
b $834-21=$ \qquad
So, $479-45=$ \qquad

$$
\text { So, } 834-21=
$$

\qquad
c $637-312=$ \qquad
d $567-232=$ \qquad

So, $637-312=$ \qquad So, $567-232=$ \qquad

5 Solve these pyramid puzzles using any strategy you like. The two bricks add to support the number on top. For example in puzzle a, $22+23=45$.
a

b

c

d

Subtraction mental strategies - compensation strategy

Sometimes we round one number in the problem to make it easier to do in our heads. Then we adjust our answer to compensate:
$125-49=76$
$\begin{array}{cl}125-50 \\ 75 & \\ 70 & \text { I rounded up by 1, which } \\ \text { means I subtracted } 1 \text { extra }\end{array}$

I took off 1 extra so I have to add 1 back.

1 Round these numbers to the closest ten. Then show how you rounded by subtracting or adding the difference. The first one has been done for you.
a $78=\underline{80-2}$
b $59=$ \qquad
c $62=$ \qquad
d $23=$ \qquad
e $87=$ \qquad
f $99=$ \qquad
g $103=$ \qquad
h $21=$ \qquad
i $88=$ \qquad

2 Solve these subtraction problems using compensation. Show your working.
a 136-29
$=\square$
b $145-38$ \square

\qquad
c $156-39$ \square
d $184-48$ \square

Continued on page 25.

Subtraction mental strategies - compensation strategy

Continued from page 24.
2 Solve these subtraction problems using compensation. Show your working.
e $145-29$
$=\square$

f $176-69$ \square

g $365-42=\square$

(3) Answer these subtraction problems to solve the riddle below:

What swirls, loops, and circles on your fingertips, yet never moves?
a $65-29=F$
b $145-32=U$
c $175-61=E$
d $86-59=0$
e $180-48=1$
f $150-32=N$
g $96-42=R$
h $75-33=G$
i $155-49=Y$
j $166-55=P$
k $185-19=\mathrm{T}$
| $370-28=S$

Subtract to zero

apply

Getting ready

This is a game for two players. You will need a copy of this page and 25 counters between you.

copy

Sample game:
Player 1 covers 20 with a counter and states the subtraction fact: $100-20=80$

Player 2 covers 30 with a counter and states the next subtraction fact:
$80-30=50$
Player 1 then covers 50 and reaches zero first, so wins the round.

Player 1 covers a number on the grid with a counter and subtracts this number from 100. Player 2 then covers a number on the grid with a counter and subtracts this number from Player 1's answer. Play continues until a player is able to pick one of the remaining uncovered numbers to equal zero. If play continues without anyone reaching zero, the lowest difference wins.

25	10	15	20	10
10	50	30	10	25
40	5	40	10	10
10	35	10	15	10
50	10	5	10	45

TOPIC

Complete these subtraction cross number puzzles:

Written methods - 3 digit addition with regrouping

This is the written method for addition when regrouping.

First, estimate the answer to the nearest ten:
$530+200=730$

	H	T	0
	15	${ }^{1} 3$	4
+	1	9	7
	7	3	1

Add the ones: $4+7=11$ ones.
Think of this as 1 ten and 1 one.
Write the 1 in the ones column and put the 1 in the tens column.
Add the tens: $3+9+1=13$ tens.
Write 3 in the tens column and 1 in the hundreds column.
Add the hundreds: $5+1+1=7$ hundreds.
Is our answer reasonable? Yes, because it's close to our estimate.

1) Practise estimating answers by rounding to the nearest ten. The first one has been done for you.

Question	Estimate
a	$682+179$
c	$680+180=860$
$359+222$	
e	$587+398$
g	$189+108$

Question	Estimate
b	$271+119$
d	
	$378+119$
	$412+98$
	$911+207$

2 Add these 3 digit numbers using the written method. First, estimate to the nearest ten.
e
$\left.\begin{array}{l:c:c:c} & \mathbf{H} & \text { T } & \text { O } \\ \hline \mathbf{a} & 3 & 5 & 4 \\ & & 2 & 1\end{array}\right)$
e:

Continued on page 29.

Written methods - 3 digit addition with regrouping

Continued from page 28.
2 Add these 3 digit numbers using the written method:

3 Solve these word problems using the written method:
a At the office supply store, 456 blue pens were sold on Saturday and 458 red pens were sold on Sunday. How many pens were sold that weekend?

b A train left the station with 389 people on board and then another 678 people got on over the next three stops. How many passengers were on the train altogether?

Written methods - 3 digit subtraction with regrouping

1 Subtract these 3 digit numbers using the written method. Start by writing your estimate. Estimate to the nearest 10.

Written methods - 3 digit subtraction with regrouping

2 This sign shows the distances of towns along a highway from where the sign is. Find the difference between these places.

a What is the distance between Ringer and Normanville?
\qquad

c What is the distance between Showtown and Ringer?
\qquad
km

d What is the distance between Roper and Normanville?

b What is the distance between Roper and Eagle Bay?

\qquad
$\begin{array}{l:l:l} & \quad \mathrm{km}\end{array}$
\qquad

Showtown 971 km
Roper
893 km
Ringer
692 km
Eagle Bay
595 km
Normanville 567 km
$\begin{array}{l:l}\vdots & \vdots \\ \vdots & \mathrm{km}\end{array}$

Written methods - 4 digit addition

1 Add these 4 digit numbers:

	Th	H	T	O
b	2	5	4	6

	Th	H	T	O
c:	4	5	2	4
	2	2		
	2	1	6	4

	Th	\mathbf{H}	\mathbf{T}
\mathbf{d}	\mathbf{O}		
		\mathbf{O}	$\mathbf{3}$
		1	
	1	3	5

2 Add these 4 digit numbers by regrouping:

3 Add these 4 digit numbers by regrouping:

	Th	H	T	\mathbf{O}
\mathbf{b}	3	1	8	7

Written methods - addition and subtraction challenges

1 Write the numbers which are above each problem in the correct place:
a
45
b \square
3
3
2

	3	6	2
+			7
	7	9	

C

d
377

		3	
		2	
	2		3
	8	4	8

2 Solve these. The same symbol means the same number.
a

b

C

d

P)= ready

This is a game for four players. Each player will need to copy and cut out the digit cards below. They will also need the addition frame on this page and a piece of
 scrap paper to write the answer on.

Choose one person to be the caller.
This person calls out the single digits above, randomly one at a time.
The other players place the digits in a box in the frame below, in any order. Players must think carefully about which square to place the digit, in order to create the largest total.

When all the players have filled in the frame, they complete the addition.

The highest answer scores a point. Play the best out of 5 .

Claim the difference

This is a game for two players. Each player will need to copy and cut out the digit cards. To play you need to share the number grid on this page. Each player should

copy have a piece of scrap paper to write the answer on and three counters in the same colour, but different to the other player.

What to do

The aim of the game is to claim any 3 numbers on the grid below. Each player lays their digit cards upside down in front of them. They then turn over four of the cards to form two 2 digit numbers and find the difference.

If the answer is on the grid, they claim it by placing a counter on the number. If it's not, they can have a chance at rearranging the four cards they turned over, to create a number on the grid. If they can't do this, it's the next player's turn.

Money - coin combinations

It is important that you are able to recognise these bills and coins so that you are able to spend and save your money wisely.

(1) Calculate the total of each group of cash:

Money - coin combinations

2 Make up each amount below using bills and coins in two different ways:
a Show \$20:

b Show \$50:

c Show \$100:

Money - finding change

When you buy something and you don't have the exact combination of bills and coins, you can pay with a larger amount and get the difference back. This is called change.

If I paid for these flowers with $\$ 20$, my change would be $\$ 8$.

1 Find the change for each amount below. You could bridge to the next dollar and count on or use a written subtraction. Show all your workings:
a I had $\$ 100$. I spent $\$ 68$.
Change $=\square$
b I had $\$ 50$. I spent $\$ 22$.

$$
\text { Change }=\square
$$

d I had $\$ 120.1$ spent $\$ 60$.

$$
\text { Change }=\square
$$

f I had $\$ 50$. I spent $\$ 42$.

Money - using money

When you plan a party, you usually buy things such as food, drink and party favours. It's a good idea to set a budget before you go shopping so that you don't spend too much.

1 Here is a price list of party items:

Food	
Vegetable rolls	$\$ 3.20$
Fruit salad	$\$ 8.95$
Sandwiches	$\$ 7.65$

Drink	
Orange juice	$\$ 2.75$
Lemonade	$\$ 3.10$
Water	$\$ 3.25$

Party favours	
10 party hats	$\$ 3.80$
10 balloons	$\$ 1.90$
4 game prizes	$\$ 5.60$

a Which two items of food and drink could I buy for less than $\$ 10$? Show the change.
\square
b Maxine bought a type of party food. If her change was $\$ 2.35$ and she paid with a $\$ 10$ bill, what did she buy?
c Look at the price lists for the party items at the top of this page. Use a calculator to add up the total amount on Heidi's shopping list.
d Heidi's budget is $\$ 50$. Suggest something to take off the total.

Heidi's shopping list:
2 packs of vegetable rolls
4 fruit salads -_
10 party hats
20 balloons -
Orange juice
Lemonade.......................
Total

Calculate the change

apply

This is a game for three players. You will need a die and each player needs a copy of page 41 to record the change.

You may wish to make extra copies of page 41 so you can play again.

What to do

The aim of the game is to end up with the most amount of money at the end of each round.

Roll the die to find what you are calculating change for. Record the number you rolled and the change in the table. Take turns. When you have filled in the table for each round, calculate the total amount of change. The most change scores 5 points. Play for three rounds to decide the overall winner.

Die number	Amount you have	Amount you spend
\bigcirc	\$20	You spend \$5.25 on a card for a friend.
\square	\$15	You spend \$7.50 on school supplies.
${ }^{\bullet}$	\$5	You buy some snacks for \$3.85.
0	\$5	You spend \$4.25 downloading songs from the internet.
\bigcirc	\$10	A trip to the movies costs \$7.80.
68	\$20	You buy a book for \$17.80.

Calculate the change

Round 1	
Number rolled	
Total	

Round 2

Number rolled	Change
Total	

Round 3

Number rolled	Change
Total	

