
© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

MATLAB: A Powerful Tool
for Computation and visualization

Shuxia Zhang and Ravi Chityala
Sumpercomputing Institute

University of Minnesota
e-mail: szhang@msi.umn.edu,chityala@msi.umn.edu

Tel:612-624-8858

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Outline of part I

Introduction
Basic Math Operations
Input and Output
Solving computational problems
M-files
Submit Matlab jobs to the queues
2d Graphics/3d Visualization/Image data
Hands-on
Reference

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Introduction

• MATLAB handles a wide range of computing tasks in
engineering and science, from data acquisition and
analysis to application development.

• Focus on high-level technical concepts and ignore
programming detail, built-in functions.

• One can interactively run line by line command. One
can also write a MATLAB code (referred as M-file) and
run it in a batch mode.

• Interactive language and programming environment. M-
files require no compiling or linking, so you can edit and
debug an M-file and test the changes immediately.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

How to Start Matlab

Type:
module load matlab
matlab

Search information, type the followings on MATLAB window
>> help known-name
>> lookfor string

Demos:
>> demo

“>>” marks the commands that one can type on MATLAB
window.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

MATLAB Toolboxes

LMI Control Toolbox
Mapping Toolbox
Model-Based Calibration Toolbox
Model Predictive Control Toolbox
Mu-Analysis and Synthesis
Toolbox
Neural Network Toolbox
Optimization Toolbox
Partial Differential Equation
(PDE) Toolbox
Robust Control Toolbox
Signal Processing Toolbox
Spline Toolbox
Statistics Toolbox
Symbolic Math Toolbox
System Identification Toolbox
Virtual Reality Toolbox
Wavelet Toolbox

Bioinformatics Toolbox
Communications Toolbox
Control System Toolbox
Curve Fitting Toolbox
Data Acquisition Toolbox
Database Toolbox
Datafeed Toolbox
Excel Link
Filter Design Toolbox
Financial Toolbox
Financial Derivatives Toolbox
Financial Time Series Toolbox
Fixed-Income Toolbox
Fuzzy Logic Toolbox
GARCH Toolbox
Genetic Algorithm Toolbox
Image Acquisition Toolbox
Image Processing Toolbox
Instrument Control Toolbox

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Elementary Math and Matrix
Manipulation Functions

Matrix initialization.
zeros - Zeros array.
ones - Ones array.
eye - Identity matrix.
rand - Uniformly distributed random
randn - Normally distributed random numbers.
linspace - Linearly spaced vector.
logspace - Logarithmically spaced vector.

>> help logspace

Basic array information.
size - Size of matrix.
length - Length of vector.
ndims - Number of dimensions.
disp - Display matrix or text
spy - View the matrix structure

>> lookfor key_word

Elementary math functions
Trigonometric.

sin - Sine.
cos - Cosine.tan
tan - Tangent.
sec - Secant.

Exponential.
exp - Exponential.
log - Natural logarithm.
log10 - Common (base 10) logarithm.
log2 - Base 2 logarithm
sqrt - Square root

Complex.
abs - Absolute value.
complex - Construct complex data
conj - Complex conjugate.
imag - Complex imaginary part.
real - Complex real part.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Operators and special characters

Arithmetic operators:
plus - Plus +
minus - Minus -
mtimes - Matrix multiply *
times - Array multiply .*
mpower - Matrix power ^
power - Array power .^

Relational and logical operators:
eq - Equal ==
ne - Not equal ~=
lt - Less than <
gt - Greater than >
le - Less than or equal <=
ge - Greater than or equal >=
and - Element-wise logical AND &
or - Element-wise logical OR |

Special characters:
punct - Semicolon ; Continue ….
punct - Comment %

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Follow Algebra rules
Inner products

dot is the dot product weight function.
Inputs:

W – input (row) 1x n matrix
P - input (n columns) vectors.

dot(W,P) returns the dot product of W and P.

>> w=[1 3 5 7];
>> p=[2; 4; 6; 8]
>> dot(w,p)

ans =100
>> dot(p,w)

ans =
2 6 10 14
4 12 20 28
6 18 30 42
8 24 40 56

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Function have multiple arguments
NORM: Matrix or vector norm

For matrices...
NORM(X) is the 2-norm of X.
NORM(X,2) is the same as NORM(X).
NORM(X,1) is the 1-norm of X.
NORM(X,inf) is the infinity norm of X.
NORM(X,'fro') is the Frobenius norm of X.
NORM(X,P) is available for matrix X only if P is 1, 2, inf or 'fro'.

For vectors...
NORM(V,P) = sum(abs(V).^P)^(1/P).
NORM(V) = norm(V,2).
NORM(V,inf) = max(abs(V)).
NORM(V,-inf) = min(abs(V)).

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

One function - more functionalities
SPARSE

SPARSE(X) converts a sparse matrix to sparse form by
squeezing out any zero elements. Save memory
But it may use more memory if the matrix is dense.

Example:
>> p=rand(10,20);
>> for i=1:10

for j=1:20
if (p(i,j) <0.5) T(i,j) = 0;
else
T(i,j) = p(i,j);
end;end;end

>> sparse(T);
>> whos
Name Size Bytes Class

T 10x20 1356 sparse array
i 1x1 8 double array
j 1x1 8 double array
p 10x20 1600 double array

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

One function - More functionalities
SPARSE

Create Sparse Matrix:

S = sparse(i,j,s,m,n,nzmax)
S: created m-by-n sparse matrix
nzmax: allocated zeros
i and j: integer index vectors
s: real or complex vector (non-zeros);
i,j, and s all have the same length
m=max(i)
n=max(j)

Example
>> s=rand(10,1);
>> i=[1,3,4,6,8,9,14,18,24,26];
>> j=[1,2,5,7,14,11,13,9,18,26];
>> m=max(i);
>> n=max(j);
>> S=sparse(i,j,s,m,n) %It will create a 26-by-26 sparse matrix.
>> spy(S) % will show the structure of the sparse matrix

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Basic operations

Create an array or an vector:

>> a = [1 2 3 4 5 6 7 8 9]

A = 1 2 3 4 5 6 7 8 9
plus:

>> b = a+2

b = 3 4 5 6 7 8 9 10 11

Creating a matrix is as easy as making a vector

>> A = [1 2 0; 2 5 -1; 4 10 1]
A =

1 2 0
2 5 -1
4 10 1

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Basic operations

>> a = [1 2 3 4 5 6 7 8 9]

a = 1 2 3 4 5 6 7 8 9
>> a = [1 2 3 4 5 6 7 8 9]’ % transpose

a =

1
2
3
4
5
6
7
8
9

Use of colon sign - a vector of sequential values.
x = [0:0.1:100]

x = Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
…….

Columns 995 through 1001

99.4000 99.5000 99.6000 99.7000 99.8000 99.9000 100.0000

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Basic matrix operations

INV(X) is the inverse of the square matrx X

Given: A=[1 2 0; 2 5 -1; 4 10 1];

>> X = inv(A)

X = 5.0000 -0.6667 -0.6667
-2.0000 0.3333 0.3333

0 -0.6667 0.3333

>> I = inv(A)*A

I =
1 0 0
0 1 0
0 0 1

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Basic matrix operations

E= eig(X) -- a vector containing the eigenvalues of a square matrix X
[V,D] = eig(X) -- a diagonal matrix D of eigenvalues and a full matrix V,

whose columns are the corresponding eigenvectors so
that X*V = V*D.

Example:
Given: A=[1 2 0; 2 5 -1; 4 10 1];
>> E=eig(A)
E =

0.1911
3.4045 + 2.0270i
3.4045 - 2.0270i

>> [V,D]=eig(A)
V = -0.9258 -0.1555 + 0.0304i -0.1555 - 0.0304i

0.3745 -0.2178 - 0.1212i -0.2178 + 0.1212i
-0.0510 -0.9041 + 0.3088i -0.9041 - 0.3088i

D = 0.1911 0 0
0 3.4045 + 2.0270i 0
0 0 3.4045 - 2.0270i

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Loop and If statements - Syntax

if expression
statements

elseif expression
statements

else
statements

end

Example
for r = 1:nrows

for c = 1:ncols
if r == c

myData(r,c) = 2;
elseif abs(r - c) == 1

myData(r,c) = -1;
else

myData(r,c) = 0;
end

end
end

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Input and Output

Save: saves workspace or varaiables to disk:

>> save % saves all variables to the defaulti binary file "matlab.mat"
>> save fname % saves all variables to the file with the given name.
>> save fname X Y % save only variables X and Y.
>> save fname X Y -append % adds the variables to an existing mat-file.
>> save fname -ascii % uses 8-digit ASCII form instead of binary.
>> save fname -ascii -double % uses 16-digit ASCII form.

To read in the mat-files, one need to use the load command, i.e.,
>> load fname

To delete a variable in the memory
>> clear X

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Input and Output

I/O formats ---- compatible with other computer languages.

The commonly used ones include:
fopen - Open file.
fclose - Close file.

Input:

fread - Read binary data from file.
textread - Read formatted data from text file.
fscanf - Read formatted data from file.
load - Load workspace from MAT-file or ASCII file.

Output
save - Save workspace variables to disk
fwrite - Write binary data to file.
fprintf - Write formatted data to file.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

I/O examples

fread: >> fid = fopen(‘input.dat’,’r’);
>> [A, COUNT] = fread(fid,size,precision,skip)

size -- optional; if not specified, the entire file is read; else it can be:
N read N elements into a column vector.
inf read to the end of the file.
[M,N] read elements to fill an M-by-N matrix, in column order.

N can be inf, but M can't.
precision-- type of data that MATLAB supports, like schar, int8, single,

double, etc,…
skip -- the number of bytes or bits to skip, dependent on the data type.

fprintf :
>> x = 0:.1:1; y = [x; exp(x)];
>> fid = fopen('exp.txt','w');
>> fprintf(fid,'%6.2f %12.8f\n',y);
>> fclose(fid);

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Many special built-in functions
Hilbert Matrtx

hilb(N) produces the N by N matrix with elements 1/(i+j-1).
>> n = 12;

>> A = hilb(n);
>> b = A * ones(n,1);
>> x = A \ b; err = ones(n,1)-x;

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Function Definition -Syntax
function [output_list] = function_name(input_list)
input_list and output_list

comma-separated lists of matlab variable.

function [r,theta] = cart2plr(x,y)
% [r,theta] = cart2lr(x,y)
% computes r and theta with
% r = sqrt(x^2 + y^2);
% theta = atan2(y,x);

r = sqrt(x^2 + y^2);
theta = atan2(y,x);

%Use of function
a=rand(20);
b=rand(20);
[c the] = cart2plr(a,b)
plot(c,the,'*r')
Print -dpng test
quit

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Solving A X = B

>>A = [1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429;
0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250;
0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111;
0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000;
0.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.0909;
0.1667 0.1429 0.1250 0.1111 0.1000 0.0909 0.0833;
0.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769]

>> B= [2.5929 1.7179 1.3290 1.0956 0.9365 0.8199 0.7301]’;

To get a solution for X

>> C = inv (A);
>> X = C*B

What is X ?

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

M-file

The M-file - capture your command-line explorations as
permanent, reusable MATLAB functions.

Suppose you have a M-file, or you saved the command-line
operations into a M-file, named as matlab_test.m, to run the
code interactively, just type:

module load matlab % on Linux machines
matlab < matlab_test.m > output

One can also submit the MATLAB jobs to the queue.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

An example of PBS script file

#PBS -l ncpus=1,mem=1gb,walltime=1:30:00
#PBS –q lab
#PBS -m abe
cd /home/smpb/szhang/matlab_batch

module add matlab
matlab –nojvm –nodisplay < particles.m

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

2D graphics consists of 2d plots and images

2D Graphics

There are two basic ways to create graphs in MATLAB:

-- Use plotting tools to create graphs interactively.
-- Use the command interface to enter commands in the
Command Window.

Tip: Combine both approaches eg. issue a plotting command to
create a graph and then modify the graph using one of the
interactive tools

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

2D graphics
Plot(X,Y,S) plots vector Y versus vector X. S is a character string and

specifies the line types, plot symbols and/or colors, made from one
element from any or all the following 3 colunms:

Colors Symbols Linestyles
y yellow . point - solid
m magenta o circle : dotted
c cyan x x-mark -. dashdot
r red + plus -- dashed
g green * star
b blue s square
w white d diamond
k black v triangle (down)

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

2D graphics
bar(X,Y,WIDTH) draws the columns of the M-by-N matrix Y as M

groups of N vertical bars with a value of WIDTH. default WIDTH
is 0.8.

polar(THETA,RHO,S) makes a plot using polar coordinates of
the angle THETA, in radians, versus the radius RHO with the
linestyle specified in string S.

stairs(X,Y,S) draws a stairstep graph of the elements in vector Y at
the locations specified in X with linestyle specified by the
string S.

stem(X,Y,'filled',S) plots the data sequence Y as stems from the x axis
terminated with the filled symbols. String S determines the
linestyle of the stem.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

2D graphics
stem(X,Y,'filled',S) plots the data sequence Y as stems from the x axis

terminated with the filled symbols. String S determines the
linestyle of the stem.

>> x = 0:25;
y = [exp(-.07*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
set(h(1),'MarkerFaceColor','blue')
set(h(2),'MarkerFaceColor','red','Marker','square')

>> t = linspace(-2*pi,2*pi,10);
h = stem(t,cos(t),'fill','--');
set(get(h,'BaseLine'),'LineStyle',':')
set(h,'MarkerFaceColor','red')

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

2D graphics
semilogx(...) is the same as plot(...), except a logarithmic
(base 10) scale is used for the X-axis.

>> x=[1.0,5.0,9.7,15.6,23.7,32.9];
>> y=[-6.2,-3.5, -1.0, 1.8,4.6, 8.9];
>> semilogx(x,y);

loglog(...) is the same as plot(...), except Logarithmic
scales are used for both the X- and Y- axes.

>> x=[1.0,5.0,9.7,15.6,23.7,32.9];
>> y=x+5;
>> loglog(x,y);

Question: how to make a plot that a logarithmic (base 10) scale is
used for the Y-axis?

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

2D graphics
Simple XY plots with solid, dashed lines

>> x=0:0.05:5;
>> y=sin(x.^2);
>> z=sin(x.^2-1.5);
>> plot(x,y, x,z,'r');

Bar graph
>> x = -2.9:0.2:2.9;
>> y = exp(-x.*x);
>> bar(x,y);

Polar graph
>> t=0:.01:2*pi;
>> y=abs(sin(2*t).*cos(2*t));
>> polar(t,y);

Stem graph
>> x = 0:0.1:4;
>> y = sin(x.^2).*exp(-x);
>> stem(x,y)

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

3D graphics

PLOT3(x,y,z,S), where x, y and z are three vectors, plots a line
in 3-space the same length, through the points whose coordinate
are the elements of x, y and z. S is a character string and specifies
the plot style, curve color, style and/or symbols.

If the arguments to plot3 are matrices of
the same size, MATLAB plots lines
obtained from the columns of X, Y, and Z.

[X,Y] = meshgrid([-2:0.1:2]);
Z = X.*exp(-X.^2-Y.^2);
plot3(X,Y,Z)
grid on

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

SURF(X,Y,Z,C) plots the colored parametric surface defined by
four matrix arguments. The axis labels are determined by the
range of X, Y and Z, or by the current setting of AXIS. The
color scaling is determined by the range of C.

CONTOUR(X,Y,Z,N) a contour plot of matrix Z treating the values
in Z as heights above a plane of X and Y coordinates. N can be a
scalar or a vector. If N is a scalar, it specifies the number of contour
lines. If N is a vector, it requires the contour lines to be drawn at the
values specified in the vector.

3D Graphics

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

3D Graphics
3-D colored surface

>> z=peaks(25); size(z);
>> surf(z);
>> colormap(jet);

Contour
>> z=peaks(25);
>> contour(z,16);

Vector Arrows
>> x = -2:.2:2; y = -1:.2:1;
>> [xx,yy] = meshgrid(x,y);
>> zz = xx.*exp(-xx.^2-yy.^2);
>> [px,py] = gradient(zz,.2,.2);
>> quiver(x,y,px,py,2);

3-D Stem Plots
>> th = (0:127)/128*2*pi;
>> x = cos(th); y = sin(th);
>> f = abs(fft(ones(10,1),128))’;
>> stem3(x,y,f,'d','fill')
>> view([-65 30])

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

3D Graphics
3-D Quiver Plots

>> vz = 10; % Velocity
>> a = -32; % Acceleration
>> t = 0:.1:1;
>> z = vz*t + 1/2*a*t.^2;
>> vx = 2;
>> x = vx*t;
>> vy = 3;
>> y = vy*t;
>> u = gradient(x);
>> v = gradient(y);
>> w = gradient(z);
>> scale = 0;
>> quiver3(x,y,z,u,v,w,scale)
>> axis square

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

Hands On



Create a Hibert Matrix A for dimension i=j=12 , a vector
B=[1, 0.5, 0.4, -2.0, -4.6, -1.2, 0.9, 1.0, 0.0, 0.0, 0.0, 1.0]’
and solve the equation for unknown X

AX =B


Generate a m-file for above example and run the m-file


Given t=0:.2:5, a=10, and u=2, write a program for calculating

s = ut + ½at²
and generate a plot of s as function of t



Practice the examples presented in the lecture.

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute
for Advanced Computational Research

On-line help
www.mathworks.com/products/matlab
Www.msi.umn.edu/tutorial

Help at MSI-
help@msi.umn.edu
612-626-0802(help line)

http://www.mathworks.com/products/matlab
http://Www.msi.umn.edu/tutorial

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

