MATLAB® Laboratory Manual
with SIMULINK® examples

Bruno D. Welfert

to accompany

FUNDAMENTALS OF
DIFFERENTIAL EQUATIONS

SIXTH EDITION

and

FUNDAMENTALS OF
DIFFERENTIAL EQUATIONS
AND
BouNDARY VALUE PROBLEMS

FourTH EDITION

Nagle Saft Snider

i

MATLAB® and SIMULINK® are registered trademarks of The MathWorks, Inc.
MAPLE® is a registered trademark of Waterloo Maple, Inc.

(©2003 B. Welfert

ii

Contents

Preface

1

Introduction to MATLAB

The MATLAB Environment
Basicsand Help 0 o e
Plotting with MATLAB e
Scripts and Functions oo
Matrices and Linear Algebra
MATLAB Programming and Debugging
Exercises

Ordinary Differential Equations

with MATLAB

Numerical Differentiation and Solution of the IVP

Direction Fields and Graphical Solutions

First-Order Scalar IVP 0 e
Basic ode4b Usage e
Error Plot, Improving the Accuracy
Integration e
Parameter-Dependent ODE

Higher-Order and Systems of IVPs

MATLAB sessions
Laboratory 1: First-Order Differential Equations, Graphical Analysis
Direction fields
Additional Problems
Laboratory 2: Numerical Solutions (Euler, Improved Euler) for Scalar Equations
Euler’'s Method e
Improved Euler’s Method
Additional Problems
Laboratory 3: Solution Sensitivity
Dependence of IVP Solution on IC
Existence and Uniqueness e e
Additional Problems
Laboratory 4: Picard Iteration e
Picard iterationo
Numerical Picard Iteration
Additional problems L e e
Laboratory 5: Applications of First-Order Differential Equations
Population Growth L
Problems
Other Models, Parameter Estimation
Laboratory 6: Further Applications of First-Order Differential Equations

iii

19
19
20
24
24
26
29
29
31

The Snowplow Problem 66

Aircraft Guidance L 67
Heating and Cooling of Buildings 68
Laboratory 7: Implementing Higher-Order Differential Equations 72
Reducing a Higher-Order ODE 72
MATLAB Implementation 72
Additional Considerations 73
Laboratory 8: The Mass-Spring System 78
Mass-Spring System without Damping o oo 78
Mass-Spring System with Damping oL oo o 80
The GUI spring.m it 81
Laboratory 9: The Pendulum 83
The Undamped Case o0 0t e 83
The Linearized Case o o 0 it i e e 86
With Damping Present e 86
The Poe pendulum e 88
Laboratory 10: Forced Equations and Resonance 89
The Amplitude of Forced Oscillations 89
Resonance e 92
Beats e 92
Additional Problem 93
Laboratory 11: Analytical and Graphical Analysis of Systems 94
An Exampleo 94
Multiple Eigenvalue o o 97
Complex Eigenvalues e e 99
Additional Problems 101
Laboratory 12: Additional Numerical Techniques 102
Taylor and Runge-Kutta Methods 102
Application to a System of ODEs 104
Additional Problems 105
Laboratory 13: Introduction to SIMULINK 107
An Example SIMULINK Model: springl.mdl 107
Building a Mass-Spring SIMULINK Model 109
Alternate SIMULINK Implementations 111
Laboratory 14: Laplace transform, application to linear IVPs 114
Laplace transform e e e 114
Inverse Laplace transform oL oL 116
Applications to the solution of IVPs o 122
Additional Project Descriptions 127
Note to the Instructor: Group Projects 127
P1. Design your Own Project 129
P2. The ODE of World-Class Sprint 130
P3. Consecutive Reactions for Batch Reactors 132
P4. Normal T-Cells e 133
P5. T-Cells in the Presence of HIV o 135
P6. Design of an Electrical Network 138
P7. The Dynamics of Love e 140
P8. Hypergeometric Functions L 142
References 145
Bibliography e e 145
Appendix: MATLAB Quick Reference o 146

iv

Preface

This manual is designed to accompany the new edition of Fundamentals of Differential Equations (and
Boundary Value Problems) by Nagle, Saff and Snider and its format was mostly inspired by the com-
panion MAPLE Technology Manual written by Kenneth Pothoven. The usefulness of this manual should
however extend well beyond this specific association.

MATLAB is a “high-performance language for technical computing which now integrates computa-
tion, visualization, and programming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation” (excerpt from The MathWorks website). MATLAB stands
for MATrix LABoratory and was originally written to provide easy access to matrix software developed
by the LINPACK and EISPACK projects.

MATLAB has become “a standard instructional tool for introductory and advanced courses in Math-
ematics, Engineering, and Science. In industry, MATLAB is now the tool of choice for high-productivity
research, development, and analysis.” This manual explores the use of MATLAB in solving differential
equations and visualizing and interpreting their solutions. The main objectives are:

1. familiarize students with basic MATLAB programming to solve differential equations of varying
complexity,

2. provide a platform for testing and experimenting with fundamental aspects of numerical compu-
tations of solutions of differential equations, and

3. present simple ways to visualize the numerical solutions.

The use of the MATLAB Symbolic Toolbox was limited to short examples with the functions laplace
and ilaplace in Laboratory 14. Custom functions which do not use this toolbox were used to illustrate
the numerical evaluation of these transforms. An introduction to SIMULINK is given in Laboratory
13. SIMULINK provides a tool for building and testing models using the power of MATLAB without
requiring the specific knowledge of the MATLAB language necessary to implement these models.

The versions of MATLAB and SIMULINK used are MATLAB 6.0 and SIMULINK 4, respectively
(Release 12). Changes made in Release 13 (the last available as of June 2003) have no bearing on the
content of this manual.

This manual includes two introductory chapters on MATLAB: the first one shows how to start
MATLAB and how to use and organize basic commands. It explains in particular how to save groups
of commands in a file, which is important in creating programs that implement a whole problem. The
second chapter is more specific to differential equations. It goes over how to implement initial value
problems and how to visualize the solution(s), using complete examples. Students are encouraged to
read these two chapters and execute the listed commands before moving to the laboratory section.

Following is the main part of this manual which comprises 14 laboratory sessions covering general
numerical implementation and execution issues when solving differential equations. This is done in
the context of specific applications, many of which are similar to the ones presented in the MAPLE
companion manual. As noted there, these laboratory sessions vary in length and difficulty, and are
included to demonstrate the use of MATLAB as well as to involve students through exploratory exercises.
Instructors should feel free to modify the sessions at their own discretion.

Additional project ideas are included in the last chapter. These projects represent different kinds
of applications from various disciplines including chemical, civil, electrical, and mechanical engineering,
including most of the projects ideas (sometimes radically changed though) from the Maple companion

book by K. Pothoven. A project idea coming from an actual project carried out in a Differential
Equations with MATLAB course I have been teaching is also included. Each project is briefly described
at the beginning of the chapter.

As always when using a computer software the user should be careful to respect the correct syntax
needed for proper execution. In my experience this represents the most significant hurdle for students
without any background in computer programming. This manual is designed to help in this regard, by
including simple examples and templates that students can conveniently use as a starting point for their
own applications. Ultimately, some effort must however be made by the student in order to assimilate the
proper ways of using MATLAB by practicing with the examples included in this manual and adapting
them to new problems.

The manuscript was prepared using the BETEX document preparation system. PostScript figures
were created using MATLAB or converted from screen capture in Jpeg format using jpeg2ps 1.9 by
Thomas Herz. The cover picture was created from the original book cover of the new (sixth) edition of the
Nagle, Saff and Snider text with a mask based on the MATLAB logo using PhotoShop. The MATLAB
graphical user interfaces dfield6.m and pplane6.m by John Polking and David Arnold were briefly used
in this manual. A detailed description is available in their book Ordinary Differential Equations Using
MATLAB. Many of the MATLAB and SIMULINK programs used in this manual are available online at
http://math.asu.edu/~bdw/PUBLIC. Partial funding for this work was provided by a grant to improve
undergraduate education from the College of Liberal Arts and Sciences at Arizona State University.

Bruno Welfert
Arizona State University
September 2003

vi

Chapter 1

Introduction to MATLAB

MATLAB is a computer software commonly used in both education and industry to solve a wide range
of problems.

This chapter provides a brief introduction to MATLAB, and the tools and functions that help you
to work with MATLAB variables and files.

The MATLAB Environment

% To start MATLAB double-click on the MATLAB shortcut icon MA"[’u;g riz or type matlab & at the
prompt (Unix). The MATLAB desktop opens.

On the right side of the desktop you find the Command Window, where commands are entered at
the prompt >>.

On the left side you will generally find the Launch Pad and Workspace windows, and the Command
History and Current Directory windows. For all practical purposes we have in mind I recommend closing
the Launch Pad, Workspace, and Command History windows, if opened. It is convenient to keep the
Current Directory window opened to check for files you create and use in the Command Window.

Note that windows within the MATLAB desktop can be resized by dragging the separator bar(s). A
typical MATLAB desktop is shown in Fig. 1.1.

% To exit MATLAB do one of the following:

e Click on the close box X] at the top right of the MATLAB Desktop.
e Select File > Exit from the desktop File menu.

e Type quit or exit at the Command Window prompt >>.

Basics And Help

Commands are entered in the Command Window.
% Basic operations are +, -, *, and /. The sequence

>> a=2; b=3; atb, axb,

ans =

ans =

2 Introduction to MATLAB

<) MATLAB I [= 3
File Edit ‘iew ‘web ‘Window Help

g”‘ ks 4 o | 9 ICurremDiremnry: ChmatiabR1 2work et [
| | |

Comrmand Wi

8%-- 6126 AM6/15/03 --04
a=2; b=3; a+b, a*b To get started, select "MATLAB Help" from the Help menu.
theta=pi/5;

cos(theta)~2+sin(theta)~2

= a=2; b=3; a+b, a*b
ans =

5

ans =
6

=2 theta=pi/5;
=2 cos(theta)~2+sin{theta)~2

ans =
1

b

4| ¥ | commandHistory | CurentDivectory | | |4] [

Ready

Figure 1.1: A typical MATLAB desktop

defines variables a and b and assigns values 2 and 3, respectively, then computes the sum a+b and product
ab. Each command ends with , (output is visible) or ; (output is suppressed). The last command on a
line does not require a ,.

% Standard functions can be invoked using their usual mathematical notations. For example

>> theta=pi/5;
>> cos(theta) "2+sin(theta) "2

ans =

verifies the trigonometric identity sin 0 + cos?0 = 1 for 6 = £ A list of elementary math functions can

be obtained by typing help elfun in the Command window:

>> help elfun

Elementary math functionms.

Introduction to MATLAB

Trigonometric.

sin - Sine.

sinh - Hyperbolic sine.

asin - Inverse sine.

asinh - Inverse hyperbolic sine.

cos - Cosine.

cosh - Hyperbolic cosine.

acos - Inverse cosine.

acosh - Inverse hyperbolic cosine.

tan - Tangent.

tanh - Hyperbolic tangent.

atan - Inverse tangent.

atan2 - Four quadrant inverse tangent.

atanh - Inverse hyperbolic tangent.

sec - Secant.

sech - Hyperbolic secant.

asec - Inverse secant.

asech - Inverse hyperbolic secant.

csc - Cosecant.

csch - Hyperbolic cosecant.

acsc - Inverse cosecant.

acsch - Inverse hyperbolic cosecant.

cot - Cotangent.

coth - Hyperbolic cotangent.

acot - Inverse cotangent.

acoth - Inverse hyperbolic cotangent.
Exponential.

exp - Exponential.

log - Natural logarithm.

logl0 - Common (base 10) logarithm.

log2 - Base 2 logarithm and dissect floating point number.

pow2 - Base 2 power and scale floating point number.

sqrt - Square root.

nextpow2 - Next higher power of 2.
Complex.

abs - Absolute value.

angle - Phase angle.

complex - Construct complex data from real and imaginary parts.

conj - Complex conjugate.

imag - Complex imaginary part.

real - Complex real part.

unwrap - Unwrap phase angle.

isreal - True for real array.

cplxpair - Sort numbers into complex conjugate pairs.

Rounding and remainder.

fix - Round towards zero.

floor - Round towards minus infinity.
ceil - Round towards plus infinity.
round - Round towards nearest integer.

mod - Modulus (signed remainder after division).

4 Introduction to MATLAB

rem - Remainder after division.
sign - Signum.

% To obtain a description of the use of a particular function type help followed by the name of the
function. For example

>> help cosh

COSH Hyperbolic cosine.
COSH(X) is the hyperbolic cosine of the elements of X.

* To get a list of other groups of MATLAB programs already available enter help:

>> help

HELP topics:

matlab\general - General purpose commands.

matlab\ops - Operators and special characters.
matlab\lang - Programming language constructs.
matlab\elmat - Elementary matrices and matrix manipulation.
matlab\elfun - Elementary math functions.

matlab\specfun - Specialized math functioms.

matlab\matfun - Matrix functions - numerical linear algebra.
matlab\datafun - Data analysis and Fourier transforms.
matlab\audio - Audio support.

matlab\polyfun - Interpolation and polynomials.
matlab\funfun - Function functions and ODE solvers.
matlab\sparfun - Sparse matrices.

matlab\graph2d - Two dimensional graphs.

matlab\graph3d - Three dimensional graphs.

matlab\specgraph - Specialized graphs.

matlab\graphics - Handle Graphics.

matlab\uitools - Graphical user interface tools.
matlab\strfun - Character strings.

matlab\iofun - File input/output.

matlab\timefun - Time and dates.

matlab\datatypes - Data types and structures.

matlab\verctrl - Version control.

matlab\winfun - Windows Operating System Interface Files (DDE/ActiveX)
matlab\demos - Examples and demonstratioms.

toolbox\local - Preferences.

matlabR12\work - (No table of contents file)

For more help on directory/topic, type "help topic".

% Another way to obtain help is through the desktop Help menu, Help > MATLAB Help, or by
connecting to the Mathworks web site at www.mathworks.com.
% MATLAB is case-sensitive. For example

>> theta=1e-3, Theta=2e-5; ratio=theta/Theta

theta =

Introduction to MATLAB 5

0.0010
Theta =
2.0000e-005
ratio =

50

% The quantities Inf (co) and NaN (Not a Number) also appear frequently. Compare

>> ¢=1/0
Warning: Divide by zero.

Inf

with
>> d=0/0
Warning: Divide by zero.

d =

NaN

Plotting with MATLAB

% To plot a function you have to create two arrays (vectors): one containing the abscissae, the other the
corresponding function values. Both arrays should have the same length. For example, consider plotting

the function
2?2 — sin(nz) + €*

y=1[()=

for 0 < x < 2. First choose a sample of x values in this interval:

r—1

>> x=[0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1,
1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2]

Columns 1 through 4
0 0.1000 0.2000 0.3000

Columns 5 through 8
0.4000 0.5000 0.6000 0.7000

Columns 9 through 12

0.8000 0.9000
Columns 13 through 16
1.2000 1.3000
Columns 17 through 20
1.6000 1.7000
Column 21
2.0000

or simply

>> x=0:.1:2

Columns 1 through 4
0 0.1000
Columns 5 through 8
0.4000 0.5000
Columns 9 through 12
0.8000 0.9000
Columns 13 through 16
1.2000 1.3000
Columns 17 through 20
1.6000 1.7000
Column 21
2.0000
Try also
>> x=linspace(0,2,21)
x =
Columns 1 through 4

0 0.1000

1.0000

1.4000

1.8000

0.2000

0.6000

1.0000

1.4000

1.8000

0.2000

1.1000

1.5000

1.9000

0.3000

0.7000

1.1000

1.5000

1.9000

0.3000

Introduction to MATLAB

Introduction to MATLAB 7

Columns 5 through 8

0.4000 0.5000 0.6000 0.7000
Columns 9 through 12

0.8000 0.9000 1.0000 1.1000
Columns 13 through 16

1.2000 1.3000 1.4000 1.5000
Columns 17 through 20

1.6000 1.7000 1.8000 1.9000
Column 21

2.0000

% Note that an ellipsis ... was used to continue a command too long to fit in a single line.
% The output for x can be suppressed (by adding ; at the end of the command) or condensed by entering
format compact:

>> format compact
>> x
Columns 1 through 4
0 0.1000 0.2000 0.3000
Columns 5 through 8
0.4000 0.5000 0.6000 0.7000
Columns 9 through 12
0.8000 0.9000 1.0000 1.1000
Columns 13 through 16
1.2000 1.3000 1.4000 1.5000
Columns 17 through 20
1.6000 1.7000 1.8000 1.9000
Column 21
2.0000

From now on we shall use such format for all output.
To evaluate the function f simultaneously at all the values contained in z, type

>> y=(x."2-sin(pi.*x)+exp(x))./(x-1)
Warning: Divide by zero.
y =
Columns 1 through 4
-1.0000 -0.8957 -0.8420 -0.9012
Columns 5 through 8
-1.1679 -1.7974 -3.0777 -5.6491
Columns 9 through 12
-11.3888 -29.6059 Inf 45.2318
Columns 13 through 16
26.7395 20.5610 17.4156 15.4634
Columns 17 through 20

8 Introduction to MATLAB

14.1068 13.1042 12.3468 11.7832
Column 21
11.3891

Note that the function becomes infinite at = 1 (vertical asymptote). The array y inherits the dimension
of z, namely 1 (row) by 21 (columns). Note also the use of parentheses.

IMPORTANT REMARK

In the above example *, / and ~ are preceded by a dot . in order for the expression to be evaluated for
each component (entry) of z. This is necessary to prevent MATLAB from interpreting these symbols
as standard linear algebra symbols operating on arrays. Because the standard + and - operations on
arrays already work componentwise, a dot is not necessary for + and -.

The command
>> plot(x,y)

creates a Figure window and shows the function, see Fig. 1.2. The figure can be edited and manipulated
using the Figure window menus and buttons. Alternately, properties of the figure can also be defined
directly at the command line:

>> x=0:.01:2;

>> y=(x."2-sin(pi.*x)+exp(x))./(x-1);

>> plot(x,y,’r-’,’LineWidth’,2);

>> axis([0,2,-10,20]); grid on;

>> title(Pf(x)=(x"2-sin(\pi x)+e"x)/(x-1)’);
>> xlabel(’x’); ylabel(’y’);

Introduction to MATLAB

<) Figure No_ 1 _ o] x|
File Edit ‘“fiew Inzet Toolz Window Help

DEE&a NAA A/ 2O D

a0 T T T T T T T T T

40t | g

il \ 4

20+ . g

20t \ 4

a0 | | | |
0 ; ; ;

Figure 1.2: A Figure window

(x)=(-sin(rix)+e*)/(x-1)
T T T

20

1 12 1.4 16 18 2

Figure 1.3: The function y = f(z) = P osin(mz)te”

z—1

10 Introduction to MATLAB

The number of z-values has been increased for a smoother curve (what is the new size of 7). The
curve now appears wider and in red. The range of z and y values has been reset (always a good idea
in the presence of vertical asymptotes). A title and labels have been added. The resulting new plot is
shown in Fig. 1.3. For more options type help plot in the Command Window.

Scripts and Functions

% Files containing MATLAB commands are called m-files and have a .m extension. They are two types:

1. A script is simply a collection of MATLAB commands gathered in a single file. The value of the
data created in a script is still available in the Command Window after execution.

2. A function is similar to a script, but can accept and return arguments. Unless otherwise specified
any variable inside a function is local to the function and not available in the Workspace. A
function invariably starts with the command

function output = function_name (input)

and should contain one or several commands defining the output.

Use a function when a group of commands needs to be evaluated multiple times.

% To create a new script or function select the MATLAB desktop File menu File > New > M-file.
In the MATLAB text editor window enter the commands as you would in the Command window. To
save the file use the menu File > Save or File > Save As..., or the shortcut Save button & .

B} C:\matlabR12\work\myplot.m o] x]
File Edit “iew Test Debug Breakpoints ‘web ‘Window Help
DEE&| i 2Raw (| AR BT RE| sl g
1= =%=0:.01:2; o9 x-values =
2= y=(x."2-sin(pi*x)+exp(x))./(x-1); %940 y-values
3-| plot{x,y,'r-','LineWidth',2); %% plot in red
4= axis([0,2,-10,20]); grid on; %99 set range and add grid
gl=| title('f(x)=(x~2-sin{\pi x)+e~x)/(x-1)"); %o add title
Bl=| xlabel{'x"); ylabel('y'); %40 add labels|
] [+
Ready

Figure 1.4: The script myplot.m in the MATLAB Editor window.

% Examples of script/function:

1. script

myplot.m (see Fig. 1.4).

Introduction to MATLAB

x=0:.01:2;
y=(x."2-sin(pi.*x)+exp(x))./(x-1);
plot(x,y,’r-’,’LineWidth’,2);
axis([0,2,-10,20]); grid on;
title(Cf(x)=(x"2-sin(\pi x)+e"x)/(x-1)7);
xlabel(’x’); ylabel(’y’);

. script+function (two separate files)

myplot2.m | (driver script)

x=0:.01:2;

y=feval (@myfunction,x) ;
plot(x,y,’r-’,’LineWidth’,2);
axis([0,2,-10,20]); grid on;
title(Cf(x)=(x"2-sin(\pi x)+e"x)/(x-1));
xlabel(’x’); ylabel(’y’);

(erion

function y=myfunction(x)
y=(x."2-sin(pi.*x)+exp(x))./(x-1);

. script+function (one single file)

IR I I I

S

=

11

x-values

y-values

plot in red

set range and add grid
add title

add labels

x-values

evaluate myfunction at x
plot in red

set range and add grid
add title

add labels

defines function
y-values

myplotl.m | (driver script converted to function + function)

function myplotl

x=0:.01:2;

y=feval(@myfunction,x);
plot(x,y,’r-’,’LineWidth’,2);
axis([0,2,-10,20]); grid on;
title(Pf(x)=(x"2-sin(\pi x)+e"x)/(x-1)’);
xlabel(’x’); ylabel(’y’);

% - - - - _

function y=myfunction(x)
y=(x."2-sin(pi.*x)+exp(x))./(x-1);

x-values

evaluate myfunction at x
plot in red

set range and add grid
add title

add labels

defines function
y-values

In case 2 myfunction.m can be used in any other m-file (just as other predefined MATLAB functions).
In case 3 myfunction.m can be used by any other function in the same m-file (myplotl.m) only. Use 3
when dealing with a single project and 2 when a function is used by several projects.

% It is convenient to add descriptive comments into the script file. Anything appearing after % on any
given line is understood as a comment (in green in the MATLAB text editor).

* To execute a script simply enter its name (without the .m extension) in the Command Window, e.g.,

>> myplot;
in case 1,

>> myplot2;
in case 2 and

>> myploti;

in case 3 above. The function myfunction can also be used independently if implemented in a separate
file myfunction.m:

12 Introduction to MATLAB

>> x=2; y=myfunction(x)
y =
11.3891
A script can be called from another script or function (in which case it is local to that function).
If any modification is made, the script or function can be re-executed by simply retyping the script
or function name in the Command Window (or use the up-arrow on the keyboard to browse through
past commands).

IMPORTANT REMARK

By default MATLAB saves files in the Current Directory (folder). When entering MATLAB the
Cuwrrent Directory is the Work Directory (e.g., C:\matlabR12\work). Make sure the file is saved
where you want it. To change directory use the Current Directory window or the Current Directory
box urrent Directory: | C:matiabR1 2work =] .| on top of the MATLAB desktop.

% A function file can contain a lot more than a simple evaluation of a function f(x) or f(¢,y). But in
simple cases f(z) or f(t,y) can simply be defined using the inline syntax. Compare

>> ...
>> slope = feval(@f,2,1) % note use of @. Try also slope=f(2,1)
slope =

3

where f.m is the file containing

function dydt = £(t,y)

dydt = t~2-y;
to
>> ..
>> f = inline(’t~2-y’,’t’,’y’)
f=

Inline function:

£(t,y) = t°2-y
>> slope = feval(f,2,1) % note no @
slope =

3

However, an inline function is only available where it is used and not to other functions. It is not
recommended when the function implemented is too complicated or involves too many statements.

Matrices and Linear Algebra

We have used one-dimensional 1 x 21 arrays = and y in previous examples. MATLAB can handle higher
dimensional arrays. Two-dimensional arrays (matrices) are commonly used in many situations.
% Matrices can be constructed in MATLAB in different ways. For example the 3 x 3 matrix A =
8 1 6
3 5 7| can be entered as

4 9 2
>> A=[8,1,6;3,5,7;4,9,2]
A=
8 1 6
3 5 7
4 9 2

or

Introduction to MATLAB 13

>> A=[8,1,6;

3,5,7;

4,9,2]

A =
8 1 6
3 5 7
4 9 2

or defined as the concatenation of 3 rows

>> rowl=[8,1,6]; row2=[3,5,7]; row3d=[4,9,2]; A=[rowl;row2;row3]

A=
8 1 6
3 5 7
4 9 2

or 3 columns

>> coll1=[8;3;4]; col2=[1;5;9]; col3=[6;7;2]; A=[coll,col2,col2]

A=
8 1 6
3 5 7
4 9 2

Note the use of , and ;. Concatenated rows/columns must have the same length. Larger matrices can
be created from smaller ones in the same way:

>> C=[A,A] % Same as C=[A A]

C =
8 1 6 8 1 6
3 5 7 3 5 7
4 9 2 4 9 2

The matrix C has dimension 3 x 6 (“3 by 6”). On the other hand smaller matrices (submatrices) can
be extracted from any given matrix:

>> A(2,3) % coefficient of A in 2nd row, 3rd column

ans =

7
>> A(1,:) % 1st row of A
ans =

8 1 6
>> A(:,3) % 3rd column of A
ans =

6

7

2
>> A([1,3],[2,3]) % keep coefficients in rows 1 & 3 and columns 2 & 3
ans =

1 6

9 2

% Some matrices are already predefined in MATLAB:

>> I=eye(3) 7% the Identity matrix
I =
1 0 0

1 0

14 Introduction to MATLAB

0 0 1
>> magic(3)
ans =

8 1 6

3 5 7

4 9 2

(what is magic about this matrix?)
% Matrices can be manipulated very easily in MATLAB (unlike MAPLE). Here are sample commands
to exercise with:

>> A=magic(3);

>> B=A’ % transpose of A, i.e, rows of B are columns of A
B =

8 3 4

1 5 9

6 7 2
>> A+B % sum of A and B
ans =

16 4 10

4 10 16

10 16 4
>> A*B % standard linear algebra matrix multiplication
ans =

101 71 53
71 83 71
53 71 101

>> A.*B % coefficientwise multiplication
ans =

64 3 24

3 25 63

24 63 4

Try A*A, A2, A."2.
% Two MATLAB commands are especially relevant when studying the solution of linear systems of
differentials equations:

1. x=A\b determines the solution z = A~'b of the linear system Az = b. The array b must have as
many rows as the matrix A.

2. [S,Dl=eig(A) determines the eigenvectors of A (columns of 8) and associated eigenvalues (diagonal
coefficients of D) (note that the eig function has one input and two output arguments).

1
As an example consider the matrix A =magic(3) again and z = |2]:
3
>> A=magic(3)
A =
8 1 6
3 5 7
4 9 2
>> x=[1,2,3]" % same as x=[1;2;3]
X =

N =

Introduction to MATLAB 15

>> b=A*x
b =
28
34
28
>> A\b % this is x!
ans =
1
2
3
>> inv(A)*b 7 less efficient and accurate
ans =
1.0000
2.0000
3.0000
>> [S,Dl=eig(A)
S =
-0.5774 -0.8131 -0.3416
-0.5774 0.4714 -0.4714
-0.5774 0.3416 0.8131

D =
15.0000 0 0
0 4.8990 0
0 0 -4.8990
>> A*S(:,1)-D(1,1)*S(:,1) % test 1st eigenvector-eigenvalue pair
ans =
1.0e-014 *
-0.1776
0.3553
-0.3553

Note the multiplicative factor 10~* in the last computation. MATLAB performs all operations using
standard IEEE double precision.

MATLAB Programming and Debugging
Several constructs are used in MATLAB:

1. repetitive loops (fixed number of times)
for <expression>
<list of commands>
end
2. repetitive loops (indefinite number of times)
while <expression>
<list of commands>
end

3. conditional branching

if expression

16

or

The following examples illustrate the use of each construct:

1. for loop: determine the sum of the squares of integers from 1 to 10

g =
for

end

<list of commands>
elseif expression
<list of commands>

else
<list of commands>
end

switch expression
case <expression>
<list of commands>

case <expression>
<list of commands>
otherwise
<list of commands>
end

0; % initialize running sum

k = 1:10
S = S+k™2;

What is S? Verify with MATLAB.

Introduction to MATLAB

2. while loop: determine the sum of the inverses of squares of integers from 1 until the inverse of the
integer square is less than 10~

S =
K =
incr
whil

end

o0
1
What is the value of S returned by this script? Compare to Z 2=

Can k and incr be both initialized by 07

3. if statement: evaluate y = ﬁ for a given (but unknown) scalar z

func
if x

else

end

0; % initialize running sum
1; % initialize current integer
= 1; % initialize test value

e incr>=1e-10
S = S+incr;

k = k+1;

incr = 1/k"2;

tion y=f(x)
==9

disp(’y is undefined at x

y=1/(x-2);

2

s

5

Introduction to MATLAB 17

or with switch statement:

function y=f(x)

switch x
case 2
disp(’y is undefined at x = 2’)
otherwise
y=1/(x-2);
end

Try £(1), £(2). Modify the example to allow for arrays as input.

% Whenever possible all these construct should be avoided and available MATLAB functions used to
improve efficiency. In particular lengthy do loops introduce a substantial overhead. Compare

>> tic; S=0; for k=1:1000000; S=S+1/k"2; end; toc; S
elapsed_time =
1.8830
g =
1.6449

and

>> tic; S=sum(1./(1:1000000).72); toc; S
elapsed_time =

0.0800
S =

1.6449

% Programming with MATLAB is fairly easy. Still a script or function may not execute properly due
to some programming error. In this case MATLAB returns an error indicating where it stopped and
why. Most of the time this is sufficient to find out the error and correct it, especially when you get used
to it. But keep in mind that even non-fatal mistakes may eventually force a program to later crash.
Debugging tools are available in the MATLAB editor to force the execution to stop at specific places
within a script or function(s) and access the current state of available variables.

Write a script or function with the MATLAB editor and position the cursor on a selected line. Then
try the buttons & and %1 in the editor window before executing the file in the Command Window.
Observe what happens. Check the value of variables. To continue and eventually exit the debugger press
return.

Exercises
Now that you have been through the essential elements of MATLAB relevant in this text, a good exercise

is to go through the commands and change values, functions, and problems to familiarize yourself with
the MATLAB syntax and commands introduced in this chapter.

